Symmetric Key Services Markup Language (SKSML) Version 1.0
Public Review Draft 01
22 July 2008
Specification URIs:
This Version:
http://docs.oasis-open.org/ekmi/sksml/v1.0/pr01/SKSML-1.0-Specification.html
http://docs.oasis-open.org/ekmi/sksml/v1.0/pr01/SKSML-1.0-Specification.odt (Authoritative)
http://docs.oasis-open.org/ekmi/sksml/v1.0/pr01/SKSML-1.0-Specification.pdf
Previous Version:
None
Latest Version:
http://docs.oasis-open.org/ekmi/sksml/v1.0/SKSML-1.0-Specification.html
http://docs.oasis-open.org/ekmi/sksml/v1.0/SKSML-1.0-Specification.odt
http://docs.oasis-open.org/ekmi/sksml/v1.0/SKSML-1.0-Specification.pdf
Latest Approved Version:
None
Technical Committee:
OASIS Enterprise Key Management Infrastructure (EKMI) TC
Chair(s):
Arshad Noor, StrongAuth, Inc. (arshad.noor@strongauth.com)
Editor(s):
Allen Schaaf (netsecurity@sound-by-design.com)
Related Work:
This specification replaces or supercedes:
None
This specification is related to:
Advanced Encryption Standard (AES) - NIST FIPS 197 - http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Simple Object Access Protocol (SOAP) - W3C Recommendation 08 May 2000. http://www.w3.org/TR/soap/
XML Encryption - W3C Recommendation 10 Dec 2002. http://www.w3.org/TR/xmlenc-core/
XML Signature - W3C Recommendation 12 Feb 2002. http://www.w3.org/TR/xmldsig-core/
Web Services Security - SOAP Message Security 1.0 - OASIS Standard 200401, March 2004 - http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
Declared XML Namespace(s):
http://docs.oasis-open.org/ekmi/2008/01
Abstract:
This normative specification defines the first (1.0) version of the Symmetric Key Services Markup Language (SKSML), an XML-based messaging protocol, by which applications executing on computing devices may request and receive symmetric key-management services from centralized key-management servers, securely, over networks. Applications using SKSML are expected to either implement the SKSML protocol, or use a software library – called the Symmetric Key Client Library (SKCL) – that implements this protocol. SKSML messages are transported within a SOAP layer, protected by a Web Services Security (WSS) header and can be used over standard HTTP securely.
Status:
This document was last revised by the EKMI TC as of the above date. The level of approval is also listed above. Check the "Latest Version" or "Latest Approved Version" location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ekmi
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/ekmi/ipr.php).
The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ekmi/.
Notices
Copyright © OASIS® 2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The names "OASIS" and “SKSML” are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.
Table of Contents
1 Introduction 6
1.1 Terminology 6
1.2 Glossary 6
1.3 Normative References 7
2 Background (non-normative) 8
2.1 Requirements (non-normative) 9
3 Examples of use of SKSML (non-normative) 11
3.1 Request for a new symmetric key 11
3.2 Response with a new symmetric key 13
3.3 Request for an existing symmetric key 17
3.4 Response with an existing symmetric key 18
3.5 Request for a new symmetric key of a specific KeyClass 18
3.6 Response with a new symmetric key of a specific KeyClass 18
3.7 Request for multiple new symmetric keys 19
3.8 Response with multiple new symmetric keys 20
3.9 Response with an SKS error 24
3.10 Response with symmetric keys and errors 25
3.11 Request for a symmetric key-caching policy 27
3.12 Response with a symmetric key-caching policy (1) 29
3.13 Response with a symmetric key-caching policy (2) 30
3.14 Response with multiple symmetric key-caching policies (3) 32
4 Specification 36
4.1 Element <SymkeyRequest> 36
4.2 Element <GlobalKeyID> 38
4.3 Element <KeyClasses> and <KeyClass> 39
4.4 Element <SymkeyResponse> 41
4.5 Element <Symkey> 42
4.6 Element <SymkeyError> 44
4.7 Element <KeyUsePolicy> 46
4.8 Type TwoPartIDType 48
4.9 Element <KeyAlgorithm> 49
4.10 Element <KeySize> 50
4.11 Element <Status> 51
4.12 Element <Permissions> 52
4.13 Element <PermittedApplications> and <PermittedApplication> 58
4.14 Element <PermittedDates> and <PermittedDate> 61
4.15 Element <PermittedDays> and <PermittedDay> 63
4.16 Element <PermittedDuration> 64
4.17 Element <PermittedLevels> and <PermittedLevel> 65
4.18 Element <PermittedLocations> and <PermittedLocation> 67
4.19 Element <PermittedNumberOfTransactions> 69
4.20 Element <PermittedTimes> and <PermittedTime> 70
4.21 Element <PermittedUses> and <PermittedUse> 72
4.22 Element <KeyCachePolicyRequest> 73
4.23 Element <KeyCachePolicyResponse> 74
4.24 Element <KeyCachePolicy> 74
4.25 Type KeyCacheDetailType 77
5 Conformance 80
This document presents the specification for the Symmetric Key Services Markup Language (SKSML), a protocol by which applications may request and receive symmetric key-management services, securely, over networks or other mechanisms as may be selected by implementers. All text is normative unless otherwise indicated.
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119.
3DES – Triple Data Encryption Standard
AES – Advanced Encryption Standard
Base64 – An encoding scheme for representing data
Ciphertext – Encrypted data
Cryptographic module – A software library or hardware module dedicated to performing cryptographic operations
DES – Data Encryption Standard
DID or Domain ID – Domain Identifier; the unique PEN assigned to an implementation of an SKMS (Symmetric Key Management System) within an enterprise
GKID or Global Key ID – Global Key Identifier; the unique identifier assigned to every symmetric encryption key within an SKMS. It is the concatenation of the DID-SID-KID
Initialization Vector or IV – A block of bits required to encrypt/decrypt the first block of data when used with a particular mode of cryptographic operations
KeyCachePolicy – The collection of rules that defines how a symmetric encryption key may be cached by a client implementation
KID or Key ID – Key Identifier; the unique integer assigned to every symmetric encryption key generated within a specific SKS (Symmetric Key Services) server within an SKMS (Symmetric Key Management System)
KeyUsePolicy – The collection of rules that defines how a symmetric encryption key may be used by an application
PEN – Private Enterprise Number; the unique integer assigned by IANA to any organization that requests such a number
PII – Personally Identifiable Information, such as credit card numbers, social security numbers, bank account numbers, drivers license numbers, etc.
Plaintext – Unencrypted data
SHA – Secure Hashing Algorithm
SHA-1 – Secure Hashing Algorithm with a resultant size of 160-bits
SHA-256 – Secure Hashing Algorithm with a resultant size of 256-bits
SHA-384 – Secure Hashing Algorithm with a resultant size of 384-bits
SHA-512 – Secure Hashing Algorithm with a resultant size of 512-bits
SID or Server ID – Server Identifier; the unique integer assigned to every SKS server within an enterprise's SKMS
SKCL – Symmetric Key Client Library; a software library that supports the SKSML protocol
SKMS – Symmetric Key Management System; a collection of hardware and software providing symmetric encryption key-management services
SKS – Symmetric Key Services; a server that provides symmetric key management services over a network or other mechanism selected by implementers
SKSML – Symmetric Key Services Markup Language; an XML-based protocol to request and receive symmetric encryption key-management services
SOAP – Simple Object Access Protocol
SOAP Body – The content part of a SOAP message
SOAP Envelope – The SOAP message consisting of a SOAP Header and a SOAP Body, conforming to the SOAP protocol standard.
SOAP Error – A SOAP error message response to a SOAP request
SOAP Header – The header part of a SOAP message containing meta-information about the message, including security-related objects
Symkey - A symmetric encryption key
unbounded – A parameter used with the “maxOccurs” attribute to indicate an unlimited number
XMLEncryption – Encrypted content represented in eXtensible Markup Language that conforms to the World Wide Web Consortium's XML Encryption standard
XMLSignature – A digital signature represented in eXtensible Markup Language that conforms to the World Wide Web Consortium's XML Signature standard
[AES] Advanced
Encryption Standard
NIST FIPS 197.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[RFC
2119] S. Bradner. Key
words for use in RFCs to Indicate Requirement Levels.
IETF RFC 2119, March 1997. .http://www.ietf.org/rfc/rfc2119.txt
[SOAP] Simple
Object Access Protocol 1.1
W3C Recommendation 08 May 2000.
http://www.w3.org/TR/soap/
[XMLEncryption] XML
Encryption Syntax and Processing
W3C Recommendation 10 Dec 2002.
http://www.w3.org/TR/xmlenc-core/
[XMLSignature] XML
Signature Syntax and Processing
W3C Recommendation 12 Feb 2002.
http://www.w3.org/TR/xmldsig-core/
[WSS] Web
Services Security – SOAP Message Security 1.0
OASIS Standard 200401, March
2004
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
[RFC 2578] K. McCloghrie, et al. Structure of Management Information Version 2 (SMIv2). IETF RFC 2578, April 1999. http://www.ietf.org/html/rfc2578
A confluence of events is causing many companies to consider encrypting sensitive data across many applications and platforms within their IT infrastructure. Some of these events include:
“Breach Disclosure” laws in nearly 40 states of the USA, requiring companies that have suffered breaches on computers containing Personally Identifiable Information (PII) of their employees or customers, to disclose those breaches to the affected individuals
Industry-specific regulations such as the credit card industry's Payment Card Industry Data Security Standard, requiring the encryption of credit card numbers accompanied with strong key-management controls
National laws such as the US' Health Insurance Portability and Accountability Act (HIPAA) and the European Union Directive, requiring the securing of health-related data and PII, respectively
A significant increase in the number of business applications and e-commerce services on the internet requiring credit card numbers for payment, which in turn becomes a target for attackers
A significant increase in the number of users connected to the internet with inadequate protection, leading to many attack vectors becoming propagated on these unprotected PC's
In a rush to provide solutions to the market, vendors have created many device-specific, platform-specific, database-specific and application-specific encryption and key-management tools. While these tools may be capable of performing their stated tasks adequately, a typical enterprise would have to deal with many encryption and key-management solutions to adequately protect sensitive data. The following illustration shows how the same key-management tasks need to repeated across every single device, platform, database and/or application where encryption is performed:
Not only does this raise the cost of ownership for implementing companies, but it raises the possibility that with many dissimilar key-management systems, because of the typical complexity of key-management schemes, there is a greater likelihood of human error leading to a vulnerability.
To ensure that encryption policies and designs are specified and used uniformly across applications, a common key-management service capable of supporting enterprise platforms, applications and devices is needed. To enable such applications to communicate with this service, a uniform protocol is needed. The Symmetric Key Services Markup Language (SKSML) is that protocol.
Once an enterprise has implemented an SKMS, and applications have been modified to take advantage of SKSML, they can expect to see their key-management infrastructure to resemble the following diagram:
Architected much like the Domain Name Service (DNS), an SKMS becomes the focal point for all symmetric encryption key-management services.
The Symmetric Key Client Library (SKCL) on client devices is responsible for communicating with the Symmetric Key Services (SKS) server using SKSML. The SKCL handles security, caching, cryptographic operations and ensuring that the use of the key is in conformance to policies specified for the key.
The SKS server is responsible for storing all policies, keys and information about authorized clients and servers within the SKMS, and responds to client requests.
The requirements of the SKSML protocol are that:
It must be platform independent;
It must support the request of new and previously escrowed symmetric encryption keys;
It must support the unique identification of every symmetric encryption key on the internet;
It must provide message authenticity, confidentiality and integrity even when used over insecure networks;
It must support the use of encryption/decryption services by a client even when disconnected from the network;
It must provide flexibility in defining key-usage policies;
SKSML meets the above requirements in the following manner:
SKSML uses SOAP and XML for encapsulating its requests and responses and can thus, be used on any platform that supports these two underlying protocols;
Using a scheme that concatenates unique Domain identifiers (Private Enterprise Numbers issued by the IANA), unique SKS Server identifiers within a domain and unique Key identifiers within an SKS server, SKSML creates Global Key Identifiers (GKID) that can uniquely identify symmetric keys across the internet;
SKSML relies on the Web Services Security (WSS) standard 1.0, which in turn supports the use of XML Signature and XML Encryption within the SOAP Header. Relying only the on the WSS profile that uses RSA cryptographic key-pairs and digital certificates, SKSML uses the digital signatures for authenticity and message-integrity, while using RSA-encryption for confidentiality;
Using secure key-caching enabled through centrally-defined policies, SKSML supports the request and receipt of KeyCachePolicy elements by clients for the use of symmetric encryption keys even when the client is disconnected from the network and an SKS server;
SKSML provides significant flexibility for defining policies on how symmetric encryption keys may be used by client applications. The KeyUsePolicy element allows Security Officers to define which applications may use a specific key, days and times of use, location of use, purpose of use, key-sizes, encryption algorithms, etc.
SKSML is the first key-management protocol that will do for encryption key-management services what DNS did for name-service protocols: provide a single, standard means of requesting and receiving key-management services from centrally defined servers.
The
following high-level diagram will be used to describe the use of
SKSML.
When a client application (that has been linked to the SKCL) needs to encrypt sensitive data, it will call an API method within the SKCL for a new symmetric key. After the SKCL has ensured that the application is authorized to make such a request (by verifying that the configured/passed-in credentials can access the cryptographic key-store module on the client containing the PrivateKey used for signing SKSML requests), the SKCL assembles the following SKSML request:
[a01] <ekmi:SymkeyRequest
[a02] xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
[a03] <ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
[a04] </ekmi:SymkeyRequest>
[a01] is the start of the SymkeyRequest element.
[a02] identifies the namespace to which this XML conforms, and the location of its XML Schema Definition (XSD).
[a03] identifies the GlobalKeyID (GKID) being requested by the client application. The GKID is a concatenation of three distinct identifiers in the following order: the unique Domain Identifier, the unique Server Identifier within the domain and the unique Key Identifier generated on a server. Using a “zero” value for the Server ID and the Key ID indicates a request for a new symmetric key.
[a04] is the closing tag of the SymkeyRequest element.
While the SymkeyRequest element is very simple, the Web Service Security (WSS) envelope – which provides security for all SKSML messages – expands the size of the message. The same request shown above, is displayed below in its entirety, with its WSS envelope. Please note that some content – such as Base64-encoded binary content - has been reformatted for aesthetics and clarity of the XML elements. The actual elements and data-types have been preserved from actual SKSML messages.
For an interpretation of the XML elements shown below, please refer to [WSS].
For the sake of brevity, this specification will dispense with showing the SOAP envelope and the WSS elements in all other examples, when discussing SKSML.
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
SOAP-ENV:mustUnderstand="1">
<wsse:BinarySecurityToken
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="XWSSGID-1172790302111-1738806553">
MIIDfDCCAmSgAwIBAgIIAe/AvliGc3AwDQYJKoZIhvcNAQELBQAwZzEmMCQGA1UEAxMdU3Ryb25nab
S2V5IERFTU8gU3Vib3JkaW5hdGUgQ0ExJDAiBgNVBAsTG0ZvciBTdHJvbmdLZXkgREVNTyBVc2Ug1d
T25seTEXMBUGA1UEChMOU3Ryb25nQXV0aCBJbmMwHhcNMDYwNzI1MTcxMDMwWhcNMDcwNzIa64dd3k
A1UECxMbRm9yIFN0cm9uZ0tleSBERU1PIFVzZSBPbmx5MRcwFQYDVQQKEw5TdHJvbmdBdXRoIEl2da
S2V5IERFTU8gU3Vib3JkaW5hdGUgQ0ExJDAiBgNVBAsTG0ZvciBTdHJvbmdLZXkgREVNTyBVc2Ugia
T25seTEXMBUGA1UEChMOU3Ryb25nQXV0aCBJbmMwHhcNMDYwNzI1MTY0NjEwWhcNMDcwNzI1s34wdd
NjEwWjBpMREwDwYKCZImiZPyLGQBARMBOTEVMBMGA1UEAxMMU0tTIFNlcnZlci0xMSQwIgYDVQsdw2
ExtGb3IgU3Ryb25nS2V5IERFTU8gVXNlIE9ubHkxFzAVBgNVBAoTDlN0cm9uZ0F1dGggSW5jMIIBd2
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAztppqRoU5A8plxx1Rz1QEUnlAAM1D5g9+isIr3wxa
hbwjtFSMYilnY4iV77xU/nsMOnMZ7RxsLYKdCzQ1ODVYqQwqmAvaJ5Z6SVy34gZ51YG+rSWE3NjFsd
bOXW8RJYA/Tn6Lmht/qngrcaqqmtP0cAAiMRZOWtCTmC2K/LEqDabXSyU6Hh8ySNE3njybvmWpresf
zsYokTdvnWQqT6tKo1OwJsdJ1+hxM7DrnMLvMNq5reINfsKhDdX17wzhrBUx+hiYA/qo8tMXkL6wsd
4PN5dYugtzpSzIdUO5tIg58Avhzwo7hy5oofBlKFY22CeljQ36u0bMjuyGj6UYHs3rdfdfsds32rda
YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAyAmxMZhYA8wHJ4UE4b61s51JVWe4Fygj4MCf3a
hvcNAQELBQADggEBACK05PtvZD4WPglOe=
</wsse:BinarySecurityToken>
<ds:Signature
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<InclusiveNamespaces
xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="wsse SOAP-ENV"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference
URI="#XWSSGID-1172790300636-653454040">
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>lU4m+rp4oebgl9g+t3nRaZYqUlE=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#XWSSGID-1172790300637708871805">
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>WCpOmTCbffcEHXhGf5rlEYWLrZg=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
svStAvBRRrF+g2biPl7uWHkJTQPIl8t4phMbOZQsZlQcn36tcMSj/a4+4LPNfOB3Y8yO2lr1Oa1
fGqCPAWZNuEH34VQEM196rRwV258mgp8uwpXEYJIgPJqg89w8+/NdaODccLQ2Bizu7QM/HSM2ab
ogNJwqmbSyIazOsnOcU=
</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300633-442423344">
<wsse:Reference
URI="#XWSSGID-1172790302111-1738806553"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
<wsu:Timestamp
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300637708871805">
<wsu:Created>2007-03-01T23:05:00Z</wsu:Created>
<wsu:Expires>2007-03-01T23:05:05Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300636-653454040">
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
</ekmi:SymkeyRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
After an SKS server has performed its operations of authenticating the request, identifying the requester, determining policies that apply to the requester, generating the symmetric encryption key in conformance to the defined policy and finally escrowing a symmetric key securely, it assembles the following response and returns it to the client. (The SOAP message, as indicated earlier, is secured using WSS, but only the actual SKSML content is displayed and discussed here).
[b01] <ekmi:SymkeyResponse
[b02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[b03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[b04] <ekmi:Symkey>
[b05]
<ekmi:GlobalKeyID>10514-1-235</ekmi:GlobalKeyID>
[b06]
<ekmi:KeyUsePolicy>
[b07]
<ekmi:KeyUsePolicyID>10514-4</ekmi:KeyUsePolicyID>
[b08]
<ekmi:PolicyName>DES-EDE
KeyUsePolicy</ekmi:PolicyName>
[b09]
<ekmi:KeyClass>HR-Class</ekmi:KeyClass>
[b10]
<ekmi:KeyAlgorithm>
[b11] http://www.w3.org/2001/04/xmlenc#tripledes-cbc
[b12] </ekmi:KeyAlgorithm>
[b13]
<ekmi:KeySize>192</ekmi:KeySize>
[b14]
<ekmi:Status>Active</ekmi:Status>
[b15]
<ekmi:Permissions>
[b16]
<ekmi:PermittedApplications ekmi:any=”false”>
[b17]
<ekmi:PermittedApplication>
[b18]
<ekmi:ApplicationID>10514-23</ekmi:ApplicationID>
[b19]
<ekmi:ApplicationName>
[b20] Payroll
Application
[b21] </ekmi:ApplicationName>
[b22]
<ekmi:ApplicationVersion>1.0</ekmi:ApplicationVersion>
[b23]
<ekmi:ApplicationDigestAlgorithm>
[b24] http://www.w3.org/2000/09/xmldsig#sha1
[b25]
</ekmi:ApplicationDigestAlgorithm>
[b26]
<ekmi:ApplicationDigestValue>
[b27] NIG4bKkt4cziEqFFuOoBTM81efU=
[b28]
</ekmi:ApplicationDigestValue>
[b29] </ekmi:PermittedApplication>
[b30]
</ekmi:PermittedApplications>
[b31]
<ekmi:PermittedDates ekmi:any=”false”>
[b32]
<ekmi:PermittedDate>
[b33]
<ekmi:StartDate>2008-01-01</ekmi:StartDate>
[b34]
<ekmi:EndDate>2008-12-31</ekmi:EndDate>
[b35]
</ekmi:PermittedDate>
[b36]
</ekmi:PermittedDates>
[b37] <ekmi:PermittedDays
ekmi:any=”true” xsi:nil=”true”/>
[b38]
<ekmi:PermittedDuration ekmi:any=”true”
xsi:nil=”true”/>
[b39]
<ekmi:PermittedLevels ekmi:any=”true”
xsi:nil=”true”/>
[b40]
<ekmi:PermittedLocations ekmi:any=”true”
xsi:nil=”true”/>
[b41]
<ekmi:PermittedNumberOfTransactions ekmi:any=”true”
xsi:nil=”true”/>
[b42]
<ekmi:PermittedTimes ekmi:any=”false”>
[b43]
<ekmi:PermittedTime>
[b44]
<ekmi:StartTime>07:00:00</ekmi:StartTime>
[b45]
<ekmi:EndTime>19:00:00</ekmi:EndTime>
[b46]
</ekmi:PermittedTime>
[b47]
</ekmi:PermittedTimes>
[b48] <ekmi:PermittedUses
ekmi:any=”true”
xsi:nil=”true”/>
[b49] </ekmi:Permissions>
[b50] </ekmi:KeyUsePolicy>
[b51]
<ekmi:EncryptionMethod
[b52] Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[b53] <xenc:CipherData>
[b54]
<xenc:CipherValue>
[b55]
E9zWB/y93hVSzeTLiDcQoDxmlNxTuxSffMNwCJmt1dIqzQHBnpdQ81g6DKdkCFjJM
[b56]
hQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxjfg1pU8tGFbpWZcd/ATpJD/2fw
[b57]
UJow/qimxi8+huUYJMtaGHtXuLlWtx27STRcRpIsY=
[b58]
</xenc:CipherValue>
[b59] </xenc:CipherData>
[b60] </ekmi:Symkey>
[b61] </ekmi:SymkeyResponse>
[b01] is the start of the SymkeyResponse element.
[b02] and [b03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[b04] is the start tag of the Symkey element which contains the symmetric encryption key and related elements.
[b05] identifies the GlobalKeyID (GKID) assigned by the SKS server for the new symmetric key being returned. In this example, the concatenated values of the Domain ID, Server ID and Key ID indicate that the key belongs to the organization represented by the PEN, 10514; it was generated on an SKS server with a Server ID of 1 and is the 235th unique key generated on that SKS server.
[b06] is the start of the KeyUsePolicy element. This element contains details of the policy to which SKCL implementations must conform when using the symmetric key.
[b07] identifies the unique KeyUsePolicyID (KUPID) which identifies this policy within the SKMS.
[b08] provides a descriptive name for this key-use policy, which is helpful to human readers when identifying this policy.
[b09] identifies the KeyClass to which this symmetric key belongs. Key-classes are useful to applications that wish to encrypt plaintext with a key that has specific characteristics. The requesting application is expected to know what KeyClass it needs before it asks for a key corresponding to that class.
[b10] is the start tag of the KeyAlgorithm element.
[b11] identifies the cryptographic algorithm that this symmetric key must be used with to for cryptographic operations.
[b12] is the closing tag of the KeyAlgorithm element.
[b13] specifies the size of the symmetric encryption key in bits. While it is possible for application developers to determine this programmatically from the key-object, this element provides this information as a convenience.
[b14] indicates the Status of this KeyUsePolicy and whether it is an active policy or not. This is useful in situations where an application may wish to re-use a symmetric key to encrypt related data to the data originally encrypted with the symmetric key. While it is possible for the symmetric key object to be active in the database, it is conceivable that the KeyUsePolicy used by the key has changed and the application technically needs to use a new symmetric key to encrypt new data.
[b15] is the start of the Permissions element. This element provides a sophisticated mechanism for controlling how, where, when and by which applications symmetric keys be used. While there are many sub-elements within a Permissions element, not all KeyUsePolicy objects might use all Permissions sub-elements. The example shown in this section only uses three of the possible Permissions sub-elements.
[b16] is the start of the PermittedApplications element. This element allows SKMS policies to be defined that allow only specific applications to use symmetric encryption keys associated with this policy. The ekmi:any=”true” attribute of the PermittedApplications element indicates that not just any application on the client machine is permitted to use this symmetric key; only the specified applications within the sub-elements of this element are permitted to use the symmetric key in question..
[b17] is the start of the first PermittedApplication element. This element identifies a specific application within a list of PermittedApplications that is allowed to use the symmetric key. There can be any number of PermittedApplication elements with PermittedApplications.
[b18] identifies the unique ApplicationID (as identified within the SKMS) of the PermittedApplication.
[b19] is the start of the ApplicationName element.
[b20] identifies the ApplicationName of the PermittedApplication (as identified within the SKMS).
[b21] is the closing tag of the ApplicationName element.
[b22] identifies the specific ApplicationVersion of the PermittedApplication. This is helpful when there are multiple versions of a specific application, and the policy-makers need to distinguish between the symmetric keys in use by a specific version of the application.
[b23] is the start of the ApplicationDigestAlgorithm element. This element permits enterprises to ensure that only a cryptographically-verified application is authorized to use the symmetric encryption key. This assumes that the implementation has an infrastructure where the SKCL is capable of determining a cryptographic value to uniquely identify an application within the run-time environment.
[b24] identifies the W3C-specified URL of the cryptographic algorithm used to calculate the message digest of the application's image.
[b25] is the closing tag of the ApplicationDigestAlgorithm element.
[b26] is the start of the ApplicationDigestValue element. This element permits enterprises to ensure that only a cryptographically-verified application is authorized to use the symmetric encryption key. This assumes that the implementation has an infrastructure where the SKCL is capable of determining a cryptographic value to uniquely identify an application within the run-time environment.
[b27] identifies the Base64-encoded message digest of the PermittedApplication's image, based on the algorithm specified in the ApplicationDigestAlgorithm element.
[b28] is the closing tag of the ApplicationDigestValue element.
[b29] is the closing tag of the PermittedApplication element.
[b30] is the closing tag of the PermittedApplications element.
[b31] is the start of the PermittedDates element. This element permits enterprises to ensure that the symmetric encryption key can be used only during a specified date period. This assumes that the implementation has an infrastructure where the SKCL is capable of accurately determining the current date within the run-time environment.
[b32] is the start of the first PermittedDate element. There can be any number of PermittedDate elements within a PermittedDates element.
[b33] identifies the StartDate of the duration period during which the symmetric encryption key can be used by authorized applications.
[b34] identifies the EndDate of the duration period during which the symmetric encryption key can be used by authorized applications.
[b35] is the closing tag of the PermittedDate element.
[b36] is the closing tag of the PermittedDates element.
[b37] is an empty (null) PermittedDays element. This element permits enterprises to ensure that the symmetric encryption key can be used only on specific days of the week. This assumes that the implementation has an infrastructure where the SKCL is capable of accurately determining the current day-of-week within the run-time environment. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b38] is an empty (null) PermittedDuration element. This element permits enterprises to ensure that the symmetric encryption key can be used only for a specific duration of time once the symmetric key has been used for the first time on the client. This assumes that the implementation has an infrastructure where the SKCL is capable of accurately determining the current time within the run-time environment. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b39] is an empty (null) PermittedLevels element. This element permits enterprises to ensure that the symmetric encryption key can be used only by applications that are classified at a given level within the Multi-Level Security (MLS) system as defined in the Bell-LaPadula model. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b40] is an empty (null) PermittedLocations element. This element permits enterprises to ensure that the symmetric encryption key can be used only by applications at specified geographic locations on the planet. This assumes that the implementation has an infrastructure where the SKCL is capable of accurately determining the current GPS location of the client within the run-time environment. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b41] is an empty (null) PermittedNumberOfTransactions element. This element permits enterprises to ensure that the symmetric encryption key can be used by applications only for a specified number of encryption transactions. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b42] is the start of the PermittedTimes element. This element permits enterprises to ensure that the symmetric encryption key can be used only during a specified time period within any date. This assumes that the implementation has an infrastructure where the SKCL is capable of accurately determining the current time within the run-time environment.
[b43] is the start of the first PermittedTime element. There can be any number of PermittedTime elements within a PermittedTimes element.
[b44] identifies the StartTime of the duration period during which the symmetric encryption key can be used by authorized applications.
[b45] identifies the EndTime of the duration period during which the symmetric encryption key can be used by authorized applications.
[b46] is the closing tag of the PermittedTime element.
[b47] is the closing tag of the PermittedTimes element.
[b48] is an empty (null) PermittedUses element. This element permits enterprises to ensure that the symmetric encryption key can be used by applications for specific uses. In this specific instance, the null element indicates that this permission does not apply to this symmetric key, and therefore, there are no constraints on its use. However, the key is still subject to all non-null permission clauses.
[b49] is the closing tag of the Permissions element.
[b50] is the closing tag of the KeyUsePolicy element.
[b51]-[b52] identifies the encryption algorithm used in the EncryptionMethod element to encrypt the symmetric encryption key itself, to transport to the requesting client. The symmetric key is encrypted using the PublicKey or the requesting client. The Algorithm attribute uses the W3C-specified URLs for identifying the encryption and padding algorithms.
[b53] is the start of the CipherData element. This element is from the W3C XML Encryption namespace (as identified by the “xenc” qualifier in the element name).
[b54] is the start of the CipherValue element. This element contains the Base64-encoded ciphertext of the symmetric encryption key.
[b55] – [b57] is the Base64-encoded ciphertext of the symmetric encryption key.
[b58] is the closing tag of the CipherValue element.
[b59] is the closing tag of the CipherData element.
[b60] is the closing tag of the Symkey element.
[b61] is the closing tag of the SymkeyResponse element.
Typically, when a client application encrypts data, it must make accommodations to store the GlobalKeyID of the symmetric encryption key it uses to encrypt the plaintext, along with the ciphertext. Without the GlobalKeyID, neither the client application nor the SKS server can determine which key was used to encrypt specific ciphertext. When the client application needs to decrypt such ciphertext, it must request the symmetric key with the appropriate GlobalKeyID from the SKS server if it does not already have the key cached within its key-cache.
The client application (linked to the call SKCL) will an API method within the SKCL for the appropriate symmetric key. After the SKCL has ensured that the application is authorized to make such a request, and assuming that the client application needs the key with the GlobalKeyID value of 10514-1-235, the SKCL assembles the following SKSML request. (The SOAP message is secured using WSS, but only the actual SKSML content is displayed and discussed here).
[c01] <ekmi:SymkeyRequest
[c02] xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
[c03] <ekmi:GlobalKeyID>10514-1-235</ekmi:GlobalKeyID>
[c04] </ekmi:SymkeyRequest>
[c01] is the start of the SymkeyRequest element.
[c02] identifies the namespace to which this XML conforms, and the location of its XML Schema Definition (XSD).
[c03] identifies the GlobalKeyID (GKID) of the specific symmetric encryption key being requested by the client application.
[c04] is the closing tag of the SymkeyRequest element.
Note that the request for an existing symmetric key is no different from a request for a new symmetric key other than that the GlobalKeyID being requested has non-zero values for the Server ID and Key ID parts of the GlobalKeyID.
After an SKS server has performed its operations of authenticating the request, identifying the requester and determining whether the requester is authorized to receive the symmetric key, the SKS server sends back the symmetric key using a SymkeyResponse message secured within a WSS envelope. This SymkeyResponse is identical to the message described in Section 3.2 (since the SymkeyRequest was for the same symmetric key identified there) and is therefore, not repeated here for brevity.
There are business situations where an application might need a symmetric key that conforms to a KeyUsePolicy that has a specific KeyClass attribute within the policy. This is useful in situations where there may be many encryption policies within a company that apply to different type of data, geographical zones, applications, level of access to sensitive data, etc., and the requesting application needs a symmetric key which satisfies its business rules.
In those situations, a client application (that has been linked to the SKCL) will call an API method within the SKCL for a new symmetric key of a specific KeyClass. After the SKCL has ensured that the application is authorized to make such a request the SKCL assembles the following SKSML request:
[e01] <ekmi:SymkeyRequest
[e02] xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
[e03] <ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
[e04] <ekmi:KeyClasses>
[e05] <ekmi:KeyClass>HR-Class</ekmi:KeyClass>
[e06] </ekmi:KeyClasses>
[e07] </ekmi:SymkeyRequest>
[e01] is the start of the SymkeyRequest element.
[e02] identifies the namespace to which this XML conforms, and the location of its XML Schema Definition (XSD).
[e03] identifies the GlobalKeyID (GKID) being requested by the client application. The “zero” value for the Server ID and the Key ID indicates a request for a new symmetric key.
[e04] is the start of the KeyClasses element.
[e05] identifies the specific KeyClass being requested by the client application.
[e06] is the closing tag of the KeyClasses element.
[e07] is the closing tag of the SymkeyRequest element.
After an SKS server has performed its operations of authenticating the request, identifying the requester and determining whether the requester is authorized to receive a symmetric key of the requested KeyClass, the SKS server generates, escrows, encrypts and sends back the symmetric key using a SymkeyResponse message secured within a WSS envelope. This SymkeyResponse is identical to the message described in Section 3.2 (since the symmetric key identified there is of the KeyClass requested here) and is therefore, not repeated here for brevity.
There are business situations where an application needs many symmetric keys to encrypt different parts of a single record. This is useful in applications where many entities might have access to the same “master” record, but only some entities have access to sensitive data within “detail” records. In these situations, the use of multiple symmetric keys addresses this business requirement, while allowing the entire record to freely move to any system without fear of loss of confidentiality.
For example, within an Electronic Health Record (EHR) application, the application might store a Patient's medical data as a single logical EHR within a database (even though they may be physically represented by many hundreds of detail records). This has the benefit of presenting a single view of a Patient's EHR to all actors within the use-case. However, the information necessary to a Physician treating the patient is quite different from the information necessary to an insurance company processing a claim, a government agency tracks diseases, a pharmacy filling out a prescription or a nurse administering treatment to the patient.
While there is a clear business advantage to maintaining all patient data as a single logical EHR, security and privacy requirements dictate that appropriate sensitive data must be made visible only to authorized entities.
In these situations, a client application (that has been linked to the SKCL) will call an API method within the SKCL for multiple new symmetric keys. In order to request multiple symmetric keys, the SKSML request must contain a KeyClass element within the KeyClasses element for every key the client application needs. Thus, if the EHR application were to request nine symmetric keys to encrypt different parts of the EHR, the client application would make the following SKSML SymkeyRequest:
[g01] <ekmi:SymkeyRequest
[g02] xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
[g03] <ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
[g04] <ekmi:KeyClasses>
[g05] <ekmi:KeyClass>EHR-CDC</ekmi:KeyClass>
[g06] <ekmi:KeyClass>EHR-CRO</ekmi:KeyClass>
[g07]
<ekmi:KeyClass>EHR-DEF</ekmi:KeyClass>
[g08]
<ekmi:KeyClass>EHR-EMT</ekmi:KeyClass>
[g09]
<ekmi:KeyClass>EHR-HOS</ekmi:KeyClass>
[g10]
<ekmi:KeyClass>EHR-INS</ekmi:KeyClass>
[g11]
<ekmi:KeyClass>EHR-NUR</ekmi:KeyClass>
[g12]
<ekmi:KeyClass>EHR-PAT</ekmi:KeyClass>
[g13]
<ekmi:KeyClass>EHR-PHY</ekmi:KeyClass>
[g14] </ekmi:KeyClasses>
[g15] </ekmi:SymkeyRequest>
[g01] is the start of the SymkeyRequest element.
[g02] identifies the namespace to which this XML conforms, and the location of its XML Schema Definition (XSD).
[g03] identifies the GlobalKeyID (GKID) being requested by the client application. The “zero” value for the Server ID and the Key ID indicates a request for a new symmetric key.
[g04] is the start of the KeyClasses element.
[g05] identifies a KeyClass for a symmetric encryption key being requested by the client application, ostensibly for encrypting data that can later be decrypted by an authorized application at the Center for Disease Control (CDC) and any other application that has been granted access to keys of the EHR-CDC KeyClass.
[g06] identifies a KeyClass for a symmetric encryption key being requested by the client application, for encrypting data that can later be decrypted only by an authorized application at Clinical Research Organizations (CRO) and any other application that has been granted access to keys of the EHR-CRO KeyClass.
[g07] identifies a default KeyClass (EHR-DEF) for a symmetric encryption key for encrypting data that can later be decrypted by any authorized application within the EHR system.
[g08] identifies a KeyClass for a symmetric encryption key for encrypting data that was collected by an Emergency Medical Technician (EMT), and which can later be decrypted only by authorized applications at the hospital that have access to keys of the EHR-EMT KeyClass.
[g09] identifies a KeyClass for a symmetric encryption key for encrypting data collected by a hospital where the patient might have used for treatment. Data encrypted by keys of this EHR-HOS KeyClass can later be decrypted only by authorized application that has access to keys of this KeyClass.
[g10] identifies a KeyClass (EHR-INS) for a symmetric encryption key that might be used for encrypting data which will be submitted to an insurance company for claims processing.
[g11] identifies a KeyClass for a symmetric encryption key for encrypting data that can later be decrypted by any authorized application used by nurses and/or other authorized entities in providing treatment to a patient at the hospital (EHR-NUR).
[g12] identifies a KeyClass for a symmetric encryption key for encrypting patient related data (EHR-PAT) that may not be medical in nature, but nevertheless sensitive.
[g13] identifies a KeyClass for a symmetric encryption key for encrypting data that can later be decrypted by authorized physicians and other entities that have access to keys of the EHR-PHY KeyClass.
[g14] is the closing tag of the KeyClasses element.
[g15] is the closing tag of the SymkeyRequest element.
After an SKS server has performed its operations of authenticating the request, identifying the requester, determining policies that apply to the requester, generating the symmetric encryption keys in conformance to the defined policies and KeyClasses and finally escrowing the symmetric keys securely, it assembles the following response and returns it to the client.
To reduce the verbosity of the response that includes nine symmetric encryption keys, the SKSML shows only the details of two symmetric keys and the encapsulating element tags for the remaining seven keys. Regardless of what the KeyUsePolicy and/or Permissions elements state in those seven keys, the schema for each response conforms to the specification described in this document. Additionally, the SOAP message, as indicated earlier, is secured using WSS, but only the actual SKSML content is displayed and discussed here.
[h01] <ekmi:SymkeyResponse
[h02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[h03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[h04] <ekmi:Symkey>
[h05]
<ekmi:GlobalKeyID>10514-4-3792</ekmi:GlobalKeyID>
[h06]
<ekmi:KeyUsePolicy>
[h07]
<ekmi:KeyUsePolicyID>10514-9</ekmi:KeyUsePolicyID>
[h08]
<ekmi:PolicyName>DES-EDE KeyUsePolicy for
EHR-CDC</ekmi:PolicyName>
[h09]
<ekmi:KeyClass>EHR-CDC</ekmi:KeyClass>
[h10]
<ekmi:KeyAlgorithm>
[h11] http://www.w3.org/2001/04/xmlenc#tripledes-cbc
[h12] </ekmi:KeyAlgorithm>
[h13]
<ekmi:KeySize>192</ekmi:KeySize>
[h14]
<ekmi:Status>Active</ekmi:Status>
[h15]
<ekmi:Permissions>
[h16]
<ekmi:PermittedApplications ekmi:any="true"
xsi:nil="true"/>
[h17] <ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
[h18]
<ekmi:PermittedDays ekmi:any="true"
xsi:nil="true"/>
[h19]
<ekmi:PermittedDuration ekmi:any="true"
xsi:nil="true"/>
[h20] <ekmi:PermittedLevels
ekmi:any="true"
xsi:nil="true"/>
[h21] <ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
[h22] <ekmi:PermittedNumberOfTransactions
[h23] ekmi:any="true"
xsi:nil="true"/>
[h24] <ekmi:PermittedTimes
ekmi:any="true"
xsi:nil="true"/>
[h25] <ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
[h26] </ekmi:Permissions>
[h27]
</ekmi:KeyUsePolicy>
[h28]
<ekmi:EncryptionMethod
[h29] Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[h30] <xenc:CipherData>
[h31]
<xenc:CipherValue>
[h32]
E9zWB/y93hVSzeTLiDcQoDxmlNxTuxSffMNwCJmt1dIqzQHBnpdQ81g6DKdkCFjJMa1w
[h33] hQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxjfg1pU8tlWtx27STRcR/2fw2ava
[h34]
UlWtx27STRcRJMtaGHtXuLlWtx27STRcRpIsY=
[h35]
</xenc:CipherValue>
[h36] </xenc:CipherData>
[h37] </ekmi:Symkey>
[h38] <ekmi:Symkey>
[h39]
<ekmi:GlobalKeyID>10514-4-3793</ekmi:GlobalKeyID>
[h40]
<ekmi:KeyUsePolicy>
[h41]
<ekmi:KeyUsePolicyID>10514-12</ekmi:KeyUsePolicyID>
[h42]
<ekmi:PolicyName>DES-EDE KeyUsePolicy for
EHR-CRO</ekmi:PolicyName>
[h43]
<ekmi:KeyClass>EHR-CRO</ekmi:KeyClass>
[h44]
<ekmi:KeyAlgorithm>
[h45] http://www.w3.org/2001/04/xmlenc#tripledes-cbc
[h46] </ekmi:KeyAlgorithm>
[h47]
<ekmi:KeySize>192</ekmi:KeySize>
[h48]
<ekmi:Status>Active</ekmi:Status>
[h49]
<ekmi:Permissions>
[h50]
<ekmi:PermittedApplications ekmi:any="true"
xsi:nil="true"/>
[h51] <ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
[h52]
<ekmi:PermittedDate>
[h53]
<ekmi:StartDate>2008-01-01</ekmi:StartDate>
[h54]
<ekmi:EndDate>2009-12-31</ekmi:EndDate>
[h55]
</ekmi:PermittedDate>
[h56]
</ekmi:PermittedDates>
[h57] <ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
[h58]
<ekmi:PermittedDuration ekmi:any="true"
xsi:nil="true"/>
[h59] <ekmi:PermittedLevels
ekmi:any="true"
xsi:nil="true"/>
[h60] <ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
[h61] <ekmi:PermittedNumberOfTransactions
[h62] ekmi:any="true"
xsi:nil="true"/>
[h63] <ekmi:PermittedTimes
ekmi:any="true"
xsi:nil="true"/>
[h64] <ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
[h65] </ekmi:Permissions>
[h66]
</ekmi:KeyUsePolicy>
[h67]
<ekmi:EncryptionMethod
[h68] Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[h69] <xenc:CipherData>
[h70]
<xenc:CipherValue>
[h71] qUiQXGOca8EU871zBoXBjDoDxmlNxTuxSffMNwCJmt1dIqzQHBnpdQ81g6DKdkCFjJM1
[h72] hQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxjfg1pU8tGFbpWZcd/ATpJD/2fw1
[h73]
UJow/qimxi8+ huUYJMtaGHtXuLlWtx27STRcRpIsY=
[h74]
</xenc:CipherValue>
[h75] </xenc:CipherData>
[h76] </ekmi:Symkey>
[h77]
<ekmi:Symkey>
[h78] <ekmi:GlobalKeyID>10514-4-3795</ekmi:GlobalKeyID>
...
[h79]
<ekmi:KeyClass>EHR-DEF</ekmi:KeyClass>
...
[h80]
</ekmi:Symkey>
[h81]
<ekmi:Symkey>
[h82] <ekmi:GlobalKeyID>10514-4-3797</ekmi:GlobalKeyID>
...
[h83]
<ekmi:KeyClass>EHR-EMT</ekmi:KeyClass>
...
[h84]
</ekmi:Symkey>
[h85]
<ekmi:Symkey>
[h86] <ekmi:GlobalKeyID>10514-4-3798</ekmi:GlobalKeyID>
...
[h87]
<ekmi:KeyClass>EHR-HOS</ekmi:KeyClass>
...
[h88]
</ekmi:Symkey>
[h89]
<ekmi:Symkey>
[h90] <ekmi:GlobalKeyID>10514-4-3799</ekmi:GlobalKeyID>
...
[h91]
<ekmi:KeyClass>EHR-INS</ekmi:KeyClass>
...
[h92]
</ekmi:Symkey>
[h93]
<ekmi:Symkey>
[h94] <ekmi:GlobalKeyID>10514-4-3801</ekmi:GlobalKeyID>
...
[h95]
<ekmi:KeyClass>EHR-NUR</ekmi:KeyClass>
...
[h96]
</ekmi:Symkey>
[h97]
<ekmi:Symkey>
[h98] <ekmi:GlobalKeyID>10514-4-3803</ekmi:GlobalKeyID>
...
[h99]
<ekmi:KeyClass>EHR-PAT</ekmi:KeyClass>
...
[h100]
</ekmi:Symkey>
[h101]
<ekmi:Symkey>
[h102] <ekmi:GlobalKeyID>10514-4-3805</ekmi:GlobalKeyID>
...
[h103]
<ekmi:KeyClass>EHR-PHY</ekmi:KeyClass>
...
[h104]
</ekmi:Symkey>
[h105] </ekmi:SymkeyResponse>
[h01] is the start of the SymkeyResponse element.
[h02] and [h03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[h04] is the start tag of the first Symkey element which contains the symmetric encryption key and related elements.
[h05] identifies the GlobalKeyID (GKID) assigned by the SKS server of this first symmetric key. In this example, the concatenated values of the Domain ID, Server ID and Key ID indicate that the key belongs to the organization represented by the PEN, 10514; it was generated on an SKS server with a Server ID of 4 and is the 3792nd unique key generated on that SKS server.
[h06] is the start of the KeyUsePolicy element that applies just to this symmetric key. This element contains details of the policy to which SKCL implementations must conform when using the symmetric key.
[h07] identifies the unique KeyUsePolicyID (KUPID) which identifies this policy within the SKMS.
[h08] provides a descriptive name for this key-use policy, which is helpful to human readers when identifying this policy.
[h09] identifies the KeyClass to which this symmetric key belongs. In the case of this example, the first symmetric key in the response conforms to the EHR-CDC class which, presumably, might be a key that covers data encrypted for/by the Center for Disease Control (CDC) within an Electronic Health Record (EHR) system. Key-classes are useful to applications that wish to encrypt plaintext with a key that has specific characteristics. The requesting application is expected to know what KeyClass it needs before it asks for a key corresponding to that class.
[h10] is the start tag of the KeyAlgorithm element.
[h11] identifies the cryptographic algorithm that this symmetric key must be used with. For this symmetric key example, the algorithm is the Triple Data Encryption Standard (3DES) with Cipher Block Chaining (CBC) padding. The URL is a standard notation for this algorithm and padding as defined within [XMLEncryption]..
[h12] is the closing tag of the KeyAlgorithm element.
[h13] specifies the size of the symmetric encryption key in bits. For this Triple-DES key, it is 192-bits.
[h14] indicates the Status of this KeyUsePolicy and whether it is an active policy or not. This is useful in situations where an application may wish to re-use a symmetric key to encrypt related data to the data originally encrypted with the symmetric key. While it is possible for the symmetric key object to be active in the database, it is conceivable that the KeyUsePolicy used by the key has changed and the application technically needs to use a new symmetric key to encrypt new data.
[h15] is the start of the Permissions element. This element provides a sophisticated mechanism for controlling how, where, when and by which applications symmetric keys be used. While there are many sub-elements within a Permissions element, not all KeyUsePolicy objects might use all Permissions sub-elements<ekmi:RequestedKeyClass>Payroll-Tax-Class</ekmi:RequestedKeyClass>. The example shown for this symmetric key indicates that there are no other specific restrictions on the use of this symmetric key by authorized client applications; i.e. any authorized client application may use it at any time, on any date, in any location for any purpose.
[h16] is the start and end of the null PermittedApplications element. This implies that there are no restrictions on which application can use this symmetric key.
[h17] is the start and end of the null PermittedDates element. This implies that there are no date restrictions on when this symmetric key can be used.
[h18] is the start and end of the null PermittedDays element. This implies that there are no day-of-week restrictions on when this symmetric key can be used.
[h19] is the start and end of the null PermittedDuration element. This implies that there are no restrictions to how long this symmetric key may be used.
[h20] is the start and end of the null PermittedLevels element. This implies that there are no restrictions on the MLS security level in which this symmetric key can be used.
[h21] is the start and end of the null PermittedLocations element. This implies that there are no geophysical restrictions where this symmetric key can be used.
[h22] - [h23] is the start and end of the null PermittedNumberOfTransactions element. This implies that there are no restrictions on how many encryption transactions that can be performed by this symmetric key.
[h24] is the start and end of the null PermittedTimes element. This implies that there are no time-of-day restrictions when this symmetric key can be used.
[h25] is the start and end of the null PermittedUses element. This implies that there are no restrictions how this symmetric key can be used by applications.
[h26] is the closing tag of the Permissions element.
[h27] is the closing tag of the KeyUsePolicy element.
[h28] and [h29] identify the encryption algorithm used in the EncryptionMethod element to encrypt the symmetric encryption key itself, to transport to the requesting client. The symmetric key is encrypted using the PublicKey or the requesting client. The Algorithm attribute uses the W3C-specified URLs for identifying the encryption and padding algorithms.
[h30] is the start of the CipherData element. This element is from the W3C XML Encryption namespace (as identified by the “xenc” qualifier in the element name).
[h31] is the start of the CipherValue element. This element contains the Base64-encoded ciphertext of the symmetric encryption key.
[h32] – [h34] is the Base64-encoded ciphertext of the symmetric encryption key.
[h35] is the closing tag of the CipherValue element.
[h36] is the closing tag of the CipherData element.
[h37] is the closing tag of the first Symkey element within this SymkeyResponse.
[h38] - [h76] represents the second Symkey element in this SymkeyResponse. The differences in this symmetric key element from the first, can be summarized as follows:
[h39] identifies a different GlobalKeyID (10514-4-3793) for this symmetric key;
[h41] identifies a different KeyUsePolicy (10514-12) for this symmetric key;
[h43] identifies a different KeyClass (EHR-CRO) for this symmetric key;
[h49] - [h65] defines a different Permissions element for this symmetric key;
[h71] - [h73] contains a different CipherValue for this symmetric key;
[h78] – [h80] is the container for the third Symkey element in this response. For the sake of brevity, all the usual Symkey elements have been dispensed with, but the unique GlobalKeyID and KeyClass are shown to indicate the SKS server's response to the request. In this example, they are 10514-4-3795 and EHR-DEF respectively.
[h81] – [h104] contain the remaining Symkey elements of this SymkeyResponse. Once again, for brevity, all the details of the Symkey elements are dispensed with, except for the unique GKIDs and KeyClasses.
[h105] is the closing tag of the SymkeyResponse element.
Note that it is possible for a request to contain the same KeyClass multiple times; there is no requirement that they need to be unique within a request if an application has a legitimate business need for multiple symmetric keys of the same KeyClass. The SKS server will respond with unique symmetric keys, all belonging to the KeyClass requested by the client application.
While one hopes that all authorized requesters will get favorable responses from the SKS server, there are situations in which the client application can receive an error to a request for a symmetric key. The following XML shows one example of such an error response. Depending on the type of error, the actual message content might be different.
[i01]
<ekmi:SymkeyResponse
[i02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[i03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[i04] <ekmi:SymkeyError>
[i05]
<ekmi:RequestedGlobalKeyID>10514-2-22</ekmi:RequestedGlobalKeyID>
[i06]
<ekmi:RequestedKeyClass>Payroll</ekmi:RequestedKeyClass>
[i07]
<ekmi:ErrorCode>SKS-100004</ekmi:ErrorCode>
[i08]
<ekmi:ErrorMessage>Unauthorized request for
key</ekmi:ErrorMessage>
[i09] </ekmi:SymkeyError>
[i10]
</ekmi:SymkeyResponse>
[i01] is the start of the SymkeyResponse element.
[i02] and [i03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[i04] is the start of the SymkeyError element, which tells the Symmetric Key Client Library (SKCL) that the request for a symmetric key resulted in an error.
[i05] indicates the RequestedGlobalKeyID the client requested. Returning the GKID in the error response allows the SKCL to associate the error message with the requesting application on the client machine.
[i06] indicates the RequestedKeyClass the client requested. Returning the key-class in the error response allows the SKCL to associate the error message with the requesting application on the client machine.
[i07] is an ErrorCode returned by the SKS server. The code may be one of the standard error codes defined in this specification, or may be a vendor-specific error code.
[i08] is the text of the ErrorMessage, localized to the region and language of the requesting client application.
[i09] is the closing tag of the SymkeyError tag.
[i10] is the closing tag of the SymkeyResponse tag.
When a client application requests multiple symmetric keys, the SKS server may respond in one of three ways. The SKS server may:
Return all symmetric keys as requested;
Return no symmetric keys – i.e. it returns all errors;
Return some symmetric keys and some errors.
The following SKSML shows the third case, where the server returns some symmetric keys and errors in response to a request for multiple keys (such as the one shown in Section 3.7 Request for multiple new symmetric keys).
In a response that contains a mix of symmetric keys and errors, all symmetric keys precede all errors – i.e. the SymkeyResponse element will not consist of Symkeys interspersed with SymkeyErrors in between; all Symkeys (if any) will start from the top of the response till the first SymkeyError element.
[j01] <ekmi:SymkeyResponse
[j02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[j03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[j04] <ekmi:Symkey>
[j05]
<ekmi:GlobalKeyID>10514-4-3792</ekmi:GlobalKeyID>
[j06]
<ekmi:KeyUsePolicy>
[j07]
<ekmi:KeyUsePolicyID>10514-9</ekmi:KeyUsePolicyID>
[j08]
<ekmi:PolicyName>DES-EDE Policy for
EHR-CDC</ekmi:PolicyName>
[j09]
<ekmi:KeyClass>EHR-CDC</ekmi:KeyClass>
[j10]
<ekmi:KeyAlgorithm>
[j11] http://www.w3.org/2001/04/xmlenc#tripledes-cbc
[j12] </ekmi:KeyAlgorithm>
[j13]
<ekmi:KeySize>192</ekmi:KeySize>
[j14]
<ekmi:Status>Active</ekmi:Status>
[j15]
<ekmi:Permissions>
[j16]
<ekmi:PermittedApplications ekmi:any="true"
xsi:nil="true"/>
[j17] <ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
[j18]
<ekmi:PermittedDays ekmi:any="true"
xsi:nil="true"/>
[j19]
<ekmi:PermittedDuration ekmi:any="true"
xsi:nil="true"/>
[j20] <ekmi:PermittedLevels
ekmi:any="true"
xsi:nil="true"/>
[j21] <ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
[j22] <ekmi:PermittedNumberOfTransactions
[j23] ekmi:any="true"
xsi:nil="true"/>
[j24] <ekmi:PermittedTimes
ekmi:any="true"
xsi:nil="true"/>
[j25] <ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
[j26] </ekmi:Permissions>
[j27]
</ekmi:KeyUsePolicy>
[j28] <ekmi:EncryptionMethod
[j29] Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[j30] <xenc:CipherData>
[j31]
<xenc:CipherValue>
[j32]
E9zWB/y93hVSzeTLiDcQoDxmlNxTuxSffMNwCJmt1dIqzQHBnpdQ81g6DKdkCFjJ
[j33] hQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxjfg1pU8tlWtx27STRcR/2fw
[j34]
UlWtx27STRcRJMtaGHtXuLlWtx27STRcRpIsY=
[j35]
</xenc:CipherValue>
[j36] </xenc:CipherData>
[j37] </ekmi:Symkey>
[j38] <ekmi:Symkey>
[j39]
<ekmi:GlobalKeyID>10514-4-3793</ekmi:GlobalKeyID>
[j40]
<ekmi:KeyUsePolicy>
[j41]
<ekmi:KeyUsePolicyID>10514-12</ekmi:KeyUsePolicyID>
[j42]
<ekmi:PolicyName>DES-EDE Policy for
EHR-CRO</ekmi:PolicyName>
[j43]
<ekmi:KeyClass>EHR-CRO</ekmi:KeyClass>
[j44]
<ekmi:KeyAlgorithm>
[j45] http://www.w3.org/2001/04/xmlenc#tripledes-cbc
[j46] </ekmi:KeyAlgorithm>
[j47]
<ekmi:KeySize>192</ekmi:KeySize>
[j48]
<ekmi:Status>Active</ekmi:Status>
[j49]
<ekmi:Permissions>
[j50]
<ekmi:PermittedApplications ekmi:any="true"
xsi:nil="true"/>
[j51] <ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
[j52]
<ekmi:PermittedDate>
[j53]
<ekmi:StartDate>2008-01-01</ekmi:StartDate>
[j54]
<ekmi:EndDate>2009-12-31</ekmi:EndDate>
[j55]
</ekmi:PermittedDate>
[j56]
</ekmi:PermittedDates>
[j57] <ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
[j58]
<ekmi:PermittedDuration ekmi:any="true"
xsi:nil="true"/>
[j59] <ekmi:PermittedLevels
ekmi:any="true"
xsi:nil="true"/>
[j60] <ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
[j61] <ekmi:PermittedNumberOfTransactions
[j62] ekmi:any="true"
xsi:nil="true"/>
[j63] <ekmi:PermittedTimes
ekmi:any="true"
xsi:nil="true"/>
[j64] <ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
[j65] </ekmi:Permissions>
[j66]
</ekmi:KeyUsePolicy>
[j67] <ekmi:EncryptionMethod
[j68] Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[j69] <xenc:CipherData>
[j70]
<xenc:CipherValue>
[j71]
qUiQXGOca8EU871zBoXBjDoDxmlNxTuxSffMNwCJmt1dIqzQHBnpdQ81g6DKdkCF
[j72] hQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxjfg1pU8tGFbpWZcd/ATpJD/
[j73]
UJow/qimxi8+ huUYJMtaGHtXuLlWtx27STRcRpIsY=
[j74]
</xenc:CipherValue>
[j75] </xenc:CipherData>
[j76] </ekmi:Symkey>
[j77]
<ekmi:Symkey>
[j78] <ekmi:GlobalKeyID>10514-4-3795</ekmi:GlobalKeyID>
...
[j79]
<ekmi:KeyClass>EHR-DEF</ekmi:KeyClass>
...
[j80]
</ekmi:Symkey>
[j81]
<ekmi:Symkey>
[j82] <ekmi:GlobalKeyID>10514-4-3797</ekmi:GlobalKeyID>
...
[j83]
<ekmi:KeyClass>EHR-EMT</ekmi:KeyClass>
...
[j84]
</ekmi:Symkey>
[j85]
<ekmi:Symkey>
[j86] <ekmi:GlobalKeyID>10514-4-3798</ekmi:GlobalKeyID>
...
[j87]
<ekmi:KeyClass>EHR-HOS</ekmi:KeyClass>
...
[j88]
</ekmi:Symkey>
[j89]
<ekmi:Symkey>
[j90] <ekmi:GlobalKeyID>10514-4-3799</ekmi:GlobalKeyID>
...
[j91]
<ekmi:KeyClass>EHR-INS</ekmi:KeyClass>
...
[j92]
</ekmi:Symkey>
[j93]
<ekmi:Symkey>
[j94] <ekmi:GlobalKeyID>10514-4-3801</ekmi:GlobalKeyID>
...
[j95]
<ekmi:KeyClass>EHR-NUR</ekmi:KeyClass>
...
[j96]
</ekmi:Symkey>
[j97]
<ekmi:SymkeyError>
[j98]
<ekmi:RequestedGlobalKeyID>10514-0-0</ekmi:RequestedGlobalKeyID>
[j99]
<ekmi:RequestedKeyClass>EHR-PAT</ekmi:RequestedKeyClass>
[j100]
<ekmi:ErrorCode>SKS-100004</ekmi:ErrorCode>
[j101]
<ekmi:ErrorMessage>Unauthorized request for
key</ekmi:ErrorMessage>
[j102]
</ekmi:SymkeyError>
[j103] <ekmi:SymkeyError>
[j104]
<ekmi:RequestedGlobalKeyID>10514-0-0</ekmi:RequestedGlobalKeyID>
[j105]
<ekmi:RequestedKeyClass>EHR-PHY</ekmi:RequestedKeyClass>
[j106]
<ekmi:ErrorCode>SKS-100004</ekmi:ErrorCode>
[j107]
<ekmi:ErrorMessage>Unauthorized request for
key</ekmi:ErrorMessage>
[j108] </ekmi:SymkeyError>
[j109]
</ekmi:SymkeyResponse>
[j01] – [j96] is no different from the response shown in Section 3.8 Response with multiple new symmetric keys.
[j97] - [j102] identifies the first SymkeyError returned by the SKS server. It is not unlike the error described in Section 3.9 Response with an SKS error. However, there is one difference in this element on line [j79]. This element includes the RequestedKeyClass of the request.
[j103] - [j108] identifies the second SymkeyError returned by the SKS server. It is similar to the error described in lines [j77] through [j82] including the RequestedKeyClass of the request.
[j109] is the closing tag of the SymkeyResponse tag.
When a client application (that has been linked to the SKCL) needs to encrypt sensitive data, it will call an API method within the SKCL for a new symmetric key. After the SKCL has ensured that the application is authorized to make such a request (by verifying that the configured/passed-in credentials can access the cryptographic key-store module on the client containing the PrivateKey used for signing SKSML requests), the SKCL assembles the following SKSML request:
[k01] <ekmi:KeyCachePolicyRequest
[k02] xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01"/>
[k01] is the start of the KeyCachePolicyRequest element.
[k02] identifies the namespace to which this XML conforms, and the location of its XML Schema Definition (XSD).
The KeyCachePolicyRequest is an “empty” request. It does not need to specify any requesting parameter or element, since the SKS server only needs to know who requested the policy. The server derives this information from the SOAP Header and consequently has everything it needs to know – the digital signature to establish the identity of the requester, as well as to to ensure message integrity in the request.
While the KeyCachePolicyRequest element is very simple, the Web Service Security (WSS) envelope – which provides security for all SKSML messages – expands the size of the message. The same request shown above, is displayed below in its entirety, with its WSS envelope. Please note that some content – such as Base64-encoded binary content - has been reformatted for aesthetics and clarity of the XML elements. The actual elements and data-types have been preserved from actual SKSML messages.
For an interpretation of the XML elements shown below, please refer to [WSS].
For the sake of brevity, this specification will dispense with showing the SOAP envelope and the WSS elements in all other examples, when discussing SKSML.
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
SOAP-ENV:mustUnderstand="1">
<wsse:BinarySecurityToken
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="XWSSGID-1172790302111-1738806553">
MIIDfDCCAmSgAwIBAgIIAe/AvliGc3AwDQYJKoZIhvcNAQELBQAwZzEmMCQGA1UEAxMdU3Ryb25nab
S2V5IERFTU8gU3Vib3JkaW5hdGUgQ0ExJDAiBgNVBAsTG0ZvciBTdHJvbmdLZXkgREVNTyBVc2Ug1d
T25seTEXMBUGA1UEChMOU3Ryb25nQXV0aCBJbmMwHhcNMDYwNzI1MTcxMDMwWhcNMDcwNzIa64dd3k
A1UECxMbRm9yIFN0cm9uZ0tleSBERU1PIFVzZSBPbmx5MRcwFQYDVQQKEw5TdHJvbmdBdXRoIEl2da
S2V5IERFTU8gU3Vib3JkaW5hdGUgQ0ExJDAiBgNVBAsTG0ZvciBTdHJvbmdLZXkgREVNTyBVc2Ugia
T25seTEXMBUGA1UEChMOU3Ryb25nQXV0aCBJbmMwHhcNMDYwNzI1MTY0NjEwWhcNMDcwNzI1s34wdd
NjEwWjBpMREwDwYKCZImiZPyLGQBARMBOTEVMBMGA1UEAxMMU0tTIFNlcnZlci0xMSQwIgYDVQsdw2
ExtGb3IgU3Ryb25nS2V5IERFTU8gVXNlIE9ubHkxFzAVBgNVBAoTDlN0cm9uZ0F1dGggSW5jMIIBd2
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAztppqRoU5A8plxx1Rz1QEUnlAAM1D5g9+isIr3wxa
hbwjtFSMYilnY4iV77xU/nsMOnMZ7RxsLYKdCzQ1ODVYqQwqmAvaJ5Z6SVy34gZ51YG+rSWE3NjFsd
bOXW8RJYA/Tn6Lmht/qngrcaqqmtP0cAAiMRZOWtCTmC2K/LEqDabXSyU6Hh8ySNE3njybvmWpresf
zsYokTdvnWQqT6tKo1OwJsdJ1+hxM7DrnMLvMNq5reINfsKhDdX17wzhrBUx+hiYA/qo8tMXkL6wsd
4PN5dYugtzpSzIdUO5tIg58Avhzwo7hy5oofBlKFY22CeljQ36u0bMjuyGj6UYHs3rdfdfsds32rda
YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAyAmxMZhYA8wHJ4UE4b61s51JVWe4Fygj4MCf3a
hvcNAQELBQADggEBACK05PtvZD4WPglOe=
</wsse:BinarySecurityToken>
<ds:Signature
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<InclusiveNamespaces
xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="wsse SOAP-ENV"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference
URI="#XWSSGID-1172790300636-653454040">
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>lU4m+rp4oebgl9g+t3nRaZYqUlE=</ds:DigestValue>
</ds:Reference>
<ds:Reference URI="#XWSSGID-1172790300637708871805">
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>WCpOmTCbffcEHXhGf5rlEYWLrZg=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
svStAvBRRrF+g2biPl7uWHkJTQPIl8t4phMbOZQsZlQcn36tcMSj/a4+4LPNfOB3Y8yO2lr1Oa1
fGqCPAWZNuEH34VQEM196rRwV258mgp8uwpXEYJIgPJqg89w8+/NdaODccLQ2Bizu7QM/HSM2ab
ogNJwqmbSyIazOsnOcU=
</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300633-442423344">
<wsse:Reference
URI="#XWSSGID-1172790302111-1738806553"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
<wsu:Timestamp
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300637708871805">
<wsu:Created>2007-03-01T23:05:00Z</wsu:Created>
<wsu:Expires>2007-03-01T23:05:05Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="XWSSGID-1172790300636-653454040">
<ekmi:KeyCachePolicyRequest
xmlns:ekmi="http://docs.oasis-open.org/ekmi/2008/01"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
After an SKS server has performed its operations of authenticating a KeyCachePolicyRequest, identifying the requester, determining policies that apply to the requester, it assembles the following response and returns it to the client. (The SOAP message, as indicated earlier, is secured using WSS, but only the actual SKSML content is displayed and discussed here).
[m01] <ekmi:KeyCachePolicyResponse
[m02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[m03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[m04]
<ekmi:KeyCachePolicy>
[m05]
<ekmi:KeyCachePolicyID>10514-1</ekmi:KeyCachePolicyID>
[m06]
<ekmi:PolicyName>No Caching
Policy</ekmi:PolicyName>
[m07]
<ekmi:Description>
[m08] This policy is for high-risk,
always-connected machines on the
[m09] network, which
will never cache symmetric keys locally. This
[m10]
policy never expires (but checks monthly for any updates).
[m11]
</ekmi:Description>
[m12] <ekmi:KeyClass>NoCachingClass</ekmi:KeyClass>
[m13] <ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
[m14]
<ekmi:EndDate>1969-01-01T00:00:00.0</ekmi:EndDate>
[m15]
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
[m16]
<ekmi:Status>Active</ekmi:Status>
[m17]
</ekmi:KeyCachePolicy>
[m18] </ekmi:KeyCachePolicyResponse>
[m01] is the start of the KeyCachePolicyResponse element.
[m02] and [m03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[m04] is the start of the first – and only - KeyCachePolicy element.
[m05] identifies the KeyCachePolicyID (KCPID) assigned to this policy by the SKS server. In this example, the concatenated values of the Domain ID and Policy ID indicate that the key belongs to the organization represented by the PEN, 10514; and is the first key-caching policy within the SKMS.
[m06] provides a descriptive name for this key-cache policy through the PolicyName element, which is helpful to human readers when identifying this policy.
[m07] is the start tag of the Description element.
[m08] - [m10] provides a human-readable description about this key-cache policy.
[m11] is the closing tag of the Description element.
[m12] specifies the KeyClass to which this policy applies. Only keys that belong to this key-class are subject to this caching policy.
[m13] specifies the date and time that this KeyCachePolicy is effective. This is accomplished through a StartDate element. In this example, the policy is effective as of January 01, 2008.
[m14] specifies the date and time that this KeyCachePolicy becomes invalid. This is accomplished through a EndDate element. In this example, the use of the UNIX “epoch” date (January 01, 1969) indicates that this policy never expires.
[m15] specifies the frequency at which this client must check with the SKS server for updates to the key-caching policy. This is specified in seconds in the PolicyCheckInterval element; in this example it is a monthly interval.
[m16] indicates the Status of this KeyCachePolicy and whether it is an active policy or not.
[m17] is the closing tag of the KeyCachePolicy element.
[m18] is the closing tag of the KeyCachePolicyResponse element.
This is a second example of a key-caching policy response that has additional elements in the policy permitting caching and specify the number of unused and used (for encryption) symmetric keys that may be cached by the client machine.
[m01] <ekmi:KeyCachePolicyResponse
[m02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[m03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[m04] <ekmi:KeyCachePolicy>
[m05]
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
[m06]
<ekmi:PolicyName>Corporate Laptop Key Caching
Policy</ekmi:PolicyName>
[m07]
<ekmi:Description>
[m08] This policy defines how
company-issued laptops will manage symmetric
[m09] keys
used for file/disk encryption in their local cache. This
[m10]
policy must be used by all laptops that use the company
EKMI.
[m11] </ekmi:Description>
[m12] <ekmi:KeyClass>LaptopKeysCachingClass</ekmi:KeyClass>
[m13] <ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
[m14]
<ekmi:EndDate>2008-12-31T00:00:01.0</ekmi:EndDate>
[m15]
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
[m16]
<ekmi:Status>Active</ekmi:Status>
[m17] <ekmi:NewKeysCacheDetail>
[m18] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m19] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m20] </ekmi:NewKeysCacheDetail>
[m21] <ekmi:UsedKeysCacheDetail>
[m22] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m23] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m24] </ekmi:UsedKeysCacheDetail>
[m25] </ekmi:KeyCachePolicy>
[m26] </ekmi:KeyCachePolicyResponse>
[m01] is the start of the KeyCachePolicyResponse element.
[m02] and [m03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[m04] is the start of the first – and only - KeyCachePolicy element.
[m05] identifies the KeyCachePolicyID (KCPID) assigned by the SKS server for the key-caching policy being returned.
[m06] provides a descriptive name for this key-cache policy through the PolicyName element, which is helpful to human readers when identifying this policy.
[m07] is the start tag of the Description element.
[m08] - [m10] provides a human-readable description about this key-cache policy.
[m11] is the closing tag of the Description element.
[m12] specifies the KeyClass to which this policy applies. Only keys that belong to this key-class are subject to this caching policy.
[m13] specifies the date and time that this KeyCachePolicy is effective. This is accomplished through a StartDate element. In this example, the policy is effective as of January 01, 2008.
[m14] specifies the date and time that this KeyCachePolicy becomes invalid. This is accomplished through a EndDate element. In this example, the policy expires on December 31, 2008.
[m15] specifies the frequency at which this client must check with the SKS server for updates to the key-caching policy. This is specified in seconds in the PolicyCheckInterval element; in this example it is a monthly interval.
[m16] indicates the Status of this KeyCachePolicy and whether it is an active policy or not.
[m17] is the start of the NewKeysCacheDetail element, which provides details about how many new symmetric keys – that haven't been used for any encryption transactions – may be cached by the client and for how long.
[m18] indicates the maximum number of new (unused) symmetric keys that may be cached by the client. This is specified through the MaximumKeys element. When the client uses a symmetric key, this reduces the number of new symmetric keys. In this case, the SKCL connects to the SKS server (if it is on the network) and requests a new symmetric key to add to its new-key cache.
[m19] indicates the maximum duration that new (unused) symmetric keys may be cached by the client. This is specified through the MaximumDuration element in seconds. If there are any new keys that exceed this duration limit, the SKCL deletes the specific symmetric key and replaces it with a new symmetric key from the SKS server.
[m20] is the closing tag of the NewKeysCacheDetail element.
[m21] is the start of the UsedKeysCacheDetail element, which provides details about how many used symmetric keys – those that HAVE been used for any encryption transactions – may be cached by the client and for how long.
[m22] indicates the maximum number of used symmetric keys that may be cached by the client through the MaximumKeys element. If the client already has the maximum number of used-keys in its cache, using the First-In-First-Out (FIFO) method, it deletes the oldest symmetric key in the cache to replace with the key that transitioned from the “new” to “used” status.
[m23] indicates the maximum duration that used symmetric keys may be cached by the clien through the MaximumDuration element in seconds. If there are any used keys that exceed this duration limit, the SKCL deletes the specific symmetric key. While this may temporarily reduce the number of used symmetric keys in the cache, the SKCL takes the most conservative position when making this decision.
[m24] is the closing tag of the UsedKeysCacheDetail element.
[m25] is the closing tag of the KeyCachePolicy element.
[m26] is the closing tag of the KeyCachePolicyResponse element.
This is a third example of a key-caching policy response that has multiple key-cache policies that apply to different classes of symmetric keys.
[m01] <ekmi:KeyCachePolicyResponse
[m02] xmlns:ekmi='http://docs.oasis-open.org/ekmi/2008/01'
[m03]
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'>
[m04]
<ekmi:KeyCachePolicy>
[m05]
<ekmi:KeyCachePolicyID>10514-1</ekmi:KeyCachePolicyID>
[m06]
<ekmi:PolicyName>No Caching
Policy</ekmi:PolicyName>
[m07]
<ekmi:Description>
[m08] This policy is for high-risk,
always-connected machines on the
[m09] network, which
will never cache symmetric keys locally. This
[m10]
policy never expires (but checks monthly for any updates).
[m11]
</ekmi:Description>
[m12] <ekmi:KeyClass>NoCachingClass</ekmi:KeyClass>
[m13] <ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
[m14]
<ekmi:EndDate>1969-01-01T00:00:00.0</ekmi:EndDate>
[m15]
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
[m16]
<ekmi:Status>Active</ekmi:Status>
[m17]
</ekmi:KeyCachePolicy>
[m18] <ekmi:KeyCachePolicy>
[m19]
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
[m20]
<ekmi:PolicyName>Corporate Laptop Key Caching
Policy</ekmi:PolicyName>
[m21]
<ekmi:Description>
[m22] This policy defines how
company-issued laptops will manage symmetric
[m23] keys
used for file/disk encryption in their local cache. This
[m24]
policy must be used by all laptops that use the company
EKMI.
[m25] </ekmi:Description>
[m26] <ekmi:KeyClass>LaptopKeysCachingClass</ekmi:KeyClass>
[m27] <ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
[m28]
<ekmi:EndDate>2008-12-31T00:00:01.0</ekmi:EndDate>
[m29]
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
[m30]
<ekmi:Status>Active</ekmi:Status>
[m31] <ekmi:NewKeysCacheDetail>
[m32] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m33] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m34] </ekmi:NewKeysCacheDetail>
[m35] <ekmi:UsedKeysCacheDetail>
[m36] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m37] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m38] </ekmi:UsedKeysCacheDetail>
[m39] </ekmi:KeyCachePolicy>
[m40] <ekmi:KeyCachePolicy>
[m41]
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
[m42]
<ekmi:PolicyName>Corporate Laptop Key Caching
Policy</ekmi:PolicyName>
[m43]
<ekmi:Description>
[m44] This policy defines how
company-issued laptops will manage
[m45] symmetric keys
used for file/disk encryption in their local
[m46]
cache. This policy must be used by all
laptops.
[m47] </ekmi:Description>
[m48] <ekmi:KeyClass>LaptopKeysCachingClass</ekmi:KeyClass>
[m49] <ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
[m50]
<ekmi:EndDate>2008-12-31T00:00:01.0</ekmi:EndDate>
[m51]
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
[m52]
<ekmi:Status>Active</ekmi:Status>
[m53] <ekmi:NewKeysCacheDetail>
[m54] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m55] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m56] </ekmi:NewKeysCacheDetail>
[m57] <ekmi:UsedKeysCacheDetail>
[m58] <ekmi:MaximumKeys>3</ekmi:MaximumKeys>
[m59] <ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
[m60] </ekmi:UsedKeysCacheDetail>
[m61] <ekmi:KeyCachePolicy>
[m62] </ekmi:KeyCachePolicyResponse>
[m01] is the start of the KeyCachePolicyResponse element.
[m02] and [m03] identify the namespaces to which this XML conforms, and the location of their XML Schema Definitions (XSD).
[m04] is the start of the first of three KeyCachePolicy elements in this response.
[m05] identifies the KeyCachePolicyID (KCPID) assigned to this policy by the SKS server. In this example, the concatenated values of the Domain ID and Policy ID indicate that the key belongs to the organization represented by the PEN, 10514; and is the first key-caching policy within the SKMS.
[m06] provides a descriptive name for this key-cache policy through the PolicyName element, which is helpful to human readers when identifying this policy.
[m07] is the start tag of the Description element.
[m08] - [m10] provides a human-readable description about this key-cache policy.
[m11] is the closing tag of the Description element.
[m12] specifies the KeyClass to which this policy applies. Only keys that belong to this key-class are subject to this caching policy.
[m13] specifies the date and time that this KeyCachePolicy is effective. This is accomplished through a StartDate element. In this example, the policy is effective as of January 01, 2008.
[m14] specifies the date and time that this KeyCachePolicy becomes invalid. This is accomplished through a EndDate element. In this example, the use of the UNIX “epoch” date (January 01, 1969) indicates that this policy never expires.
[m15] specifies the frequency at which this client must check with the SKS server for updates to the key-caching policy. This is specified in seconds in the PolicyCheckInterval element; in this example it is a monthly interval.
[m16] indicates the Status of this KeyCachePolicy and whether it is an active policy or not.
[m17] is the closing tag of the first KeyCachePolicy element.
[m18] is the start of the second of three KeyCachePolicy elements in this response.
[m19] identifies the KeyCachePolicyID (KCPID) assigned by the SKS server for the key-caching policy being returned.
[m20] provides the descriptive name for this key-cache policy through the PolicyName element.
[m21] is the start tag of the Description element.
[m22] - [m24] provides a human-readable description about this key-cache policy.
[m25] is the closing tag of the Description element.
[m26] specifies the KeyClass to which this policy applies. Only keys that belong to this key-class are subject to this caching policy.
[m27] specifies the date and time that this KeyCachePolicy is effective. This is accomplished through a StartDate element. In this example, the policy is effective as of January 01, 2008.
[m28] specifies the date and time that this KeyCachePolicy becomes invalid. This is accomplished through a EndDate element. In this example, the policy expires on December 31, 2008.
[m29] specifies the frequency at which this client must check with the SKS server for updates to the key-caching policy. This is specified in seconds in the PolicyCheckInterval element; in this example it is a monthly interval.
[m30] indicates the Status of this KeyCachePolicy and whether it is an active policy or not.
[m31] is the start of the NewKeysCacheDetail element, which provides details about how many new symmetric keys – that haven't been used for any encryption transactions – may be cached by the client and for how long.
[m32] indicates the maximum number of new (unused) symmetric keys that may be cached by the client. This is specified through the MaximumKeys element. When the client uses a symmetric key, this reduces the number of new symmetric keys. In this case, the SKCL connects to the SKS server (if it is on the network) and requests a new symmetric key to add to its new-key cache.
[m33] indicates the maximum duration that new (unused) symmetric keys may be cached by the client. This is specified through the MaximumDuration element in seconds. If there are any new keys that exceed this duration limit, the SKCL deletes the specific symmetric key and replaces it with a new symmetric key from the SKS server.
[m34] is the closing tag of the NewKeysCacheDetail element.
[m35] is the start of the UsedKeysCacheDetail element, which provides details about how many used symmetric keys – those that HAVE been used for any encryption transactions – may be cached by the client and for how long.
[m36] indicates the maximum number of used symmetric keys that may be cached by the client through the MaximumKeys element. If the client already has the maximum number of used-keys in its cache, using the First-In-First-Out (FIFO) method, it deletes the oldest symmetric key in the cache to replace with the key that transitioned from the “new” to “used” status.
[m37] indicates the maximum duration that used symmetric keys may be cached by the clien through the MaximumDuration element in seconds. If there are any used keys that exceed this duration limit, the SKCL deletes the specific symmetric key. While this may temporarily reduce the number of used symmetric keys in the cache, the SKCL takes the most conservative position when making this decision.
[m38] is the closing tag of the UsedKeysCacheDetail element.
[m39] is the closing tag of the second KeyCachePolicy element.
[m40] is the start of the third KeyCachePolicy element in this response.
[m41] identifies the KeyCachePolicyID (KCPID) assigned by the SKS server for the key-caching policy being returned.
[m42] provides the descriptive name for this key-cache policy through the PolicyName element.
[m43] is the start tag of the Description element.
[m44] - [m46] provides a human-readable description about this key-cache policy.
[m47] is the closing tag of the Description element.
[m48] specifies the KeyClass to which this policy applies. Only keys that belong to this key-class are subject to this caching policy.
[m49] specifies the date and time that this KeyCachePolicy is effective.
[m50] specifies the date and time that this KeyCachePolicy becomes invalid.
[m51] specifies the frequency at which this client must check with the SKS server for updates to the key-caching policy.
[m52] indicates the Status of this KeyCachePolicy and whether it is an active policy or not.
[m53] is the start of the NewKeysCacheDetail element, which provides details about how many new symmetric keys may be cached by the client and for how long.
[m54] indicates the maximum number of new (unused) symmetric keys that may be cached by the client. This is specified through the MaximumKeys element. When the client uses a symmetric key, this reduces the number of new symmetric keys. In this case, the SKCL connects to the SKS server (if it is on the network) and requests a new symmetric key to add to its new-key cache.
[m55] indicates the maximum duration that new (unused) symmetric keys may be cached by the client. This is specified through the MaximumDuration element in seconds. If there are any new keys that exceed this duration limit, the SKCL deletes the specific symmetric key and replaces it with a new symmetric key from the SKS server.
[m56] is the closing tag of the NewKeysCacheDetail element.
[m57] is the start of the UsedKeysCacheDetail element, which provides details about how many used symmetric keys – those that HAVE been used for any encryption transactions – may be cached by the client and for how long.
[m58] indicates the maximum number of used symmetric keys that may be cached by the client through the MaximumKeys element. If the client already has the maximum number of used-keys in its cache, using the First-In-First-Out (FIFO) method, it deletes the oldest symmetric key in the cache to replace with the key that transitioned from the “new” to “used” status.
[m59] indicates the maximum duration that used symmetric keys may be cached by the clien through the MaximumDuration element in seconds. If there are any used keys that exceed this duration limit, the SKCL deletes the specific symmetric key. While this may temporarily reduce the number of used symmetric keys in the cache, the SKCL takes the most conservative position when making this decision.
[m60] is the closing tag of the UsedKeysCacheDetail element.
[m61] is the closing tag of the third and final KeyCachePolicy element in this response.
[m62] is the closing tag of the KeyCachePolicyResponse element.
The <SymkeyRequest> element identifies one or more GlobalKeyID's of symmetric encryption keys needed by the client application. The request may also specify one or more KeyClass elements for the requested key when the request is for a new symmetric key.
While it is a top-level element within this specification, a <SymkeyRequest> element MUST be enclosed within a SOAP Body element of a SOAP Envelope to conform to the security requirements of this specification. The SOAP Header of the SOAP Envelope MUST enclose a Security element conforming to [WSS] with a ValueType attribute containing the value http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3. The Security element must conform to all other requirements of the specified security profile in [WSS] to form a well-formed, secure message.
Schema Definition:
<xsd:element
name="SymkeyRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element
name="GlobalKeyID"
type="ekmi:GlobalKeyIDType"
minOccurs="1"
maxOccurs="unbounded">
</xsd:element>
<xsd:element
name="KeyClasses"
type="ekmi:KeyClassesType"
minOccurs="0">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
The <SymkeyRequest> element consists of a sequence of two child elements:
<GlobalKeyID>
[Required]
This element of type GlobalKeyIDType,
identifies the unique global key identifier of the requested
symmetric key within the target Symmetric Key Management System
(SKMS) the client is communicating with. There MUST be at least one
<GlobalKeyID>
element in a <SymkeyRequest>,
but there may be an unbounded (unlimited) number of <GlobalKeyID>
elements specified.
The <GlobalKeyID>
element is specified in Section 4.2.
<KeyClasses>
[Optional]
This element of type KeyClassesType,
when specified, identifies at least one <KeyClass>
element, but may specify an unbounded (unlimited) number of
<KeyClass>
elements within the <KeyClasses>
set. Client applications may request one or more symmetric keys
conforming to one or more key classes required by the application.
If the client application is authorized to receive keys conforming
to such key classes, the SKS server will generate and supply
them.
When more than one <GlobalKeyID>
for a new symmetric key is specified in the request, there
MAY be only one <KeyClass>
element within the <KeyClasses>
set.
When the client requires more than one new symmetric
key, and each key is required to be of a different key class, there
MUST be only one <GlobalKeyID>
element followed by as many <KeyClass>
elements inside the <KeyClasses>
set, as needed by the client application.
When a client
requires multiple symmetric keys of two or more key classes, the
client MUST send multiple requests to the SKS server. See
examples 4 and 5 below in this section.
The <KeyClasses>
and <KeyClass>
elements are specified in Section 4.3.
Some examples of the <SymkeyRequest> element are as follows:
Example 1 – A single new symmetric key request of a default key class:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
</ekmi:SymkeyRequest>
Example 2 – A request for three new symmetric keys of a default key class for each symmetric key:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
</ekmi:SymkeyRequest>
Example 3 – A request for a single new symmetric key of a specific key class:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>HR-Class</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
Example 4 – A request for a two new symmetric keys with the same key class for each symmetric key:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>FIN-FX</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
Example 5 – A request for a nine new symmetric keys of different key classes:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>EHR-CDC</ekmi:KeyClass>
<ekmi:KeyClass>EHR-CRO</ekmi:KeyClass>
<ekmi:KeyClass>EHR-DEF</ekmi:KeyClass>
<ekmi:KeyClass>EHR-EMT</ekmi:KeyClass>
<ekmi:KeyClass>EHR-HOS</ekmi:KeyClass>
<ekmi:KeyClass>EHR-INS</ekmi:KeyClass>
<ekmi:KeyClass>EHR-NUR</ekmi:KeyClass>
<ekmi:KeyClass>EHR-PAT</ekmi:KeyClass>
<ekmi:KeyClass>EHR-PHY</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
The <GlobalKeyID> element is the unique identifier of a symmetric encryption key within an SKMS. Every symmetric key generated by the SKS server MUST be assigned a unique <GlobalKeyID> as specified in this section.
Schema Definition:
<xsd:simpleType
name="GlobalKeyIDType">
<xsd:restriction
base="xsd:string">
<xsd:minLength
value="5"/>
<xsd:maxLength
value="62"/>
<xsd:pattern
value="[0-9]{1,20}-[0-9]{1,20}-[0-9]{1,20}"/>
<xsd:whiteSpace value="collapse"/>
</xsd:restriction>
</xsd:simpleType>
The <GlobalKeyID> element is of the GlobalKeyIDType, and is a string identifier of a symmetric key consisting of five parts concatenated together:
A positive integer identifying the Domain ID. The DomainID identifies the IANA-issued Private Enterprise Number (PEN) as published at http://www.iana.org/assignments/enterprise-numbers and is used by the SKS server to constrain the ownership of objects within the SKMS:
A literal hyphen ("-") without surrounding spaces;
A positive integer identifying the Server ID of the server that originally generated the key;
Another literal hyphen ("-") without surrounding spaces;
A positive integer identifying the Key ID;
Combined, the five components of this element make up a unique identifier for a symmetric key within the SKMS. Since all enterprise are expected to use only the PENs assigned to them, technically the <GlobalKeyID> is unique across the internet.
The DomainID part of the <GlobalKeyID> element MUST be a positive integer in the range of 0 (zero) to 18446744073709551615 (20-byte ASCII decimal).
When an SKMS manages the symmetric keys for a single enterprise, the DomainID part of the <GlobalKeyID> element in a <SymkeyRequest> MAY be zero (“0”). When an SKMS manages symmetric keys for multiple enterprises, the DomainID in the <GlobalKeyID> of a <SymkeyRequest> MUST be positive and non-zero. In such a situation, the client application will request a symmetric key for the domain in which it is authorized to request and receive keys.
The DomainID in the <GlobalKeyID> element of a <SymkeyResponse> MUST always be positive and non-zero. It will typically contain the PEN of the domain to which the symmetric key belongs.
The ServerID part of the <GlobalKeyID> element MUST be a positive integer in the range of 0 (zero) to 18446744073709551615 (20-byte ASCII decimal).
The ServerID part of the <GlobalKeyID> element of a <SymkeyRequest> MUST always be zero (“0”).
The ServerID part of the <GlobalKeyID> element of a <SymkeyResponse> MUST always be positive and non-zero. It will typically contain the unique server identifier of the SKS server where the symmetric key was generated.
The KeyD part of the <GlobalKeyID> element MUST be a positive integer in the range of 0 (zero) to 18446744073709551615 (20-byte ASCII decimal).
The KeyID part of the <GlobalKeyID> element of a <SymkeyRequest> MUST always be zero (“0”).
The KeyID part of the <GlobalKeyID> element of a <SymkeyResponse> MUST always be positive and non-zero. It will typically contain the unique key identifier of the symmetric key within the SKS server where the key was generated.
Example 1 – A <GlobalKeyID> value for a new symmetric key from an SKMS that serves a single domain:
<ekmi:GlobalKeyID>0-0-0</ekmi:GlobalKeyID>
Example 2 – A <GlobalKeyID> value for a new symmetric key for the domain with the PEN 10514, from an SKMS that serves multiple domains:
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
Example 3 – A <GlobalKeyID> value for the 16,777,215th symmetric key generated on 2nd SKS server for an enterprise with the PEN 10514, in either a <SymkeyRequest> or a <SymkeyResponse>:
<ekmi:GlobalKeyID>10514-2-16777215</ekmi:GlobalKeyID>
Example 4 – The maximum <GlobalKeyID> value possible (a 62-byte ASCII decimal), in a <SymkeyRequest> or <SymkeyResponse>:
<ekmi:GlobalKeyID>
18446744073709551615-18446744073709551615-18446744073709551615
</ekmi:GlobalKeyID>
The <KeyClasses> element of type KeyClassesType, when specified, identifies at least one <KeyClass> element, but may specify an unbounded (unlimited) number of <KeyClass> elements within the <KeyClasses> set.
Schema Definition:
<xsd:complexType
name="KeyClassesType">
<xsd:sequence>
<xsd:element
name="KeyClass"
type="tns:KeyClassType"
minOccurs="1"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType
name="KeyClassType">
<xsd:restriction
base="xsd:string">
<xsd:maxLength
value="255"/>
</xsd:restriction>
</xsd:simpleType>
Client
applications may request one or more symmetric keys conforming to one
or more key classes required by the application. If the client
application is authorized to receive keys conforming to such key
classes, the SKS server will generate and supply them.
The
<KeyClasses>
element is useful only when requesting new
symmetric keys, i.e. symmetric encryption keys that have previously
NOT been used for encrypting data. There is little reason for a
client application to specify the <KeyClasses>
element when requesting an existing (escrowed) symmetric key, since
the SKS server will return the requested key to authorized clients
with whatever key class is associated with the key regardless of what
key class is specified in the request. The key class will have been
associated with the symmetric key at the time of its generation and
cannot be changed once associated with a key.
When more than
one <GlobalKeyID>
is specified in the request, there MAY be only one <KeyClass>
element within the <KeyClasses>
set. When a key class is not specified in a request, it implies a
request for symmetric key(s) of a default key class configured at the
SKS server. The default key class for a site is
site-specific.
When the client requires more than one
symmetric key, and each key needs to be of a different key class,
there MUST be only one <GlobalKeyID>
element followed by as many <KeyClass>
elements insides the <KeyClasses>
set as needed by the client application. (Example 5 in this
section).
When a client requires many symmetric keys –
say five keys – and two or more keys belong to the same key
class, the client MUST send multiple requests to the SKS
server. One request will contain multiple <GlobalKeyID>
elements with one <KeyClass>
element in the <KeyClasses>
set, and the other request will contain one <GlobalKeyID>
element and multiple <KeyClass>
elements within the <KeyClasses>
set. (Examples 4 and 5 in this section).
Example 1 – A symmetric key request of a default key class (when no KeyClass is specified):
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
</ekmi:SymkeyRequest>
Example 2 – A request for multiple new symmetric keys, each of a default key class:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
</ekmi:SymkeyRequest>
Example 3 – A request for a new symmetric key of a specific key class:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>256-Bit-Class</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
Example 4 – A request for two new symmetric keys of the same key class for each symmetric key. Note that if the FIN-FX key class was the default key class, a request as shown in Example 2 of this section would result in the same response:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>FIN-FX</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
Example 5 – A request for a four new symmetric keys of different key classes:
<ekmi:SymkeyRequest
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:GlobalKeyID>10514-0-0</ekmi:GlobalKeyID>
<ekmi:KeyClasses>
<ekmi:KeyClass>EHR-DEF</ekmi:KeyClass>
<ekmi:KeyClass>EHR-HOS</ekmi:KeyClass>
<ekmi:KeyClass>EHR-INS</ekmi:KeyClass>
<ekmi:KeyClass>EHR-PAT</ekmi:KeyClass>
</ekmi:KeyClasses>
</ekmi:SymkeyRequest>
The <SymkeyResponse> element is one of two results returned by an SKS server upon being sent a valid and authorized <SymkeyRequest> by a client application. The other result is a <SymkeyError> which will be discussed in the next section.
While <SymkeyResponse> is a top-level element within this specification, it MUST be enclosed within a SOAP Body element of a SOAP Envelope to conform to the security requirements of this specification. The SOAP Header of the SOAP Envelope MUST enclose a Security element conforming to [WSS] with a ValueType attribute containing the value http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3. The Security element must conform to all other requirements of the specified security profile in [WSS] to form a well-formed, secure message.
Schema Definition:
<xsd:element
name="SymkeyResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element
name="Symkey"
type="tns:SymkeyType"
minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element
name="SymkeyError"
type="tns:SymkeyErrorType"
minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
The <SymkeyResponse> element consists of a sequence of two types of child elements - <Symkey> or <SymkeyError> . The <SymkeyResponse> element MAY consist of either type of element or both types of elements. When both elements are contained in a <SymkeyResponse>, all <Symkey> elements MUST precede the first <SymkeyError> element.
<Symkey>
[Optional]
This element of type SymkeyType,
is returned by the SKS server in response to a successful
processing of a <SymkeyRequest>.
There MAY be more than one <Symkey>
element
in the <SymkeyResponse>
if the client application made a request for multiple symmetric
keys.
The <Symkey>
element and the SymkeyType are
specified in Section 4.5.
<SymkeyError>
[Optional]
This element of type SymkeyErrorType,
contains a response to a failed attempt in processing a request for
one or more symmetric keys. There MAY be more than one
<SymkeyError>
element
in the <SymkeyResponse>
if the client application made a request for multiple symmetric keys
and the request resulted in multiple errors.
The
<SymkeyError>
element is specified in Section 4.6.
Some high-level examples of the <SymkeyResponse> element are as follows:
Example 1 – A response with a single symmetric key:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>.....</ekmi:Symkey>
</ekmi:SymkeyResponse>
Example 2 – A response with three symmetric keys:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:Symkey>.....</ekmi:Symkey>
</ekmi:SymkeyResponse>
Example 3 – A response with an error:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
Example 4 – A response with multiple errors:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
Example 5 – A response with one symmetric key and one error:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
Example 6 – A response with multiple symmetric keys and multiple error:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:Symkey>.....</ekmi:Symkey>
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
<ekmi:SymkeyError>.....</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
The <Symkey> element is the raison d'etre of the SKSML protocol. The element of type SymkeyType, contains the symmetric key returned by the SKS server, in response to a successful processing of a <SymkeyRequest> from a client application.
Schema Definition:
<xsd:complexType
name="SymkeyType">
<xsd:sequence>
<xsd:element name="GlobalKeyID"
type="ekmi:GlobalKeyIDType"/>
<xsd:element name="KeyUsePolicy"
type="ekmi:KeyUsePolicyType"/>
<xsd:element name="EncryptionMethod"
type="xenc:EncryptionMethodType"/>
<xsd:element ref="xenc:CipherData"/>
</xsd:sequence>
</xsd:complexType>
When a request for a symmetric key is successful, there MUST be at least one <Symkey> element in a <SymkeyResponse> element. There MAY be more than one <Symkey> element in the response if the client application made a request for multiple symmetric keys and the SKS server processed the request successfully.
In the event of an error in processing the request, there SHALL be no <Symkey> element in the response; there SHALL be a <SymkeyError> element, instead. The <SymkeyError> element is specified in Section 4.6.
The <Symkey> element consists of a sequence of the following child elements:
<GlobalKeyID>
[Required]
This element of type GlobalKeyIDType
identifies the unique identifier of the symmetric key within
an SKMS. There SHALL be only one <GlobalKeyID>
within a <Symkey>
element.
The GlobalKeyIDType
is specified in Section 4.2.
<KeyUsePolicy>
[Required]
This element of type KeyUsePolicyType,
defines how the symmetric key in this <Symkey>
element may be used by applications. There SHALL be only one
<KeyUsePolicy>
element within a <Symkey>
element.
The <KeyUsePolicy>
element is specified in Section 4.7.
<EncryptionMethod>
[Required]
This element of type EncryptionMethodType
from [XMLEncryption]
describes how the symmetric key in this <Symkey>
element is encrypted for transport between the SKS
Server and the client application.
The
<EncryptionMethod>
MUST specify one of the following two transport algorithms in the
Algorithm
attribute of the element:
-
http://www.w3.org/2001/04/xmlenc#rsa-1_5
-
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
<CipherData>
[Required]
This element of CipherDataType
from
[XMLEncryption]
contains the encrypted symmetric-key. As specified in
[XMLEncryption],
the content of this element is Base-64 encoded and is of the XML
Schema base64Binary
type.
Some high-level examples of the <Symkey> element are as follows. Details about the <KeyUsePolicy> element have been elided for brevity:
Example 1 – A response with a symmetric key:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>
<ekmi:GlobalKeyID>10514-1-235</ekmi:GlobalKeyID>
<ekmi:KeyUsePolicy>.....</ekmi:KeyUsePolicy>
<ekmi:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<xenc:CipherData>
<xenc:CipherValue>
E9zWB/y93hVSzeTLiDcQoDxmlNxTux+SffMNwCJmt1dIqzQHBnpdQ8
1g6DKdkCFjJMhQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxj
fg1pU8tGFbpWZcd/ATpJD/UJow/qimxi8+huUYJMtaGH= </xenc:CipherValue>
</xenc:CipherData>
</ekmi:Symkey>
</ekmi:SymkeyResponse>
Example 2 – A response with multiple symmetric keys:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:Symkey>
<ekmi:GlobalKeyID>10514-1-235</ekmi:GlobalKeyID>
<ekmi:KeyUsePolicy>.....</ekmi:KeyUsePolicy>
<ekmi:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
<xenc:CipherData>
<xenc:CipherValue>
E9zWB/y93hVSzeTLiDcQoDxmlNxTux+SffMNwCJmt1dIqzQHBnpdQ8
1g6DKdkCFjJMhQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxj
fg1pU8tGFbpWZcd/ATpJD/UJow/qimxi8+huUYJMtaGH= </xenc:CipherValue>
</xenc:CipherData>
</ekmi:Symkey>
<ekmi:Symkey>
<ekmi:GlobalKeyID>10514-1-236</ekmi:GlobalKeyID>
<ekmi:KeyUsePolicy>.....</ekmi:KeyUsePolicy>
<ekmi:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
<xenc:CipherData>
<xenc:CipherValue>
Qbg65cy93hVSzeTLiDcQoDxmlNxTux+SffMNwCJmt1dIqzQHBnpdQ8
7k6DKdkCFjJMhQhywCx9sfYjv9h5FDqUiQXGOca8EU871zBoXBjDxj
uyecU8tGFbpWZcd/ATpJD/UJow/qimxi8+huUYJMtaGH=
</xenc:CipherValue>
</xenc:CipherData>
</ekmi:Symkey>
</ekmi:SymkeyResponse>
The <SymkeyError> element of type SymkeyErrorType, contains the error returned by the SKS server, in response to a failure in processing of a <SymkeyRequest> from a client application.
Schema Definition:
<xsd:complexType
name="SymkeyErrorType">
<xsd:sequence>
<xsd:element
name="RequestedGlobalKeyID" type="ekmi:GlobalKeyIDType"/>
<xsd:element
name="RequestedKeyClass"
type="ekmi:KeyClassType"
minOccurs="0"/>
<xsd:element
name="ErrorCode">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:maxLength
value="255"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="ErrorMessage">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:maxLength
value="1024"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
When a request for a symmetric key fails despite successfully being processed by the SOAP layer, there MUST be at least one <SymkeyError> element in a <SymkeyResponse> element. When a <SymkeyRequest> fails at the SOAP layer, the response SHALL consist of a SOAPFault.
There MAY be more than one <SymkeyError> element in the response if the client application made a request for multiple symmetric keys and the SKS server failed in processing the request for more than one symmetric key.
The <SymkeyError> element consists of a sequence of the following child elements:
<RequestedGlobalKeyID>
[Required]
This element of type GlobalKeyIDType
identifies the unique identifier of the symmetric key
requested by the client application. There SHALL be only one
<RequestedGlobalKeyID>
within a <SymkeyError>
element.
The GlobalKeyIDType
is specified in Section 4.2.
<RequestedKeyClass>
[Optional]
This element of type KeyClassType
identifies the key-class of the symmetric key requested by the
client application. If the <RequestedKeyClass>
element is not embedded in the <SymkeyError>
element, this implies that the requested symmetric key was for the
default key-class of the SKMS.
The KeyClassType
is specified in Section 4.3.
<ErrorCode>
[Required]
This element of type String
identifies a mnemonic code
identifying the error the SKS
Server experienced in processing the client's symmetric key request.
The
<ErrorCode>
element SHALL return one of the codes identified in Appendix D of
this specification.
<ErrorMessage>
[Required]
This
element of type
String
identifies
a localized message describing the error the SKS
Server experienced in processing the client's symmetric key
request.
The
<ErrorMessage>
element SHALL return the appropriate localized version of the
message corresponding to the <ErrorCode>
element from Appendix D of this specification.
Some high-level examples of the <SymkeyError> element are as follows.
Example 1 – An error within a response:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:SymkeyError>
<ekmi:RequestedGlobalKeyID>10514-2-22</ekmi:RequestedGlobalKeyID>
<ekmi:ErrorCode>SKS-100004</ekmi:ErrorCode>
<ekmi:ErrorMessage>Unauthorized request for
key</ekmi:ErrorMessage>
</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
Example 2 – Multiple errors within a response:
<ekmi:SymkeyResponse
xmlns:ekmi=”http://docs.oasis-open.org/ekmi/2008/01">
<ekmi:SymkeyError>
<ekmi:RequestedGlobalKeyID>10514-1-0</ekmi:RequestedGlobalKeyID>
<ekmi:ErrorCode>SKS-100001</ekmi:ErrorCode>
<ekmi:ErrorMessage>Invalid GlobalKeyID</ekmi:ErrorMessage>
</ekmi:SymkeyError>
<ekmi:SymkeyError>
<ekmi:RequestedGlobalKeyID>10514-2-22</ekmi:RequestedGlobalKeyID>
<ekmi:ErrorCode>SKS-100004</ekmi:ErrorCode>
<ekmi:ErrorMessage>Unauthorized request for
key</ekmi:ErrorMessage>
</ekmi:SymkeyError>
</ekmi:SymkeyResponse>
The <KeyUsePolicy> element defines rules that conforming implementations of the SKCL MUST adhere to when using the symmetric key sent by the SKS Server. It is an integral part of the <Symkey> element .
Schema Definition:
<xsd:complexType name="KeyUsePolicyType" mixed="true">
<xsd:sequence>
<xsd:element name="KeyUsePolicyID"
type="tns:TwoPartIDType"/>
<xsd:element
name="PolicyName">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="255"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="KeyClass"
type="tns:KeyClassType"/>
<xsd:element
name="KeyAlgorithm" type="tns:EncryptionAlgorithmType"/>
<xsd:element name="KeySize"
type="tns:KeySizeType"/>
<xsd:element
name="Status" type="tns:StatusType"/>
<xsd:element name="Permissions"
type="tns:PermissionsType"/>
</xsd:sequence>
</xsd:complexType>
The <KeyUsePolicy> element is of the KeyUsePolicyType and consists of the following child elements:
<KeyUsePolicyID>
[Required]
The < KeyUsePolicyID>
element, of type TwoPartIDType ,
identifies
the unique policy object within the SKMS. There SHALL be only one
<KeyUsePolicyID>
element within a <KeyUsePolicy>
element.
The TwoPartIDType
is specified in Section 4.8.
<PolicyName>
[Required]
The <PolicyName>
element, of type XSD
String,with
a maximum length of 255 characters,
identifies a unique name given to this <KeyUsePolicy>.
There SHALL be only one
<PolicyName>
element within a
<KeyUsePolicy>
element.
<KeyClass>
[Required]
The <KeyClass>
element ,of type KeyClassType ,
identifies a key-class assigned to this <KeyUsePolicy>.
There SHALL be only one <KeyUsePolicyID>
element within a <KeyUsePolicy>
element.
The KeyClassType
is specified in Section 4.3.
<KeyAlgorithm>
[Required]
The <KeyAlgorithm>
element , of type EncryptionAlgorithmType ,
identifies encryption
algorithm to be used by applications when using this symmetric key.
There SHALL be only one <KeyAlgorithm>
element within a <KeyUsePolicy>
element.
The
<KeyAlgorithm>
element
is specified in Section 4.9.
<KeySize>
[Required]
The
<KeySize>
element , of type
KeySizeType,
defines
the size of the symmetric key, in bits (binary digits). There SHALL
be only one <KeySize> element within a <KeyUsePolicy>
element.
Note:
It is possible to determine the size of a symmetric key in an SKCL
implementation without having to send the size in the response. So,
why include it? It is our belief that while network bandwidth and
compute performance of devices are increasing steadily, encryption
is desired in many small and portable devices. Consequently, it
will speed up applications in cryptographic processing if they do
not have to determine the size of each key they use. While
“protocol purity” demands that implementation issues do
not show up in protocol design, we believe it is justified in this
case.
The KeySizeType
is
specified in Section 4.10.
<Status>
[Required]
The
<Status>
element, of type
StatusType,
identifies the current status of the symmetric key. There SHALL be
only one <Status>
element within a <KeyUsePolicy>
element.
The StatusType
is
specified in Section 4.11.
<Permissions>
[Required]
The <Permissions>
element, of type PermissionsType,
defines what is permissible to client applications with the
symmetric key this element is associated with. It is the
responsibility of the conforming SKCL
implementation to enforce these rules.
An important
distinction of this element – unlike most access control rules
– is that the absence of sub-elements in the <Permissions>
element implies that all permissions are allowed. The presence of
sub-elements in this element provide rules to the SKCL
about what actions are permitted.
There SHALL be only one
<Permissions>
element in a <KeyUsePolicy>
element.
The PermissionsType
is specified in Section 4.12.
Some examples of the <KeyUsePolicy> element are as follows.
Example 1 – A <KeyUsePolicy> with some permission restrictions:
<ekmi:KeyUsePolicy>
<ekmi:KeyUsePolicyID>10514-4</ekmi:KeyUsePolicyID>
<ekmi:PolicyName>DES-EDE
KeyUsePolicy</ekmi:PolicyName>
<ekmi:KeyClass>HR-Class</ekmi:KeyClass>
<ekmi:KeyAlgorithm>
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
</ekmi:KeyAlgorithm>
<ekmi:KeySize>192</ekmi:KeySize>
<ekmi:Status>Active</ekmi:Status>
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="false">
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-23</ekmi:ApplicationID>
<ekmi:ApplicationName>Payroll
Application</ekmi:ApplicationName>
<ekmi:Version>1.0</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2000/09/xmldsig#sha1
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>
229ea73a5e76eabd183663d332b283948a9202a1
</ekmi:DigestValue>
</ekmi:PermittedApplication>
</ekmi:PermittedApplications>
<ekmi:PermittedDates
ekmi:any="false">
<ekmi:PermittedDate>
<ekmi:StartDate>2008-01-01</ekmi:StartDate>
<ekmi:EndDate>2008-12-31</ekmi:EndDate>
</ekmi:PermittedDate>
</ekmi:PermittedDates>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="false">
<ekmi:PermittedTime>
<ekmi:StartTime>07:00:00</ekmi:StartTime>
<ekmi:EndTime>19:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
</ekmi:PermittedTimes>
<ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
</ekmi:Permissions>
</ekmi:KeyUsePolicy>
Example 2 – A <KeyUsePolicy> with no restrictions on the key:
<ekmi:KeyUsePolicy>
<ekmi:KeyUsePolicyID>10514-2</ekmi:KeyUsePolicyID>
<ekmi:PolicyName>Laptop
KeyUsePolicy</ekmi:PolicyName>
<ekmi:KeyClass>HR-Class</ekmi:KeyClass>
<ekmi:KeyAlgorithm>
http://www.w3.org/2001/04/xmlenc#aes256-cbc
</ekmi:KeyAlgorithm>
<ekmi:KeySize>256</ekmi:KeySize>
<ekmi:Status>Active</ekmi:Status>
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedUses
ekmi:any="true"
xsi:nil="true"/>
</ekmi:Permissions>
</ekmi:KeyUsePolicy>
The TwoPartIDType is used to create identifiers for many elements within the SKSML. It is a simple concatenation of two integers with a hyphen between them (“-”) to create an XML Schema String type.
The TwoPartIDType has a minimum length of three (3) characters, and a maximum length of 41 characters.
Schema Definition:
<xsd:simpleType
name="TwoPartIDType">
<xsd:restriction
base="xsd:string">
<xsd:minLength
value="3"/>
<xsd:maxLength
value="41"/>
<xsd:pattern
value="[1-9][0-9]{0,19}-[1-9][0-9]{0,19}"/>
<xsd:whiteSpace value="collapse"/>
</xsd:restriction>
</xsd:simpleType>
The TwoPartIDType is used in the <ApplicationID>, the <KeyCachePolicyID> and the <KeyUsePolicyID> elements within the SKSML.
Some examples of the <KeyUsePolicy> element are as follows.
Example 1 – A TwoPartIDType used to identify an ApplicationID:
<ekmi:ApplicationID>10514-23</ekmi:ApplicationID>
Example 2 – A TwoPartIDType used to identify a KeyUsePolicyID:
<ekmi:KeyUsePolicyID>10514-4</ekmi:KeyUsePolicyID>
Example 3 – A minimum-length TwoPartIDType :
<ekmi:KeyCachePolicyID>5-4</ekmi:KeyCachePolicyID>
Example 4 – A maximum-length TwoPartIDType :
<ekmi:ApplicationID>
18446744073709551615-18446744073709551615
</ekmi:ApplicationID>
The element <KeyAlgorithm> , of type EncryptionAlgorithmType, is used to identify the cryptographic algorithm to be used with the symmetric keys in the <SymkeyResponse>.
Schema Definition:
<xsd:simpleType
name="EncryptionAlgorithmType">
<xsd:restriction base="xsd:anyURI">
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes192-cbc"/>
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>
</xsd:restriction>
</xsd:simpleType>
The algorithms currently supported by this specification are the algorithms defined in [XMLEncryption]. As new algorithms are added to [XMLEncryption], they will be added to the enumerated list in this element. Currently, the following four algorithms are supported:
Triple
Data Encryption Standard (3DES)
Within the context of this
specification, and as specified in [XMLEncryption],
the form of 3DES supported within SKSML
is a 192-bit key with a 64-bit Initialization Vector. Of the key
bits, the first 64 are used in the first DES operation, the second
64 bits in the second (middle) DES operation, and the third 64 bits
in the third (last) DES operation. Each of these 64
bits of key contain 56 effective bits and 8 parity bits.
The
algorithm standard is denoted by the URL:
http://www.w3.org/2001/04/xmlenc#tripledes-cbc.
Advanced
Encryption Standard (AES) – 128-bit
Within the context
of this specification, and as specified in [AES],
this is a 128-bit symmetric key used in the Cipher Block Chaining
(CBC) mode.
The algorithm standard is denoted by the URL:
http://www.w3.org/2001/04/xmlenc#aes128-cbc.
Advanced
Encryption Standard (AES) – 192-bit
Within the context
of this specification, and as specified in [AES],
this is a 192-bit symmetric key used in the Cipher Block Chaining
(CBC) mode.
The algorithm standard is denoted by the URL:
http://www.w3.org/2001/04/xmlenc#aes192-cbc.
Advanced
Encryption Standard (AES) – 256-bit
Within the context
of this specification, and as specified in [AES],
this is a 256-bit symmetric key used in the Cipher Block Chaining
(CBC) mode.
The algorithm standard is denoted by the URL:
http://www.w3.org/2001/04/xmlenc#aes256-cbc.
There SHALL be only one <KeyAlgorithm> element within a <KeyUsePolicy> element.
Some examples of the <KeyAlgorithm> element are as follows; other elements of the <KeyUsePolicy> element are not displayed for brevity:
Example 1 – An example using the Triple-DES key algorithm:
<ekmi:KeyUsePolicy>
...
<ekmi:KeyAlgorithm>
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
</ekmi:KeyAlgorithm>
...
</ekmi:KeyUsePolicy>
Example 2 – An example using the AES-128 key algorithm:
<ekmi:KeyUsePolicy>
...
<ekmi:KeyAlgorithm>
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</ekmi:KeyAlgorithm>
...
</ekmi:KeyUsePolicy>
The element <KeySize> , of type KeySizeType, is used to identify the size of the symmetric key, in binary digits (bits) in the <SymkeyResponse>.
Schema Definition:
<xsd:simpleType
name="KeySizeType">
<xsd:restriction
base="xsd:unsignedShort">
<xsd:totalDigits value="3"/>
<xsd:fractionDigits value="0"/>
<xsd:enumeration value="128"/>
<xsd:enumeration value="192"/>
<xsd:enumeration value="256"/>
</xsd:restriction>
</xsd:simpleType>
There SHALL be only one <KeySize> element within a <KeyUsePolicy> element.
Currently, the following three key-sizes are supported:
128-bits when used with the AES-192 algorithm
192-bits when used with the AES-192 or the 3DES algorithms
256-bits when used with the AES-256 algorithm
Some examples of the <KeySize> element are as follows; other elements of the <KeyUsePolicy> element are not displayed for brevity:
Example 1 – An example using a 128-bit key size:
<ekmi:KeyUsePolicy>
...
<ekmi:KeySize>128</ekmi:KeySize>
...
</ekmi:KeyUsePolicy>
Example 2 – An example using a 192-bit key size:
<ekmi:KeyUsePolicy>
...
<ekmi:KeySize>192</ekmi:KeySize>
...
</ekmi:KeyUsePolicy>
Example 3 – An example using a 256-bit key size:
<ekmi:KeyUsePolicy>
...
<ekmi:KeySize>256</ekmi:KeySize>
...
</ekmi:KeyUsePolicy>
The element <Status>, of type StatusType, is used to identify the current status of an object . It is used in almost every element within the SKMS.
Schema Definition:
<xsd:simpleType
name="StatusType">
<xsd:restriction
base="xsd:string">
<xsd:enumeration
value="Active"/>
<xsd:enumeration
value="Default"/>
<xsd:enumeration
value="Inactive"/>
<xsd:enumeration
value="Other"/>
</xsd:restriction>
</xsd:simpleType>
Where it exists within an element, there SHALL be only one <Status> element within the enclosing element.
The <Status> element can contain one of four String type values:
The Active value indicates that the element that makes up the document-root is currently active in the SKMS and conforming SKCL implementations may use it within applications.
The Default value indicates that the element that makes up the document root is the default element in the SKMS, is also active, and conforming SKCL implementations may use it within applications.
The Inactive value indicates that the element that makes up the document root is not active in the SKMS, and conforming SKCL implementations may NOT use it within applications.
The Other value indicates that the element that makes up the document root has a meaning that is application-specific. However, conforming SKCL implementations may NOT use it within applications.
Some examples of the <Status> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example with an Active status within a <KeyUsePolicy> element:
<ekmi:KeyUsePolicy>
...
<ekmi:Status>Active</ekmi:Status>
...
</ekmi:KeyUsePolicy>
Example 2 – An example with an Inactive status within a <KeyUsePolicy> element:
<ekmi:KeyUsePolicy>
...
<ekmi:Status>Inactive</ekmi:Status>
...
</ekmi:KeyUsePolicy>
Example 3 – An example with a Default status within a <KeyUsePolicy> element:
<ekmi:KeyUsePolicy>
...
<ekmi:Status>Default</ekmi:Status>
...
</ekmi:KeyUsePolicy>
The <Permissions> element, of the type PermissionsType is at the heart of the <KeyUsePolicy> element. It provides guidance to conforming SKCL implementations on who may use the symmetric key, when they may use it, for what purposes, for how long and in which locations. For applications that conform to the Multi-Level Security (MLS) model, there is a provision for specifying which levels are permitted use of the key. There is also an element that allows for extending the <Permissions> element to accommodate rules that have not been envisioned in the current specification.
There SHALL be only one <Permissions> element within a <KeyUsePolicy> element.
Schema Definition:
<xsd:complexType
name="PermissionsType">
<xsd:sequence>
<xsd:element
name="PermittedApplications"
type="tns:PermittedApplicationsType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedDates"
type="tns:PermittedDatesType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedDays"
type="tns:PermittedDaysType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedDuration"
type="tns:PermittedDurationType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedLevels"
type="tns:PermittedLevelsType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedLocations"
type="tns:PermittedLocationsType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedNumberOfTransactions"
type="tns:PermittedNumberOfTransactionsType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedTimes"
type="tns:PermittedTimesType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="PermittedUses"
type="tns:PermittedUsesType"
minOccurs="1"
nillable=”true”/>
<xsd:element
name="Other"
type="xsd:anyType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
The <Permissions>
element consists of the following sub-elements:
A required
<PermittedApplications>
element which identifies applications that are permitted use of the
symmetric key in question. While the <PermittedApplications>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedApplications>
element implies that all applications are permitted to use the key.
Identifying a specific application restricts the use of the key to
only the identified applications.
The <PermittedApplications>
element is specified in Section 4.13.
A required <PermittedDates>
element which identifies the date ranges during which applications
are permitted use of the symmetric key in question. While the
<PermittedDates>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedDates>
element implies that applications are permitted to use the key on
any date. Identifying specific date ranges restricts the use of the
key to only the duration between the identified dates.
The
<PermittedDates>
element is specified in Section 4.12.
A required <PermittedDays>
element which identifies the days of week during which applications
are permitted use of the symmetric key in question. While the
<PermittedDays>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedDays>
element implies that applications are permitted to use the key on
any day of the week. Identifying specific days restricts the use of
the key to only the identified days.
The <PermittedDays>
element is specified in Section 4.15.
A required <PermittedDuration>
element which identifies the duration (in seconds) in which
applications are permitted use of the symmetric key in question once
the SKCL starts using the symmetric key.
While the <PermittedDuration>
element is required, it may be empty (NULL). The absence of any
content – the duration time - in the <PermittedDuration>
element implies that applications are permitted to use the key for
any duration after it has been used. Identifying a non-zero,
positive duration value restricts the use of the key to only the
period after the start of the use of the key.
A distinction
between <PermittedDates>
and <PermittedDuration>
is that the former has fixed start and end-dates for the use of the
key, whereas the latter has a fixed end-date-and-time after the key
has begun to be used without a fixed start-date-and-time. Thus, an
application with a <PermittedDuration>
can begin the use of a symmetric key at any time, but must stop its
use at the end of the <PermittedDuration>
once it has begun. With <PermittedDates>,
an application can continue using the symmetric key until the fixed
date-and-time have been reached.
The <PermittedDuration>
element is specified in Section 4.16
Within a Multi-Level Security
(MLS) system, the required <PermittedLevels>
element identifies the security levels at which applications are
permitted use of the symmetric key in question. While the
<PermittedLevels>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedLevels>
element implies that applications are permitted to use the key at
any level of security. Identifying specific MLS level(s) restricts
the use of the key to only the identified security level(s).
The
<PermittedLevels>
element is specified in Section 4.17
A required <PermittedLocations>
element which identifies physical geographic locations where
applications are permitted use of the symmetric key in question.
While the <PermittedLocations>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedLocations>
element implies that applications are permitted to use the key at
any physical location. Identifying specific locations restricts the
use of the key to only the identified locations.
The
<PermittedLocations>
element is specified in Section 4.18.
A required
<PermittedNumberOfTransactions>
element which identifies the number of
encryption transactions that applications are permitted, with the
use of the symmetric key in question. While the
<PermittedNumberOfTransactions>
element is required, it may be empty (NULL). The absence of content
– the number of transactions – in the
<PermittedNumberOfTransactions>
element implies that applications are permitted
to use the key for as many encryption transactions as necessary.
Identifying a specific, non-zero, positive number of transactions in
this element restricts the use of the key to only the limit
identified in the element.
The
<PermittedNumberOfTransactions>
element is specified in Section 4.19.
A required <PermittedTimes>
element which identifies the times of day during which applications
are permitted the use of the symmetric key in question. While the
<PermittedTimes>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedTimes>
element implies that applications are permitted to use the key at
any time of day. Identifying specific times restricts the use of
the key to only the duration of the identified times.
The
<PermittedTimes>
element is specified in Section 4.20.
A required <PermittedUses>
element which identifies application-uses that applications are
permitted with the symmetric key in question. While the
<PermittedUses>
element is required, it may be empty (NULL). The absence of
sub-elements in the <PermittedUses>
element implies that applications are permitted to use the key for
any purpose. Identifying specific uses restricts the use of the key
to only the identified uses.
The <PermittedUses>
element is specified in Section 4.21.
The optional <Other>
element allows implementers to specify permissions that cannot be
addressed with the above-mentioned categories, for restricting the
use of the symmetric key in question.
While the <Other>
element provides flexibility for implementations, the disadvantage
of the element is that it may render a specific implementation
incompatible with other SKMS implementations that use the
SKSML standard.
It is strongly recommended that
implementers avoid the use of the <Other>
element unless they definitely do not expect to inter-operate with
other SKCL implementations. If there is a strong need for
capability that does not exist within the current specification of
the <Permissions>
element, implementers are encouraged to contact the OASIS EKMI TC
with their requirements.
When all sub-elements of the <Permissions> element are empty, there are no restrictions on the use of the symmetric key other than that the application calling on the SKCL be authorized to access the key in question. However, when there are elements defined within the sub-elements of the <Permissions> element, conforming SKCL implementations must comply with all the permission elements, evaluating the most restrictive permissions first and in decreasing order of restriction, before allowing the use of the key.
For example, if a <Permissions> element specifies that a key may be used on Weekdays, between the hours of 0900 and 1700 Hours, then a request for a symmetric key on a Saturday at 1105 would deny use of the key in question, since it violates the more restrictive permission of being allowed for use only on weekdays.
It should be noted that it is the primary responsibility of a conforming SKCL to enforce the <Permission> elements' rules. The SKS server will generate the key – or return an existing key - when an authorized client with appropriate access requests it. However, it is up to the SKCL implementation to comply with the rules in the <Permissions> element.
In another example, if a <Permissions> element specifies a <PermittedDuration> of 600 seconds from the start of use of the key, and there is also present a <PermittedNumberOfTransactions> element with a value of 10 (encryption transactions), conforming SKCL implementations must evaluate both permissions before each transaction and determine if they are both within the specified thresholds before using the key. If the 600 seconds expire before the 10 encryption transactions have been completed, or if the 10 encryption transactions are completed before 600 seconds have expired, conforming SKCL implementations MUST not use the key in question anymore.
Some examples of the <Permissions> element are as shown below; the enclosing <KeyUsePolicy> element, <Symkey> element and <SymkeyResponse> elements are not displayed for brevity:
Example 1 – A <Permissions> element that permits a single application the use of the symmetric key in question, between January 01, 2008 and December 31, 2008 and between the hours of 0700 and 1900. There are, however, no restrictions on what days of the week the key may be used, the locations where it may be used, at which MLS level it may be used (if it applies), the number of data files/transactions that may be encrypted with the key or the uses of the key within that application:
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="false">
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-23</ekmi:ApplicationID>
<ekmi:ApplicationName>Payroll
Application</ekmi:ApplicationName>
<ekmi:Version>1.0</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2000/09/xmldsig#sha1
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>
229ea73a5e76eabd183663d332b283948a9202a1
</ekmi:DigestValue>
</ekmi:PermittedApplication>
</ekmi:PermittedApplications>
<ekmi:PermittedDates
ekmi:any="false">
<ekmi:PermittedDate>
<ekmi:StartDate>2008-01-01</ekmi:StartDate>
<ekmi:EndDate>2008-12-31</ekmi:EndDate>
</ekmi:PermittedDate>
</ekmi:PermittedDates>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="false">
<ekmi:PermittedTime>
<ekmi:StartTime>07:00:00</ekmi:StartTime>
<ekmi:EndTime>19:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
</ekmi:PermittedTimes>
<ekmi:PermittedUses
ekmi:any="true" xsi:nil="true"/>
</ekmi:Permissions>
Example 2 – A <Permissions> element that permits two specific applications the use of the symmetric key in question, between January 01, 2009 and January 31, 2009.
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="false">
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-24</ekmi:ApplicationID>
<ekmi:ApplicationName>
Employee Tax Reporting
Application
</ekmi:ApplicationName>
<ekmi:Version>3.3</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2000/09/xmldsig#sha1
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>
af96d65a7a2415239c8eb8be1347f704322957a4
</ekmi:DigestValue>
</ekmi:PermittedApplication>
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-25</ekmi:ApplicationID>
<ekmi:ApplicationName>
IRS
Tax Reporting
Application
</ekmi:ApplicationName>
<ekmi:Version>2.1</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2000/09/xmldsig#sha1
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>
a4f5925185ffe12c1a91ea3de90fc086b34b34b2
</ekmi:DigestValue>
</ekmi:PermittedApplication>
</ekmi:PermittedApplications>
<ekmi:PermittedDates
ekmi:any="false">
<ekmi:PermittedDate>
<ekmi:StartDate>2009-01-01</ekmi:StartDate>
<ekmi:EndDate>2009-12-31</ekmi:EndDate>
</ekmi:PermittedDate>
</ekmi:PermittedDates>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedUses
ekmi:any="true" xsi:nil="true"/>
</ekmi:Permissions>
Example 3 – A <Permissions> element that permits all applications the use of the symmetric key in question, for 100 transactions for encrypting credit card numbers.
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="false">
100
</ekmi:PermittedNumberOfTransactions>
<ekmi:PermittedTimes
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedUses
ekmi:any="false">
<ekmi:PermittedUse>CCN</ekmi:PermittedUse>
</ekmi:PermittedUses>
</ekmi:Permissions>
Example 4 – A <Permissions> element that permits all applications the use of the symmetric key in question, for 600 seconds once the SKCL starts using the key.
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDays
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDuration
ekmi:any="false">600</ekmi:PermittedDuration>
<ekmi:PermittedLevels
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLocations
ekmi:any="true"
xsi:nil="true"/>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedUses
ekmi:any="true" xsi:nil="true"/>
</ekmi:Permissions>
Example 5 – A <Permissions> element that permits a specific application the use of the symmetric key in question, at specific geographic locations only on weekdays between the hours of 0800 and 1700, and only when the application is operating at the Secret security level within an MLS system.
<ekmi:Permissions>
<ekmi:PermittedApplications
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDates
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedDays
ekmi:any="false”>
<ekmi:PermittedDay>Weekday</ekmi:PermittedDay>
</ekmi:PermittedDays>
<ekmi:PermittedDuration
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedLevels
ekmi:any="false">
<ekmi:PermittedLevel>Secret</ekmi:PermittedLevel>
</ekmi:PermittedLevels>
<ekmi:PermittedLocations
ekmi:any="false”>
<ekmi:PermittedLocation>
<ekmi:LocationName>Facility
A51</ekmi:LocationName>
<ekmi:Latitude>37.385562</ekmi:Latitude>
<ekmi:Longitude>-121.993387</ekmi:Latitude>
</ekmi:PermittedLocation>
<ekmi:PermittedLocation>
<ekmi:LocationName>Facility
DC-VA01</ekmi:LocationName>
<ekmi:Latitude>88.485362</ekmi:Latitude>
<ekmi:Longitude>-21.453648</ekmi:Latitude>
</ekmi:PermittedLocation>
</ekmi:PermittedLocations>
<ekmi:PermittedNumberOfTransactions
ekmi:any="true" xsi:nil="true"/>
<ekmi:PermittedTimes
ekmi:any="false”>
<ekmi:PermittedTime>
<ekmi:StartTime>08:00:00</ekmi:StartTime>
<ekmi:EndTime>17:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
</ekmi:PermittedTimes>
<ekmi:PermittedUses
ekmi:any="true" xsi:nil="true"/>
</ekmi:Permissions>
The element <PermittedApplications>, of type PermittedApplicationsType and its only child-element <PermittedApplication> of type ApplicationsType are used to define the list of applications that are permitted to use a symmetric key within a specific <Symkey> element.
Schema Definition:
<xsd:complexType
name="PermittedApplicationsType">
<xsd:sequence>
<xsd:element
name="PermittedApplication"
type="tns:ApplicationsType"
minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
Schema
Definition:
<xsd:complexType
name="ApplicationsType">
<xsd:sequence>
<xsd:element name="ApplicationID"
type="tns:TwoPartIDType"/>
<xsd:element
name="ApplicationName">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:maxLength value="256"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="Version" minOccurs="0">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:maxLength value="32"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:group
ref="tns:MessageDigestGroup" minOccurs="0"/>
<xsd:element name="Other" type="xsd:anyType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
Schema
Definition:
<xsd:group name="MessageDigestGroup">
<xsd:sequence>
<xsd:element
name="DigestAlgorithm">
<xsd:simpleType>
<xsd:restriction base="xsd:anyURI">
<xsd:enumeration
value="http://www.w3.org/2000/09/xmldsig#sha1"/>
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#sha256"/>
<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#sha512"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="DigestValue">
<xsd:simpleType>
<xsd:restriction
base="xsd:base64Binary">
<xsd:maxLength
value="1024"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:group>
Schema Definition:
<xsd:attribute
name="any">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="false"/>
<xsd:enumeration value="true"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
There SHALL be only one <PermittedApplications> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedApplication> elements within a <PermittedApplications> element.
The <PermittedApplications> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedApplications> element is null (i.e. it does not have a single <PermittedApplication> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedApplications> element is not-null (i.e. it has at least one <PermittedApplication> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedApplications> element specifies that ALL applications are permitted use of the symmetric key, subject to complying with all other permission clauses in the <KeyUsePolicy> element.
The <PermittedApplication> sub-element of type ApplicationsType, provides details of the application which is permitted use of the symmetric key in question. The <PermittedApplication> element consists of the following sub-elements:
The <ApplicationID> element identifies the unique identifier assigned to this application within the SKMS. It is a TwoPartIDType as specified in Section 4.8. There SHALL be only one <ApplicationID> element within a <PermittedApplication> element.
The <ApplicationName> element identifies the name assigned to this application within the SKMS. It is an XSD String with a maximum length of 256 characters. There SHALL be only one <ApplicationName> element within a <PermittedApplication> element.
An optional <Version> element identifying the version number of this application within the SKMS. It is an XSD String with a maximum length of 32 characters. There MAY be only one <Version> element within a <PermittedApplication> element.
The <MessageDigestGroup> group which identifies the message digest value of the application's binary image, along with the message digest algorithm used to calculate the digest value. The <MessageDigestGroup> consists of the following elements:
The <DigestAlgorithm> element of the XSD type anyURI, which supports one of the following three digest algorithms:
The <DigestValue> element of the XSD type base64Binary.
There SHALL be only one <MessageDigestGroup> group within a <PermittedApplication> element.
An optional <Other> element that provides implementers the ability to carry other information about the application that may be relevant to their SKMS. Implementers are cautioned that the use of the <Other> element may not be supported by other SKCL implementations, and may break interoperability between two SKMS implementations. Should there be a strong need for additional features in the <PermittedApplication> element, implementers are encouraged to contact the OASIS EKMI TC with their requirements.
NOTE: The SKSML specification does not specify how an SKCL implementation will determine the message digest of an application that needs to use the symmetric key in question. It is left to the implementers of the SKCL to determine the message digest of the calling application using the specified algorithm, and verify that the digest values match before the SKCL uses the symmetric key on behalf of the application.
Some examples of the <PermittedApplications> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedApplications> element with two child <PermittedApplication> elements with specific version numbers and message digest values:
<ekmi:PermittedApplications
ekmi:any="false">
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-24</ekmi:ApplicationID>
<ekmi:ApplicationName>Employee Tax
Reporting</ekmi:ApplicationName>
<ekmi:Version>3.3</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2000/09/xmldsig#sha1
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>G4bsdfKkt4cziEqFFuOoBTM81efU=</ekmi:DigestValue>
</ekmi:PermittedApplication>
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-25</ekmi:ApplicationID>
<ekmi:ApplicationName>IRS Tax Reporting
Application</ekmi:ApplicationName>
<ekmi:Version>2.1</ekmi:Version>
<ekmi:DigestAlgorithm>
http://www.w3.org/2001/04/xmlenc#sha256
</ekmi:DigestAlgorithm>
<ekmi:DigestValue>
ab7b85c9410d48c54fc7939c391be4028e7305085191c56e7b3740f2cbdbbc79
</ekmi:DigestValue>
</ekmi:PermittedApplication>
</ekmi:PermittedApplications>
Example 2 – An example of a <PermittedApplications> element with one child <PermittedApplication> element that applies to all versions of the application; the message digest value and algorithm are not used in this example:
<ekmi:PermittedApplications
ekmi:any="false">
<ekmi:PermittedApplication>
<ekmi:ApplicationID>10514-14</ekmi:ApplicationID>
<ekmi:ApplicationName>E-Commerce
Payment</ekmi:ApplicationName>
</ekmi:PermittedApplication>
</ekmi:PermittedApplications>
Example 3 – An example of a null <PermittedApplications> element specifying that ALL applications are permitted the use of the symmetric key:
<ekmi:PermittedApplications ekmi:any="true" xsi:nil=”true”/>
The element <PermittedDates>, of type PermittedDatesType and its only child-element <PermittedDate>, which is an anonymous XSD ComplexType, are used to define ranges of dates between which applications are permitted to use the symmetric key within a specific <Symkey> element.
Schema Definition:
<xsd:complexType
name="PermittedDatesType">
<xsd:sequence>
<xsd:element name="PermittedDate" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element
name="StartDate">
<xsd:simpleType>
<xsd:restriction
base="xsd:date">
<xsd:pattern
value="\p{Nd}{4}-\p{Nd}{2}-\p{Nd}{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="EndDate">
<xsd:simpleType>
<xsd:restriction base="xsd:date">
<xsd:pattern
value="\p{Nd}{4}-\p{Nd}{2}-\p{Nd}{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
There SHALL be only one <PermittedDates> element within the <Permissions> element. However, there MAY be an unbounded number of <PermittedDate> elements within a <PermittedDates> element.
The <PermittedDates> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedDates> element is null (i.e. it does not have a single <PermittedDate> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedDates> element is not-null (i.e. it has at least one <PermittedDate> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedDates> element specifies that applications are permitted use of the symmetric key on any calendar date of the year, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedDate> sub-element identifies an individual set of dates between which application are permitted use of the symmetric key in question. The <PermittedDate> element consists of the following sub-elements:
The
<StartDate>
element identifies the date from which applications MAY start using
the symmetric key in question. It is an XSD Date
type that MUST be specified in a specific pattern (see examples)
where the first four digits specify the year, the second two digits
specify the calendar month in the year, and the last two digits
specify the calendar date of the month.
There SHALL be only
one <StartDate>
element within a <PermittedDate>
element.
Conforming SKCL
implementations SHALL NOT start using the symmetric before the
onset of the <StartDate>
on the client machine. Unless further constrained by the
<PermittedTimes>
element, the onset of the <StartDate>
is specified to be the first second of the day – 00:00:01
Hours – on the client machine.
The
<EndDate>
element identifies the date until which applications may use the
symmetric key in question. It is an XSD Date
type that MUST be specified in a specific pattern (see examples)
where the first four digits specify the year, the second two digits
specify the calendar month in the year, and the last two digits
specify the calendar date of the month.
There SHALL be only
one <EndDate>
element within a <PermittedDate>
element.
Conforming SKCL
implementations SHALL NOT use the symmetric after the end of the
<EndDate>
on the client machine. Unless further constrained by the
<PermittedTimes>
element, the end of the <EndDate>
is specified to be the last second of the day – 23:59:59 Hours
– on the client machine.
Examples of the <PermittedDates> element are shown below; other required parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedDates> element with a single<PermittedDate> element. The <StartDate> specifies January 01, 2009 while the <EndDate> specifies January 31, 2009:
<ekmi:PermittedDates
ekmi:any=”false”>
<ekmi:PermittedDate>
<ekmi:StartDate>2009-01-01</ekmi:StartDate>
<ekmi:EndDate>2009-01-31</ekmi:EndDate>
</ekmi:PermittedDate>
</ekmi:PermittedDates>
Example 2 – An example of a <PermittedDates> element with two <PermittedDate> elements. For the first <PermittedDate> element , the <StartDate> element specifies July 01, 2008 while the <EndDate> element specifies July 03, 2008. For the second <PermittedDate> element, the <StartDate> element specifies July 07, 2008 while the <EndDate> element specifies July 12, 2008. This policy would restrict a symmetric key with this <PermittedDates> element so it cannot be used on the July 4th weekend of 2008:
<ekmi:PermittedDates
ekmi:any=”false”>
<ekmi:PermittedDate>
<ekmi:StartDate>2008-07-01</ekmi:StartDate>
<ekmi:EndDate>2008-07-03</ekmi:EndDate>
</ekmi:PermittedDate>
<ekmi:PermittedDate>
<ekmi:StartDate>2008-07-07</ekmi:StartDate>
<ekmi:EndDate>2009-07-12</ekmi:EndDate>
</ekmi:PermittedDate>
</ekmi:PermittedDates>
Example 3 – An example of a null <PermittedDates> element, specifying that applications are permitted use of the symmetric key on any date:
<ekmi:PermittedDates ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedDays> , of the type PermittedDaysType and its only child-element <PermittedDay> of the PermittedDayType, are used to define days of the week on which applications are permitted to use a symmetric key within a specific <Symkey> element.
Schema Definition:
<xsd:complexType
name="PermittedDaysType">
<xsd:sequence>
<xsd:element
name="PermittedDay"
type="tns:PermittedDayType"
minOccurs="0"
maxOccurs="unbounded">
</xsd:element>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
Schema Definition:
<xsd:simpleType
name="PermittedDayType">
<xsd:restriction
base="xsd:string">
<xsd:enumeration
value="Sunday"/>
<xsd:enumeration
value="Monday"/>
<xsd:enumeration
value="Tuesday"/>
<xsd:enumeration
value="Wednesday"/>
<xsd:enumeration
value="Thursday"/>
<xsd:enumeration
value="Friday"/>
<xsd:enumeration
value="Saturday"/>
<xsd:enumeration
value="Weekday"/>
<xsd:enumeration
value="Weekend"/>
</xsd:restriction>
</xsd:simpleType>
There SHALL be only one <PermittedDays> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedDay> elements within a <PermittedDays> element.
The <PermittedDays> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedDays> element is null (i.e. it does not have a single <PermittedDay> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedDays> element is not-null (i.e. it has at least one <PermittedDay> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedDays> element specifies that applications are permitted use of the symmetric key on all days of the week, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedDay> element, of the XSD String type, identifies individual days of the week from an enumerated list on which application are permitted to use the symmetric key in question.
Examples of the <PermittedDays> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedDays> element with a single<PermittedDay> child element, specifying that the symmetric key may be used only on weekdays:
<ekmi:PermittedDays
ekmi:any=”false”>
<ekmi:PermittedDay>Weekday </ekmi:PermittedDay>
</ekmi:PermittedDays>
Example 2 – An example of a <PermittedDays> element with three <PermittedDay> child elements, specifying that the symmetric key may be used only on Mondays, Wednesdays and Fridays:
<ekmi:PermittedDays
ekmi:any=”false”>
<ekmi:PermittedDay>Monday</ekmi:PermittedDay>
<ekmi:PermittedDay>Wednesday</ekmi:PermittedDay>
<ekmi:PermittedDay>Friday</ekmi:PermittedDay>
</ekmi:PermittedDays>
Example 3 – An example of a null <PermittedDays> element, specifying that the symmetric key may be used on any day of the week:
<ekmi:PermittedDays ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedDuration>, of the type PermittedDurationType is used to define the number of seconds, applications are permitted to use a symmetric key, once the SKCL has started using the symmetric key in question.
Schema Definition:
<xsd:complexType
name="PermittedDurationType">
<xsd:simpleContent>
<xsd:extension
base="tns:DurationType">
<xsd:attribute
ref="tns:any"
use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
Schema Definition:
<xsd:simpleType
name="DurationType">
<xsd:restriction
base="xsd:positiveInteger">
<xsd:minInclusive
value="1"/>
<xsd:maxInclusive
value="18446744073709551615"/>
</xsd:restriction>
</xsd:simpleType>
There SHALL be only one <PermittedDuration> element within the <Permissions> element.
The <PermittedDuration> element SHALL have one attribute, named “any” that will have a “false” or “true” value, based on the following:
When the <PermittedDuration> element is null (i.e. it does not have any content in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedDuration> element is not-null (i.e. it has content in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedDuration> element specifies that applications are permitted use of the symmetric key indefinitely, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedDuration> element, of the XSD positiveInteger type, identifies the number of seconds for which the symmetric key in question may be used, ONCE the key has been used by conforming SKCL implementations for the first time. The values for <PermittedDuration> may range between 1 and 18446744073709551615.
As long as the symmetric has not been used by an SKCL on a client device (it might be cached for many days/weeks/months depending on the <KeyCachePolicy> in effect within the SKMS for that device) the effective lifetime of the symmetric key may be well past the number of seconds specified in <PermittedDuration> when calculated from the time of the key's generation time on the SKS server. It is the responsibility of the SKCL implementation, when presented with a <PermittedDuration> element in a <KeyUsePolicy> of a symmetric key, to keep track of the date/time when the symmetric key in question was first used on the client device, and how long the key will last after that.
Examples of the <PermittedDuration> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedDuration> element specifying that the symmetric key may be used only for a single 24-hour period from the moment it is first used by an SKCL:
<ekmi:PermittedDuration ekmi:any=”false”>86400</ekmi:PermittedDuration>
Example 2 – An example of a <PermittedDuration> element specifying that the symmetric key may be used only for week from the moment it is first used by an SKCL:
<ekmi:PermittedDuration ekmi:any=”false”>604800</ekmi:PermittedDuration>
Example 3 – An example of a <PermittedDuration> element specifying that the symmetric key may be used only 5 minutes from the moment it is first used by an SKCL:
<ekmi:PermittedDuration ekmi:any=”false”>300</ekmi:PermittedDuration>
Example 4 – An example of a null <PermittedDuration> element specifying that the symmetric key may be used indefinitely by an SKCL:
<ekmi:PermittedDuration ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedLevels>, of the type LevelClassificationType, is used to define the security level at which applications are permitted use of a symmetric key. This element is useful only to applications and systems that conform to the multi-level security (MLS) system as defined in the Bell-LaPadula model.
Schema Definition:
<xsd:complexType
name="PermittedLevelsType">
<xsd:sequence>
<xsd:element
name="PermittedLevel"
type="tns:LevelClassificationType"
minOccurs="0"
maxOccurs="unbounded">
</xsd:element>
<xsd:element name="Other"
type="xsd:anyType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
Schema Definition:
<xsd:simpleType
name="LevelClassificationType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Unclassified"/>
<xsd:enumeration value="Confidential"/>
<xsd:enumeration value="Secret"/>
<xsd:enumeration value="Top-Secret"/>
</xsd:restriction>
</xsd:simpleType>
There SHALL be only one <PermittedLevels> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedLevel> elements within the <PermittedLevels> element. (Practically, it makes no sense to have more than the known levels; however, this specification leaves itself open to the possibility that other levels may be defined).
The <PermittedLevels> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedLevels> element is null (i.e. it does not have a single <PermittedLevel> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedLevels> element is not-null (i.e. it has at least one <PermittedLevel> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedLevels> element specifies that applications at ANY level are permitted use of the symmetric key, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedLevel> sub-element, of the LevelClassificationType , identifies the precise MLS level at which the symmetric key in question may be used. The <PermittedLevel> SHALL contain one of the following four (4) enumerated values:
Unclassified
Confidential
Secret
Top-Secret
Examples of the <PermittedLevels> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedLevels> element specifying that the symmetric key may be used only by applications at the Confidential level:
<ekmi:PermittedLevels
ekmi:any=”false”>
<ekmi:PermittedLevel>Confidential</ekmi:PermittedLevel>
</ekmi:PermittedLevels>
Example 2 – An example of a <PermittedLevels> element specifying that the symmetric key may be used only by applications at the Secret or Top-Secret level:
<ekmi:PermittedLevels
ekmi:any=”false”>
<ekmi:PermittedLevel>Secret</ekmi:PermittedLevel>
<ekmi:PermittedLevel>Top-Secret</ekmi:PermittedLevel>
</ekmi:PermittedLevels>
Example 3 – An example of a null <PermittedLevels> element specifying that the symmetric key may be used at any level:
<ekmi:PermittedLevels ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedLocations>, of the type PermittedLocationsType, is used to define the geographically physical locations where applications are permitted use of a symmetric key. This element is useful only to applications that have the ability to determine the Global Positioning System (GPS) location of the client device intending to use the symmetric key.
Schema Definition:
<xsd:complexType
name="PermittedLocationsType">
<xsd:sequence>
<xsd:element name="PermittedLocation"
minOccurs="1"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="LocationName">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="256"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:group
ref="tns:LocationCoordinateGroup"
minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element
name="Other" type="xsd:anyType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
Schema Definition:
<xsd:group
name="LocationCoordinateGroup">
<xsd:sequence>
<xsd:element name="Latitude">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="10"/>
<xsd:fractionDigits value="7"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Longitude">
<xsd:simpleType>
<xsd:restriction
base="xsd:decimal">
<xsd:totalDigits value="10"/>
<xsd:fractionDigits value="7"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:group>
There SHALL be only one <PermittedLocations> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedLocation> sub-elements within the <PermittedLocations> element.
The <PermittedLocations> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedLocations> element is null (i.e. it does not have a single <PermittedLocation> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedLocations> element is not-null (i.e. it has at least one <PermittedLocation> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedLocations> element specifies that applications are permitted use of the symmetric key at ANY physical location, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedLocation> element, of the PermittedLocationType, identifies the precise geographical location where the symmetric key in question may be used. The <PermittedLocation> SHALL contain the following elements:
The <LocationName>
element identifies a human-readable name of the physical location.
It is an XSD String type element, with a maximum
length of 256 characters.
There SHALL be only one
<LocationName>
element within a <PermittedLocation> element.
An optional LocationCoordinateGroup which, when present, SHALL contain the following two elements:
The <Latitude>
element of XSD Decimal type, that identifies the
horizontal coordinate location of the client device on the Earth,
measured in degrees and expressed as a decimal with the
minutes and seconds part of the measurement
expressed as a single fraction.
When used, there SHALL be
only one <Latitude>
element within the <PermittedLocation>
element.
The <Longitude>
element of XSD Decimal type, that identifies the
vertical coordinate location of the client device on the Earth,
measured in degrees and expressed as a decimal with the
minutes and seconds part of the measurement
expressed as a single fraction.
When used, there SHALL be
only one <Longitude>
element within the <PermittedLocation>
element.
Some examples of the <PermittedLocations> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedLocations> element specifying that the symmetric key may be used only by applications at a single named location:
<ekmi:PermittedLocations
ekmi:any=”false”>
<ekmi:PermittedLocation>
<ekmi:LocationName>StrongAuth
Server
Room</ekmi:LocationName>
</ekmi:PermittedLocation>
</ekmi:PermittedLocations>
Example 2 – An example of a <PermittedLocations> element specifying that the symmetric key may be used only by applications at a single location at the given GPS coordinates:
<ekmi:PermittedLocations
ekmi:any=”false”>
<ekmi:PermittedLocation>
<ekmi:LocationName>StrongAuth
Server Room</ekmi:LocationName>
<ekmi:Latitude>37.385653
</ekmi:Latitude>
<ekmi:Longitude>-121.993192
</ekmi:Longitude>
</ekmi:PermittedLocation>
</ekmi:PermittedLocations>
Example 3 – An example of a <PermittedLocations> element specifying that the symmetric key may be used only by applications at multiple locations:
<ekmi:PermittedLocations
ekmi:any=”false”>
<ekmi:PermittedLocation>
<ekmi:LocationName>Humongous
Headquarters</ekmi:LocationName>
</ekmi:PermittedLocation>
<ekmi:PermittedLocation>
<ekmi:LocationName>
Humongous Primary Data
Center</ekmi:LocationName>
<ekmi:Latitude>37.385653
</ekmi:Latitude>
<ekmi:Longitude>-121.993192
</ekmi:Longitude>
</ekmi:PermittedLocation>
<ekmi:PermittedLocation>
<ekmi:LocationName>Humongous
DR Data Center</ekmi:LocationName>
<ekmi:Latitude>68.845901
</ekmi:Latitude>
<ekmi:Longitude>11.393385
</ekmi:Longitude>
</ekmi:PermittedLocation>
</ekmi:PermittedLocations>
Example 4 – An example of a null <PermittedLocations> element specifying that the symmetric key may be used at any location on the planet:
<ekmi:PermittedLocations ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedNumberOfTransactions>, of type PermittedNumberOfTransactionsType is used to define the number of encryption transactions that applications are permitted with a symmetric key within a specific <Symkey> element, once the SKCL has started using the symmetric key in question. It does not limit the number of decryption transactions with the same symmetric key.
Schema Definition:
<xsd:complexType
name="PermittedNumberOfTransactionsType">
<xsd:simpleContent>
<xsd:extension
base="tns:NumberOfTransactionsType">
<xsd:attribute
ref="tns:any"
use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
Schema Definition:
<xsd:simpleType
name="NumberOfTransactionsType">
<xsd:restriction
base="xsd:positiveInteger">
<xsd:minInclusive
value="1"/>
<xsd:maxInclusive
value="18446744073709551615"/>
</xsd:restriction>
</xsd:simpleType>
There SHALL be only one <PermittedNumberOfTransactions> element within the <Permissions> element.
The <PermittedNumberOfTransactions> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedNumberOfTransactions> element is null (i.e. it does not have any content in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedNumberOfTransactions> element is not-null (i.e. it has a positive integer content in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedNumberOfTransactions> element specifies that applications are permitted use of the symmetric key for an unlimited number of encryption transactions, subject to complying with all other permission clauses in the <Permissions> element.
The value of <PermittedNumberOfTransactions> element, of the XSD positiveInteger type, MAY range between 1 and 18446744073709551615.
Some examples of the <PermittedNumberOfTransactions> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedNumberOfTransactions> element specifying that the symmetric key may be used only for a single encryption transaction by an SKCL:
<ekmi:PermittedNumberOfTransactions
ekmi:any=”false”>
1
</ekmi:PermittedNumberOfTransactions>
Example 2 – An example of a <PermittedNumberOfTransactions> element specifying that the symmetric key may be used only for 100 transactions by an SKCL:
<ekmi:PermittedNumberOfTransactions
ekmi:any=”false”>
100
</ekmi:PermittedNumberOfTransactions>
Example 3 – An example of a null <PermittedNumberOfTransactions> element specifying that the symmetric key may be used for an unlimited number of encryption transactions by an SKCL:
<ekmi:PermittedNumberOfTransactions ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedTimes>, of the type PermittedTimesType and its only child-element <PermittedTime>, which is an anonymous XSD ComplexType, are used to define sets of times during the day between which applications are permitted to use a symmetric key within a specific <Symkey> element.
Schema Definition:
<xsd:complexType
name="PermittedTimesType">
<xsd:sequence>
<xsd:element
name="PermittedTime" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="StartTime">
<xsd:simpleType>
<xsd:restriction base="xsd:time">
<xsd:pattern
value="\p{Nd}{2}:\p{Nd}{2}:\p{Nd}{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="EndTime">
<xsd:simpleType>
<xsd:restriction base="xsd:time">
<xsd:pattern
value="\p{Nd}{2}:\p{Nd}{2}:\p{Nd}{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
There SHALL be only one <PermittedTimes> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedTime> sub-elements within a <PermittedTimes> element.
The <PermittedTimes> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedTimes> element is null (i.e. it does not have a single <PermittedTime> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedTimes> element is not-null (i.e. it has at least one <PermittedTime> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedTimes> element specifies that applications are permitted use of the symmetric key at ANY time of the day or night, subject to complying with all other permission clauses in the <Permissions> element.
The <PermittedTime> sub-element identifies an individual set of times between which application are permitted to use the symmetric key in question. The <PermittedTime> element consists of the following sub-elements:
The
<StartTime>
element identifies the date from which applications may start using
the symmetric key in question. It is an XSD Time
type that MUST be specified in a specific pattern (see examples)
where the first two digits specify the hour, the second two digits
specify the minutes and the last two digits specify the seconds in a
24 hour format.
There SHALL be only one <StartTime>
element within a <PermittedTime>
element.
Conforming SKCL
implementations SHALL NOT start using the symmetric before the
onset of the <StartTime>
on the client machine.
The
<EndTime>
element identifies the time until which applications may use the
symmetric key in question. It is an XSD Time
type that MUST be specified in a specific pattern (see examples)
where the first two digits specify the hour, the second two digits
specify the minutes and the last two digits specify the seconds in a
24 hour format.
There SHALL be only one <EndTime>
element within a <PermittedTime>
element.
Conforming SKCL
implementations SHALL NOT use the symmetric after the end of the
<EndTime>
on the client machine.
Some examples of the <PermittedTimes> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedTimes> element with a single<PermittedTime> element. The <StartTime> specifies 9:00AM on the client machine while the <EndTime> specifies 5:00PM:
<ekmi:PermittedTimes
ekmi:any=”false”>
<ekmi:PermittedTime>
<ekmi:StartTime>09:00:00</ekmi:StartTime>
<ekmi:EndTime>17:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
</ekmi:PermittedTimes>
Example 2 – An example of a <PermittedTimes> element with two <PermittedTime> elements. For the first <PermittedTime> element , the <StartTime> element specifies 6:00AM while the <EndTime> element specifies 12:00 Noon. For the second <PermittedTime> element, the <StartTime> element specifies 3:00 PM in the afternoon, while the <EndTime> element specifies 7:00PM in the evening. This policy might imply that a symmetric key with this <PermittedTimes> element cannot be used during a lunch break of 12:00 Noon to 3:00PM:
<ekmi:PermittedTimes
ekmi:any=”false”>
<ekmi:PermittedTime>
<ekmi:StartTime>06:00:00</ekmi:StartTime>
<ekmi:EndTime>12:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
<ekmi:PermittedTime>
<ekmi:StartTime>15:00:00</ekmi:StartTime>
<ekmi:EndTime>19:00:00</ekmi:EndTime>
</ekmi:PermittedTime>
</ekmi:PermittedTimes>
Example 3 – An example of a null <PermittedTimes> element, specifying that the key may be used at any time:
<ekmi:PermittedTimes ekmi:any=”true” xsi:nil=”true”/>
The element <PermittedUses>, of the type PermittedUsesType, is used to define the specific ways in which applications are permitted to use a symmetric key within a specific <Symkey> element.
Schema Definition:
<xsd:complexType
name="PermittedUsesType" mixed="true">
<xsd:sequence>
<xsd:element name="PermittedUse"
minOccurs="0"
maxOccurs="unbounded">
<xsd:simpleType>
<xsd:restriction
base="xsd:string">
<xsd:maxLength
value="256"/>
<xsd:whiteSpace
value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="Other" type="xsd:anyType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute
ref="tns:any" use="required"/>
</xsd:complexType>
There SHALL be only one <PermittedUses> element within the <Permissions> element. However, there MAY be an unbounded (unlimited) number of <PermittedUse> sub-elements within the <PermittedUses> element.
The <PermittedUses> element SHALL have one attribute named “any”, that will have a “false” or “true” value, based on the following:
When the <PermittedUses> element is null (i.e. it does not have a single <PermittedUse> sub-element in it), the value of the “any” attribute SHALL be set to “true” AND the XML Schema Instance (XSI) “nil” attribute SHALL be set to “true”.
When the <PermittedUses> element is not-null (i.e. it has at least one <PermittedUse> sub-element in it), the value of the “any” attribute SHALL be set to “false” AND the XML Schema Instance (XSI) “nil” attribute SHALL NOT be present.
A null <PermittedUses> element specifies that applications are permitted use of the symmetric key for ANY purpose, subject to complying with all other permission clauses in the <Permissions> element.
Examples of the <PermittedUses> element are shown below; other parts of their enclosing elements are not shown for brevity:
Example 1 – An example of a <PermittedUses> element specifying that the symmetric key may be used only by VPN applications for session encryption keys:
<ekmi:PermittedUses
ekmi:any=”false”>
<ekmi:PermittedUse>VPN</ekmi:PermittedUse>
</ekmi:PermittedUses>
Example 2 – An example of a <PermittedUses> element specifying that the symmetric key may be used only by applications on laptops and Personal Digital Assistants (PDA):
<ekmi:PermittedUses
ekmi:any=”false”>
<ekmi:PermittedUse>Laptop</ekmi:PermittedUse>
<ekmi:PermittedUse>PDA</ekmi:PermittedUse>
</ekmi:PermittedUses>
Example 3 – An example of a null <PermittedUses> element specifying that the symmetric key may be used for any purpose:
<ekmi:PermittedUses ekmi:any=”true” xsi:nil=”true”/>
The <KeyCachePolicyRequest> element is used to request a key-cache policy from the SKS server , so the client may know if and how to cache symmetric keys locally.
While it is a top-level element within this specification, a <SymkeyRequest> element MUST be enclosed within a SOAP Body element of a SOAP Envelope to conform to the security requirements of this specification. The SOAP Header of the SOAP Envelope MUST enclose a Security element conforming to [WSS] with a ValueType attribute containing the value http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3. The Security element must conform to all other requirements of the specified security profile in [WSS] to form a well-formed, secure message.
Schema Definition:
<xsd:element
name="KeyCachePolicyRequest">
<xsd:complexType>
<xsd:annotation>
<xsd:documentation>
No
elements/attributes are defined for KeyCachePolicyRequest.
</xsd:documentation>
</xsd:annotation>
</xsd:complexType>
</xsd:element>
The <KeyCachePolicyRequest> has no child elements. The SOAP Header of the signed request provides the SKS server with all the information it needs to process the request: the identity of the requester, strong authentication and message integrity of the request.
Some examples of the use of the <SymkeyRequest> element are as follows:
Example 1 – An example of a <KeyCachePolicyRequest>; the surrounding SOAP envelope is not displayed here for brevity:
<ekmi:KeyCachePolicyRequest
xmlns:ekmi="http://docs.oasis-open.org/ekmi/2008/01"/>
The <KeyCachePolicyResponse> element is the response sent by an SKS Server to a client that requested a key-cache policy through a <KeyCachePolicyRequest>. The <KeyCachePolicyResponse> contains policy elements, which define rules that conforming implementations of the SKCL MUST adhere to when caching symmetric keys sent by the SKS Server.
Schema Definition:
<xsd:element
name="KeyCachePolicyResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element
name="KeyCachePolicy"
type="ekmi:KeyCachePolicyType"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
The <KeyCachePolicyResponse> element consists of a minimum of one, but an unbounded (unlimited) number of <KeyCachePolicy> children elements.
The <KeyCachePolicy> element contains policy elements, which define rules that conforming implementations of the SKCL MUST adhere to when caching symmetric keys sent by the SKS Server.
Schema Definition:
<xsd:element
name="KeyCachePolicyResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element
name="KeyCachePolicy"
type="ekmi:KeyCachePolicyType"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType
name="KeyCachePolicyType" mixed="true">
<xsd:sequence>
<xsd:element
name="KeyCachePolicyID" type="tns:TwoPartIDType"/>
<xsd:element name="PolicyName">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="255"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Description" nillable="true">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="2048"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="KeyClass"
type="tns:KeyClassType"/>
<xsd:element
name="StartDate" type="xsd:dateTime"/>
<xsd:element name="EndDate" type="xsd:dateTime"
nillable="true"/>
<xsd:element
name="PolicyCheckInterval">
<xsd:simpleType>
<xsd:restriction
base="xsd:nonNegativeInteger">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="2592000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Status" type="tns:StatusType"/>
<xsd:element
name="NewKeysCacheDetail"
type="tns:KeyCacheDetailType"
minOccurs="0"/>
<xsd:element
name="UsedKeysCacheDetail"
type="tns:KeyCacheDetailType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
The <KeyCachePolicy> element is of the KeyCachePolicyType and consists of the following child elements:
<KeyCachePolicyID>
[Required]
The <KeyCachePolicyID>
element, of type TwoPartIDType ,
identifies
the unique policy object within the SKMS. There SHALL be
only one <KeyCachePolicyID>
element within a <KeyCachePolicy>
element.
The TwoPartIDType
is specified in Section 4.8.
<PolicyName>
[Required]
The <PolicyName>
element ,of type XSD
String, with
a maximum length of 255 characters, identifies a
unique name given to this <KeyCachePolicy>.
There SHALL be only one <PolicyName>
element within a <KeyCachePolicy>
element.
<Description>
[Required]
The <Description>
element , of type XSD String
, with
a maximum length of 2048 characters, provides
a human-readable description of this policy.
There SHALL be only one <Description>
element within a <KeyCachePolicy>
element.
The
<Description>
MAY be an empty element, but MUST exist within the <KeyCachePolicy>
element.
<KeyClass>
[Required]
This element of type KeyClassType
identifies the key-class of the symmetric key to which this policy
applies.
<StartDate>
[Required]
The
<StartDate>
element , of type XSD dateTime,
specifies
the date and time at which this policy becomes effective. There
SHALL be only one <StartDate>
element within a <KeyCachePolicy>
element.
<EndDate>
[Required]
The
<EndDate>
element , of type XSD dateTime,
specifies
the date and time at which this policy expires. There SHALL be only
one <EndDate>
element within a <KeyCachePolicy>
element.
The <EndDate>
MAY be an empty element, but MUST exist within the <KeyCachePolicy>
element.
<PolicyCheckInterval>
[Required]
The
<PolicyCheckInterval>
element , of type XSD nonNegativeInteger,
specifies
the frequency at which the client SHALL check the SKS
server for updates to this policy. This frequency is specified in
seconds and SHALL NOT exceed 2592000 seconds (30 calendar days).
There SHALL be only one <PolicyCheckInterval>
element within a <KeyCachePolicy>
element.
<Status>
[Required]
The
<Status>
element, of type
StatusType,
identifies the current status of this policy within the SKMS.
There SHALL be only one <Status>
element within a <KeyCachePolicy>
element.
The StatusType
is
specified in Section 4.11.
<NewKeysCacheDetail>
[Required]
The <NewKeysCacheDetail>
element, of type KeyCacheDetailType,
defines how many new (as yet unused for any encryption transaction)
symmetric keys a client may cache, and for how long. It is the
responsibility of the conforming SKCL
implementation to enforce these rules.
The absence of the
<NewKeysCacheDetail>
element implies that new symmetric keys SHALL NEVER be cached on
the client. New keys may be cached only when this element exists,
and SHALL conform to the rules specified in this element.
When
it exists, there SHALL be only one <NewKeysCacheDetail>
element in a <KeyCachePolicy>
element.
The KeyCacheDetailType
is specified in Section 4.22.
<UsedKeysCacheDetail>
[Required]
The <UsedKeysCacheDetail>
element, of type KeyCacheDetailType,
defines how many used symmetric keys a client may cache, and for how
long. It is the responsibility of the conforming SKCL
implementation to enforce these rules.
The absence of the
<UsedKeysCacheDetail>
element implies that used symmetric keys SHALL NEVER be cached on
the client. Used keys may be cached only when this element exists,
and SHALL conform to the rules specified in this element.
When
it exists, there SHALL be only one <UsedKeysCacheDetail>
element in a <KeyCachePolicy>
element.
The KeyCacheDetailType
is specified in Section 4.22.
Some examples of the <KeyUsePolicy> element are as follows.
Example 1 – A <KeyCachePolicy> that is valid between January 01, 2008 and December 31, 2008. It requires the client to check for policy updates every day and allows 3 new and 3 used keys to be cached for up to 90 days:
<ekmi:KeyCachePolicy>
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
<ekmi:PolicyName>
Corporate Laptop Symmetric Key
Caching Policy
</ekmi:PolicyName>
<ekmi:Description>
This policy defines how
company-issued laptops will manage
symmetric keys used for
file/disk encryption in each laptop's
local cache. This
policy must be used by all laptops that
use the company
EKMI.
</ekmi:Description>
<ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
<ekmi:EndDate>2008-12-31T24:00:00.0</ekmi:EndDate>
<ekmi:PolicyCheckInterval>86400</ekmi:PolicyCheckInterval>
<ekmi:Status>Active</ekmi:Status>
<ekmi:NewKeysCacheDetail>
<ekmi:MaximumKeys>3</ekmi:MaximumKeys>
<ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
</ekmi:NewKeysCacheDetail>
<ekmi:UsedKeysCacheDetail>
<ekmi:MaximumKeys>3</ekmi:MaximumKeys>
<ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
</ekmi:UsedKeysCacheDetail>
</ekmi:KeyCachePolicy>
Example 2 – A <KeyCachePolicy> that is effective starting January 01, 2008 and never expires. It does NOT permit any caching of symmetric keys through the absence of the detail elements on caching:
<ekmi:KeyCachePolicy>
<ekmi:KeyCachePolicyID>10514-1</ekmi:KeyCachePolicyID>
<ekmi:PolicyName>
No Caching Policy
</ekmi:PolicyName>
<ekmi:Description>
This policy is for high-risk, always-connected machines on the
network, which will never cache symmetric keys locally. This
policy never expires (but checks monthly for any updates).
</ekmi:Description>
<ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
<ekmi:EndDate>1969-01-01T00:00:00.0</ekmi:EndDate>
<ekmi:PolicyCheckInterval>2592000</ekmi:PolicyCheckInterval>
<ekmi:Status>Active</ekmi:Status>
</ekmi:KeyCachePolicy>
The KeyCacheDetailType type allows SKS servers to specify precisely how many symmetric keys MAY be cached on the client machine, and for how long.
Schema Definition:
<xsd:complexType
name="KeyCacheDetailType">
<xsd:sequence>
<xsd:element name="MaximumKeys"
minOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive
value="18446744073709551615"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element
name="MaximumDuration" minOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="18446744073709551615"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
The KeyCacheDetailType consists of the following child elements:
<MaximumKeys>
[Required]
The <MaximumKeys>
element, of type XSD Integer ,specifies
the maximum number of symmetric keys that MAY be cached on a client
machine. It SHALL be a positive number between the values 0 and
18446744073709551615. There SHALL be only one
<MaximumKeys>
element within an element that uses the KeyCacheDetailType.
<MaximumDuration>
[Required]
The <MaximumDuration>
element, of type XSD Integer ,specifies
the maximum number of seconds that symmetric keys MAY be cached on a
client machine. It SHALL be a positive number between the values 0
and 18446744073709551615. There SHALL be only one
<MaximumDuration>
element within an element that uses the KeyCacheDetailType.
Examples of the KeyCacheDetailType when used in the <KeyCachePolicy> element are as follows.
Example 1 – A <KeyCachePolicy> that is valid between January 01, 2008 and December 31, 2008. It requires the client to check for policy updates every day and allows 3 new and 3 used keys to be cached for up to 90 days:
<ekmi:KeyCachePolicy>
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
<ekmi:PolicyName>
Corporate Laptop Symmetric Key
Caching Policy
</ekmi:PolicyName>
<ekmi:Description>
This policy defines how
company-issued laptops will manage
symmetric keys used for
file/disk encryption in their local
cache. This policy
must be used by all laptops that use
the company EKMI.
</ekmi:Description>
<ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
<ekmi:EndDate>2008-12-31T24:00:00.0</ekmi:EndDate>
<ekmi:PolicyCheckInterval>86400</ekmi:PolicyCheckInterval>
<ekmi:Status>Active</ekmi:Status>
<ekmi:NewKeysCacheDetail>
<ekmi:MaximumKeys>3</ekmi:MaximumKeys>
<ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
</ekmi:NewKeysCacheDetail>
<ekmi:UsedKeysCacheDetail>
<ekmi:MaximumKeys>3</ekmi:MaximumKeys>
<ekmi:MaximumDuration>7776000</ekmi:MaximumDuration>
</ekmi:UsedKeysCacheDetail>
</ekmi:KeyCachePolicy>
Example 1 – A <KeyCachePolicy> that is valid between January 01, 2008 and December 31, 2008. It requires the client to check for policy updates every day and allows 1 new and 0 used keys to be cached for upto 15 days:
<ekmi:KeyCachePolicy>
<ekmi:KeyCachePolicyID>10514-17</ekmi:KeyCachePolicyID>
<ekmi:PolicyName>
Corporate Laptop Symmetric Key
Caching Policy
</ekmi:PolicyName>
<ekmi:Description>
This policy defines how
company-issued laptops will manage
symmetric keys used for
file/disk encryption in each laptop's
local cache. This
policy must be used by all laptops that
use the company
EKMI.
</ekmi:Description>
<ekmi:StartDate>2008-01-01T00:00:01.0</ekmi:StartDate>
<ekmi:EndDate>2008-12-31T24:00:00.0</ekmi:EndDate>
<ekmi:PolicyCheckInterval>86400</ekmi:PolicyCheckInterval>
<ekmi:Status>Active</ekmi:Status>
<ekmi:NewKeysCacheDetail>
<ekmi:MaximumKeys>1</ekmi:MaximumKeys>
<ekmi:MaximumDuration>1296000</ekmi:MaximumDuration>
</ekmi:NewKeysCacheDetail>
<ekmi:UsedKeysCacheDetail>
<ekmi:MaximumKeys>0</ekmi:MaximumKeys>
<ekmi:MaximumDuration>1296000</ekmi:MaximumDuration>
</ekmi:UsedKeysCacheDetail>
</ekmi:KeyCachePolicy>
An implementation conforms to this specification if it satisfies all of the MUST or REQUIRED level requirements defined within this specification. An SKSML Node MUST NOT use the XML namespace identifier for this specification (listed in the Title section under Declared Namespace(s)) within SOAP Envelopes unless it is compliant with this specification.
This specification references a number of other specifications (see the table above). In order to comply with this specification, an implementation MUST implement the portions of referenced specifications necessary to comply with the required provisions of this specification. Additionally, the implementation of the portions of the referenced specifications that are specifically cited in this specification MUST comply with the rules for those portions as established in the referenced specification.
Additionally normative text within this specification takes precedence over normative outlines, which in turn take precedence over the XML Schema [XML Schema Part 1, Part 2] descriptions. That is, the normative text in this specification further constrains the schema part of this specification; and this specification contains further constraints on the elements defined in referenced schemas.
If an OPTIONAL message is not supported, then the implementation SHOULD Fault just as it would for any other unrecognized/unsupported message. If an OPTIONAL message is supported, then the implementation MUST satisfy all of the MUST and REQUIRED sections of the message.
The following individuals have participated in the creation of this specification and are gratefully acknowledged
Participants:
Version |
Date |
Author |
Notes |
DRAFT 4 |
June 08, 2008 |
Arshad Noor |
Initial version |
DRAFT 5 |
|
Arshad Noor |
Moved non-normative sections to their own document. KeyClass element was added to KeyCachePolicy. KeyCachePolicy is now embedded inside a KeyCachePolicyResponse. |
DRAFT 6 |
July 7, 2008 |
Arshad Noor |
Modified Permissions object
to include all sub-elements on a mandatory basis. |
PR 1 |
July 22, 2008 |
Arshad Noor |
Modified Title page
information to conform with OASIS standards. |