STIX™ Version 2.1

Committee Specification 01

20 March 2020

This stage:

https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.docx (Authoritative)

https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html

https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.pdf

Previous stage:

https://docs.oasis-open.org/cti/stix/v2.1/csprd03/stix-v2.1-csprd03.docx (Authoritative)

https://docs.oasis-open.org/cti/stix/v2.1/csprd03/stix-v2.1-csprd03.html

https://docs.oasis-open.org/cti/stix/v2.1/csprd03/stix-v2.1-csprd03.pdf

Latest stage:

https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.docx (Authoritative)

https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html

https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.pdf

Technical Committee:

OASIS Cyber Threat Intelligence (CTI) TC

Chairs:

Richard Struse (rjs@mitre.org), MITRE Corporation

Trey Darley (trey.darley@cert.be), CCB/CERT.be

Editors:

Bret Jordan (bret.jordan@broadcom.com), Broadcom

Rich Piazza (rpiazza@mitre.org), MITRE Corporation

Trey Darley (trey.darley@cert.be), CCB/CERT.be

Related work:

This specification replaces or supersedes:

      STIX™ Version 2.0. Part 1: STIX Core Concepts. Edited by Rich Piazza, John Wunder, and Bret Jordan. Latest stage: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html.

      STIX™ Version 2.0. Part 2: STIX Objects. Edited by Rich Piazza, John Wunder, and Bret Jordan. Latest stage: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html.

      STIX™ Version 2.0. Part 3: Cyber Observable Core Concepts. Edited by Ivan Kirillov and Trey Darley. Latest stage: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part3-cyber-observable-core.html.

      STIX™ Version 2.0. Part 4: Cyber Observable Objects. Edited by Ivan Kirillov and Trey Darley. Latest stage: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-cyber-observable-objects.html.

      STIX™ Version 2.0. Part 5: STIX Patterning. Edited by Ivan Kirillov and Trey Darley. Latest stage: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part5-stix-patterning.html.

 

This specification is related to:

      TAXII™ Version 2.1. Edited by Bret Jordan and Drew Varner. Latest stage: https://docs.oasis-open.org/cti/taxii/v2.1/taxii-v2.1.html.

      STIX™/TAXII™ 2.0 Interoperability Test Document: Part 1 Version 1.1. Edited by Allan Thomson and Jason Keirstead. Latest stage: https://docs.oasis-open.org/cti/stix-taxii-2-interop-p1/v1.1/stix-taxii-2-interop-p1-v1.1.html.

      STIX™/TAXII™ 2.0 Interoperability Test Document: Part 2 Version 1.0. Edited by Allan Thomson and Jason Keirstead. Latest stage: https://docs.oasis-open.org/cti/stix-taxii-2-interop-p2/v1.0/stix-taxii-2-interop-p2-v1.0.html.

Abstract:

Structured Threat Information Expression (STIX™) is a language for expressing cyber threat and observable information. This document defines concepts that apply across all of STIX and defines the overall structure of the STIX language.

Status:

This document was last revised or approved by the OASIS Cyber Threat Intelligence (CTI) TC on the above date. The level of approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical.

 

TC members should send comments on this document to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-open.org/committees/cti/.

 

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-open.org/committees/cti/ipr.php).

 

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.

Citation format:

When referencing this specification, the following citation format should be used:

[STIX-v2.1]

STIX™ Version 2.1. Edited by Bret Jordan, Rich Piazza, and Trey Darley. 20 March 2020. OASIS Committee Specification 01. https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html. Latest stage: https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html.


 


Notices

 

Copyright © OASIS Open 2020. All Rights Reserved.

 

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

 

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

 

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

 

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

 

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

 

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

 

Portions copyright © United States Government 2012-2020. All Rights Reserved.

STIX™, CYBOX™, AND TAXII™ (STANDARD OR STANDARDS) AND THEIR COMPONENT PARTS ARE PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THESE STANDARDS OR ANY OF THEIR COMPONENT PARTS WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE STANDARDS OR THEIR COMPONENT PARTS WILL BE ERROR FREE, OR ANY WARRANTY THAT THE DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE STANDARDS OR THEIR COMPONENT PARTS. IN NO EVENT SHALL THE UNITED STATES GOVERNMENT OR ITS CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THESE STANDARDS OR THEIR COMPONENT PARTS OR ANY PROVIDED DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE STANDARDS, THEIR COMPONENT PARTS, AND ANY PROVIDED DOCUMENTATION. THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THE STANDARDS OR THEIR COMPONENT PARTS ATTRIBUTABLE TO ANY THIRD PARTY, IF PRESENT IN THE STANDARDS OR THEIR COMPONENT PARTS AND DISTRIBUTES IT OR THEM "AS IS."


 


Table of Contents

1 Introduction                                                                                                                                  14

1.1 IPR Policy                                                                                                                              14

1.2 Terminology                                                                                                                           14

1.3 Normative References                                                                                                            14

1.4 Non-Normative References                                                                                                     17

1.5 Document Conventions                                                                                                          19

1.6 Overview                                                                                                                               19

1.6.1 Graph-Based Model                                                                                                      20

1.6.2 STIX™ Domain Objects                                                                                                 20

1.6.3 STIX™ Cyber-observable Objects                                                                                  21

1.6.4 STIX™ Relationships                                                                                                     21

1.6.5 STIX™ Cyber Observable Observed Data Relationships (Deprecated)                             22

1.6.6 STIX™ Cyber Observable Extensions                                                                             22

1.6.7 STIX™ Patterning                                                                                                         22

1.6.8 STIX™ Patterning ANTLR Grammar                                                                               23

1.6.9 STIX™ Common Properties                                                                                           23

1.6.10 STIX™ Open Vocabularies and Enumerations                                                              23

1.6.11 Reserved Names                                                                                                         23

1.6.12 Serialization                                                                                                                24

1.6.13 Transporting STIX™                                                                                                    24

1.6.14 JSON Schemas                                                                                                           24

1.7 Changes From Earlier Versions                                                                                               24

1.7.1 STIX 2.1 Major Changes and Additions                                                                           24

1.8 Glossary                                                                                                                                24

2 Common Data Types                                                                                                                     26

2.1 Binary                                                                                                                                    27

2.2 Boolean                                                                                                                                 27

2.3 Dictionary                                                                                                                              27

2.4 Enum                                                                                                                                    27

2.5 External Reference                                                                                                                 28

2.5.1 Properties                                                                                                                     28

2.5.2 Requirements                                                                                                                29

2.6 Float                                                                                                                                      30

2.7 Hashes                                                                                                                                  31

2.8 Hexadecimal                                                                                                                          31

2.9 Identifier                                                                                                                                31

2.10 Integer                                                                                                                                 33

2.11 Kill Chain Phase                                                                                                                   33

2.12 List                                                                                                                                      35

2.13 Observable Container (deprecated)                                                                                       35

2.14 Open Vocabulary                                                                                                                 36

2.15 String                                                                                                                                   37

2.16 Timestamp                                                                                                                           37

2.16.1 Requirements                                                                                                              38

3 STIX™ General Concepts                                                                                                              39

3.1 Property Names and String Literals                                                                                         39

3.2 Common Properties                                                                                                               39

3.3 Object IDs and References                                                                                                     44

3.4 SCO Deterministic ID Creation                                                                                                44

3.5 Object Creator                                                                                                                       45

3.6 Versioning                                                                                                                             45

3.6.1 Versioning Timestamps                                                                                                 46

3.6.2 New Version or New Object?                                                                                          46

3.7 Common Relationships                                                                                                           50

3.8 Reserved Names                                                                                                                   51

3.9 Object Property Metadata                                                                                                       51

3.9.1 SCO String Encoding                                                                                                     51

3.10 Predefined Object Extensions                                                                                               52

4 STIX™ Domain Objects                                                                                                                 53

4.1 Attack Pattern                                                                                                                        53

4.1.1 Properties                                                                                                                     53

4.1.2 Relationships                                                                                                                54

4.2 Campaign                                                                                                                              57

4.2.1 Properties                                                                                                                     57

4.2.2 Relationships                                                                                                                59

4.3 Course of Action                                                                                                                    61

4.3.1 Properties                                                                                                                     61

4.3.2 Relationships                                                                                                                62

4.4 Grouping                                                                                                                               63

4.4.1 Properties                                                                                                                     64

4.4.2 Relationships                                                                                                                65

4.5 Identity                                                                                                                                  66

4.5.1 Properties                                                                                                                     66

4.5.2 Relationships                                                                                                                67

4.6 Indicator                                                                                                                                69

4.6.1 Properties                                                                                                                     69

4.6.2 Relationships                                                                                                                71

4.7 Infrastructure                                                                                                                         73

4.7.1 Properties                                                                                                                     74

4.7.2 Relationships                                                                                                                75

4.8 Intrusion Set                                                                                                                          79

4.8.1 Properties                                                                                                                     79

4.8.2 Relationships                                                                                                                82

4.9 Location                                                                                                                                84

4.9.1 Properties                                                                                                                     85

4.9.2 Relationships                                                                                                                87

4.10 Malware                                                                                                                               88

4.10.1 Properties                                                                                                                   89

4.10.2 Relationships                                                                                                              91

4.11 Malware Analysis                                                                                                                 96

4.11.1 Properties                                                                                                                   96

4.11.2 Relationships                                                                                                              99

4.12 Note                                                                                                                                  101

4.12.1 Properties                                                                                                                 102

4.12.2 Relationships                                                                                                             102

4.13 Observed Data                                                                                                                   103

4.13.1 Properties                                                                                                                 104

4.13.2 Relationships                                                                                                             106

4.14 Opinion                                                                                                                              107

4.14.1 Properties                                                                                                                 108

4.14.2 Relationships                                                                                                             109

4.15 Report                                                                                                                               110

4.15.1 Properties                                                                                                                 110

4.15.2 Relationships                                                                                                             111

4.16 Threat Actor                                                                                                                       113

4.16.1 Properties                                                                                                                 113

4.16.2 Relationships                                                                                                             116

4.17 Tool                                                                                                                                   119

4.17.1 Properties                                                                                                                 119

4.17.2 Relationships                                                                                                             120

4.18 Vulnerability                                                                                                                       122

4.18.1 Properties                                                                                                                 123

4.18.2 Relationships                                                                                                             123

5 STIX™ Relationship Objects                                                                                                       125

5.1 Relationship                                                                                                                         125

5.1.1 Specification-Defined Relationships Summary                                                               125

5.1.2 Properties                                                                                                                   126

5.1.3 Relationships                                                                                                               127

5.2 Sighting                                                                                                                               128

5.2.1 Properties                                                                                                                   128

5.2.2 Relationships                                                                                                               131

6 STIX™ Cyber-observable Objects                                                                                               133

6.1 Artifact Object                                                                                                                      133

6.1.1 Properties                                                                                                                   133

6.2 Autonomous System (AS) Object                                                                                          135

6.2.1 Properties                                                                                                                   135

6.3 Directory Object                                                                                                                   136

6.3.1 Properties                                                                                                                   136

6.4 Domain Name Object                                                                                                           137

6.4.1 Properties                                                                                                                   137

6.4.2 Relationships                                                                                                               138

6.5 Email Address Object                                                                                                           139

6.5.1 Properties                                                                                                                   139

6.6 Email Message Object                                                                                                          140

6.6.1 Properties                                                                                                                   140

6.6.2 Email MIME Component Type                                                                                      143

6.6.2.1 Properties                                                                                                           143

6.7 File Object                                                                                                                           147

6.7.1 Properties                                                                                                                   147

6.7.2 Archive File Extension                                                                                                  150

6.7.2.1 Properties                                                                                                           150

6.7.3 NTFS File Extension                                                                                                    151

6.7.3.1 Properties                                                                                                           151

6.7.3.2 Alternate Data Stream Type                                                                                152

6.7.3.2.1 Properties                                                                                                  152

6.7.4 PDF File Extension                                                                                                      152

6.7.4.1 Properties                                                                                                           153

6.7.5 Raster Image File Extension                                                                                         153

6.7.5.1 Properties                                                                                                           154

6.7.6 Windows™ PE Binary File Extension                                                                            155

6.7.6.1 Properties                                                                                                           155

6.7.6.2 Windows™ PE Optional Header Type                                                                  156

6.7.6.2.1 Properties                                                                                                  156

6.7.6.3 Windows™ PE Section Type                                                                               158

6.7.6.3.1 Properties                                                                                                  158

6.8 IPv4 Address Object                                                                                                             160

6.8.1 Properties                                                                                                                   160

6.8.2 Relationships                                                                                                               161

6.9 IPv6 Address Object                                                                                                             162

6.9.1 Properties                                                                                                                   162

6.9.2 Relationships                                                                                                               163

6.10 MAC Address Object                                                                                                          164

6.10.1 Properties                                                                                                                 164

6.11 Mutex Object                                                                                                                      165

6.11.1 Properties                                                                                                                 165

6.12 Network Traffic Object                                                                                                        165

6.12.1 Properties                                                                                                                 166

6.12.2 HTTP Request Extension                                                                                           172

6.12.2.1 Properties                                                                                                         173

6.12.3 ICMP Extension                                                                                                         174

6.12.3.1 Properties                                                                                                         174

6.12.4 Network Socket Extension                                                                                          175

6.12.4.1 Properties                                                                                                         175

6.12.5 TCP Extension                                                                                                          176

6.12.5.1 Properties                                                                                                         176

6.13 Process Object                                                                                                                   178

6.13.1 Properties                                                                                                                 178

6.13.2 Windows™ Process Extension                                                                                   180

6.13.2.1 Properties                                                                                                         180

6.13.3 Windows™ Service Extension                                                                                    181

6.13.3.1 Properties                                                                                                         181

6.14 Software Object                                                                                                                  183

6.14.1 Properties                                                                                                                 183

6.15 URL Object                                                                                                                        184

6.15.1 Properties                                                                                                                 184

6.16 User Account Object                                                                                                           185

6.16.1 Properties                                                                                                                 185

6.16.2 UNIX™ Account Extension                                                                                         188

6.16.2.1 Properties                                                                                                         188

6.17 Windows™ Registry Key Object                                                                                          189

6.17.1 Properties                                                                                                                 189

6.17.2 Windows™ Registry Value Type                                                                                 190

6.17.2.1 Properties                                                                                                         190

6.18 X.509 Certificate Object                                                                                                      191

6.18.1 Properties                                                                                                                 191

6.18.2 X.509 v3 Extensions Type                                                                                          193

6.18.2.1 Properties                                                                                                         193

7 STIX™ Meta Objects                                                                                                                    196

7.1 Language Content                                                                                                                196

7.1.1 Properties                                                                                                                   196

7.1.2 Relationships                                                                                                               198

7.2 Data Markings                                                                                                                     199

7.2.1 Marking Definition                                                                                                        200

7.2.1.1 Properties                                                                                                           200

7.2.1.2 Relationships                                                                                                      201

7.2.1.3 Statement Marking Object Type                                                                           201

7.2.1.4 TLP Marking Object Type                                                                                    202

7.2.2 Object Markings                                                                                                          203

7.2.3 Granular Markings                                                                                                       204

7.2.3.1 Granular Marking Type                                                                                        204

8 STIX™ Bundle Object                                                                                                                  208

8.1 Properties                                                                                                                            208

8.2 Relationships                                                                                                                       208

9 STIX™ Patterning                                                                                                                        210

9.1 Definitions                                                                                                                            210

9.2 Constants                                                                                                                            212

9.3 STIX™ Patterns                                                                                                                   214

9.4 Pattern Expressions                                                                                                             215

9.5 Observation Expressions                                                                                                      215

9.5.1 Observation Expression Qualifiers                                                                                217

9.5.2 Observation Operators                                                                                                 218

9.5.3 Operator Precedence                                                                                                   219

9.6 Comparison Expressions                                                                                                      219

9.6.1 Comparison Operators                                                                                                 220

9.6.2 String Comparison                                                                                                       222

9.6.3 Binary Type Comparison                                                                                              223

9.6.4 Native Format Comparison                                                                                           223

9.7 Object Path Syntax                                                                                                               223

9.7.1 Basic Object Properties                                                                                                224

9.7.2 List Object Properties                                                                                                   224

9.7.3 Dictionary Object Properties                                                                                         225

9.7.4 Object Reference Properties                                                                                        225

9.8 Examples                                                                                                                             226

10 STIX™ Vocabularies                                                                                                                  228

10.1 Account Type Vocabulary                                                                                                    228

10.2 Attack Motivation Vocabulary                                                                                              229

10.3 Attack Resource Level Vocabulary                                                                                       231

10.4 Encryption Algorithm Enumeration                                                                                       232

10.5 Grouping Context Vocabulary                                                                                              233

10.6 Hashing Algorithm Vocabulary                                                                                             233

10.7 Identity Class Vocabulary                                                                                                    234

10.8 Implementation Language Vocabulary                                                                                 235

10.9 Indicator Type Vocabulary                                                                                                   236

10.10 Industry Sector Vocabulary                                                                                                237

10.11 Infrastructure Type Vocabulary                                                                                          239

10.12 Malware Result Vocabulary                                                                                               240

10.13 Malware Capabilities Vocabulary                                                                                       240

10.14 Malware Type Vocabulary                                                                                                 243

10.15 Network Socket Address Family Enumeration                                                                     245

10.16 Network Socket Type Enumeration                                                                                    246

10.17 Opinion Enumeration                                                                                                        247

10.18 Pattern Type Vocabulary                                                                                                   248

10.19 Processor Architecture Vocabulary                                                                                    248

10.20 Region Vocabulary                                                                                                           249

10.21 Report Type Vocabulary                                                                                                    250

10.22 Threat Actor Type Vocabulary                                                                                           251

10.23 Threat Actor Role Vocabulary                                                                                            254

10.24 Threat Actor Sophistication Vocabulary                                                                              255

10.25 Tool Type Vocabulary                                                                                                       257

10.26 Windows™ Integrity Level Enumeration                                                                             258

10.27 Windows™ PE Binary Vocabulary                                                                                     259

10.28 Windows™ Registry Datatype Enumeration                                                                        259

10.29 Windows™ Service Start Type Enumeration                                                                       260

10.30 Windows™ Service Type Enumeration                                                                               261

10.31 Windows™ Service Status Enumeration                                                                             262

11 Customizing STIX™                                                                                                                   263

11.1 Custom Properties                                                                                                              263

11.1.1 Requirements                                                                                                            263

11.2 Custom Objects                                                                                                                  264

11.2.1 Requirements                                                                                                            264

11.3 Custom Object Extensions                                                                                                  265

11.3.1 Requirements                                                                                                            265

12 Conformance                                                                                                                             267

12.1 STIX Object Producers and Consumers                                                                               267

12.2 STIX Object Mandatory Features                                                                                         267

12.2.1 Versioning                                                                                                                 267

12.3 STIX Object Optional Features                                                                                            267

12.3.1 Object-Level Data Markings                                                                                        267

12.3.2 Granular Data Markings                                                                                             267

12.3.3 Custom Properties                                                                                                     268

12.3.4 Custom Objects and Extensions                                                                                 268

12.4 STIX™ Patterning Conformance                                                                                          268

12.5 STIX™ Pattern Producer                                                                                                     268

12.6 STIX™ Pattern Consumer                                                                                                   268

12.7 STIX™ Patterning Conformance Levels                                                                               269

12.7.1 Level 1: Basic Conformance                                                                                       269

12.7.2 Level 2: Basic Conformance plus Observation Operators                                             269

12.7.3 Level 3: Full Conformance                                                                                          269

​Appendix A. Confidence Scales                                                                                                     271

​Appendix B. Relationship Summary Table                                                                                     273

​Appendix C. Additional Examples                                                                                                  276

15.1 Infrastructure Additional Examples                                                                                       276

15.1.1 Malware & Target List Hosting Domain                                                                        276

15.1.2 Malware Botnet Infrastructure                                                                                     277

15.1.3 Related/Component Botnet Infrastructure                                                                    279

15.1.4 Malware Instance Hosted on Compromised Domain                                                    282

​Appendix D. IANA Considerations                                                                                                 284

​Appendix E. Acknowledgments                                                                                                     287

​Appendix F. Revision History                                                                                                         293


 


1 Introduction

Structured Threat Information Expression (STIX™) is a language and serialization format used to exchange cyber threat intelligence (CTI). STIX enables organizations to share CTI with one another in a consistent and machine-readable manner, allowing security communities to better understand what computer-based attacks they are most likely to see and to anticipate and/or respond to those attacks faster and more effectively. STIX is designed to improve many different capabilities, such as collaborative threat analysis, automated threat exchange, automated detection and response, and more.

 

The objects and features added for inclusion in STIX 2.1 represent an iterative approach to fulfilling basic consumer and producer requirements for CTI sharing. Objects and properties not included in this version of STIX, but deemed necessary by the community, will be included in future releases.

1.1 IPR Policy

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/cti/ipr.php).

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

 

All text is normative except for examples, the overview (section 1.6), and any text marked non-normative.

1.3 Normative References

[Character Sets]          "N. Freed and M. Dürst, “Character Sets”, IANA, December 2013, [Online]. Available: http://www.iana.org/assignments/character-sets/character-sets.xhtml.

 

[Davis]                         M. Davis and K. Whistler, "UNICODE NORMALIZATION FORMS", Unicode® Standard Annex #15, February 2016. [Online] Available: http://unicode.org/reports/tr15/.

 

[FIPS202]                     “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions”, FIPS PUB 202, August 2015, Information Technology Laboratory, National Institute of Standards and Technology (NIST). [Online]. Available: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

 

[IEEE 754-2008]           “IEEE Standard for Floating-Point Arithmetic”, IEEE 754-2008, August 2008. [Online]. Available: http://ieeexplore.ieee.org/document/4610935/.

 

[IPFIX]                          IANA, “IP Flow Information Export (IPFIX) Entities”, December 2016, [Online]. Available: http://www.iana.org/assignments/ipfix/ipfix.xhtml.

 

[ISO639-2]                    “ISO 639-2:1998 Codes for the representation of names of languages -- Part 2: Alpha-3 code”, 1998. [Online]. Available: http://www.iso.org/iso/catalogue_detail?csnumber=4767.

 

[ISO3166-1]                  “ISO ISO 3166-1:2013 Country Codes”, 2013. [Online]. Available: https://www.iso.org/standard/63545.html.

 

[ISO10646]                   “ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set (UCS)”, 2014. [Online]. Available: http://unicode.org/L2/L2010/10038-fcd10646-main.pdf.

 

[JCS]                           "JSON Canonicalization Scheme version 06", 2019. [Online]. Available: https://datatracker.ietf.org/doc/draft-rundgren-json-canonicalization-scheme/

 

[Media Types]              N. Freed, M. Kucherawy, M. Baker and B. Hoehrmann, “Media Types”, IANA, December 2016. [Online]. Available: http://www.iana.org/assignments/media-types/media-types.xhtml.

 

[NIST SP800-38D]        M. Dworkin, “Recommendation for Block Cipher Modes of Operation:Galois/Counter Mode (GCM) and GMAC”, NIST Special Publication 800-38D, November 2007. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

 

[NVD]                           Official Common Platform Enumeration (CPE) Dictionary, National Vulnerability Database [Online]. Available: https://nvd.nist.gov/cpe.cfm.

 

[Port Numbers]            J.Touch, A. Mankin, E. Kohler, et. al., “Service Name and Transport Protocol Port Number Registry”, IANA, January 2017. [Online]. Available:             http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml.

 

[RFC1034]                    Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, http://www.rfc-editor.org/info/rfc1034.

 

[RFC1321]                    Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, DOI 10.17487/RFC1321, April 1992, http://www.rfc-editor.org/info/rfc1321.

 

[RFC2047]                    Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text", RFC 2047, DOI 10.17487/RFC2047, November 1996, http://www.rfc-editor.org/info/rfc2047.

 

[RFC2119]                    Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

 

[RFC3174]                    Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001, http://www.rfc-editor.org/info/rfc3174.

 

[RFC3339]                    Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, http://www.rfc-editor.org/info/rfc3339.

 

[RFC3986]                    Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, http://www.rfc-editor.org/info/rfc3986.

 

[RFC4122]                    Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, http://www.rfc-editor.org/info/rfc4122.

 

[RFC4648]                    Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006, http://www.rfc-editor.org/info/rfc4648.

 

[RFC5322]                    Resnick, P., Ed., "Internet Message Format", RFC 5322, DOI 10.17487/RFC5322, October 2008, http://www.rfc-editor.org/info/rfc5322.

 

[RFC5646]                    Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646, September 2009, http://www.rfc-editor.org/info/rfc5646.

 

[RFC5890]                    Klensin, J., "Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890, August 2010, http://www.rfc-editor.org/info/rfc5890.

 

[RFC6234]                    Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, May 2011, http://www.rfc-editor.org/info/rfc6234.

 

[RFC7493]                    Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI  10.17487/RFC7493, March 2015, https://www.rfc-editor.org/info/rfc7493.

 

[RFC7539]                    Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015, http://www.rfc-editor.org/info/rfc7539.

 

[RFC8174]                    Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, https://www.rfc-editor.org/info/rfc8174.

 

[RFC8259]                    Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 8259, DOI 10.17487/RFC8259, December 2017. http://www.rfc-editor.org/info/rfc8259.txt.

 

[SSDEEP]                    J. Kornblum, “Identifying Almost Identical Files Using Context Triggered Piecewise Hashing”, Proceedings of The Digital Forensic Research Conference (DFRWS) 2006. [Online]. Available: http://dfrws.org/sites/default/files/session-files/paper-identifying_almost_identical_files_using_context_triggered_piecewise_hashing.pdf.

 

[SWID]                         ISO/IEC 19770-2:2015 Information technology -- IT asset management -- Part 2: Software identification tag, 2015. [Online]. Available: https://www.iso.org/standard/65666.html.

 

[TLP]                            Traffic Light Protocol, Version 1.0 (TLP). (2016, Aug. 25). FIRST. [Online]. Available: https://first.org/tlp.

 

[TLSH]                         Jonathan Oliver, Chun Cheng, and Yanggui Chen, TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop, Sydney, November 2013. Available: https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf.

 

[UNSD M49]                 Standard country or area codes for statistical use (M49), UN Statistics Division (UNSD), Available: https://unstats.un.org/unsd/methodology/m49/.

 

[WGS84]                      National Imagery and Mapping Agency (NIMA), Department of Defense World Geodetic System 1984, NIMA TR8350.2, January 2000. Available: http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf.

 

[X.509]                         X.509 : Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks, ITU, October 2016. [Online]. Available: https://www.itu.int/rec/T-REC-X.509/.

1.4 Non-Normative References

[CAPEC]                      Common Attack Pattern Enumeration and Classification (CAPEC). (2014, Nov. 7). The MITRE Corporation. [Online]. Available: http://capec.mitre.org.

 

[Casey 2007]                Casey, T., Threat Agent Library Helps Identify Information Security Risks September 2007. [Online]. Available: https://communities.intel.com/servlet/JiveServlet/downloadBody/1151-102-1-1111/Threat Agent Library_07-2202w.pdf.

 

[Casey 2015]                Casey, T., “Understanding Cyberthreat Motivations to Improve Defense”, Intel, February 2015. [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/understanding-cyberthreat-motivations-to-improve-defense-paper.pdf.

 

[CVE]                           Common Vulnerabilities and Exposures (CVE). The MITRE Corporation. [Online]. Available: http://cve.mitre.org.

 

[FM 2-22.3]                   "US Army Field Manual - Human Intelligence Collector Operations", FM 2-22.3, September 2006. [Online]. Available: https://fas.org/irp/doddir/army/fm2-22-3.pdf.

 

[FireEye 2014]              Tracking Malware with Import Hashing. FireEye. January 24, 2014. [Online]. Available: https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.

 

[Goessner 2007]          Goessner, S., “JSONPath - XPath for JSON”, February 2007. [Online]. Available: http://goessner.net/articles/JsonPath/.

 

[ICD 203]                      "Analytic Standards", ICD 203, January 2015. [Online]. Available: https://www.dni.gov/files/documents/ICD/ICD%20203%20Analytic%20Standards.pdf.

 

[JSON Schema]           OASIS Cyber Threat Intelligence (CTI) TC, “cti-stix2-json-schemas”, OASIS. [Online]. Available: https://github.com/oasis-open/cti-stix2-json-schemas.

 

[NIST800-83]                M. Souppaya and K. Scarfone, “Guide to Malware Incident Prevention and Handling for Desktops and Laptops”, NIST Special Publication 800-83, 2013. [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-83/rev-1/final.

 

[Pattern Grammar]       OASIS Cyber Threat Intelligence (CTI) TC, "STIX Pattern Grammar", OASIS. [Online]. Available: https://github.com/oasis-open/cti-stix2-json-schemas/tree/master/pattern_grammar.

 

[PRCE]                         PCRE - Perl Compatible Regular Expressions [Online]. Available: https://www.pcre.org/.

 

[RFC7515]                    Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, https://www.rfc-editor.org/info/rfc7515.

 

[RFC7516]                    Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May 2015, https://www.rfc-editor.org/info/rfc7516.

 

[RFC8322]                    Field, J., Banghart, S., and D. Waltermire, "Resource-Oriented Lightweight Information Exchange (ROLIE)", RFC 8322, DOI 10.17487/RFC8322, February 2018, https://www.rfc-editor.org/info/rfc8322.

 

[SNORT]                      Snort - Network Intrusion Detection & Prevention System, Cisco, 2019  [Online]. Available: https://www.snort.org/.

 

[Suicata]                      Suricata - Open Source IDS / IPS / NSM engine, Open Information Security Foundation (OISF), [Online]. Available: https://suricata-ids.org/.

 

[UnicodeTR#36]           Unicode Technical Report #36. UNICODE SECURITY CONSIDERATIONS, 2014 [Online].  Available: https://unicode.org/reports/tr36/.

 

[VERIS]                        VERIS Community Database. (n.d.). [Online]. Available: http://veriscommunity.net/vcdb.html.

 

[WEP]                          "Words of Estimative Probability", Kent, Sherman, March 2007. [Online]. Available: https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/sherman-kent-and-the-board-of-national-estimates-collected-essays/6words.html.

 

[YARA]                         YARA: The pattern matching swiss knife for malware researchers (and everyone else), Virus Total [Online]. Available: http://virustotal.github.io/yara/.

1.5 Document Conventions

The following color, font and font style conventions are used in this document:

      The Consolas font is used for all type names, property names and literals.

      type names are in red with a light red background – threat-actor

      property names are in bold style – created_at

      literals (values) are in blue with a blue background – malicious-activity

      All relationship types are string literals; therefore, they will also appear in blue with a blue background – related-to

      In an object's property table, if a common property is being redefined in some way, then the background is dark grey.

      All examples in this document are expressed in JSON. They are in Consolas 9-point font, with straight quotes, black text and a light grey background, and using 2-space indentation. JSON examples in this document are representations of JSON objects [RFC8259]. They should not be interpreted as string literals. The ordering of object keys is insignificant. Whitespace before or after JSON structural characters in the examples are insignificant [RFC8259].

      Parts of the example may be omitted for conciseness and clarity. These omitted parts are denoted with the ellipses (...).

      The term “hyphen” is used throughout this document to refer to the ASCII hyphen or minus character, which in Unicode is “hyphen-minus”, U+002D.


 

1.6 Overview

STIX is a schema that defines a taxonomy of cyber threat intelligence that is represented by the following objects:

 

STIX Objects

 

 

 

STIX Bundle Object

STIX Core Objects

STIX Meta Objects

STIX Domain Objects
(SDO)

STIX Cyber-observable Objects
(SCO)

STIX Relationship Objects
(SRO)

Language Content Objects

Marking Definition Objects

 

STIX Core Objects

Any SDO, SCO, or SRO.

 

STIX Domain Objects

Higher Level Intelligence Objects that represent behaviors and constructs that threat analysts would typically create or work with while understanding the threat landscape.

 

STIX Cyber-observable Objects

Objects that represent observed facts about a network or host that may be used and related to higher level intelligence to form a more complete understanding of the threat landscape.

 

STIX Relationship Objects

Objects that connect STIX Domain Objects together, STIX Cyber-observable Objects together, and connect STIX Domain Objects and STIX Cyber-observable Objects together to form a more complete understanding of the threat landscape.

 

STIX Meta Objects

A STIX Object that provides the necessary glue and associated metadata to enrich STIX Core Objects to support user and system workflows.

 

STIX Bundle Object

An object that provides a wrapper mechanism for packaging arbitrary STIX content together.

1.6.1 Graph-Based Model

STIX is a connected graph of nodes and edges. STIX Domain Objects and STIX Cyber-observable Objects define the graph nodes and STIX relationships (including both external STIX Relationship Objects and embedded relationships) define the edges. This graph-based language conforms to common analysis approaches and allows for flexible, modular, structured, and consistent representations of CTI.

1.6.2 STIX™ Domain Objects

STIX defines a set of STIX Domain Objects (SDOs): Attack Pattern, Campaign, Course of Action, Grouping, Identity, Indicator, Infrastructure, Intrusion Set, Location, Malware, Malware Analysis, Note, Observed Data, Opinion, Report, Threat Actor, Tool, and Vulnerability. Each of these objects corresponds to a concept commonly used in CTI.

 

STIX Domain Objects are defined in section 4.

1.6.3 STIX™ Cyber-observable Objects

STIX defines a set of STIX Cyber-observable Objects (SCOs) for characterizing host-based and network-based information. SCOs are used by various STIX Domain Objects (SDOs) to provide supporting context. The Observed Data SDO, for example, indicates that the raw data was observed at a particular time.

 

STIX Cyber-observable Objects (SCOs) document the facts concerning what happened on a network or host, and do not capture the who, when, or why. By associating SCOs with STIX Domain Objects (SDOs), it is possible to convey a higher-level understanding of the threat landscape, and to potentially provide insight as to the who and the why particular intelligence may be relevant to an organization. For example, information about a file that existed, a process that was observed running, or that network traffic occurred between two IPs can all be captured as SCOs.

 

STIX Cyber-observable Objects (SCOs) are defined in section 6.

 

Previously, in STIX 2.0, Cyber-observable Objects could only exist as objects within an Observed Data object. It is still possible to represent Cyber-observable Objects in this way, but this method has been deprecated. See section 2.13.

1.6.4 STIX™ Relationships

A relationship is a link between STIX Domain Objects (SDOs), STIX Cyber-observable Objects (SCOs), or between an SDO and a SCO that describes the way in which the objects are related. Relationships can be represented using an external STIX Relationship Object (SRO) or, in some cases, through certain properties which store an identifier reference that comprises an embedded relationship, (for example the created_by_ref property).

 

The generic STIX Relationship Object (SRO) is one of two SROs and is used for most relationships in STIX. This generic SRO contains a property called relationship_type to describe more specifically what the relationship represents. This specification defines a set of known terms to use for the relationship_type property between SDOs of specific types. For example, the Indicator SDO defines a relationship from itself to Malware via a relationship_type of indicates to describe how the Indicator can be used to detect the presence of the corresponding Malware. In addition to the terms defined in the specification, STIX also allows for user-defined terms to be used as the relationship type.

 

Currently the only other SRO (besides a generic Relationship) is the Sighting SRO. The Sighting object is used to capture cases where an entity has "seen" an SDO, such as sighting an indicator. Sighting is a separate SRO because it contains additional properties such as count that are only applicable to Sighting relationships. Other SROs may be defined in future versions of STIX if new relationships are identified that also require additional properties not present on the generic Relationship object.

 

In addition to relationships created using the SROs (Relationship and Sighting), STIX also uses ID references to represent embedded relationships. Embedded relationships are simply ID reference properties on STIX Objects that contain the ID of a different STIX Object. Embedded relationships are used when the property is an inherent part of the object and not something that a third party might add or something that might require the inclusion of a confidence score. Because they represent an inherent linkage and have no other properties, an SRO is not needed to represent them. An embedded relationship can only be asserted by the creator of the object ("object creator") it is contained in.

 

For example, the entity that created a STIX Object is an inherent, factual part of that object and therefore that information is captured in an embedded relationship contained in the created_by_ref property rather than through the use of an SRO.

 

Embedded relationships (ID references) are described in section 3.3 and STIX Relationship Objects (SROs) are defined in section 5.

1.6.5 STIX™ Cyber Observable Observed Data Relationships (Deprecated)

While refining STIX for the 2.1 specification, the CTI TC reached consensus that the STIX 2.0 Cyber Observable Container (see section 2.13) and the Observed Data object's graph within a graph model was insufficient to support critical CTI use cases. Consequently, in STIX 2.1, the Cyber Observable Container is deprecated, and implementers are encouraged to use STIX Relationship Objects (SROs) instead. Within the context of the (deprecated) Cyber Observable Container's graph within a graph model, an object relationship is a reference linking two (or more) related SCOs and these relationships are constrained to SCOs contained within the same Cyber Observable Container.

 

A Cyber Observable Container relationship should not be confused with STIX Relationship Objects (SROs) that are defined in section 5.

1.6.6 STIX™ Cyber Observable Extensions

Each STIX Cyber-observable Object (SCO) defines a set of base properties that are generally applicable for any instance of that object. However, there is also a need to encode additional data beyond the base definition of the object data models. To enable this, STIX permits the specification of additional properties through the set of predefined SCO Extensions. Where applicable, predefined SCO Extensions are included within the definition of the corresponding SCOs. For example, the File SCO includes predefined Extensions for characterizing PDF files, raster image files, archive files, NTFS files, and Windows PE binary files.

 

Producers may also define and include their own Custom SCO Extensions. For further information, refer to section 11.3 (Custom Object Extensions.)

1.6.7 STIX™ Patterning

The STIX Patterning language enables the detection of activity on networks and endpoints. This language allows matching against time stamped cyber observable data collected by a threat intelligence platform or other similar system. STIX Patterning is currently only used by the STIX Indicator object, but it can be employed in other use cases.

 

Before undertaking work on STIX Patterning, a thorough effort to evaluate existing patterning languages (e.g., Snort or Yara) was performed. This effort identified that no existing patterning language solves or supports the STIX use cases. Extending other languages was ruled out as unfeasible, both from a technical perspective as well as taking into consideration that from a licensing/IPR perspective, extending an existing language under the auspices of OASIS would have been problematic.

 

STIX Patterning was primarily designed to support STIX Indicators. As such it is a mechanism for communicating how to find malicious code and/or threat actors active within a given network or endpoint.

 

This language release is focused on supporting a common set of use cases and therefore allows for the expression of an initial set of patterns that producers and consumers of STIX can utilize. As more complex patterns are deemed necessary, the STIX patterning language will be extended in future releases to improve its effectiveness as an automated detection/remediation method.

 

STIX Patterning is defined in section 9.

1.6.8 STIX™ Patterning ANTLR Grammar

The latest ANTLR grammar for the patterning specification can be found on Github in the Pattern Grammar repository [Pattern Grammar]. Note that this grammar is non-normative and is intended solely as an aid to implementers.

1.6.9 STIX™ Common Properties

STIX Domain Objects (SDOs) and Relationship Objects (SROs) all share a common set of properties which provide core capabilities such as versioning and data markings (representing how data can be shared and used). All STIX Cyber-observable Objects (SCOs) likewise share a common set of properties that are applicable for all SCOs. Similarly, STIX Meta Object use some but not all of the common properties.

1.6.10 STIX™ Open Vocabularies and Enumerations

Some STIX properties are defined using open vocabularies or enumerations. Enumerations and open vocabularies are defined in STIX in order to enhance interoperability by increasing the likelihood that different entities use the same exact string to represent the same concept. If used consistently, open vocabularies make it less likely that one entity refers to the energy sector as “Energy” and another as “Energy Sector”, thereby making comparison and correlation easier.

 

While using predefined values from STIX vocabularies is strongly encouraged, in some cases this may not be feasible. To address this, producers are permitted to use values outside of the open vocabulary. In the case of enumerations, producers are required to use only the values defined within the STIX specification.

 

STIX open vocabularies and enumerations are defined in section 10. Properties that are defined as open vocabularies identify a suggested vocabulary from that section. For example, the Threat Actor sophistication property, as defined in section 4.16, uses the Threat Actor Sophistication vocabulary as defined in section 10.24.

1.6.11 Reserved Names

Reserved property names are marked with a type called RESERVED and a description text of “RESERVED FOR FUTURE USE”. For more information please see section 3.8.

1.6.12 Serialization

STIX is defined independent of any specific storage or serialization. However, the mandatory-to-implement (MTI) serialization for STIX 2.1 is UTF-8 encoded JSON as defined in [RFC7493] and [RFC8259], which uses the JSON Object type described within when representing all STIX Objects. In other words, all STIX-conformant tools have to implement support for JSON but can implement support for other serializations.

1.6.13 Transporting STIX™

STIX 2.1 is transport-agnostic, i.e., the structures and serializations do not rely on any specific transport mechanism. A companion CTI specification, TAXII™, is designed specifically to transport STIX Objects. STIX provides a Bundle (see section 8) as a container for STIX Objects to allow for transportation of bulk STIX data, especially over non-TAXII communication mechanisms.

1.6.14 JSON Schemas

JSON schemas have been developed by members of the Cyber Threat Intelligence Technical Committee and are available in the cti-stix2-json-schemas OASIS Open Repository [JSON Schema]. The JSON schemas are informative and serve as a best effort attempt to validate that STIX 2.1 content meets the structural requirements identified in this specification. This specification is the normative description of STIX 2.1.

1.7 Changes From Earlier Versions

This section lists all of the major changes from the previous 2.0 version of STIX.

1.7.1 STIX 2.1 Major Changes and Additions

STIX 2.1 differs from STIX 2.0 in the following ways:

  1. New objects: Grouping, Infrastructure, Language-Content (internationalization), Location, Malware-Analysis, Note, Opinion
  2. Objects that have undergone significant change: Malware, all SCOs
  3. New concepts: Confidence
  4. STIX Cyber-observable Objects can now be directly related using STIX Relationship Objects
  5. Renamed conflicting properties on Directory Object, File Object, Process Object, and Windows Registry Key Object.
  6. Added relationship from Indicator to Observed Data called "based-on".
  7. Added a description to Sighting and added a name to Location.
  8. Made some SCO relationships external on Domain-Name, IPv4-Addr, and IPv6-Addr.

 

1.8 Glossary

AV - Anti-Virus / Anti-Malware solution

CAPEC - Common Attack Pattern Enumeration and Classification

Consumer - Any entity that receives STIX content

CTI - Cyber Threat Intelligence

Deprecated - STIX features or properties that are in the process of being replaced by newer ones.

Embedded Relationship - A link (an "edge" in a graph) between one STIX Object and another represented as a property on one object containing the ID of another object

Entity - Anything that has a separately identifiable existence (e.g., organization, person, group, etc.)

IEP - FIRST (Forum of Incident Response and Security Teams) Information Exchange Policy

Instance - A single occurrence of a STIX Object version

MTI - Mandatory To Implement

Object Creator - The entity that created or updated a STIX Object (see section 3.5)

Object Representation - An instance of an object version that is serialized as STIX

Producer - Any entity that distributes STIX content, including object creators as well as those passing along existing content

SCO - STIX Cyber-observable Object

SDO - STIX Domain Object (a "node" in a graph)

SRO - STIX Relationship Object (one mechanism to represent an "edge" in a graph)

STIX - Structured Threat Information Expression

STIX Content - STIX documents, including STIX Objects, STIX Objects grouped as bundles, etc.

STIX Object - A STIX Domain Object (SDO), STIX Cyber Observable Object (SCO), STIX Relationship Object (SRO), or STIX Meta Object.

STIX Relationship - A link (an "edge" in a graph) between two STIX Objects represented by either an SRO or an embedded relationship

TAXII - An application layer protocol for the communication of cyber threat information

TLP - Traffic Light Protocol

TTP - Tactic, technique, or procedure; behaviors and resources that attackers use to carry out their attacks

 

 


 


2 Common Data Types

This section defines the common types used throughout STIX for all STIX Objects. These types will be referenced by the “Type” column in other sections. This section defines the names and permitted values of common types that are used in the STIX information model; it does not, however, define the meaning of any properties using these types. These types may be further restricted elsewhere in the document.

 

The table below is a summary of the data types defined in this section.

 

Type

Description

binary

A sequence of bytes.

boolean

A value of true or false.

dictionary

A set of key/value pairs.

enum

A value from a STIX Enumeration.

external-reference

A non-STIX identifier or reference to other related external content.

float

An IEEE 754 [IEEE 754-2008] double-precision number.

hashes

One or more cryptographic hashes.

hex

An array of octets as hexadecimal.

identifier

An identifier (ID) is for STIX Objects.

integer

A whole number.

kill-chain-phase

A name and a phase of a kill chain.

list

A sequence of values ordered based on how they appear in the list. The phrasing “list of type <type>” is used to indicate that all values within the list MUST conform to the specified type.

observable-container

One or more STIX Cyber-observable Objects in the deprecated Cyber Observable Container.

open-vocab

A value from a STIX open (open-vocab) or suggested vocabulary.

string

A series of Unicode characters.

timestamp

A time value (date and time).

2.1 Binary

Type Name: binary

 

The binary data type represents a sequence of bytes. In order to allow pattern matching on custom objects, for all properties that use the binary type, the property name MUST end with '_bin'.

 

The JSON MTI serialization represents this as a base64-­encoded string as specified in

[RFC4648]​. Other serializations SHOULD use a native binary type, if available.

2.2 Boolean

Type Name: boolean

 

A boolean is a value of either true or false. Properties with this type MUST have a value of true or false.

 

The JSON MTI serialization uses the true and false (boolean) values from the JSON values [RFC8259], which are a literal (unquoted) true or false.

 

Examples

{

  ...

  "summary": true,

  ...

}

2.3 Dictionary

Type Name: dictionary

 

A dictionary captures an arbitrary set of key/value pairs. Dictionary keys MUST be unique in each dictionary, MUST be in ASCII, and are limited to the characters a-z (lowercase ASCII), A-Z (uppercase ASCII), numerals 0-9, hyphen (-), and underscore (_). Dictionary keys MUST be no longer than 250 ASCII characters in length and SHOULD be lowercase.

 

Empty dictionaries are prohibited in STIX and MUST NOT be used as a substitute for omitting the property if it is optional. If the property is required, the dictionary MUST be present and MUST have at least one key-value pair.

 

dictionary values MUST be valid property base types.

2.4 Enum

Type Name: enum

 

The enum type is a hardcoded list of terms that is represented as a string. For properties that use this type there is a defined list of values that is identified in the definition for said properties. The STIX Enumerations are defined in section 10. Terms defined in an enum by the specification MUST NOT be expanded by implementations.

 

The JSON MTI serialization uses the JSON String type [RFC8259] when representing enum enumeration.

2.5 External Reference

Type Name: external-reference

 

External references are used to describe pointers to information represented outside of STIX. For example, a Malware object could use an external reference to indicate an ID for that malware in an external database or a report could use references to represent source material.

 

The JSON MTI serialization uses the JSON Object type [RFC8259] when representing external-reference.

2.5.1 Properties

Property Name

Type

Description

source_name (required)

string

The name of the source that the external-reference is defined within (system, registry, organization, etc.).

description (optional)

string

A human readable description.

url (optional)

string

A URL reference to an external resource [RFC3986].

hashes (optional)

hashes

Specifies a dictionary of hashes for the contents of the url. This SHOULD be provided when the url property is present.

 

Dictionary keys MUST come from one of the entries listed in the hash-algorithm-ov open vocabulary.

 

As stated in Section 2.7, to ensure interoperability, a SHA-256 hash SHOULD be included whenever possible.

external_id (optional)

string

An identifier for the external reference content.

 

2.5.2 Requirements

    In addition to the source_name property, at least one of the description, url, or external_id properties MUST be present.

 

Examples

An external-reference to a VERIS Community Database (VCDB) [VERIS] entry

{

  ...

  "external_references": [

    {

      "source_name": "veris",

      "external_id": "0001AA7F-C601-424A-B2B8-BE6C9F5164E7",

      "url": "https://github.com/vz-risk/VCDB/blob/125307638178efddd3ecfe2c267ea434667a4eea/
data/json/validated/0001AA7F-C601-424A-B2B8-BE6C9F5164E7.json",

      "hashes": {

        "SHA-256": "6db12788c37247f2316052e142f42f4b259d6561751e5f401a1ae2a6df9c674b"

      }

    }

  ],

  ...

}

 

An external-reference from the CAPEC[CAPEC] repository

{

  ...

  "external_references": [

    {

      "source_name": "capec",

      "external_id": "CAPEC-550"

    }

  ],

  ...

}

 

An external-reference from the CAPEC repository with URL

{

  ...

  "external_references": [

    {

      "source_name": "capec",

      "external_id": "CAPEC-550",

      "url": "http://capec.mitre.org/data/definitions/550.html"

    }

  ],

  ...

}

 

An external-reference to ACME Threat Intel's report document

{

  ...

  "external_references": [

    {

      "source_name": "ACME Threat Intel",

      "description": "Threat report",

      "url": "http://www.example.com/threat-report.pdf"

    }

  ],

  ...

}

 

An external-reference to a Bugzilla item

{

  ...

  "external_references": [

    {

      "source_name": "ACME Bugzilla",

      "external_id": "1370",

      "url": "https://www.example.com/bugs/1370"

    }

  ],

  ...

}

 

An external-reference to an offline threat report (i.e., e-mailed, offline, etc.)

{

  ...

  "external_references": [

    {

      "source_name": "ACME Threat Intel",

      "description": "Threat report"

    }

  ],

  ...

}

2.6 Float

Type Name: float

 

The float data type represents an IEEE 754 [IEEE 754-2008] double-precision number (e.g., a number with a fractional part). However, because the values ±Infinity and NaN are not representable in JSON, they are not valid values in STIX.

 

In the JSON MTI serialization, floating point values are represented by the JSON Number type [RFC7493].

Examples

{

  ...

  "distance": 8.321,

  ...

}

2.7 Hashes

Type Name: hashes

 

The Hashes type represents one or more cryptographic hashes, as a special set of key/value pairs. Accordingly, the name of each hashing algorithm MUST be specified as a key in the dictionary and MUST identify the name of the hashing algorithm used to generate the corresponding value. This name SHOULD come from one of the values defined in the hash-algorithm-ov open vocabulary.

 

Dictionary keys MUST be unique in each hashes property, MUST be in ASCII, and are limited to the characters a-z (lowercase ASCII), A-Z (uppercase ASCII), numerals 0-9, hyphen (-), and underscore (_). Dictionary keys MUST have a minimum length of 3 ASCII characters and MUST be no longer than 250 ASCII characters in length. The value MUST be a string in the appropriate format defined by the hash type indicated in the dictionary key.

 

To enhance compatibility, the SHA-256 hash SHOULD be used whenever possible.

Examples

SHA-256 and User-Defined Hash

{

  "SHA-256": "6db12788c37247f2316052e142f42f4b259d6561751e5f401a1ae2a6df9c674b",

  "x_foo_hash": "aaaabbbbccccddddeeeeffff0123457890"

}

2.8 Hexadecimal

Type Name: hex

 

The hex data type encodes an array of octets (8-bit bytes) as hexadecimal. The string MUST consist of an even number of hexadecimal characters, which are the digits '0' through '9' and the lower-case letters 'a' through 'f'. In order to allow pattern matching on custom objects, for all properties that use the hex type, the property name MUST end with '_hex'.

 

Examples

...

   "src_flags_hex": "00000002"

...​

2.9 Identifier

Type Name: identifier

 

An identifier uniquely identifies a STIX Object and MAY do so in a deterministic way. A deterministic identifier means that the identifier generated by more than one producer for the exact same STIX Object using the same namespace, "ID Contributing Properties", and UUID method will have the exact same identifier value.

 

All identifiers, excluding those used in the deprecated Cyber Observable Container, MUST follow the form object-type--UUID, where object-type is the exact value (all type names are lowercase strings, by definition) from the type property of the object being identified or referenced and where the UUID MUST be an RFC 4122-compliant UUID [RFC4122].

 

The UUID part of the identifier MUST be unique across all objects produced by a given producer regardless of the type identified by the object-type prefix. Meaning, a producer MUST NOT reuse the UUID portion of the identifier for objects of different types.

 

STIX Domain Objects, STIX Relationship Objects, STIX Meta Objects, and STIX Bundle Object SHOULD use UUIDv4 for the UUID portion of the identifier. Producers using something other than UUIDv4 need to be mindful of potential collisions and should use a namespace that guarantees uniqueness, however, they MUST NOT use a namespace of 00abedb4-aa42-466c-9c01-fed23315a9b7 if generating a UUIDv5.

 

STIX Cyber-observable Objects SHOULD use UUIDv5 for the UUID portion of the identifier and the UUID portion of the UUIDv5-based identifier SHOULD be generated according to the following rules:

      The namespace SHOULD be 00abedb4-aa42-466c-9c01-fed23315a9b7. This defined namespace is necessary to support the goal of deduplication and semantic equivalence of some STIX objects in the community of producers.

      The value of the name portion SHOULD be the list of "ID Contributing Properties" defined on each SCO and those properties SHOULD be stringified according to [JCS] to ensure a canonical representation of the JSON data.

      If the contributing properties are all optional, and none are present on the SCO, then a UUIDv4 MUST be used.

      Producers not following these rules MUST NOT use a namespace of 00abedb4-aa42-466c-9c01-fed23315a9b7 and SHOULD use UUIDv4 in cases where the id would not be unique.

 

STIX Cyber-observable Objects that are used in the deprecated Cyber Observable Container MAY use any string value for the identifier. For the deprecated Cyber Observable Container, it is common for implementers to use simple numerical strings for these identifiers (e.g., "0", "1", "2", etc.). See section 2.13 for more information.

      These identifiers, when used inside the deprecated Cyber-observable Objects Container specify a local reference to a Cyber-observable Object. These references MUST be valid within the local scope of the Cyber Observable Container (observable-container) that holds both the source Cyber-observable Object and the Cyber-observable Object that it references.

      These identifiers SHOULD be a non-negative monotonically increasing integer, incrementing by 1 from a starting value of 0, and represented as a string within the JSON MTI serialization. However, implementers MAY elect to use an alternate key format if necessary.

 

Using Identifiers:

Consumers of STIX Cyber Threat Intelligence that are processing the objects property of an Observed-Data object can assume that the identifier is an old deprecated Cyber Observable Container identifier. Consumers can also inspect the identifier to see if it contains an object-type, if not, they can assume that it is a deprecated Cyber Observable Container identifier. If it does have an object-type and it matches a SCO, then chances are it is a UUIDv5 deterministic identifier, but this can be verified by inspecting the UUID portion of the identifier. [RFC 4122] defines how one can distinguish between a UUIDv4 and UUIDv5 value.

 

The JSON MTI serialization uses the JSON String type [RFC8259] when representing identifier.

 

​Examples

{

  ...

  "type": "indicator",

  "id": "indicator--e2e1a340-4415-4ba8-9671-f7343fbf0836",

  ...

}

 

{

  "type": "ipv4-addr",

  "id": "ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd",

  "value": "198.51.100.3"

}

 

 

Deprecated Cyber Observable Container Identifiers

{

  "0": {

    "type": "ipv4-addr",

    "value": "198.51.100.2"

  },

  "1": {

    "type": "network-traffic",

    "dst_ref": "0"

  }

}

2.10 Integer

Type Name: integer

 

The integer data type represents a whole number. Unless otherwise specified, all integers MUST be capable of being represented as a signed 54-bit value ([-(2**53)+1, (2**53)-1]) as defined in [RFC7493] . Additional restrictions MAY be placed on the type as described where it is used. The integer size is limited to a 54-bit value not a 64-bit value as per the RFC.

 

In the JSON MTI serialization, integers are represented by the JSON Number type [RFC7493].

 

Examples

{

  ...

  "count": 8,

  ...

}

2.11 Kill Chain Phase

Type Name: kill-chain-phase

 

The kill-chain-phase represents a phase in a kill chain, which describes the various phases an attacker may undertake in order to achieve their objectives.

 

The JSON MTI serialization uses the JSON Object type [RFC8259] when representing kill-chain-phase.

 

Property Name

Type

Description

kill_chain_name (required)

string

The name of the kill chain. The value of this property SHOULD be all lowercase and SHOULD use hyphens instead of spaces or underscores as word separators.

phase_name (required)

string

The name of the phase in the kill chain. The value of this property SHOULD be all lowercase and SHOULD use hyphens instead of spaces or underscores as word separators.

 

When referencing the Lockheed Martin Cyber Kill Chain™, the kill_chain_name property MUST be lockheed-martin-cyber-kill-chain.

Examples

Example specifying the “reconnaissance” phase from the Lockheed Martin Cyber Kill Chain

{

  ...

  "kill_chain_phases": [

    {

      "kill_chain_name": "lockheed-martin-cyber-kill-chain",

      "phase_name": "reconnaissance"

    }

  ],

  ...

}

 

Example specifying the “pre-attack” phase from the “foo” kill-chain

{

  ...

  "kill_chain_phases": [

    {

      "kill_chain_name": "foo",

      "phase_name": "pre-attack"

    }

  ],

  ...

}

2.12 List

Type Name: list

 

The list type defines a sequence of values ordered based on how they appear in the list. The phrasing “list of type <type>” is used to indicate that all values within the list MUST conform to the specified type. For instance, list of type integer means that all values of the list must be of the integer type. This specification does not specify the maximum number of allowed values in a list; however, every instance of a list MUST have at least one value. Specific STIX Object properties may define more restrictive upper and/or lower bounds for the length of the list.

 

Empty lists are prohibited in STIX and MUST NOT be used as a substitute for omitting the property if it is optional. If the property is required, the list MUST be present and MUST have at least one value.

 

The JSON MTI serialization uses the JSON Array type [RFC8259], which is an ordered list of zero or more values.

 

Examples

{

  ...

  "observed_data_refs": [

    "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",

    "observed-data--c96f4120-2b4b-47c3-b61f-eceaa54bd9c6",

    "observed-data--787710c9-1988-4a1b-9761-a2de5e19c62f"

  ],

  ...

}

2.13 Observable Container (deprecated)

Type Name: observable-container

 

Representing Cyber-observable Objects in an Observable Container has been deprecated and SHOULD NOT be used when creating new content. Existing Observable Data objects using Observable Containers may contain SCOs as defined in this specification, but also may contain Cyber-observable Objects as described in version 2.0 of STIX (STIX™ Version 2.0. Part 3: STIX Objects).

 

The Observable Container type can contain one or more STIX Cyber-observable Objects as a special set of key/value pairs. The keys in the dictionary are the references used to refer to an object which is located in the observable container as a value to some key. The value of this "key" is a reference that can be used in the embedded relationship properties in other objects, which MUST be in the same container (such as the src_ref property on the Network Traffic object).

 

Resolving a reference is the process of identifying all of the objects in an observable container by their "key" reference value. References resolve to an object when the value of the property (e.g., src_ref) is an exact match with the key of another object that resides in the same container as the object that specifies the reference. All such references are local to the container and the referenced object MUST be provided within the same container. This specification does not address the implementation of reference resolution. Each key in the observable container dictionary is an identifier.

 

STIX 2.0 Examples

Network Traffic with Source/Destination IPv4 Addresses and AS

{

  "0": {

    "type": "ipv4-addr",

    "value": "1.2.3.4",

    "belongs_to_refs": ["3"]

  },

  "1": {

    "type": "ipv4-addr",

    "value": "2.3.4.5"

  },

  "2": {

    "type": "network-traffic",

    "src_ref": "0",

    "dst_ref": "1",

  }

  "3": {

    "type": "as"

    "number": 42

  }

}

 

{

  "0": {

    "type": "email-addr",

    "value": "jdoe@example.com",

    "display_name": "John Doe"

  },

  "1": {

    "type": "email-addr",

    "value": "mary@example.com",

    "display_name": "Mary Smith"

  },

  "2": {

    "type": "email-message",

    "from_ref": "0",

    "to_refs": ["1"],

    "date": "1997-11-21T15:55:06Z",

    "subject": "Saying Hello"

  }

}

2.14 Open Vocabulary

Type Name: open-vocab

 

The open-vocab type is represented as a string. For properties that use this type there will be a list of suggested values, known as the suggested vocabulary, that is identified in the definition for that property. The suggested vocabularies are defined in section 10. The value of the property SHOULD be chosen from the suggested vocabulary, but MAY be any other string value. Values that are not from the suggested vocabulary SHOULD be all lowercase and SHOULD use hyphens instead of spaces or underscores as word separators.

 

A consumer that receives STIX content with one or more open-vocab terms not defined in the suggested vocabulary MAY ignore those values.

 

The JSON MTI serialization uses the JSON String type [RFC8259] when representing open-vocab.

 

Examples

Example using value from the suggested vocabulary. In this example the Threat Actor sophistication property is an open vocabulary and we are using one of the suggested vocabulary values.

{

  ...,

  "sophistication": "intermediate",

  ...

}

 

Example using a user-defined value. In this example, for the same Threat Actor sophistication property, we are not using a value in the suggested vocabulary.

{

  ...,

  "sophistication": "pbx-advanced-activity",

  ...

}

2.15 String

Type Name: string

 

The string data type represents a finite-length string of valid characters from the Unicode coded character set [ISO10646]. Unicode incorporates ASCII and the characters of many other international character sets.

 

The JSON MTI serialization uses the JSON String type [RFC8259], which mandates the UTF-8 encoding for supporting Unicode.

 

Examples

{

  ...

  "name": "The Black Vine Cyberespionage Group",

  ...

}

2.16 Timestamp

Type Name: timestamp

 

The timestamp type defines how dates and times are represented in STIX.

 

The JSON MTI serialization uses the JSON String type [RFC8259] when representing timestamp.

2.16.1 Requirements

      The timestamp property MUST be a valid RFC 3339-formatted timestamp [RFC3339] using the format YYYY-MM-DDTHH:mm:ss[.s+]Z where the “s+” represents 1 or more sub-second values. The brackets denote that sub-second precision is optional, and that if no digits are provided, the decimal place MUST NOT be present.

      The timestamp MUST be represented in the UTC timezone and MUST use the “Z” designation to indicate this.

 

Note when using precisions greater than nanoseconds there may be implications for interoperability as they may be truncated when stored as a UNIX timestamp or floating point number due to the fundamental precision of those formats.

 

Examples

{

  ...

  "created": "2016-01-20T12:31:12.123Z",

  ...

}

 


 


3 STIX™ General Concepts

3.1 Property Names and String Literals

All type names, property names, and literals MUST be in lowercase, except when referencing canonical names defined in another standard (e.g., literal values from an IANA registry). Lowercase is defined by the locality conventions. Type names and property names MUST begin with a letter character (for example - in ASCII that would be a through z). Words in property names MUST be separated with an underscore (_), while words in type names and string enumerations MUST be separated with a hyphen (-). Dictionary key and hash algorithm names MAY have underscores (_) or hyphens (-). All type names, property names, object names, and vocabulary terms MUST be between three and 250 characters long.

 

Certain names of properties MUST have specific suffixes.

 

      If the value of the property contains an ID reference for embedded relationships it MUST end in _ref

      If the value of the property contains a list of embedded relationships it MUST end in _refs.

      If the value of the property contains a binary value, it MUST end in _bin.

      If the value of the property contains a hexadecimal value, it MUST end in _hex.

      A property might contain a string with an alternative encoding. Some object types will define an additional optional property to specify this encoding. The name of the additional property MUST end in _enc. For example, the name property might contain text in an alternative encoding, and the name_enc property would be used to specify which encoding is used. The encoding property MUST NOT be present when the original property is not present.

 

In the JSON serialization all property names and string literals MUST be exactly the same, including case, as the names listed in the property tables in this specification. For example, the SDO common property created_by_ref must result in the JSON key name "created_by_ref". Properties marked required in the property tables MUST be present in the JSON serialization.

 

Some properties may be designated as "deprecated". These properties are in the process of being removed or replaced and implementers should consider using the newer designs.

3.2 Common Properties

This section defines the common properties that MAY exist on a STIX Objects. While some STIX Objects use all of these common properties, not all object types do. Each type of STIX Object defines which common properties are required, which are optional, and which are not in use. A comparison summary table is provided below in this section. This information can also be found at the start of the properties table for each object.

 

Property Name

Type

Description

type

string

The type property identifies the type of STIX Object. The value of the type property MUST be the name of one of the types of STIX Objects defined in sections 4, 5, 6, and 7 (e.g., indicator) or the name of a Custom Object as defined by section 11.2.

spec_version

string

The version of the STIX specification used to represent this object.

 

The value of this property MUST be 2.1 for STIX Objects defined according to this specification.

 

If objects are found where this property is not present, the implicit value for all STIX Objects other than SCOs is 2.0. Since SCOs are now top-level objects in STIX 2.1, the default value for SCOs is 2.1.

id

identifier

The id property uniquely identifies this object.

 

For objects that support versioning, all objects with the same id are considered different versions of the same object and the version of the object is identified by its modified property.

created_by_ref

identifier

The created_by_ref property specifies the id property of the identity object that describes the entity that created this object.

 

If this attribute is omitted, the source of this information is undefined. This may be used by object creators who wish to remain anonymous.

created

timestamp

The created property represents the time at which the object was originally created.

 

The object creator can use the time it deems most appropriate as the time the object was created. The minimum precision MUST be milliseconds (three digits after the decimal place in seconds), but MAY be more precise.

 

The created property MUST NOT be changed when creating a new version of the object.

 

See section 3.6 for further definition of versioning.

modified

timestamp

The modified property is only used by STIX Objects that support versioning and represents the time that this particular version of the object was last modified.

 

The object creator can use the time it deems most appropriate as the time this version of the object was modified. The minimum precision MUST be milliseconds (three digits after the decimal place in seconds), but MAY be more precise.

 

If the created property is defined, then the value of the modified property for a given object version MUST be later than or equal to the value of the created property.

 

Object creators MUST set the modified property when creating a new version of an object if the created property was set.

 

See section 3.6 for further definition of versioning.

revoked

boolean

The revoked property is only used by STIX Objects that support versioning and indicates whether the object has been revoked.

 

Revoked objects are no longer considered valid by the object creator. Revoking an object is permanent; future versions of the object with this id MUST NOT be created.

 

The default value of this property is false.

 

See section 3.6 for further definition of versioning.

labels

list of type string

The labels property specifies a set of terms used to describe this object. The terms are user-defined or trust-group defined and their meaning is outside the scope of this specification and MAY be ignored.

 

Where an object has a specific property defined in the specification for characterizing subtypes of that object, the labels property MUST NOT be used for that purpose.

 

For example, the Malware SDO has a property malware_types that contains a list of Malware subtypes (dropper, RAT, etc.). In this example, the labels property cannot be used to describe these Malware subtypes.

confidence

integer

The confidence property identifies the confidence that the creator has in the correctness of their data. The confidence value MUST be a number in the range of 0-100.

 

Appendix A contains a table of normative mappings to other confidence scales that MUST be used when presenting the confidence value in one of those scales.

 

If the confidence property is not present, then the confidence of the content is unspecified.

lang

string

The lang property identifies the language of the text content in this object. When present, it MUST be a language code conformant to [RFC5646]. If the property is not present, then the language of the content is en (English).

 

This property SHOULD be present if the object type contains translatable text properties (e.g. name, description).

 

The language of individual fields in this object MAY be overridden by the lang property in granular markings (see section 7.2.3).

external_references

list of type external-reference

The external_references property specifies a list of external references which refers to non-STIX information. This property is used to provide one or more URLs, descriptions, or IDs to records in other systems.

object_marking_refs

list of type identifier

The object_marking_refs property specifies a list of id properties of marking-definition objects that apply to this object.

 

In some cases, though uncommon, marking definitions themselves may be marked with sharing or handling guidance. In this case, this property MUST NOT contain any references to the same Marking Definition object (i.e., it cannot contain any circular references).

 

See section 7.2 for further definition of data markings.

granular_markings

list of type granular-marking

The granular_markings property specifies a list of granular markings applied to this object.

 

In some cases, though uncommon, marking definitions themselves may be marked with sharing or handling guidance. In this case, this property MUST NOT contain any references to the same Marking Definition object (i.e., it cannot contain any circular references).

 

See section 7.2 for further definition of data markings.

defanged

boolean

This property defines whether or not the data contained within the object has been defanged.

 

The default value for this property is false.

 

This property MUST NOT be used on any STIX Objects other than SCOs.

extensions

dictionary

Specifies any extensions of the object, as a dictionary.

 

Dictionary keys MUST identify the extension type by name.

 

The corresponding dictionary values MUST contain the contents of the extension instance.

 

This property MUST NOT be used on any STIX Objects other than SCOs.

 

This table lists all common properties and how they are used for each type of STIX Object. The following table is informational, and the body of the spec is normative and the definitive reference.

 

 

STIX Core Objects

STIX Helper Objects

Property Name

SDOs

SROs

SCOs

Language

Markings

Bundle

type

Required

Required

Required

Required

Required

Required

spec_version

Required

Required

Optional

Required

Required

N/A

id

Required

Required

Required

Required

Required

Required

created_by_ref

Optional

Optional

N/A

Optional

Optional

N/A

created

Required

Required

N/A

Required

Required

N/A

modified

Required

Required

N/A

Required

N/A

N/A

revoked

Optional

Optional

N/A

Optional

N/A

N/A

labels

Optional

Optional

N/A

Optional

N/A

N/A

confidence

Optional

Optional

N/A

Optional

N/A

N/A

lang

Optional

Optional

N/A

N/A

N/A

N/A

external_references

Optional

Optional

N/A

Optional

Optional

N/A

object_marking_refs

Optional

Optional

Optional

Optional

Optional

N/A

granular_markings

Optional

Optional

Optional

Optional

Optional

N/A

defanged

N/A

N/A

Optional

N/A

N/A

N/A

extensions

N/A

N/A

Optional

N/A

N/A

N/A

 

3.3 Object IDs and References

All STIX Objects and the STIX Bundle Object have an id property that uniquely identifies each instance of the object. This id MUST meet the requirements of the identifier type (see section 2.9).

 

The identifier type is also used as an ID reference to define a relationship to other STIX Objects. Resolving an ID reference is the process of identifying and obtaining the actual object referred to by the ID reference property. ID references resolve to an object when the value of the ID reference property (e.g., created_by_ref) is an exact match with the id property of another object. If a consumer has access to multiple versions of an object, the consumer SHOULD interpret any references to that object as referring to the latest version as defined in section 3.6. ID references can refer to objects to which the consumer/producer may not currently have. This specification does not address the implementation of ID reference resolution.

 

Some ID references (embedded relationships) may be restricted to a subset of object types, as specified in the description of the property that defines the relationship. For example, the object_marking_refs common property specifies that the only valid target of the relationship is one or more marking-definition objects.

3.4 SCO Deterministic ID Creation

To enable deterministic IDs for STIX Cyber-observable Objects (SCOs), each SCO defines a set of one or more properties named “ID Contributing Properties”. These properties MAY be used in the default calculation of the id when creating a SCO. In some cases, additional selection of extension properties that contribute to the ID may be described in the ID Contributing Properties section listed on each SCO. The default algorithm that creates the SCO ID based on those named properties is a UUIDv5 as defined in Section 2.9, however, other algorithms for creating the SCO ID MAY be used.

 

Deterministic IDs (UUIDv5) in the example SCOs contained in this specification were computed using the algorithm defined in section 2.9. Every attempt was made for these IDs to be accurate. Certain IDs which were used in reference properties of the examples did not include the actual object, and therefore it was impossible to accurately compute the appropriate UUIDv5. In these cases, a UUIDv4 was generated.

3.5 Object Creator

The object creator is the entity (e.g., system, organization, instance of a tool) that generates the id property for a given object. Object creators are represented as Identity objects. Some STIX Objects allow this designation (see Section 3.2). An embedded relationship to the Identity object representing the object creator SHOULD be captured in the created_by_ref property (or that property can be omitted, meaning the object creator is anonymous).

 

Entities that re-publish an object from another entity without making any changes to the object, and thus maintaining the original id, are not considered the object creator and MUST NOT change the created_by_ref property. An entity that accepts objects and republishes them with modifications, additions, or omissions MUST create a new id for the object. They are considered the object creator of the new object for purposes of versioning.

3.6 Versioning

Versioning is the mechanism that object creators use to update and revoke the STIX Objects that they create. This section describes the versioning process and normative rules for performing versioning and revocation. Some STIX Objects are versioned using the revoked, created, and modified properties. See the properties table in section 3.2 for full definitions and normative usage of those properties.

 

STIX Objects MAY be versioned in order to update, add, or remove information. A version of a STIX Object is identified uniquely by the combination of its id and modified properties. The first version of the object MUST have the same timestamp for the created and modified properties. More recent values of the modified property indicate later versions of the object. Implementations MUST consider the version of the STIX Object with the most recent modified value to be the most recent state of the object. For every new version of an object, the modified property MUST be updated to represent the time that the new version was created. If a consumer receives two objects that are different, but have the same id and modified timestamp, it is not defined how the consumer handles the objects. This specification does not address how implementations should handle versions of the object that are not current.

 

STIX Objects have a single object creator, the entity that generates the id for the object and creates the first version. The object creator MAY (but not necessarily will) be identified in the created_by_ref property of the object. Only the object creator is permitted to create new versions of a STIX Object. Producers other than the object creator MUST NOT create new versions of that object. If a producer other than the object creator wishes to create a new version, they MUST instead create a new object with a new id. They SHOULD additionally create a derived-from Relationship object to relate their new object to the original object that it was derived from.

 

Every representation (each time the object version is serialized and shared) of a version of an object (identified by the object's id and modified properties) MUST always have the same set of properties and the same values for each property. If a property has the same value as the default, it MAY be omitted from a representation, and this does not represent a change to the object. In order to change the value of any property, or to add or remove properties, the modified property MUST be updated with the time of the change to indicate a new version.

 

Objects can also be revoked, which means that they are no longer considered valid by the object creator. As with issuing a new version, only the object creator is permitted to revoke a STIX Object. A value of true in the revoked property indicates that an object (including the current version and all past versions) has been revoked. Revocation is permanent: once an object is marked as revoked, later versions of that object MUST NOT be created. Changing the revoked property to indicate that an object is revoked is an update to the object, and therefore its modified property MUST be updated at the same time. This specification does not address how implementations should handle revoked data.

 

In STIX 2.1, SCOs do not explicitly have those three versioning properties. Therefore, a SCO cannot be versioned unless custom properties (discussed in section 11.1) are used. Producers who do this SHOULD use the property names created_by_ref, revoked, created, and modified.

 

It should be noted that if a producer versions a SCO (assigns value to these four properties) that no other producer would be allowed to create or modify the same SCO with an equivalent deterministic id, as that would conflict with the strict versioning rules defined in STIX2. Therefore, for interoperability and sharing, producers versioning SCOs MUST NOT use the default namespace for deterministic ID creation. Otherwise multiple different producers will conflict with each other if producing the same SCO intelligence.

3.6.1 Versioning Timestamps

There are two timestamp properties used to indicate when STIX Objects were created and modified: created and modified. The created property indicates the time the first version of the object was created. The modified property indicates the time the specific version of the object was created. The modified time MUST NOT be earlier than the created time. This specification does not address the specifics of how implementations should determine the value of the creation and modification times for use in the created and modified properties (e.g., one system might use when the object is first added to the local database as the creation time, while another might use the time when the object is first distributed as STIX).

3.6.2 New Version or New Object?

Eventually an implementation will encounter a case where a decision must be made regarding whether a change is a new version of an existing object or is different enough that it is a new object. This is generally considered a data quality problem and therefore this specification does not provide any normative text.

 

However, to assist implementers and promote consistency across implementations, some rules of thumb are provided. Any time a change indicates a material change to the meaning of the object, a new object with a different id should be used. A material change is any change that the object creator believes substantively changes the meaning of the object. As an example, an object creator might consider changing a Threat Actor from one country to another is a material change. These decisions are always made by the object creator. The object creator should also think about relationships to the object when deciding if a change is material. If the change would invalidate the usefulness of relationships to the object, then the change is considered material and a new object id should be used.

 

Examples

Example of a new version

One object creator has decided that the previous name they used for an SDO is incorrect. They consider that change as an update to the object.

 

Note: the IDs in the example below use a simplified format to help illustrate the changing IDs more clearly.

 

Step #

STIX Object

Object Creator Action

1

{

  "type": "example",

  "id": "example--1",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-01T06:13:14.000Z",

  "name": "attention",

  "description": "this is the description"

}

Original version of an object is created.

2

N/A, STIX is not involved in this step

Object creator changes the name in their internal database.

3

{

  "type": "example",

  "id": "example--1",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-08T03:43:44.000Z",

  "name": "Attention!",

  "description": "this is the description"

}

Object creator updates the modified property.

 

Example of derived object

One object creator has decided that the previous name they used for an SDO is incorrect. They consider that change fundamental to the meaning of the object and therefore revoke the object and issue a new one.

 

Step #

STIX Object

Object Creator Action

1

{

  "type": "example",

  "id": "example--2",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-01T06:13:14.000Z",

  "name": "attention",

  "description": "this is the description"

}

Original object created (via new id and setting created and modified to the same value).

2

N/A, STIX is not involved in this step

Object creator changes the name in their internal database.

3

{

  "type": "example",

  "id": "example--2",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-08T03:43:44.000Z",

  "name": "attention",

  "description": "this is the description",

  "revoked": true

}

Object creator revokes the existing object by setting revoked to true. The modified property is updated.

4

{

  "type": "example",

  "id": "example--3",

  "created": "2016-05-08T03:43:44.000Z",

  "modified": "2016-05-08T03:43:44.000Z",

  "name": "Something completely different",

  "description": "this is the description"

}

Object creator creates a new object (with a new id and setting created and modified to the same value).

5

{

  "type": "relationship",

  "id": "relationship--4",

  "created": "2016-05-08T03:43:44.000Z",

  "modified": "2016-05-08T03:43:44.000Z",

  "relationship_type": "derived-from",

  "source_ref": "example--2",

  "target_ref": "example--3"

}

(Optional) Object creator creates a new Relationship indicating that the new object is derived from the old object.

 

Example of consumer workflow

This section describes an example workflow where a consumer receives multiple updates to a particular object. (In this example, the STIX Objects have been truncated for brevity.)

 

Step #

Received STIX Object

Recipient Action

1

{

  "type": "example",

  "id": "example--5",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-01T06:13:14.000Z"

}

Consumer stores example object because this is the first time they have seen the object.

2

{

  "type": "example",

  "id": "example--5",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-08T03:43:44.000Z"

}

Consumer updates example object because the received modified property is later than the object that is currently stored.

 

3

{

  "type": "example",

  "id": "example--5",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-06T06:23:45.000Z"

}

Consumer ignores this object because they already have a newer version of the object.

Note: consumer might choose to store meta-information about received objects, including versions that were received out-of-order. The consumer also may choose to store a copy for reference.

4

{

  "type": "example",

  "id": "example--5",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-11T06:41:21.000Z",

  "revoked": true

}

Consumer receives revoked version and decides to delete example object but keeps some metadata regarding the object.

5

{

  "type": "example",

  "id": "example--5",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-10T17:28:54.000Z"

}

Consumer ignores this object because they already have a newer version of the object (the revoked version).

Example of object creator workflow

This section describes an example workflow where an object creator publishes multiple updates to a particular object. This scenario assumes a human using a STIX implementation. (In this example, the STIX Objects have been truncated for brevity.)

 

Step #

STIX Object

User Action

1

N/A – STIX is not involved in this scenario.

 

(Tools could choose to create and track STIX versions for internal changes, but it is not required by the specification.)

User clicks a create button in the user interface, creates an SDO, then clicks save. This action causes information to be stored in the product’s database.

 

2

{

  "type": "example",

  "id": "example--6",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-01T06:13:14.000Z"

}

The user clicks the “share” button, delivering the intelligence to sharing partners.

 

3

N/A – STIX is not involved in this scenario.

 

(Tools could choose to create and track STIX versions for internal changes, but it is not required by the specification.)

The user performs additional analysis within the STIX implementation, performing multiple modifications and saving their work multiple times.

4

{

  "type": "example",

  "id": "example--6",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-03T16:33:51.000Z"

}

The user, happy with the status of their work, decides to provide an update to some properties of the previously published object (not shown).

5

{

  "type": "example",

  "id": "example--6",

  "created": "2016-05-01T06:13:14.000Z",

  "modified": "2016-05-08T13:35:12.000Z",

  "revoked": true

}

The user receives lots of negative feedback regarding the quality of their work and decides to retract the object by pressing the “revoke” button.

 

3.7 Common Relationships

Each SDO and SCO has its own set of relationship types that are specified in the definition of that SDO or SCO. The following common relationship types are defined for all SDOs and SCOs. See section 1.6.4 for more information about relationships.

 

Relationship Type

Source

Target

Description

derived-from

<SDO or SCO of same type as target>

<SDO or SCO of same type as source>

The information in the target object is based on information from the source object.

 

derived-from is an explicit relationship between two separate objects and MUST NOT be used as a substitute for the versioning process defined in section 3.6.

duplicate-of

<SDO or SCO of same type as target>

<SDO or SCO of same type as source>

The referenced source and target objects are semantically duplicates of each other.

 

This specification does not address whether the source or the target object is the duplicate object or what action, if any, a consumer should take when receiving an instance of this relationship.

 

As an example, a Campaign object from one organization could be marked as a duplicate-of a Campaign object from another organization if they both described the same campaign.

related-to

<SDO or SCO of any type>

<SDO or SCO of any type>

Asserts a non-specific relationship between two SDOs. This relationship can be used when none of the other predefined relationships are appropriate, and a user-defined one is not needed.

 

As an example, a Malware object describing a piece of malware could be marked as a related-to a Tool if they are commonly used together. That relationship is not common enough to standardize but may be useful to some analysts.

 

3.8 Reserved Names

This section defines property names that are reserved for future revisions of this document. The property names defined in this section and any property name that is marked as RESERVED MUST NOT be used for the name of any Custom Property or be present in any STIX content conforming to this version of the specification.

 

Properties that are currently reserved across all STIX Objects are:

 

      severity

      usernames

      phone_numbers

 

In addition, the following object type names are reserved:

 

      incident

      action

3.9 Object Property Metadata

3.9.1 SCO String Encoding

Capturing the observed encoding of a particular STIX Cyber-observable Object (SCO) string is useful for attribution, the creation of indicators, and related use cases.

 

Certain string properties in STIX Cyber-observable Objects may contain an additional sibling property with the same base name and a suffix of _enc that captures the name of the original observed encoding of the property value. All _enc properties MUST specify their encoding using the corresponding name from the IANA character set registry [Character Sets] . If the preferred MIME name for a character set is defined, this value MUST be used; if it is not defined, then the Name value from the registry MUST be used instead.

 

Examples

File with Unicode representation of the filename and a corresponding encoding specification

{

  "type": "file",

  "id": "file-1389b98d-a3d3-5190-a996-716fd444059a",

  "hashes": {

    "SHA-256": "effb46bba03f6c8aea5c653f9cf984f170dcdd3bbbe2ff6843c3e5da0e698766"

  },

  "name": "quêry.dll",

  "name_enc": "windows-1252"

}

 

3.10 Predefined Object Extensions

Predefined Object Extensions have a specific purpose in STIX Cyber-observable Objects (SCOs): defining coherent sets of properties beyond the base, e.g., HTTP request information for a Network Traffic object. Accordingly, each SCO may include one or more Predefined Object Extensions.

 

Each Predefined Object Extension can be defined at most once on a given SCO. In an Observable Object instance, each extension is specified under the extensions property, which is of type dictionary. Note that this means that each extension is specified through a corresponding key in the extensions property. For example, when specified in a File object instance, the NTFS extension would be specified using the key value of ntfs-ext.

 

Examples

Basic File with NTFS Extension

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--1b40e321-ae73-5637-bd97-33c35a86b80d",

  "hashes": {

    "MD5": "3773a88f65a5e780c8dff9cdc3a056f3"

  },

  "size": 25537,

  "extensions": {

    "ntfs-ext": {

      "sid": "1234567"

    }

  }

}

 


 


4 STIX™ Domain Objects

This specification defines the set of STIX Domain Objects (SDOs), each of which corresponds to a unique concept commonly represented in CTI. Using SDOs, STIX Cyber-observable Objects (SCOs), and STIX Relationship Objects (SROs) as building blocks, individuals can create and share broad and comprehensive cyber threat intelligence.

 

Property information, relationship information, and examples are provided for each SDO defined below. Property information includes common properties as well as properties that are specific to each SDO. Relationship information includes embedded relationships (e.g., created_by_ref), common relationships (e.g., related-to), and SDO-specific relationships. Forward relationships (i.e., relationships from the SDO to other SDOs or SCOs) are fully defined, while reverse relationships (i.e., relationships to the SDO from other SDOs or SCOs) are duplicated for convenience.

 

Some SDOs are similar and can be grouped together into categories. Attack Pattern, Malware, and Tool can all be considered types of tactics, techniques, and procedures (TTPs): they describe behaviors and resources that attackers use to carry out their attacks. Similarly, Campaign, Intrusion Set, and Threat Actor all describe information about why adversaries carry out attacks and how they organize themselves.

 

4.1 Attack Pattern

Type Name: attack-pattern

 

Attack Patterns are a type of TTP that describe ways that adversaries attempt to compromise targets. Attack Patterns are used to help categorize attacks, generalize specific attacks to the patterns that they follow, and provide detailed information about how attacks are performed. An example of an attack pattern is "spear phishing": a common type of attack where an attacker sends a carefully crafted e-mail message to a party with the intent of getting them to click a link or open an attachment to deliver malware. Attack Patterns can also be more specific; spear phishing as practiced by a particular threat actor (e.g., they might generally say that the target won a contest) can also be an Attack Pattern.

 

The Attack Pattern SDO contains textual descriptions of the pattern along with references to externally-defined taxonomies of attacks such as CAPEC [CAPEC].

4.1.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Attack Pattern Specific Properties

name, description, aliases, kill_chain_phases

Property Name

Type

Description

type (required)

string

The value of this property MUST be attack-pattern.

external_references

(optional)

list of type external-reference

A list of external references which refer to non-STIX information. This property MAY be used to provide one or more Attack Pattern identifiers, such as a CAPEC ID. When specifying a CAPEC ID, the source_name property of the external reference MUST be set to capec and the external_id property MUST be formatted as CAPEC-[id].

name (required)

string

A name used to identify the Attack Pattern.

description (optional)

string

A description that provides more details and context about the Attack Pattern, potentially including its purpose and its key characteristics.

aliases (optional)

list of type string

Alternative names used to identify this Attack Pattern.

kill_chain_phases (optional)

list of type kill-chain-phase

The list of Kill Chain Phases for which this Attack Pattern is used.

 

4.1.2 Relationships

These are the relationships explicitly defined between the Attack Pattern object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

attack-pattern

delivers

malware

This Relationship describes that this Attack Pattern is used to deliver this malware instance (or family).

attack-pattern

targets

identity, location, vulnerability

This Relationship describes that this Attack Pattern typically targets the type of victim, location, or vulnerability represented by the related Identity, Location, or Vulnerability object.

 

For example, a targets Relationship linking an Attack Pattern for SQL injection to an Identity object representing domain administrators means that the form of SQL injection characterized by the Attack Pattern targets domain administrators in order to achieve its objectives.

 

Another example is a Relationship linking an Attack Pattern for SQL injection to a Vulnerability in blogging software means that the particular SQL injection attack exploits that vulnerability.

attack-pattern

uses

malware, tool

This Relationship describes that the related Malware or Tool is used to perform the behavior identified in the Attack Pattern.

 

For example, a uses Relationship linking an Attack Pattern for a distributed denial of service (DDoS) to a Tool for Low Orbit Ion Cannon (LOIC) indicates that the tool can be used to perform those DDoS attacks.

Reverse Relationships

indicator

indicates

attack-pattern

See forward relationship for definition.

course-of-action

mitigates

attack-pattern

See forward relationship for definition.

campaign, intrusion-set,

malware, threat-actor

uses

attack-pattern

See forward relationship for definition.

 

Examples

A generic attack pattern for spear phishing, referencing CAPEC

{

  "type": "attack-pattern",

  "spec_version": "2.1",

  "id": "attack-pattern--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",

  "created": "2016-05-12T08:17:27.000Z",

  "modified": "2016-05-12T08:17:27.000Z",

  "name": "Spear Phishing",

  "description": "...",

  "external_references": [

    {

      "source_name": "capec",

      "external_id": "CAPEC-163"

    }

  ]

}

 

A specific attack pattern for a particular form of spear phishing, referencing CAPEC

[

  {

    "type": "attack-pattern",

    "spec_version": "2.1",

    "id": "attack-pattern--7e33a43e-e34b-40ec-89da-36c9bb2cacd5",

    "created": "2016-05-12T08:17:27.000Z",

    "modified": "2016-05-12T08:17:27.000Z",

    "name": "Spear Phishing as Practiced by Adversary X",

    "description": "A particular form of spear phishing where the attacker claims that the target had won a contest, including personal details, to get them to click on a link.",

    "external_references": [

      {

        "source_name": "capec",

        "external_id": "CAPEC-163"

      }

    ]

  },

  {

    "type": "relationship",

    "spec_version": "2.1",

    "id": "relationship--57b56a43-b8b0-4cba-9deb-34e3e1faed9e",

    "created": "2016-05-12T08:17:27.000Z",

    "modified": "2016-05-12T08:17:27.000Z",

    "relationship_type": "uses",

    "source_ref": "intrusion-set--0c7e22ad-b099-4dc3-b0df-2ea3f49ae2e6",

    "target_ref": "attack-pattern--7e33a43e-e34b-40ec-89da-36c9bb2cacd5"

  },

  {

    "type": "intrusion-set",

    "spec_version": "2.1",

    "id": "intrusion-set--0c7e22ad-b099-4dc3-b0df-2ea3f49ae2e6",

    "created": "2016-05-12T08:17:27.000Z",

    "modified": "2016-05-12T08:17:27.000Z",

    "name": "Adversary X"

  }

]

 

4.2 Campaign

Type Name: campaign

 

A Campaign is a grouping of adversarial behaviors that describes a set of malicious activities or attacks (sometimes called waves) that occur over a period of time against a specific set of targets. Campaigns usually have well defined objectives and may be part of an Intrusion Set.

 

Campaigns are often attributed to an intrusion set and threat actors. The threat actors may reuse known infrastructure from the intrusion set or may set up new infrastructure specific for conducting that campaign.

 

Campaigns can be characterized by their objectives and the incidents they cause, people or resources they target, and the resources (infrastructure, intelligence, Malware, Tools, etc.) they use.

 

For example, a Campaign could be used to describe a crime syndicate's attack using a specific variant of malware and new C2 servers against the executives of ACME Bank during the summer of 2016 in order to gain secret information about an upcoming merger with another bank.

4.2.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Campaign Specific Properties

name, description, aliases, first_seen, last_seen, objective

Property Name

Type

Description

type (required)

string

The value of this property MUST be campaign.

name (required)

string

A name used to identify the Campaign.

description (optional)

string

A description that provides more details and context about the Campaign, potentially including its purpose and its key characteristics.

aliases (optional)

list of type string

Alternative names used to identify this Campaign

first_seen (optional)

timestamp

The time that this Campaign was first seen.

 

A summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are earlier than the first seen timestamp, the object may be updated to account for the new data.

last_seen (optional)

timestamp

The time that this Campaign was last seen.

 

A summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are later than the last seen timestamp, the object may be updated to account for the new data.

 

This MUST be greater than or equal to the timestamp in the first_seen property.

objective (optional)

string

The Campaign’s primary goal, objective, desired outcome, or intended effect — what the Threat Actor or Intrusion Set hopes to accomplish with this Campaign.

 

4.2.2 Relationships

These are the relationships explicitly defined between the Campaign object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

campaign

attributed-to

intrusion-set, threat-actor

This Relationship describes that the Intrusion Set or Threat Actor that is involved in carrying out the Campaign.

 

For example, an attributed-to Relationship from the Glass Gazelle Campaign to the Urban Fowl Threat Actor means that the actor carried out or was involved in some of the activity described by the Campaign.

campaign

compromises

infrastructure

This Relationship describes that the Campaign compromises the related Infrastructure.

campaign

originates-from

location

This Relationship describes that the Campaign originates from the related Location.

 

For example, an originates-from relationship from the Glass Gazelle Campaign to a Location representing North America means that Glass Gazelle appears to originate from or is located in North America.

campaign

targets

identity, location, vulnerability

This Relationship describes that the Campaign uses exploits of the related Vulnerability or targets the type of victims described by the related Identity or Location.

 

For example, a targets Relationship from the Glass Gazelle Campaign to a Vulnerability in a blogging platform indicates that attacks performed as part of Glass Gazelle often exploit that Vulnerability.

 

Similarly, a targets Relationship from the Glass Gazelle Campaign to an Identity describing the energy sector in the United States means that the Campaign typically carries out attacks against targets in that sector.

campaign

uses

attack-pattern, infrastructure, malware, tool

This Relationship describes that attacks carried out as part of the Campaign typically use the related Attack Pattern, Infrastructure, Malware, or Tool.

 

For example, a uses Relationship from the Glass Gazelle Campaign to the xInject Malware indicates that xInject is often used during attacks attributed to that Campaign.

 

A campaign, threat actor, intrusion set, malware, or tool takes infrastructure and compromises and/or uses it for their own.

Reverse Relationships

indicator

indicates

campaign

See forward relationship for definition.

 

Examples

{

  "type": "campaign",

  "spec_version": "2.1",

  "id": "campaign--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "name": "Green Group Attacks Against Finance",

  "description": "Campaign by Green Group against a series of targets in the financial services sector."

}

 

4.3 Course of Action

Type Name: course-of-action

 

Note: The Course of Action object in STIX 2.1 is a stub. It is included to support basic use cases (such as sharing prose courses of action) but does not support the ability to represent automated courses of action or contain properties to represent metadata about courses of action. Future STIX 2 releases will expand it to include these capabilities.

 

A Course of Action is an action taken either to prevent an attack or to respond to an attack that is in progress. It may describe technical, automatable responses (applying patches, reconfiguring firewalls) but can also describe higher level actions like employee training or policy changes. For example, a course of action to mitigate a vulnerability could describe applying the patch that fixes it.

 

The Course of Action SDO contains a textual description of the action; a reserved action property also serves as placeholder for future inclusion of machine automatable courses of action.

4.3.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Course of Action Specific Properties

name, description, action

Property Name

Type

Description

type (required)

string

The value of this property MUST be course-of-action.

name (required)

string

A name used to identify the Course of Action.

description (optional)

string

A description that provides more details and context about the Course of Action, potentially including its purpose and its key characteristics.

action (reserved)

RESERVED

RESERVED – To capture structured/automated courses of action.

 

4.3.2 Relationships

These are the relationships explicitly defined between the Course of Action object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

course-of-action

investigates

indicator

This Relationship describes that the Course of Action can be used to investigate the Indicator.

course-of-action

mitigates

attack-pattern,

indicator, malware,

tool,

vulnerability

 

 

 

This Relationship describes that the Course of Action can mitigate (e.g. respond to a threat) the related Attack Pattern, Indicator, Malware, Vulnerability, or Tool.

 

For example, a mitigates Relationship from a Course of Action object to a Malware object indicates that the course of action mitigates the malware.

course-of-action

remediates

malware, vulnerability

This Relationship describes that the Course of Action can be used to remediate (e.g. clean up) the malware or vulnerability

Reverse Relationships

 

​Examples

[

  {

    "type": "course-of-action",

    "spec_version": "2.1",

    "id": "course-of-action--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:03:48.000Z",

    "modified": "2016-04-06T20:03:48.000Z",

    "name": "Add TCP port 80 Filter Rule to the existing Block UDP 1434 Filter",

    "description": "This is how to add a filter rule to block inbound access to TCP port 80 to the existing UDP 1434 filter ..."

  },

  {

    "type": "relationship",

    "spec_version": "2.1",

    "id": "relationship--44298a74-ba52-4f0c-87a3-1824e67d7fad",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:07:10.000Z",

    "modified": "2016-04-06T20:07:10.000Z",

    "relationship_type": "mitigates",

    "source_ref": "course-of-action--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

    "target_ref": "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b"

  },

  {

    "type": "malware",

    "spec_version": "2.1",

    "id": "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:07:09.000Z",

    "modified": "2016-04-06T20:07:09.000Z",

    "name": "Poison Ivy",

    ...

  }

]


 

4.4 Grouping

Type Name: grouping

 

A Grouping object explicitly asserts that the referenced STIX Objects have a shared context, unlike a STIX Bundle (which explicitly conveys no context). A Grouping object should not be confused with an intelligence product, which should be conveyed via a STIX Report.

 

A STIX Grouping object might represent a set of data that, in time, given sufficient analysis, would mature to convey an incident or threat report as a STIX Report object. For example, a Grouping could be used to characterize an ongoing investigation into a security event or incident. A Grouping object could also be used to assert that the referenced STIX Objects are related to an ongoing analysis process, such as when a threat analyst is collaborating with others in their trust community to examine a series of Campaigns and Indicators. The Grouping SDO contains a list of references to SDOs, SCOs, and SROs, along with an explicit statement of the context shared by the content, a textual description, and the name of the grouping.

4.4.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Grouping Specific Properties

name, description, context, object_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be grouping.

name (optional)

string

A name used to identify the Grouping.

description (optional)

string

A description that provides more details and context about the Grouping, potentially including its purpose and its key characteristics.

context (required)

open-vocab

A short descriptor of the particular context shared by the content referenced by the Grouping.

The value for this property SHOULD come from the
grouping-context-ov open vocabulary.

object_refs (required)

list of type identifier

Specifies the STIX Objects that are referred to by this Grouping.

 

4.4.2 Relationships

There are no relationships explicitly defined between the Grouping object and other STIX Objects, other than those defined as common relationships. The first section lists the embedded relationships by property name along with their corresponding target.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

object_refs

list of type identifier (of type STIX Object)

Common Relationships

duplicate-of, derived-from, related-to

Source

Name

Target

Description

Examples

A standalone Grouping; the consumer may or may not already have access to the referenced STIX Objects.

{

  "type": "grouping",

  "spec_version": "2.1",

  "id": "grouping--84e4d88f-44ea-4bcd-bbf3-b2c1c320bcb3",

  "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

  "created": "2015-12-21T19:59:11.000Z",

  "modified": "2015-12-21T19:59:11.000Z",

  "name": "The Black Vine Cyberespionage Group",

  "description": "A simple collection of Black Vine Cyberespionage Group attributed intel",

  "context": "suspicious-activity",

  "object_refs": [

    "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

    "campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",

    "relationship--f82356ae-fe6c-437c-9c24-6b64314ae68a",

    "file--0203b5c8-f8b6-4ddb-9ad0-527d727f968b"

  ]

}

 

4.5 Identity

Type Name: identity

 

Identities can represent actual individuals, organizations, or groups (e.g., ACME, Inc.) as well as classes of individuals, organizations, systems or groups (e.g., the finance sector).

 

The Identity SDO can capture basic identifying information, contact information, and the sectors that the Identity belongs to. Identity is used in STIX to represent, among other things, targets of attacks, information sources, object creators, and threat actor identities.

4.5.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Identity Specific Properties

name, description, roles, identity_class, sectors, contact_information

Property Name

Type

Description

type (required)

string

The value of this property MUST be identity.

name (required)

string

The name of this Identity. When referring to a specific entity (e.g., an individual or organization), this property SHOULD contain the canonical name of the specific entity.

description (optional)

string

A description that provides more details and context about the Identity, potentially including its purpose and its key characteristics.

roles (optional)

list of type string

The list of roles that this Identity performs (e.g., CEO, Domain Administrators, Doctors, Hospital, or Retailer). No open vocabulary is yet defined for this property.

identity_class (optional)

open-vocab

The type of entity that this Identity describes, e.g., an individual or organization.

 

The value for this property SHOULD come from the identity-class-ov open vocabulary.

sectors (optional)

list of type open-vocab

The list of industry sectors that this Identity belongs to.

 

The values for this property SHOULD come from the industry-sector-ov open vocabulary.

contact_information (optional)

string

The contact information (e-mail, phone number, etc.) for this Identity. No format for this information is currently defined by this specification.

 

4.5.2 Relationships

These are the relationships explicitly defined between the Identity object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

identity

located-at

location

This Relationship describes that the Identity is located at or in the related Location.

 

For example, a located-at relationship from the ACME Corporation to a Location representing the United States means that ACME Corporation is located in the United States.

Reverse Relationships

attack-pattern, campaign,

intrusion-set,

malware,  

threat-actor,

tool

targets

identity

See forward relationship for definition.

threat-actor

attributed-to, impersonates

identity

See forward relationship for definition.

 

Examples

An Identity for an individual named John Smith

{

  "type": "identity",

  "spec_version": "2.1",

  "id": "identity--023d105b-752e-4e3c-941c-7d3f3cb15e9e",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "name": "John Smith",

  "identity_class": "individual"

}

 

An Identity for a company named ACME Widget, Inc.

{

  "type": "identity",

  "spec_version": "2.1",

  "id": "identity--e5f1b90a-d9b6-40ab-81a9-8a29df4b6b65",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "name": "ACME Widget, Inc.",

  "identity_class": "organization"

}

 

4.6 Indicator

Type Name: indicator

 

Indicators contain a pattern that can be used to detect suspicious or malicious cyber activity. For example, an Indicator may be used to represent a set of malicious domains and use the STIX Patterning Language (see section 9) to specify these domains.

 

The Indicator SDO contains a simple textual description, the Kill Chain Phases that it detects behavior in, a time window for when the Indicator is valid or useful, and a required pattern property to capture a structured detection pattern. Conforming STIX implementations MUST support the STIX Patterning Language as defined in section 9.

 

Relationships from the Indicator can describe the malicious or suspicious behavior that it directly detects (Malware, Tool, and Attack Pattern). In addition, it may also imply the presence of a Campaigns, Intrusion Sets, and Threat Actors, etc.

4.6.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Indicator Specific Properties

name, description, indicator_types, pattern, valid_from, valid_until, kill_chain_phases

Property Name

Type

Description

type (required)

string

The value of this property MUST be indicator.

name (optional)

string

A name used to identify the Indicator.

Producers SHOULD provide this property to help products and analysts understand what this Indicator actually does.

description (optional)

string

A description that provides more details and context about the Indicator, potentially including its purpose and its key characteristics.

 

Producers SHOULD provide this property to help products and analysts understand what this Indicator actually does.

indicator_types (optional)

list of type open-vocab

A set of categorizations for this indicator.

 

The values for this property SHOULD come from the indicator-type-ov open vocabulary.

pattern (required)

string

The detection pattern for this Indicator MAY be expressed as a STIX Pattern as specified in section 9 or another appropriate language such as SNORT, YARA, etc.

pattern_type (required)

open-vocab

The pattern language used in this indicator.

 

The value for this property SHOULD come from the pattern-type-ov open vocabulary.

 

The value of this property MUST match the type of pattern data included in the pattern property.

pattern_version (optional)

string

The version of the pattern language that is used for the data in the pattern property which MUST match the type of pattern data included in the pattern property.

 

For patterns that do not have a formal specification, the build or code version that the pattern is known to work with SHOULD be used.

 

For the STIX Pattern language, the default value is determined by the specification version of the object.

 

For other languages, the default value SHOULD be the latest version of the patterning language at the time of this object's creation.

valid_from (required)

timestamp

The time from which this Indicator is considered a valid indicator of the behaviors it is related or represents.

valid_until (optional)

timestamp

The time at which this Indicator should no longer be considered a valid indicator of the behaviors it is related to or represents.

 

If the valid_until property is omitted, then there is no constraint on the latest time for which the Indicator is valid.

 

This MUST be greater than the timestamp in the valid_from property.

kill_chain_phases (optional)

list of type kill-chain-phase

The kill chain phase(s) to which this Indicator corresponds.

 

4.6.2 Relationships

These are the relationships explicitly defined between the Indicator object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

indicator

indicates

attack-pattern, campaign, infrastructure,

intrusion-set,

malware,

threat-actor, tool

This Relationship describes that the Indicator can detect evidence of the related Attack Pattern, Campaign, Infrastructure, Intrusion Set, Malware, Threat Actor, or Tool. This evidence may not be direct: for example, the Indicator may detect secondary evidence of the Campaign, such as malware or behavior commonly used by that Campaign.

 

For example, an indicates Relationship from an Indicator to a Campaign object representing Glass Gazelle means that the Indicator is capable of detecting evidence of Glass Gazelle, such as command and control IPs commonly used by that Campaign.

indicator

based-on

observed-data

This relationship describes that the indicator was created based on information from an observed-data object.

 

For example, an indicator may be created based upon the observation of a spearphishing email or created based upon analysis performed on a piece of malware or adversary infrastructure.

Reverse Relationships

course-of-action

investigates

indicator

See forward relationship for definition.

course-of-action

mitigates

indicator

 

 

See forward relationship for definition.

 

 

 

 

Examples

Indicator itself, with context

[

  {

    "type": "indicator",

    "spec_version": "2.1",

    "id": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:03:48.000Z",

    "modified": "2016-04-06T20:03:48.000Z",

    "indicator_types": ["malicious-activity"],

    "name": "Poison Ivy Malware",

    "description": "This file is part of Poison Ivy",

    "pattern": "[ file:hashes.'SHA-256' = '4bac27393bdd9777ce02453256c5577cd02275510b2227f473d03f533924f877' ]",

    "pattern_type": "stix",

    "valid_from": "2016-01-01T00:00:00Z"

  },

  {

    "type": "relationship",

    "spec_version": "2.1",

    "id": "relationship--44298a74-ba52-4f0c-87a3-1824e67d7fad",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:06:37.000Z",

    "modified": "2016-04-06T20:06:37.000Z",

    "relationship_type": "indicates",

    "source_ref": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

    "target_ref": "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b"

  },

  {

    "type": "malware",

    "spec_version": "2.1",

    "id": "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b",

    "created": "2016-04-06T20:07:09.000Z",

    "modified": "2016-04-06T20:07:09.000Z",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "name": "Poison Ivy",

    "malware_types": ["trojan"]

  }

]

 

4.7 Infrastructure

Type Name: infrastructure

 

The Infrastructure SDO represents a type of TTP and describes any systems, software services and any associated physical or virtual resources intended to support some purpose (e.g., C2 servers used as part of an attack, device or server that are part of defense, database servers targeted by an attack, etc.). While elements of an attack can be represented by other SDOs or SCOs, the Infrastructure SDO represents a named group of related data that constitutes the infrastructure.

4.7.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

infrastructure Specific Properties

name, description, infrastructure_types, aliases, kill_chain_phases, first_seen, last_seen

Property Name

Type

Description

type (required)

string

The value of this property MUST be infrastructure.

name (required)

string

A name or characterizing text used to identify the Infrastructure.

description (optional)

string

A description that provides more details and context about the Infrastructure, potentially including its purpose, how it is being used, how it relates to other intelligence activities captured in related objects, and its key characteristics.

infrastructure_types (optional)

list of type open-vocab

The type of infrastructure being described.

 

The values for this property SHOULD come from the infrastructure-type-ov open vocabulary.

aliases (optional)

list of type string

Alternative names used to identify this Infrastructure.

kill_chain_phases (optional)

list of type kill-chain-phase

The list of Kill Chain Phases for which this Infrastructure is used.

first_seen (optional)

timestamp

The time that this Infrastructure was first seen performing malicious activities.

last_seen (optional)

timestamp

The time that this Infrastructure was last seen performing malicious activities.

 

If this property and the first_seen property are both defined, then this property MUST be greater than or equal to the timestamp in the first_seen property.

 

4.7.2 Relationships

These are the relationships explicitly defined between the Infrastructure object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

infrastructure

communicates-with

infrastructure, ipv4-addr, ipv6-addr, domain-name, url

This Relationship documents that this infrastructure instance communicates with the defined network addressable resource.

 

For example, a botnet could communicate with a crypto-currency mining pool. This does not mean that the pool is a part of this infrastructure.

infrastructure

consists-of

infrastructure, observed-data, <All STIX Cyber-observable Objects>

This Relationship documents the objects that are used to make up an infrastructure instance, such as ipv4-addr, ipv6-addr, domain-name, url. An infrastructure instance consists of zero or more objects.

 

While not all SCO types will make sense as infrastructure, allowing any type of SCO prevents artificially restricting what could be used.

infrastructure

controls

infrastructure, malware

This Relationship describes that this infrastructure controls some other infrastructure or a malware instance (or family).

infrastructure

delivers

malware

This Relationship describes that this infrastructure is used to actively deliver a malware instance (or family).

infrastructure

has

vulnerability

This Relationship describes that this specific Infrastructure has this specific Vulnerability.

 

For example, a web server may not have been patched and currently is impacted by a CVE.

infrastructure

hosts

tool, malware

This Relationship describes that this infrastructure has a tool running on it or is used to passively host the tool / malware.

 

For example, an SSH server may be hosted on a piece of infrastructure.

infrastructure

located-at

location

This Relationship describes that the infrastructure originates from the related location.

 

For example, a located-at relationship from the Red Orca C2 infrastructure to a Location representing North America means that the Red Orca C2 Infrastructure appears to originate from or is located in North America.

infrastructure

uses

infrastructure

This Relationship describes that this infrastructure uses this other infrastructure to achieve its objectives.

Reverse Relationships

campaign, intrusion-set,

threat-actor

compromises

infrastructure

See forward relationship for definition.

malware

beacons-to, exfiltrates-to

infrastructure

See forward relationship for definition.

intrusion-set, threat-actor

hosts

infrastructure

See forward relationship for definition.

indicator

indicates

infrastructure

See forward relationship for definition.

intrusion-set,

threat-actor

owns

infrastructure

See forward relationship for definition.

malware,  

tool

targets

infrastructure

See forward relationship for definition.

campaign, intrusion-set,

malware,  

threat-actor, tool

uses

infrastructure

See forward relationship for definition.

 

​Examples (additional examples can be found in Appendix C)

Malware C2 Infrastructure

 

 

 

{

  "type":"infrastructure",

  "spec_version": "2.1",

  "id":"infrastructure--38c47d93-d984-4fd9-b87b-d69d0841628d",

  "created":"2016-05-07T11:22:30.000Z",

  "modified":"2016-05-07T11:22:30.000Z",

  "name":"Poison Ivy C2",

  "infrastructure_types": ["command-and-control"]

}

 

{

  "type": "relationship",

  "spec_version": "2.1",

  "id": "relationship--7aebe2f0-28d6-48a2-9c3e-b0aaa60266ed",

  "created": "2016-05-09T08:17:27.000Z",

  "modified": "2016-05-09T08:17:27.000Z",

  "relationship_type": "controls",

  "source_ref": "infrastructure--38c47d93-d984-4fd9-b87b-d69d0841628d",

  "target_ref": "malware--16f4f3f9-1b68-4abb-bb66-7639d49f1e30"

}

 

{

  "type": "malware",

  "spec_version": "2.1",

  "id": "malware--16f4f3f9-1b68-4abb-bb66-7639d49f1e30",

  "created": "2016-05-08T14:31:09.000Z",

  "modified": "2016-05-08T14:31:09.000Z",

  "is_family": true,

  "malware_types":[

    "remote-access-trojan"

  ],

  "name": "Poison Ivy"

}

 

{

  "type": "relationship",

  "spec_version": "2.1",

  "id": "relationship--7aebe2f0-28d6-48a2-9c3e-b0aaa60266ef",

  "created": "2016-05-09T08:17:27.000Z",

  "modified": "2016-05-09T08:17:27.000Z",

  "relationship_type": "consists-of",

  "source_ref": "infrastructure--38c47d93-d984-4fd9-b87b-d69d0841628d",

  "target_ref": "ipv4-addr--b4e29b62-2053-47c4-bab4-bbce39e5ed67"

}

 

{

  "type": "relationship",

  "spec_version": "2.1",

  "id": "relationship--b82b2819-3b86-4bd5-afb3-fa36cfbc3f18",

  "created": "2016-05-09T08:17:27.000Z",

  "modified": "2016-05-09T08:17:27.000Z",

  "relationship_type": "consists-of",

  "source_ref": "infrastructure--38c47d93-d984-4fd9-b87b-d69d0841628d",

  "target_ref": "ipv4-addr--84445275-e371-444b-baea-ac7d07a180fd"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--b4e29b62-2053-47c4-bab4-bbce39e5ed67",

  "value": "198.51.100.3"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--84445275-e371-444b-baea-ac7d07a180fd",

  "value": "198.52.200.4"

}

 

4.8 Intrusion Set

Type Name: intrusion-set

 

An Intrusion Set is a grouped set of adversarial behaviors and resources with common properties that is believed to be orchestrated by a single organization. An Intrusion Set may capture multiple Campaigns or other activities that are all tied together by shared attributes indicating a commonly known or unknown Threat Actor. New activity can be attributed to an Intrusion Set even if the Threat Actors behind the attack are not known. Threat Actors can move from supporting one Intrusion Set to supporting another, or they may support multiple Intrusion Sets.

 

Where a Campaign is a set of attacks over a period of time against a specific set of targets to achieve some objective, an Intrusion Set is the entire attack package and may be used over a very long period of time in multiple Campaigns to achieve potentially multiple purposes.

 

While sometimes an Intrusion Set is not active, or changes focus, it is usually difficult to know if it has truly disappeared or ended. Analysts may have varying level of fidelity on attributing an Intrusion Set back to Threat Actors and may be able to only attribute it back to a nation state or perhaps back to an organization within that nation state.

4.8.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Intrusion Set Specific Properties

name, description, aliases, first_seen, last_seen, goals, resource_level, primary_motivation, secondary_motivations

Property Name

Type

Description

type (required)

string

The value of this property MUST be intrusion-set.

name (required)

string

A name used to identify this Intrusion Set.

description (optional)

string

A description that provides more details and context about the Intrusion Set, potentially including its purpose and its key characteristics.

aliases (optional)

list of type string

Alternative names used to identify this Intrusion Set.

first_seen (optional)

timestamp

The time that this Intrusion Set was first seen.

 

A summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are earlier than the first seen timestamp, the object may be updated to account for the new data.

last_seen (optional)

timestamp

The time that this Intrusion Set was last seen.

 

This property is a summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are later than the last seen timestamp, the object may be updated to account for the new data.

 

This MUST be greater than or equal to the timestamp in the first_seen property.

goals (optional)

list of type string

The high-level goals of this Intrusion Set, namely, what are they trying to do. For example, they may be motivated by personal gain, but their goal is to steal credit card numbers. To do this, they may execute specific Campaigns that have detailed objectives like compromising point of sale systems at a large retailer.

 

Another example: to gain information about latest merger and IPO information from ACME Bank.

resource_level (optional)

open-vocab

This property specifies the organizational level at which this Intrusion Set typically works, which in turn determines the resources available to this Intrusion Set for use in an attack.

 

The value for this property SHOULD come from the attack-resource-level-ov  open vocabulary.

primary_motivation (optional)

open-vocab

The primary reason, motivation, or purpose behind this Intrusion Set. The motivation is why the Intrusion Set wishes to achieve the goal (what they are trying to achieve).

 

For example, an Intrusion Set with a goal to disrupt the finance sector in a country might be motivated by ideological hatred of capitalism.

 

The value for this property SHOULD come from the attack-motivation-ov open vocabulary.

secondary_motivations (optional)

list of type open-vocab

The secondary reasons, motivations, or purposes behind this Intrusion Set. These motivations can exist as an equal or near-equal cause to the primary motivation. However, it does not replace or necessarily magnify the primary motivation, but it might indicate additional context. The position in the list has no significance.

 

The values for this property SHOULD come from the attack-motivation-ov open vocabulary.

 

4.8.2 Relationships

These are the relationships explicitly defined between the Intrusion Set object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

intrusion-set

attributed-to

threat-actor

This Relationship describes that the related Threat Actor is involved in carrying out the Intrusion Set.

 

For example, an attributed-to Relationship from the Red Orca Intrusion Set to the Urban Fowl Threat Actor means that the actor carried out or was involved in some of the activity described by the Intrusion Set.

intrusion-set

compromises

infrastructure

This Relationship describes that the Intrusion Set compromises the related Infrastructure.

intrusion-set

hosts, owns

infrastructure

This Relationship describes that the Intrusion Set hosts or owns the related Infrastructure (e.g. an actor that rents botnets to other threat actors).

intrusion-set

originates-from

location

This Relationship describes that the Intrusion Set originates from the related location and SHOULD NOT be used to define attribution.

 

For example, an originates-from relationship from the Red Orca Intrusion Set to a Location representing North America means that the Red Orca Intrusion Set appears to originate from or is located in North America.

intrusion-set

targets

identity, location, vulnerability

This Relationship describes that the Intrusion Set uses exploits of the related Vulnerability or targets the type of victims described by the related Identity or Location.

 

For example, a targets Relationship from the Red Orca Intrusion Set to a Vulnerability in a blogging platform indicates that attacks performed as part of Red Orca often exploit that Vulnerability.

 

Similarly, a targets Relationship from the Red Orca Intrusion Set to an Identity describing the energy sector in the United States means that the Intrusion Set typically carries out attacks against targets in that sector.

intrusion-set

uses

attack-pattern, infrastructure, malware, tool

This Relationship describes that attacks carried out as part of the Intrusion Set typically use the related Attack Pattern, Infrastructure, Malware, or Tool.

 

For example, a uses Relationship from the Red Orca Intrusion Set to the xInject Malware indicates that xInject is often used during attacks attributed to that Intrusion Set.

Reverse Relationships

campaign

attributed-to

intrusion-set

See forward relationship for definition.

malware

authored-by

intrusion-set

See forward relationship for definition.

indicator

indicates

intrusion-set

See forward relationship for definition.

 

​Examples

{

  "type": "intrusion-set",

  "spec_version": "2.1",

  "id": "intrusion-set--4e78f46f-a023-4e5f-bc24-71b3ca22ec29",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:48.000Z",

  "modified": "2016-04-06T20:03:48.000Z",

  "name": "Bobcat Breakin",

  "description": "Incidents usually feature a shared TTP of a bobcat being released within the building containing network access, scaring users to leave their computers without locking them first. Still determining where the threat actors are getting the bobcats.",

  "aliases": ["Zookeeper"],

  "goals": ["acquisition-theft", "harassment", "damage"]

}

 

4.9 Location

Type Name: location

 

A Location represents a geographic location. The location may be described as any, some or all of the following: region (e.g., North America), civic address (e.g. New York, US), latitude and longitude.

 

Locations are primarily used to give context to other SDOs. For example, a Location could be used in a relationship to describe that the Bourgeois Swallow intrusion set originates from Eastern Europe.

The Location SDO can be related to an Identity or Intrusion Set to indicate that the identity or intrusion set is located in that location. It can also be related from a malware or attack pattern to indicate that they target victims in that location. The Location object describes geographic areas, not governments, even in cases where that area might have a government. For example, a Location representing the United States describes the United States as a geographic area, not the federal government of the United States.

 

At least one of the following properties/sets of properties MUST be provided:

      region

      country

      latitude and longitude

 

When a combination of properties is provided (e.g. a region and a latitude and longitude) the more precise properties are what the location describes. In other words, if a location contains both a region of northern-america and a country of us, then the location describes the United States, not all of North America. In cases where a latitude and longitude are specified without a precision, the location describes the most precise other value.

 

If precision is specified, then the datum for latitude and longitude MUST be WGS 84 [WGS84]. Organizations specifying a designated location using latitude and longitude SHOULD specify the precision which is appropriate for the scope of the location being identified. The scope is defined by the boundary as outlined by the precision around the coordinates.

4.9.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Location Specific Properties

name, description, latitude, longitude, precision, region, country, administrative_area, city, street_address, postal_code

Property Name

Type

Description

type (required)

string

The value of this property MUST be location.

name (optional)

string

A name used to identify the Location.

description (optional)

string

A textual description of the Location.

latitude (optional)

float

The latitude of the Location in decimal degrees. Positive numbers describe latitudes north of the equator, and negative numbers describe latitudes south of the equator. The value of this property MUST be between -90.0 and 90.0, inclusive.

 

If the longitude property is present, this property MUST be present.

longitude (optional)

float

The longitude of the Location in decimal degrees. Positive numbers describe longitudes east of the prime meridian and negative numbers describe longitudes west of the prime meridian. The value of this property MUST be between -180.0 and 180.0, inclusive.

 

If the latitude property is present, this property MUST be present.

precision (optional)

float

Defines the precision of the coordinates specified by the latitude and longitude properties. This is measured in meters. The actual Location may be anywhere up to precision meters from the defined point.

 

If this property is not present, then the precision is unspecified.

 

If this property is present, the latitude and longitude properties MUST be present.

region (optional)

open-vocab

The region that this Location describes.

 

The value for this property SHOULD come from the region-ov open vocabulary.

country (optional)

string

The country that this Location describes. This property SHOULD contain a valid ISO 3166-1 ALPHA-2 Code [ISO3166-1].

administrative_area (optional)

string

The state, province, or other sub-national administrative area that this Location describes.

city (optional)

string

The city that this Location describes.

street_address (optional)

string

The street address that this Location describes. This property includes all aspects or parts of the street address. For example, some addresses may have multiple lines including a mailstop or apartment number.

postal_code (optional)

string

The postal code for this Location.

 

4.9.2 Relationships

These are the relationships explicitly defined between the Location object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

Reverse Relationships

identity,

infrastructure, threat-actor

 

located-at

location

See forward relationship for definition.

campaign, intrusion-set, malware

originates-from

location

See forward relationship for definition.

attack-pattern, campaign, intrusion-set, malware, threat-actor, tool

targets

location

See forward relationship for definition.

 

Examples

{

  "type": "location",

  "spec_version": "2.1",

  "id": "location--a6e9345f-5a15-4c29-8bb3-7dcc5d168d64",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "region": "northern-america"

}

 

{

  "type": "location",

  "spec_version": "2.1",

  "id": "location--a6e9345f-5a15-4c29-8bb3-7dcc5d168d64",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "region": "south-eastern-asia",

  "country": "th",

  "administrative_area": "Tak",

  "postal_code": "63170"

}

 

{

  "type": "location",

  "spec_version": "2.1",

  "id": "location--a6e9345f-5a15-4c29-8bb3-7dcc5d168d64",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:00.000Z",

  "modified": "2016-04-06T20:03:00.000Z",

  "latitude": "48.8566",

  "longitude": "2.3522"

}

 

4.10 Malware

Type Name: malware

 

Malware is a type of TTP that represents malicious code. It generally refers to a program that is inserted into a system, usually covertly. The intent is to compromise the confidentiality, integrity, or availability of the victim's data, applications, or operating system (OS) or otherwise annoy or disrupt the victim.

 

The Malware SDO characterizes, identifies, and categorizes malware instances and families from data that may be derived from analysis. This SDO captures detailed information about how the malware works and what it does. This SDO captures contextual data relevant to sharing Malware data without requiring the full analysis provided by the Malware Analysis SDO.

 

The Indicator SDO provides intelligence producers with the ability to define, using the STIX Pattern Grammar in a standard way to identify and detect behaviors associated with malicious activities. Although the Malware SDO provides vital intelligence on a specific instance or malware family, it does not provide a standard grammar that the Indicator SDO provides to identify those properties in security detection systems designed to process the STIX Pattern grammar. We strongly encourage the use of STIX Indicators for the detection of actual malware, due to its use of the STIX Patterning language and the clear semantics that it provides.

 

To minimize the risk of a consumer compromising their system in parsing malware samples, producers SHOULD consider sharing defanged content (archive and password-protected samples) instead of raw, base64-encoded malware samples.

4.10.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Malware Specific Properties

name, description, malware_types, is_family, aliases, kill_chain_phases, first_seen, last_seen, operating_system_refs, architecture_execution_envs, implementation_languages, capabilities, sample_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be malware.

name (optional)

string

A name used to identify the malware instance or family, as specified by the producer of the SDO. For a malware family the name MUST be defined. If a name for a malware instance is not available, the SHA-256 hash value or sample’s filename MAY be used instead.

description (optional)

string

A description that provides more details and context about the malware instance or family, potentially including its purpose and its key characteristics.

malware_types (optional)

list of type open-vocab

A set of categorizations for the malware being described.

 

The values for this property SHOULD come from the malware-type-ov open vocabulary.

is_family (required)

boolean

Whether the object represents a malware family (if true) or a malware instance (if false).

aliases (optional)

list of type string

Alternative names used to identify this malware or malware family.

kill_chain_phases (optional)

list of type kill-chain-phase

The list of Kill Chain Phases for which this malware can be used.

first_seen (optional)

timestamp

The time that the malware instance or family was first seen.

 

This property is a summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are earlier than the first seen timestamp, the object may be updated to account for the new data.

last_seen (optional)

timestamp

The time that the malware family or malware instance was last seen.

 

This property is a summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are later than the last_seen timestamp, the object may be updated to account for the new data.

 

This MUST be greater than or equal to the timestamp in the first_seen property.

operating_system_refs (optional)

list of type identifier

The operating systems that the malware family or malware instance is executable on. This applies to virtualized operating systems as well as those running on bare metal.

 

The value of this property MUST be the identifier for a SCO software object.

architecture_execution_envs (optional)

list of type open-vocab

The processor architectures (e.g., x86, ARM, etc.) that the malware instance or family is executable on.

 

The values for this property SHOULD come from the processor-architecture-ov open vocabulary.

implementation_languages (optional)

list of type open-vocab

The programming language(s) used to implement the malware instance or family.


The values for this property SHOULD come from the
implementation-language-ov open vocabulary.

capabilities (optional)

list of type open-vocab

Any of the capabilities identified for the malware instance or family.

 

The values for this property SHOULD come from the malware-capabilities-ov open vocabulary.

sample_refs (optional)

list of type identifier

The sample_refs property specifies a list of identifiers of the SCO file or artifact objects associated with this malware instance(s) or family.

 

If is_family is false, then all samples listed in sample_refs MUST refer to the same binary data.

 

4.10.2 Relationships

These are the relationships explicitly defined between the Malware object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

sample_refs

list of type identifier (of type file or artifact)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

malware

authored-by

threat-actor, intrusion-set

This Relationship describes that the malware instance or family was developed by the related threat actor or intrusion set.

malware

beacons-to, exfiltrates-to

infrastructure

This Relationship describes that the malware instance or family beacons to or exfiltrates data to the related Infrastructure.

malware

communicates-with

ipv4-addr, ipv6-addr, domain-name, url

This Relationship documents that this malware instance (or family) communicates with (beacons to, connects to, or exfiltrated data to) the defined network addressable resource.

malware

controls

malware

This Relationship documents that this malware instance (or family) can control other malware which may be resident on the same system on which it is executing.

 

Note that this is not meant to imply or state that the malware instance or family drops other malware (which is covered by the drops relationship). Rather, it is meant to state that the malware instance or family is able to subvert or control other malware to achieve its goals.

malware

downloads, drops

malware, tool, file

These Relationships document that this malware instance (or family) downloads or drops another malware instance, tool or file. This is especially common with “first-stage” malware instances such as downloaders and droppers.

malware

exploits

vulnerability

This Relationship documents that this malware instance or family exploits or attempts to exploit a particular vulnerability.

 

For example, an exploits Relationship linking a malware instance or family representing a downloader to a Vulnerability for CVE-2016-0001 means that the malware instance or family exploits that vulnerability.

malware

originates-from

location

This Relationship documents that this malware instance or family originates from a particular location.

malware

targets

identity, infrastructure,

location, vulnerability

This Relationship documents that a malware instance or family is being used to target an Identity, Infrastructure, or Location. For malware families, this can be used to capture the full set of identities, infrastructures, or locations targeted by the family.

 

Similarly, a targets Relationship linking a malware instance or family representing a downloader to an Identity representing the energy sector means that downloader is typically used against targets in the energy sector.

malware

uses

attack-pattern, infrastructure, malware, tool

This Relationship documents that this malware instance or family uses the attack pattern, infrastructure, malware, or tool to achieve its objectives.

 

For example, a uses Relationship from the jay-sm17h Threat Actor to the xInject Malware indicates that xInject is often used by jay-sm17h.

malware

variant-of

malware

This Relationship is used to document that one malware instance or family is a variant of another malware instance or family.

 

Only the following uses of this relationship are valid:

 

Malware instance → Malware family: a Malware instance is a variant of a Malware family. For example, a particular Zeus version 2 sample is a variant of the broader Zeus family.

 

Malware family → Malware family: a Malware family is a variant of another Malware family. For example, the Gameover Zeus family is a variant of the broader Zeus family.

 

Malware instance → Malware instance: a Malware instance is a variant of another Malware instance. For example, a particular Cryptolocker instance that is based on an another Cryptolocker instance with minor changes.

 

Malware family → Malware instance: this relationship MUST NOT be used as it is not semantically valid.

Reverse Relationships

attack-pattern, infrastructure, tool

delivers

malware

See forward relationship for definition.

indicator

indicates

malware

See forward relationship for definition.

course-of-action

mitigates, remediates

malware

See forward relationship for definition.

attack-pattern, campaign, intrusion-set, threat-actor

uses

malware

See forward relationship for definition.

tool

drops

malware

See forward relationship for definition.

infrastructure

controls

malware

See forward relationship for definition.

malware-analysis

characterizes,

av-analysis-of,

static-analysis-of,

dynamic-analysis-of

 

malware

See forward relationship for definition.

Examples

{

  "type": "malware",

  "spec_version": "2.1",

  "id": "malware--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",

  "created": "2016-05-12T08:17:27.000Z",

  "modified": "2016-05-12T08:17:27.000Z",

  "name": "Cryptolocker",

  "description": "A variant of the cryptolocker family",

  "malware_types": ["ransomware"],

  "is_family": false

}

 

4.11 Malware Analysis

Type Name: malware-analysis

 

Malware Analysis captures the metadata and results of a particular static or dynamic analysis performed on a malware instance or family. One of result or analysis_sco_refs properties MUST be provided.

4.11.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Malware Analysis Specific Properties

product, version, host_vm_ref, operating_system_ref, installed_software_ref, configuration_version, module, analysis_engine_version, analysis_definition_version, submitted, analysis_started, analysis_ended, result_name, result, analysis_sco_refs, sample_ref

Property Name

Type

Description

type (required)

string

The value of this property MUST be malware-analysis.

product (required)

string

The name of the analysis engine or product that was used. Product names SHOULD be all lowercase with words separated by a dash "-".

 

For cases where the name of a product cannot be specified, a value of "anonymized" MUST be used.

version (optional)

string

The version of the analysis product that was used to perform the analysis.

host_vm_ref (optional)

identifier

A description of the virtual machine environment used to host the guest operating system (if applicable) that was used for the dynamic analysis of the malware instance or family.

 

If this value is not included in conjunction with the operating_system_ref property, this means that the dynamic analysis may have been performed on bare metal (i.e. without virtualization) or the information was redacted.

 

The value of this property MUST be the identifier for a SCO software object.

operating_system_ref (optional)

identifier

The operating system used for the dynamic analysis of the malware instance or family. This applies to virtualized operating systems as well as those running on bare metal.

 

The value of this property MUST be the identifier for a SCO software object.

installed_software_refs (optional)

list of type identifier

Any non-standard software installed on the operating system (specified through the operating-system value) used for the dynamic analysis of the malware instance or family.

 

The value of this property MUST be the identifier for a SCO software object.

configuration_version (optional)

string

The named configuration of additional product configuration parameters for this analysis run.

 

For example, when a product is configured to do full depth analysis of Window™ PE files. This configuration may have a named version and that named version can be captured in this property. This will ensure additional runs can be configured in the same way.

modules (optional)

list of type

string

The specific analysis modules that were used and configured in the product during this analysis run.

 

For example, configuring a product to support analysis of Dridex.

analysis_engine_version (optional)

string

The version of the analysis engine or product (including AV engines) that was used to perform the analysis.

analysis_definition_version (optional)

string

The version of the analysis definitions used by the analysis tool (including AV tools).

submitted (optional)

timestamp

The date and time that the malware was first submitted for scanning or analysis. This value will stay constant while the scanned date can change. For example, when Malware was submitted to a virus analysis tool.

analysis_started (optional)

timestamp

The date and time that the malware analysis was initiated.

analysis_ended (optional)

timestamp

The date and time that the malware analysis ended.

result_name (optional)

string

The classification result or name assigned to the malware instance by the scanner tool.

result (optional)

open-vocab

The classification result as determined by the scanner or tool analysis process.

 

The value for this property SHOULD come from the malware-result-ov open vocabulary.

analysis_sco_refs (optional)

list of type identifier

This property contains the references to the STIX Cyber-observable Objects that were captured during the analysis process.

sample_ref (optional)

identifier

This property contains the reference to the SCO file, network traffic or artifact object that this malware analysis was performed against.

 

Caution should be observed when creating an SRO between Malware and Malware Analysis objects when the Malware sample_refs property does not contain the SCO that is included in the Malware Analysis sample_ref property.

 

Note, this property can also contain a reference to an SCO which is not associated with Malware (i.e., some SCO which was scanned and found to be benign.)

 

4.11.2 Relationships

These are the relationships explicitly defined between the Malware Analysis object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_markings_refs

list of type identifier (of type marking-definition)

host_vm_ref

identifier (of type software)

operating_system_ref

identifier (of type software)

installed_software_refs

list of type identifier (of type software)

analysis_sco_refs

list of type identifier (of type STIX Object)

sample_ref

identifier (of type file, network-traffic, and artifact)

Common Relationships

duplicate-of, derived-from, related-to

Source

Name

Target

Description

malware-analysis

characterizes

malware

This Relationship describes that the malware analysis describes the related malware.

malware-analysis

analysis-of

malware

This Relationship describes that the malware analysis is results for the related malware.

malware-analysis

static-analysis-of

malware

This Relationship describes that the malware analysis is static analysis results for the related malware.

malware-analysis

dynamic-analysis-of

malware

This Relationship describes that the malware analysis is dynamic analysis results for the related malware.

Reverse Relationships

 

Examples

{

    "type": "malware",

    "spec_version": "2.1",

    "id": "malware--8bcf14e9-2ba2-44ef-9e32-fbbc9d2608b2",

    "created": "2020-01-16T18:52:24.277Z",

    "modified": "2020-01-16T18:52:24.277Z",

    "name": "a92e5b2bae.exe",

    "malware_types": [

        "unknown"

    ],

    "is_family": false,

    "sample_refs": [

        "file--1190f2c9-166f-55f1-9706-eea3971d8082"

    ]

}

{

    "type": "malware-analysis",

    "spec_version": "2.1",

    "id": "malware-analysis--d25167b7-fed0-4068-9ccd-a73dd2c5b07c",

    "created": "2020-01-16T18:52:24.277Z",

    "modified": "2020-01-16T18:52:24.277Z",

    "product": "microsoft",

    "analysis_engine_version": "5.1.0",

    "analysis_definition_version": "053514-0062",

    "analysis_started": "2012-02-11T08:36:14Z",

    "analysis_ended": "2012-02-11T08:36:14Z",

    "av_result": "malicious"

}

{

    "type": "relationship",

    "spec_version": "2.1",

    "id": "relationship--014841f8-eb38-4673-9904-70f67c92dd8b",

    "created": "2020-01-16T18:52:24.277Z",

    "modified": "2020-01-16T18:52:24.277Z",

    "relationship_type": "analysis-of",

    "source_ref": "malware-analysis--d25167b7-fed0-4068-9ccd-a73dd2c5b07c",

    "target_ref": "malware--8bcf14e9-2ba2-44ef-9e32-fbbc9d2608b2"

}

{

    "type": "file",

    "id": "file--1190f2c9-166f-55f1-9706-eea3971d8082",

    "spec_version": "2.1",

    "hashes": {

        "MD5": "a92e5b2bae0b4b3a3d81c85610b95cd4",

        "SHA-1": "5374e08903744ceeaedd8f5e1bfc06b2c4688e76"

    },

    "size": 77312,

    "name": "a92e5b2bae.exe",

    "parent_directory_ref": "directory--255cb0e4-8bdb-5d63-bb32-9c6f0b733ab2"

}

{

    "type": "directory",

    "id": "directory--255cb0e4-8bdb-5d63-bb32-9c6f0b733ab2",

    "spec_version": "2.1",

    "path": "C:\\"

}

 

4.12 Note

Type Name: note

 

A Note is intended to convey informative text to provide further context and/or to provide additional analysis not contained in the STIX Objects, Marking Definition objects, or Language Content objects which the Note relates to. Notes can be created by anyone (not just the original object creator).

 

For example, an analyst may add a Note to a Campaign object created by another organization indicating that they've seen posts related to that Campaign on a hacker forum.

 

Because Notes are typically (though not always) created by human analysts and are comprised of human-oriented text, they contain an additional property to capture the analyst(s) that created the Note. This is distinct from the created_by_ref property, which is meant to capture the organization that created the object.

4.12.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Note Specific Properties

abstract, content, authors, object_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be note

abstract (optional)

string

A brief summary of the note content.

content (required)

string

The content of the note.

authors (optional)

list of type  string

The name of the author(s) of this note (e.g., the analyst(s) that created it).

object_refs (required)

list of type identifier

The STIX Objects that the note is being applied to.

 

4.12.2 Relationships

There are no relationships explicitly defined between the Note object and other STIX Objects, other than the embedded relationships listed below. These embedded relationships are listed by property name along with their corresponding target.

 

Embedded Relationships

created_by_ref

identity

object_marking_refs

list of type identifier (of type marking-definition)

object_refs

list of type identifier (of type STIX Object)

 

Examples

A generic Note defining additional context and shows an optional external reference to a ticketing system.

{

  "type": "note",

  "spec_version": "2.1",

  "id": "note--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",

  "created": "2016-05-12T08:17:27.000Z",

  "modified": "2016-05-12T08:17:27.000Z",

  "external_references": [

    {

      "source_name": "job-tracker",

      "external_id": "job-id-1234"

    }

  ],

  "abstract": "Tracking Team Note#1",

  "content": "This note indicates the various steps taken by the threat analyst team to investigate this specific campaign. Step 1) Do a scan 2) Review scanned results for identified hosts not known by external intel…etc.",

  "authors": ["John Doe"],

  "object_refs": ["campaign--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"]

}

 

4.13 Observed Data

Type Name: observed-data

 

Observed Data conveys information about cyber security related entities such as files, systems, and networks using the STIX Cyber-observable Objects (SCOs). For example, Observed Data can capture information about an IP address, a network connection, a file, or a registry key. Observed Data is not an intelligence assertion, it is simply the raw information without any context for what it means.

 

Observed Data can capture that a piece of information was seen one or more times. Meaning, it can capture both a single observation of a single entity (file, network connection) as well as the aggregation of multiple observations of an entity. When the number_observed property is 1 the Observed Data represents a single entity. When the number_observed property is greater than 1, the Observed Data represents several instances of an entity potentially collected over a period of time. If a time window is known, that can be captured using the first_observed and last_observed properties. When used to collect aggregate data, it is likely that some properties in the SCO (e.g., timestamp properties) will be omitted because they would differ for each of the individual observations.

 

Observed Data may be used by itself (without relationships) to convey raw data collected from any source including analyst reports, sandboxes, and network and host-based detection tools. An intelligence producer conveying Observed Data SHOULD include as much context (e.g. SCOs) as possible that supports the use of the observed data set in systems expecting to utilize the Observed Data for improved security. This includes all SCOs that matched on an Indicator pattern and are represented in the collected observed event (or events) being conveyed in the Observed Data object. For example, a firewall could emit a single Observed Data instance containing a single Network Traffic object for each connection it sees. The firewall could also aggregate data and instead send out an Observed Data instance every ten minutes with an IP address and an appropriate number_observed value to indicate the number of times that IP address was observed in that window. A sandbox could emit an Observed Data instance containing a file hash that it discovered.

 

Observed Data may also be related to other SDOs to represent raw data that is relevant to those objects. For example, the Sighting Relationship object, can relate an Indicator, Malware, or other SDO to a specific Observed Data to represent the raw information that led to the creation of the Sighting (e.g., what was actually seen that suggested that a particular instance of malware was active).

 

To support backwards compatibility, related SCOs can still be specified using the objects properties, Either the objects property or the object_refs property MUST be provided, but both MUST NOT be present at the same time.

 

4.13.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Observed Data Specific Properties

first_observed, last_observed, number_observed, objects, object_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be observed-data.

first_observed (required)

timestamp

The beginning of the time window during which the data was seen.

 

last_observed (required)

timestamp

The end of the time window during which the data was seen.

 

This MUST be greater than or equal to the timestamp in the first_observed property.

number_observed (required)

integer

The number of times that each Cyber-observable object represented in the objects or object_ref property was seen. If present, this MUST be an integer between 1 and 999,999,999 inclusive.

 

If the number_observed property is greater than 1, the data contained in the objects or object_refs property was seen multiple times. In these cases, object creators MAY omit properties of the SCO (such as timestamps) that are specific to a single instance of that observed data.

objects (optional - deprecated)

observable-container

A dictionary of SCO representing the observation. The dictionary MUST contain at least one object.

 

The cyber observable content MAY include multiple objects if those objects are related as part of a single observation. Multiple objects not related to each other via cyber observable Relationships MUST NOT be contained within the same Observed Data instance.

 

This property MUST NOT be present if object_refs is provided.

 

For example, a Network Traffic object and two IPv4 Address objects related via the src_ref and dst_ref properties can be contained in the same Observed Data because they are all related and used to characterize that single entity.

 

NOTE: this property is now deprecated in favor of object_refs and will be removed in a future version.

object_refs (optional)

list of type identifier

A list of SCOs and SROs representing the observation. The object_refs MUST contain at least one SCO reference if defined.

 

The object_refs MAY include multiple SCOs and their corresponding SROs, if those SCOs are related as part of a single observation.

 

For example, a Network Traffic object and two IPv4 Address objects related via the src_ref and dst_ref properties can be contained in the same Observed Data because they are all related and used to characterize that single entity.

 

This property MUST NOT be present if objects is provided.

4.13.2 Relationships

There are no forward relationships explicitly defined between the Observed Data object and other STIX Objects, other than those defined as common relationships. The first section lists the embedded relationships by property name along with their corresponding target. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

In addition to the relationships created using the generic Relationship object, Observed Data is also a direct target of the Sighting SRO. Sightings represent a relationship between some intelligence entity that was seen (e.g., an Indicator or Malware instance), where it was seen, and what evidence was actually seen. The evidence (or raw data) in that relationship is captured as Observed Data.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

object_refs

list of type identifier (of type SCO or SRO)

Common Relationships

duplicate-of, derived-from, related-to

Source

Name

Target

Description

Reverse Relationships

indicator

 

based-on

observed-data

See forward relationship for definition.

infrastructure

consists-of

observed-data

See forward relationship for definition

Examples

Observed Data that references two SCOs

{

  "type": "observed-data",

  "spec_version": "2.1",

  "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T19:58:16.000Z",

  "modified": "2016-04-06T19:58:16.000Z",

  "first_observed": "2015-12-21T19:00:00Z",

  "last_observed": "2015-12-21T19:00:00Z",

  "number_observed": 50,

  "object_refs": [

    "ipv4-address--efcd5e80-570d-4131-b213-62cb18eaa6a8",

    "domain-name--ecb120bf-2694-4902-a737-62b74539a41b"

  ]

}

 

{

  "type": "domain-name",

  "spec_version": "2.1",

  "id": "domain-name--ecb120bf-2694-4902-a737-62b74539a41b",

  "value": "example.com",

  "resolves_to_refs": ["ipv4-addr--efcd5e80-570d-4131-b213-62cb18eaa6a8"]

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--efcd5e80-570d-4131-b213-62cb18eaa6a8",

  "value": "198.51.100.3"

}

 

4.14 Opinion

Type Name: opinion

 

An Opinion is an assessment of the correctness of the information in a STIX Object produced by a different entity. The primary property is the opinion property, which captures the level of agreement or disagreement using a fixed scale. That fixed scale also supports a numeric mapping to allow for consistent statistical operations across opinions.

 

For example, an analyst from a consuming organization might say that they "strongly disagree" with a Campaign object and provide an explanation about why. In a more automated workflow, a SOC operator might give an Indicator "one star" in their TIP (expressing "strongly disagree") because it is considered to be a false positive within their environment. Opinions are subjective, and the specification does not address how best to interpret them. Sharing communities are encouraged to provide clear guidelines to their constituents regarding best practice for the use of Opinion objects within the community.

 

Because Opinions are typically (though not always) created by human analysts and are comprised of human-oriented text, they contain an additional property to capture the analyst(s) that created the Opinion. This is distinct from the created_by_ref property, which is meant to capture the organization that created the object.

4.14.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Opinion Specific Properties

explanation, authors, opinion, object_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be opinion

explanation (optional)

string

An explanation of why the producer has this Opinion. For example, if an Opinion of strongly-disagree is given, the explanation can contain an explanation of why the Opinion producer disagrees and what evidence they have for their disagreement.

authors (optional)

list of type string

The name of the author(s) of this Opinion (e.g., the analyst(s) that created it).

opinion (required)

enum

The opinion that the producer has about all of the STIX Object(s) listed in the object_refs property.

 

The values of this property MUST come from the opinion-enum enumeration.

object_refs (required)

list of type identifier

The STIX Objects that the Opinion is being applied to.

 

4.14.2 Relationships                                  

There are no relationships explicitly defined between the Opinion object and other STIX Objects, other than those defined as common relationships. The first section lists the embedded relationships by property name along with their corresponding target.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship name or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identity

object_marking_refs

list of type identifier (of type marking-definition)

object_refs

list of type identifier (of type any STIX Object type)

Common Relationships

duplicate-of, derived-from, related-to

Source

Name

Target

Description

 

 

Examples

[

  {
    "type": "opinion",

    "spec_version": "2.1",
    "id": "opinion--b01efc25-77b4-4003-b18b-f6e24b5cd9f7",
    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-05-12T08:17:27.000Z",

    "modified": "2016-05-12T08:17:27.000Z",
    "object_refs": ["relationship--16d2358f-3b0d-4c88-b047-0da2f7ed4471"],            

    "opinion": "strongly-disagree",

    "explanation": "This doesn't seem like it is feasible. We've seen how PandaCat has attacked Spanish infrastructure over the last 3 years, so this change in targeting seems too great to be viable. The methods used are more commonly associated with the FlameDragonCrew."
  }

]

 

4.15 Report

Type Name: report

 

Reports are collections of threat intelligence focused on one or more topics, such as a description of a threat actor, malware, or attack technique, including context and related details. They are used to group related threat intelligence together so that it can be published as a comprehensive cyber threat story.

 

The Report SDO contains a list of references to STIX Objects (the CTI objects included in the report) along with a textual description and the name of the report.

 

For example, a threat report produced by ACME Defense Corp. discussing the Glass Gazelle campaign should be represented using Report. The Report itself would contain the narrative of the report while the Campaign SDO and any related SDOs (e.g., Indicators for the Campaign, Malware it uses, and the associated Relationships) would be referenced in the report contents.

4.15.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Report Specific Properties

name, description, report_types, published, object_refs

Property Name

Type

Description

type (required)

string

The value of this property MUST be report.

name (required)

string

A name used to identify the Report.

description (optional)

string

A description that provides more details and context about the Report, potentially including its purpose and its key characteristics.

report_types (optional)

list of type open-vocab

The primary type(s) of content found in this report.

 

The values for this property SHOULD come from the report-type-ov open vocabulary.

published (required)

timestamp

The date that this Report object was officially published by the creator of this report.

 

The publication date (public release, legal release, etc.) may be different than the date the report was created or shared internally (the date in the created property).

object_refs (required)

list of type identifier

Specifies the STIX Objects that are referred to by this Report.

 

4.15.2 Relationships

There are no relationships explicitly defined between the Report object and other STIX Objects, other than those defined as common relationships. The first section lists the embedded relationships by property name along with their corresponding target.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship name or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

object_refs

list of type identifier (of STIX Objects type)

Common Relationships

duplicate-of, derived-from, related-to

Source

Name

Target

Description

Examples

A standalone Report; the consumer may or may not already have access to the referenced STIX Objects.

{

  "type": "report",

  "spec_version": "2.1",

  "id": "report--84e4d88f-44ea-4bcd-bbf3-b2c1c320bcb3",

  "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

  "created": "2015-12-21T19:59:11.000Z",

  "modified": "2015-12-21T19:59:11.000Z",

  "name": "The Black Vine Cyberespionage Group",

  "description": "A simple report with an indicator and campaign",

  "published": "2016-01-20T17:00:00.000Z",

  "report_types": ["campaign"],

  "object_refs": [

    "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

    "campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",

    "relationship--f82356ae-fe6c-437c-9c24-6b64314ae68a"

  ]

}

 

A Bundle with a Report and the STIX Objects that are referred to by the Report

{

  "type": "bundle",

  "id": "bundle--44af6c39-c09b-49c5-9de2-394224b04982",

  "objects": [

    {

      "type": "identity",

      "spec_version": "2.1",

      "id": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

      ...,

      "name": "Acme Cybersecurity Solutions"

    },

    {

      "type": "report",

      "spec_version": "2.1",

      "id": "report--84e4d88f-44ea-4bcd-bbf3-b2c1c320bcbd",

      "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

      "created": "2015-12-21T19:59:11.000Z",

      "modified": "2016-05-21T19:59:11.000Z",

      "name": "The Black Vine Cyberespionage Group",

      "description": "A simple report with an indicator and campaign",

      "published": "2016-01-201T17:00:00Z",

      "report_types": ["campaign"],

      "object_refs": [

        "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

        "campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",

        "relationship--f82356ae-fe6c-437c-9c24-6b64314ae68a"

      ]

    },

    {

      "type": "indicator",

      "spec_version": "2.1",

      "id": "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

      "created": "2015-12-21T19:59:17.000Z",

      "modified": "2016-05-21T19:59:17.000Z",

      "name": "Some indicator",

      "indicator_types": ["malicious-activity"],

      "pattern": "[ file:hashes.MD5 = '3773a88f65a5e780c8dff9cdc3a056f3' ]",

      "valid_from": "2015-12-21T19:59:17Z",

      "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283"

    },

    {

      "type": "campaign",

      "spec_version": "2.1",

      "id": "campaign--83422c77-904c-4dc1-aff5-5c38f3a2c55c",

      "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

      "created": "2015-12-21T19:59:17.000Z",

      "modified": "2016-05-21T19:59:17.000Z",

      "name": "Some Campaign"

    },

    {

      "type": "relationship",

      "spec_version": "2.1",

      "id": "relationship--f82356ae-fe6c-437c-9c24-6b64314ae68a",

      "created_by_ref": "identity--a463ffb3-1bd9-4d94-b02d-74e4f1658283",

      "created": "2015-12-21T19:59:17.000Z",

      "modified": "2015-12-21T19:59:17.000Z",

      "source_ref": "indicator--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

      "target_ref": "campaign--26ffb872-1dd9-446e-b6f5-d58527e5b5d2",

      "relationship_type": "indicates"

    }

  ]

}

 

4.16 Threat Actor

Type Name: threat-actor

 

Threat Actors are actual individuals, groups, or organizations believed to be operating with malicious intent. A Threat Actor is not an Intrusion Set but may support or be affiliated with various Intrusion Sets, groups, or organizations over time.

 

Threat Actors leverage their resources, and possibly the resources of an Intrusion Set, to conduct attacks and run Campaigns against targets.

 

Threat Actors can be characterized by their motives, capabilities, goals, sophistication level, past activities, resources they have access to, and their role in the organization.

4.16.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Threat Actor Specific Properties

name, description, threat_actor_types, aliases, first_seen, last_seen, roles, goals, sophistication, resource_level, primary_motivation, secondary_motivations, personal_motivations

Property Name

Type

Description

type (required)

string

The value of this property MUST be

threat-actor.

name (required)

string

A name used to identify this Threat Actor or Threat Actor group.

description (optional)

string

A description that provides more details and context about the Threat Actor, potentially including its purpose and its key characteristics.

threat_actor_types (optional)

list of type open-vocab

The type(s) of this threat actor.

 

The values for this property SHOULD come from the threat-actor-type-ov open vocabulary.

aliases (optional)

list of type string

A list of other names that this Threat Actor is believed to use.

first_seen (optional)

timestamp

The time that this Threat Actor was first seen.

 

This property is a summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are earlier than the first seen timestamp, the object may be updated to account for the new data.

last_seen (optional)

timestamp

The time that this Threat Actor was last seen.

 

This property is a summary property of data from sightings and other data that may or may not be available in STIX. If new sightings are received that are later than the last seen timestamp, the object may be updated to account for the new data.

 

This MUST be greater than or equal to the timestamp in the first_seen property.

roles (optional)

list of type open-vocab

A list of roles the Threat Actor plays.

 

The values for this property SHOULD come from the threat-actor-role-ov open vocabulary.

goals (optional)

list of type string

The high-level goals of this Threat Actor, namely, what are they trying to do. For example, they may be motivated by personal gain, but their goal is to steal credit card numbers. To do this, they may execute specific Campaigns that have detailed objectives like compromising point of sale systems at a large retailer.

sophistication (optional)

open-vocab

The skill, specific knowledge, special training, or expertise a Threat Actor must have to perform the attack.

 

The value for this property SHOULD come from the threat-actor-sophistication-ov open vocabulary.

resource_level (optional)

open-vocab

The organizational level at which this Threat Actor typically works, which in turn determines the resources available to this Threat Actor for use in an attack. This attribute is linked to the sophistication property — a specific resource level implies that the Threat Actor has access to at least a specific sophistication level.

 

The value for this property SHOULD come from the attack-resource-level-ov open vocabulary.

primary_motivation (optional)

open-vocab

The primary reason, motivation, or purpose behind this Threat Actor. The motivation is why the Threat Actor wishes to achieve the goal (what they are trying to achieve).

 

For example, a Threat Actor with a goal to disrupt the finance sector in a country might be motivated by ideological hatred of capitalism.

 

The value for this property SHOULD come from the attack-motivation-ov open vocabulary.

secondary_motivations (optional)

list of type open-vocab

This property specifies the secondary reasons, motivations, or purposes behind this Threat Actor.

 

These motivations can exist as an equal or near-equal cause to the primary motivation. However, it does not replace or necessarily magnify the primary motivation, but it might indicate additional context. The position in the list has no significance.

 

The value for this property SHOULD come from the attack-motivation-ov open vocabulary.

personal_motivations (optional)

list of type open-vocab

The personal reasons, motivations, or purposes of the Threat Actor regardless of organizational goals.

 

Personal motivation, which is independent of the organization’s goals, describes what impels an individual to carry out an attack. Personal motivation may align with the organization’s motivation—as is common with activists—but more often it supports personal goals. For example, an individual analyst may join a Data Miner corporation because his or her skills may align with the corporation’s objectives. But the analyst most likely performs his or her daily work toward those objectives for personal reward in the form of a paycheck. The motivation of personal reward may be even stronger for Threat Actors who commit illegal acts, as it is more difficult for someone to cross that line purely for altruistic reasons. The position in the list has no significance.

 

The values for this property SHOULD come from the attack-motivation-ov open vocabulary.

 

4.16.2 Relationships

These are the relationships explicitly defined between the Threat Actor object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

threat-actor

attributed-to

identity

This Relationship describes that the Threat Actor's real identity is the related Identity.

 

For example, an attributed-to Relationship from the jay-sm17h Threat Actor to the John Smith Identity means that the actor known as jay-sm17h is John Smith.

threat-actor

compromises

infrastructure

This Relationship describes that the Threat Actor compromises the related Infrastructure.

threat-actor

hosts, owns

infrastructure

This Relationship describes that the Threat Actor hosts or owns the related Infrastructure (e.g. an actor that rents botnets to other threat actors).

threat-actor

impersonates

identity

This Relationship describes that the Threat Actor impersonates the related Identity.

 

For example, an impersonates Relationship from the gh0st Threat Actor to the ACME Corp. Identity means that the actor known as gh0st impersonates ACME Corp.

threat-actor

located-at

location

This Relationship describes that the Threat Actor is located at or in the related Location.

 

For example, a located-at relationship from the gh0st Threat Actor to a Location representing the United States means that ACME Corporation is located in the United States.

threat-actor

targets

identity, location, vulnerability

This Relationship describes that the Threat Actor uses exploits of the related Vulnerability or targets the type of victims described by the related Identity or Location.

 

For example, a targets Relationship from the jay-sm17h Threat Actor to a Vulnerability in a blogging platform indicates that attacks performed by John Smith often exploit that Vulnerability.

 

Similarly, a targets Relationship from the jay-sm17h Threat Actor to an Identity describing the energy sector in the United States means that John Smith often carries out attacks against targets in that sector.

threat-actor

uses

attack-pattern, infrastructure, malware, tool

This Relationship describes that attacks carried out as part of the Threat Actor typically use the related Attack Pattern, Infrastructure,  Malware, or Tool.

 

For example, a uses Relationship from the jay-sm17h Threat Actor to the xInject Malware indicates that xInject is often used by John Smith.

 

A campaign, threat actor, intrusion set, malware, or tool takes infrastructure and compromises and/or uses it for their own.

Reverse Relationships

campaign, intrusion-set

attributed-to

threat-actor

See forward relationship for definition.

malware

authored-by

threat-actor

See forward relationship for definition.

indicator

indicates

threat-actor

See forward relationship for definition.

 

Examples

{

  "type": "threat-actor",

  "spec_version": "2.1",

  "id": "threat-actor--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:48.000Z",

  "modified": "2016-04-06T20:03:48.000Z",

  "threat_actor_types": [ "crime-syndicate"],

  "name": "Evil Org",

  "description": "The Evil Org threat actor group",

  "aliases": ["Syndicate 1", "Evil Syndicate 99"],

  "roles": ["director"],

  "goals": ["Steal bank money", "Steal credit cards"],

  "sophistication": "advanced",

  "resource_level": "team",

  "primary_motivation": "organizational-gain"

}

 

4.17 Tool

Type Name: tool

 

Tools are legitimate software that can be used by threat actors to perform attacks. Knowing how and when threat actors use such tools can be important for understanding how campaigns are executed. Unlike malware, these tools or software packages are often found on a system and have legitimate purposes for power users, system administrators, network administrators, or even normal users. Remote access tools (e.g., RDP) and network scanning tools (e.g., Nmap) are examples of Tools that may be used by a Threat Actor during an attack.

 

The Tool SDO characterizes the properties of these software tools and can be used as a basis for making an assertion about how a Threat Actor uses them during an attack. It contains properties to name and describe the tool, a list of Kill Chain Phases the tool can be used to carry out, and the version of the tool.

 

This SDO MUST NOT be used to characterize malware. Further, Tool MUST NOT be used to characterize tools used as part of a course of action in response to an attack.

4.17.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Tool Specific Properties

name, description, tool_types, aliases, kill_chain_phases, tool_version

Property Name

Type

Description

type (required)

string

The value of this property MUST be tool.

name (required)

string

The name used to identify the Tool.

description (optional)

string

A description that provides more details and context about the Tool, potentially including its purpose and its key characteristics.

tool_types (optional)

list of type open-vocab

The kind(s) of tool(s) being described.

 

The values for this property SHOULD come from the tool-type-ov open vocabulary.

aliases (optional)

list of type string

Alternative names used to identify this Tool.

kill_chain_phases (optional)

list of type kill-chain-phase

The list of kill chain phases for which this Tool can be used.

tool_version (optional)

string

The version identifier associated with the Tool.

 

4.17.2 Relationships

These are the relationships explicitly defined between the Tool object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

tool

delivers

malware

This Relationship describes that this Tool is used to deliver a malware instance (or family).

tool

drops

malware

This Relationship documents that this Tool drops a malware instance (or family).

tool

has

vulnerability

This Relationship describes that this specific Tool has this specific Vulnerability.

 

For example, a tool may not have been patched and currently is impacted by a CVE.

tool

targets

identity, infrastructure, location, vulnerability

This Relationship documents that this Tool is being used to target this Identity, Infrastructure, Location, or exploit the Vulnerability.

 

For example, a targets Relationship linking an exploit Tool to a Vulnerability for CVE-2016-0001 means that the tool exploits that vulnerability.

 

Similarly, a targets Relationship linking a DDoS Tool to an Identity representing the energy sector means that Tool is typically used against targets in the energy sector.

tool

uses

infrastructure

This Relationship describes that this Tool uses the related Infrastructure.

Reverse Relationships

infrastructure

hosts

tool

See forward relationship for definition

malware

downloads, drops

tool

See forward relationship for definition

indicator

indicates

tool

See forward relationship for definition

course-of-action

mitigates

tool

See forward relationship for definition

attack-pattern, campaign, intrusion-set, malware,

threat-actor

uses

tool

See forward relationship for definition

Examples

{

  "type": "tool",

  "spec_version": "2.1",

  "id": "tool--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:03:48.000Z",

  "modified": "2016-04-06T20:03:48.000Z",

  "tool_types": [ "remote-access"],

  "name": "VNC"

}

4.18 Vulnerability

Type Name: vulnerability

 

A Vulnerability is a weakness or defect in the requirements, designs, or implementations of the computational logic (e.g., code) found in software and some hardware components (e.g., firmware) that can be directly exploited to negatively impact the confidentiality, integrity, or availability of that system.

 

CVE is a list of information security vulnerabilities and exposures that provides common names for publicly known problems [CVE]. For example, if a piece of malware exploits CVE-2015-12345, a Malware object could be linked to a Vulnerability object that references CVE-2015-12345.

 

The Vulnerability SDO is primarily used to link to external definitions of vulnerabilities or to describe 0-day vulnerabilities that do not yet have an external definition. Typically, other SDOs assert relationships to Vulnerability objects when a specific vulnerability is targeted and exploited as part of malicious cyber activity. As such, Vulnerability objects can be used as a linkage to the asset management and compliance process.

4.18.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Vulnerability Specific Properties

name, description

Property Name

Type

Description

type (required)

string

The value of this property MUST be vulnerability.

external_references

(optional)

list of type external-reference

A list of external references which refer to non-STIX information. This property MAY be used to provide one or more Vulnerability identifiers, such as a CVE ID [CVE]. When specifying a CVE ID, the source_name property of the external reference MUST be set to cve and the external_id property MUST be the exact CVE identifier.

name (required)

string

A name used to identify the Vulnerability.

description (optional)

string

A description that provides more details and context about the Vulnerability, potentially including its purpose and its key characteristics.

 

4.18.2 Relationships

These are the relationships explicitly defined between the Vulnerability object and other STIX Objects. The first section lists the embedded relationships by property name along with their corresponding target. The rest of the table identifies the relationships that can be made from this object type to another object type by way of the Relationship object. The reverse relationships section illustrates the relationships targeting this object type from another object type. They are included here for convenience. For their definitions, please see the "Source" object.

 

Relationships are not restricted to those listed below. Relationships can be created between any objects using the related-to relationship type or, as with open vocabularies, user-defined names.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

Common Relationships

duplicate-of, derived-from, related-to

Source

Relationship Type

Target

Description

Reverse Relationships

attack-pattern, campaign, intrusion-set, malware, threat-actor, tool

targets

vulnerability

See forward relationship for definition.

malware

exploits

vulnerability

See forward relationship for definition.

course-of-action

mitigates, remediates

 

vulnerability

See forward relationship for definition.

infrastructure

has

vulnerability

See forward relationship for definition.

 

​Examples

{

  "type": "vulnerability",

  "spec_version": "2.1",

  "id": "vulnerability--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",

  "created": "2016-05-12T08:17:27.000Z",

  "modified": "2016-05-12T08:17:27.000Z",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "name": "CVE-2016-1234",

  "external_references": [

    {

      "source_name": "cve",

      "external_id": "CVE-2016-1234"

    }

  ]

}


 


5 STIX™ Relationship Objects

STIX Relationship Objects (SROs) represent types of relationships used to describe CTI. The Generic Relationship SRO is used to describe many varied types of relationships, while the specific Sighting SRO contains additional properties to represent Sighting relationships.

 

Property information, relationship information, and examples are provided for each SRO defined below. Property information includes common properties as well as properties that are specific to each SRO. Because SROs cannot be the source or target of other SROs, relationship information is included but only to describe embedded relationships (e.g., created_by_ref).

5.1 Relationship

Type Name: relationship

 

The Relationship object is used to link together two SDOs or SCOs in order to describe how they are related to each other. If SDOs and SCOs are considered "nodes" or "vertices" in the graph, the Relationship Objects (SROs) represent "edges".

 

STIX defines many relationship types to link together SDOs and SCOs. These relationships are contained in the "Relationships" table under each SDO and SCO definition. Relationship types defined in the specification SHOULD be used to ensure consistency. An example of a specification-defined relationship is that an indicator indicates a campaign. That relationship type is listed in the Relationships section of the Indicator SDO definition.

 

STIX also allows relationships from any SDO or SCO to any SDO or SCO that have not been defined in this specification. These relationships MAY use the related-to relationship type or MAY use a user-defined relationship type. As an example, a user might want to link malware directly to a tool. They can do so using related-to to say that the Malware is related to the Tool but not describe how, or they could use delivered-by (a user-defined name they determined) to indicate more detail.

 

Note that some relationships in STIX may seem like "shortcuts". For example, an Indicator doesn't really detect a Campaign: it detects activity (Attack Patterns, Malware, Infrastructure, etc.) that are often used by that campaign. While some analysts might want all of the source data and think that shortcuts are misleading, in many cases it's helpful to provide just the key points (shortcuts) and leave out the low-level details. In other cases, the low-level analysis may not be known or sharable, while the high-level analysis is. For these reasons, relationships that might appear to be "shortcuts" are not excluded from STIX.

5.1.1 Specification-Defined Relationships Summary

A relationship summary table for all specification-defined relationships can be found In Appendix B of this document The relationship summary table is provided as a convenience. If there is a discrepancy between the table and the relationships defined with each of the SDOs, then the relationships defined with the SDOs MUST be viewed as authoritative.​

5.1.2 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Relationship Specific Properties

relationship_type, description, source_ref, target_ref, start_time, stop_time

Property Name

Type

Description

type (required)

string

The value of this property MUST be relationship.

relationship_type (required)

string

The name used to identify the type of Relationship. This value SHOULD be an exact value listed in the relationships for the source and target SDO, but MAY be any string. The value of this property MUST be in ASCII and is limited to characters a–z (lowercase ASCII), 0–9, and hyphen (-).

description (optional)

string

A description that provides more details and context about the Relationship, potentially including its purpose and its key characteristics.

source_ref (required)

identifier

The id of the source (from) object. The value MUST be an ID reference to an SDO or SCO (i.e., it cannot point to an SRO, Bundle, Language Content, or Marking Definition).

target_ref (required)

identifier

The id of the target (to) object. The value MUST be an ID reference to an SDO or SCO (i.e., it cannot point to an SRO, Bundle, Language Content, or Marking Definition).

start_time (optional)

timestamp

This optional timestamp represents the earliest time at which the Relationship between the objects exists. If this property is a future timestamp, at the time the start_time property is defined, then this represents an estimate by the producer of the intelligence of the earliest time at which relationship will be asserted to be true.

 

If it is not specified, then the earliest time at which the relationship between the objects exists is not defined.

stop_time (optional)

timestamp

The latest time at which the Relationship between the objects exists. If this property is a future timestamp, at the time the stop_time property is defined, then this represents an estimate by the producer of the intelligence of the latest time at which relationship will be asserted to be true.

 

If start_time and stop_time are both defined, then stop_time MUST be later than the start_time value.

 

If stop_time is not specified, then the latest time at which the relationship between the objects exists is either not known, not disclosed, or has no defined stop time.

 

5.1.3 Relationships

There are no relationships explicitly defined between the Relationship object and other STIX Objects, other than the embedded relationships listed below. These embedded relationships are listed by property name along with their corresponding target.

 

The only type of relationship that can point to a Relationship Object is the embedded relationship on the Note, Opinion, and Language Content Objects.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

 

5.2 Sighting

Type Name: sighting

 

A Sighting denotes the belief that something in CTI (e.g., an indicator, malware, tool, threat actor, etc.) was seen. Sightings are used to track who and what are being targeted, how attacks are carried out, and to track trends in attack behavior.

 

The Sighting relationship object is a special type of SRO; it is a relationship that contains extra properties not present on the Generic Relationship object. These extra properties are included to represent data specific to sighting relationships (e.g., count, representing how many times something was seen), but for other purposes a Sighting can be thought of as a Relationship with a name of "sighting-of". Sighting is captured as a relationship because you cannot have a sighting unless you have something that has been sighted. Sighting does not make sense without the relationship to what was sighted.

 

Sighting relationships relate three aspects of the sighting:

      What was sighted, such as the Indicator, Malware, Campaign, or other SDO (sighting_of_ref)

      Who sighted it and/or where it was sighted, represented as an Identity (where_sighted_refs)

      What was actually seen on systems and networks, represented as Observed Data (observed_data_refs)

 

What was sighted is required; a sighting does not make sense unless you say what you saw. Who sighted it, where it was sighted, and what was actually seen are optional. In many cases it is not necessary to provide that level of detail in order to provide value.

 

Sightings are used whenever any SDO has been "seen". In some cases, the object creator wishes to convey very little information about the sighting; the details might be sensitive, but the fact that they saw a malware instance or threat actor could still be very useful. In other cases, providing the details may be helpful or even necessary; saying exactly which of the 1000 IP addresses in an indicator were sighted is helpful when tracking which of those IPs is still malicious.

 

Sighting is distinct from Observed Data in that Sighting is an intelligence assertion ("I saw this threat actor") while Observed Data is simply information ("I saw this file"). When you combine them by including the linked Observed Data (observed_data_refs) from a Sighting, you can say "I saw this file, and that makes me think I saw this threat actor".

5.2.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

defanged, extensions

Sighting Specific Properties

description, first_seen, last_seen, count, sighting_of_ref, observed_data_refs, where_sighted_refs, summary

Property Name

Type

Description

type (required)

string

The value of this property MUST be sighting.

description (optional)

string

A description that provides more details and context about the Sighting.

first_seen (optional)

timestamp

The beginning of the time window during which the SDO referenced by the sighting_of_ref property was sighted.

last_seen (optional)

timestamp

The end of the time window during which the SDO referenced by the sighting_of_ref property was sighted.

 

If first_seen and last_seen are both defined, then last_seen MUST be later than the first_seen value.

count (optional)

integer

If present, this MUST be an integer between 0 and 999,999,999 inclusive and represents the number of times the SDO referenced by the sighting_of_ref property was sighted.

 

Observed Data has a similar property called number_observed, which refers to the number of times the data was observed. These counts refer to different concepts and are distinct.

 

For example, a single sighting of a DDoS bot might have many millions of observations of the network traffic that it generates. Thus, the Sighting count would be 1 (the bot was observed once) but the Observed Data number_observed would be much higher.

 

As another example, a sighting with a count of 0 can be used to express that an indicator was not seen at all.

sighting_of_ref (required)

identifier

An ID reference to the SDO that was sighted (e.g., Indicator or Malware).

 

For example, if this is a Sighting of an Indicator, that Indicator’s ID would be the value of this property.

 

This property MUST reference only an SDO or a Custom Object.

observed_data_refs (optional)

list of type identifier

A list of ID references to the Observed Data objects that contain the raw cyber data for this Sighting.

 

For example, a Sighting of an Indicator with an IP address could include the Observed Data for the network connection that the Indicator was used to detect.

 

This property MUST reference only Observed Data SDOs.

where_sighted_refs (optional)

list of type identifier

A list of ID references to the Identity or Location objects describing the entities or types of entities that saw the sighting.

 

Omitting the where_sighted_refs property does not imply that the sighting was seen by the object creator. To indicate that the sighting was seen by the object creator, an Identity representing the object creator should be listed in where_sighted_refs.

 

This property MUST reference only Identity or Location SDOs.

summary (optional)

boolean

The summary property indicates whether the Sighting should be considered summary data. Summary data is an aggregation of previous Sightings reports and should not be considered primary source data. Default value is false.

 

5.2.2 Relationships

There are no relationships explicitly defined between the Sighting object and other STIX Objects, other than the embedded relationships listed below. These embedded relationships are listed by property name along with their corresponding target.

 

The only type of relationship that can point to a Sighting Object is the embedded relationship on the Note, Opinion, and Language Content Objects.

 

Embedded Relationships

created_by_ref

identifier (of type identity)

object_marking_refs

list of type identifier (of type marking-definition)

sighting_of_ref

identifier (of type SDO)

observed_data_refs

list of type identifier (of type observed-data)

where_sighted_refs

list of type identifier (of type identity)

Examples

Sighting of Indicator, without Observed Data

{

  "type": "sighting",

  "spec_version": "2.1",

  "id": "sighting--ee20065d-2555-424f-ad9e-0f8428623c75",

  "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

  "created": "2016-04-06T20:08:31.000Z",

  "modified": "2016-04-06T20:08:31.000Z",

  "sighting_of_ref": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f"

}

 

Sighting of Indicator, with Observed Data (what exactly was seen) and where it was seen

[

  {

    "type": "sighting",

    "spec_version": "2.1",

    "id": "sighting--ee20065d-2555-424f-ad9e-0f8428623c75",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T20:08:31.000Z",

    "modified": "2016-04-06T20:08:31.000Z",

    "first_seen": "2015-12-21T19:00:00Z",

    "last_seen": "2015-12-21T19:00:00Z",

    "count": 50,

    "sighting_of_ref": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

    "observed_data_refs": ["observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf"],

    "where_sighted_refs": ["identity--b67d30ff-02ac-498a-92f9-32f845f448ff"]

  },

  {

    "type": "observed-data",

    "spec_version": "2.1",

    "id": "observed-data--b67d30ff-02ac-498a-92f9-32f845f448cf",

    "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

    "created": "2016-04-06T19:58:16.000Z",

    "modified": "2016-04-06T19:58:16.000Z",

    "first_observed": "2015-12-21T19:00:00Z",

    "last_observed": "2016-04-06T19:58:16Z",

    "number_observed": 50,

    "object_refs": [

      "file--30038539-3eb6-44bc-a59e-d0d3fe84695a"

    ]

  }

]


 


6 STIX™ Cyber-observable Objects

6.1 Artifact Object

Type Name: artifact

 

The Artifact object permits capturing an array of bytes (8-bits), as a base64-encoded string, or linking to a file-like payload.

 

One of payload_bin or url MUST be provided. It is incumbent on object creators to ensure that the URL is accessible for downstream consumers.

6.1.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Artifact Object Specific Properties

mime_type, payload_bin, url, hashes, encryption_algorithm, decryption_key

ID Contributing Properties

hashes, payload_bin

 

If the hashes property is present, include only one hash. The selected hash SHOULD come from this ordered list (based on the following order of preference) [ MD5, SHA-1, SHA-256, SHA-512 ].

Property Name

Type

Description

type (required)

string

The value of this property MUST be artifact.

mime_type (optional)

string

Whenever feasible, this value SHOULD be one of the values defined in the Template column in the IANA media type registry [Media Types]. Maintaining a comprehensive universal catalog of all extant file types is obviously not possible. When specifying a MIME Type not included in the IANA registry, implementers should use their best judgement so as to facilitate interoperability.

payload_bin (optional)

binary

Specifies the binary data contained in the artifact as a base64-encoded string.

 

This property MUST NOT be present if url is provided.

url (optional)

string

The value of this property MUST be a valid URL that resolves to the unencoded content.

 

This property MUST NOT be present if payload_bin is provided.

hashes (optional)

hashes

Specifies a dictionary of hashes for the contents of the url or the payload_bin.

 

This property MUST be present when the url property is present.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

encryption_algorithm (optional)

enum

If the artifact is encrypted, specifies the type of encryption algorithm the binary data  (either via payload_bin or url) is encoded in.

 

The value of this property MUST come from the encryption-algorithm-enum enumeration.

 

If both mime_type and encryption_algorithm are included, this signifies that the artifact represents an encrypted archive.

decryption_key (optional)

string

Specifies the decryption key for the encrypted binary data (either via payload_bin or url). For example, this may be useful in cases of sharing malware samples, which are often encoded in an encrypted archive.

 

This property MUST NOT be present when the encryption_algorithm property is absent.

 

Examples

Basic Image Artifact

{

  "type": "artifact",

  "spec_version": "2.1",

  "id": "artifact--ca17bcf8-9846-5ab4-8662-75c1bf6e63ee",

  "mime_type": "image/jpeg",

  "payload_bin": "VBORw0KGgoAAAANSUhEUgAAADI== ..."

}

 

Encrypted Zip Archive Artifact

{

 

  "type": "artifact",

  "spec_version": "2.1",

  "id": "artifact--6f437177-6e48-5cf8-9d9e-872a2bddd641",

  "mime_type": "application/zip",

  "payload_bin": "ZX7HIBWPQA99NSUhEUgAAADI== ...",

  "encryption_algorithm": "mime-type-indicated",

  "decryption_key": "My voice is my passport"

}

 

6.2 Autonomous System (AS) Object

Type Name: autonomous-system

 

This object represents the properties of an Autonomous System (AS).

6.2.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

AS Object Specific Properties

number, name, rir

ID Contributing Properties

number

Property Name

Type

Description

type (required)

string

The value of this property MUST be autonomous-system.

number (required)

integer

Specifies the number assigned to the AS. Such assignments are typically performed by a Regional Internet Registry (RIR).

name (optional)

string

Specifies the name of the AS.

rir (optional)

string

Specifies the name of the Regional Internet Registry (RIR) that assigned the number to the AS.

 

Examples

Basic AS object

{

  "type": "autonomous-system",

  "spec_version": "2.1",

  "id": "autonomous-system--f720c34b-98ae-597f-ade5-27dc241e8c74",

  "number": 15139,

  "name": "Slime Industries",

  "rir": "ARIN"

}

 

6.3 Directory Object

Type Name: directory

 

The Directory object represents the properties common to a file system directory.

6.3.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Directory Object Specific Properties

path, path_enc, ctime, mtime, atime, contains_refs

ID Contributing Properties

path

Property Name

Type

Description

type (required)

string

The value of this property MUST be directory.

path (required)

string

Specifies the path, as originally observed, to the directory on the file system.

path_enc (optional)

string

Specifies the observed encoding for the path. The value MUST be specified if the path is stored in a non-Unicode encoding. This value MUST be specified using the corresponding name from the 2013-12-20 revision of the IANA character set registry [Character Sets]. If the preferred MIME name for a character set is defined, this value MUST be used; if it is not defined, then the Name value from the registry MUST be used instead.

ctime (optional)

timestamp

Specifies the date/time the directory was created.

mtime (optional)

timestamp

Specifies the date/time the directory was last written to/modified.

atime (optional)

timestamp

Specifies the date/time the directory was last accessed.

contains_refs (optional)

list of type identifier

Specifies a list of references to other File and/or Directory objects contained within the directory.

 

The objects referenced in this list MUST be of type file or directory.

 

Examples

Basic directory

{

  "type": "directory",

  "spec_version": "2.1",

  "id": "directory--93c0a9b0-520d-545d-9094-1a08ddf46b05",

  "path": "C:\\Windows\\System32"

}

6.4 Domain Name Object

Type Name: domain-name

 

The Domain Name object represents the properties of a network domain name.

6.4.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Domain Name Object Specific Properties

value, resolves_to_refs

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be domain-name.

value (required)

string

Specifies the value of the domain name. The value of this property MUST conform to [RFC1034], and each domain and sub-domain contained within the domain name MUST conform to [RFC5890].

resolves_to_refs (optional)

list of type identifier

Specifies a list of references to one or more IP addresses or domain names that the domain name resolves to.

 

The objects referenced in this list MUST be of type ipv4-addr or ipv6-addr or domain-name (for cases such as CNAME records).

 

6.4.2 Relationships

These are the relationships explicitly defined between the Domain Name object and other STIX Objects. The table identifies the relationships that can be made from this object type to another object type by way of the Relationship object.

 

Source

Relationship Type

Target

Description

domain-name

resolves-to

domain-name, ipv4-addr, ipv6-addr

This Relationship describes that this Domain Name resolves to one or more IP addresses or domain names.

 

Examples

Basic FQDN

{

  "type": "domain-name",

  "spec_version": "2.1",

  "id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",

  "value": "example.com",

  "resolves_to_refs": ["ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd"]

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd",

  "value": "198.51.100.3"

}

 

6.5 Email Address Object

Type Name: email-addr

 

The Email Address object represents a single email address.

6.5.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Email Address Object Specific Properties

value, display_name, belongs_to_ref

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be email-addr.

value (required)

string

Specifies the value of the email address. This MUST NOT include the display name.

 

This property corresponds to the addr-spec construction in section 3.4 of [RFC5322], for example, jane.smith@example.com.

display_name (optional)

string

Specifies a single email display name, i.e., the name that is displayed to the human user of a mail application.

 

This property corresponds to the display-name construction in section 3.4 of [RFC5322], for example, Jane Smith.

belongs_to_ref (optional)

identifier

Specifies the user account that the email address belongs to, as a reference to a User Account object.

 

The object referenced in this property MUST be of type user-account.

 

Examples

Basic Email Address

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--2d77a846-6264-5d51-b586-e43822ea1ea3",

  "value": "john@example.com",

  "display_name": "John Doe"

 

}

6.6 Email Message Object

Type Name: email-message

The Email Message object represents an instance of an email message, corresponding to the internet message format described in [RFC5322] and related RFCs.

 

Header field values that have been encoded as described in section 2 of [RFC2047] MUST be decoded before inclusion in Email Message object properties. For example, this is some text MUST be used instead of =?iso-8859-1?q?this=20is=20some=20text?=. Any characters in the encoded value which cannot be decoded into Unicode SHOULD be replaced with the 'REPLACEMENT CHARACTER' (U+FFFD). If it is necessary to capture the header value as observed, this can be achieved by referencing an Artifact object through the raw_email_ref property.

6.6.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Email Message Object Specific Properties

is_multipart, date, content_type, from_ref, sender_ref, to_refs, cc_refs, bcc_refs, subject, received_lines, additional_header_fields, body, body_multipart, raw_email_ref

ID Contributing Properties

from_ref, subject, body

Property Name

Type

Description

type (required)

string

The value of this property MUST be email-message.

is_multipart (required)

boolean

Indicates whether the email body contains multiple MIME parts.

date (optional)

timestamp

Specifies the date/time that the email message was sent.

content_type (optional)

string

Specifies the value of the “Content-Type” header of the email message.

from_ref (optional)

identifier

Specifies the value of the “From:” header of the email message. The "From:" field specifies the author of the message, that is, the mailbox(es) of the person or system responsible for the writing of the message.

 

The object referenced in this property MUST be of type email-address.

sender_ref (optional)

identifier

Specifies the value of the “Sender” field of the email message. The "Sender:" field specifies the mailbox of the agent responsible for the actual transmission of the message.

 

The object referenced in this property MUST be of type email-address.

to_refs (optional)

list of type identifier

Specifies the mailboxes that are “To:” recipients of the email message.

 

The objects referenced in this list MUST be of type email-address.

cc_refs (optional)

list of type identifier

Specifies the mailboxes that are “CC:” recipients of the email message.

 

The objects referenced in this list MUST be of type email-address.

bcc_refs (optional)

list of type identifier

Specifies the mailboxes that are “BCC:” recipients of the email message.

 

As per [RFC5322], the absence of this property should not be interpreted as semantically equivalent to an absent BCC header on the message being characterized.

 

The objects referenced in this list MUST be of type email-address.

message_id (optional)

string

Specifies the Message-ID field of the email message.

subject (optional)

string

Specifies the subject of the email message.

received_lines (optional)

list of type string

Specifies one or more "Received" header fields that may be included in the email headers.

 

List values MUST appear in the same order as present in the email message.

additional_header_fields (optional)

dictionary

Specifies any other header fields (except for date, received_lines, content_type, from_ref, sender_ref, to_refs, cc_refs, bcc_refs, and subject) found in the email message, as a dictionary.

 

Each key/value pair in the dictionary represents the name/value of a single header field or names/values of a header field that occurs more than once. Each dictionary key SHOULD be a case-preserved version of the header field name. The corresponding value for each dictionary key MUST always be a list of type string to support when a header field is repeated.

body (optional)

string

 

 

Specifies a string containing the email body. This property MUST NOT be used if is_multipart is true.

body_multipart (optional)

list of type email-mime-part-type

Specifies a list of the MIME parts that make up the email body. This property MUST NOT be used if is_multipart is false.

raw_email_ref (optional)

identifier

Specifies the raw binary contents of the email message, including both the headers and body, as a reference to an Artifact object.

 

The object referenced in this property MUST be of type artifact.

 

6.6.2 Email MIME Component Type

Type Name: email-mime-part-type

Specifies one component of a multi-part email body.

 

There is no property to capture the value of the “Content-Transfer-Encoding” header field, since the body MUST be decoded before being represented in the body property.

 

One of body OR body_raw_ref MUST be included.

6.6.2.1 Properties

Property Name

Type

Description

body (optional)

string

Specifies the contents of the MIME part if the content_type is not provided or starts with text/ (e.g., in the case of plain text or HTML email).

 

For inclusion in this property, the contents MUST be decoded to Unicode. Note that the charset provided in content_type is for informational usage and not for decoding of this property.

body_raw_ref (optional)

identifier

Specifies the contents of non-textual MIME parts, that is those whose content_type does not start with text/, as a reference to an Artifact object or File object.

 

The object referenced in this property MUST be of type artifact or file. For use cases where conveying the actual data contained in the MIME part is of primary importance, artifact SHOULD be used. Otherwise, for use cases where conveying metadata about the file-like properties of the MIME part is of primary importance, file SHOULD be used.

content_type (optional)

string

Specifies the value of the “Content-Type” header field of the MIME part.

 

Any additional “Content-Type” header field parameters such as charset SHOULD be included in this property.

 

Example:

text/html; charset=UTF-8

content_disposition (optional)

string

Specifies the value of the “Content-Disposition” header field of the MIME part.

 

Examples

Simple Email Message

{

  "type": "email-message",

  "spec_version": "2.1",

  "id": "email-message--72b7698f-10c2-565a-a2a6-b4996a2f2265",

  "from_ref": "email-addr--89f52ea8-d6ef-51e9-8fce-6a29236436ed",

  "to_refs": ["email-addr--e4ee5301-b52d-59cd-a8fa-8036738c7194"],

  "is_multipart": false,

  "date": "1997-11-21T15:55:06.000Z",

  "subject": "Saying Hello"

}

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--89f52ea8-d6ef-51e9-8fce-6a29236436ed",

  "value": "jdoe@example.com",

  "display_name": "John Doe"

}

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--e4ee5301-b52d-59cd-a8fa-8036738c7194",

  "value": "mary@example.com",

  "display_name": "Mary Smith"

}

 

 

Simple Email Message with Additional Header Properties

{

  "type": "email-message",

  "spec_version": "2.1",

  "id": "email-message--0c57a381-2a17-5e61-8754-5ef96efb286c",

  "from_ref": "email-addr--9b7e29b3-fd8d-562e-b3f0-8fc8134f5dda",

  "to_refs": ["email-addr--d1b3bf0c-f02a-51a1-8102-11aba7959868"],

  "is_multipart": false,

  "date": "2004-04-19T12:22:23.000Z",

  "subject": "Did you see this?",

  "additional_header_fields": {

    "Reply-To": [

      "steve@example.com",

      "jane@example.com"

    ]

  }

}

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--9b7e29b3-fd8d-562e-b3f0-8fc8134f5dda",

  "value": "joe@example.com",

  "display_name": "Joe Smith"

 }

 

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--d1b3bf0c-f02a-51a1-8102-11aba7959868",

  "value": "bob@example.com",

  "display_name": "Bob Smith"

 }

 

 

Complex MIME Email Message

{

  "type": "email-message",

  "spec_version": "2.1",

  "id": "email-message--cf9b4b7f-14c8-5955-8065-020e0316b559",

  "is_multipart": true,

  "received_lines": [

    "from mail.example.com ([198.51.100.3]) by smtp.gmail.com with ESMTPSA id q23sm23309939wme.17.2016.07.19.07.20.32 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Tue, 19 Jul 2016 07:20:40 -0700 (PDT)"

  ],

  "content_type": "multipart/mixed",

  "date": "2016-06-19T14:20:40.000Z",

  "from_ref": "email-addr--89f52ea8-d6ef-51e9-8fce-6a29236436ed",

  "to_refs": ["email-addr--d1b3bf0c-f02a-51a1-8102-11aba7959868"],

  "cc_refs": ["email-addr--e4ee5301-b52d-59cd-a8fa-8036738c7194"],

  "subject": "Check out this picture of a cat!",

  "additional_header_fields": {

    "Content-Disposition": "inline",

    "X-Mailer": "Mutt/1.5.23",

    "X-Originating-IP": "198.51.100.3"

  },

  "body_multipart": [

    {

      "content_type": "text/plain; charset=utf-8",

      "content_disposition": "inline",

      "body": "Cats are funny!"

    },

    {

      "content_type": "image/png",

      "content_disposition": "attachment; filename=\"tabby.png\"",

      "body_raw_ref": "artifact--4cce66f8-6eaa-53cb-85d5-3a85fca3a6c5"

    },

    {

      "content_type": "application/zip",

      "content_disposition": "attachment; filename=\"tabby_pics.zip\"",

      "body_raw_ref": "file--6ce09d9c-0ad3-5ebf-900c-e3cb288955b5"

    }

  ]

 }

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--89f52ea8-d6ef-51e9-8fce-6a29236436ed",

  "value": "jdoe@example.com",

  "display_name": "John Doe"

}

 

{

 

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--d1b3bf0c-f02a-51a1-8102-11aba7959868",

  "value": "bob@example.com",

  "display_name": "Bob Smith"

}

 

{

  "type": "email-addr",

  "spec_version": "2.1",

  "id": "email-addr--e4ee5301-b52d-59cd-a8fa-8036738c7194",

  "value": "mary@example.com",

  "display_name": "Mary Smith"

}

 

{

  "type": "artifact",

  "spec_version": "2.1",

  "id": "artifact--4cce66f8-6eaa-53cb-85d5-3a85fca3a6c5",

  "mime_type": "image/jpeg",

  "payload_bin": "VBORw0KGgoAAAANSUhEUgAAADI== ...",

  "hashes": {

    "SHA-256": "effb46bba03f6c8aea5c653f9cf984f170dcdd3bbbe2ff6843c3e5da0e698766"

  }

}

 

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--6ce09d9c-0ad3-5ebf-900c-e3cb288955b5",

  "name": "tabby_pics.zip",

  "magic_number_hex": "504B0304",

  "hashes": {

    "SHA-256": "fe90a7e910cb3a4739bed9180e807e93fa70c90f25a8915476f5e4bfbac681db"

  }

}

6.7 File Object

Type Name: file

 

The File object represents the properties of a file. A File object MUST contain at least one of hashes or name.

6.7.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

File Object Specific Properties

hashes, size, name, name_enc, magic_number_hex, mime_type, ctime, mtime, atime, parent_directory_ref, contains_refs, content_ref

ID Contributing Properties

hashes, name, extensions, parent_directory_ref

 

If the hashes property is present, include only one hash. The selected hash SHOULD come from this ordered list (based on the following order of preference) [ MD5, SHA-1, SHA-256, SHA-512 ].

Property Name

Type

Description

type (required)

string

The value of this property MUST be file.

extensions (optional)

dictionary

The File object defines the following extensions. In addition to these, producers MAY create their own.

 

ntfs-ext, raster-image-ext, pdf-ext, archive-ext, windows-pebinary-ext

 

Dictionary keys MUST identify the extension type by name.

 

The corresponding dictionary values MUST contain the contents of the extension instance.

hashes (optional)

hashes

Specifies a dictionary of hashes for the file.

(When used with the Archive File Extension, this refers to the hash of the entire archive file, not its contents.)

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

size (optional)

integer

Specifies the size of the file, in bytes. The value of this property MUST NOT be negative.

name (optional)

string

Specifies the name of the file.

name_enc (optional)

string

Specifies the observed encoding for the name of the file. This value MUST be specified using the corresponding name from the 2013-12-20 revision of the IANA character set registry [Character Sets]. If the value from the Preferred MIME Name column for a character set is defined, this value MUST be used; if it is not defined, then the value from the Name column in the registry MUST be used instead.

 

This property allows for the capture of the original text encoding for the file name, which may be forensically relevant; for example, a file on an NTFS volume whose name was created using the windows-1251 encoding, commonly used for languages based on Cyrillic script.

magic_number_hex (optional)

hex

Specifies the hexadecimal constant (“magic number”) associated with a specific file format that corresponds to the file, if applicable.

mime_type (optional)

string

Specifies the MIME type name specified for the file, e.g., application/msword.

 

Whenever feasible, this value SHOULD be one of the values defined in the Template column in the IANA media type registry [Media Types].

 

Maintaining a comprehensive universal catalog of all extant file types is obviously not possible. When specifying a MIME Type not included in the IANA registry, implementers should use their best judgement so as to facilitate interoperability.

ctime (optional)

timestamp

Specifies the date/time the file was created.

mtime (optional)

timestamp

Specifies the date/time the file was last written to/modified.

atime (optional)

timestamp

Specifies the date/time the file was last accessed.

parent_directory_ref (optional)

identifier

Specifies the parent directory of the file, as a reference to a Directory object.

 

The object referenced in this property MUST be of type directory.

contains_refs (optional)

list of type identifier

Specifies a list of references to other Cyber-observable Objects contained within the file, such as another file that is appended to the end of the file, or an IP address that is contained somewhere in the file.

 

This is intended for use cases other than those targeted by the Archive extension.

content_ref (optional)

identifier

Specifies the content of the file, represented as an Artifact object.

 

The object referenced in this property MUST be of type artifact.

 

Examples

Basic file with file system properties without observed encoding

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--e277603e-1060-5ad4-9937-c26c97f1ca68",

  "hashes": {

    "SHA-256": "fe90a7e910cb3a4739bed9180e807e93fa70c90f25a8915476f5e4bfbac681db"

  },

  "size": 25536,

  "name": "foo.dll"

}

 

Basic file with file system properties with observed encoding

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--90bd400b-89a5-51a5-b17d-55bc7719723b",

  "hashes": {

    "SHA-256": "841a8921140aba50671ebb0770fecc4ee308c4952cfeff8de154ab14eeef4649"

  },

  "name": "quêry.dll",

  "name_enc": "windows-1252"

}

 

In this example, the file name would have originally appeared using the bytes 71 75 ea 72 79 2e 64 6c 6c. Representing it in UTF-8, as required for JSON, would use the bytes 71 75 c3 aa 72 79 2e 64 6c 6c.

 

Basic file with parent directory

{

  "type": "directory",

  "spec_version": "2.1",

  "id": "directory--93c0a9b0-520d-545d-9094-1a08ddf46b05",

  "path": "C:\\Windows\\System32"

 }

 

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--5a27d487-c542-5f97-a131-a8866b477b46",

  "hashes": {

    "SHA-256": "ceafbfd424be2ca4a5f0402cae090dda2fb0526cf521b60b60077c0f622b285a"

  },

  "parent_directory_ref": "directory--93c0a9b0-520d-545d-9094-1a08ddf46b05",

  "name": "qwerty.dll"

}

6.7.2 Archive File Extension

Type Name: archive-ext

 

The Archive File extension specifies a default extension for capturing properties specific to archive files. The key for this extension when used in the extensions dictionary MUST be archive-ext.

 

6.7.2.1 Properties

Property Name

Type

Description

contains_refs (required)

list of type identifier

This property specifies the files that are contained in the archive. It MUST contain references to one or more File objects.

 

The objects referenced in this list MUST be of type file or directory.

comment (optional)

string

Specifies a comment included as part of the archive file.

 

Examples

Basic unencrypted ZIP Archive

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--019fde1c-94ca-5967-8b3c-a906a51d87ac",

  "hashes": {

    "SHA-256": "ceafbfd424be2ca4a5f0402cae090dda2fb0526cf521b60b60077c0f622b285a"

  }

}

 

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--94fc2163-dec3-5715-b824-6e689c4de865",

  "hashes": {

    "SHA-256": "19c549ec2628b989382f6b280cbd7bb836a0b461332c0fe53511ce7d584b89d3"

  }

}

 

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--d07ff290-d7e0-545b-a2ff-04602a9e0b73",

  "hashes": {

    "SHA-256": "0969de02ecf8a5f003e3f6d063d848c8a193aada092623f8ce408c15bcb5f038"

  }

}

 

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--9a1f834d-2506-5367-baec-7aa63996ac43",

  "name": "foo.zip",

  "hashes": {

    "SHA-256": "35a01331e9ad96f751278b891b6ea09699806faedfa237d40513d92ad1b7100f"

  },

  "mime_type": "application/zip",

  "extensions": {

    "archive-ext": {

      "contains_refs": [

        "file--019fde1c-94ca-5967-8b3c-a906a51d87ac",

        "file--94fc2163-dec3-5715-b824-6e689c4de865",

        "file--d07ff290-d7e0-545b-a2ff-04602a9e0b73"

      ]

    }

  }

}

6.7.3 NTFS File Extension

Type Name: ntfs-ext

 

The NTFS file extension specifies a default extension for capturing properties specific to the storage of the file on the NTFS file system. The key for this extension when used in the extensions dictionary MUST be ntfs-ext. An object using the NTFS File Extension MUST contain at least one property from this extension.

6.7.3.1 Properties

Property Name

Type

Description

sid (optional)

string

Specifies the security ID (SID) value assigned to the file.

alternate_data_streams (optional)

list of type alternate-data-stream-type

Specifies a list of NTFS alternate data streams that exist for the file.

 

6.7.3.2 Alternate Data Stream Type

Type Name: alternate-data-stream-type

 

The Alternate Data Stream type represents an NTFS alternate data stream.

6.7.3.2.1 Properties

Property Name

Type

Description

name (required)

string

Specifies the name of the alternate data stream.

hashes (optional)

hashes

Specifies a dictionary of hashes for the data contained in the alternate data stream.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

size (optional)

integer

Specifies the size of the alternate data stream, in bytes. The value of this property MUST NOT be negative.

 

Examples

NTFS File with a single alternate data stream

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--73c4cd13-7206-5100-88ef-822c42d3f02c",

  "hashes": {

    "SHA-256": "35a01331e9ad96f751278b891b6ea09699806faedfa237d40513d92ad1b7100f"

  },

  "extensions": {

    "ntfs-ext": {

      "alternate_data_streams": [

        {

          "name": "second.stream",

          "size": 25536

        }

      ]

    }

  }

}

6.7.4 PDF File Extension

Type Name: pdf-ext

 

The PDF file extension specifies a default extension for capturing properties specific to PDF files. The key for this extension when used in the extensions dictionary MUST be pdf-ext. An object using the PDF File Extension MUST contain at least one property from this extension.

 

6.7.4.1 Properties

Property Name

Type

Description

version (optional)

string

Specifies the decimal version number of the string from the PDF header that specifies the version of the PDF specification to which the PDF file conforms. E.g., 1.4.

is_optimized (optional)

boolean

Specifies whether the PDF file has been optimized.

document_info_dict (optional)

dictionary

Specifies details of the PDF document information dictionary (DID), which includes properties like the document creation data and producer, as a dictionary. Each key in the dictionary SHOULD be a case-preserved version of the corresponding entry in the document information dictionary without the prepended forward slash, e.g., Title. The corresponding value for the key MUST be the value specified for the document information dictionary entry, as a string.

pdfid0 (optional)

string

Specifies the first file identifier found for the PDF file.

pdfid1 (optional)

string

Specifies the second file identifier found for the PDF file.

 

Examples

Basic PDF file

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--ec3415cc-5f4f-5ec8-bdb1-6f86996ae66d",

  "extensions": {

    "pdf-ext": {

      "version": "1.7",

      "document_info_dict": {

        "Title": "Sample document",

        "Author": "Adobe Systems Incorporated",

        "Creator": "Adobe FrameMaker 5.5.3 for Power Macintosh",

        "Producer": "Acrobat Distiller 3.01 for Power Macintosh",

        "CreationDate": "20070412090123-02"

      },

      "pdfid0": "DFCE52BD827ECF765649852119D",

      "pdfid1": "57A1E0F9ED2AE523E313C"

    }

  }

}

6.7.5 Raster Image File Extension

Type Name: raster-image-ext

 

The Raster Image file extension specifies a default extension for capturing properties specific to raster image files. The key for this extension when used in the extensions dictionary MUST be raster-image-ext. An object using the Raster Image File Extension MUST contain at least one property from this extension.

 

6.7.5.1 Properties

Property Name

Type

Description

image_height (optional)

integer

Specifies the height of the image in the image file, in pixels.

image_width (optional)

integer

Specifies the width of the image in the image file, in pixels.

bits_per_pixel (optional)

integer

Specifies the sum of bits used for each color channel in the image file, and thus the total number of pixels used for expressing the color depth of the image.

exif_tags (optional)

dictionary

Specifies the set of EXIF tags found in the image file, as a dictionary. Each key/value pair in the dictionary represents the name/value of a single EXIF tag. Accordingly, each dictionary key MUST be a case-preserved version of the EXIF tag name, e.g., XResolution. Each dictionary value MUST be either an integer (for int* EXIF datatypes) or a string (for all other EXIF datatypes).

 

Examples

Simple Image File with EXIF Data

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--c7d1e135-8b34-549a-bb47-302f5cf998ed",

  "name": "picture.jpg",

  "hashes": {

    "SHA-256": "4bac27393bdd9777ce02453256c5577cd02275510b2227f473d03f533924f877"

  },

  "extensions": {

    "raster-image-ext": {

      "exif_tags": {

        "Make": "Nikon",

        "Model": "D7000",

        "XResolution": 4928,

        "YResolution": 3264

      }

    }

  }

}

6.7.6 Windows™ PE Binary File Extension

Type Name: windows-pebinary-ext

 

The Windows™ PE Binary File extension specifies a default extension for capturing properties specific to Windows portable executable (PE) files. The key for this extension when used in the extensions dictionary MUST be windows-pebinary-ext. An object using the Windows™ PE Binary File Extension MUST contain at least one property other than the required pe_type property from this extension.

 

6.7.6.1 Properties

Property Name

Type

Description

pe_type (required)

open-vocab

Specifies the type of the PE binary. This is an open vocabulary and values SHOULD come from the windows-pebinary-type-ov open vocabulary.

imphash (optional)

string

Specifies the special import hash, or ‘imphash’, calculated for the PE Binary based on its imported libraries and functions. For more information on the imphash algorithm, see the original article by Mandiant/FireEye [FireEye 2014].

machine_hex (optional)

hex

Specifies the type of target machine.

number_of_sections (optional)

integer

Specifies the number of sections in the PE binary, as a non-negative integer.

time_date_stamp (optional)

timestamp

Specifies the time when the PE binary was created. The timestamp value MUST be precise to the second.

pointer_to_symbol_table_hex (optional)

hex

Specifies the file offset of the COFF symbol table.

number_of_symbols (optional)

integer

Specifies the number of entries in the symbol table of the PE binary, as a non-negative integer.

size_of_optional_header (optional)

integer

Specifies the size of the optional header of the PE binary. The value of this property MUST NOT be negative.

characteristics_hex (optional)

hex

Specifies the flags that indicate the file’s characteristics.

file_header_hashes (optional)

hashes

Specifies any hashes that were computed for the file header.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

optional_header (optional)

windows-pe-optional-header-type

Specifies the PE optional header of the PE binary. When used, at least one property from the windows-pe-optional-header-type MUST be included.

sections (optional)

list of type windows-pe-section-type

Specifies metadata about the sections in the PE file.

 

6.7.6.2 Windows™ PE Optional Header Type

Type Name: windows-pe-optional-header-type

 

The Windows PE Optional Header type represents the properties of the PE optional header. An object using the Windows PE Optional Header Type MUST contain at least one property from this type.

6.7.6.2.1 Properties

Property Name

Type

Description

magic_hex (optional)

hex

Specifies the hex value that indicates the type of the PE binary.

major_linker_version (optional)

integer

Specifies the linker major version number.

minor_linker_version (optional)

integer

Specifies the linker minor version number.

size_of_code (optional)

integer

Specifies the size of the code (text) section. If there are multiple such sections, this refers to the sum of the sizes of each section. The value of this property MUST NOT be negative.

size_of_initialized_data (optional)

integer

Specifies the size of the initialized data section. If there are multiple such sections, this refers to the sum of the sizes of each section. The value of this property MUST NOT be negative.

size_of_uninitialized_data (optional)

integer

Specifies the size of the uninitialized data section. If there are multiple such sections, this refers to the sum of the sizes of each section. The value of this property MUST NOT be negative.

address_of_entry_point (optional)

integer

Specifies the address of the entry point relative to the image base when the executable is loaded into memory.

base_of_code (optional)

integer

Specifies the address that is relative to the image base of the beginning-of-code section when it is loaded into memory.

base_of_data (optional)

integer

Specifies the address that is relative to the image base of the beginning-of-data section when it is loaded into memory.

image_base (optional)

integer

Specifies the preferred address of the first byte of the image when loaded into memory.

section_alignment (optional)

integer

Specifies the alignment (in bytes) of PE sections when they are loaded into memory.

file_alignment (optional)

integer

Specifies the factor (in bytes) that is used to align the raw data of sections in the image file.

major_os_version (optional)

integer

Specifies the major version number of the required operating system.

minor_os_version (optional)

integer

Specifies the minor version number of the required operating system.

major_image_version (optional)

integer

Specifies the major version number of the image.

minor_image_version (optional)

integer

Specifies the minor version number of the image.

major_subsystem_version (optional)

integer

Specifies the major version number of the subsystem.

minor_subsystem_version (optional)

integer

Specifies the minor version number of the subsystem.

win32_version_value_hex (optional)

hex

Specifies the reserved win32 version value.

size_of_image (optional)

integer

Specifies the size of the image in bytes, including all headers, as the image is loaded in memory. The value of this property MUST NOT be negative.

size_of_headers (optional)

integer

Specifies the combined size of the MS-DOS, PE header, and section headers, rounded up to a multiple of the value specified in the file_alignment header. The value of this property MUST NOT be negative.

checksum_hex (optional)

hex

Specifies the checksum of the PE binary.

subsystem_hex (optional)

hex

Specifies the subsystem (e.g., GUI, device driver, etc.) that is required to run this image.

dll_characteristics_hex (optional)

hex

Specifies the flags that characterize the PE binary.

size_of_stack_reserve (optional)

integer

Specifies the size of the stack to reserve, in bytes. The value of this property MUST NOT be negative.

size_of_stack_commit (optional)

integer

Specifies the size of the stack to commit, in bytes. The value of this property MUST NOT be negative.

size_of_heap_reserve (optional)

integer

Specifies the size of the local heap space to reserve, in bytes. The value of this property MUST NOT be negative.

size_of_heap_commit (optional)

integer

Specifies the size of the local heap space to commit, in bytes. The value of this property MUST NOT be negative.

loader_flags_hex (optional)

hex

Specifies the reserved loader flags.

number_of_rva_and_sizes (optional)

integer

Specifies the number of data-directory entries in the remainder of the optional header.

hashes (optional)

hashes

Specifies any hashes that were computed for the optional header.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

6.7.6.3 Windows™ PE Section Type

Type Name: windows-pe-section-type

 

The Windows PE Section type specifies metadata about a PE file section.

6.7.6.3.1 Properties

Property Name

Type

Description

name (required)

string

Specifies the name of the section.

size (optional)

integer

Specifies the size of the section, in bytes. The value of this property MUST NOT be negative.

entropy (optional)

float

Specifies the calculated entropy for the section, as calculated using the Shannon algorithm (https://en.wiktionary.org/wiki/Shannon_entropy). The size of each input character is defined as a byte, resulting in a possible range of 0 through 8.

hashes (optional)

hashes

Specifies any hashes computed over the section.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

 

Examples

Typical EXE File

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--fb0419a8-f09c-57f8-be64-71a80417591c",

  "extensions": {

    "windows-pebinary-ext": {

      "pe_type": "exe",

      "machine_hex": "014c",

      "number_of_sections": 4,

      "time_date_stamp": "2016-01-22T12:31:12Z",

      "pointer_to_symbol_table_hex": "74726144",

      "number_of_symbols": 4542568,

      "size_of_optional_header": 224,

      "characteristics_hex": "818f",

      "optional_header": {

        "magic_hex": "010b",

        "major_linker_version": 2,

        "minor_linker_version": 25,

        "size_of_code": 512,

        "size_of_initialized_data": 283648,

        "size_of_uninitialized_data": 0,

        "address_of_entry_point": 4096,

        "base_of_code": 4096,

        "base_of_data": 8192,

        "image_base": 14548992,

        "section_alignment": 4096,

        "file_alignment": 4096,

        "major_os_version": 1,

        "minor_os_version": 0,

        "major_image_version": 0,

        "minor_image_version": 0,

        "major_subsystem_version": 4,

        "minor_subsystem_version": 0,

        "win32_version_value_hex": "00",

        "size_of_image": 299008,

        "size_of_headers": 4096,

        "checksum_hex": "00",

        "subsystem_hex": "03",

        "dll_characteristics_hex": "00",

        "size_of_stack_reserve": 100000,

        "size_of_stack_commit": 8192,

        "size_of_heap_reserve": 100000,

        "size_of_heap_commit": 4096,

        "loader_flags_hex": "abdbffde",

        "number_of_rva_and_sizes": 3758087646

      },

      "sections": [

        {

          "name": "CODE",

          "entropy": 0.061089

        },

        {

          "name": "DATA",

          "entropy": 7.980693

        },

        {

          "name": "NicolasB",

          "entropy": 0.607433

        },

        {

          "name": ".idata",

          "entropy": 0.607433

        }

      ]

    }

  }

}

6.8 IPv4 Address Object

Type Name: ipv4-addr

 

The IPv4 Address object represents one or more IPv4 addresses expressed using CIDR notation.

6.8.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

IPv4 Address Object Specific Properties

value, resolves_to_refs, belongs_to_refs

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be ipv4-addr.

value (required)

string

Specifies the values of one or more IPv4 addresses expressed using CIDR notation.

 

If a given IPv4 Address object represents a single IPv4 address, the CIDR /32 suffix MAY be omitted.

 

Example: 10.2.4.5/24

resolves_to_refs (optional)

list of type identifier

Specifies a list of references to one or more Layer 2 Media Access Control (MAC) addresses that the IPv4 address resolves to.

 

The objects referenced in this list MUST be of type mac-addr.

belongs_to_refs (optional)

list of type identifier

Specifies a list of references to one or more autonomous systems (AS) that the IPv4 address belongs to.

 

The objects referenced in this list MUST be of type autonomous-system.

 

6.8.2 Relationships

These are the relationships explicitly defined between the IPv4 Address object and other STIX Objects. The table identifies the relationships that can be made from this object type to another object type by way of the Relationship object.

 

Source

Relationship Type

Target

Description

ipv4-addr

resolves-to

mac-addr

This Relationship describes that this IPv4 Address resolves to one or more Layer 2 Media Access Control (MAC) addresses.

ipv4-addr

belongs-to

autonomous-system

This Relationship describes that this IPv4 Address belongs to one or more autonomous systems (AS).

 

 

Examples

IPv4 Single Address

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd",

  "value": "198.51.100.3"

}

 

IPv4 CIDR Block

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--5853f6a4-638f-5b4e-9b0f-ded361ae3812",

  "value": "198.51.100.0/24"

}

6.9 IPv6 Address Object

Type Name: ipv6-addr

 

The IPv6 Address object represents one or more IPv6 addresses expressed using CIDR notation.

6.9.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

IPv6 Address Object Specific Properties

value, resolves_to_refs, belongs_to_refs

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be ipv6-addr.

value (required)

string

Specifies the values of one or more IPv6 addresses expressed using CIDR notation.

 

If a given IPv6 Address object represents a single IPv6 address, the CIDR /128 suffix MAY be omitted.

resolves_to_refs (optional)

list of type identifier

Specifies a list of references to one or more Layer 2 Media Access Control (MAC) addresses that the IPv6 address resolves to.

 

The objects referenced in this list MUST be of type mac-addr.

belongs_to_refs (optional)

list of type identifier

Specifies a list of references to one or more autonomous systems (AS) that the IPv6 address belongs to.

 

The objects referenced in this list MUST be of type autonomous-system.

 

6.9.2 Relationships

These are the relationships explicitly defined between the IPv6 Address object and other STIX Objects. The table identifies the relationships that can be made from this object type to another object type by way of the Relationship object.

 

Source

Relationship Type

Target

Description

ipv6-addr

resolves-to

mac-addr

This Relationship describes that this IPv6 Address resolves to one or more Layer 2 Media Access Control (MAC) addresses.

ipv6-addr

belongs-to

autonomous-system

This Relationship describes that this IPv6 Address belongs to one or more autonomous systems (AS).

 

Examples

IPv6 Single Address

  "type": "ipv6-addr",

  "spec_version": "2.1",

  "id": "ipv6-addr--1e61d36c-a16c-53b7-a80f-2a00161c96b1",

  "value": "2001:0db8:85a3:0000:0000:8a2e:0370:7334"

}

 

IPv6 CIDR block

{

  "type": "ipv6-addr",

  "spec_version": "2.1",

  "id": "ipv6-addr--5daf7456-8863-5481-9d42-237d477697f4",

  "value": "2001:0db8::/96"

}

6.10 MAC Address Object

Type Name: mac-addr

 

The MAC Address object represents a single Media Access Control (MAC) address.

6.10.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

MAC Address Object Specific Properties

value

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be mac-addr.

value (required)

string

Specifies the value of a single MAC address.

 

The MAC address value MUST be represented as a single colon-delimited, lowercase MAC-48 address, which MUST include leading zeros for each octet.

 

Example: 00:00:ab:cd:ef:01

 

Examples

Typical MAC address

{

  "type": "mac-addr",

  "spec_version": "2.1",

  "id": "mac-addr--65cfcf98-8a6e-5a1b-8f61-379ac4f92d00",

  "value": "d2:fb:49:24:37:18"

}

6.11 Mutex Object

Type Name: mutex

 

The Mutex object represents the properties of a mutual exclusion (mutex) object.

6.11.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Mutex Object Specific Properties

name

ID Contributing Properties

name

Property Name

Type

Description

type (required)

string

The value of this property MUST be mutex.

name (required)

string

Specifies the name of the mutex object.

Examples

Malware mutex

{

  "type": "mutex",

  "spec_version": "2.1",

  "id": "mutex--eba44954-d4e4-5d3b-814c-2b17dd8de300",

  "name": "__CLEANSWEEP__"

}

6.12 Network Traffic Object

Type Name: network-traffic

 

The Network Traffic object represents arbitrary network traffic that originates from a source and is addressed to a destination. The network traffic MAY or MAY NOT constitute a valid unicast, multicast, or broadcast network connection. This MAY also include traffic that is not established, such as a SYN flood.

 

To allow for use cases where a source or destination address may be sensitive and not suitable for sharing, such as addresses that are internal to an organization’s network, the source and destination properties (src_ref and dst_ref, respectively) are defined as optional in the properties table below. However, a Network Traffic object MUST contain the protocols property and at least one of the src_ref or dst_ref properties and SHOULD contain the src_port and dst_port properties.

6.12.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Network Traffic Specific Properties

start, end, is_active, src_ref, dst_ref, src_port, dst_port, protocols, src_byte_count, dst_byte_count, src_packets, dst_packets, ipfix, src_payload_ref, dst_payload_ref, encapsulates_refs, encapsulated_by_ref

ID Contributing Properties

start, src_ref, dst_ref, src_port, dst_port, protocols

Property Name

Type

Description

type (required)

string

The value of this property MUST be network-traffic.

extensions (optional)

dictionary

The Network Traffic object defines the following extensions. In addition to these, producers MAY create their own.

 

http-request-ext, tcp-ext, icmp-ext, socket-ext

 

Dictionary keys MUST identify the extension type by name.

 

The corresponding dictionary values MUST contain the contents of the extension instance.

start (optional)

timestamp

Specifies the date/time the network traffic was initiated, if known.

end (optional)

timestamp

Specifies the date/time the network traffic ended, if known.

 

If the is_active property is true, then the end property MUST NOT be included.

 

If start and end are both defined, then end MUST be later than the start value.

is_active (optional)

boolean

Indicates whether the network traffic is still ongoing.

 

If the end property is provided, this property MUST be false.

src_ref (optional)

identifier

Specifies the source of the network traffic, as a reference to a Cyber-observable Object.

 

The object referenced MUST be of type ipv4-addr, ipv6-addr, mac-addr, or domain-name (for cases where the IP address for a domain name is unknown).

dst_ref (optional)

identifier

Specifies the destination of the network traffic, as a reference to a Cyber-observable Object.

 

The object referenced MUST be of type ipv4-addr, ipv6-addr, mac-addr, or domain-name (for cases where the IP address for a domain name is unknown).

src_port (optional)

integer

Specifies the source port used in the network traffic, as an integer. The port value MUST be in the range of 0 - 65535.

dst_port (optional)

integer

Specifies the destination port used in the network traffic, as an integer. The port value MUST be in the range of 0 - 65535.

protocols (required)

list of type string

Specifies the protocols observed in the network traffic, along with their corresponding state.

 

Protocols MUST be listed in low to high order, from outer to inner in terms of packet encapsulation. That is, the protocols in the outer level of the packet, such as IP, MUST be listed first.

 

The protocol names SHOULD come from the service names defined in the Service Name column of the IANA Service Name and Port Number Registry [Port Numbers]. In cases where there is variance in the name of a network protocol not included in the IANA Registry, content producers should exercise their best judgement, and it is recommended that lowercase names be used for consistency with the IANA registry.

 

Examples:

ipv4, tcp, http

ipv4, udp

ipv6, tcp, http

ipv6, tcp, ssl, https

src_byte_count (optional)

integer

Specifies the number of bytes, as a positive integer, sent from the source to the destination.

dst_byte_count (optional)

integer

Specifies the number of bytes, as a positive integer, sent from the destination to the source.

src_packets (optional)

integer

Specifies the number of packets, as a positive integer, sent from the source to the destination.

dst_packets (optional)

integer

Specifies the number of packets, as a positive integer, sent from the destination to the source.

ipfix (optional)

dictionary

Specifies any IP Flow Information Export [IPFIX] data for the traffic, as a dictionary. Each key/value pair in the dictionary represents the name/value of a single IPFIX element. Accordingly, each dictionary key SHOULD be a case-preserved version of the IPFIX element name, e.g., octetDeltaCount. Each dictionary value MUST be either an integer or a string, as well as a valid IPFIX property.

src_payload_ref (optional)

identifier

Specifies the bytes sent from the source to the destination.

 

The object referenced in this property MUST be of type artifact.

dst_payload_ref (optional)

identifier

Specifies the bytes sent from the destination to the source.

 

The object referenced in this property MUST be of type artifact.

encapsulates_refs (optional)

list of type identifier

Links to other network-traffic objects encapsulated by this network-traffic object.

 

The objects referenced in this property MUST be of type network-traffic.

encapsulated_by_ref (optional)

identifier

Links to another network-traffic object which encapsulates this object.

 

The object referenced in this property MUST be of type network-traffic.

 

Examples

Basic TCP Network Traffic

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "value": "198.51.100.2"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd",

  "value": "198.51.100.3"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--2568d22a-8998-58eb-99ec-3c8ca74f527d",

  "src_ref": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "dst_ref": "ipv4-addr--ff26c055-6336-5bc5-b98d-13d6226742dd",

  "protocols": [

    "tcp"

  ]

}

 

Basic HTTP Network Traffic

{

  "type": "domain-name",

  "spec_version": "2.1",

  "id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",

  "value": "example.com"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--15a157a8-26e3-56e0-820b-0c2a8e553a2c",

  "dst_ref": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",

  "protocols": [

    "ipv4",

    "tcp",

    "http"

  ]

}

 

Network Traffic with Netflow Data

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb7",

  "value": "203.0.113.1"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--03b708d9-7761-5523-ab75-5ea096294a68",

  "value": "203.0.113.5"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--630d7bb1-0bbc-53a6-a6d4-f3c2d35c2734",

  "src_ref": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb",

  "dst_ref": "ipv4-addr--03b708d9-7761-5523-ab75-5ea096294a68",

  "protocols": [

    "ipv4",

    "tcp"

  ],

  "src_byte_count": 147600,

  "src_packets": 100,

  "ipfix": {

    "minimumIpTotalLength": 32,

    "maximumIpTotalLength": 2556

  }

}

 

Basic Tunneled Network Traffic

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "value": "198.51.100.2"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb7",

  "value": "203.0.113.1"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--ffe65ce3-bf2a-577c-bb7e-947d39198637",

  "value": "203.0.113.2"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--ac267abc-1a41-536d-8e8d-98458d9bf491",

  "src_ref": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "dst_ref": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb7",

  "src_port": 2487,

  "dst_port": 1723,

  "protocols": [

    "ipv4",

    "pptp"

  ],

  "src_byte_count": 35779,

  "dst_byte_count": 935750,

  "encapsulates_refs": [

    "network-traffic--53e0bf48-2eee-5c03-8bde-ed7049d2c0a3"

  ]

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--53e0bf48-2eee-5c03-8bde-ed7049d2c0a3",

  "src_ref": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "dst_ref": "ipv4-addr--ffe65ce3-bf2a-577c-bb7e-947d39198637",

  "src_port": 24678,

  "dst_port": 80,

  "protocols": [

    "ipv4",

    "tcp",

    "http"

  ],

  "src_packets": 14356,

  "dst_packets": 14356,

  "encapsulated_by_ref": "network-traffic--ac267abc-1a41-536d-8e8d-98458d9bf491"

}

 

Web traffic tunneled over DNS

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb7",

  "value": "203.0.113.1"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--f2d3c796-6c1a-5c4f-8516-d4db54727f89",

  "value": "198.51.100.34"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--bb884ffe-f2e4-56bb-a0c3-21f6711cb649",

  "value": "198.51.100.54"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--b4a8c150-e214-57a3-9017-e85dfa345f46",

  "src_ref": "ipv4-addr--e42c19c8-f9fe-5ae9-9fc8-22c398f78fb7",

  "dst_ref": "ipv4-addr--f2d3c796-6c1a-5c4f-8516-d4db54727f89",

  "src_port": 2487,

  "dst_port": 53,

  "protocols": [

    "ipv4",

    "udp",

    "dns"

  ],

  "src_byte_count": 35779,

  "dst_byte_count": 935750,

  "encapsulates_refs": [

      "network-traffic--65a6016d-a91c-5781-baad-178cd55f01d4"

    ]

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--65a6016d-a91c-5781-baad-178cd55f01d4",

  "src_ref": "ipv4-addr--f2d3c796-6c1a-5c4f-8516-d4db54727f89",

  "dst_ref": "ipv4-addr--bb884ffe-f2e4-56bb-a0c3-21f6711cb649",

  "src_port": 24678,

  "dst_port": 443,

  "protocols": [

    "ipv4",

    "tcp",

    "ssl",

    "http"

  ],

  "src_packets": 14356,

  "dst_packets": 14356,

  "encapsulated_by_ref": "network-traffic--b4a8c150-e214-57a3-9017-e85dfa345f46"

}

6.12.2 HTTP Request Extension

Type Name: http-request-ext

 

The HTTP request extension specifies a default extension for capturing network traffic properties specific to HTTP requests. The key for this extension when used in the extensions dictionary MUST be http-request-ext.

 

6.12.2.1 Properties

Property Name

Type

Description

request_method (required)

string

Specifies the HTTP method portion of the HTTP request line, as a lowercase string.

request_value (required)

string

Specifies the value (typically a resource path) portion of the HTTP request line.

request_version (optional)

string

Specifies the HTTP version portion of the HTTP request line, as a lowercase string.

request_header (optional)

dictionary

Specifies all of the HTTP header fields that may be found in the HTTP client request, as a dictionary.

 

Each key in the dictionary MUST be the name of the header field and SHOULD preserve case, e.g., User-Agent. The corresponding value for each dictionary key MUST always be a list of type string to support when a header field is repeated.

message_body_length (optional)

integer

Specifies the length of the HTTP message body, if included, in bytes.

message_body_data_ref (optional)

identifier

Specifies the data contained in the HTTP message body, if included.

 

The object referenced in this property MUST be of type artifact.

 

Examples

Basic HTTP Request

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--6da8dad3-4de3-5f8e-ab23-45d0b8f12f16",

  "value": "198.51.100.53"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--f8ae967a-3dc3-5cdf-8f94-8505abff00c2",

  "dst_ref": "ipv4-addr--6da8dad3-4de3-5f8e-ab23-45d0b8f12f16",

  "protocols": [

    "tcp",

    "http"

  ],

  "extensions": {

    "http-request-ext": {

      "request_method": "get",

      "request_value": "/download.html",

      "request_version": "http/1.1",

      "request_header": {

        "Accept-Encoding": "gzip,deflate",

        "User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040113",

        "Host": "www.example.com"

      }

    }

  }

}

6.12.3 ICMP Extension

Type Name: icmp-ext

 

The ICMP extension specifies a default extension for capturing network traffic properties specific to ICMP. The key for this extension when used in the extensions dictionary MUST be icmp-ext.

 

6.12.3.1 Properties

Property Name

Type

Description

icmp_type_hex (required)

hex

Specifies the ICMP type byte.

icmp_code_hex (required)

hex

Specifies the ICMP code byte.

Examples

Basic ICMP Traffic

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--d7177770-fc12-586b-9244-426596a7008e",

  "value": "198.51.100.9"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--03b708d9-7761-5523-ab75-5ea096294a68",

  "value": "203.0.113.5"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--e7a939ca-78c6-5f27-8ae0-4ad112454626",

  "src_ref": "ipv4-addr--d7177770-fc12-586b-9244-426596a7008e",

  "dst_ref": "ipv4-addr--03b708d9-7761-5523-ab75-5ea096294a68",

  "protocols": [

    "icmp"

  ],

  "extensions": {

    "icmp-ext": {

      "icmp_type_hex": "08",

      "icmp_code_hex": "00"

    }

  }

}

6.12.4 Network Socket Extension

Type Name: socket-ext

 

The Network Socket extension specifies a default extension for capturing network traffic properties associated with network sockets. The key for this extension when used in the extensions dictionary MUST be socket-ext.

 

6.12.4.1 Properties

Property Name

Type

Description

address_family (required)

enum

Specifies the address family (AF_*) that the socket is configured for.

 

The values of this property MUST come from the network-socket-address-family-enum enumeration.

is_blocking (optional)

boolean

Specifies whether the socket is in blocking mode.

is_listening (optional)

boolean

Specifies whether the socket is in listening mode.

options (optional)

dictionary

Specifies any options (e.g., SO_*) that may be used by the socket, as a dictionary. Each key in the dictionary SHOULD be a case-preserved version of the option name, e.g., SO_ACCEPTCONN. Each key value in the dictionary MUST be the value for the corresponding options key.  Each dictionary value MUST be an integer.  For SO_RCVTIMEO, SO_SNDTIMEO and SO_LINGER the value represents the number of milliseconds.  If the SO_LINGER key is present, it indicates that the SO_LINGER option is active.

socket_type (optional)

enum

Specifies the type of the socket.

 

The values of this property MUST come from the network-socket-type-enum enumeration.

socket_descriptor (optional)

integer

Specifies the socket file descriptor value associated with the socket, as a non-negative integer.

socket_handle (optional)

integer

Specifies the handle or inode value associated with the socket.

 

 

​Examples

Basic Stream Socket

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "value": "198.51.100.2"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--c95e972a-20a4-5307-b00d-b8393faf02c5",

  "src_ref": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

  "src_port": 223,

  "protocols": [

    "ip",

    "tcp"

  ],

  "extensions": {

    "socket-ext": {

      "is_listening": true,

      "address_family": "AF_INET",

      "socket_type": "SOCK_STREAM"

    }

  }

}

6.12.5 TCP Extension

Type Name: tcp-ext

 

The TCP extension specifies a default extension for capturing network traffic properties specific to TCP. The key for this extension when used in the extensions dictionary MUST be tcp-ext. An object using the TCP Extension MUST contain at least one property from this extension.

 

6.12.5.1 Properties

Property Name

Type

Description

src_flags_hex (optional)

hex

Specifies the source TCP flags, as the union of all TCP flags observed between the start of the traffic (as defined by the start property) and the end of the traffic (as defined by the end property).

 

If the start and end times of the traffic are not specified, this property SHOULD be interpreted as the union of all TCP flags observed over the entirety of the network traffic being reported upon.

dst_flags_hex (optional)

hex

Specifies the destination TCP flags, as the union of all TCP flags observed between the start of the traffic (as defined by the start property) and the end of the traffic (as defined by the end property).

 

If the start and end times of the traffic are not specified, this property SHOULD be interpreted as the union of all TCP flags observed over the entirety of the network traffic being reported upon.

 

Examples

Basic TCP Traffic

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--89830c10-2e94-57fa-8ca6-e0537d2719d1",

  "value": "198.51.100.5"

}

 

{

  "type": "ipv4-addr",

  "spec_version": "2.1",

  "id": "ipv4-addr--45f4c6fb-2d7d-576a-a571-edc78d899a72",

  "value": "198.51.100.6"

}

 

{

  "type": "network-traffic",

  "spec_version": "2.1",

  "id": "network-traffic--09ca55c3-97e5-5966-bad0-1d41d557ae13",

  "src_ref": "ipv4-addr--89830c10-2e94-57fa-8ca6-e0537d2719d1",

  "dst_ref": "ipv4-addr--45f4c6fb-2d7d-576a-a571-edc78d899a72",

  "src_port": 3372,

  "dst_port": 80,

  "protocols": [

    "tcp"

  ],

  "extensions": {

    "tcp-ext": {

      "src_flags_hex": "00000002"

    }

  }

}

6.13 Process Object

Type Name: process

 

The Process object represents common properties of an instance of a computer program as executed on an operating system. A Process object MUST contain at least one property (other than type) from this object (or one of its extensions).

6.13.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Process Object Specific Properties

is_hidden, pid, created_time, cwd, command_line, environment_variables, opened_connection_refs, creator_user_ref, image_ref, parent_ref, child_refs

ID Contributing Properties

Since all properties on this object are optional, please use a UUIDv4 for the ID of this object.

Property Name

Type

Description

type (required)

string

The value of this property MUST be process.

extensions (optional)

dictionary

The Process object defines the following extensions. In addition to these, producers MAY create their own.

 

windows-process-ext, windows-service-ext

 

Dictionary keys MUST identify the extension type by name.

 

The corresponding dictionary values MUST contain the contents of the extension instance.

is_hidden (optional)

boolean

Specifies whether the process is hidden.

pid (optional)

integer

Specifies the Process ID, or PID, of the process.

created_time (optional)

timestamp

Specifies the date/time at which the process was created.

cwd (optional)

string

Specifies the current working directory of the process.

command_line (optional)

string

Specifies the full command line used in executing the process, including the process name (which may be specified individually via the image_ref.name property) and any arguments.

environment_variables (optional)

dictionary

Specifies the list of environment variables associated with the process as a dictionary. Each key in the dictionary MUST be a case preserved version of the name of the environment variable, and each corresponding value MUST be the environment variable value as a string.

opened_connection_refs (optional)

list of type identifier

Specifies the list of network connections opened by the process, as a reference to one or more Network Traffic objects.

 

The objects referenced in this list MUST be of type network-traffic.

creator_user_ref (optional)

identifier

Specifies the user that created the process, as a reference to a User Account object.

 

The object referenced in this property MUST be of type user-account.

image_ref (optional)

identifier

Specifies the executable binary that was executed as the process image, as a reference to a File object.

 

The object referenced in this property MUST be of type file.

parent_ref (optional)

identifier

Specifies the other process that spawned (i.e. is the parent of) this one, as a reference to a Process object.

 

The object referenced in this property MUST be of type process.

child_refs (optional)

list of type identifier

Specifies the other processes that were spawned by (i.e. children of) this process, as a reference to one or more other Process objects.

 

The objects referenced in this list MUST be of type process.

 

Examples

Basic Process

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--e04f22d1-be2c-59de-add8-10f61d15fe20",

  "name": "gedit-bin",

  "hashes": {

    "SHA-256": "aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f"

  }

}

 

{

  "type": "process",

  "spec_version": "2.1",

  "id": "process--f52a906a-0dfc-40bd-92f1-e7778ead38a9",

  "pid": 1221,

  "created": "2016-01-20T14:11:25.55Z",

  "command_line": "./gedit-bin --new-window",

  "image_ref": "file--e04f22d1-be2c-59de-add8-10f61d15fe20"

}

6.13.2 Windows™ Process Extension

Type Name: windows-process-ext

 

The Windows Process extension specifies a default extension for capturing properties specific to Windows processes. The key for this extension when used in the extensions dictionary MUST be windows-process-ext. An object using the Windows Process Extension MUST contain at least one property from this extension.

 

6.13.2.1 Properties

Property Name

Type

Description

aslr_enabled (optional)

boolean

Specifies whether Address Space Layout Randomization (ASLR) is enabled for the process.

dep_enabled (optional)

boolean

Specifies whether Data Execution Prevention (DEP) is enabled for the process.

priority (optional)

string

Specifies the current priority class of the process in Windows. This value SHOULD be a string that ends in _CLASS.

owner_sid (optional)

string

Specifies the Security ID (SID) value of the owner of the process.

window_title (optional)

string

Specifies the title of the main window of the process.

startup_info (optional)

dictionary

Specifies the STARTUP_INFO struct used by the process, as a dictionary. Each name/value pair in the struct MUST be represented as a key/value pair in the dictionary, where each key MUST be a case-preserved version of the original name. For example, given a name of "lpDesktop" the corresponding key would be lpDesktop.

integrity_level  (optional)

enum

Specifies the Windows integrity level, or trustworthiness, of the process.

 

The values of this property MUST come from the windows-integrity-level-enum enumeration.

 

 

Examples

Basic Windows Process

{

  "type": "process",

  "spec_version": "2.1",

  "id": "process--07bc30cad-ebc2-4579-881d-b9cdc7f2b33c",

  "pid": 314,

  "extensions": {

    "windows-process-ext": {

      "aslr_enabled": true,

      "dep_enabled": true,

      "priority": "HIGH_PRIORITY_CLASS",

      "owner_sid": "S-1-5-21-186985262-1144665072-74031268-1309"

    }

  }

}

6.13.3 Windows™ Service Extension

Type Name: windows-service-ext

 

The Windows Service extension specifies a default extension for capturing properties specific to Windows services. The key for this extension when used in the extensions dictionary MUST be windows-service-ext. As all properties of this extension are optional, at least one of the properties defined below MUST be included when using this extension.

 

6.13.3.1 Properties

Property Name

Type

Description

service_name (optional)

string

Specifies the name of the service.

descriptions (optional)

list of type string

Specifies the descriptions defined for the service.

display_name (optional)

string

Specifies the display name of the service in Windows GUI controls.

group_name (optional)

string

Specifies the name of the load ordering group of which the service is a member.

start_type (optional)

enum

Specifies the start options defined for the service.

 

The values of this property MUST come from the windows-service-start-type-enum enumeration.

service_dll_refs (optional)

list of type identifier

Specifies the DLLs loaded by the service, as a reference to one or more File objects.

 

The objects referenced in this property MUST be of type file.

service_type (optional)

enum

Specifies the type of the service.

 

The values of this property MUST come from the windows-service-type-enum enumeration.

service_status (optional)

enum

Specifies the current status of the service.

 

The values of this property MUST come from the windows-service-status-enum enumeration.

 

Examples

Basic Windows Service

{

  "type": "file",

  "spec_version": "2.1",

  "id": "file--3916128d-69af-5525-be7a-99fac2383a59",

  "hashes": {

    "SHA-256": "bf07a7fbb825fc0aae7bf4a1177b2b31fcf8a3feeaf7092761e18c859ee52a9c"

  },

  "name": "sirvizio.exe"

}

 

{

  "type": "process",

  "spec_version": "2.1",

  "id": "process--99ab297d-4c39-48ea-9d64-052d596864df",

  "pid": 2217,

  "command_line": "C:\\Windows\\System32\\sirvizio.exe /s",

  "image_ref": "file--3916128d-69af-5525-be7a-99fac2383a59",

  "extensions": {

    "windows-service-ext": {

      "service_name": "sirvizio",

      "display_name": "Sirvizio",

      "start_type": "SERVICE_AUTO_START",

      "service_type": "SERVICE_WIN32_OWN_PROCESS",

      "service_status": "SERVICE_RUNNING"

    }

  }

}

6.14 Software Object

Type Name: software

 

The Software object represents high-level properties associated with software, including software products.

6.14.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

Software Object Specific Properties

name, cpe, swid, languages, vendor, version

ID Contributing Properties

name, cpe, swid, vendor, version

Property Name

Type

Description

type (required)

string

The value of this property MUST be software.

name (required)

string

Specifies the name of the software.

cpe (optional)

string

Specifies the Common Platform Enumeration (CPE) entry for the software, if available. The value for this property MUST be a CPE v2.3 entry from the official NVD CPE Dictionary [NVD] .

 

While the CPE dictionary does not contain entries for all software, whenever it does contain an identifier for a given instance of software, this property SHOULD be present.

swid (optional)

string

Specifies the Software Identification (SWID) Tags [SWID] entry for the software, if available. The tag attribute, tagId, a globally unique identifier, SHOULD be used as a proxy identifier of the tagged product.

languages (optional)

list of type string

Specifies the languages supported by the software. The value of each list member MUST be an ISO 639-2 language code [ISO639-2].

vendor (optional)

string

Specifies the name of the vendor of the software.

version (optional)

string

Specifies the version of the software.

Examples

Typical Software Instance

{

  "type": "software",

  "spec_version": "2.1",

  "id": "software--a1827f6d-ca53-5605-9e93-4316cd22a00a",

  "name": "Word",

  "cpe": "cpe:2.3:a:microsoft:word:2000:*:*:*:*:*:*:*",  

  "version": "2002",

  "vendor": "Microsoft"

}

6.15 URL Object

Type Name: url

 

The URL object represents the properties of a uniform resource locator (URL).

6.15.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

URL Object Specific Properties

value

ID Contributing Properties

value

Property Name

Type

Description

type (required)

string

The value of this property MUST be url.

value (required)

string

Specifies the value of the URL. The value of this property MUST conform to [RFC3986], more specifically section 1.1.3 with reference to the definition for "Uniform Resource Locator".

 

Examples

Typical URL

{  

  "type": "url",

  "spec_version": "2.1",

  "id": "url--c1477287-23ac-5971-a010-5c287877fa60",

  "value": "https://example.com/research/index.html"

}

6.16 User Account Object

Type Name: user-account

 

The User Account object represents an instance of any type of user account, including but not limited to operating system, device, messaging service, and social media platform accounts. As all properties of this object are optional, at least one of the properties defined below MUST be included when using this object.

6.16.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

User Account Object Specific Properties

user_id, credential, account_login, account_type, display_name, is_service_account, is_privileged, can_escalate_privs, is_disabled, account_created, account_expires, credential_last_changed, account_first_login, account_last_login

ID Contributing Properties

account_type, user_id, account_login

Property Name

Type

Description

type (required)

string

The value of this property MUST be user-account.

extensions (optional)

dictionary

The User Account object defines the following extensions. In addition to these, producers MAY create their own.

 

unix-account-ext

 

Dictionary keys MUST identify the extension type by name.

 

The corresponding dictionary values MUST contain the contents of the extension instance.

user_id (optional)

string

Specifies the identifier of the account. The format of the identifier depends on the system the user account is maintained in, and may be a numeric ID, a GUID, an account name, an email address, etc. The user_id property should be populated with whatever field is the unique identifier for the system the account is a member of. For example, on UNIX systems it would be populated with the UID.

credential (optional)

string

Specifies a cleartext credential. This is only intended to be used in capturing metadata from malware analysis (e.g., a hard-coded domain administrator password that the malware attempts to use for lateral movement) and SHOULD NOT be used for sharing of PII.

account_login (optional)

string

Specifies the account login string, used in cases where the user_id property specifies something other than what a user would type when they login.

 

For example, in the case of a Unix account with user_id 0, the account_login might be “root”.

account_type (optional)

open-vocab

Specifies the type of the account.

 

This is an open vocabulary and values SHOULD come from the account-type-ov open vocabulary.

display_name (optional)

string

Specifies the display name of the account, to be shown in user interfaces, if applicable.

 

On Unix, this is equivalent to the GECOS field.

is_service_account (optional)

boolean

Indicates that the account is associated with a network service or system process (daemon), not a specific individual.

is_privileged (optional)

boolean

Specifies that the account has elevated privileges (i.e., in the case of root on Unix or the Windows Administrator account).

can_escalate_privs (optional)

boolean

Specifies that the account has the ability to escalate privileges (i.e., in the case of sudo on Unix or a Windows Domain Admin account)

is_disabled (optional)

boolean

Specifies if the account is disabled.

account_created (optional)

timestamp

Specifies when the account was created.

account_expires (optional)

timestamp

Specifies the expiration date of the account.

credential_last_changed (optional)

timestamp

Specifies when the account credential was last changed.

account_first_login (optional)

timestamp

Specifies when the account was first accessed.

account_last_login (optional)

timestamp

Specifies when the account was last accessed.

 

Examples

Basic Unix Account

{

  "type": "user-account",

  "spec_version": "2.1",

  "id": "user-account--0d5b424b-93b8-5cd8-ac36-306e1789d63c",

  "user_id": "1001",

  "account_login": "jdoe",

  "account_type": "unix",

  "display_name": "John Doe",

  "is_service_account": false,

  "is_privileged": false,

  "can_escalate_privs": true,

  "account_created": "2016-01-20T12:31:12Z",

  "credential_last_changed": "2016-01-20T14:27:43Z",

  "account_first_login": "2016-01-20T14:26:07Z",

  "account_last_login": "2016-07-22T16:08:28Z"

}

 

Basic Twitter Account

{

  "type": "user-account",

  "spec_version": "2.1",

  "id": "user-account--9bd3afcf-deee-54f9-83e2-520653cb6bba",

  "user_id": "thegrugq_ebooks",

  "account_login": "thegrugq_ebooks",

  "account_type": "twitter",

  "display_name": "the grugq"

}

6.16.2 UNIX™ Account Extension

Type Name: unix-account-ext

 

The UNIX account extension specifies a default extension for capturing the additional information for an account on a UNIX system. The key for this extension when used in the extensions dictionary MUST be unix-account-ext. An object using the UNIX Account Extension MUST contain at least one property from this extension.

6.16.2.1 Properties

Property Name

Type

Description

gid (optional)

integer

Specifies the primary group ID of the account.

groups (optional)

list of type string

Specifies a list of names of groups that the account is a member of.

home_dir (optional)

string

Specifies the home directory of the account.

shell (optional)

string

Specifies the account’s command shell.

 

Examples

Basic UNIX Account

{

  "type": "user-account",

  "spec_version": "2.1",

  "id": "user-account--0d5b424b-93b8-5cd8-ac36-306e1789d63c",

  "user_id": "1001",

  "account_login": "jdoe",

  "account_type": "unix",

  "display_name": "John Doe",

  "is_service_account": false,

  "is_privileged": false,

  "can_escalate_privs": true,

  "extensions": {

    "unix-account-ext": {

      "gid": 1001,

      "groups": ["wheel"],

      "home_dir": "/home/jdoe",

      "shell": "/bin/bash"

    }

  }

}

6.17 Windows™ Registry Key Object

Type Name: windows-registry-key

 

The Registry Key object represents the properties of a Windows registry key. As all properties of this object are optional, at least one of the properties defined below MUST be included when using this object.

6.17.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

WindowsTM Registry Key Object Specific Properties

key, values, modified_time, creator_user_ref, number_of_subkeys

ID Contributing Properties

key, values (all items defined in the values property MUST be included)

Property Name

Type

Description

type (required)

string

The value of this property MUST be windows-registry-key.

key (optional)

string

Specifies the full registry key including the hive.

 

The value of the key, including the hive portion, SHOULD be case-preserved. The hive portion of the key MUST be fully expanded and not truncated; e.g., HKEY_LOCAL_MACHINE must be used instead of HKLM.

values (optional)

list of type windows-registry-value-type

Specifies the values found under the registry key.

modified_time (optional)

timestamp

Specifies the last date/time that the registry key was modified.

creator_user_ref (optional)

identifier

Specifies a reference to the user account that created the registry key.

 

The object referenced in this property MUST be of type user-account.

number_of_subkeys (optional)

integer

Specifies the number of subkeys contained under the registry key.

 

6.17.2 Windows™ Registry Value Type

Type Name: windows-registry-value-type

 

The Windows Registry Value type captures the properties of a Windows Registry Key Value. As all properties of this type are optional, at least one of the properties defined below MUST be included when using this type.

 

6.17.2.1 Properties

Property Name

Type

Description

name (optional)

string

Specifies the name of the registry value. For specifying the default value in a registry key, an empty string MUST be used.

data (optional)

string

Specifies the data contained in the registry value.

data_type (optional)

enum

Specifies the registry (REG_*) data type used in the registry value.

 

The values of this property MUST come from the windows-registry-datatype-enum enumeration.

 

Examples

Simple registry key

{

  "type": "windows-registry-key",

  "spec_version": "2.1",

  "id": "windows-registry-key--9d60798d-4e3e-5fe4-af8a-0e4986f0f90b",

  "key": "HKEY_LOCAL_MACHINE\\System\\Foo\\Bar"

}

 

Registry key with values

{

  "type": "windows-registry-key",

  "spec_version": "2.1",

  "id": "windows-registry-key--2ba37ae7-2745-5082-9dfd-9486dad41016",

  "key": "hkey_local_machine\\system\\bar\\foo",

  "values": [

    {

      "name": "Foo",

      "data": "qwerty",

      "data_type": "REG_SZ"

    },

    {

      "name": "Bar",

      "data": "42",

      "data_type": "REG_DWORD"

    }

  ]

}

6.18 X.509 Certificate Object

Type Name: x509-certificate

 

The X.509 Certificate object represents the properties of an X.509 certificate, as defined by ITU recommendation X.509 [X.509]. An X.509 Certificate object MUST contain at least one object specific property (other than type) from this object.

6.18.1 Properties

Required Common Properties

type, id

Optional Common Properties

spec_version, object_marking_refs, granular_markings, defanged, extensions

Not Applicable Common Properties

created_by_ref, revoked, labels, confidence, lang, external_references

X.509 Certificate Object Specific Properties

is_self_signed, hashes, version, serial_number, signature_algorithm, issuer, validity_not_before, validity_not_after, subject, subject_public_key_algorithm, subject_public_key_modulus, subject_public_key_exponent, x509_v3_extensions

ID Contributing Properties

hashes, serial_number

 

If the hashes property is present, include only one hash. The selected hash SHOULD come from this ordered list (based on the following order of preference) [ MD5, SHA-1, SHA-256, SHA-512 ].

Property Name

Type

Description

type (required)

string

The value of this property MUST be x509-certificate.

is_self_signed (optional)

boolean

Specifies whether the certificate is self-signed, i.e., whether it is signed by the same entity whose identity it certifies.

hashes (optional)

hashes

Specifies any hashes that were calculated for the entire contents of the certificate.

 

Dictionary keys MUST come from the hash-algorithm-ov open vocabulary.

version (optional)

string

Specifies the version of the encoded certificate.

serial_number (optional)

string

Specifies the unique identifier for the certificate, as issued by a specific Certificate Authority.

signature_algorithm (optional)

string

Specifies the name of the algorithm used to sign the certificate.

issuer (optional)

string

Specifies the name of the Certificate Authority that issued the certificate.

validity_not_before (optional)

timestamp

Specifies the date on which the certificate validity period begins.

validity_not_after (optional)

timestamp

Specifies the date on which the certificate validity period ends.

subject (optional)

string

Specifies the name of the entity associated with the public key stored in the subject public key field of the certificate.

subject_public_key_algorithm (optional)

string

Specifies the name of the algorithm with which to encrypt data being sent to the subject.

subject_public_key_modulus (optional)

string

Specifies the modulus portion of the subject’s public RSA key.

subject_public_key_exponent (optional)

integer

Specifies the exponent portion of the subject’s public RSA key, as an integer.

x509_v3_extensions (optional)

x509-v3-extensions-type

Specifies any standard X.509 v3 extensions that may be used in the certificate.

 

6.18.2 X.509 v3 Extensions Type

Type Name: x509-v3-extensions-type

 

The X.509 v3 Extensions type captures properties associated with X.509 v3 extensions, which serve as a mechanism for specifying additional information such as alternative subject names. An object using the X.509 v3 Extensions type MUST contain at least one property from this type.

 

Note that the use of the term "extensions" in this context refers to the X.509 v3 Extensions type and is not a STIX Cyber Observables extension. Therefore, it is a type that describes X.509 extensions.

 

6.18.2.1 Properties

Property Name

Type

Description

basic_constraints (optional)

string

Specifies a multi-valued extension which indicates whether a certificate is a CA certificate. The first (mandatory) name is CA followed by TRUE or FALSE. If CA is TRUE, then an optional pathlen name followed by a non-negative value can be included. Also equivalent to the object ID (OID) value of 2.5.29.19.

name_constraints (optional)

string

Specifies a namespace within which all subject names in subsequent certificates in a certification path MUST be located. Also equivalent to the object ID (OID) value of 2.5.29.30.

policy_constraints (optional)

string

Specifies any constraints on path validation for certificates issued to CAs. Also equivalent to the object ID (OID) value of 2.5.29.36.

key_usage (optional)

string

Specifies a multi-valued extension consisting of a list of names of the permitted key usages. Also equivalent to the object ID (OID) value of 2.5.29.15.

extended_key_usage (optional)

string

Specifies a list of usages indicating purposes for which the certificate public key can be used for. Also equivalent to the object ID (OID) value of 2.5.29.37.

subject_key_identifier (optional)

string

Specifies the identifier that provides a means of identifying certificates that contain a particular public key. Also equivalent to the object ID (OID) value of 2.5.29.14.

authority_key_identifier (optional)

string

Specifies the identifier that provides a means of identifying the public key corresponding to the private key used to sign a certificate. Also equivalent to the object ID (OID) value of 2.5.29.35.

subject_alternative_name (optional)

string

Specifies the additional identities to be bound to the subject of the certificate. Also equivalent to the object ID (OID) value of 2.5.29.17.

issuer_alternative_name (optional)

string

Specifies the additional identities to be bound to the issuer of the certificate. Also equivalent to the object ID (OID) value of 2.5.29.18.

subject_directory_attributes (optional)

string

Specifies the identification attributes (e.g., nationality) of the subject. Also equivalent to the object ID (OID) value of 2.5.29.9.

crl_distribution_points (optional)

string

Specifies how CRL information is obtained. Also equivalent to the object ID (OID) value of 2.5.29.31.

inhibit_any_policy (optional)

string

Specifies the number of additional certificates that may appear in the path before anyPolicy is no longer permitted. Also equivalent to the object ID (OID) value of 2.5.29.54.

private_key_usage_period_not_before (optional)

timestamp

Specifies the date on which the validity period begins for the private key, if it is different from the validity period of the certificate.

private_key_usage_period_not_after (optional)

timestamp

Specifies the date on which the validity period ends for the private key, if it is different from the validity period of the certificate.

certificate_policies (optional)

string

Specifies a sequence of one or more policy information terms, each of which consists of an object identifier (OID) and optional qualifiers. Also equivalent to the object ID (OID) value of 2.5.29.32.

policy_mappings (optional)

string

Specifies one or more pairs of OIDs; each pair includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates whether the issuing CA considers its issuerDomainPolicy equivalent to the subject CA's subjectDomainPolicy. Also equivalent to the object ID (OID) value of 2.5.29.33.

 

Examples

Basic X.509 certificate

{

  "type": "x509-certificate",

  "spec_version": "2.1",

  "id": "x509-certificate--463d7b2a-8516-5a50-a3d7-6f801465d5de",

  "issuer": "C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com",

  "validity_not_before": "2016-03-12T12:00:00Z",

  "validity_not_after": "2016-08-21T12:00:00Z",

  "subject": "C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org",

  "serial_number": "36:f7:d4:32:f4:ab:70:ea:d3:ce:98:6e:ea:99:93:49:32:0a:b7:06"}

 

X.509 Certificate w/ V3 Extensions

{

  "type":"x509-certificate",

  "spec_version": "2.1",

  "id": "x509-certificate--b595eaf0-0b28-5dad-9e8e-0fab9c1facc9",

  "issuer":"C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com",

  "validity_not_before":"2016-03-12T12:00:00Z",

  "validity_not_after":"2016-08-21T12:00:00Z",

  "subject":"C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org",

  "serial_number": "02:08:87:83:f2:13:58:1f:79:52:1e:66:90:0a:02:24:c9:6b:c7:dc",

  "x509_v3_extensions":{

    "basic_constraints":"critical,CA:TRUE, pathlen:0",

    "name_constraints":"permitted;IP:192.168.0.0/255.255.0.0",

    "policy_contraints":"requireExplicitPolicy:3",

    "key_usage":"critical, keyCertSign",

    "extended_key_usage":"critical,codeSigning,1.2.3.4",

    "subject_key_identifier":"hash",

    "authority_key_identifier":"keyid,issuer",

    "subject_alternative_name":"email:my@other.address,RID:1.2.3.4",

    "issuer_alternative_name":"issuer:copy",

    "crl_distribution_points":"URI:http://myhost.com/myca.crl",

    "inhibit_any_policy":"2",

    "private_key_usage_period_not_before":"2016-03-12T12:00:00Z",

    "private_key_usage_period_not_after":"2018-03-12T12:00:00Z",

    "certificate_policies":"1.2.4.5, 1.1.3.4"

  }

}


 


7 STIX™ Meta Objects

7.1 Language Content

The Language Content object represents text content for STIX Objects represented in languages other than that of the original object. Language content may be a translation of the original object by a third-party, a first-source translation by the original publisher, or additional official language content provided at the time of creation.

 

Language Content contains two important sets of properties:

      The object_ref and object_modified properties specify the target object that the language content applies to.

      For example, to provide additional language content for a Campaign, the object_ref property should be set to the id of the Campaign and the object_modified property set to its modified time. Most relationships in STIX are not specific to a particular version of a STIX object, but because language content provides the translation of specific text, the object_modified property is necessary to provide that specificity.

      The content property is a dictionary which maps to properties in the target object in order to provide a translation of them.

7.1.1 Properties

Required Common Properties

type, spec_version, id, created, modified

Optional Common Properties

created_by_ref, revoked, labels, confidence, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

lang, defanged, extensions

Language Content Specific Properties

object_ref, object_modified, contents

Property Name

Type

Description

type (required)

string

The type property identifies the type of object. The value of this property MUST be language-content.

object_ref (required)

identifier

The object_ref property identifies the id of the object that this Language Content applies to. It MUST be the identifier for a STIX Object.

object_modified (optional)

timestamp

The object_modified property identifies the modified time of the object that this Language Content applies to. It MUST be an exact match for the modified time of the STIX Object being referenced.

contents (required)

dictionary

The contents property contains the actual Language Content (translation).

 

The keys in the dictionary MUST be RFC 5646 language codes for which language content is being provided [RFC5646]. The values each consist of a dictionary that mirrors the properties in the target object (identified by object_ref and object_modified). For example, to provide a translation of the name property on the target object the key in the dictionary would be name.

 

For each key in the nested dictionary:

 

      If the original property is a string, the corresponding property in the language content object MUST contain a string with the content for that property in the language of the top-level key.

      If the original property is a list, the corresponding property in the translation object must also be a list. Each item in this list recursively maps to the item at the same position in the list contained in the target object. The lists MUST have the same length.

      In the event that translations are only provided for some list items, the untranslated list items MUST be represented by an empty string (""). This indicates to a consumer of the Language Content object that they should interpolate the translated list items in the Language Content object with the corresponding (untranslated) list items from the original object as indicated by the object_ref property.

      If the original property is an object (including dictionaries), the corresponding location in the translation object must also be an object. Each key/value field in this object recursively maps to the object with the same key in the original.

 

The translation object MAY contain only a subset of the translatable fields of the original. Keys that point to non-translatable properties in the target or to properties that do not exist in the target object MUST be ignored.

 

7.1.2 Relationships

There are no relationships explicitly defined between the Language Content object and other STIX Objects, other than the embedded relationships listed below. These embedded relationships are listed by property name along with their corresponding target.

 

Note that the object_ref relationship has a companion property, object_modified, that identifies the version of the object that the language content is being provided for.

 

Embedded Relationships

created_by_ref

identity

object_marking_refs

marking-definition

object_ref

identifier

 

 

Examples

Translation of a campaign

{
  "type": "campaign",
  "id": "campaign--12a111f0-b824-4baf-a224-83b80237a094",

  "lang": "en",

  "spec_version": "2.1",
  "created": "2017-02-08T21:31:22.007Z",
  "modified": "2017-02-08T21:31:22.007Z",
  "name": "Bank Attack",
  "description": "More information about bank attack"
}

 

{

  "type": "language-content",

  "id": "language-content--b86bd89f-98bb-4fa9-8cb2-9ad421da981d",

  "spec_version": "2.1",

  "created": "2017-02-08T21:31:22.007Z",
  "modified": "2017-02-08T21:31:22.007Z",

  "object_ref": "campaign--12a111f0-b824-4baf-a224-83b80237a094",

  "object_modified": "2017-02-08T21:31:22.007Z",

  "contents": {

    "de": {

      "name": "Bank Angriff",

      "description": "Weitere Informationen über Banküberfall"

    },

    "fr": {

      "name": "Attaque Bank",

      "description": "Plus d'informations sur la crise bancaire"

    }

  }

}

 

The threat actor defined here, is from the example in Section 4.16.

{

  "type": "language-content",

  "id": "language-content--0911f616-727f-48cb-a4c5-9420299562a4",

  "spec_version": "2.1",

  "created": "2019-06-08T21:31:22.007Z",
  "modified": "2019-07-08T21:31:22.007Z",

  "object_ref": "threat-actor--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

  "contents": {

    "de": {

      "goals": ["Bankgeld stehlen", "Kreditkarten stehlen"]

    },

    "fr": {

      "goals": ["Voler de l'argent en banque", ""]

    }

  }

}

 

7.2 Data Markings

Data markings represent restrictions, permissions, and other guidance for how data can be used and shared. For example, data may be shared with the restriction that it must not be re-shared, or that it must be encrypted at rest. In STIX, data markings are specified using the marking-definition object. These definitions are applied to complete STIX Objects using object markings and to individual properties of STIX Objects via granular markings.

 

Multiple markings can be added to the same object, including both object and granular markings. Some types of marking definitions or trust groups have rules about which markings override other markings or which markings can be additive to other markings. This specification does not define rules for how multiple markings applied to the same object or property should be interpreted.

 

Granular data markings are also used to mark individual fields on an object with which language their text content is in. For example, granular markings can be used to indicate that while the rest of the object is in English, the description field is in Japanese. This mechanism does not use the marking-definition object to represent language, rather a separate lang field that can also be applied via granular markings.

7.2.1 Marking Definition

Type Name: marking-definition

 

The marking-definition object represents a specific marking. Data markings typically represent handling or sharing requirements for data and are applied in the object_marking_refs and granular_markings properties on STIX Objects, which reference a list of IDs for marking-definition objects.

 

Two marking definition types are defined in this specification: TLP, to capture TLP markings, and Statement, to capture text marking statements. In addition, it is expected that the FIRST Information Exchange Policy (IEP) will be included in a future version once a machine-usable specification for it has been defined.

 

Unlike other STIX Objects, Marking Definition objects cannot be versioned because it would allow for indirect changes to the markings on a STIX Object. For example, if a Statement marking is changed from "Reuse Allowed" to "Reuse Prohibited", all STIX Objects marked with that Statement marking would effectively have an updated marking without being updated themselves. Instead, a new Statement marking with the new text should be created and the marked objects updated to point to the new marking.

 

The JSON MTI serialization uses the JSON Object type [RFC8259] when representing marking-definition.

7.2.1.1 Properties

Required Common Properties

type, spec_version, id, created

Optional Common Properties

created_by_ref, external_references, object_marking_refs, granular_markings

Not Applicable Common Properties

modified, revoked, labels, confidence, lang, defanged, extensions

Marking Definition Specific Properties

name, definition_type, definition

Property Name

Type

Description

type (required)

string

The type property identifies the type of object. The value of this property MUST be marking-definition.

name (optional)

string

A name used to identify the Marking Definition.

definition_type (required)

open-vocab

The definition_type property identifies the type of Marking Definition. The value of the definition_type property SHOULD be one of the types defined in the subsections below: statement or tlp (see sections 7.2.1.3 and 7.2.1.4)

definition (required)

<marking object>

The definition property contains the marking object itself (e.g., the TLP marking as defined in section 7.2.1.4, the Statement marking as defined in section 7.2.1.3, or some other marking definition defined elsewhere).

 

7.2.1.2 Relationships

There are no relationships explicitly defined between the Marking Definition object and other STIX Objects, other than the embedded relationships listed below. These embedded relationships are listed by property name along with their corresponding target.

 

Embedded Relationships

created_by_ref

identity

object_marking_refs

marking-definition

7.2.1.3 Statement Marking Object Type

The Statement marking type defines the representation of a textual marking statement (e.g., copyright, terms of use, etc.) in a definition. The value of the definition_type property MUST be statement when using this marking type. Statement markings are generally not machine-readable, and this specification does not define any behavior or actions based on their values.

 

Content may be marked with multiple statements of use. In other words, the same content can be marked both with a statement saying "Copyright 2019" and a statement saying, "Terms of use are ..." and both statements apply.

 

Property Name

Type

Description

statement (required)

string

A Statement (e.g., copyright, terms of use) applied to the content marked by this marking definition.

 

Examples

{

  "type": "marking-definition",

  "spec_version": "2.1",

  "id": "marking-definition--34098fce-860f-48ae-8e50-ebd3cc5e41da",

  "created": "2016-08-01T00:00:00.000Z",

  "definition_type": "statement",

  "definition": {

    "statement": "Copyright 2019, Example Corp"

  }

}

7.2.1.4 TLP Marking Object Type

The TLP marking type defines how you would represent a Traffic Light Protocol (TLP) marking in a definition property. The value of the definition_type property MUST be tlp when using this marking type.

 

Property Name

Type

Description

tlp (required)

string

The TLP level [TLP] of the content marked by this marking definition, as defined in this section.

 

The following standard marking definitions MUST be used to reference or represent TLP markings. Other instances of tlp-marking MUST NOT be used or created (the only instances of TLP marking definitions permitted are those defined here).

 

 

white

{

  "type": "marking-definition",

  "spec_version": "2.1",

  "id": "marking-definition--613f2e26-407d-48c7-9eca-b8e91df99dc9",

  "created": "2017-01-20T00:00:00.000Z",

  "definition_type": "tlp",

  "name": "TLP:WHITE",

  "definition": {

    "tlp": "white"

  }

}

green

{

  "type": "marking-definition",

  "spec_version": "2.1",

  "id": "marking-definition--34098fce-860f-48ae-8e50-ebd3cc5e41da",

  "created": "2017-01-20T00:00:00.000Z",

  "definition_type": "tlp",

  "name": "TLP:GREEN",

  "definition": {

    "tlp": "green"

  }

}

amber

{

  "type": "marking-definition",

  "spec_version": "2.1",

  "id": "marking-definition--f88d31f6-486f-44da-b317-01333bde0b82",

  "created": "2017-01-20T00:00:00.000Z",

  "definition_type": "tlp",

  "name": "TLP:AMBER",

  "definition": {

    "tlp": "amber"

  }

}

red

{

  "type": "marking-definition",

  "spec_version": "2.1",

  "id": "marking-definition--5e57c739-391a-4eb3-b6be-7d15ca92d5ed",

  "created": "2017-01-20T00:00:00.000Z",

  "definition_type": "tlp",

  "name": "TLP:RED",

  "definition": {

    "tlp": "red"

  }

}

 

7.2.2 Object Markings

Object Markings apply data markings to an entire STIX Object and all of its contents. Object Markings are specified as embedded relationships in the object_marking_refs property, which is an optional list of IDs for Marking Definition objects. The referenced markings apply to that STIX Object or Marking Definition and all of its contents. Changes to the object_marking_refs property (and therefore the markings applied to the object) are treated the same as changes to any other properties on the object and follow the same rules for versioning.

Examples

This example marks the Indicator and all its properties with the Marking Definition referenced by the ID.

{

  "type": "indicator",

  "spec_version": "2.1",

  "id": "indicator--b346b4b3-f4b7-4235-b659-f985f65f0009",

  ...

  "object_marking_refs": ["marking-definition--34098fce-860f-48ae-8e50-ebd3cc5e41da"],

  ...

}

7.2.3 Granular Markings

Whereas object markings apply to an entire STIX Object or Marking Definition and all its properties, granular markings allow both data markings and language markings to be applied to individual portions of STIX Objects and Marking Definitions. Granular markings are specified in the granular_markings property, which is a list of granular-marking instances. Each of those instances contains a list of selectors to indicate what is marked and either a reference to the marking-definition object to be applied or a language code to be applied. Granular markings can be used, for example, to indicate that the name property of an indicator should be handled as TLP:GREEN, the description property as TLP:AMBER, and the pattern property as TLP:RED.

 

The granular_markings property can also be used for language markings. To support applying both data markings and language markings to an object, the granular-marking type has a choice of two properties in addition to the selector: the lang property is used to apply language markings, and the marking_ref property is used to apply data markings. Because each granular marking instance applies to either a language or a marking, one and only one of these properties MUST be present on each instance of a granular marking.

7.2.3.1 Granular Marking Type

The granular-marking type defines how the marking-definition object referenced by the marking_ref property or a language specified by the lang property applies to a set of content identified by the list of selectors in the selectors property.

 

Property Name

Type

Description

lang (optional)

string

The lang property identifies the language of the text identified by this marking. The value of the lang property, if present, MUST be an [RFC5646] language code.

 

If the marking_ref property is not present, this property MUST be present. If the marking_ref property is present, this property MUST NOT be present.

marking_ref (optional)

identifier

The marking_ref property specifies the ID of the marking-definition object that describes the marking.

 

If the lang property is not present, this property MUST be present. If the lang property is present, this property MUST NOT be present.

selectors

(required)

 

list of type string

The selectors property specifies a list of selectors for content contained within the STIX Object in which this property appears. Selectors MUST conform to the syntax defined below.

 

The marking-definition referenced in the marking_ref property is applied to the content selected by the selectors in this list.

 

The [RFC5646] language code specified by the lang property is applied to the content selected by the selectors in this list.

 

Selector Syntax

Selectors contained in the selectors list are strings that consist of multiple components that MUST be separated by the . character. Each component MUST be one of:

 

      A property name or dictionary key, e.g., description, or;

      A zero-based list index, specified as a non-negative integer in square brackets, e.g., [4]

 

Selectors denote path traversals: the root of each selector is the STIX Object that the granular_markings property appears in. Starting from that root, for each component in the selector, properties and list items are traversed. When the complete list has been traversed, the value of the content is considered selected.

 

Selectors MUST refer to properties or list items that are actually present on the marked object.

 

As an example, consider the following STIX Object:

{

  "id": "vulnerability--ee916c28-c7a4-4d0d-ad56-a8d357f89fef",

  "spec_version": "2.1",

  "created": "2016-02-14T00:00:00.000Z",

  "modified": "2016-02-14T00:00:00.000Z",

  "type": "vulnerability",

  "name": "CVE-2014-0160",

  "description": "The (1) TLS...",

  "external_references": [{

    "source_name": "cve",

    "external_id": "CVE-2014-0160"

  }],

  "labels": ["heartbleed", "has-logo"]

}

 

Valid selectors:

      description selects the description property ("The (1) TLS...").

      external_references.[0].source_name selects the source_name property of the first value of the external_references list ("cve").

      labels.[0] selects the first item contained within the labels list ("heartbleed").

      labels selects the list contained in the labels property. Due to the recursive nature of the selector, that includes all items in the list (["heartbleed", "has-logo"]).

      external_references selects the list contained in the external_references property. Due to the recursive nature of the selector, that includes all list items and all properties of those list items.

 

Invalid selectors:

      pattern and external_references.[3] are invalid selectors because they refer to content not present in that object.

      description.[0] is an invalid selector because the description property is a string and not a list.

      labels.name is an invalid selector because labels property is a list and not an object.

 

This syntax is inspired by JSONPath [Goessner 2007] and is in fact a strict subset of allowable JSONPath expressions (with the exception that the '$' to indicate the root is implicit). Care should be taken when passing selectors to JSONPath evaluators to ensure that the root of the query is the individual STIX Object. It is expected, however, that selectors can be easily evaluated in programming languages that implement list and key/value mapping types (dictionaries, hashmaps, etc.) without resorting to an external library.

 

Examples

This example marks the description and labels properties with the marking-definition referenced in the granular_markings property however the name property uses the object marking.

{

  ...

  "granular_markings": [

    {

      "marking_ref": "marking-definition--089a6ecb-cc15-43cc-9494-767639779123",

      "selectors": ["description", "labels"]

    }

  ],

  "object_marking_ref": "marking-definition--79e2fa14-02c6-40d7-aa4b-ebf281dd78ef"

  "description": "Some description",

  "name": "Some name",

  "labels": ["first", "second"]

}

 

​​This example marks the default language for this object as English (in this case, the name property) and the description as German.

{
  "type": "campaign",

  "spec_version": "2.1",
  "id": "campaign--12a111f0-b824-4baf-a224-83b80237a094",

  "lang": "en",
  "created": "2017-02-08T21:31:22.007Z",
  "modified": "2017-02-08T21:31:22.007Z",
  "name": "Bank Attack",
  "description": "Weitere Informationen über Banküberfall",

  "granular_markings": [

    {

      "selectors": ["description"],

      "lang": "de"

    }

  ]


 


8 STIX™ Bundle Object

 

Type Name: bundle

 

A Bundle is a collection of arbitrary STIX Objects grouped together in a single container. A Bundle does not have any semantic meaning and the objects contained within the Bundle are not considered related by virtue of being in the same Bundle.

 

A STIX Bundle Object is not a STIX Object but makes use of the type and id Common Properties. A Bundle is transient, and implementations SHOULD NOT assume that other implementations will treat it as a persistent object or keep any custom properties found on the bundle itself.

 

The JSON MTI serialization uses the JSON Object type [RFC8259] when representing bundle.

8.1 Properties

Property Name

Type

Description

type (required)

string

The type property identifies the type of object. The value of this property MUST be bundle.

id (required)

identifier

An identifier for this Bundle. The id property for the Bundle is designed to help tools that may need it for processing, however, tools are not required to store or track it. Tools that consume STIX should not rely on the ability to refer to bundles by ID.

objects (optional)

list of type <STIX Object>

Specifies a set of one or more STIX Objects. Objects in this list MUST be a STIX Object.

 

8.2 Relationships

STIX Bundle Object is not a STIX Object and MUST NOT have any relationships to or from it.

Examples

{

  "type": "bundle",

  "id": "bundle--5d0092c5-5f74-4287-9642-33f4c354e56d",

  "objects": [

    {

      "type": "indicator",

      "spec_version": "2.1",

      "id": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",

      "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff",

      "created": "2016-04-29T14:09:00.000Z",

      "modified": "2016-04-29T14:09:00.000Z",

      "object_marking_refs": ["marking-definition--089a6ecb-cc15-43cc-9494-767639779123"],

      "name": "Poison Ivy Malware",

      "description": "This file is part of Poison Ivy",

      "pattern": "[file:hashes.'SHA-256' = 'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f']"

    }

  ]

}


9 STIX™ Patterning

9.1 Definitions

The terms defined below are used throughout this document.

 

Terms

Definitions

Example

whitespace

Any Unicode code point that has WSpace set as a property, for example, line feeds, carriage returns, tabs, and spaces.

n/a

Observation

Observations represent data about systems or networks that is observed at a particular point in time - for example, information about a file that existed, a process that was observed running, or network traffic that was transmitted between two IPs. In STIX, Observations are represented by Observed Data SDOs, with number_observed observations occurring between their first_observed and last_observed timestamps. It is not defined when the observations occur within that time window.

For additional background, refer to the STIX Observed Data object definition in section 4.13.

n/a

Comparison Expression

Comparison Expressions are the basic components of Observation Expressions. They consist of an Object Path and a constant joined by a Comparison Operator (listed in section 9.6.1, Comparison Operators).

user-account:value = 'Peter'

Comparison Operators

Comparison Operators are used within Comparison Expressions to compare an Object Path against a constant or set of constants.

MATCHES

Object Path

Object Paths define which properties of STIX Cyber-observable Objects (SCO) should be evaluated as part of a Comparison Expression. SCOs and their properties are defined in section 6.

ipv6-addr:value

Observation Expression

Observation Expressions consist of one or more Comparison Expressions joined with Boolean Operators and surrounded by square brackets.

 

An Observation Expression may consist of two Observation Expressions joined by an Observation Operator. This may be applied recursively to compose multiple Observation Expressions into a single Observation Expression.

 

Observation Expressions may optionally be followed by one or more Qualifiers further constraining the result set. Qualifiers may be applied to all of the Observation Expressions joined with Observation Operators; in this case, parentheses should be used to group the set of Observation Expressions, with the Qualifier following the closing parenthesis.

[ipv4-addr:value = '203.0.113.1' OR ipv4-addr:value = '203.0.113.2']

 

 

or (with Observation Operator):

 

([ipv4-addr:value = '198.51.100.5'] FOLLOWEDBY [ipv4-addr:value = '198.51.100.10'])

 

 

or (with Observation Operator and Qualifier):

 

([ipv4-addr:value = '198.51.100.5' ] AND [ipv4-addr:value = '198.51.100.10']) WITHIN 300 SECONDS

Boolean Operators

Boolean Operators are used to combine Comparison Expressions within an Observation Expression.

(Comparison Expressions)

user-account:value = 'Peter' OR user-account:value = 'Mary'

Qualifier

Qualifiers provide a restriction on the Observations that are considered valid for matching the preceding Observation Expression.

[file:name = 'foo.dll'] START t'2016-06-01T00:00:00Z' STOP t'2016-07-01T00:00:00Z'

Observation Operators

Observation Operators are used to combine two Observation Expressions operating on two different Observed Data instances into a single pattern.

 

Note that some Observation Operators have the same name as Boolean Operators. However, the former connects Comparison Expressions and the latter connects Observation Expressions, and therefore each has slightly different semantics.

[ipv4-addr:value = '198.51.100.5'] AND [ ipv4-addr:value = '198.51.100.10']

Pattern Expression

A Pattern Expression represents a valid instance of a STIX cyber observable pattern. The most basic Pattern Expression consists of a single Observation Expression containing a single Comparison Expression.

[file:size = 25536]

 

9.2 Constants

The data types enumerated below are supported as operands within Comparison Expressions. This table is included here as a handy reference for implementers.

 

Note that unlike SCOs (which are defined in terms of the MTI JSON serialization), STIX Patterns are Unicode strings, regardless of the underlying serialization, hence the data types defined in the table below in some cases differ from the definitions contained in section 2.

 

Each constant defined in Patterning has a limited set of STIX Data types that they are allowed to be compared against. In some cases, there are multiple STIX Data Types that could be compared against a STIX Patterning Constant; this is due to the fact that certain STIX Data Types are semantically indistinguishable because of their JSON serialization. The STIX Comparable Data Type(s) column in the table below defines these limitations.

 

STIX Patterning Constant

STIX Comparable Data Type(s)

Description

boolean

boolean

A constant of boolean type encodes truth or falsehood. Boolean truth is denoted by the literal true and falsehood by the literal false.

binary

binary

hex

string

A constant of binary type is a base64 encoded array of octets (8-bit bytes) per [RFC4648]. The base64 string MUST be surrounded by apostrophes (''' U+0027) and prefixed by a 'b' (U+0062). Line feeds in the base64 encoded data MUST be supported and ignored but are not required to be inserted.

 

Example:

b'ABI='

hex

binary
hex

string

A constant of hex type encodes an array of octets (8-bit bytes) as hexadecimal. The string MUST consist of an even number of hexadecimal characters, which are the digits '0' through '9' and the letters 'a' through 'f'. The hex string MUST be surrounded by apostrophes (''' U+0027) and prefixed by an 'h' (U+0068).

 

Example:

h'ffc3'

integer

integer
float

A constant of integer type encodes a signed decimal number in the usual fashion (e.g., 123). In the case of positive integers, the integer MUST be represented as-is, omitting the plus sign ('+' U+002b). Negative integers MUST be represented by prepending a hyphen-minus ('-' U+002d).

 

When compared against a float, the full value must be compared and must not be truncated. For example, the result of comparing a STIX Patterning constant integer value of 1 to a float value of 1.5 is not equal.

 

The valid range of values is defined in section 2.

float

integer

float

A constant of float type encodes a floating-point number in the usual fashion (e.g., 123.456). In the case of positive floating-point number, the floating-point number MUST be represented as-is, omitting the plus sign' ('+' U+002b). Negative floating point-numbers MUST be represented by prepending a hyphen-minus ('-' U+002d).

 

The valid range of values is defined in 2.

string

string

binary
hex

A constant of string type encodes a string as a list of Unicode code points surrounded by apostrophes (''' U+0027).

 

The escape character is the backslash ('\' U+005c). Only the apostrophe or the backslash may follow, and in that case, the respective character is used for the sequence.

 

If a string only contains codepoints less than (U+0100), then the string MAY be converted to a binary type value (if needed for comparison). The mapping is code point U+0000 to 00 through U+00ff to ff.

timestamp

timestamp

A constant of timestamp type encodes a STIX timestamp (as specified in section 2.16 as a string. The timestamp string MUST be surrounded by apostrophes (''' U+0027) and prefixed with a 't' (U+0074).

 

Example:

t'2014-01-13T07:03:17Z'

 

9.3 STIX™ Patterns

STIX Patterns are composed of multiple building blocks, ranging from simple key-value comparisons to more complex, context-sensitive expressions. The most fundamental building block is the Comparison Expression, which is a comparison between a single property of a SCO and a given constant using a Comparison Operator. As a simple example, one might use the following Comparison Expression (contained within an Observation Expression) to match against an IPv4 address:

 

[ipv4-addr:value = '198.51.100.1/32']

 

Moving up a level of complexity, the next building block of a STIX Pattern is the Observation Expression, which consists of one or more Comparison Expressions joined by Boolean Operators and bounded by square brackets. An Observation Expression refines which set of cyber observable data (i.e., as part of an Observation) will match the pattern, by selecting the set that has the SCOs specified by the Comparison Expressions. An Observation Expression consisting of a single Comparison Expression is the most basic valid STIX Pattern. Building upon the previous example, one might construct an Observation Expression to match against multiple IPv4 addresses and an IPv6 address:

 

[ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128']

 

Observation Expressions may be followed by one or more Qualifiers, which allow for the expression of further restrictions on the set of data matching the pattern. Continuing with the above example, one might use a Qualifier to state that the IP addresses must be observed several times in repetition:

 

[ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128'] REPEATS 5 TIMES

 

The final, highest level building block of STIX Patterning combines two or more Object Expressions via Observation Operators, yielding a STIX Pattern capable of matching across multiple STIX Observed Data SDOs. Building further upon our previous example, one might use an Observation Operator to specify that an observation of a particular domain name must follow the observation of the IP addresses (note the use of parentheses to encapsulate the two Observation Expressions), along with a different Qualifier to state that both the IP address and domain name must be observed within a specific time window:

 

([ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128'] FOLLOWEDBY [domain-name:value = 'example.com']) WITHIN 600 SECONDS

 

The diagram below depicts a truncated version of the various STIX Patterning components in the above example.

 

 

 

 

 

9.4 Pattern Expressions

Pattern Expressions evaluate to true or false. They comprise one or more Observation Expressions joined by Observation Operators. Pattern Expressions are evaluated against a set of specific Observations. If one or more of those Observations match the Pattern Expression, then it evaluates to true. If no Observations match, the Pattern Expression evaluates to false.

 

Pattern Expressions MUST be encoded as Unicode strings.

 

Whitespace (i.e., Unicode code points where WSpace=Y) in the pattern string is used to delimit parts of the pattern, including keywords, constants, and field objects. Whitespace characters between operators, including line feeds and carriage returns, MUST be allowed. Multiple whitespace characters in a row MUST be treated as a single whitespace character.

 

An invalid pattern resulting from parsing error or invalid constants (e.g., an invalid hex or binary constant) MUST NOT match any Observations.

9.5 Observation Expressions

Observation Expressions comprise one or more Comparison Expressions, joined via Boolean Operators.

 

Observation Expressions MUST be delimited by square brackets left square bracket ('[' U+005b) and right square bracket (']' U+005d). One or more Observation Expression Qualifiers MAY be provided after the closing square bracket or closing parenthesis of an Observation Expression. Observation Expressions MAY be joined by Observation Operators.

 

Individual Observation Expressions (e.g., [a = b]) match against a single Observation, i.e., a single STIX Observed Data instance. In cases where matching against multiple Observations is required, two or more Observation Expressions may be combined via Observation Operators, indicating that the pattern MUST be evaluated against two or more distinct Observations; however, in the case of OR, if the first Observation Expression evaluates to true, then evaluation MUST terminate and return true.

 

When matching an Observation against an Observation Expression, all Comparison Expressions contained within the Observation Expression MUST start matching against same SCO in the Observation. That is, when resolving object paths of each Comparison Expression, the <object-type>:<property_name> MUST start from the same SCO.  Different SCO's may ultimately be used in matching, but they MUST be referenced from the same, single SCO.

 

For example, the following observed data does not match this example observation clause because although these IP addresses are both part of the same observed-data object, there is not a single network-traffic SCO that references each IP address, and therefore does not satisfy the condition in the preceding paragraph:

[ network-traffic:src_ref.value = '203.0.113.10' AND network-traffic:dst_ref.value = '198.51.100.58' ]

 

{

  "type": "observed-data",

  "id": "observed-data--0960319a-3cab-4258-a143-4dbb25525bb1",

  "first_observed": "2019-10-20T00:12:01.000000Z",

  "last_observed": "2019-10-20T00:51:02.000000Z",

  "number_observed": 1,

  "objects": {

    "0": {

        "type": "network-traffic",

        "src_ref": "1"

    },

    "1": {

        "type": "ipv4-addr",

        "value": "203.0.113.10"

    },

    "2": {

        "type": "network-traffic",

        "dst_ref": "3"

    },

    "3": {

        "type": "ipv4-addr",

        "value": "198.51.100.58"

    }

  }

}

 

 

An Observation Expression MAY contain Comparison Expressions with Object Paths that start with different object types, but such Comparison Expressions MUST be joined by OR. The Comparison Expressions of an Observation Expression that use AND MUST use the same base Object Path, e.g., file:.

 

For example, consider the following Pattern Expression:

[(type-a:property-j = 'W' AND type-a:property-k = 'X') OR (type-b:property-m = 'Y' AND type-b:property-n = 'Z')]

 

This expression can match an Observable with an object of either type-a or type-b, but both Comparison Expressions for that specific type must evaluate to true for the same object. Comparison Expressions that are intended to match a single object type can be joined by either AND or OR. For example:

[type-a:property-j = 'W' AND type-a:property-k = 'X' OR type-a:property-l = 'Z']

 

As AND has higher precedence than OR, the preceding example requires an Observation to have either both property-j = 'W' AND property-k = 'X' or just property-l = 'Z'.

 

Observation Expressions, along with their Observation Operators and optional Qualifiers, MAY be surrounded with parentheses to delineate which Observation Expressions the Qualifiers apply to. For example:

([ a ] AND [ b ] REPEATS 5 TIMES) WITHIN 5 MINUTES

 

The preceding example results in one a and 5 b’s that all match in a 5-minute period. As another example:

([ a ] AND [ b ]) REPEATS 5 TIMES WITHIN 5 MINUTES

 

The preceding example results in 5 a’s and 5 b’s (10 Observations) that all match in a 5-minute period.

9.5.1 Observation Expression Qualifiers

Each Observation Expression MAY have additional temporal or repetition restrictions using the respective WITHIN, START/STOP, and REPEATS keywords. An Observation Expression MUST NOT have more than one Qualifier of a particular type.

 

Qualifiers

Description

a REPEATS x TIMES

a MUST be an Observation Expression or a preceding Qualifier. a MUST match at least x times, where each match is a different Observation. x MUST be a positive integer.

 

This is purely a shorthand way of writing:

 “a” followed by “AND a”, x-1 times.

 

Example:

[ b ] FOLLOWEDBY [ c ] REPEATS 5 TIMES

 

In this example, the REPEATS applies to c, and it does not apply to b. The results will be b plus 5 c's where all 5 c's were observed after the b. Note that there is only a single Qualifier in this example; more complex patterns may use more than one.

a WITHIN x SECONDS

a MUST be an Observation Expression or a preceding Qualifier. All Observations matched by a MUST occur, or have been observed, within the specified time window. x MUST be a positive floating-point or integer value.

 

If there is a set of two or more Observations matched by a, the most recent Observation timestamp contained within that set MUST NOT be equal to or later than the delta of the earliest Observation timestamp within the set plus the specified time window.

 

Example:

([file:hashes.'SHA-256' = '13987239847...'] AND [win-registry-key:key = 'hkey']) WITHIN 120 SECONDS

 

The above Pattern Expression looks for a file hash and a registry key that were observed within 120 seconds of each other. The parentheses are needed to apply the WITHIN Qualifier to both Observation Expressions.

a START x STOP y

 

a MUST be an Observation Expression or a preceding Qualifier. All Observations that match a MUST have an observation time >= x and < y.

 

x and y MUST be of type timestamp.

 

In the event that the Pattern Expression is being used inside a STIX Indicator pattern property (see section 4.6) x SHOULD be greater than or equal to the value contained in the valid_from Indicator property, and y SHOULD be less than or equal to the value contained in the valid_until Indicator property.

 

9.5.2 Observation Operators

Two or more Observation Expressions MAY be combined using an Observation Operator in order to further constrain the set of Observations that match against the Pattern Expression.

 

Observation Operators

Description

Associativity

[ a ] AND [ b ]

a and b MUST both be Observation Expressions and MUST both evaluate to true on different Observations.

Left to right

[ a ] OR [ b ]

a and b MUST both be Observation Expressions and one of a or b MUST evaluate to true on different Observations.

Left to right

[ a ] FOLLOWEDBY [ b ]

a and b MUST both be Observation Expressions. Both a and b MUST both evaluate to true, where the observation timestamp associated with b is greater than or equal to the observation timestamp associated with a and MUST evaluate to true on different Observations.

Left to right

 

For example, consider the following Pattern Expression:

[ a = 'b' ] FOLLOWEDBY [ c = 'd' ] REPEATS 5 TIMES

The preceding expression says to match an Observation with a equal to 'b' that precedes 5 occurrences of Observations that have c equal to ‘d’, for a total of 6 Observations matched. This interpretation is due to qualifiers not being greedy and is equivalent to [ a = 'b' ] FOLLOWEDBY ( [ c = 'd' ] REPEATS 5 TIMES).

 

Alternatively, using parentheses to group the initial portion, we get the following example:

 ([ a = 'b' ] FOLLOWEDBY [ c = 'd' ]) REPEATS 5 TIMES

The preceding expression will match 5 pairs of Observations where a equals 'b' followed by an Observation where c is equal to 'd', for a total of 10 Observations matched.

9.5.3 Operator Precedence

Operator associativity and precedence may be overridden by the use of parentheses. Unless otherwise specified, operator associativity (including for parentheses) is left-to-right. Precedence in the below table is from highest to lowest.

 

Operators

Associativity

Valid Scope

()

left to right

Observation Expression or Pattern Expression, Observation Expression and Qualifier

AND

left to right

Observation Expression, Pattern Expression

OR

left to right

Observation Expression, Pattern Expression

FOLLOWEDBY (Observation Operator)

left to right

Pattern Expression

 

9.6 Comparison Expressions

Comparison Expressions are the most basic components of STIX Patterning, comprising an Object Path and a constant joined by a Comparison Operator. Each Comparison Expression is a singleton, and so they are evaluated from left to right.

 

A Boolean Operator joins two Comparison Expressions together. In the following table, a or b is either a Comparison Expression or a composite expression (which may be composed recursively) consisting of two or more Comparison Expressions joined with Boolean Operators and enclosed by parentheses.

 

Boolean Operator

Description

Associativity

a AND b

a and b MUST both be Comparison Expressions or a composite expression (which may be composed recursively) consisting of two or more Comparison Expressions joined with Boolean Operators and enclosed by parentheses.

a and b MUST both evaluate to true on the same Observation.

Left to right

a OR b

a and b MUST both be Comparison Expressions or a composite expression (which may be composed recursively) consisting of two or more Comparison Expressions joined with Boolean Operators and enclosed by parentheses.

Either a or b MUST evaluate to true.

Left to right

 

Comparison Expressions may include one or more Object Path(s) not obtainable within a given Observation, either because the Object Path(s) are not present within the Observation or because the evaluating entity does not have access to the data necessary in order to evaluate the specified Object Path(s). When evaluating a Comparison Expression against one or more Object Path(s) that are not present or whose data cannot be obtained, the Comparison Expression MUST evaluate to FALSE, regardless of the operators included in the expression.

9.6.1 Comparison Operators

The table below describes the available Comparison Operators for use in Comparison Expressions; in the table, a MUST be an Object Path and b MUST be a constant. If the arguments to the Comparison Operators are of incompatible types (e.g., the Object Path is an integer and the constant is a string), the results are false; the sole exception is the != operator in which case the result is true. Some STIX Patterning constants and STIX data types may be comparable in a Comparison Expression. For example, the hex and binary types both represent binary data, and their representative binary data is that which must be compared for equality. See section 2 for type compatibility between STIX Patterning and STIX types.

 

A Comparison Operator MAY be preceded by the modifier NOT, in which case the resultant Comparison Expression is logically negated.

 

Comparison Operator

Description

Example

a = b

a and b MUST be equal (transitive), where a MUST be an Object Path and b MUST be a constant of the same data type as the object property specified by a.

file:name = 'foo.dll'

a != b

a and b MUST NOT be equal (transitive), where a MUST be an Object Path and b MUST be a constant of the same data type as the Object property specified by a.

file:size != 4112

a > b

a is numerically or lexically greater than b, where a MUST be an Object Path and b MUST be a constant of the same data type as the Object property specified by a.

file:size > 256

a < b

a is numerically or lexically less than b, where a MUST be an Object Path and b MUST be a constant of the same data type as the Object property specified by a.

file:size < 1024

a <= b

a is numerically or lexically less than or equal to b, where a MUST be an Object Path and b MUST be a constant of the same data type as the Object property specified by a.

file:size <= 25145

a >= b

a is numerically or lexically greater than or equal to b, where a MUST be an Object Path and b MUST be a constant of the same data type as the Object property specified by a.

file:size >= 33312

a IN (x,y,...)

a MUST be an Object Path and MUST evaluate to one of the values enumerated in the set of x,y,... (transitive). The set values in b MUST be constants of homogeneous data type and MUST be valid data types for the Object Property specified by a. The return value is true if a is equal to one of the values in the list. If a is not equal to any of the items in the list, then the Comparison Expression evaluates to false.

process:name IN ('proccy', 'proximus', 'badproc')

 

a LIKE b

a MUST be an Object Path and MUST match the pattern specified in b where any '%' is 0 or more characters and ‘_' is any one character.

 

This operator is based upon the SQL LIKE clause and makes use of the same wildcards.

 

The string constant b MUST be NFC normalized [Davis] prior to evaluation.

directory:path LIKE 'C:\\Windows\\%\\foo'

a MATCHES b

a MUST be an Object Path and MUST be matched by the pattern specified in b, where b is a string constant containing a PCRE compliant regular expression. a MUST be NFC normalized [Davis] before comparison if the property is of string type.

 

Regular expressions MUST be conformant to the syntax defined by the Perl-compatible Regular Expression (PCRE) library [PCRE]. The search function MUST be used. The DOTALL option MUST be specified. The standard beginning and end anchors may be used in the pattern to obtain match behavior.

 

In the case that the property is binary (e.g., the property name ends in _bin or _hex), then the UNICODE flag MUST NOT be specified.

directory:path MATCHES '^C:\\\\Windows\\w+$'

Set Operator

Description

Example

a ISSUBSET b

When a is a set that is wholly contained by the set b, the Comparison Expression evaluates to true. a MUST be an Object Path referring to the value property of an Object of type ipv4-addr or ipv6-addr. b MUST be a valid string representation of the corresponding Object type (as defined in section 6.

 

For example, if ipv4-addr:value was 198.51.100.0/27, ISSUBSET '198.51.100.0/24' would evaluate to true.

 

In the case that both a and b evaluate to an identical single IP address or an identical IP subnet, the Comparison Expression evaluates to true.

ipv4-addr:value ISSUBSET '198.51.100.0/24'

a ISSUPERSET b

When a is a set that wholly contains the set specified by b, the Comparison Expression evaluates to true. a MUST be an Object Path referring either an ipv4-addr or ipv6-addr Object. b MUST be a valid string representation of the corresponding Object type (as defined in section 6).

 

For example, if ipv4-addr:value was 198.51.100.0/24, ISSUPERSET '198.51.100.0/27' would evaluate to true.

 

In the case that both a and b evaluate to an identical single IP address or an identical IP subnet, the Comparison Expression evaluates to true.

ipv4-addr:value ISSUPERSET '198.51.100.0/24'

EXISTS a

a MUST be an Object Path which specifies a single property that MUST exist on the Object specified by the Observation Expression in order for the Comparison Expression to evaluate to true.

 

For example, EXISTS windows-registry-key:values would evaluate to true on a registry key that contains a 'values' property (regardless of its contents).

EXISTS windows-registry-key:values

 

9.6.2 String Comparison

For simple string operators, i.e., "=", "!=", "<", ">", "<=" and ">=", as collation languages and methods are unspecifiable, a simple code point (binary) comparison MUST be used. If one string is longer than the other, but otherwise equal, the longer string is greater than, but not equal to, the shorter string. Unicode normalization MUST NOT be performed on the string. This means that combining marks [Davis] are sorted by their code point, not the NFC normalized value. E.g. ‘o' U+006f < ‘oz' U+006f U+007a < ‘ò' U+006f U+0300 < ‘z' U+007a < ‘ò' U+00f2. Although Unicode recommends normalizing strings for comparisons, the use of combining marks may be significant, and normalizing by default would remove this information.

 

NFC normalization is, however, required for other Comparison Operators, e.g., LIKE and MATCHES.

9.6.3 Binary Type Comparison

When the value of two binary object properties are compared, they are compared as unsigned octets. That is, 00 is less than ff. If one value is longer than the other, but they are otherwise equal, the longer value is considered greater than, but not equal to, the shorter value.

9.6.4 Native Format Comparison

The SCO's value MUST be in its native format when doing the comparison. For example, Cyber-observable Object properties that use the binary type (defined in section 2.1) must have their value decoded into its constituent bytes prior to comparison. This also means that Object Properties which use the hex type must be decoded into raw octets prior to being evaluated.

 

In cases where a binary SCO property (i.e., one ending with _bin or _hex) is evaluated against a string constant, the string constant MUST be converted into a binary constant when all of the constituent string code points are less than U+0100. If this conversion is not possible, the comparison MUST evaluate to false, unless the comparison operator is !=, in which case it MUST evaluate to true.

 

 

For example, given the following object, where the payload_bin property is of binary type :

{

  "0":{

    "type": "artifact",

    "mime_type": "application/octet-stream",

    "payload_bin": "dGhpcyBpcyBhIHRlc3Q="

    }

}

 

The pattern "artifact:payload_bin = 'dGhpcyBpcyBhIHRlc3Q='" would evaluate to false, while the following patterns would all evaluate to true:

 

"artifact:payload_bin = 'this is a test'", "artifact:payload_bin = b'dGhpcyBpcyBhIHRlc3Q='",

 and "artifact:payload_bin = h'7468697320697320612074657374'".

9.7 Object Path Syntax

Defined below is the syntax for addressing properties of SCOs within a STIX Pattern. The following notation is used throughout the definitions below:

 

Notation

Definition

<object-type>

The type of SCO to match against. This MUST be the value of the type field specified for a given SCO in an Observation.

<property_name>

The name of a SCO property to match against. This MUST be a valid property name as specified in the definition of the SCO type referenced by the <object-type> notation.

 

If the <property_name> contains a hyphen-minus ('-' U+002d) or a full stop ('.' U+002e), the <property_name> MUST be enclosed in apostrophes (''' U+0027).

 

Properties that are nested (i.e., are children of other properties in a SCO) MUST be specified using the syntax <property_name>.<property_name>, where the <property_name> preceding the ‘.' is the name of the parent property and the one following is the name of the child property.

 

If the property name is a reference to another SCO, the referenced Object MUST be dereferenced, so that its properties function as if they are nested in the Object that it is referenced by. For example, if the src_ref property of the Network Traffic object references an IPv4 Address object, the value of this IPv4 address would be specified by network-traffic:src_ref.value.

 

NOTE: the STIX Patterning language currently does not support specifying and/or dereferencing top-level relationships between SCOs as part of its object syntax. Therefore, it is recommended to use the deprecated embedded relationships for this purpose, if necessary.

 

9.7.1 Basic Object Properties

Any non-dictionary and non-list property that is directly specified on a SCO.

 

Syntax

<object-type>:<property_name>

 

Example

file:size

 

9.7.2 List Object Properties

Any property on a SCO that uses the list data type.

 

​Syntax

<object-type>:<property_name>[list_index].<property_name>

 

Where the first property_name MUST be the name of an Object property of type list and list_index MUST be one of the following:

      An integer in the range of 0...N-1, where N is the length of the list. If list_index is out of range, the result of any operation is false.

      The literal '*' indicates that all of the items in the list shall be tried as a value to be evaluated with the Comparison Operator and other value. If any of these evaluations are true, then the result is true.

 

Examples

 

file:extensions.'windows-pebinary-ext'.sections[*].entropy

 

network-traffic:protocols[0]

9.7.3 Dictionary Object Properties

Any property on an SCO that uses the dictionary data type.

 

​Syntax

<object-type>:<property_name>.<key_name>

 

Where <property_name> MUST be the name of an Object property of type dictionary and <key_name> MUST be the name of key in the dictionary.

 

Examples

file:hashes.ssdeep

 

file:extensions.'raster-image-ext'.image_height

9.7.4 Object Reference Properties

Any property on an SCO that represents an embedded relationship and uses the identifier data type, either as a singleton or as a list (i.e., list of type identifier).

 

​Syntax

<object-type>:<property_name>.<dereferenced_object_property>

 

Where <property_name> MUST be the name of an Object property that represents an embedded relationships and is of type identifier and <dereferenced_object_property> MUST be the name of a valid property of the dereferenced Object (i.e., the Object in an Observation that is referenced via <property_name>).

 

For example, when processing the Observed Data SDO that uses the object_refs property instead of the deprecated objects property, only those SCO's that are listed in the object_refs may be followed. This means that if the object identifier is not listed in object_refs property, then that object is considered not found, and any references to properties of that object are considered not present.

 

For cases where <property_name> represents a list of embedded relationships and is a list of type identifier, the corresponding syntax applies:

<object-type>:<property_name>[list_index].<dereferenced_object_property>

Accordingly, the same semantics for list indices as defined in section 9.7.2 apply in this case.

 

Examples

email-message:from_ref.value

directory:contains_refs[*].name

 

9.8 Examples

Note: the examples below are NOT JSON encoded. This means that some characters, like double quotes, are not escaped, though they will be when encoded in a JSON string.

 

Matching a File with a SHA-256 hash

[file:hashes.'SHA-256' = 'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f']

 

Matching an Email Message with a particular From Email Address and Attachment File Name Using a Regular Expression

[email-message:from_ref.value MATCHES '.+\\@example\\.com$' AND email-message:body_multipart[*].body_raw_ref.name MATCHES '^Final Report.+\\.exe$']

 

Matching a File with a SHA-256 hash and a PDF MIME type

[file:hashes.'SHA-256' = 'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f' AND file:mime_type = 'application/x-pdf']

 

Matching a File with SHA-256 or a MD5 hash (e.g., for the case of two different end point tools generating either an MD5 or a SHA-256), and a different File that has a different SHA-256 hash, against two different Observations

[file:hashes.'SHA-256' = 'bf07a7fbb825fc0aae7bf4a1177b2b31fcf8a3feeaf7092761e18c859ee52a9c' OR file:hashes.MD5 = 'cead3f77f6cda6ec00f57d76c9a6879f']

 AND [file:hashes.'SHA-256' =

'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f']

 

Matching a File with a MD5 hash, followed by (temporally) a Registry Key object that matches a value, within 5 minutes

([file:hashes.MD5 = '79054025255fb1a26e4bc422aef54eb4'] FOLLOWEDBY [windows-registry-key:key = 'HKEY_LOCAL_MACHINE\\foo\\bar']) WITHIN 300 SECONDS

 

Matching three different, but specific Unix User Accounts

[user-account:account_type = 'unix' AND user-account:user_id = '1007' AND user-account:account_login = 'Peter'] AND [user-account:account_type = 'unix' AND user-account:user_id = '1008' AND user-account:account_login = 'Paul'] AND [user-account:account_type = 'unix' AND user-account:user_id = '1009' AND user-account:account_login = 'Mary']

 

Matching an Artifact object PCAP payload header

[artifact:mime_type = 'application/vnd.tcpdump.pcap' AND artifact:payload_bin MATCHES '\\xd4\\xc3\\xb2\\xa1\\x02\\x00\\x04\\x00']

Matching a File object with a Windows file path

[file:name = 'foo.dll' AND file:parent_directory_ref.path = 'C:\\Windows\\System32']

Matching on a Windows PE File with high section entropy

[file:extensions.'windows-pebinary-ext'.sections[*].entropy > 7.0]

 

Matching on a mismatch between a File object magic number and mime type

[file:mime_type = 'image/bmp' AND file:magic_number_hex = h'ffd8']

 

Matching on Network Traffic with a particular destination

[network-traffic:dst_ref.type = 'ipv4-addr' AND network-traffic:dst_ref.value = '203.0.113.33/32']

 

Matching on Malware Beaconing to a Domain Name

[network-traffic:dst_ref.type = 'domain-name' AND network-traffic:dst_ref.value = 'example.com'] REPEATS 5 TIMES WITHIN 1800 SECONDS

 

Matching on a Domain Name with IPv4 Resolution

[domain-name:value = 'www.5z8.info' AND domain-name:resolves_to_refs[*].value = '198.51.100.1/32']

 

Matching on a URL

[url:value = 'http://example.com/foo' OR url:value = 'http://example.com/bar']

 

Matching on an X509 Certificate

[x509-certificate:issuer = 'CN=WEBMAIL' AND x509-certificate:serial_number = '4c:0b:1d:19:74:86:a7:66:b4:1a:bf:40:27:21:76:28']

 

Matching on a Windows Registry Key

[windows-registry-key:key = 'HKEY_CURRENT_USER\\Software\\CryptoLocker\\Files' OR windows-registry-key:key = 'HKEY_CURRENT_USER\\Software\\Microsoft\\CurrentVersion\\Run\\CryptoLocker_0388']

`

Matching on a File with a set of properties

[(file:name = 'pdf.exe' OR file:size = 371712) AND file:created = t'2014-01-13T07:03:17Z']

 

Matching on an Email Message with specific Sender and Subject

[email-message:sender_ref.value = 'jdoe@example.com' AND email-message:subject = 'Conference Info']

 

Matching on a Custom USB Device

[x-usb-device:usbdrive.serial_number = '575833314133343231313937']

 

Matching on Two Processes Launched with a Specific Set of Command Line Arguments Within a Certain Time Window

[process:command_line MATCHES '^.+>-add GlobalSign.cer -c -s -r localMachine Root$'] FOLLOWEDBY [process:command_line MATCHES'^.+>-add GlobalSign.cer -c -s -r localMachineTrustedPublisher$'] WITHIN 300 SECONDS

 

Matching on a Network Traffic IP that is part of a particular Subnet

[network-traffic:dst_ref.value ISSUBSET '2001:0db8:dead:beef:0000:0000:0000:0000/64']

 

Matching on several different combinations of Malware Artifacts. Note the following pattern requires that both a file and registry key exist, or that one of two processes exist.

([file:name = 'foo.dll'] AND [windows-registry-key:key = 'HKEY_LOCAL_MACHINE\\foo\\bar']) OR [process:image_ref.name = 'fooproc' OR process:image_ref.name = 'procfoo']


10 STIX™ Vocabularies

​The following sections provide object-specific listings for each of the vocabularies referenced in the object description sections defined in Sections 4, 5, 6, and 7.

 

STIX vocabularies that have type names ending in '-ov', are "open": they provide a listing of common and industry accepted terms as a guide to the user but do not limit the user to that defined list. These vocabularies are referenced from the STIX Objects as type open-vocab and have a statement indicating which vocabulary should be used.

 

STIX vocabularies that have type names ending in '-enum' are "closed": the only valid values are those in the vocabulary. These vocabularies are referenced from the STIX Objects as type enum and have a statement indicating which enumeration must be used.

 

10.1 Account Type Vocabulary

Vocabulary Name: account-type-ov

 

The account type vocabulary is currently used in the following SCOs:

      User Account

 

An open vocabulary of User Account types.

 

Vocabulary Summary

facebook, ldap, nis, openid, radius, skype, tacacs, twitter, unix, windows-local, windows-domain

Vocabulary Value

Description

facebook

Specifies a Facebook account.

ldap

Specifies an LDAP account.

nis

Specifies a NIS account

openid

Specifies an OpenID account.

radius

Specifies a RADIUS account.

skype

Specifies a Skype account.

tacacs

Specifies a TACACS account.

twitter

Specifies a Twitter account.

unix

Specifies a POSIX account.

windows-local

Specifies a Windows local account.

windows-domain

Specifies a Windows domain account.

 

10.2 Attack Motivation Vocabulary

Vocabulary Name: attack-motivation-ov

 

The attack motivation vocabulary is currently used in the following SDOs:

      Intrusion Set

      Threat Actor

 

Knowing a Threat Actor or Intrusion Set's motivation may allow an analyst or defender to better understand likely targets and behaviors.

 

Motivation shapes the intensity and the persistence of an attack. Threat Actors and Intrusion Sets usually act in a manner that reflects their underlying emotion or situation, and this informs defenders of the manner of attack. For example, a spy motivated by nationalism (ideology) likely has the patience to achieve long-term goals and work quietly for years, whereas a cyber-vandal out for notoriety can create an intense and attention-grabbing attack but may quickly lose interest and move on. Understanding these differences allows defenders to implement controls tailored to each type of attack for greatest efficiency.

 

This section including vocabulary items and their descriptions is based on the Threat Agent Motivations publication from Intel Corp in February 2015 [Casey 2015].

 

Vocabulary Summary

accidental, coercion, dominance, ideology, notoriety, organizational-gain, personal-gain, personal-satisfaction, revenge, unpredictable

Vocabulary Value

Description

accidental

A non-hostile actor whose benevolent or harmless intent inadvertently causes harm.

 

For example, a well-meaning and dedicated employee who through distraction or poor training unintentionally causes harm to his or her organization.

coercion

Being forced to act on someone else's behalf.

 

Adversaries who are motivated by coercion are often forced through intimidation or blackmail to act illegally for someone else’s benefit. Unlike the other motivations, a coerced person does not act for personal gain, but out of fear of incurring a loss.

dominance

A desire to assert superiority over someone or something else.

 

Adversaries who are seeking dominance over a target are focused on using their power to force their target into submission or irrelevance. Dominance may be found with ideology in some state-sponsored attacks and with notoriety in some cyber vandalism-based attacks.

ideology

A passion to express a set of ideas, beliefs, and values that may shape and drive harmful and illegal acts.

 

Adversaries who act for ideological reasons (e.g., political, religious, human rights, environmental, desire to cause chaos/anarchy, etc.) are not usually motivated primarily by the desire for profit; they are acting on their own sense of morality, justice, or political loyalty.

 

For example, an activist group may sabotage a company’s equipment because they believe the company is harming the environment.

notoriety

Seeking prestige or to become well known through some activity.

 

Adversaries motivated by notoriety are often seeking either personal validation or respect within a community and staying covert is not a priority. In fact, one of the main goals is to garner the respect of their target audience.

organizational-gain

Seeking advantage over a competing organization, including a military organization.

 

Adversaries motivated by increased profit or other gains through an unfairly obtained competitive advantage are often seeking theft of intellectual property, business processes, or supply chain agreements and thus accelerating their position in a market or capability.

personal-gain

The desire to improve one’s own financial status.

 

Adversaries motivated by a selfish desire for personal gain are often out for gains that come from financial fraud, hacking for hire, or intellectual property theft.

 

While a Threat Actor or Intrusion Set may be seeking personal gain, this does not mean they are acting alone. Individuals can band together solely to maximize their own personal profits.

personal-satisfaction

A desire to satisfy a strictly personal goal, including curiosity, thrill-seeking, amusement, etc.

 

Threat Actors or Intrusion Set driven by personal satisfaction may incidentally receive some other gain from their actions, such as a profit, but their primary motivation is to gratify a personal, emotional need. Individuals can band together with others toward a mutual, but not necessarily organizational, objective.

revenge

A desire to avenge perceived wrongs through harmful actions such as sabotage, violence, theft, fraud, or embarrassing certain individuals or the organization.

 

A disgruntled Threat Actor or Intrusion Set seeking revenge can include current or former employees, who may have extensive knowledge to leverage when conducting attacks. Individuals can band together with others if the individual believes that doing so will enable them to cause more harm.

unpredictable

Acting without identifiable reason or purpose and creating unpredictable events.

 

Unpredictable is not a miscellaneous or default category. Unpredictable means a truly random and likely bizarre event, which seems to have no logical purpose to the victims.

 

10.3 Attack Resource Level Vocabulary

Vocabulary Name: attack-resource-level-ov

 

The attack resource level vocabulary is currently used in the following SDO(s):

      Intrusion Set

      Threat Actor

 

Attack Resource Level is an open vocabulary that captures the general level of resources that a threat actor, intrusion set, or campaign might have access to. It ranges from individual, a person acting alone, to government, the resources of a national government.

 

This section including vocabulary items and their descriptions is based on the Threat Agent Library publication from Intel Corp in September 2007 [Casey 2007].

 

Vocabulary Summary

individual, club, contest, team, organization, government

Vocabulary Value

Description

individual

Resources limited to the average individual; Threat Actor acts independently.

club

Members interact on a social and volunteer basis, often with little personal interest in the specific target. An example might be a core group of unrelated activists who regularly exchange tips on a particular blog. Group persists long term.

contest

A short-lived and perhaps anonymous interaction that concludes when the participants have achieved a single goal. For example, people who break into systems just for thrills or prestige may hold a contest to see who can break into a specific target first. It also includes announced "operations" to achieve a specific goal, such as the original "OpIsrael" call for volunteers to disrupt all of Israel's Internet functions for a day.

team

A formally organized group with a leader, typically motivated by a specific goal and organized around that goal. Group persists long term and typically operates within a single geography.

organization

Larger and better resourced than a team; typically, a company or crime syndicate. Usually operates in multiple geographic areas and persists long term.

government

Controls public assets and functions within a jurisdiction; very well resourced and persists long term.

 

10.4 Encryption Algorithm Enumeration

Enumeration Name: encryption-algorithm-enum

 

The encryption algorithm enumeration is currently used in the following SCOs:

      Artifact

 

An enumeration of encryption algorithms for sharing defanged and/or confidential artifacts.

 

Vocabulary Summary

AES-256-GCM, ChaCha20-Poly1305, mime-type-indicated

Vocabulary Value

Description

AES-256-GCM

Specifies the AES-256-GCM cipher, as defined in [NIST SP800-38D]

ChaCha20-Poly1305

Specifies the ChaCha20-Poly1305 stream cipher, as defined in [RFC7539].

mime-type-indicated

The encryption algorithm is self-defined by the artifact's data. The specified mime-type tells you which format it is, e.g., Word Doc or GPG. This is intended for formats like Zip files and Word files which take a simple password, or GPG armored files that contain the key blob along with the file.

 

10.5 Grouping Context Vocabulary

Vocabulary Name: grouping-context-ov

 

The Grouping Context open vocabulary is currently used in the following object:

      Grouping

 

While the majority of this vocabulary is undefined (producers may use custom vocabulary entries), it has been added specifically to capture the suspicious-activity-event value. That value indicates that the information contained in the Grouping relates to a suspicious event.

 

Vocabulary Summary

suspicious-activity, malware-analysis, unspecified

Vocabulary Value

Description

suspicious-activity

A set of STIX content related to a particular suspicious activity event.

malware-analysis

A set of STIX content related to a particular malware instance or family.

unspecified

A set of STIX content contextually related but without any precise characterization of the contextual relationship between the objects.

 

10.6 Hashing Algorithm Vocabulary

Vocabulary Name: hash-algorithm-ov

 

The Hashing Algorithm open vocabulary is currently used in the following objects:

      External Reference

      Artifact

      File

      Alternate Data Stream

      Windows™ PE Binary File

      Windows™ PE Optional Header

      Windows™ PE Section

      X.509 Certificate

 

A vocabulary of hashing algorithms.

                                                                                               

Vocabulary Summary

MD5, SHA-1, SHA-256, SHA-512, SHA3-256, SHA3-512, SSDEEP, TLSH

Vocabulary Value

Description

MD5

Specifies the MD5 message digest algorithm. The corresponding hash string for this value MUST be a valid MD5 message digest as defined in [RFC1321].

SHA-1

Specifies the SHA­-1 (secure-­hash algorithm 1) cryptographic hash function. The corresponding hash string for this value MUST be a valid SHA-1 message digest as defined in [RFC3174].

SHA-256

Specifies the SHA-­256 cryptographic hash function (part of the SHA­2 family). The corresponding hash string for this value MUST be a valid SHA-256 message digest as defined in [RFC6234].

SHA-512

Specifies the SHA-­512 cryptographic hash function (part of the SHA­2 family). The corresponding hash string for this value MUST be a valid SHA-512 message digest as defined in [RFC6234].

SHA3-256

Specifies the SHA3-256 cryptographic hash function. The corresponding hash string for this value MUST be a valid SHA3-256 message digest as defined in [FIPS202].

SHA3-512

Specifies the SHA3-512 cryptographic hash function. The corresponding hash string for this value MUST be a valid SHA3-512 message digest as defined in [FIPS202].

SSDEEP

Specifies the ssdeep fuzzy hashing algorithm. The corresponding hash string for this value MUST be a valid piecewise hash as defined in the [SSDEEP] specification.

TLSH

Specifies the TLSH fuzzy hashing algorithm. The corresponding hash string for this value MUST be a valid 35 byte long hash as defined in the [TLSH] specification.

 

10.7 Identity Class Vocabulary

Vocabulary Name: identity-class-ov

 

The identity class vocabulary is currently used in the following SDO(s):

      Identity

 

This vocabulary describes the type of entity that the Identity represents: whether it describes an organization, group, individual, or class.

 

Vocabulary Summary

individual, group, system, organization, class, unspecified

Vocabulary Value

Description

individual

A single person.

group

An informal collection of people, without formal governance, such as a distributed hacker group.

system

A computer system, such as a SIEM

organization

A formal organization of people, with governance, such as a company or country.

class

A class of entities, such as all hospitals, all Europeans, or the Domain Administrators in a system.

unknown

It is unknown whether the classification is an individual, group, system, organization, or class.

 

10.8 Implementation Language Vocabulary

Vocabulary Name: implementation-language-ov

 

The implementation language vocabulary is currently used in the following SDO(s):

      Malware

 

This is a non-exhaustive, open vocabulary that covers common programming languages and is intended to characterize the languages that may have been used to implement a malware instance or family.

 

Vocabulary Summary

applescript, bash, c, c++, c#, go, java, javascript, lua, objective-c, perl, php, powershell, python, ruby, scala, swift, typescript, visual-basic, x86-32, x86-64

Vocabulary Value

Description

applescript

Specifies the AppleScript programming language.

bash

Specifies the Bash programming language.

c

Specifies the C programming language.

c++

Specifies the C++ programming language.

c#

Specifies the C# programming language.

go

Specifies the Go (sometimes referred to as golang) programming language.

java

Specifies the JAVA programming language.

javascript

Specifies the JavaScript programming language.

lua

Specifies the Lua programming language.

objective-c

Specifies the Objective-C programming language.

perl

Specifies the Perl programming language.

php

Specifies the PHP programming language.

powershell

Specifies the Windows Powershell programming language.

python

Specifies the Python programming language.

ruby

Specifies the Ruby programming language.

scala

Specifies the Scala programming language.

swift

Specifies the Swift programming language.

typescript

Specifies the TypeScript programming language.

visual-basic

Specifies the Visual Basic programming language.

x86-32

Specifies the x86 32-bit Assembly programming language.

x86-64

Specifies the x86 64-bit Assembly programming language.

 

10.9 Indicator Type Vocabulary

Vocabulary Name: indicator-type-ov

 

The indicator type vocabulary is currently used in the following SDO(s):

      Indicator

 

Indicator type is an open vocabulary used to categorize Indicators. It is intended to be high-level to promote consistent practices. Indicator types should not be used to capture information that can be better captured via related Malware or Attack Pattern objects. It is better to link an Indicator to a Malware object describing Poison Ivy rather than simply providing a type or label of "poison-ivy".

 

Vocabulary Summary

anomalous-activity, anonymization, benign, compromised, malicious-activity, attribution, unknown

Vocabulary Value

Description

anomalous-activity

Unexpected, or unusual activity that may not necessarily be malicious or indicate compromise. This type of activity may include reconnaissance-like behavior such as port scans or version identification, network behavior anomalies, and asset and/or user behavioral anomalies.

anonymization

Suspected anonymization tools or infrastructure (proxy, TOR, VPN, etc.).

benign

Activity that is not suspicious or malicious in and of itself, but when combined with other activity may indicate suspicious or malicious behavior.

compromised

Assets that are suspected to be compromised.

malicious-activity

Patterns of suspected malicious objects and/or activity.

attribution

Patterns of behavior that indicate attribution to a particular Threat Actor or Campaign.

unknown

There is not enough information available to determine the type of indicator.

 

10.10 Industry Sector Vocabulary

Vocabulary Name: industry-sector-ov

 

The industry sector vocabulary is currently used in the following SDO(s):

      Identity

 

Industry sector is an open vocabulary that describes industrial and commercial sectors. It is intended to be holistic; it has been derived from several other lists and is not limited to "critical infrastructure" sectors.

 

Vocabulary Summary

agriculture, aerospace, automotive, chemical, commercial, communications, construction, defense, education, energy, entertainment, financial-services, government (emergency-services, government-local, government-national, government-public-services,  government-regional), healthcare, hospitality-leisure, infrastructure (dams, nuclear, water), insurance, manufacturing, mining, non-profit, pharmaceuticals, retail, technology, telecommunications, transportation, utilities

Vocabulary Value

Description

agriculture

 

aerospace

 

automotive

 

chemical

 

commercial

 

communications

 

construction

 

defense

 

education

 

energy

 

entertainment

 

financial-services

 

government

 

    emergency-services

 

    government-local

 

    government-national

 

    government-public-services

e.g., sanitation

    government-regional

 

healthcare

 

hospitality-leisure

 

infrastructure

 

    dams

 

    nuclear

 

    water

 

insurance

 

manufacturing

 

mining

 

non-profit

 

pharmaceuticals

 

retail

 

technology

 

telecommunications

 

transportation

 

utilities

 

 

10.11 Infrastructure Type Vocabulary

Vocabulary Name: infrastructure-type-ov

The infrastructure type vocabulary is currently used in the following SDO(s):

      Infrastructure

 

A non-exhaustive enumeration of infrastructure types.

 

Vocabulary Summary

amplification, anonymization, botnet, command-and-control, exfiltration, hosting-malware, hosting-target-lists, phishing, reconnaissance, staging, undefined

Vocabulary Value

Description

amplification

Specifies infrastructure used for conducting amplification attacks.

anonymization

Specific infrastructure used for anonymization, such as a proxy.

botnet

Specifies the membership/makeup of a botnet, in terms of the network addresses of the hosts that comprise the botnet.

command-and-control

Specifies infrastructure used for command and control (C2). This is typically a domain name or IP address.

exfiltration

Specifies infrastructure used as an endpoint for data exfiltration.

hosting-malware

Specifies infrastructure used for hosting malware.

hosting-target-lists

Specifies infrastructure used for hosting a list of targets for DDOS attacks, phishing, and other malicious activities. This is typically a domain name or IP address.

phishing

Specifies infrastructure used for conducting phishing attacks.

reconnaissance

Specifies infrastructure used for conducting reconnaissance activities.

staging

Specifies infrastructure used for staging.

unknown

Specifies an infrastructure of some unknown type.

 

10.12 Malware Result Vocabulary

Vocabulary Name: malware-result-ov

 

The processor architecture vocabulary is currently used in the following SDO(s):

      Malware Analysis

 

This is a non-exhaustive, open vocabulary that captures common types of scanner or tool analysis process results.

 

Vocabulary Summary

malicious, suspicious, benign, unknown

Vocabulary Value

Description

malicious

The tool reported the malware binary as malicious.

suspicious

The tool reported the malware binary as suspicious but not definitively malicious.

benign

The tool reported the malware binary as benign.

unknown

The tool was unable to determine whether the malware binary is malicious.

 

10.13 Malware Capabilities Vocabulary

Vocabulary Name: malware-capabilities-ov

 

The malware capabilities vocabulary is currently used in the following SDO(s):

      Malware

 

This is an open vocabulary that covers common capabilities that may be exhibited by a malware instance or family.

 

Vocabulary Summary

accesses-remote-machines, anti-debugging, anti-disassembly, anti-emulation, anti-memory-forensics, anti-sandbox, anti-vm, captures-input-peripherals, captures-output-peripherals, captures-system-state-data, cleans-traces-of-infection, commits-fraud, communicates-with-c2, compromises-data-availability, compromises-data-integrity, compromises-system-availability, controls-local-machine, degrades-security-software, degrades-system-updates, determines-c2-server, emails-spam, escalates-privileges, evades-av, exfiltrates-data, fingerprints-host, hides-artifacts, hides-executing-code, infects-files, infects-remote-machines, installs-other-components, persists-after-system-reboot, prevents-artifact-access, prevents-artifact-deletion, probes-network-environment, self-modifies, steals-authentication-credentials, violates-system-operational-integrity

Vocabulary Value

Description

accesses-remote-machines

Indicates that the malware instance or family is able to access one or more remote machines.

anti-debugging

Indicates that the malware instance or family is able to prevent itself from being debugged and/or from being run in a debugger or is able to make debugging more difficult.

anti-disassembly

Indicates that the malware instance or family is able to prevent itself from being disassembled or make disassembly more difficult.

anti-emulation

Indicates that the malware instance or family is able to prevent its execution inside of an emulator or is able to make emulation more difficult.

anti-memory-forensics

Indicates that the malware instance or family is able to prevent or make memory forensics more difficult.

anti-sandbox

Indicates that the malware instance or family is able to prevent sandbox-based behavioral analysis or make it more difficult.

anti-vm

Indicates that the malware instance or family is able to prevent virtual machine (VM) based behavioral analysis or make it more difficult.

captures-input-peripherals

Indicates that the malware instance or family is able to capture data from a system's input peripheral devices, such as a keyboard or mouse. This includes things like keylogging.

captures-output-peripherals

Indicates that the malware instance or family captures data sent to a system's output peripherals, such as a display. Examples include things like screen scraping.

captures-system-state-data

Indicates that the malware instance or family is able to capture information about a system's state (e.g., data currently in its RAM).

cleans-traces-of-infection

Indicates that the malware instance or family is able to clean traces of its infection (e.g., file system artifacts) from a system.

commits-fraud

Indicates that the malware instance or family commits fraud, such as click fraud (for example).

communicates-with-c2

Indicates that the malware instance or family is able to communicate (i.e., send or receive data) with a command and control (C2) server.

compromises-data-availability

Indicates that the malware instance or family is able to compromise the availability of data on the local system on which it is executing and/or one or more remote systems. For example, encrypting data on disk, as done by ransomware.

compromises-data-integrity

Indicates that the malware instance or family is able to compromise the integrity of some data that resides on (e.g., in the case of files) or is received/transmitted (e.g., in the case of network traffic) by the system on which it is executing.

compromises-system-availability

Indicates that the malware instance or family is able to consume system resources for its malicious purposes, such as password cracking or participating in a DDoS botnet, thereby compromising the availability of the local system and/or one or more remote systems.

controls-local-machine

Indicates that the malware instance or family is able to control the machine on which it is executing (e.g., RATs).

degrades-security-software

Indicates that the malware instance or family is able to bypass or disable security programs or operating system security features on a system (including mobile devices), either by stopping them from executing or by making changes to their code or configuration parameters. For example, malware that blocks the local machine from accessing the websites of security vendors.

degrades-system-updates

Indicates that the malware instance or family is able to disable the downloading and installation of system updates and patches.

determines-c2-server

Indicates that the malware instance or family is able to identify one or more command and control (C2) servers with which to communicate (e.g., DGA).

emails-spam

Indicates that the malware instance or family is able to send spam email messages.

escalates-privileges

Indicates that the malware instance or family is able to escalate the privileges under which it is executing.

evades-av

Indicates that the malware instance or family is able to evade detection by antivirus tools.

exfiltrates-data

Indicates that the malware instance or family is able to gather, prepare, (possibly obfuscate) data and transmit it to exfiltration points.

fingerprints-host

Indicates that the malware instance or family is able to fingerprint or probe the configuration of the host system on which it is executing for the purpose of altering its behavior based on this environment.

hides-artifacts

Indicates that the malware instance or family is able to hide its artifacts, such as files and open ports.

hides-executing-code

Indicates that the malware instance or family is able to hide its code by compromising the bootloader, kernel modules, hypervisor, etc.

infects-files

Indicates that the malware instance or family is able to infect one or more files on the system on which it executes. For example, malware which injects a malicious payload into all PDFs on a host as a means of propagation.

infects-remote-machines

Indicates that the malware instance or family is able to self-propagate to a remote machine or infect a remote machine with malware that is different than itself.

installs-other-components

Indicates that the malware instance or family is able to install additional components. This encompasses the dropping/downloading of other malicious components such as libraries, other malware, and tools.

persists-after-system-reboot

Indicates that the malware instance or family is able to continue executing after the reboot of the system on which it is resident.

prevents-artifact-access

Indicates that the malware instance or family is able to prevent its artifacts (e.g., files, registry keys, etc.) from being accessed.

prevents-artifact-deletion

Indicates that the malware instance or family is able to prevent its artifacts (e.g., files, registry keys, etc.) from being deleted.

probes-network-environment

Indicates that the malware instance or family is able to probe the properties of its network environment, e.g. to determine whether it funnels traffic through a proxy.

self-modifies

Indicates that the malware instance or family is able to modify itself.

steals-authentication-credentials

Indicates that the malware instance is able to steal authentication credentials.

violates-system-operational-integrity

Indicates that the malware instance or family is able to compromise the operational integrity of the system on which it is executing and/or one or more remote systems, e.g., by causing them to operate beyond their set of specified operational parameters. For example, malware that causes the CPU fan on the machine that it is executing to spin at a higher than normal speed.

 

10.14 Malware Type Vocabulary

Vocabulary Name: malware-type-ov

 

The malware type vocabulary is currently used in the following SDO(s):

      Malware

 

Malware type is an open vocabulary that represents different types and functions of malware. Malware types are not mutually exclusive; for example, a malware instance can be both spyware and a screen capture tool.

 

Vocabulary Summary

adware, backdoor, bot, bootkit, ddos, downloader, dropper, exploit-kit, keylogger, ransomware, remote-access-trojan, resource-exploitation, rogue-security-software, rootkit, screen-capture, spyware, trojan, unknown, virus, webshell, wiper, worm

Vocabulary Value

Description

adware

Any software that is funded by advertising. Adware may also gather sensitive user information from a system.

backdoor

A malicious program that allows an attacker to perform actions on a remote system, such as transferring files, acquiring passwords, or executing arbitrary commands [NIST800-83].

bot

A program that resides on an infected system, communicating with and forming part of a botnet. The bot may be implanted by a worm or Trojan, which opens a backdoor. The bot then monitors the backdoor for further instructions.

bootkit

A malicious program which targets the Master Boot Record of the target computer.

ddos

A program that is used to perform a distributed denial of service attack.

downloader

A small trojan file programmed to download and execute other files, usually more complex malware.

dropper

A type of trojan that deposits an enclosed payload (generally, other malware) onto the target computer.

exploit-kit

A software toolkit to target common vulnerabilities.

keylogger

A type of malware that surreptitiously monitors keystrokes and either records them for later retrieval or sends them back to a central collection point.

ransomware

A type of malware that encrypts files on a victim's system, demanding payment of ransom in return for the access codes required to unlock files.

remote-access-trojan

A remote access trojan program (or RAT), is a trojan horse capable of controlling a machine through commands issued by a remote attacker.

resource-exploitation

A type of malware that steals a system's resources (e.g., CPU cycles), such as a malicious bitcoin miner.

rogue-security-software

A fake security product that demands money to clean phony infections.

rootkit

A type of malware that hides its files or processes from normal methods of monitoring in order to conceal its presence and activities. Rootkits can operate at a number of levels, from the application level — simply replacing or adjusting the settings of system software to prevent the display of certain information — through hooking certain functions or inserting modules or drivers into the operating system kernel, to the deeper level of firmware or virtualization rootkits, which are activated before the operating system and thus even harder to detect while the system is running.

screen-capture

A type of malware used to capture images from the target systems screen, used for exfiltration and command and control.

spyware

Software that gathers information on a user's system without their knowledge and sends it to another party. Spyware is generally used to track activities for the purpose of delivering advertising.

trojan

Any malicious computer program which is used to hack into a computer by misleading users of its true intent.

unknown

There is not enough information available to determine the type of malware.

virus

A malicious computer program that replicates by reproducing itself or infecting other programs by modifying them.

webshell

A malicious script used by an attacker with the intent to escalate and maintain persistent access on an already compromised web application.

wiper

A piece of malware whose primary aim is to delete files or entire disks on a machine.

worm

A self-replicating, self-contained program that usually executes itself without user intervention.

10.15 Network Socket Address Family Enumeration

Enumeration Name: network-socket-address-family-enum

 

The network socket address family vocabulary is currently used in the following SCO(s):

      Network Traffic (Network Socket extension)

 

An enumeration of network socket address family types.

 

Vocabulary Summary

AF_UNSPEC, AF_INET, AF_IPX, AF_APPLETALK, AF_NETBIOS, AF_INET6, AF_IRDA, AF_BTH

Vocabulary Value

Description

AF_UNSPEC

Specifies an unspecified address family.

AF_INET

Specifies the IPv4 address family.

AF_IPX

Specifies the IPX (Novell Internet Protocol) address family.

AF_APPLETALK

Specifies the APPLETALK DDP address family.

AF_NETBIOS

Specifies the NETBIOS address family.

AF_INET6

Specifies the IPv6 address family.

AF_IRDA

Specifies IRDA sockets.

AF_BTH

Specifies BTH sockets.

​ 

10.16 Network Socket Type Enumeration

Enumeration Name: network-socket-type-enum

 

The network socket type vocabulary is currently used in the following SCO(s):

      Network Traffic (Network Socket extension)

 

An enumeration of network socket types.

 

Vocabulary Summary

SOCK_STREAM, AF_ISOCK_DGRAMNET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET

Vocabulary Value

Description

SOCK_STREAM

Specifies a pipe-like socket which operates over a connection with a particular remote socket and transmits data reliably as a stream of bytes.

SOCK_DGRAM

Specifies a socket in which individually-addressed packets are sent (datagram).

SOCK_RAW

Specifies raw sockets which allow new IP protocols to be implemented in user space. A raw socket receives or sends the raw datagram not including link level headers.

SOCK_RDM

Specifies a socket indicating a reliably-delivered message.

SOCK_SEQPACKET

Specifies a datagram congestion control protocol socket.

10.17 Opinion Enumeration

Enumeration Name: opinion-enum

 

The agreement enumeration is currently used in the following SDOs:

      Opinion

 

This enumeration captures a degree of agreement with the information in a STIX Object. It is an ordered enumeration, with the earlier terms representing disagreement, the middle term neutral, and the later terms representing agreement.

 

Enumeration Summary

strongly-disagree, disagree, neutral, agree, strongly-agree

Enumeration Value

Description

strongly-disagree

The creator strongly disagrees with the information and believes it is inaccurate or incorrect.

 

This MAY be considered equivalent to a 1 in a numeric scale.

disagree

The creator disagrees with the information and believes it is inaccurate or incorrect.

 

This MAY be considered equivalent to a 2 in a numeric scale.

neutral

The creator is neutral about the accuracy or correctness of the information.

 

This MAY be considered equivalent to a 3 in a numeric scale.

agree

The creator agrees with the information and believes that it is accurate and correct.

 

This MAY be considered equivalent to a 4 in a numeric scale.

strongly-agree

The creator strongly agrees with the information and believes that it is accurate and correct.

 

This MAY be considered equivalent to a 5 in a numeric scale.

 

10.18 Pattern Type Vocabulary

Vocabulary Name: pattern-type-ov

 

The pattern type vocabulary is currently used in the following SDO(s):

      Indicator

 

This is a non-exhaustive, open vocabulary that covers common pattern languages and is intended to characterize the pattern language that the indicator pattern is expressed in.

 

Vocabulary Summary

stix, pcre, sigma, snort, suricata, yara

Vocabulary Value

Description

stix

Specifies the STIX pattern language defined in section 9.

pcre

Specifies the Perl Compatible Regular Expressions language [PCRE].

sigma

Specifies the SIGMA language.

snort

Specifies the SNORT language [SNORT].

suricata

Specifies the SURICATA language [Suricata].

yara

Specifies the YARA language [YARA].

 

10.19 Processor Architecture Vocabulary

Vocabulary Name: processor-architecture-ov

 

The processor architecture vocabulary is currently used in the following SDO(s):

      Malware

 

This is a non-exhaustive, open vocabulary that covers common processor architectures and is intended to characterize the architectures that a malware instance or family may be able to execute on.

 

Vocabulary Summary

alpha, arm, ia-64, mips, powerpc, sparc, x86, x86-64

Vocabulary Value

Description

alpha

Specifies the Alpha architecture.

arm

Specifies the ARM architecture.

ia-64

Specifies the 64-bit IA (Itanium) architecture.

mips

Specifies the MIPS architecture.

powerpc

Specifies the PowerPC architecture.

sparc

Specifies the SPARC architecture.

x86

Specifies the 32-bit x86 architecture.

x86-64

Specifies the 64-bit x86 architecture.

 

10.20 Region Vocabulary

Vocabulary Name: region-ov

The region vocabulary is currently used in the following SDO(s):

      Location

 

A list of world regions based on the United Nations geoscheme [UNSD M49].

 

Vocabulary Summary

africa (eastern-africa, middle-africa, northern-africa, southern-africa, western-africa), americas (caribbean, central-america, latin-america-caribbean, northern-america, south-america), asia (central-asia, eastern-asia, southern-asia, south-eastern-asia, western-asia), europe (eastern-europe, northern-europe, southern-europe, western-europe), oceania (antarctica, australia-new-zealand, melanesia, micronesia, polynesia)

Vocabulary Value

Description

africa

 

    eastern-africa

 

    middle-africa

 

    northern-africa

 

    southern-africa

 

    western-africa

 

americas

 

    caribbean

 

    central-america

 

    latin-america-caribbean

 

    northern-america

 

    south-america

 

asia

 

    central-asia

 

    eastern-asia

 

    southern-asia

 

    south-eastern-asia

 

    western-asia

 

europe

 

    eastern-europe

 

    northern-europe

 

    southern-europe

 

    western-europe

 

oceania

 

    antarctica

 

    australia-new-zealand

 

    melanesia

 

    micronesia

 

    polynesia

 

 

10.21 Report Type Vocabulary

Vocabulary Name: report-type-ov

 

The report type vocabulary is currently used in the following SDO(s):

      Report

 

Report type is an open vocabulary to describe the primary purpose or subject of a report. For example, a report that contains malware and indicators for that malware should have a report type of malware to capture that the malware is the primary purpose. Report types are not mutually exclusive: a Report can be both a malware report and a tool report. Just because a report contains objects of a type does not mean that the report should include that type. If the objects are there to simply provide evidence or context for other objects, it is not necessary to include them in the type.

 

Vocabulary Summary

attack-pattern, campaign, identity, indicator, intrusion-set, malware, observed-data, threat-actor, threat-report, tool, vulnerability

Vocabulary Value

Description

attack-pattern

Report subject is a characterization of one or more attack patterns and related information.

campaign

Report subject is a characterization of one or more campaigns and related information.

identity

Report subject is a characterization of one or more identities and related information.

indicator

Report subject is a characterization of one or more indicators and related information.

intrusion-set

Report subject is a characterization of one or more intrusion sets and related information.

malware

Report subject is a characterization of one or more malware instances and related information.

observed-data

Report subject is a characterization of observed data and related information.

threat-actor

Report subject is a characterization of one or more threat actors and related information.

threat-report

Report subject is a broad characterization of a threat across multiple facets.

tool

Report subject is a characterization of one or more tools and related information.

vulnerability

Report subject is a characterization of one or more vulnerabilities and related information.

 

10.22 Threat Actor Type Vocabulary

Vocabulary Name: threat-actor-type-ov

 

The threat actor type vocabulary is currently used in the following SDO(s):

      Threat Actor

 

Threat actor type is an open vocabulary used to describe what type of threat actor the individual or group is. For example, some threat actors are competitors who try to steal information, while others are activists who act in support of a social or political cause. Actor types are not mutually exclusive: a threat actor can be both a disgruntled insider and a spy. [Casey 2007])

 

Vocabulary Summary

activist, competitor, crime-syndicate, criminal, hacker, insider-accidental, insider-disgruntled, nation-state, sensationalist, spy, terrorist, unknown

Vocabulary Value

Description

activist

Highly motivated, potentially destructive supporter of a social or political cause (e.g., trade, labor, environment, etc.) that attempts to disrupt an organization's business model or damage their image.

 

This category includes actors sometimes referred to as anarchists, cyber vandals, extremists, and hacktivists.

competitor

An organization that competes in the same economic marketplace.

 

The goal of a competitor is to gain an advantage in business with respect to the rival organization it targets. It usually does this by copying intellectual property, trade secrets, acquisition strategies, or other technical or business data from a rival organization with the intention of using the data to bolster its own assets and market position.

crime-syndicate

An enterprise organized to conduct significant, large-scale criminal activity for profit.

 

Crime syndicates, also known as organized crime, are generally large, well-resourced groups that operate to create profit from all types of crime.

criminal

Individual who commits computer crimes, often for personal financial gain and often involves the theft of something valuable.

 

Intellectual property theft, extortion via ransomware, and physical destruction are common examples. A criminal as defined here refers to those acting individually or in very small or informal groups. For sophisticated organized criminal activity, see the crime syndicate descriptor.

hacker

An individual that tends to break into networks for the thrill or the challenge of doing so.

 

Hackers may use advanced skills or simple attack scripts they have downloaded.

insider-accidental

A non-hostile insider who unintentionally exposes the organization to harm.

 

“Insider” in this context includes any person extended internal trust, such as regular employees, contractors, consultants, and temporary workers.

insider-disgruntled

Current or former insiders who seek revengeful and harmful retaliation for perceived wrongs.

 

“Insider” in this context includes any person extended internal trust, such as regular employees, contractors, consultants, and temporary workers.

 

Disgruntled threat actors may have extensive knowledge that can be leveraged when conducting attacks and can take any number of actions including sabotage, violence, theft, fraud, espionage, or embarrassing individuals or the organization.

nation-state

Entities who work for the government or military of a nation state or who work at their direction.

 

These actors typically have access to significant support, resources, training, and tools and are capable of designing and executing very sophisticated and effective Intrusion Sets and Campaigns.

sensationalist

Seeks to cause embarrassment and brand damage by exposing sensitive information in a manner designed to cause a public relations crisis.

 

A sensationalist may be an individual or small group of people motivated primarily by a need for notoriety. Unlike the activist, the sensationalist generally has no political goal, and is not using bad PR to influence the target to change its behavior or business practices.

spy

Secretly collects sensitive information for use, dissemination, or sale.

 

Traditional spies (governmental and industrial) are part of a well-resourced intelligence organization and are capable of very sophisticated clandestine operations. However, insiders such as employees or consultants acting as spies can be just as effective and damaging, even when their activities are largely opportunistic and not part of an overall campaign.

terrorist

Uses extreme violence to advance a social or political agenda as well as monetary crimes to support its activities.

 

In this context a terrorist refers to individuals who target noncombatants with violence to send a message of fear far beyond the actual events. They may act independently or as part of a terrorist organization.

 

Terrorist organizations must typically raise much of their operating budget through criminal activity, which often occurs online. Terrorists are also often adept at using and covertly manipulating social media for both recruitment and impact.

unknown

There is not enough information available to determine the type of threat actor.

 

10.23 Threat Actor Role Vocabulary

Vocabulary Name: threat-actor-role-ov

 

The threat actor role vocabulary is currently used in the following SDO(s):

      Threat Actor

 

Threat actor role is an open vocabulary that is used to describe the different roles that a threat actor can play. For example, some threat actors author malware or operate botnets while other actors actually carry out attacks directly.

 

Threat actor roles are not mutually exclusive. For example, an actor can be both a financial backer for attacks and also direct attacks.

 

Vocabulary Summary

agent, director, independent, infrastructure-architect, infrastructure-operator, malware-author, sponsor

Vocabulary Value

Description

agent

Threat actor executes attacks either on behalf of themselves or at the direction of someone else.

director

The threat actor who directs the activities, goals, and objectives of the malicious activities.

independent

A threat actor acting by themselves.

infrastructure-architect

Someone who designs the battle space.

infrastructure-operator

The threat actor who provides and supports the attack infrastructure that is used to deliver the attack (botnet providers, cloud services, etc.).

malware-author

The threat actor who authors malware or other malicious tools.

sponsor

The threat actor who funds the malicious activities.

 

10.24 Threat Actor Sophistication Vocabulary

Vocabulary Name: threat-actor-sophistication-ov

 

Threat actor sophistication vocabulary is currently used in the following SDO(s):

      Threat Actor

 

Threat actor sophistication vocabulary captures the skill level of a threat actor. It ranges from "none", which describes a complete novice, to "strategic", which describes an attacker who is able to influence supply chains to introduce vulnerabilities. This vocabulary is separate from resource level because an innovative, highly-skilled threat actor may have access to very few resources while a minimal-level actor might have the resources of an organized crime ring.

 

Vocabulary Summary

none, minimal, intermediate, advanced, expert, innovator, strategic

Vocabulary Value

Description

none

Can carry out random acts of disruption or destruction by running tools they do not understand. Actors in this category have average computer skills.

 

Example Roles: Average User

 

These actors:

      can not launch targeted attacks

minimal

Can minimally use existing and frequently well known and easy-to-find techniques and programs or scripts to search for and exploit weaknesses in other computers. Commonly referred to as a script-kiddie.

 

These actors rely on others to develop the malicious tools, delivery mechanisms, and execution strategy and often do not fully understand the tool they are using or how they work. They also lack the ability to conduct their own reconnaissance and targeting research.

 

Example Roles: Script-Kiddie

 

These actors:

      attack known weaknesses;

      use well known scripts and tools; and

      have minimal knowledge of the tools.

intermediate

Can proficiently use existing attack frameworks and toolkits to search for and exploit vulnerabilities in computers or systems. Actors in this category have computer skills equivalent to an IT professional and typically have a working knowledge of networks, operating systems, and possibly even defensive techniques and will typically exhibit some operational security.

 

These actors rely others to develop the malicious tools and delivery mechanisms but are able to plan their own execution strategy. They are proficient in the tools they are using and how they work and can even make minimal modifications as needed.

 

Example Roles: Toolkit User

 

These actors:

      attack known vulnerabilities;

      use attack frameworks and toolkits; and

      have proficient knowledge of the tools.

advanced

Can develop their own tools or scripts from publicly known vulnerabilities to target systems and users. Actors in this category are very adept at IT systems and have a background in software development along with a solid understanding of defensive techniques and operational security.

 

These actors rely on others to find and identify weaknesses and vulnerabilities in systems, but are able to create their own tools, delivery mechanisms, and execution strategies.

 

Example Roles: Toolkit Developer

 

These actors:

      attack known vulnerabilities;

      can create their own tools; and

      have proficient knowledge of the tools.

expert

Can focus on the discovery and use of unknown malicious code, are is adept at installing user and kernel mode rootkits, frequently use data mining tools, target corporate executives and key users (government and industry) for the purpose of stealing personal and corporate data. Actors in this category are very adept at IT systems and software development and are experts with security systems, defensive techniques, attack methods, and operational security.

 

Example Roles: Vulnerability Researcher, Reverse Engineer, Threat Researcher, Malware Creator

 

These actors:

      attack unknown and known vulnerabilities;

      can create their own tools from scratch; and

      have proficient knowledge of the tools.

innovator

Typically, criminal or state actors who are organized, highly technical, proficient, well-funded professionals working in teams to discover new vulnerabilities and develop exploits.

 

Demonstrates sophisticated capability. An innovator has the ability to create and script unique programs and codes targeting virtually any form of technology. At this level, this actor has a deep knowledge of networks, operating systems, programming languages, firmware, and infrastructure topologies and will demonstrate operational security when conducting his activities. Innovators are largely responsible for the discovery of 0-day vulnerabilities and the development of new attack techniques.

 

Example Roles: Toolkit Innovator, 0-Day Exploit Author

 

These actors:

      attack unknown and known vulnerabilities;

      create attacks against 0-Day exploits from scratch; and

      create new and innovative attacks and toolkits.

strategic

State actors who create vulnerabilities through an active program to “influence” commercial products and services during design, development or manufacturing, or with the ability to impact products while in the supply chain to enable exploitation of networks and systems of interest.

 

These actors:

      can create or use entire supply chains to launch an attack;

      can create and design attacks for any systems, software package, or device; and

      are responsible for APT-level attacks.

 

10.25 Tool Type Vocabulary

Vocabulary Name: tool-type-ov

 

The tool type vocabulary is currently used in the following SDO(s):

      Tool

 

Tool types describe the categories of tools that can be used to perform attacks.

 

Vocabulary Summary

denial-of-service, exploitation, information-gathering, network-capture, credential-exploitation, remote-access, vulnerability-scanning, unknown

Vocabulary Value

Description

denial-of-service

Tools used to perform denial of service attacks or DDoS attacks, such as Low Orbit Ion Cannon (LOIC) and DHCPig.

exploitation

Tools used to exploit software and systems, such as sqlmap and Metasploit.

information-gathering

Tools used to enumerate system and network information, e.g., NMAP.

network-capture

Tools used to capture network traffic, such as Wireshark and Kismet.

credential-exploitation

Tools used to crack password databases or otherwise exploit/discover credentials, either locally or remotely, such as John the Ripper and NCrack.

remote-access

Tools used to access machines remotely, such as VNC and Remote Desktop.

vulnerability-scanning

Tools used to scan systems and networks for vulnerabilities, e.g., Nessus.

unknown

There is not enough information available to determine the type of tool.

 

10.26 Windows™ Integrity Level Enumeration

Enumeration Name: windows-integrity-level-enum

 

The Windows integrity level enumeration is currently used in the following STIX Cyber-observable Object(s):

      Process (Windows Process extension)

 

Windows integrity levels are a security feature and represent the trustworthiness of an object.

 

Vocabulary Summary

low, medium, high, system

Vocabulary Value

Description

low

A low level of integrity.

medium

A medium level of integrity.

high

A high level of integrity.

system

A system level of integrity.

 

10.27 Windows™ PE Binary Vocabulary

 

Vocabulary Name: windows-pebinary-type-ov

 

The Windows PE binary vocabulary is currently used in the following SCO(s):

      File (Windows PE Binary extension)

 

An open vocabulary of Windows PE binary types.

 

Vocabulary Summary

dll, exe, sys

Value

Description

dll

Specifies that the PE binary is a dynamically linked library (DLL).

exe

Specifies that the PE binary is an executable image (i.e., not an OBJ or DLL).

sys

Specifies that the PE binary is a device driver (SYS).

 

 

10.28 Windows™ Registry Datatype Enumeration

Enumeration Name: windows-registry-datatype-enum

 

The Windows registry datatype vocabulary is currently used in the following SCO(s):

      Windows Registry Key

 

An enumeration of Windows registry data types.

 

Vocabulary Summary

REG_NONE, REG_SZ, REG_EXPAND_SZ, REG_BINARY, REG_DWORD, REG_DWORD_BIG_ENDIAN, REG_DWORD_LITTLE_ENDIAN, REG_LINK, REG_MULTI_SZ, REG_RESOURCE_LIST, REG_FULL_RESOURCE_DESCRIPTION, REG_RESOURCE_REQUIREMENTS_LIST, REG_QWORD, REG_INVALID_TYPE

Vocabulary Value

Description

REG_NONE

No defined value type.

REG_SZ

A null-terminated string. This will be either a Unicode or an ANSI string, depending on whether you use the Unicode or ANSI functions.

REG_EXPAND_SZ

A null-terminated string that contains unexpanded references to environment variables (for example, "%PATH%"). It will be a Unicode or ANSI string depending on whether you use the Unicode or ANSI functions.

REG_BINARY

Binary data in any form.

REG_DWORD

A 32-bit number.

REG_DWORD_BIG_ENDIAN

A 32-bit number in big-endian format.

REG_DWORD_LITTLE_ENDIAN

A 32-bit number in little-endian format.

REG_LINK

A null-terminated Unicode string that contains the target path of a symbolic link.

REG_MULTI_SZ

A sequence of null-terminated strings, terminated by an empty string (\0).

REG_RESOURCE_LIST

A series of nested lists designed to store a resource list used by a hardware device driver or one of the physical devices it controls. This data is detected and written into the ResourceMap tree by the system and is displayed in Registry Editor in hexadecimal format as a Binary Value.

REG_FULL_RESOURCE_DESCRIPTION

A series of nested lists designed to store a resource list used by a physical hardware device. This data is detected and written into the HardwareDescription tree by the system and is displayed in Registry Editor in hexadecimal format as a Binary Value.

REG_RESOURCE_REQUIREMENTS_LIST

Device driver list of hardware resource requirements in Resource Map tree.

REG_QWORD

A 64-bit number.

REG_INVALID_TYPE

Specifies an invalid key.

10.29 Windows™ Service Start Type Enumeration

Enumeration Name: windows-service-start-type-enum

 

The Windows service start type vocabulary is currently used in the following SCO(s):

      Process (Windows Service extension)

 

An enumeration of Windows service start types.

 

Vocabulary Summary

SERVICE_AUTO_START, SERVICE_BOOT_START, SERVICE_DEMAND_START, SERVICE_DISABLED, SERVICE_SYSTEM_ALERT

Vocabulary Value

Description

SERVICE_AUTO_START

A service started automatically by the service control manager during system startup.

SERVICE_BOOT_START

A device driver started by the system loader. This value is valid only for driver services.

SERVICE_DEMAND_START

A service started by the service control manager when a process calls the StartService function.

SERVICE_DISABLED

A service that cannot be started. Attempts to start the service result in the error code ERROR_SERVICE_DISABLED.

SERVICE_SYSTEM_ALERT

A device driver started by the IoInitSystem function. This value is valid only for driver services.

 

10.30 Windows™ Service Type Enumeration

Enumeration Name: windows-service-type-enum

 

The Windows service type vocabulary is currently used in the following SCO(s):

      Process (Windows Service extension)

 

An enumeration of Windows service types.

 

Vocabulary Summary

SERVICE_KERNEL_DRIVER, SERVICE_FILE_SYSTEM_DRIVER, SERVICE_WIN32_OWN_PROCESS, SERVICE_WIN32_SHARE_PROCESS

Vocabulary Value

Description

SERVICE_KERNEL_DRIVER

The service is a device driver.

SERVICE_FILE_SYSTEM_DRIVER

The service is a file system driver.

SERVICE_WIN32_OWN_PROCESS

The service runs in its own process.

SERVICE_WIN32_SHARE_PROCESS

The service shares a process with other services.

 

10.31 Windows™ Service Status Enumeration

Enumeration Name: windows-service-status-enum

 

The Windows service status vocabulary is currently used in the following SCO(s):

      Process (Windows Service extension)

 

An enumeration of Windows service statuses.

 

Vocabulary Summary

SERVICE_CONTINUE_PENDING, SERVICE_PAUSE_PENDING, SERVICE_PAUSED, SERVICE_RUNNING, SERVICE_START_PENDING, SERVICE_STOP_PENDING, SERVICE_STOPPED

Value

Description

SERVICE_CONTINUE_PENDING

The service continue is pending.

SERVICE_PAUSE_PENDING

The service pause is pending.

SERVICE_PAUSED

The service is paused.

SERVICE_RUNNING

The service is running.

SERVICE_START_PENDING

The service is starting.

SERVICE_STOP_PENDING

The service is stopping.

SERVICE_STOPPED

The service is not running.

 

 


 


11 Customizing STIX™

There are three primary means to customize STIX: Custom Properties, Custom Objects and Custom Extensions. Custom Properties provide a mechanism and requirements for adding properties not defined by this specification to existing STIX Objects. Custom Objects, on the other hand, provides a mechanism and requirements to create custom STIX Objects (objects not defined by this specification). Custom Extensions provide a mechanism and requirements for the specification of extensions not defined by this specification on SCOs.

 

A consumer that receives STIX content containing Custom Properties, Objects or Extensions it does not understand MAY refuse to process the content or MAY ignore those properties or objects and continue processing the content.

 

Producers of STIX content that contain Custom Properties, Objects or Extensions should recognize that consumers may not understand them and may ignore them. Producers should define any Custom Properties, Objects and Extensions they use, along with any rules for processing them, and make these definitions and rules accessible to any potential consumers. This specification does not specify a process for doing this.

 

Custom Properties SHOULD be used for cases where it is necessary to add one or more simple additional properties (i.e. key/value pairs) on an SCO. On the other hand, Custom Extensions SHOULD be used for cases where it is necessary to describe more complex additional properties (i.e., those with potentially multiple levels of hierarchy). As an example, a vendor-specific property that expresses some custom threat score for a File object should be added directly to the SCO as a custom property, whereas a set of properties that represent metadata around a new file system to the File object should be done as a custom extension.

11.1 Custom Properties

There will be cases where certain information exchanges can be improved by adding properties to STIX Objects and STIX Cyber Observable (SCO) Extensions that are neither specified nor reserved in this specification; these properties are called Custom Properties. This section provides guidance and requirements for how producers can use Custom Properties and how consumers should interpret them in order to extend STIX in an interoperable manner.

11.1.1 Requirements

      A STIX Object MAY have any number of Custom Properties.

      Custom Property names MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and underscore (_).

      Custom Property names SHOULD start with “x_” followed by a source unique identifier (such as a domain name with dots replaced by underscores), an underscore and then the name. For example, x_example_com_customfield.

      Custom Property names MUST have a minimum length of 3 ASCII characters.

      Custom Property names MUST be no longer than 250 ASCII characters in length.

      Custom Property names that do not start with “x_” may be used in a future version of the specification for a different meaning. If compatibility with future versions of this specification is required, the “x_” prefix MUST be used.

      Custom Properties SHOULD only be used when there are no existing properties defined by the STIX specification that fulfils that need.

      For Custom Properties that use the hex type, the property name MUST end with '_hex'.

      For Custom Properties that use the binary type, the property name MUST end with '_bin'.

 

 

Examples

{

  ...,

  "x_acme_org_risk_score": 10,

  "x_acme_org_scoring": {

    "impact": "high",

    "probability": "low"

  },

  ...

}

11.2 Custom Objects

There will be cases where certain information exchanges can be improved by adding objects that are not specified nor reserved in this specification; these objects are called Custom Objects. This section provides guidance and requirements for how producers can use Custom Objects and how consumers should interpret them in order to extend STIX in an interoperable manner.

11.2.1 Requirements

      Producers MAY include any number of Custom Objects in STIX content.

      Custom Objects MUST support the Common Properties as defined in section 3.2.

      Common property names MUST NOT be reused to represent the custom properties in the object.

      A Custom Object MUST have one or more properties.

      The name of a property of a Custom Object MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and underscore (_). The "x_" prefix as described in section 11.1.1 MAY be used.

      The name of a property of a Custom Object MUST have a minimum length of 3 ASCII characters.

      The name of a property of a Custom Object MUST be no longer than 250 ASCII characters in length.

      The type property in a Custom Object MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and hyphen (-).

      The type property MUST NOT contain a hyphen (-) character immediately following another hyphen (-) character.

      Custom Object names MUST have a minimum length of 3 ASCII characters.

      Custom Object names MUST be no longer than 250 ASCII characters in length.

      The value of the type property in a Custom Object SHOULD start with “x-” followed by a source unique identifier (like a domain name with dots replaced by hyphens), a hyphen and then the name. For example, x-example-com-customobject.

      A Custom Object whose name is not prefixed with “x-” may be used in a future version of the specification with a different meaning. Therefore, if compatibility with future versions of this specification is required, the “x-” prefix MUST be used.

      The value of the id property in a Custom Object MUST use the same format as the identifier type, namely, [object-type]--[UUID].

      Custom Objects SHOULD only be used when there is no existing STIX Object defined by the STIX specification that fulfils that need.

 

 

Examples

{

  "type": "bundle",

  "id": "bundle--f37aa79d-f5f5-4af7-874b-734d32c08c10",

  "objects": [

    {

      "type": "x-example-com-customobject",

      "id": "x-example-com-customobject--4527e5de-8572-446a-a57a-706f15467461",

      "created": "2016-08-01T00:00:00.000Z",

      "modified": "2016-08-01T00:00:00.000Z",

      "some_custom_stuff": 14,

      "other_custom_stuff": "hello"

    }

  ]

}​

 

11.3 Custom Object Extensions

In addition to the Predefined Cyber Observable Object extensions, STIX supports user-defined custom extensions for STIX Cyber-observable Objects (SCO). As with Predefined Object Extensions, custom extension data MUST be conveyed under the extensions property. Note, custom extensions can only be used with SCOs.

11.3.1 Requirements

      A SCO MAY have any number of Custom Extensions.

      Custom Extension names MUST be in ASCII and are limited to characters a-z (lowercase ASCII), 0-9, and hyphen (-).

      Custom Extension names MUST end with "-ext".

      Custom Extension names SHOULD start with “x-” followed by a source unique identifier (like a domain name), a hyphen and then the name. For example: x-example-com-customextension.

      Custom Extension names MUST have a minimum length of 3 ASCII characters.

      Custom Extension names MUST be no longer than 250 ASCII characters in length.

      Custom Extension names that are not prefixed with “x-” may be used in a future version of the specification for a different meaning. If compatibility with future versions of this specification is required, the “x-” prefix MUST be used.

      Custom Extensions SHOULD only be used when there is no existing extension defined by the STIX 2.1 specification that fulfills that need.

      A Custom Extension MUST have one or more properties.

      The name of a property of a Custom Object Extension MUST be in ASCII and MUST only contain the characters a–z (lowercase ASCII), 0–9, and underscore (_). The "x_" prefix as described in section 11.1.1 MAY be used.

 

Examples

Custom File object extension

{

  "type": "file",

  "hashes": {

    "SHA-256": "effb46bba03f6c8aea5c653f9cf984f170dcdd3bbbe2ff6843c3e5da0e698766"

  },

  "extensions": {

    "x-example-com-foo": {

      "foo_val": "foo",

      "bar_val": "bar"

    }

  }

}


 


12 Conformance

12.1 STIX Object Producers and Consumers

A "STIX 2.1 Producer" is any software that can create STIX 2.1 content and conforms to the following normative requirements:

  1. It MUST be able to create content encoded as JSON.
  2. All properties marked required in the property table for the STIX Object or type MUST be present in the created content.
  3. All properties MUST conform to the data type and normative requirements for that property.
  4. It MUST support at least one STIX Object.
  5. It MUST support all features listed in section 12,2, Mandatory Features.
  6. It MAY support any features listed in section 12.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
  7. It MUST support JSON as a serialization format and MAY support serializations other than JSON.

 

A "STIX 2.1 Consumer" is any software that can consume STIX 2.1 content and conforms to the following normative requirements:

  1. It MUST support parsing all required properties for the content that it consumes.
  2. It MUST support all features listed in section 12.2, Mandatory Features.
  3. It MAY support any features listed in section 12.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
  4. It MUST support JSON as a serialization format and MAY support serializations other than JSON.

12.2 STIX Object Mandatory Features

12.2.1 Versioning

A STIX 2.1 Producer or STIX 2.1 Consumer MUST support versioning by following the normative requirements listed in section 3.6.

12.3 STIX Object Optional Features

12.3.1 Object-Level Data Markings

A STIX 2.1 Producer or STIX 2.1 Consumer MAY support "Object-Level Data Markings". Software claiming to support "Object-Level Data Markings" MUST follow the normative requirements listed in sections 7.2.1 and 7.2.2.

12.3.2 Granular Data Markings

A STIX 2.1 Producer or STIX 2.1 Consumer MAY support "Granular Data Markings". Software claiming to support "Granular Data Markings" MUST follow the normative requirements listed in sections 7.2.1 and 7.2.3.

12.3.3 Custom Properties

A STIX 2.1 Producer or STIX 2.1 Consumer MAY support "Custom Properties". Software claiming to support "Custom Properties" MUST follow the normative requirements listed in section 11.1.

12.3.4 Custom Objects and Extensions

A STIX 2.1 Producer or STIX Consumer MAY support "Custom Objects" and/or "Custom Extensions". Software claiming to support "Custom Objects" MUST follow the normative requirements listed in section 11.2. Software claiming to support "Custom Extensions" MUST follow the normative requirements listed in section 11.3.

12.4 STIX™ Patterning Conformance

Implementers of the STIX Patterning language are not required to support the full capabilities provided by the language. Rather, implementers are strongly encouraged to support as much of STIX Patterning as feasible, given the capabilities of their products, but only required to support the minimum conformance level (defined below) necessary for their particular use cases. For example, the vendor of a network intrusion detection system (NIDS) that looks for malicious network traffic may only need to implement the Comparison Operators and support basic Observation Expressions to explicitly match against network traffic and IP addresses.

 

While the STIX Patterning language specification is tightly coupled with the STIX Cyber-observable Object data models, it is understood that in many (or even most) implementations STIX Patterns will be used as an abstraction layer for transcoding into other proprietary query formats. STIX Patterns may be evaluated directly against a corpus of STIX Observed Data instances, but they may also, for example, be translated into some query syntax for a packet inspection device. In this second case, the STIX Patterns are in fact evaluated in the context of data passing on the wire, not in the form of STIX Cyber Observables.

 

The STIX Patterning language's Observation Operators allow for the creation of patterns that explicitly match across multiple Observations; however, the language purposefully does not specify anything about the source of the underlying data for each Observation. For example, depending on a particular patterning implementation, the data for a pattern that matches on network traffic could come from an endpoint or from a NIDS. It is incumbent upon implementers to ascertain the appropriate data sources (where applicable) for each Observation within a given pattern.

12.5 STIX™ Pattern Producer

Software that creates STIX patterns is known as a "Pattern Producer". Such software MUST support the creation of patterns that conform to all normative statements and formatting rules in this document. Pattern Producers MUST specify their conformance in terms of the conformance levels defined in section 12.7.

12.6 STIX™ Pattern Consumer

Software that consumes STIX patterns is known as a "Pattern Consumer". Such software MUST support the consumption of patterns that conform to all normative statements and formatting rules in this document. Pattern Consumers MUST specify their conformance in terms of the conformance levels defined in section 12.7.

12.7 STIX™ Patterning Conformance Levels

12.7.1 Level 1: Basic Conformance

Software that conforms to the minimum required aspects of the patterning specification, is known as a “Level 1 STIX Patterning Implementation”.

 

Such software MUST support the following features by conforming to all normative statements and behaviors in the referenced sections:

      Single Observation Expressions (omitting Qualifiers), as described in section section 9.4

      All Comparison Operators, as described in section 9.6

 

This level of conformance is intended primarily for software that is deployed at endpoints or network boundaries and which is architecturally unable to maintain state, as would be required in order to support Qualifiers such as WITHIN.

12.7.2 Level 2: Basic Conformance plus Observation Operators

Software that supports the minimum required aspects of the patterning specification but can operate on multiple Observations, is known as a “Level 2 STIX Patterning Implementation”.

 

Such software MUST support the following features by conforming to all normative statements and behaviors in the referenced sections:

      Single and Compound Observation Expressions (omitting Qualifiers) as described in section 9.4

      The AND Observation Operator, as described in section 9.5

      The OR Observation Operator, as described in section 9.5

      All Comparison Operators, as described in section 9.6

 

This level of conformance is intended primarily for software such as HIDS that can detect patterns across separate Observations but may not support temporal-based patterning.

12.7.3 Level 3: Full Conformance

Software that is fully conformant with all of the capabilities of the patterning specification is known as a "Level 3 STIX Patterning Implementation".

 

Such software MUST support the following features by conforming to all normative statements and behaviors in the referenced sections:

      ​Section 9.1.​ Definitions

      ​Section 9.3.​ STIX Patterns

      Section 9.4.​ Pattern Expressions

      Section 9.5.​ Observation Expressions

      Section 9.6.​ Comparison Expressions

      ​Section 9.7.​ Object Path Syntax

 

This level of conformance is intended primarily for software such as SIEMs that support temporal-based patterning and can also aggregate and detect patterns across multiple and disparate sources of Observations.

 


 


​Appendix A. Confidence Scales

The use of these confidence scales is defined in section 3.2, confidence property. A value of "Not Specified" in the table below means that the confidence property is not present.

 

None/Low/Med/High

STIX Confidence Value

Range of Values

Not Specified

Not Specified

N/A

None

0

0

Low

15

1-29

Med

50

30-69

High

85

70-100

 

 

0-10 Scale

STIX Confidence Value

Range of Values

Not Specified

Not Specified

N/A

0

0

0-4

1

10

5-14

2

20

15-24

3

30

25-34

4

40

35-44

5

50

45-54

6

60

55-64

7

70

65-74

8

80

75-84

9

90

85-94

10

100

95-100

 

 

Admiralty Credibility*

STIX Confidence Value

Range of Values

6 - Truth cannot be judged

Not Specified

N/A

5 - Improbable

10

0-19

4 - Doubtful

30

20-39

3 - Possibly True

50

40-59

2 - Probably True

70

60-79

1 - Confirmed by other sources

90

80-100

*Admiralty Credibility [FM 2-22.3]

 

WEP*

STIX Confidence Value

Range of Values

Not Specified

Not Specified

N/A

Impossible

0

0

Highly Unlikely/Almost Certainly Not

10

1-19

Unlikely/Probably Not

30

20-39

Even Chance

50

40-59

Likely/Probable

70

60-79

Highly likely/Almost Certain

90

80-99

Certain

100

100

* Words of Estimative Probability (WEP) [WEP]

 

DNI Scale*

STIX Confidence Value

Range of Values

Not Specified

Not Specified

N/A

Almost No Chance / Remote

5

0-9

Very Unlikely / Highly Improbable

15

10-19

Unlikely / Improbable

30

20-39

Roughly Even Chance / Roughly Even Odds

50

40-59

Likely / Probable

70

60-79

Very Likely / Highly Probable

85

80-89

Almost Certain / Nearly Certain

95

90-100

* DNI Scale [ICD 203]

 


​Appendix B. Relationship Summary Table

 

This following relationship summary table is provided as a convenience. If there is a discrepancy between this table and the relationships defined with each of the SDOs, then the relationships defined with the SDOs MUST be viewed as authoritative.

 

Source

Type

Target

attack-pattern

delivers

malware

attack-pattern

targets

identity, location, vulnerability

attack-pattern

uses

malware, tool

campaign

attributed-to

intrusion-set, threat-actor

campaign

compromises

infrastructure

campaign

originates-from

location

campaign

targets

identity, location, vulnerability

campaign

uses

attack-pattern, infrastructure, malware, tool

course-of-action

investigates

indicator

course-of-action

mitigates

attack-pattern, indicator, malware, tool, vulnerability

identity

located-at

location

indicator

indicates

attack-pattern, campaign, infrastructure, intrusion-set, malware, threat-actor, tool

indicator

based-on

observed-data

infrastructure

communicates-with

infrastructure, ipv4-addr, ipv6-addr, domain-name, url

infrastructure

consists-of

infrastructure, observed-data, <All STIX Cyber-observable Objects>

infrastructure

controls

infrastructure, malware

infrastructure

delivers

malware

infrastructure

has

vulnerability

infrastructure

hosts

tool, malware

infrastructure

located-at

location

infrastructure

uses

infrastructure

intrusion-set

attributed-to

threat-actor

intrusion-set

compromises

infrastructure

intrusion-set

hosts, owns

infrastructure

intrusion-set

originates-from

location

intrusion-set

targets

identity, location, vulnerability

intrusion-set

uses

attack-pattern, infrastructure, malware, tool

malware

authored-by

threat-actor, intrusion-set

malware

beacons-to, exfiltrate-to

infrastructure

malware

communicates-with

ipv4-addr, ipv6-addr, domain-name, url

malware

controls

malware

malware

downloads, drops

malware, tool, file

malware

exploits

vulnerability

malware

originates-from

location

malware

targets

identity, infrastructure, location, vulnerability

malware

uses

attack-pattern, infrastructure, malware, tool

malware

variant-of

malware

malware-analysis

characterizes

malware

malware-analysis

analysis-of

malware

malware-analysis

static-analysis-of

malware

malware-analysis

dynamic-analysis-of

malware

threat-actor

attributed-to

identity

threat-actor

compromises

infrastructure

threat-actor

hosts, owns

infrastructure

threat-actor

impersonates

identity

threat-actor

located-at

location

threat-actor

targets

identity, location, vulnerability

threat-actor

located-at

location

threat-actor

uses

attack-pattern, infrastructure, malware, tool

tool

delivers

malware

tool

drops

malware

tool

has

vulnerability

tool

targets

identity, infrastructure, location, vulnerability

 

 

 


 


​Appendix C. Additional Examples

 

15.1 Infrastructure Additional Examples

 

15.1.1 Malware & Target List Hosting Domain

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73",

 "created": "2016-11-22T09:22:30.000Z",

 "modified": "2016-11-22T09:22:30.000Z",

 "name": "Example Target List Host",

 "infrastructure_types": ["hosting-target-lists"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--37ac0c8d-f86d-4e56-aee9-914343959a4c",

 "created": "2016-11-23T08:17:27.000Z",

 "modified": "2016-11-23T08:17:27.000Z",

 "relationship_type": "uses",

 "source_ref": "malware--3a41e552-999b-4ad3-bedc-332b6d9ff80c",

 "target_ref": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73"

}

 

{

 "type": "malware",

 "spec_version": "2.1",

 "id": "malware--3a41e552-999b-4ad3-bedc-332b6d9ff80c",

 "created": "2016-11-12T14:31:09.000Z",

 "modified": "2016-11-12T14:31:09.000Z",

 "is_family": true,

 "malware_types": [

   "bot"

 ],

 "name": "IMDDOS"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--81f12913-1372-4c96-85ec-E9034ac98aba",

 "created": "2016-11-23T10:42:39.000Z",

 "modified": "2016-11-23T10:42:39.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73",

 "target_ref": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5"

}

 

{

 "id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",

 "type": "domain-name",

 "value": "example.com"

}

 

 

15.1.2 Malware Botnet Infrastructure

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--78cc7b4b-c6ab-40d1-82eb-95a3059641da",

 "created": "2017-03-15T04:22:30.000Z",

 "modified": "2017-03-15T04:22:30.000Z",

 "name": "Malware Botnet Example",

 "infrastructure_types": ["botnet"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--edce6fe8-2ac7-49d6-bd57-3973a4f819b8",

 "created": "2017-03-16T22:17:27.000Z",

 "modified": "2017-03-16T22:17:27.000Z",

 "relationship_type": "uses",

 "source_ref": "malware--496cac0a-77ea-4da0-b913-88e553483c8d",

 "target_ref": "infrastructure--78cc7b4b-c6ab-40d1-82eb-95a3059641da"

}

 

{

 "type": "malware",

 "spec_version": "2.1",

 "id": "malware--496cac0a-77ea-4da0-b913-88e553483c8d",

 "created": "2017-03-10T07:31:09.000Z",

 "modified": "2017-03-10T07:31:09.000Z",

 "is_family": true,

 "malware_types": [

   "bot"

 ],

 "name": "Asprox"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--7aebe2f0-28d6-48a2-9c3e-b0aaa60266ef",

 "created": "2017-03-16T10:19:23.000Z",

 "modified": "2017-03-16T10:19:23.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--78cc7b4b-c6ab-40d1-82eb-95a3059641da",

 "target_ref": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53"

}

 

{

 "id": "ipv4-addr--4d22aae0-2bf9-5427-8819-e4f6abf20a53",

 "type": "ipv4-addr",

 "value": "198.51.100.2"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--7f5b1a34-c64b-4ad4-8a0f-1ebeffaa2d4",

 "created": "2017-03-16T10:29:55.000Z",

 "modified": "2017-03-16T10:29:55.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--78cc7b4b-c6ab-40d1-82eb-95a3059641da",

 "target_ref": "ipv4-addr--2ccfc50f-b0f0-5e06-ba9b-2aa51e23af61"

}

 

{

 "id": "ipv4-addr--2ccfc50f-b0f0-5e06-ba9b-2aa51e23af61",

 "type": "ipv4-addr",

 "value": "198.51.100.4"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--2e48e1aa-469d-4473-a110-a128280db964",

 "created": "2017-03-16T10:33:14.000Z",

 "modified": "2017-03-16T10:33:14.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--78cc7b4b-c6ab-40d1-82eb-95a3059641da",

 "target_ref": "ipv4-addr--3073f2be-0e15-5f42-b81d-495938860cd5"

}

 

{

 "id": "ipv4-addr--3073f2be-0e15-5f42-b81d-495938860cd5",

 "type": "ipv4-addr",

 "value": "198.51.100.7"

}

 

15.1.3 Related/Component Botnet Infrastructure

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--767ed805-f00a-4603-9bd8-5b5a006b56fa",

 "created": "2016-11-21T09:22:30.000Z",

 "modified": "2016-11-21T09:22:30.000Z",

 "name": "Example Target List Host 2",

 "infrastructure_types": ["hosting-target-lists"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--81f12913-1372-4c96-85ec-E9034ac98aba",

 "created": "2016-11-23T10:42:39.000Z",

 "modified": "2016-11-23T10:42:39.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--767ed805-f00a-4603-9bd8-5b5a006b56fa",

 "target_ref": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5"

}

 

{

 "id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",

 "type": "domain-name",

 "value": "example.com"

}

 

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--e4ed271e-e023-45db-99e6-1f912e79bd06",

 "created": "2016-11-22T11:04:18.000Z",

 "modified": "2016-11-22T11:04:18.000Z",

 "name": "Control.Example command-and-control",

 "infrastructure_types": ["command-and-control"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--2f340a76-edef-443d-a203-bede067c0bb0",

 "created": "2016-11-25T09:46:09.000Z",

 "modified": "2016-11-25T09:46:09.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--e4ed271e-e023-45db-99e6-1f912e79bd06",

 "target_ref": "domain-name--a56780a5-93a5-5047-97ab-6900d2441bca"

}

 

{

 "id": "domain-name--a56780a5-93a5-5047-97ab-6900d2441bca",

 "type": "domain-name",

 "value": "control.example.com"

}

 

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--a3536537-456a-47b5-84dc-fb7c340959e8",

 "created": "2016-11-18T04:22:30.000Z",

 "modified": "2016-11-18T04:22:30.000Z",

 "name": "Botnet Example",

 "infrastructure_types": ["botnet"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--3263dfe0-6bf4-42eb-bab9-5fc9edc6e443",

 "created": "2016-11-18T08:27:37.000Z",

 "modified": "2016-11-18T08:27:37.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--a3536537-456a-47b5-84dc-fb7c340959e8",

 "target_ref": "ipv4-addr--182726c7-ba5e-5f77-97ef-378365bd0b79"

}

 

{

 "id": "ipv4-addr--182726c7-ba5e-5f77-97ef-378365bd0b79",

 "type": "ipv4-addr",

 "value": "198.51.100.8"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--80d9ba7d-893b-4286-96f9-32225060a730",

 "created": "2016-11-18T06:22:31.000Z",

 "modified": "2016-11-18T06:22:31.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--a3536537-456a-47b5-84dc-fb7c340959e8",

 "target_ref": "ipv4-addr--d7177770-fc12-586b-9244-426596a7008e"

}

 

{

 "id": "ipv4-addr--d7177770-fc12-586b-9244-426596a7008e",

 "type": "ipv4-addr",

 "value": "198.51.100.9"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--43f753d8-61e2-472e-918e-d7c58e2463e7",

 "created": "2016-11-25T13:37:27.000Z",

 "modified": "2017-11-25T13:37:27.000Z",

 "relationship_type": "uses",

 "source_ref": "infrastructure--a3536537-456a-47b5-84dc-fb7c340959e8",

 "target_ref": "infrastructure--767ed805-f00a-4603-9bd8-5b5a006b56fa"

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--8386f241-b583-4c59-9056-a3b0db596d93",

 "created": "2016-11-25T13:37:27.000Z",

 "modified": "2017-11-25T13:37:27.000Z",

 "relationship_type": "controls",

 "source_ref": "infrastructure--e4ed271e-e023-45db-99e6-1f912e79bd06",

 "target_ref": "infrastructure--a3536537-456a-47b5-84dc-fb7c340959e8"

}

 

15.1.4 Malware Instance Hosted on Compromised Domain

 

{

 "type": "infrastructure",

 "spec_version": "2.1",

 "id": "infrastructure--33588e0e-2bab-430e-9073-cacf704ea1e7",

 "created": "2017-04-04T13:01:21.000Z",

 "modified": "2017-04-04T13:01:21.000Z",

 "name": "Malware hosted on compromised domain",

 "infrastructure_types": ["hosting-malware"]

}

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--409244ac-01cd-4465-ad30-3f92a226f59f",

 "created": "2016-11-25T09:46:09.000Z",

 "modified": "2016-11-25T09:46:09.000Z",

 "relationship_type": "consists-of",

 "source_ref": "infrastructure--33588e0e-2bab-430e-9073-cacf704ea1e7",

 "target_ref": "domain-name--224dd5a2-d2db-5b8d-91f9-124a0c0c8546"

}

 

{

 "id": "domain-name--224dd5a2-d2db-5b8d-91f9-124a0c0c8546",

 "type": "domain-name",

 "value": "foo.example.com"

}

 

 

{

 "type": "relationship",

 "spec_version": "2.1",

 "id": "relationship--b3ab5ba1-e6d6-46b0-8ebe-91fc91978c85",

 "created": "2017-04-05T13:37:27.000Z",

 "modified": "2017-04-05T13:37:27.000Z",

 "relationship_type": "delivers",

 "source_ref": "infrastructure--33588e0e-2bab-430e-9073-cacf704ea1e7",

 "target_ref": "malware--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061"

}

 

{

 "type": "malware",

 "spec_version": "2.1",

 "id": "malware--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061",

 "created": "2016-05-12T08:17:27.000Z",

 "modified": "2016-05-12T08:17:27.000Z",

 "name": "SpyEye",

 "is_family": false,

 "malware_types": [

   "trojan"

 ]

}


 


​Appendix D. IANA Considerations

 

This appendix contains the required information to register the STIX media type with IANA. While some of the information here is only for IANA, implementers of STIX should pay close attention to the security considerations and privacy considerations outlined in this appendix.

 

This document defines the "application/stix+json" media type

 

Media type name:  application

 

Media subtype name:  stix+json

 

Required parameters:  None

 

Optional parameters:  version

This parameter is used to designate the specification version of STIX that is being used during HTTP content negotiation. Example: "application/stix+json;version=2.1". The parameter value is of the form 'n.m', where n is the major version and m the minor version, both unsigned integer values.

 

Encoding considerations:  binary

Encoding considerations are identical to those specified for the "application/json" media type. See [RFC8259].

 

Security considerations:

 

Security considerations relating to the generation and consumption of STIX messages are similar to application/json and are discussed in section 12 of [RFC8259].

 

Unicode is used to represent text such as descriptions in the format. The considerations documented by Unicode Technical Report #36: Unicode Security Considerations [UnicodeTR#36] should be taken into account.

 

The STIX standard does not itself specify a transport mechanism for STIX documents. It is expected that TAXII is often used (which uses TLS via HTTPS). As there is no transport mechanism specified, it is up to the users of this to use an appropriately secured transport method. For example, TLS, JSON Web Encryption [RFC7516] and/or JSON Web Signature [RFC7515] can provide such mechanisms.

 

Documents of "application/stix+json" are STIX based Cyber Threat Intelligence (CTI) documents. The documents may contain active or executable content as well as URLs, IP addresses, and domain names that are known or suspected to be malicious. Systems should thus take appropriate precautions before decoding any of this content, either for persistent storage or execution purposes. Such precautions may include measures such as de-fanging, sandboxing, or other measures. The samples included in STIX documents are reference samples only, and there is no provision or expectation in the specification that they will be loaded and/or executed. There are provisions in the specification to encrypt these samples so that even if a tool decodes the data, a further active step must be done before the payload will be "live". It is highly recommended that all active code be armored in this manner.

 

STIX specifies the use of hashing and encryption mechanisms for some data types. A cryptography expert should be consulted when choosing which hashing or encryption algorithms to use to ensure that they do not have any security issues.

 

STIX provides a graph-based data model. As such, STIX implementations should implement protections against graph queries that can potentially consume a significant amount of resources and prevent the implementation from functioning in a normal way.

 

This specification also describes "STIX Patterning", a mechanism to describe and evaluate a search/match for data observed on systems and networks. Patterning is a grammar itself and includes PCRE regular expressions. Care should be taken when parsing and evaluating the grammar (particularly when evaluating PCRE from unknown or untrusted sources) as they can potentially consume a significant amount of resources.

 

Privacy considerations:

These considerations are, in part, derived from Section 10 of the Resource-Oriented Lightweight Information Exchange [RFC8322].

 

Documents may include highly confidential, personal (PII), and/or classified information. There are methods in the standard for marking elements of the document such that the consumer knows of these limitations. These markings may not always be used. For example, an out-of-band agreement may cover and restrict sharing. Just because a document is not marked as containing information that should not be shared does not mean that a document is free for sharing. It may be the case that a legal agreement has been entered into between the parties sharing documents, and that each party understands and follows their obligations under that agreement as well as any applicable laws or regulations.

 

Adoption of the information-sharing approach described in this document will enable users to more easily perform correlations across separate, and potentially unrelated, cybersecurity information providers. A client may succeed in assembling a data set that would not have been permitted within the context of the authorization policies of either provider when considered individually. Thus, providers may face a risk of an attacker obtaining an access that constitutes an undetected separation of duties (SOD) violation. It is important to note that this risk is not unique to this specification, and a similar potential for abuse exists with any other cybersecurity information-sharing protocol.

 

Interoperability considerations:

The STIX specification specifies the format of conforming messages and the interpretation thereof. In addition, the OASIS Cyber Threat Intelligence (CTI) Technical Committee has defined interoperability tests to ensure conforming products and solutions can exchange STIX documents.

 

Published specification:

STIX Version 2.1 OASIS Committee Specification 01

http://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html

Cited in the "OASIS Standards" document:

https://www.oasis-open.org/standards#oasiscommiteespecs, from

https://www.oasis-open.org/standards#stix2.1

 

Applications which use this media:

Structured Threat Information Expression (STIX) is a language and serialization format used to exchange cyber threat intelligence (CTI) such as Threat Actors, Campaigns, Intrusion Sets, Attack Patterns, Indicators of Compromise, etc. STIX enables organizations to share CTI with one another in a consistent and machine-readable manner, allowing security communities to better understand what computer-based attacks they are most likely to see and to anticipate and/or respond to those attacks faster and more effectively. STIX is designed to improve many different capabilities, such as collaborative threat analysis, automated threat exchange, automated detection and response, and more.

 

Fragment identifier considerations:  None

 

Restrictions on usage:  None

 

Additional information:

 

1. Deprecated alias names for this type: application/vnd.oasis.stix+json

2. Magic number(s): n/a [RFC8259]

3. File extension(s): stix

4. Macintosh file type code: TEXT [RFC8259]

5. Object Identifiers: None

 

Person and email to contact for further information:  Chet Ensign (chet.ensign@oasis-open.org)

 

Intended usage:  COMMON

 

Author:

OASIS Cyber Threat Intelligence (CTI) Technical Committee;

URI reference: http://www.oasis-open.org/committees/cti/.

 

Change controller:  OASIS

 

Provisional registration:  No


​Appendix E. Acknowledgments

STIX Subcommittee Chairs:

Bret Jordan, Broadcom

Emily Ratliff, IBM

 

Special Thanks:

Substantial contributions to this specification from the following individuals are gratefully acknowledged:

 

Bret Jordan, Broadcom

Trey Darley, CCB/CERT.be

Terry MacDonald, Cosive

Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)

Stephen Russett, Cyber Threat Intelligence Network, Inc. (CTIN)

Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)

Chris Ricard, Financial Services Information Sharing and Analysis Center (FS-ISAC)

Sean Barnum, FireEye

Gary Katz, FireEye, Inc.

Ryusuke Masuoka, Fujitsu Limited

Iain Brown, GDS

Jason Keirstead, IBM

Emily Ratliff, IBM

Tim Casey, Intel

Justin Stewart, LookingGlass Cyber

Allan Thomson, LookingGlass Cyber

Greg Back, MITRE Corporation

Jon Baker, MITRE Corporation

Sarah Kelley, MITRE Corporation

Ivan Kirillov, MITRE Corporation

Chris Lenk, MITRE Corporation

Richard Piazza, MITRE Corporation

Richard Struse, MITRE Corporation

Emmanuelle Vargas-Gonzalez, MITRE Corporation

John Wunder, MITRE Corporation

John-Mark Gurney, New Context Services, Inc.

Christian Hunt, New Context Services, Inc.

Drew Varner, NineFX, Inc.

Aharon Chernin, Perch

Dave Cridland, Surevine

Jeffrey Mates, US Department of Defense (DoD)

 

Participants:

The following individuals were members of the OASIS CTI Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:

 

Kai Li, 360 Enterprise Security Group

shu li, 360 Enterprise Security Group

qian yin, 360 Enterprise Security Group

Xinhua Zheng, 360 Enterprise Security Group

Robert Coderre, Accenture

Kyle Maxwell, Accenture

David Crawford, Aetna

Marcos Orallo, Airbus Group SAS

Roman Fiedler, AIT Austrian Institute of Technology

Florian Skopik, AIT Austrian Institute of Technology

Ryan Clough, Anomali

Nicholas Hayden, Anomali

Wei Huang, Anomali

Russell Matbouli, Anomali

Angela Nichols, Anomali

Hugh Njemanze, Anomali

Katie Pelusi, Anomali

Patrick Maroney, AT&T

Dean Thompson, Australia and New Zealand Banking Group (ANZ Bank)

Radu Marian, Bank of America

Sounil Yu, Bank of America

Vicky Laurens, Bank of Montreal

Bret Jordan, Broadcom

Trey Darley, CCB/CERT.be

Alexandre Dulaunoy, CIRCL

Andras Iklody, CIRCL

Christian Studer, CIRCL

RaphaÎl Vinot, CIRCL

Syam Appala, Cisco Systems

Ted Bedwell, Cisco Systems

Pavan Reddy, Cisco Systems

Omar Santos, Cisco Systems

Sam Taghavi Zargar, Cisco Systems

Jyoti Verma, Cisco Systems

Jart Armin, Cyber Threat Intelligence Network, Inc. (CTIN)

Doug DePeppe, Cyber Threat Intelligence Network, Inc. (CTIN)

Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)

Ben Ottoman, Cyber Threat Intelligence Network, Inc. (CTIN)

David Powell, Cyber Threat Intelligence Network, Inc. (CTIN)

Andreas Sfakianakis, Cyber Threat Intelligence Network, Inc. (CTIN)

Anuj Goel, Cyware Labs

Avkash Kathiriya, Cyware Labs

Jaeden Hampton, DarkLight, Inc.

Ryan Hohimer, DarkLight, Inc.

Ryan Joyce, DarkLight, Inc.

Shawn Riley, DarkLight, Inc.

Ian Roberts, DarkLight, Inc.

Andrew Byrne, Dell

Jeff Odom, Dell

Sreejith Padmajadevi, Dell

Ravi Sharda, Dell

Will Urbanski, Dell

David Ailshire, DHS Office of Cybersecurity and Communications (CS&C)

Steven Fox, DHS Office of Cybersecurity and Communications (CS&C)

Taneika Hill, DHS Office of Cybersecurity and Communications (CS&C)

Evette Maynard-Noel, DHS Office of Cybersecurity and Communications (CS&C)

Jackie Eun Park, DHS Office of Cybersecurity and Communications (CS&C)

Sean Sobieraj, DHS Office of Cybersecurity and Communications (CS&C)

Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)

Preston Werntz, DHS Office of Cybersecurity and Communications (CS&C)

Jˆrg Abraham, EclecticIQ

wouter bolsterlee, EclecticIQ

Adam Bradbury, EclecticIQ

Marko Dragoljevic, EclecticIQ

Oliver Gheorghe, EclecticIQ

Joep Gommers, EclecticIQ

Caitlin Huey, EclecticIQ

Christopher O'Brien, EclecticIQ

Sergey Polzunov, EclecticIQ

Rutger Prins, EclecticIQ

Aukjan van Belkum, EclecticIQ

Raymon van der Velde, EclecticIQ

Tom Vaughan, EclecticIQ

Joseph Woodruff, EclecticIQ

Ben Sooter, Electric Power Research Institute (EPRI)

Chris Ricard, Financial Services Information Sharing and Analysis Center (FS-ISAC)

Sean Barnum, FireEye, Inc.

Phillip Boles, FireEye, Inc.

Prasad Gaikwad, FireEye, Inc.

Haripriya Gajendran, FireEye, Inc.

Will Green, FireEye, Inc.

Rajeev Jha, FireEye, Inc.

Gary Katz, FireEye, Inc.

Anuj Kumar, FireEye, Inc.

James Meck, FireEye, Inc.

Shyamal Pandya, FireEye, Inc.

Paul Patrick, FireEye, Inc.

Remko Weterings, FireEye, Inc.

Tim Jones, ForeScout

Ryusuke Masuoka, Fujitsu Limited

Daisuke Murabayashi, Fujitsu Limited

Derek Northrope, Fujitsu Limited

Toshitaka Satomi, Fujitsu Limited

Koji Yamada, Fujitsu Limited

Kunihiko Yoshimura, Fujitsu Limited

Robert van Engelen, Genivia

Eric Burger, Georgetown University

Allison Miller, Google Inc.

Mark Risher, Google Inc.

Yoshihide Kawada, Hitachi, Ltd.

Jun Nakanishi, Hitachi, Ltd.

Kazuo Noguchi, Hitachi, Ltd.

Akihito Sawada, Hitachi, Ltd.

Yutaka Takami, Hitachi, Ltd.

Masato Terada, Hitachi, Ltd.

Adrian Bishop, Huntsman Security

Eldan Ben-Haim, IBM

Allen Hadden, IBM

Sandra Hernandez, IBM

Jason Keirstead, IBM

Chenta Lee, IBM

John Morris, IBM

Devesh Parekh, IBM

Emily Ratliff, IBM

Nick Rossmann, IBM

Laura Rusu, IBM

Ron Williams, IBM

Paul Martini, iboss, Inc.

Vasileios Mavroeidis, IFI

Kamer Vishi, IFI

Joerg Eschweiler, Individual

Elysa Jones, Individual

Terry MacDonald, Individual

Tim Casey, Intel Corporation

Julie Modlin, Johns Hopkins University Applied Physics Laboratory

Mark Moss, Johns Hopkins University Applied Physics Laboratory

Mark Munoz, Johns Hopkins University Applied Physics Laboratory

Nathan Reller, Johns Hopkins University Applied Physics Laboratory

Pamela Smith, Johns Hopkins University Applied Physics Laboratory

Vivek Jain, JPMorgan Chase Bank, N.A.

Subodh Kumar, JPMorgan Chase Bank, N.A.

David Laurance, JPMorgan Chase Bank, N.A.

Russell Culpepper, Kaiser Permanente

Beth Pumo, Kaiser Permanente

Michael Slavick, Kaiser Permanente

Daniel Ben-Chitrit, LookingGlass

Wesley Brown, LookingGlass

Dennis Hostetler, LookingGlass

Himanshu Kesar, LookingGlass

Matt Pladna, LookingGlass

Vlad Serban, LookingGlass

Allan Thomson, LookingGlass

Chris Wood, LookingGlass

Kent Landfield, McAfee

Jonathan Baker, Mitre Corporation

Desiree Beck, Mitre Corporation

Michael Chisholm, Mitre Corporation

Sam Cornwell, Mitre Corporation

Sarah Kelley, Mitre Corporation

Ivan Kirillov, Mitre Corporation

Michael Kouremetis, Mitre Corporation

Chris Lenk, Mitre Corporation

Nicole Parrish, Mitre Corporation

Richard Piazza, Mitre Corporation

Larry Rodrigues, Mitre Corporation

Jon Salwen, Mitre Corporation

Charles Schmidt, Mitre Corporation

Richard Struse, Mitre Corporation

Alex Tweed, Mitre Corporation

Emmanuelle Vargas-Gonzalez, Mitre Corporation

John Wunder, Mitre Corporation

James Cabral, MTG Management Consultants, LLC.

Scott Algeier, National Council of ISACs (NCI)

Denise Anderson, National Council of ISACs (NCI)

Josh Poster, National Council of ISACs (NCI)

Mike Boyle, National Security Agency

Jessica Fitzgerald-McKay, National Security Agency

David Kemp, National Security Agency

Shaun McCullough, National Security Agency

Jason Romano, National Security Agency

John Anderson, NC4

Michael Butt, NC4

Mark Davidson, NC4

Daniel Dye, NC4

Michael Pepin, NC4

Natalie Suarez, NC4

Benjamin Yates, NC4

Sarah Brown, NCI Agency

Oscar Serrano, NCI Agency

Daichi Hasumi, NEC Corporation

Takahiro Kakumaru, NEC Corporation

Lauri Korts-Parn, NEC Corporation

Kelly Cullinane, New Context Services, Inc.

John-Mark Gurney, New Context Services, Inc.

Christian Hunt, New Context Services, Inc.

Danny Purcell, New Context Services, Inc.

Daniel Riedel, New Context Services, Inc.

Andrew Storms, New Context Services, Inc.

Drew Varner, NineFX, Inc.

Stephen Banghart, NIST

David Darnell, North American Energy Standards Board

James Crossland, Northrop Grumman

Robert Van Dyk, Northrop Grumman

Cheolho Lee, NSRI

Cory Casanave, Object Management Group

Joel Myhre, Pacific Disaster Center

Vishaal Hariprasad, Palo Alto Networks

Brad Bohen, Perch

Aharon Chernin, Perch

Zach Kanzler, Perch

Michael Lane, Perch

Michael Riggs, Perch

Sean O'Brien, Purism SPC

John Tolbert, Queralt Inc.

Forrest Hare, Science Application International

Duncan Sparrell, sFractal Consulting LLC

Thomas Schreck, Siemens AG

Adam Wyner, Swansea University

Bret Jordan, Symantec Corp.

Robert Keith, Symantec Corp.

Curtis Kostrosky, Symantec Corp.

Chris Larsen, Symantec Corp.

Michael Mauch, Symantec Corp.

Aubrey Merchant, Symantec Corp.

Efrain Ortiz, Symantec Corp.

Mingliang Pei, Symantec Corp.

Kenneth Schneider, Symantec Corp.

Arnaud Taddei, Symantec Corp.

Brian Witten, Symantec Corp.

Greg Reaume, TELUS

Alan Steer, TELUS

Crystal Hayes, The Boeing Company

Andrew Gidwani, ThreatConnect, Inc.

Cole Iliff, ThreatConnect, Inc.

Andrew Pendergast, ThreatConnect, Inc.

Jason Spies, ThreatConnect, Inc.

Ryan Trost, ThreatQuotient, Inc.

David Girard, Trend Micro

Brandon Niemczyk, Trend Micro

Eric Shulze, Trend Micro

Patrick Coughlin, TruSTAR Technology

Chris Roblee, TruSTAR Technology

ADHAM ALBAKRI, University of Kent

Jeffrey Mates, US Department of Defense (DoD)

Evette Maynard-Noel, US Department of Homeland Security

Lee Chieffalo, Viasat

Wilson Figueroa, Viasat

Andrew May, Viasat

Ales Cernivec, XLAB

Anthony Rutkowski, Yanna Technologies LLC

 

 

 


 


​Appendix F. Revision History

 

Revision

Date

Editor

Changes Made

01

2018-07-20

Bret Jordan,

John Wunder,

Rich Piazza,

Ivan Kirillov,

Trey Darley

Initial Version

 

Github Issues: 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 54, 55, 57, 68, 71, 78, 88, 89, 91, 98, 99, 121

02

2018-08-10

Bret Jordan,

John Wunder,

Rich Piazza,

Ivan Kirillov,

Trey Darley

Multiple editorial, style, and grammar fixes.

 

Added normative text to ensure that the various ending timestamp properties are before the first timestamp.

 

Updates to the "labels" property description to better describe potential overlap with the specific classification properties.

 

Fixed relevant common properties to the definition for Language Content.

 

Language Content object: Fixed relevant common property definitions, expanded the definition of "contents" property to include handling of lists when not all list items have language content in that language.

 

Added a "roles" property to Identity.

 

Observed Data object: expanded description to broaden its usage, made  "first_observed", "last_observed", and "number_observed" properties optional, added normative statements to "first_observed" and "last_observed" properties to address consistency between the properties.

 

Option object: renamed "description" property to "explanation".

 

Sighting object: updated normative text for the "where_sighted_refs" property to allow for using Location objects in addition to Identity objects.

 

Artifact object: updated normative text for "encryption_algorithm" from a SHOULD to a MUST use values from the defined enumeration.

 

 

Network Traffic object: added text to indicate that values for byte and packet counts are positive integers.

 

Patterning Observation Expression: updated normative text to clarify the behavior of Observation Expression comparisons with OR is a short-circuit.

 

Github Issues: n/a

03

2018-09-05

Bret Jordan,

John Wunder,

Rich Piazza,

Ivan Kirillov,

Trey Darley

Reverted Observed Data properties back to required.

 

Github Issues: 90

04

2019-05-29

Bret Jordan,

Rich Piazza,

Trey Darley

Updated the entire introduction. Merged content down into a single document.

 

Merged down the following content sections into the master document: Introductions, Vocabularies, Customization, Conformance.

 

Added the following objects and their respective vocabularies: Infrastructure, Grouping, Malware Analysis.

 

Updated the following objects: COA, Malware

 

Github Issues: 8, 10, 12, 14, 24, 32, 64, 72, 76, 79, 81, 87, 92, 93, 94, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 116, 117, 118, 120, 122, 124, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 147, 148, 152, 154

05

2019-07-12

Bret Jordan,

Rich Piazza,

Trey Darley

Some basic formatting cleanup. Renamed conflicting properties on Directory Object, File Object, Process Object, and Windows Registry Key Object. Changed Language Content property that allowed version pinning to be optional. Added relationship from Indicator to Observed Data called "based-on". Added a description to Sighting. Added a name to Location. Made some SCO relationships external on Domain-Name, IPv4-Addr, and IPv6-Addr. Added some text to 3.4 and 3.6.

 

Relaxed requirements that prevented relationships pointing to Language Content, Marking Definitions, and Relationships themselves.

 

Github Issues: 28, 47, 52, 77, 86, 95, 96, 102, 115, 130, 146, 150, 151, 156, 158

06

2019-11-19

Bret Jordan,

Rich Piazza,

Trey Darley

Fix broken references / links. Moved indicator type inline vocab too vocabulary section. Added clause in patterning to address public comment. Added clause to fall back to UUIDv4 with no properties are included for UUIDv5 SCOs. Added clarification to Network Socket Extension.

 

Github Issues: 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,193

07

2020-02-19

Bret Jordan,

Rich Piazza,

Trey Darley

Github Issues: 23, 30, 34, 119, 126, 131, 153, 157, 159, 160, 161, 165, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221

08

2020-03-11

Bret Jordan,

Rich Piazza,

Trey Darley

Fixed formatting issues found by the TC admin during publication of CSPRD03. Fixed a typo in section 10.6. Fixed some stale links and some basic formatting problems that occurred during document export. This version was not released as a working draft but published as Committee Specification 01.