Topology and Orchestration Specification for Cloud Applications Version 1.0
Committee Specification Draft 06 /
Public Review Draft 01
29 November 2012
Specification URIs
This version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.doc
Previous version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd05/TOSCA-v1.0-csd05.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd05/TOSCA-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd05/TOSCA-v1.0-csd05.doc
Latest version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (Authoritative)
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.doc
Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC
Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM
Editors:
Derek Palma (dpalma@vnomic.com), Vnomic
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Additional artifacts:
Declared XML namespace:
Abstract:
The concept of a “service template” is used to specify the “topology” (or structure) and “orchestration” (or invocation of management behavior) of IT services. Typically, services are provisioned in an IT infrastructure and their management behavior must be orchestrated in accordance with constraints or policies from there on, for example in order to achieve service level objectives.
This specification introduces the formal description of Service Templates, including their structure, properties, and behavior.
Status:
This document was last revised or approved by the OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/tosca/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/tosca/ipr.php).
Citation format:
When referencing this specification the following citation format should be used:
[TOSCA-v1.0]
Topology and Orchestration Specification for Cloud Applications Version 1.0. 29 November 2012. OASIS Committee Specification Draft 06 / Public Review Draft 01. http://docs.oasis-open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.html.
Notices
Copyright © OASIS Open 2012. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
2.1 Dependencies on Other Specifications
3 Core Concepts and Usage Pattern
3.2.1 Services as Marketable Entities
3.2.2 Portability of Service Templates
3.2.4 Relation to Virtual Images
3.3 Service Templates and Artifacts
3.4 Requirements and Capabilities
3.5 Composition of Service Templates
3.7 Archive Format for Cloud Applications
4 The TOSCA Definitions Document
9 Relationship Type Implementations
16 Cloud Service Archive (CSAR)
16.1 Overall Structure of a CSAR
Appendix A. Portability and Interoperability Considerations
Appendix C. Complete TOSCA Grammar
E.1 Sample Service Topology Definition
Cloud computing can become more valuable if the semi-automatic creation and management of application layer services can be ported across alternative cloud implementation environments so that the services remain interoperable. This core TOSCA specification provides a language to describe service components and their relationships using a service topology, and it provides for describing the management procedures that create or modify services using orchestration processes. The combination of topology and orchestration in a Service Template describes what is needed to be preserved across deployments in different environments to enable interoperable deployment of cloud services and their management throughout the complete lifecycle (e.g. scaling, patching, monitoring, etc.) when the applications are ported over alternative cloud environments.
The TOSCA language introduces a grammar for describing service templates by means of Topology Templates and plans. The focus is on design time aspects, i.e. the description of services to ensure their exchange. Runtime aspects are addressed by providing a container for specifying models of plans which support the management of instances of services.
The language provides an extension mechanism that can be used to extend the definitions with additional vendor-specific or domain-specific information.
TOSCA utilizes the following specifications:
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
This specification follows XML naming and design rules as described in Error! Reference source not found., i.e. uses upper camel-case notation for XML element names and lower camel-case notation for XML attribute names.
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[RFC 2396] Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via http://www.faqs.org/rfcs/rfc2396.html
[XML Base] XML Base (Second Edition), W3C Recommendation, http://www.w3.org/TR/xmlbase/
[XML Infoset] XML Information Set, W3C Recommendation, http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
[XML Namespaces] Namespaces in XML 1.0 (Second Edition), W3C Recommendation, http://www.w3.org/TR/REC-xml-names/
[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation, October 2004, http://www.w3.org/TR/xmlschema-1/
[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation, October 2004, http://www.w3.org/TR/xmlschema-2/
[XMLSpec] XML Specification, W3C Recommendation, February 1998, http://www.w3.org/TR/1998/REC-xml-19980210
[BPEL 2.0] Web Services Business Process Execution Language Version 2.0. OASIS Standard. 11 April 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
[BPMN 2.0] OMG Business Process Model and Notation (BPMN) Version 2.0, http://www.omg.org/spec/BPMN/2.0/
[OVF] Open Virtualization Format Specification Version 1.1.0, http://www.dmtf.org/standards/published_documents/DSP0243_1.1.0.pdf
[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation, November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116
[UNCEFACT XMLNDR] UN/CEFACT XML Naming and Design Rules Technical Specification, Version 3.0, http://www.unece.org/fileadmin/DAM/cefact/xml/UNCEFACT+XML+NDR+V3p0.pdf
This specification uses the following conventions inside tables describing the resource data model:
In addition, this specification uses the following syntax to define the serialization of resources:
This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [XML Namespaces]). Furthermore, the namespace http://docs.oasis-open.org/tosca/ns/2011/12 is assumed to be the default namespace, i.e. the corresponding namespace name ste is omitted in this specification to improve readability.
Prefix |
Namespace |
tosca |
http://docs.oasis-open.org/tosca/ns/2011/12 |
xs |
http://www.w3.org/2001/XMLSchema |
Table 1: Prefixes and namespaces used in this specification
All information items defined by TOSCA are identified by one of the XML namespace URIs above [XML Namespaces]. A normative XML Schema ([XML Schema Part 1][XML Schema Part 2]) document for TOSCA can be obtained by dereferencing one of the XML namespace URIs.
The TOSCA extensibility mechanism allows:
The specification differentiates between mandatory and optional extensions (the section below explains the syntax used to declare extensions). If a mandatory extension is used, a compliant implementation MUST understand the extension. If an optional extension is used, a compliant implementation MAY ignore the extension.
The main concepts behind TOSCA are described and some usage patterns of Service Templates are sketched.
This specification defines a metamodel for defining IT services. This metamodel defines both the structure of a service as well as how to manage it. A Topology Template (also referred to as the topology model of a service) defines the structure of a service. Plans define the process models that are used to create and terminate a service as well as to manage a service during its whole lifetime. The major elements defining a service are depicted in Figure 1.
A Topology Template consists of a set of Node Templates and Relationship Templates that together define the topology model of a service as a (not necessarily connected) directed graph. A node in this graph is represented by a Node Template. A Node Template specifies the occurrence of a Node Type as a component of a service. A Node Type defines the properties of such a component (via Node Type Properties) and the operations (via Interfaces) available to manipulate the component. Node Types are defined separately for reuse purposes and a Node Template references a Node Type and adds usage constraints, such as how many times the component can occur.
Figure 1: Structural Elements of a Service Template and their Relations
For example, consider a service that consists of an application server, a process engine, and a process model. A Topology Template defining that service would include one Node Template of Node Type “application server”, another Node Template of Node Type “process engine”, and a third Node Template of Node Type “process model”. The application server Node Type defines properties like the IP address of an instance of this type, an operation for installing the application server with the corresponding IP address, and an operation for shutting down an instance of this application server. A constraint in the Node Template can specify a range of IP addresses available when making a concrete application server available.
A Relationship Template specifies the occurrence of a relationship between nodes in a Topology Template. Each Relationship Template refers to a Relationship Type that defines the semantics and any properties of the relationship. Relationship Types are defined separately for reuse purposes. The Relationship Template indicates the elements it connects and the direction of the relationship by defining one source and one target element (in nested SourceElement and TargetElement elements). The Relationship Template also defines any constraints with the OPTIONAL RelationshipConstraints element.
For example, a relationship can be established between the process engine Node Template and application server Node Template with the meaning “hosted by”, and between the process model Node Template and process engine Node Template with meaning “deployed on”.
A deployed service is an instance of a Service Template. More precisely, the instance is derived by instantiating the Topology Template of its Service Template, most often by running a special plan defined for the Service Template, often referred to as build plan. The build plan will provide actual values for the various properties of the various Node Templates and Relationship Templates of the Topology Template. These values can come from input passed in by users as triggered by human interactions defined within the build plan, by automated operations defined within the build plan (such as a directory lookup), or the templates can specify default values for some properties. The build plan will typically make use of operations of the Node Types of the Node Templates.
For example, the application server Node Template will be instantiated by installing an actual application server at a concrete IP address considering the specified range of IP addresses. Next, the process engine Node Template will be instantiated by installing a concrete process engine on that application server (as indicated by the “hosted by” relationship template). Finally, the process model Node Template will be instantiated by deploying the process model on that process engine (as indicated by the “deployed on” relationship template).
Plans defined in a Service Template describe the management aspects of service instances, especially their creation and termination. These plans are defined as process models, i.e. a workflow of one or more steps. Instead of providing another language for defining process models, the specification relies on existing languages like BPMN or BPEL. Relying on existing standards in this space facilitates portability and interoperability, but any language for defining process models can be used. The TOSCA metamodel provides containers to either refer to a process model (via Plan Model Reference) or to include the actual model in the plan (via Plan Model). A process model can contain tasks (using BPMN terminology) that refer to operations of Interfaces of Node Templates (or operations defined by the Node Types specified in the type attribute of the Node Templates, respectively), operations of Interfaces of Relationship Templates (or operations defined by the Relationship Types specified in the type attribute of the Relationship Templates, respectively), or any other interface (e.g. the invocation of an external service for licensing); in doing so, a plan can directly manipulate nodes of the topology of a service or interact with external systems.
The specification supports at least the following major use cases.
Standardizing Service Templates will support the creation of a market for hosted IT services. Especially, a standard for specifying Topology Templates (i.e. the set of components a service consists of as well as their mutual dependencies) enables interoperable definitions of the structure of services. Such a service topology model could be created by a service developer who understands the internals of a particular service. The Service Template could then be published in catalogs of one or more service providers for selection and use by potential customers. Each service provider would map the specified service topology to its available concrete infrastructure in order to support concrete instances of the service and adapt the management plans accordingly.
Making a concrete instance of a Topology Template can be done by running a corresponding Plan (so-called instantiating management plan, a.k.a. build plan). This build plan could be provided by the service developer who also creates the Service Template. The build plan can be adapted to the concrete environment of a particular service provider. Other management plans useful in various states of the whole lifecycle of a service could be specified as part of a Service Template. Similar to build plans such management plans can be adapted to the concrete environment of a particular service provider.
Thus, not only the structure of a service can be defined in an interoperable manner, but also its management plans. These Plans describe how instances of the specified service are created and managed. Defining a set of management plans for a service will significantly reduce the cost of hosting a service by providing reusable knowledge about best practices for managing each service. While the modeler of a service can include deep domain knowledge into a plan, the user of such a service can use a plan by simply “invoking” it. This hides the complexity of the underlying service behavior. This is very similar to the situation resulting in the specification of ITIL.
Standardizing Service Templates supports the portability of definitions of IT Services. Here, portability denotes the ability of one cloud provider to understand the structure and behavior of a Service Template created by another party, e.g. another cloud provider, enterprise IT department, or service developer.
Note that portability of a service does not imply portability of its encompassed components. Portability of a service means that its definition can be understood in an interoperable manner, i.e. the topology model and corresponding plans are understood by standard compliant vendors. Portability of the individual components themselves making up a particular service has to be ensured by other means – if it is important for the service.
Standardizing Service Templates facilitates composing a service from components even if those components are hosted by different providers, including the local IT department, or in different automation environments, often built with technology from different suppliers. For example, large organizations could use automation products from different suppliers for different data centers, e.g., because of geographic distribution of data centers or organizational independence of each location. A Service Template provides an abstraction that does not make assumptions about the hosting environments.
A cloud provider can host a service based on virtualized middleware stacks. These middleware stacks might be represented by an image definition such as an OVF [OVF] package. If OVF is used, a node in a Service Template can correspond to a virtual system or a component (OVF's "product") running in a virtual system, as defined in an OVF package. If the OVF package defines a virtual system collection containing multiple virtual systems, a sub-tree of a Service Template could correspond to the OVF virtual system collection.
A Service Template provides a way to declare the association of Service Template elements to OVF package elements. Such an association expresses that the corresponding Service Template element can be instantiated by deploying the corresponding OVF package element. These associations are not limited to OVF packages. The associations could be to other package types or to external service interfaces. This flexibility allows a Service Template to be composed from various virtualization technologies, service interfaces, and proprietary technology.
An artifact represents the content needed to realize a deployment such as an executable (e.g. a script, an executable program, an image), a configuration file or data file, or something that might be needed so that another executable can run (e.g. a library). Artifacts can be of different types, for example EJBs or python scripts. The content of an artifact depends on its type. Typically, descriptive metadata will also be provided along with the artifact. This metadata might be needed to properly process the artifact, for example by describing the appropriate execution environment.
TOSCA distinguishes two kinds of artifacts: implementation artifacts and deployment artifacts. An implementation artifact represents the executable of an operation of a node type, and a deployment artifact represents the executable for materializing instances of a node. For example, a REST operation to store an image can have an implementation artifact that is a WAR file. The node type this REST operation is associated with can have the image itself as a deployment artifact.
The fundamental difference between implementation artifacts and deployment artifacts is twofold, namely
The operations of a node type perform management actions on (instances of) the node type. The implementations of such operations can be provided as implementation artifacts. Thus, the implementation artifacts of the corresponding operations have to be deployed in the management environment before any management operation can be started. In other words, “a TOSCA supporting environment” (i.e. a so-called TOSCA container) MUST be able to process the set of implementation artifacts types needed to execute those management operations. One such management operation could be the instantiation of a node type.
The instantiation of a node type can require providing deployment artifacts in the target managed environment. For this purpose, a TOSCA container supports a set of types of deployment artifacts that it can process. A service template that contains (implementation or deployment) artifacts of non-supported types cannot be processed by the container (resulting in an error during import).
TOSCA allows for expressing requirements and capabilities of components of a service. This can be done, for example, to express that one component depends on (requires) a feature provided by another component, or to express that a component has certain requirements against the hosting environment such as for the allocation of certain resources or the enablement of a specific mode of operation.
Requirements and capabilities are modeled by annotating Node Types with Requirement Definitions and Capability Definitions of certain types. Requirement Types and Capability Types are defined as reusable entities so that those definitions can be used in the context of several Node Types. For example, a Requirement Type “DatabaseConnectionRequirement” might be defined to describe the requirement of a client for a database connection. This Requirement Type can then be reused for all kinds of Node Types that represent, for example, application with the need for a database connection.
Figure 2: Requirements and Capabilities
Node Templates which have corresponding Node Types with Requirement Definitions or Capability Definitions will include representations of the respective Requirements and Capabilities with content specific to the respective Node Template. For example, while Requirement Types just represent Requirement metadata, the Requirement represented in a Node Template can provide concrete values for properties defined in the Requirement Type. In addition, Requirements and Capabilities of Node Templates in a Topology Template can optionally be connected via Relationship Templates to indicate that a specific requirement of one node is fulfilled by a specific capability provided by another node.
Requirements can be matched in two ways as briefly indicated above: (1) requirements of a Node Template can be matched by capabilities of another Node Template in the same Service Template by connecting the respective requirement-capability-pairs via Relationship Templates; (2) requirements of a Node Template can be matched by the general hosting environment (or the TOSCA container), for example by allocating needed resources for a Node Template during instantiation.
Service Templates can be based on and built on-top of other Service Templates based on the concept of Requirements and Capabilities introduced in the previous section. For example, a Service Template for a business application that is hosted on an application server tier might focus on defining the structure and manageability behavior of the application itself. The structure of the application server tier hosting the application can be provided in a separate Service Template built by another vendor specialized in deploying and managing application servers. This approach enables separation of concerns and re-use of common infrastructure templates.
Figure 3: Service Template Composition
From the point of view of a Service Template (e.g. the business application Service Template from the example above) that uses another Service Template, the other Service Template (e.g. the application server tier) “looks” like just a Node Template. During deployment, however, this Node Template can be substituted by the second Service Template if it exposes the same boundaries (i.e. properties, capabilities, etc.) as the Node Template. Thus, a substitution with any Service Template that has the same boundary definitions as a certain Node Template in one Service Template becomes possible, allowing for a flexible composition of different Service Templates. This concept also allows for providing substitutable alternatives in the form of Service Templates. For example, a Service Template for a single node application server tier and a Service Template for a clustered application server tier might exist, and the appropriate option can be selected per deployment.
Non-functional behavior or quality-of-services are defined in TOSCA by means of policies. A Policy can express such diverse things like monitoring behavior, payment conditions, scalability, or continuous availability, for example.
A Node Template can be associated with a set of Policies collectively expressing the non-functional behavior or quality-of-services that each instance of the Node Template will expose. Each Policy specifies the actual properties of the non-functional behavior, like the concrete payment information (payment period, currency, amount etc) about the individual instances of the Node Template.
These properties are defined by a Policy Type. Policy Types might be defined in hierarchies to properly reflect the structure of non-functional behavior or quality-of-services in particular domains. Furthermore, a Policy Type might be associated with a set of Node Types the non-functional behavior or quality-of-service it describes.
Policy Templates provide actual values of properties of the types defined by Policy Types. For example, a Policy Template for monthly payments for US customers will set the “payment period” property to “monthly” and the “currency” property to “US$”, leaving the “amount” property open. The “amount” property will be set when the corresponding Policy Template is used for a Policy within a Node Template. Thus, a Policy Template defines the invariant properties of a Policy, while the Policy sets the variant properties resulting from the actual usage of a Policy Template in a Node Template.
In order to support in a certain environment the execution and management of the lifecycle of a cloud application, all corresponding artifacts have to be available in that environment. This means that beside the service template of the cloud application, the deployment artifacts and implementation artifacts have to be available in that environment. To ease the task of ensuring the availability of all of these, this specification defines a corresponding archive format called CSAR (Cloud Service ARchive).
Figure 4: Structure of the CSAR
A CSAR is a container file, i.e. it contains multiple files of possibly different file types. These files are typically organized in several subdirectories, each of which contains related files (and possibly other subdirectories etc). The organization into subdirectories and their content is specific for a particular cloud application. CSARs are zip files, typically compressed.
Each CSAR MUST contain a subdirectory called TOSCA-Metadata. This subdirectory MUST contain a so-called TOSCA meta file. This file is named TOSCA and has the file extension .meta. It represents metadata of the other files in the CSAR. This metadata is given in the format of name/value pairs. These name/value pairs are organized in blocks. Each block provides metadata of a certain artifact of the CSAR. An empty line separates the blocks in the TOSCA meta file.
Figure 5: Structure of the TOSCA Meta File
The first block of the TOSCA meta file (Block_0 in Figure 5) provides metadata of the CSAR itself (e.g. its version, creator etc). Each other block begins with a name/value pair that points to an artifact within the CSAR by means of a pathname. The remaining name/value pairs in a block are the proper metadata of the pointed to artifact. For example, a corresponding name/value pair specifies the MIME-type of the artifact.
Figure 6: Providing Metadata for Artifacts
All elements needed to define a TOSCA Service Template – such as Node Type definitions, Relationship Type definitions, etc. – as well as Service Templates themselves are provided in TOSCA Definitions documents. This section explains the overall structure of a TOSCA Definitions document, the extension mechanism, and import features. Later sections describe in detail Service Templates, Node Types, Node Type Implementations, Relationship Types, Relationship Type Implementations, Requirement Types, Capability Types, Artifact Types, Artifact Templates, Policy Types and Policy Templates.
The following pseudo schema defines the XML syntax of a Definitions document:
01 <Definitions id="xs:ID"
02 name="xs:string"?
03 targetNamespace="xs:anyURI">
04
05 <Extensions>
06 <Extension namespace="xs:anyURI"
07 mustUnderstand="yes|no"?/> +
08 </Extensions> ?
09
10 <Import namespace="xs:anyURI"?
11 location="xs:anyURI"?
12 importType="xs:anyURI"/> *
13
14 <Types>
15 <xs:schema .../> *
16 </Types> ?
17
18 (
19 <ServiceTemplate> ... </ServiceTemplate>
20 |
21 <NodeType> ... </NodeType>
22 |
23 <NodeTypeImplementation> ... </NodeTypeImplementation>
24 |
25 <RelationshipType> ... </RelationshipType>
26 |
27 <RelationshipTypeImplementation> ... </RelationshipTypeImplementation>
28 |
29 <RequirementType> ... </RequirementType>
30 |
31 <CapabilityType> ... </CapabilityType>
32 |
33 <ArtifactType> ... </ArtifactType>
34 |
35 <ArtifactTemplate> ... </ArtifactTemplate>
36 |
37 <PolicyType> ... </PolicyType>
38 |
39 <PolicyTemplate> ... </PolicyTemplate>
40 ) +
41
42 </Definitions>
The Definitions element has the following properties:
According to these rules, it is permissible to have an Import element without namespace and location attributes, and only containing an importType attribute. Such an Import element indicates that external definitions of the indicated type are in use that are not namespace-qualified, and makes no statement about where those definitions might be found.
A Definitions document MUST define or import all Node Types, Node Type Implementations, Relationship Types, Relationship Type Implementations, Requirement Type, Capability Types, Artifact Types, Policy Types, WSDL definitions, and XML Schema documents it uses. In order to support the use of definitions from namespaces spanning multiple documents, a Definitions document MAY include more than one import declaration for the same namespace and importType. Where a Definitions document has more than one import declaration for a given namespace and importType, each declaration MUST include a different location value. Import elements are conceptually unordered. A Definitions document MUST be rejected if the imported documents contain conflicting definitions of a component used by the importing Definitions document.
Documents (or namespaces) imported by an imported document (or namespace) are not transitively imported by a TOSCA compliant implementation. In particular, this means that if an external item is used by an element enclosed in the Definitions document, then a document (or namespace) that defines that item MUST be directly imported by the Definitions document. This requirement does not limit the ability of the imported document itself to import other documents or namespaces.
Note: The specification supports the use of any type system nested in the Types element. Nevertheless, only the support of xs:schema is REQUIRED from any compliant implementation.
A TOSCA Definitions document MUST define at least one of the elements ServiceTemplate, NodeType, NodeTypeImplementation, RelationshipType, RelationshipTypeImplementation, RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, PolicyType, or PolicyTemplate, but it can define any number of those elements in an arbitrary order.
This technique supports a modular definition of Service Templates. For example, one Definitions document can contain only Node Type and Relationship Type definitions that can then be imported into another Definitions document that only defines a Service Template using those Node Types and Relationship Types. Similarly, Node Type Properties can be defined in separate XML Schema Definitions that are imported and referenced when defining a Node Type.
All TOSCA elements MAY use the documentation element to provide annnotation for users. The content could be a plain text, HTML, and so on. The documentation element is OPTIONAL and has the following syntax:
01 <documentation source="xs:anyURI"? xml:lang="xs:language"?>
02 ...
03 </documentation>
Example of use of a documentation element:
01 <Definitions id="MyDefinitions" name="My Definitions" ...>
02
03 <documentation xml:lang="EN">
04 This is a simple example of the usage of the documentation
05 element nested under a Definitions element. It could be used,
06 for example, to describe the purpose of the Definitions document
07 or to give an overview of elements contained within the Definitions
08 document.
09 </documentation>
10
11 </Definitions>
The following Definitions document defines two Node Types, “Application” and “ApplicationServer”, as well as one Relationship Type “ApplicationHostedOnApplicationServer”. The properties definitions for the two Node Types are specified in a separate XML schema definition file which is imported into the Definitions document by means of the Import element.
01 <Definitions id="MyDefinitions" name="My Definitions"
02 targetNamespace="http://www.example.com/MyDefinitions"
03 xmlns:my="http://www.example.com/MyDefinitions">
04
05 <Import importType="http://www.w3.org/2001/XMLSchema"
06 namespace="http://www.example.com/MyDefinitions">
07
08 <NodeType name="Application">
09 <PropertiesDefinition element="my:ApplicationProperties"/>
10 </NodeType>
11
12 <NodeType name="ApplicationServer">
13 <PropertiesDefinition element="my:ApplicationServerProperties"/>
14 </NodeType>
15
16 <RelationshipType name="ApplicationHostedOnApplicationServer">
17 <ValidSource typeRef="my:Application"/>
18 <ValidTarget typeRef="my:ApplicationServer"/>
19 </RelationshipTemplate>
20
21 </Definitions>
This chapter specifies how Service Templates are defined. A Service Template describes the structure of a cloud application by means of a Topology Template, and it defines the manageability behavior of the cloud application in the form of Plans.
Elements within a Service Template, such as Node Templates defined in the Topology Template, refer to other TOSCA element, such as Node Types that can be defined in the same Definitions document containing the Service Template, or that can be defined in separate, imported Definitions documents.
Service Templates can be defined for being directly used for the deployment and management of a cloud application, or they can be used for composition into larger Service Template (see section 3.5 for details).
The following pseudo schema defines the XML syntax of a Service Template:
01 <ServiceTemplate id="xs:ID"
02 name="xs:string"?
03 targetNamespace="xs:anyURI"
04 substitutableNodeType="xs:QName"?>
05
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <BoundaryDefinitions>
11 <Properties>
12 XML fragment
13 <PropertyMappings>
14 <PropertyMapping serviceTemplatePropertyRef="xs:string"
15 targetObjectRef="xs:IDREF"
16 targetPropertyRef="xs:IDREF"/> +
17 </PropertyMappings/> ?
18 </Properties> ?
19
20 <PropertyConstraints>
21 <PropertyConstraint property="xs:string"
22 constraintType="xs:anyURI"> +
23 constraint ?
24 </PropertyConstraint>
25 </PropertyConstraints> ?
26
27 <Requirements>
28 <Requirement name="xs:string" ref="xs:IDREF"/> +
29 </Requirements> ?
30
31 <Capabilities>
32 <Capability name="xs:string" ref="xs:IDREF"/> +
33 </Capabilities> ?
34
35 <Policies>
36 <Policy name="xs:string"? policyType="xs:QName"
37 policyRef="xs:QName"?>
38 policy specific content ?
39 </Policy> +
40 </Policies> ?
41
42 <Interfaces>
43 <Interface name="xs:NCName">
44 <Operation name="xs:NCName">
45 (
46 <NodeOperation nodeRef="xs:IDREF"
47 interfaceName="xs:anyURI"
48 operationName="xs:NCName"/>
49 |
50 <RelationshipOperation relationshipRef="xs:IDREF"
51 interfaceName="xs:anyURI"
52 operationName="xs:NCName"/>
53 |
54 <Plan planRef="xs:IDREF"/>
55 )
56 </Operation> +
57 </Interface> +
58 </Interfaces> ?
59
60 </BoundaryDefinitions> ?
61
62 <TopologyTemplate>
63 (
64 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
65 minInstances="xs:integer"?
66 maxInstances="xs:integer | xs:string"?>
67 <Properties>
68 XML fragment
69 </Properties> ?
70
71 <PropertyConstraints>
72 <PropertyConstraint property="xs:string"
73 constraintType="xs:anyURI">
74 constraint ?
75 </PropertyConstraint> +
76 </PropertyConstraints> ?
77
78 <Requirements>
79 <Requirement id="xs:ID" name="xs:string" type="xs:QName"> +
80 <Properties>
81 XML fragment
82 <Properties> ?
83 <PropertyConstraints>
84 <PropertyConstraint property="xs:string"
85 constraintType="xs:anyURI"> +
86 constraint ?
87 </PropertyConstraint>
88 </PropertyConstraints> ?
89 </Requirement>
90 </Requirements> ?
91
92 <Capabilities>
93 <Capability id="xs:ID" name="xs:string" type="xs:QName"> +
94 <Properties>
95 XML fragment
96 <Properties> ?
97 <PropertyConstraints>
98 <PropertyConstraint property="xs:string"
99 constraintType="xs:anyURI">
100 constraint ?
101 </PropertyConstraint> +
102 </PropertyConstraints> ?
103 </Capability>
104 </Capabilities> ?
105
106 <Policies>
107 <Policy name="xs:string"? policyType="xs:QName"
108 policyRef="xs:QName"?>
109 policy specific content ?
110 </Policy> +
111 </Policies> ?
112
113 <DeploymentArtifacts>
114 <DeploymentArtifact name="xs:string" artifactType="xs:QName"
115 artifactRef="xs:QName"?>
116 artifact specific content ?
117 </DeploymentArtifact> +
118 </DeploymentArtifacts> ?
119 </NodeTemplate>
120 |
121 <RelationshipTemplate id="xs:ID" name="xs:string"?
122 type="xs:QName">
123 <Properties>
124 XML fragment
125 </Properties> ?
126
127 <PropertyConstraints>
128 <PropertyConstraint property="xs:string"
129 constraintType="xs:anyURI">
130 constraint ?
131 </PropertyConstraint> +
132 </PropertyConstraints> ?
133
134 <SourceElement ref="xs:IDREF"/>
135 <TargetElement ref="xs:IDREF"/>
136
137 <RelationshipConstraints>
138 <RelationshipConstraint constraintType="xs:anyURI">
139 constraint ?
140 </RelationshipConstraint> +
141 </RelationshipConstraints> ?
142
143 </RelationshipTemplate>
144 ) +
145 </TopologyTemplate>
146
147 <Plans>
148 <Plan id="xs:ID"
149 name="xs:string"?
150 planType="xs:anyURI"
151 planLanguage="xs:anyURI">
152
153 <PreCondition expressionLanguage="xs:anyURI">
154 condition
155 </PreCondition> ?
156
157 <InputParameters>
158 <InputParameter name="xs:string" type="xs:string"
159 required="yes|no"?/> +
160 </InputParameters> ?
161
162 <OutputParameters>
163 <OutputParameter name="xs:string" type="xs:string"
164 required="yes|no"?/> +
165 </OutputParameters> ?
166
167 (
168 <PlanModel>
169 actual plan
170 </PlanModel>
171 |
172 <PlanModelReference reference="xs:anyURI"/>
173 )
174
175 </Plan> +
176 </Plans> ?
177
178</ServiceTemplate>
The ServiceTemplate element has the following properties:
The following Service Template defines a Topology Template containing two Node Templates called “MyApplication” and “MyAppServer”. These Node Templates have the node types “Application” and “ApplicationServer”. The Node Template “MyApplication” is instantiated exactly once. Two of its Node Type Properties are initialized by a corresponding Properties element. The Node Template “MyAppServer” can be instantiated as many times as needed. The “MyApplication” Node Template is connected with the “MyAppServer” Node Template via the Relationship Template named “MyHostedRelationship”; the behavior and semantics of the Relationship Template is defined in the Relationship Type “HostedOn”, saying that “MyApplication” is hosted on “MyAppServer”. The Service Template further defines a Plan “UpdateApplication” for performing an update of the “MyApplication” application hosted on the application server. This Plan refers to a BPMN 2.0 process definition contained in a separate file.
01 <ServiceTemplate id="MyService"
02 name="My Service">
03
04 <TopologyTemplate>
05
06 <NodeTemplate id="MyApplication"
07 name="My Application"
08 type="my:Application">
09 <Properties>
10 <ApplicationProperties>
11 <Owner>Frank</Owner>
12 <InstanceName>Thomas’ favorite application</InstanceName>
13 </ApplicationProperties>
14 </Properties>
15 <NodeTemplate/>
16
17 <NodeTemplate id="MyAppServer"
18 name="My Application Server"
19 type="my:ApplicationServer"
20 minInstances="0"
21 maxInstances="unbounded"/>
22
23 <RelationshipTemplate id="MyDeploymentRelationship"
24 type="deployedOn">
25 <SourceElement ref="MyApplication"/>
26 <TargetElement ref="MyAppServer"/>
27 </RelationshipTemplate>
28
29 </TopologyTemplate>
30
31 <Plans>
32 <Plan id="UpdateApplication"
33 planType="http://www.example.com/UpdatePlan"
34 planLanguage="http://www.omg.org/spec/BPMN/20100524/MODEL">
35 <PlanModelReference reference="plans:UpdateApp"/>
36 </Plan>
37 </Plans>
38
39 </ServiceTemplate>
This chapter specifies how Node Types are defined. A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node Type defines the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in Node Templates using a Node Type or instances of such Node Templates can have.
A Node Type can inherit properties from another Node Type by means of the DerivedFrom element. Node Types might be declared as abstract, meaning that they cannot be instantiated. The purpose of such abstract Node Types is to provide common properties and behavior for re-use in specialized, derived Node Types. Node Types might also be declared as final, meaning that they cannot be derived by other Node Types.
A Node Type can declare to expose certain requirements and capabilities (see section 3.4) by means of RequirementDefinition elements or CapabilityDefinition elements, respectively.
The functions that can be performed on (an instance of) a corresponding Node Template are defined by the Interfaces of the Node Type. Finally, management Policies are defined for a Node Type.
The following pseudo schema defines the XML syntax of Node Types:
01 <NodeType name="xs:NCName" targetNamespace="xs:anyURI"?
02 abstract="yes|no"? final="yes|no"?>
03
04 <Tags>
05 <Tag name="xs:string" value="xs:string"/> +
06 </Tags> ?
07
08 <DerivedFrom typeRef="xs:QName"/> ?
09
10 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
11
12 <RequirementDefinitions>
13 <RequirementDefinition name="xs:string"
14 requirementType="xs:QName"
15 lowerBound="xs:integer"?
16 upperBound="xs:integer | xs:string"?>
17 <Constraints>
18 <Constraint constraintType="xs:anyURI">
19 constraint type specific content
20 </Constraint> +
21 </Constraints> ?
22 </RequirementDefinition> +
23 </RequirementDefinitions> ?
24
25 <CapabilityDefinitions>
26 <CapabilityDefinition name="xs:string"
27 capabilityType="xs:QName"
28 lowerBound="xs:integer"?
29 upperBound="xs:integer | xs:string"?>
30 <Constraints>
31 <Constraint constraintType="xs:anyURI">
32 constraint type specific content
33 </Constraint> +
34 </Constraints> ?
35 </CapabilityDefinition> +
36 </CapabilityDefinitions>
37
38 <InstanceStates>
39 <InstanceState state="xs:anyURI"> +
40 </InstanceStates> ?
41
42 <Interfaces>
43 <Interface name="xs:NCName | xs:anyURI">
44 <Operation name="xs:NCName">
45 <InputParameters>
46 <InputParameter name="xs:string" type="xs:string"
47 required="yes|no"?/> +
48 </InputParameters> ?
49 <OutputParameters>
50 <OutputParameter name="xs:string" type="xs:string"
51 required="yes|no"?/> +
52 </OutputParameters> ?
53 </Operation> +
54 </Interface> +
55 </Interfaces> ?
56
57 </NodeType>
The NodeType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Node Type “Project”. It is defined in a Definitions document “MyDefinitions” within the target namespace “http://www.example.com/sample”. Thus, by importing the corresponding namespace in another Definitions document, the Project Node Type is available for use in the other document.
01 <Definitions id="MyDefinitions" name="My Definitions"
02 targetNamespace="http://www.example.com/sample">
03
04 <NodeType name="Project">
05
06 <documentation xml:lang="EN">
07 A reusable definition of a node type supporting
08 the creation of new projects.
09 </documentation>
10
11 <PropertiesDefinition element="ProjectProperties"/>
12
13 <InstanceStates>
14 <InstanceState state="www.example.com/active"/>
15 <InstanceState state="www.example.com/onHold"/>
16 </InstanceStates>
17
18 <Interfaces>
19 <Interface name="ProjectInterface">
20 <Operation name="CreateProject">
21 <InputParameters>
22 <InputParamter name="ProjectName"
23 type="xs:string"/>
24 <InputParamter name="Owner"
25 type="xs:string"/>
26 <InputParamter name="AccountID"
27 type="xs:string"/>
28 </InputParameters>
29 </Operation>
30 </Interface>
31 </Interfaces>
32 </NodeType>
33
34 </Definitions>
The Node Type “Project” has three Node Type Properties defined as an XML elelment in the Types element definition of the Service Template document: Owner, ProjectName and AccountID which are all of type “xs:string”. An instance of the Node Type “Project” could be “active” (more precise in state www.example.com/active) or “on hold” (more precise in state “www.example.com/onHold”). A single Interface is defined for this Node Type, and this Interface is defined by an Operation, i.e. its actual implementation is defined by the definition of the Operation. The Operation has the name CreateProject and three Input Parameters (exploiting the default value “yes” of the attribute required of the InputParameter element). The names of these Input Parameters are ProjectName, Owner and AccountID, all of type “xs:string”.
This chapter specifies how Node Type Implementations are defined. A Node Type Implementation represents the executable code that implements a specific Node Type. It provides a collection of executables implementing the interface operations of a Node Type (aka implementation artifacts) and the executables needed to materialize instances of Node Templates referring to a particular Node Type (aka deployment artifacts). The respective executables are defined as separate Artifact Templates and are referenced from the implementation artifacts and deployment artifacts of a Node Type Implementation.
While Artifact Templates provide invariant information about an artifact – i.e. information that is context independent like the file name of the artifact – implementation or deployment artifacts can provide variant (or context specific) information, such as authentication data or deployment paths for a specific environment.
Node Type Implementations can specify hints for a TOSCA container that enable proper selection of an implementation that fits into a particular environment by means of Required Container Features definitions.
The following pseudo schema defines the XML syntax of Node Type Implementations:
01 <NodeTypeImplementation name="xs:NCName" targetNamespace="xs:anyURI"?
02 nodeType="xs:QName"
03 abstract="yes|no"?
04 final="yes|no"?>
05
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <DerivedFrom nodeTypeImplementationRef="xs:QName"/> ?
11
12 <RequiredContainerFeatures>
13 <RequiredContainerFeature feature="xs:anyURI"/> +
14 </RequiredContainerFeatures> ?
15
16 <ImplementationArtifacts>
17 <ImplementationArtifact name="xs:string"
18 interfaceName="xs:NCName | xs:anyURI"?
19 operationName="xs:NCName"?
20 artifactType="xs:QName"
21 artifactRef="xs:QName"?>
22 artifact specific content ?
23 <ImplementationArtifact> +
24 </ImplementationArtifacts> ?
25
26 <DeploymentArtifacts>
27 <DeploymentArtifact name="xs:string" artifactType="xs:QName"
28 artifactRef="xs:QName"?>
29 artifact specific content ?
30 <DeploymentArtifact> +
31 </DeploymentArtifacts> ?
32
33 </NodeTypeImplementation>
The NodeTypeImplementation element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Node Type Implementation “MyDBMSImplementation”. This is an implementation of a Node Type “DBMS”.
01 <Definitions id="MyImpls" name="My Implementations"
02 targetNamespace="http://www.example.com/SampleImplementations"
03 xmlns:bn="http://www.example.com/BaseNodeTypes"
04 xmlns:ba="http://www.example.com/BaseArtifactTypes"
05 xmlns:sa="http://www.example.com/SampleArtifacts">
06
07 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
08 namespace="http://www.example.com/BaseArtifactTypes"/>
09
10 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
11 namespace="http://www.example.com/BaseNodeTypes"/>
12
13 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
14 namespace="http://www.example.com/SampleArtifacts"/>
15
16 <NodeTypeImplementation name="MyDBMSImplementation"
17 nodeType="bn:DBMS">
18
19 <ImplementationArtifacts>
20 <ImplementationArtifact name="MyDBMSManagement"
21 interfaceName="MgmtInterface"
22 artifactType="ba:WARFile"
23 artifactRef="sa:MyMgmtWebApp">
24 </ImplementationArtifact>
25 </ImplementationArtifacts>
26
27 <DeploymentArtifacts>
28 <DeploymentArtifact name="MyDBMS"
29 artifactType="ba:ZipFile"
30 artifactRef="sa:MyInstallable">
31 </DeploymentArtifact>
32 </DeploymentArtifacts>
33
34 </NodeTypeImplementation>
35
36 </Definitions>
The Node Type Implementation contains the “MyDBMSManagement” implementation artifact, which is an artifact for the “MgmtInterface” Interface that has been defined for the “DBMS” base Node Type. The type of this artifact is a “WARFile” that has been defined as base Artifact Type. The implementation artifact refers to the “MyMgmtWebApp” Artifact Template that has been defined before.
The Node Type Implementation further contains the “MyDBMS” deployment artifact, which is a software installable used for instantiating the “DBMS” Node Type. This software installable is a “ZipFile” that has been separately defined as the “MyInstallable” Artifact Template before.
This chapter specifies how Relationship Types are defined. A Relationship Type is a reusable entity that defines the type of one or more Relationship Templates between Node Templates. As such, a Relationship Type can define the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in Relationship Templates using a Relationship Type or instances of such Relationship Templates can have.
The operations that can be performed on (an instance of) a corresponding Relationship Template are defined by the Interfaces of the Relationship Type. Furthermore, a Relationship Type defines the potential states an instance of it might reveal at runtime.
A Relationship Type can inherit the definitions defined in another Relationship Type by means of the DerivedFrom element. Relationship Types might be declared as abstract, meaning that they cannot be instantiated. The purpose of such abstract Relationship Types is to provide common properties and behavior for re-use in specialized, derived Relationship Types. Relationship Types might also be declared as final, meaning that they cannot be derived by other Relationship Types.
The following pseudo schema defines the XML syntax of Relationship Types:
01 <RelationshipType name="xs:NCName"
02 targetNamespace="xs:anyURI"?
03 abstract="yes|no"?
04 final="yes|no"?> +
05
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <DerivedFrom typeRef="xs:QName"/> ?
11
12 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
13
14 <InstanceStates>
15 <InstanceState state="xs:anyURI"> +
16 </InstanceStates> ?
17
18 <SourceInterfaces>
19 <Interface name="xs:NCName | xs:anyURI">
20 ...
21 </Interface> +
22 </SourceInterfaces> ?
23
24 <TargetInterfaces>
25 <Interface name="xs:NCName | xs:anyURI">
26 ...
27 </Interface> +
28 </TargetInterfaces> ?
29
30 <ValidSource typeRef="xs:QName"/> ?
31
32 <ValidTarget typeRef="xs:QName"/> ?
33
34 </RelationshipType>
The RelationshipType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Relationship Type “processDeployedOn”. The meaning of this Relationship Type is that “a process is deployed on a hosting environment”. When the source of an instance of a Relationship Template refering to this Relationship Type is deleted, its target is automatically deleted as well. The Relationship Type has Relationship Type Properties defined in the Types section of the same Definitions document as the “ProcessDeployedOnProperties” element. The states an instance of this Relationship Type can be in are also listed.
01 <RelationshipType name="processDeployedOn">
02
03 <RelationshipTypeProperties element="ProcessDeployedOnProperties"/>
04
05 <InstanceStates>
06 <InstanceState state="www.example.com/successfullyDeployed"/>
07 <InstanceState state="www.example.com/failed"/>
08 </InstanceStates>
09
10 </RelationshipType>
This chapter specifies how Relationship Type Implementations are defined. A Relationship Type Implementation represents the runnable code that implements a specific Relationship Type. It provides a collection of executables implementing the interface operations of a Relationship Type (aka implementation artifacts). The particular executables are defined as separate Artifact Templates and are referenced from the implementation artifacts of a Relationship Type Implementation.
While Artifact Templates provide invariant information about an artifact – i.e. information that is context independent like the file name of the artifact – implementation artifacts can provide variant (or context specific) information, e.g. authentication data for a specific environment.
Relationship Type Implementations can specify hints for a TOSCA container that enable proper selection of an implementation that fits into a particular environment by means of Required Container Features definitions.
Note that there MAY be Relationship Types that do not define any interface operations, i.e. that also do not require any implementation artifacts. In such cases, no Relationship Type Implementation is needed but the respective Relationship Types can be used by a TOSCA implementation as is.
The following pseudo schema defines the XML syntax of Relationship Type Implementations:
01 <RelationshipTypeImplementation name="xs:NCName"
02 targetNamespace="xs:anyURI"?
03 relationshipType="xs:QName"
04 abstract="yes|no"?
05 final="yes|no"?>
06
07 <Tags>
08 <Tag name="xs:string" value="xs:string"/> +
09 </Tags> ?
10
11 <DerivedFrom relationshipTypeImplementationRef="xs:QName"/> ?
12
13 <RequiredContainerFeatures>
14 <RequiredContainerFeature feature="xs:anyURI"/> +
15 </RequiredContainerFeatures> ?
16
17 <ImplementationArtifacts>
18 <ImplementationArtifact name="xs:string"
19 interfaceName="xs:NCName | xs:anyURI"?
20 operationName="xs:NCName"?
21 artifactType="xs:QName"
22 artifactRef="xs:QName"?>
23 artifact specific content ?
24 <ImplementationArtifact> +
25 </ImplementationArtifacts> ?
26
27 </RelationshipTypeImplementation>
The RelationshipTypeImplementation element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Node Type Implementation “MyDBMSImplementation”. This is an implementation of a Node Type “DBMS”.
01 <Definitions id="MyImpls" name="My Implementations"
02 targetNamespace="http://www.example.com/SampleImplementations"
03 xmlns:bn="http://www.example.com/BaseRelationshipTypes"
04 xmlns:ba="http://www.example.com/BaseArtifactTypes"
05 xmlns:sa="http://www.example.com/SampleArtifacts">
06
07 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
08 namespace="http://www.example.com/BaseArtifactTypes"/>
09
10 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
11 namespace="http://www.example.com/BaseRelationshipTypes"/>
12
13 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
14 namespace="http://www.example.com/SampleArtifacts"/>
15
16 <RelationshipTypeImplementation name="MyDBConnectImplementation"
17 relationshipType="bn:DBConnection">
18
19 <ImplementationArtifacts>
20 <ImplementationArtifact name="MyDBConnectionImpl"
21 interfaceName="ConnectionInterface"
22 operationName="connectTo"
23 artifactType="ba:ScriptArtifact"
24 artifactRef="sa:MyConnectScript">
25 <ImplementationArtifact>
26 </ImplementationArtifacts>
27
28 </RelationshipTypeImplementation>
29
30 </Definitions>
The Relationship Type Implementation contains the “MyDBConnectionImpl” implementation artifact, which is an artifact for the “ConnectionInterface” interface that has been defined for the “DBConnection” base Relationship Type. The type of this artifact is a “ScriptArtifact” that has been defined as base Artifact Type. The implementation artifact refers to the “MyConnectScript” Artifact Template that has been defined before.
This chapter specifies how Requirement Types are defined. A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can declare to expose. For example, a Requirement Type for a database connection can be defined and various Node Types (e.g. a Node Type for an application) can declare to expose (or “to have”) a requirement for a database connection.
A Requirement Type defines the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in Requirements of Node Templates of a Node Type can have in cases where the Node Type defines a requirement of the respective Requirement Type.
A Requirement Type can inherit properties and semantics from another Requirement Type by means of the DerivedFrom element. Requirement Types might be declared as abstract, meaning that they cannot be instantiated. The purpose of such abstract Requirement Types is to provide common properties for re-use in specialized, derived Requirement Types. Requirement Types might also be declared as final, meaning that they cannot be derived by other Requirement Types.
The following pseudo schema defines the XML syntax of Requirement Types:
01 <RequirementType name="xs:NCName"
02 targetNamespace="xs:anyURI"?
03 abstract="yes|no"?
04 final="yes|no"?
05 requiredCapabilityType="xs:QName"?>
06
07 <Tags>
08 <Tag name="xs:string" value="xs:string"/> +
09 </Tags> ?
10
11 <DerivedFrom typeRef="xs:QName"/> ?
12
13 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
14
15 </RequirementType>
The RequirementType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Requirement Type “DatabaseClientEndpoint” that expresses the requirement of a client for a database connection. It is defined in a Definitions document “MyRequirements” within the target namespace “http://www.example.com/SampleRequirements”. Thus, by importing the corresponding namespace into another Definitions document, the “DatabaseClientEndpoint” Requirement Type is available for use in the other document.
01 <Definitions id="MyRequirements" name="My Requirements"
02 targetNamespace="http://www.example.com/SampleRequirements"
03 xmlns:br="http://www.example.com/BaseRequirementTypes"
04 xmlns:mrp="http://www.example.com/SampleRequirementProperties>
05
06 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
07 namespace="http://www.example.com/BaseRequirementTypes"/>
08
09 <Import importType="http://www.w3.org/2001/XMLSchema"
10 namespace="http://www.example.com/SampleRequirementProperties"/>
11
12 <RequirementType name="DatabaseClientEndpoint">
13 <DerivedFrom typeRef="br:ClientEndpoint"/>
14 <PropertiesDefinition
15 element="mrp:DatabaseClientEndpointProperties"/>
16 </RequirementType>
17
18 </Definitions>
The Requirement Type “DatabaseClientEndpoint” defined in the example above is derived from another generic “ClientEndpoint” Requirement Type defined in a separate file by means of the DerivedFrom element. The definitions in that separate Definitions file are imported by means of the first Import element and the namespace of those imported definitions is assigned the prefix “br” in the current file.
The “DatabaseClientEndpoint” Requirement Type defines a set of properties through an XML schema element definition “DatabaseClientEndpointProperties”. For example, those properties might include the definition of a port number to be used for client connections. The XML schema definition is stored in a separate XSD file that is imported by means of the second Import element. The namespace of the XML schema definitions is assigned the prefix “mrp” in the current file.
This chapter specifies how Capability Types are defined. A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to expose. For example, a Capability Type for a database server endpoint can be defined and various Node Types (e.g. a Node Type for a database) can declare to expose (or to “provide”) the capability of serving as a database server endpoint.
A Capability Type defines the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in Capabilities of Node Templates of a Node Type can have in cases where the Node Type defines a capability of the respective Capability Type.
A Capability Type can inherit properties and semantics from another Capability Type by means of the DerivedFrom element. Capability Types might be declared as abstract, meaning that they cannot be instantiated. The purpose of such abstract Capability Types is to provide common properties for re-use in specialized, derived Capability Types. Capability Types might also be declared as final, meaning that they cannot be derived by other Capability Types.
The following pseudo schema defines the XML syntax of Capability Types:
01 <CapabilityType name="xs:NCName"
02 targetNamespace="xs:anyURI"?
03 abstract="yes|no"?
04 final="yes|no"?>
05
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <DerivedFrom typeRef="xs:QName"/> ?
11
12 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
13
14 </CapabilityType>
The CapabilityType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Capability Type “DatabaseServerEndpoint” that expresses the capability of a component to serve database connections. It is defined in a Definitions document “MyCapabilities” within the target namespace “http://www.example.com/SampleCapabilities”. Thus, by importing the corresponding namespace into another Definitions document, the “DatabaseServerEndpoint” Capability Type is available for use in the other document.
01 <Definitions id="MyCapabilities" name="My Capabilities"
02 targetNamespace="http://www.example.com/SampleCapabilities"
03 xmlns:bc="http://www.example.com/BaseCapabilityTypes"
04 xmlns:mcp="http://www.example.com/SampleCapabilityProperties>
05
06 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
07 namespace="http://www.example.com/BaseCapabilityTypes"/>
08
09 <Import importType="http://www.w3.org/2001/XMLSchema"
10 namespace="http://www.example.com/SampleCapabilityProperties"/>
11
12 <CapabilityType name="DatabaseServerEndpoint">
13 <DerivedFrom typeRef="bc:ServerEndpoint"/>
14 <PropertiesDefinition
15 element="mcp:DatabaseServerEndpointProperties"/>
16 </CapabilityType>
17
18 </Definitions>
The Capability Type “DatabaseServerEndpoint” defined in the example above is derived from another generic “ServerEndpoint” Capability Type defined in a separate file by means of the DerivedFrom element. The definitions in that separate Definitions file are imported by means of the first Import element and the namespace of those imported definitions is assigned the prefix “bc” in the current file.
The “DatabaseServerEndpoint” Capability Type defines a set of properties through an XML schema element definition “DatabaseServerEndpointProperties”. For example, those properties might include the definition of a port number where the server listens for client connections, or credentials to be used by clients. The XML schema definition is stored in a separate XSD file that is imported by means of the second Import element. The namespace of the XML schema definitions is assigned the prefix “mcp” in the current file.
This chapter specifies how Artifact Types are defined. An Artifact Type is a reusable entity that defines the type of one or more Artifact Templates which in turn serve as deployment artifacts for Node Templates or implementation artifacts for Node Type and Relationship Type interface operations. For example, an Artifact Type “WAR File” might be defined for describing web application archive files. Based on this Artifact Type, one or more Artifact Templates representing concrete WAR files can be defined and referenced as deployment or implementation artifacts.
An Artifact Type can define the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in Artifact Templates using an Artifact Type or instances of such Artifact Templates can have. Note that properties defined by an Artifact Type are assummed to be invariant across the contexts in which corresponding artifacts are used – as opposed to properties that can vary depending on the context. As an example of such an invariant property, an Artifact Type for a WAR file could define a “signature” property that can hold a hash for validating the actual artifact proper. In contrast, the path where the web application contained in the WAR file gets deployed can vary for each place where the WAR file is used.
An Artifact Type can inherit definitions and semantics from another Artifact Type by means of the DerivedFrom element. Artifact Types can be declared as abstract, meaning that they cannot be instantiated. The purpose of such abstract Artifact Types is to provide common properties for re-use in specialized, derived Artifact Types. Artifact Types can also be declared as final, meaning that they cannot be derived by other Artifact Types.
The following pseudo schema defines the XML syntax of Artifact Types:
01 <ArtifactType name="xs:NCName"
02 targetNamespace="xs:anyURI"?
03 abstract="yes|no"?
04 final="yes|no"?>
05
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <DerivedFrom typeRef="xs:QName"/> ?
11
12 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
13
14 </ArtifactType>
The ArtifactType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines the Artifact Type “RPMPackage” that can be used for describing RPM packages as deployable artifacts on various Linux distributions. It is defined in a Definitions document “MyArtifacts” within the target namespace “http://www.example.com/SampleArtifacts”. Thus, by importing the corresponding namespace into another Definitions document, the “RPMPackage” Artifact Type is available for use in the other document.
01 <Definitions id="MyArtifacts" name="My Artifacts"
02 targetNamespace="http://www.example.com/SampleArtifacts"
03 xmlns:ba="http://www.example.com/BaseArtifactTypes"
04 xmlns:map="http://www.example.com/SampleArtifactProperties>
05
06 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
07 namespace="http://www.example.com/BaseArtifactTypes"/>
08
09 <Import importType="http://www.w3.org/2001/XMLSchema"
10 namespace="http://www.example.com/SampleArtifactProperties"/>
11
12 <ArtifactType name="RPMPackage">
13 <DerivedFrom typeRef="ba:OSPackage"/>
14 <PropertiesDefinition element="map:RPMPackageProperties"/>
15 </ArtifactType>
16
17 </Definitions>
The Artifact Type “RPMPackage” defined in the example above is derived from another generic “OSPackage” Artifact Type defined in a separate file by means of the DerivedFrom element. The definitions in that separate Definitions file are imported by means of the first Import element and the namespace of those imported definitions is assigned the prefix “ba” in the current file.
The “RPMPackage” Artifact Type defines a set of properties through an XML schema element definition “RPMPackageProperties”. For example, those properties might include the definition of the name or names of one or more RPM packages. The XML schema definition is stored in a separate XSD file that is imported by means of the second Import element. The namespace of the XML schema definitions is assigned the prefix “map” in the current file.
This chapter specifies how Artifact Templates are defined. An Artifact Template represents an artifact that can be referenced from other objects in a Service Template as a deployment artifact or implementation artifact. For example, from Node Types or Node Templates, an Artifact Template for some software installable could be referenced as a deployment artifact for materializing a specific software component. As another example, from within interface definitions of Node Types or Relationship Types, an Artifact Template for a WAR file could be referenced as implementation artifact for a REST operation.
An Artifact Template refers to a specific Artifact Type that defines the structure of observable properties (metadata) or the artifact. The Artifact Template then typically defines values for those properties inside the Properties element. Note that properties defined by an Artifact Type are asumed to be invariant across the contexts in which corresponding artifacts are used – as opposed to properties that can vary depending on the context.
Furthermore, an Artifact Template typically provides one or more references to the actual artifact itself that can be contained as a file in the CSAR (see section 3.7 and section 14) containing the overall Service Template or that can be available at a remote location such as an FTP server.
The following pseudo schema defines the XML syntax of Artifact Templates:
01 <ArtifactTemplate id="xs:ID" name="xs:string"? type="xs:QName">
02
03 <Properties>
04 XML fragment
05 </Properties> ?
06
07 <PropertyConstraints>
08 <PropertyConstraint property="xs:string"
09 constraintType="xs:anyURI"> +
10 constraint ?
11 </PropertyConstraint>
12 </PropertyConstraints> ?
13
14 <ArifactReferences>
15 <ArtifactReference reference="xs:anyURI">
16 (
17 <Include pattern="xs:string"/>
18 |
19 <Exclude pattern="xs:string"/>
20 )*
21 </ArtifactReference> +
22 </ArtifactReferences> ?
23
24 </ArtifactTemplate>
The ArtifactTemplate element has the following properties:
The following example defines the Artifact Template “MyInstallable” that points to a zip file containing some software installable. It is defined in a Definitions document “MyArtifacts” within the target namespace “http://www.example.com/SampleArtifacts”. The Artifact Template can be used in the same document, for example as a deployment artifact for some Node Template representing a software component, or it can be used in other Definitions documents by importing the corresponding namespace into another document.
01 <Definitions id="MyArtifacts" name="My Artifacts"
02 targetNamespace="http://www.example.com/SampleArtifacts"
03 xmlns:ba="http://www.example.com/BaseArtifactTypes">
04
05 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
06 namespace="http://www.example.com/BaseArtifactTypes"/>
07
08 <ArtifactTemplate id="MyInstallable"
09 name="My installable"
10 type="ba:ZipFile">
11 <ArtifactReferences>
12 <ArtifactReference reference="files/MyInstallable.zip"/>
13 </ArtifactReferences>
14 </ArtifactTemplate>
15
16 </Definitions>
The Artifact Template “MyInstallable” defined in the example above is of type “ZipFile” that is specified in the type attribute of the ArtifactTemplate element. This Artifact Type is defined in a separate file, the definitions of which are imported by means of the Import element and the namespace of those imported definitions is assigned the prefix “ba” in the current file.
The “MyInstallable” Artifact Template provides a reference to a file “MyInstallable.zip” by means of the ArtifactReference element. Since the URI provided in the reference attribute is a relative URI, it is interpreted relative to the root directory of the CSAR containing the Service Template.
This chapter specifies how Policy Types are defined. A Policy Type is a reusable entity that describes a kind of non-functional behavior or a kind of quality-of-service (QoS) that a Node Type can declare to expose. For example, a Policy Type can be defined to express high availability for specific Node Types (e.g. a Node Type for an application server).
A Policy Type defines the structure of observable properties via a Properties Definition, i.e. the names, data types and allowed values the properties defined in a corresponding Policy Template can have.
A Policy Type can inherit properties from another Policy Type by means of the DerivedFrom element.
A Policy Type declares the set of Node Types it specifies non-functional behavior for via the AppliesTo element. Note that being “applicable to” does not enforce implementation: i.e. in case a Policy Type expressing high availability is associated with a “Webserver” Node Type, an instance of the Webserver is not necessarily highly available. Whether or not an instance of a Node Type to which a Policy Type is applicable will show the specified non-functional behavior, is determined by a Node Template of the corresponding Node Type.
The following pseudo schema defines the XML syntax of Policy Types:
01 <PolicyType name="xs:NCName"
02 policyLanguage="xs:anyURI"?
03 abstract="yes|no"?
04 final="yes|no"?
05 targetNamespace="xs:anyURI"?>
06 <Tags>
07 <Tag name="xs:string" value="xs:string"/> +
08 </Tags> ?
09
10 <DerivedFrom typeRef="xs:QName"/> ?
11
12 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
13
14 <AppliesTo>
15 <NodeTypeReference typeRef="xs:QName"/> +
16 </AppliesTo> ?
17
18 policy type specific content ?
19
20 </PolicyType>
The PolicyType element has the following properties:
The following rules on combining definitions based on DerivedFrom apply:
The following example defines two Policy Types, the “HighAvailability” Policy Type and the “ContinuousAvailability” Policy Type. They are defined in a Definitions document “MyPolicyTypes” within the target namespace “http://www.example.com/SamplePolicyTypes”. Thus, by importing the corresponding namespace into another Definitions document, both Policy Types are available for use in the other document.
01 <Definitions id="MyPolicyTypes" name="My Policy Types"
02 targetNamespace="http://www.example.com/SamplePolicyTypes"
03 xmlns:bnt="http://www.example.com/BaseNodeTypes">
04 xmlns:spp="http://www.example.com/SamplePolicyProperties">
05
06 <Import importType="http://www.w3.org/2001/XMLSchema"
07 namespace="http://www.example.com/SamplePolicyProperties"/>
08
09 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
10 namespace="http://www.example.com/BaseNodeTypes"/>
11
12
13 <PolicyType name="HighAvailability">
14 <PropertiesDefinition element="spp:HAProperties"/>
15 </PolicyType>
16
17 <PolicyType name="ContinuousAvailability">
18 <DerivedFrom typeRef="HighAvailability"/>
19 <PropertiesDefinition element="spp:CAProperties"/>
20 <AppliesTo>
21 <NodeTypeReference typeRef="bnt:DBMS"/>
22 </AppliesTo>
23 </PolicyType>
24
25 </Definitions>
The Policy Type “HighAvailability” defined in the example above has the “HAProperties” properties that are defined in a separate namespace as an XML element. The same namespace contains the “CAProperties” element that defines the properties of the “ContinuousAvailability” Policy Type. This namespace is imported by means of the first Import element and the namespace of those imported definitions is assigned the prefix “spp” in the current file.
The “ContinuousAvailability” Policy Type is derived from the “HighAvailability” Policy Type. Furthermore, it is applicable to the “DBMS” Node Type. This Node Type is defined in a separate namespace, which is imported by means of the second Import element and the namespace of those imported definitions is assigned the prefix “bnt” in the current file.
This chapter specifies how Policy Templates are defined. A Policy Template represents a particular non-functional behavior or quality-of-service that can be referenced by a Node Template. A Policy Template refers to a specific Policy Type that defines the structure of observable properties (metadata) of the non-functional behavior. The Policy Template then typically defines values for those properties inside the Properties element. Note that properties defined by a Policy Template are assumed to be invariant across the contexts in which corresponding behavior is exposed – as opposed to properties defined in Policies of Node Templates that may vary depending on the context.
The following pseudo schema defines the XML syntax of Policy Templates:
01 <PolicyTemplate id="xs:ID" name="xs:string"? type="xs:QName">
02
03 <Properties>
04 XML fragment
05 </Properties> ?
06
07 <PropertyConstraints>
08 <PropertyConstraint property="xs:string"
09 constraintType="xs:anyURI"> +
10 constraint ?
11 </PropertyConstraint>
12 </PropertyConstraints> ?
13
14 policy type specific content ?
15
16 </PolicyTemplate>
The PolicyTemplate element has the following properties:
The following example defines a Policy Template “MyHAPolicy”. It is defined in a Definitions document “MyPolicies” within the target namespace “http://www.example.com/SamplePolicies”. The Policy Template can be used in the same Definitions document, for example, as a Policy of some Node Template, or it can be used in other document by importing the corresponding namespace into the other document.
01 <Definitions id="MyPolices" name="My Policies"
02 targetNamespace="http://www.example.com/SamplePolicies"
03 xmlns:spt="http://www.example.com/SamplePolicyTypes">
04
05 <Import importType="http://docs.oasis-open.org/tosca/ns/2011/12"
06 namespace="http://www.example.com/SamplePolicyTypes"/>
07
08 <PolicyTemplate id="MyHAPolicy"
09 name="My High Availability Policy"
10 type="bpt:HighAvailability">
11 <Properties>
12 <HAProperties>
13 <AvailabilityClass>4</AvailabilityClass>
14 <HeartbeatFrequency measuredIn="msec">
15 250
16 </HeartbeatFrequency>
17 </HAProperties>
18 </Properties>
19 </PolicyTemplate>
20
21 </Definitions>
The Policy Template “MyHAPolicy” defined in the example above is of type “HighAvailability” that is specified in the type attribute of the PolicyTemplate element. This Policy Type is defined in a separate file, the definitions of which are imported by means of the Import element and the namespace of those imported definitions is assigned the prefix “spt” in the current file.
The “MyHAPolicy” Policy Template provides values for the properties defined by the Properties Definition of the “HighAvailability” Policy Type. The AvailabilityClass property is set to “4”. The value of the HeartbeatFrequency is “250”, measured in “msec”.
This section defines the metadata of a cloud service archive as well as its overall structure.
A CSAR is a zip file containing at least two directories, the TOSCA-Metadata directory and the Definitions directory. Beyond that, other directories MAY be contained in a CSAR, i.e. the creator of a CSAR has all freedom to define the content of a CSAR and the structuring of this content as appropriate for the cloud application.
The TOSCA-Metadata directory contains metadata describing the other content of the CSAR. This metadata is referred to as TOSCA meta file. This file is named TOSCA and has the file extension .meta.
The Definitions directory contains one or more TOSCA Definitions documents (file extension .tosca). These Definitions files typically contain definitions related to the cloud application of the CSAR. In addition, CSARs can contain just the definition of elements for re-use in other contexts. For example, a CSAR might be used to package a set of Node Types and Relationship Types with their respective implementations that can then be used by Service Templates provided in other CSARs. In cases where a complete cloud application is packaged in a CSAR, one of the Definitions documents in the Definitions directory MUST contain a Service Template definition that defines the structure and behavior of the cloud application.
The TOSCA meta file includes metadata that allows interpreting the various artifacts within the CSAR properly. The TOSCA.meta file is contained in the TOSCA-Metadata directory of the CSAR.
A TOSCA meta file consists of name/value pairs. The name-part of a name/value pair is followed by a colon, followed by a blank, followed by the value-part of the name/value pair. The name MUST NOT contain a colon. Values that represent binary data MUST be base64 encoded. Values that extend beyond one line can be spread over multiple lines if each subsequent line starts with at least one space. Such spaces are then collapsed when the value string is read.
01 <name>: <value>
Each name/value pair is in a separate line. A list of related name/value pairs, i.e. a list of consecutive name/value pairs describing a particular file in a CSAR, is called a block. Blocks are separated by an empty line. The first block, called block_0, is metadata about the CSAR itself. All other blocks represent metadata of files in the CSAR.
The structure of block_0 in the TOSCA meta file is as follows:
01 TOSCA-Meta-File-Version: digit.digit
02 CSAR-Version: digit.digit
03 Created-By: string
04 Entry-Definitions: string ?
The name/value pairs are as follows:
The first line of a block (other than block_0) MUST be a name/value pair that has the name “Name” and the value of which is the path-name of the file described. The second line MUST be a name/value pair that has the name “Content-Type” describing the type of the file described; the format is that of a MIME type with type/subtype structure. The other name/value pairs that consecutively follow are file-type specific.
01 Name: <path-name_1>
02 Content-Type: type_1/subtype_1
03 <name_11>: <value_11>
04 <name_12>: <value_12>
05 ...
06 <name_1n>: <value_1n>
07
08 ...
09
10 Name: <path-name_k>
11 Content-Type: type_k/subtype_k
12 <name_k1>: <value_k1>
13 <name_k2>: <value_k2>
14 ...
15 <name_km>: <value_km>
The name/value pairs are as follows:
Note that later directives override earlier directives. This allows for specifying global default directives that can be specialized by later directorives in the TOSCA meta file.
Figure 7 depicts a sample Definitions file named Payroll.tosca containing a Service Template of an application. The application is a payroll application written in Java that MUST be deployed on a proper application server. The Service Template of the application defines the Node Template Payroll Application, the Node Template Application Server, as well as the Relationship Template deployed_on. The Payroll Application is associated with an EAR file (named Payroll.ear) which is provided as corresponding Deployment Artifact of the Payroll Application Node Template. An Amazon Machine Image (AMI) is the Deployment Artifact of the Application Server Node Template; this Deployment Artifact is a reference to the image in the Amazon EC2 environment. The Implementation Artifacts of some operations of the Node Templates are provided too; for example, the start operation of the Payroll Application is implemented by a Java API supported by the payrolladm.jar file, the installApp operation of the Application Server is realized by the Python script wsadmin.py, while the runInstances operation is a REST API available at Amazon for running instances of an AMI. Note, that the runInstances operation is not related to a particular implementation artifact because it is available as an Amazon Web Service (https://ec2.amazonaws.com/?Action=RunInstances); but the details of this REST API are specified with the operation of the Application Server Node Type.
Figure 7: Sample Service Template
The corresponding Node Types and Relationship Types have been defined in the PayrollTypes.tosca document, which is imported by the Definitions document containing the Payroll Service Template. The following listing provides some of the details:
01 <Definitions id="PayrollDefinitions"
02 targetNamespace="http://www.example.com/ste"
03 xmlns:pay="http://www.example.com/ste/Types">
04
05 <Import namespace="http://www.example.com/ste/Types"
06 location="http://www.example.com/ste/Types/PayrollTypes.tosca"
07 importType=" http://docs.oasis-open.org/tosca/ns/2011/12"/>
08
09 <Types>
10 ...
11 </Types>
12
13 <ServiceTemplate id="Payroll" name="Payroll Service Template">
14
15 <TopologyTemplate ID="PayrollTemplate">
16
17 <NodeTemplate id="Payroll Application"
18 type="pay:ApplicationNodeType">
19 ...
20
21 <DeploymentArtifacts>
22 <DeploymentArtifact name="PayrollEAR"
23 type="http://www.example.com/
24 ns/tosca/2011/12/
25 DeploymentArtifactTypes/CSARref">
26 EARs/Payroll.ear
27 </DeploymentArtifact>
28 </DeploymentArtifacts>
29
30 </NodeTemplate>
31
32 <NodeTemplate id="Application Server"
33 type="pay:ApplicationServerNodeType">
34 ...
35
36 <DeploymentArtifacts>
37 <DeploymentArtifact name="ApplicationServerImage"
38 type="http://www.example.com/
39 ns/tosca/2011/12/
40 DeploymentArtifactTypes/AMIref">
41 ami-edf2cf99
42 </DeploymentArtifact>
43 </DeploymentArtifacts>
44
45 </NodeTemplate>
46
47 <RelationshipTemplate id="deployed_on"
48 type="pay:deployed_on">
49 <SourceElement ref="Payroll Application"/>
50 <TargetElement ref="Application Server"/>
51 </RelationshipTemplate>
52
53 </TopologyTemplate>
54
55 </ServiceTemplate>
56
57 </Definitions>
The Payroll Application Node Template specifies the deployment artifact PayrollEAR. It is a reference to the CSAR containing the Payroll.ste file, which is indicated by the .../CSARref type of the DeploymentArtifact element. The type specific content is a path expression in the directory structure of the CSAR: it points to the Payroll.ear file in the EARs directory of the CSAR (see Figure 8 for the structure of the corresponding CSAR).
The Application Server Node Template has a DeploymentArtifact called ApplicationServerImage that is a reference to an AMI (Amazon Machine Image), indicated by an .../AMIref type.
The corresponding CSAR has the following structure (see Figure 8): The TOSCA.meta file is contained in the TOSCA-Metadata directory. The Payroll.ste file itself is contained in the Service-Template directory. Also, the PayrollTypes.ste file is in this directory. The content of the other directories has been sketched before.
Figure 8: Structure of CSAR Sample
The TOSCA.meta file is as follows:
01 TOSCA-Meta-Version: 1.0
02 CSAR-Version: 1.0
03 Created-By: Frank
04
05 Name: Service-Template/Payroll.tosca
06 Content-Type: application/vnd.oasis.tosca.definitions
07
08 Name: Service-Template/PayrollTypes.ste
09 Content-Type: application/vnd.oasis.tosca.definitions
10
11 Name: Plans/AddUser.bpmn
12 Content-Type: application/vnd.oasis.bpmn
13
14 Name: EARs/Payroll.ear
15 Content-Type: application/vnd.oasis.ear
16
17 Name: JARs/Payrolladm.jar
18 Content-Type: application/vnd.oasis.jar
19
20 Name: Python/wsadmin.py
21 Content-Type: application/vnd.oasis.py
TOSCA does not mandate the use of any specific mechanism or technology for client authentication. However, a client MUST provide a principal or the principal MUST be obtainable by the infrastructure.
A TOSCA Definitions document conforms to this specification if it conforms to the TOSCA schema and follows the syntax and semantics defined in the normative portions of this specification. The TOSCA schema takes precedence over the TOSCA grammar (pseudo schema as defined in section 2.5), which in turn takes precedence over normative text, which in turn takes precedence over examples.
An implementation conforms to this specification if it can process a conformant TOSCA Definitions document according to the rules described in chapters 4 through 16 of this specification.
This specification allows extensions. Each implementation SHALL fully support all required functionality of the specification exactly as specified. The use of extensions SHALL NOT contradict nor cause the non-conformance of functionality defined in the specification.
This section illustrates the portability and interoperability aspects addressed by Service Templates:
Portability - The ability to take Service Templates created in one vendor's environment and use them in another vendor's environment.
Interoperability - The capability for multiple components (e.g. a task of a plan and the definition of a topology node) to interact using well-defined messages and protocols. This enables combining components from different vendors allowing seamless management of services.
Portability demands support of TOSCA elements.
The following individuals have participated in the creation of this specification and are gratefully acknowledged.
Participants:
Aaron Zhang |
Huawei Technologies Co., Ltd. |
Adolf Hohl |
NetApp |
Afkham Azeez |
WSO2 |
Al DeLucca |
IBM |
Alex Heneveld |
Cloudsoft Corporation Limited |
Allen Bannon |
SAP AG |
Anthony Rutkowski |
Yaana Technologies, LLC |
Arvind Srinivasan |
IBM |
Bryan Haynie |
VCE |
Bryan Murray |
Hewlett-Packard |
Chandrasekhar Sundaresh |
CA Technologies |
Charith Wickramarachchi |
WSO2 |
Colin Hopkinson |
3M HIS |
Dale Moberg |
Axway Software |
Debojyoti Dutta |
Cisco Systems |
Dee Schur |
OASIS |
Denis Nothern |
CenturyLink |
Denis Weerasiri |
WSO2 |
Derek Palma |
Vnomic |
Dhiraj Pathak |
PricewaterhouseCoopers LLP: |
Diane Mueller |
ActiveState Software, Inc. |
Doug Davis |
IBM |
Douglas Neuse |
CA Technologies |
Duncan Johnston-Watt |
Cloudsoft Corporation Limited |
Efraim Moscovich |
CA Technologies |
Frank Leymann |
IBM |
Gerd Breiter |
IBM |
James Thomason |
Gale Technologies |
Jan Ignatius |
Nokia Siemens Networks GmbH & Co. KG |
Jie Zhu |
Huawei Technologies Co., Ltd. |
John Wilmes |
Individual |
Joseph Malek |
VCE |
Ken Zink |
CA Technologies |
Kevin Poulter |
SAP AG |
Kevin Wilson |
Hewlett-Packard |
Koert Struijk |
CA Technologies |
Lee Thompson |
Morphlabs, Inc. |
li peng |
Huawei Technologies Co., Ltd. |
Marvin Waschke |
CA Technologies |
Mascot Yu |
Huawei Technologies Co., Ltd. |
Matthew Dovey |
JISC Executive, University of Bristol |
Matthew Rutkowski |
IBM |
Michael Schuster |
SAP AG |
Mike Edwards |
IBM |
Naveen Joy |
Cisco Systems |
Nikki Heron |
rPath, Inc. |
Paul Fremantle |
WSO2 |
Paul Lipton |
CA Technologies |
Paul Zhang |
Huawei Technologies Co., Ltd. |
Rachid Sijelmassi |
CA Technologies |
Ravi Akireddy |
Cisco Systems |
Richard Bill |
Jericho Systems |
Richard Probst |
SAP AG |
Robert Evans |
Zenoss, Inc. |
Roland Wartenberg |
Citrix Systems |
Satoshi Konno |
Morphlabs, Inc. |
Sean Shen |
China Internet Network Information Center(CNNIC) |
Selvaratnam Uthaiyashankar |
WSO2 |
Senaka Fernando |
WSO2 |
Sherry Yu |
Red Hat |
Shumin Cheng |
Huawei Technologies Co., Ltd. |
Simon Moser |
IBM |
Srinath Perera |
WSO2 |
Stephen Tyler |
CA Technologies |
Steve Fanshier |
Software AG, Inc. |
Steve Jones |
Capgemini |
Steve Winkler |
SAP AG |
Tad Deffler |
CA Technologies |
Ted Streete |
VCE |
Thilina Buddhika |
WSO2 |
Thomas Spatzier |
IBM |
Tobias Kunze |
Red Hat |
Wang Xuan |
Primeton Technologies, Inc. |
wayne adams |
EMC |
Wenbo Zhu |
Google Inc. |
Xiaonan Song |
Primeton Technologies, Inc. |
YanJiong WANG |
Primeton Technologies, Inc. |
Zhexuan Song |
Huawei Technologies Co., Ltd. |
Note: The following is a pseudo EBNF grammar notation meant for documentation purposes only. The grammar is not intended for machine processing.
01 <Definitions id="xs:ID"
02 name="xs:string"?
03 targetNamespace="xs:anyURI">
04
05 <Extensions>
06 <Extension namespace="xs:anyURI"
07 mustUnderstand="yes|no"?/> +
08 </Extensions> ?
09
10 <Import namespace="xs:anyURI"?
11 location="xs:anyURI"?
12 importType="xs:anyURI"/> *
13
14 <Types>
15 <xs:schema .../> *
16 </Types> ?
17
18 (
19 <ServiceTemplate id="xs:ID"
20 name="xs:string"?
21 targetNamespace="xs:anyURI"
22 substitutableNodeType="xs:QName"?>
23
24 <Tags>
25 <Tag name="xs:string" value="xs:string"/> +
26 </Tags> ?
27
28 <BoundaryDefinitions>
29 <Properties>
30 XML fragment
31 <PropertyMappings>
32 <PropertyMapping serviceTemplatePropertyRef="xs:string"
33 targetObjectRef="xs:IDREF"
34 targetPropertyRef="xs:IDREF"/> +
35 </PropertyMappings/> ?
36 </Properties> ?
37
38 <PropertyConstraints>
39 <PropertyConstraint property="xs:string"
40 constraintType="xs:anyURI"> +
41 constraint ?
42 </PropertyConstraint>
43 </PropertyConstraints> ?
44
45 <Requirements>
46 <Requirement name="xs:string" ref="xs:IDREF"/> +
47 </Requirements> ?
48
49 <Capabilities>
50 <Capability name="xs:string" ref="xs:IDREF"/> +
51 </Capabilities> ?
52
53 <Policies>
54 <Policy name="xs:string"? policyType="xs:QName"
55 policyRef="xs:QName"?>
56 policy specific content ?
57 </Policy> +
58 </Policies> ?
59
60 <Interfaces>
61 <Interface name="xs:NCName">
62 <Operation name="xs:NCName">
63 (
64 <NodeOperation nodeRef="xs:IDREF"
65 interfaceName="xs:anyURI"
66 operationName="xs:NCName"/>
67 |
68 <RelationshipOperation relationshipRef="xs:IDREF"
69 interfaceName="xs:anyURI"
70 operationName="xs:NCName"/>
71 |
72 <Plan planRef="xs:IDREF"/>
73 )
74 </Operation> +
75 </Interface> +
76 </Interfaces> ?
77
78 </BoundaryDefinitions> ?
79
80 <TopologyTemplate>
81 (
82 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
83 minInstances="xs:integer"?
84 maxInstances="xs:integer | xs:string"?>
85 <Properties>
86 XML fragment
87 </Properties> ?
88
89 <PropertyConstraints>
90 <PropertyConstraint property="xs:string"
91 constraintType="xs:anyURI">
92 constraint ?
93 </PropertyConstraint> +
94 </PropertyConstraints> ?
95
96 <Requirements>
97 <Requirement id="xs:ID" name="xs:string" type="xs:QName"> +
98 <Properties>
99 XML fragment
100 <Properties> ?
101 <PropertyConstraints>
102 <PropertyConstraint property="xs:string"
103 constraintType="xs:anyURI"> +
104 constraint ?
105 </PropertyConstraint>
106 </PropertyConstraints> ?
107 </Requirement>
108 </Requirements> ?
109
110 <Capabilities>
111 <Capability id="xs:ID" name="xs:string"
112 type="xs:QName"> +
113 <Properties>
114 XML fragment
115 <Properties> ?
116 <PropertyConstraints>
117 <PropertyConstraint property="xs:string"
118 constraintType="xs:anyURI">
119 constraint ?
120 </PropertyConstraint> +
121 </PropertyConstraints> ?
122 </Capability>
123 </Capabilities> ?
124
125 <Policies>
126 <Policy name="xs:string"? policyType="xs:QName"
127 policyRef="xs:QName"?>
128 policy specific content ?
129 </Policy> +
130 </Policies> ?
131
132 <DeploymentArtifacts>
133 <DeploymentArtifact name="xs:string"
134 artifactType="xs:QName"
135 artifactRef="xs:QName"?>
136 artifact specific content ?
137 </DeploymentArtifact> +
138 </DeploymentArtifacts> ?
139 </NodeTemplate>
140 |
141 <RelationshipTemplate id="xs:ID" name="xs:string"?
142 type="xs:QName">
143 <Properties>
144 XML fragment
145 </Properties> ?
146
147 <PropertyConstraints>
148 <PropertyConstraint property="xs:string"
149 constraintType="xs:anyURI">
150 constraint ?
151 </PropertyConstraint> +
152 </PropertyConstraints> ?
153
154 <SourceElement ref="xs:IDREF"/>
155 <TargetElement ref="xs:IDREF"/>
156
157 <RelationshipConstraints>
158 <RelationshipConstraint constraintType="xs:anyURI">
159 constraint ?
160 </RelationshipConstraint> +
161 </RelationshipConstraints> ?
162
163 </RelationshipTemplate>
164 ) +
165 </TopologyTemplate>
166
167 <Plans>
168 <Plan id="xs:ID"
169 name="xs:string"?
170 planType="xs:anyURI"
171 planLanguage="xs:anyURI">
172
173 <PreCondition expressionLanguage="xs:anyURI">
174 condition
175 </PreCondition> ?
176
177 <InputParameters>
178 <InputParameter name="xs:string" type="xs:string"
179 required="yes|no"?/> +
180 </InputParameters> ?
181
182 <OutputParameters>
183 <OutputParameter name="xs:string" type="xs:string"
184 required="yes|no"?/> +
185 </OutputParameters> ?
186
187 (
188 <PlanModel>
189 actual plan
190 </PlanModel>
191 |
192 <PlanModelReference reference="xs:anyURI"/>
193 )
194
195 </Plan> +
196 </Plans> ?
197
198 </ServiceTemplate>
199 |
200 <NodeType name="xs:NCName" targetNamespace="xs:anyURI"?
201 abstract="yes|no"? final="yes|no"?>
202
203 <DerivedFrom typeRef="xs:QName"/> ?
204
205 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
206
207 <RequirementDefinitions>
208 <RequirementDefinition name="xs:string"
209 requirementType="xs:QName"
210 lowerBound="xs:integer"?
211 upperBound="xs:integer | xs:string"?>
212 <Constraints>
213 <Constraint constraintType="xs:anyURI">
214 constraint type specific content
215 </Constraint> +
216 </Constraints> ?
217 </RequirementDefinition> +
218 </RequirementDefinitions> ?
219
220 <CapabilityDefinitions>
221 <CapabilityDefinition name="xs:string"
222 capabilityType="xs:QName"
223 lowerBound="xs:integer"?
224 upperBound="xs:integer | xs:string"?>
225 <Constraints>
226 <Constraint constraintType="xs:anyURI">
227 constraint type specific content
228 </Constraint> +
229 </Constraints> ?
230 </CapabilityDefinition> +
231 </CapabilityDefinitions>
232
233 <InstanceStates>
234 <InstanceState state="xs:anyURI"> +
235 </InstanceStates> ?
236
237 <Interfaces>
238 <Interface name="xs:NCName | xs:anyURI">
239 <Operation name="xs:NCName">
240 <InputParameters>
241 <InputParameter name="xs:string" type="xs:string"
242 required="yes|no"?/> +
243 </InputParameters> ?
244 <OutputParameters>
245 <OutputParameter name="xs:string" type="xs:string"
246 required="yes|no"?/> +
247 </OutputParameters> ?
248 </Operation> +
249 </Interface> +
250 </Interfaces> ?
251
252 </NodeType>
253 |
254 <NodeTypeImplementation name="xs:NCName"
255 targetNamespace="xs:anyURI"?
256 nodeType="xs:QName"
257 abstract="yes|no"?
258 final="yes|no"?>
259
260 <DerivedFrom nodeTypeImplementationRef="xs:QName"/> ?
261
262 <RequiredContainerFeatures>
263 <RequiredContainerFeature feature="xs:anyURI"/> +
264 </RequiredContainerFeatures> ?
265
266 <ImplementationArtifacts>
267 <ImplementationArtifact name="xs:string"
268 interfaceName="xs:NCName | xs:anyURI"?
269 operationName="xs:NCName"?
270 artifactType="xs:QName"
271 artifactRef="xs:QName"?>
272 artifact specific content ?
273 <ImplementationArtifact> +
274 </ImplementationArtifacts> ?
275
276 <DeploymentArtifacts>
277 <DeploymentArtifact name="xs:string" artifactType="xs:QName"
278 artifactRef="xs:QName"?>
279 artifact specific content ?
280 <DeploymentArtifact> +
281 </DeploymentArtifacts> ?
282
283 </NodeTypeImplementation>
284 |
285 <RelationshipType name="xs:NCName"
286 targetNamespace="xs:anyURI"?
287 abstract="yes|no"?
288 final="yes|no"?> +
289
290 <DerivedFrom typeRef="xs:QName"/> ?
291
292 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
293
294 <InstanceStates>
295 <InstanceState state="xs:anyURI"> +
296 </InstanceStates> ?
297
298 <SourceInterfaces>
299 <Interface name="xs:NCName | xs:anyURI">
300 <Operation name="xs:NCName">
301 <InputParameters>
302 <InputParameter name="xs:string" type="xs:string"
303 required="yes|no"?/> +
304 </InputParameters> ?
305 <OutputParameters>
306 <OutputParameter name="xs:string" type="xs:string"
307 required="yes|no"?/> +
308 </OutputParameters> ?
309 </Operation> +
310 </Interface> +
311 </SourceInterfaces> ?
312
313 <TargetInterfaces>
314 <Interface name="xs:NCName | xs:anyURI">
315 <Operation name="xs:NCName">
316 <InputParameters>
317 <InputParameter name="xs:string" type="xs:string"
318 required="yes|no"?/> +
319 </InputParameters> ?
320 <OutputParameters>
321 <OutputParameter name="xs:string" type="xs:string"
322 required="yes|no"?/> +
323 </OutputParameters> ?
324 </Operation> +
325 </Interface> +
326 </TargetInterfaces> ?
327
328 <ValidSource typeRef="xs:QName"/> ?
329
330 <ValidTarget typeRef="xs:QName"/> ?
331
332 </RelationshipType>
333 |
334 <RelationshipTypeImplementation name="xs:NCName"
335 targetNamespace="xs:anyURI"?
336 relationshipType="xs:QName"
337 abstract="yes|no"?
338 final="yes|no"?>
339
340 <DerivedFrom relationshipTypeImplementationRef="xs:QName"/> ?
341
342 <RequiredContainerFeatures>
343 <RequiredContainerFeature feature="xs:anyURI"/> +
344 </RequiredContainerFeatures> ?
345
346 <ImplementationArtifacts>
347 <ImplementationArtifact name="xs:string"
348 interfaceName="xs:NCName | xs:anyURI"?
349 operationName="xs:NCName"?
350 artifactType="xs:QName"
351 artifactRef="xs:QName"?>
352 artifact specific content ?
353 <ImplementationArtifact> +
354 </ImplementationArtifacts> ?
355
356 </RelationshipTypeImplementation>
357 |
358 <RequirementType name="xs:NCName"
359 targetNamespace="xs:anyURI"?
360 abstract="yes|no"?
361 final="yes|no"?
362 requiredCapabilityType="xs:QName"?>
363
364 <DerivedFrom typeRef="xs:QName"/> ?
365
366 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
367
368 </RequirementType>
369 |
370 <CapabilityType name="xs:NCName"
371 targetNamespace="xs:anyURI"?
372 abstract="yes|no"?
373 final="yes|no"?>
374
375 <DerivedFrom typeRef="xs:QName"/> ?
376
377 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
378
379 </CapabilityType>
380 |
381 <ArtifactType name="xs:NCName"
382 targetNamespace="xs:anyURI"?
383 abstract="yes|no"?
384 final="yes|no"?>
385
386 <DerivedFrom typeRef="xs:QName"/> ?
387
388 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
389
390 </ArtifactType>
391 |
392 <ArtifactTemplate id="xs:ID" name="xs:string"? type="xs:QName">
393
394 <Properties>
395 XML fragment
396 </Properties> ?
397
398 <PropertyConstraints>
399 <PropertyConstraint property="xs:string"
400 constraintType="xs:anyURI"> +
401 constraint ?
402 </PropertyConstraint>
403 </PropertyConstraints> ?
404
405 <ArifactReferences>
406 <ArtifactReference reference="xs:anyURI">
407 (
408 <Include pattern="xs:string"/>
409 |
410 <Exclude pattern="xs:string"/>
411 )*
412 </ArtifactReference> +
413 </ArtifactReferences> ?
414
415 </ArtifactTemplate>
416 |
417 <PolicyType name="xs:NCName"
418 policyLanguage="xs:anyURI"?
419 abstract="yes|no"?
420 final="yes|no"?
421 targetNamespace="xs:anyURI"?>
422 <Tags>
423 <Tag name="xs:string" value="xs:string"/> +
424 </Tags> ?
425
426 <DerivedFrom typeRef="xs:QName"/> ?
427
428 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?
429
430 <AppliesTo>
431 <NodeTypeReference typeRef="xs:QName"/> +
432 </AppliesTo> ?
433
434 policy type specific content ?
435
436 </PolicyType>
437 |
438 <PolicyTemplate id="xs:ID" name="xs:string"? type="xs:QName">
439
440 <Properties>
441 XML fragment
442 </Properties> ?
443
444 <PropertyConstraints>
445 <PropertyConstraint property="xs:string"
446 constraintType="xs:anyURI"> +
447 constraint ?
448 </PropertyConstraint>
449 </PropertyConstraints> ?
450
451 policy type specific content ?
452
453 </PolicyTemplate>
454 ) +
455
456</Definitions>
01 <?xml version="1.0" encoding="UTF-8"?>
02 <xs:schema targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12"
03 elementFormDefault="qualified" attributeFormDefault="unqualified"
04 xmlns="http://docs.oasis-open.org/tosca/ns/2011/12"
05 xmlns:xs="http://www.w3.org/2001/XMLSchema">
06
07 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
08 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
09
10 <xs:element name="documentation" type="tDocumentation"/>
11 <xs:complexType name="tDocumentation" mixed="true">
12 <xs:sequence>
13 <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
14 </xs:sequence>
15 <xs:attribute name="source" type="xs:anyURI"/>
16 <xs:attribute ref="xml:lang"/>
17 </xs:complexType>
18
19 <xs:complexType name="tExtensibleElements">
20 <xs:sequence>
21 <xs:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
22 <xs:any namespace="##other" processContents="lax" minOccurs="0"
23 maxOccurs="unbounded"/>
24 </xs:sequence>
25 <xs:anyAttribute namespace="##other" processContents="lax"/>
26 </xs:complexType>
27
28 <xs:complexType name="tImport">
29 <xs:complexContent>
30 <xs:extension base="tExtensibleElements">
31 <xs:attribute name="namespace" type="xs:anyURI"/>
32 <xs:attribute name="location" type="xs:anyURI"/>
33 <xs:attribute name="importType" type="importedURI" use="required"/>
34 </xs:extension>
35 </xs:complexContent>
36 </xs:complexType>
37
38 <xs:element name="Definitions">
39 <xs:complexType>
40 <xs:complexContent>
41 <xs:extension base="tDefinitions"/>
42 </xs:complexContent>
43 </xs:complexType>
44 </xs:element>
45 <xs:complexType name="tDefinitions">
46 <xs:complexContent>
47 <xs:extension base="tExtensibleElements">
48 <xs:sequence>
49 <xs:element name="Extensions" minOccurs="0">
50 <xs:complexType>
51 <xs:sequence>
52 <xs:element name="Extension" type="tExtension"
53 maxOccurs="unbounded"/>
54 </xs:sequence>
55 </xs:complexType>
56 </xs:element>
57 <xs:element name="Import" type="tImport" minOccurs="0"
58 maxOccurs="unbounded"/>
59 <xs:element name="Types" minOccurs="0">
60 <xs:complexType>
61 <xs:sequence>
62 <xs:any namespace="##other" processContents="lax" minOccurs="0"
63 maxOccurs="unbounded"/>
64 </xs:sequence>
65 </xs:complexType>
66 </xs:element>
67 <xs:choice maxOccurs="unbounded">
68 <xs:element name="ServiceTemplate" type="tServiceTemplate"/>
69 <xs:element name="NodeType" type="tNodeType"/>
70 <xs:element name="NodeTypeImplementation"
71 type="tNodeTypeImplementation"/>
72 <xs:element name="RelationshipType" type="tRelationshipType"/>
73 <xs:element name="RelationshipTypeImplementation"
74 type="tRelationshipTypeImplementation"/>
75 <xs:element name="RequirementType" type="tRequirementType"/>
76 <xs:element name="CapabilityType" type="tCapabilityType"/>
77 <xs:element name="ArtifactType" type="tArtifactType"/>
78 <xs:element name="ArtifactTemplate" type="tArtifactTemplate"/>
79 <xs:element name="PolicyType" type="tPolicyType"/>
80 <xs:element name="PolicyTemplate" type="tPolicyTemplate"/>
81 </xs:choice>
82 </xs:sequence>
83 <xs:attribute name="id" type="xs:ID" use="required"/>
84 <xs:attribute name="name" type="xs:string" use="optional"/>
85 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
86 </xs:extension>
87 </xs:complexContent>
88 </xs:complexType>
89
90 <xs:complexType name="tServiceTemplate">
91 <xs:complexContent>
92 <xs:extension base="tExtensibleElements">
93 <xs:sequence>
94 <xs:element name="Tags" type="tTags" minOccurs="0"/>
95 <xs:element name="BoundaryDefinitions" type="tBoundaryDefinitions"
96 minOccurs="0"/>
97 <xs:element name="TopologyTemplate" type="tTopologyTemplate"/>
98 <xs:element name="Plans" type="tPlans" minOccurs="0"/>
99 </xs:sequence>
100 <xs:attribute name="id" type="xs:ID" use="required"/>
101 <xs:attribute name="name" type="xs:string" use="optional"/>
102 <xs:attribute name="targetNamespace" type="xs:anyURI"/>
103 <xs:attribute name="substitutableNodeType" type="xs:QName"
104 use="optional"/>
105 </xs:extension>
106 </xs:complexContent>
107 </xs:complexType>
108
109 <xs:complexType name="tTags">
110 <xs:sequence>
111 <xs:element name="Tag" type="tTag" maxOccurs="unbounded"/>
112 </xs:sequence>
113 </xs:complexType>
114
115 <xs:complexType name="tTag">
116 <xs:attribute name="name" type="xs:string" use="required"/>
117 <xs:attribute name="value" type="xs:string" use="required"/>
118 </xs:complexType>
119
120 <xs:complexType name="tBoundaryDefinitions">
121 <xs:sequence>
122 <xs:element name="Properties" minOccurs="0">
123 <xs:complexType>
124 <xs:sequence>
125 <xs:any namespace="##other"/>
126 <xs:element name="PropertyMappings" minOccurs="0">
127 <xs:complexType>
128 <xs:sequence>
129 <xs:element name="PropertyMapping" type="tPropertyMapping"/>
130 </xs:sequence>
131 </xs:complexType>
132 </xs:element>
133 </xs:sequence>
134 </xs:complexType>
135 </xs:element>
136 <xs:element name="PropertyConstraints" minOccurs="0">
137 <xs:complexType>
138 <xs:sequence>
139 <xs:element name="PropertyConstraint" type="tPropertyConstraint"
140 maxOccurs="unbounded"/>
141 </xs:sequence>
142 </xs:complexType>
143 </xs:element>
144 <xs:element name="Requirements" minOccurs="0">
145 <xs:complexType>
146 <xs:sequence>
147 <xs:element name="Requirement" type="tRequirementRef"
148 maxOccurs="unbounded"/>
149 </xs:sequence>
150 </xs:complexType>
151 </xs:element>
152 <xs:element name="Capabilities" minOccurs="0">
153 <xs:complexType>
154 <xs:sequence>
155 <xs:element name="Capability" type="tCapabilityRef"
156 maxOccurs="unbounded"/>
157 </xs:sequence>
158 </xs:complexType>
159 </xs:element>
160 <xs:element name="Policies" minOccurs="0">
161 <xs:complexType>
162 <xs:sequence>
163 <xs:element name="Policy" type="tPolicy" maxOccurs="unbounded"/>
164 </xs:sequence>
165 </xs:complexType>
166 </xs:element>
167 <xs:element name="Interfaces" minOccurs="0">
168 <xs:complexType>
169 <xs:sequence>
170 <xs:element name="Interface" type="tExportedInterface"
171 maxOccurs="unbounded"/>
172 </xs:sequence>
173 </xs:complexType>
174 </xs:element>
175 </xs:sequence>
176 </xs:complexType>
177
178 <xs:complexType name="tPropertyMapping">
179 <xs:attribute name="serviceTemplatePropertyRef" type="xs:string"
180 use="required"/>
181 <xs:attribute name="targetObjectRef" type="xs:IDREF" use="required"/>
182 <xs:attribute name="targetPropertyRef" type="xs:string"
183 use="required"/>
184 </xs:complexType>
185
186 <xs:complexType name="tRequirementRef">
187 <xs:attribute name="name" type="xs:string" use="optional"/>
188 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
189 </xs:complexType>
190
191 <xs:complexType name="tCapabilityRef">
192 <xs:attribute name="name" type="xs:string" use="optional"/>
193 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
194 </xs:complexType>
195
196 <xs:complexType name="tEntityType" abstract="true">
197 <xs:complexContent>
198 <xs:extension base="tExtensibleElements">
199 <xs:sequence>
200 <xs:element name="Tags" type="tTags" minOccurs="0"/>
201 <xs:element name="DerivedFrom" minOccurs="0">
202 <xs:complexType>
203 <xs:attribute name="typeRef" type="xs:QName" use="required"/>
204 </xs:complexType>
205 </xs:element>
206 <xs:element name="PropertiesDefinition" minOccurs="0">
207 <xs:complexType>
208 <xs:attribute name="element" type="xs:QName"/>
209 <xs:attribute name="type" type="xs:QName"/>
210 </xs:complexType>
211 </xs:element>
212 </xs:sequence>
213 <xs:attribute name="name" type="xs:NCName" use="required"/>
214 <xs:attribute name="abstract" type="tBoolean" default="no"/>
215 <xs:attribute name="final" type="tBoolean" default="no"/>
216 <xs:attribute name="targetNamespace" type="xs:anyURI"
217 use="optional"/>
218 </xs:extension>
219 </xs:complexContent>
220 </xs:complexType>
221
222 <xs:complexType name="tEntityTemplate" abstract="true">
223 <xs:complexContent>
224 <xs:extension base="tExtensibleElements">
225 <xs:sequence>
226 <xs:element name="Properties" minOccurs="0">
227 <xs:complexType>
228 <xs:sequence>
229 <xs:any namespace="##other" processContents="lax"/>
230 </xs:sequence>
231 </xs:complexType>
232 </xs:element>
233 <xs:element name="PropertyConstraints" minOccurs="0">
234 <xs:complexType>
235 <xs:sequence>
236 <xs:element name="PropertyConstraint"
237 type="tPropertyConstraint" maxOccurs="unbounded"/>
238 </xs:sequence>
239 </xs:complexType>
240 </xs:element>
241 </xs:sequence>
242 <xs:attribute name="id" type="xs:ID" use="required"/>
243 <xs:attribute name="type" type="xs:QName" use="required"/>
244 </xs:extension>
245 </xs:complexContent>
246 </xs:complexType>
247
248 <xs:complexType name="tNodeTemplate">
249 <xs:complexContent>
250 <xs:extension base="tEntityTemplate">
251 <xs:sequence>
252 <xs:element name="Requirements" minOccurs="0">
253 <xs:complexType>
254 <xs:sequence>
255 <xs:element name="Requirement" type="tRequirement"
256 maxOccurs="unbounded"/>
257 </xs:sequence>
258 </xs:complexType>
259 </xs:element>
260 <xs:element name="Capabilities" minOccurs="0">
261 <xs:complexType>
262 <xs:sequence>
263 <xs:element name="Capability" type="tCapability"
264 maxOccurs="unbounded"/>
265 </xs:sequence>
266 </xs:complexType>
267 </xs:element>
268 <xs:element name="Policies" minOccurs="0">
269 <xs:complexType>
270 <xs:sequence>
271 <xs:element name="Policy" type="tPolicy"
272 maxOccurs="unbounded"/>
273 </xs:sequence>
274 </xs:complexType>
275 </xs:element>
276 <xs:element name="DeploymentArtifacts" type="tDeploymentArtifacts"
277 minOccurs="0"/>
278 </xs:sequence>
279 <xs:attribute name="name" type="xs:string" use="optional"/>
280 <xs:attribute name="minInstances" type="xs:int" use="optional"
281 default="1"/>
282 <xs:attribute name="maxInstances" use="optional" default="1">
283 <xs:simpleType>
284 <xs:union>
285 <xs:simpleType>
286 <xs:restriction base="xs:nonNegativeInteger">
287 <xs:pattern value="([1-9]+[0-9]*)"/>
288 </xs:restriction>
289 </xs:simpleType>
290 <xs:simpleType>
291 <xs:restriction base="xs:string">
292 <xs:enumeration value="unbounded"/>
293 </xs:restriction>
294 </xs:simpleType>
295 </xs:union>
296 </xs:simpleType>
297 </xs:attribute>
298 </xs:extension>
299 </xs:complexContent>
300 </xs:complexType>
301
302 <xs:complexType name="tTopologyTemplate">
303 <xs:complexContent>
304 <xs:extension base="tExtensibleElements">
305 <xs:choice maxOccurs="unbounded">
306 <xs:element name="NodeTemplate" type="tNodeTemplate"/>
307 <xs:element name="RelationshipTemplate"
308 type="tRelationshipTemplate"/>
309 </xs:choice>
310 </xs:extension>
311 </xs:complexContent>
312 </xs:complexType>
313
314 <xs:complexType name="tRelationshipType">
315 <xs:complexContent>
316 <xs:extension base="tEntityType">
317 <xs:sequence>
318 <xs:element name="InstanceStates"
319 type="tTopologyElementInstanceStates" minOccurs="0"/>
320 <xs:element name="SourceInterfaces" minOccurs="0">
321 <xs:complexType>
322 <xs:sequence>
323 <xs:element name="Interface" type="tInterface"
324 maxOccurs="unbounded"/>
325 </xs:sequence>
326 </xs:complexType>
327 </xs:element>
328 <xs:element name="TargetInterfaces" minOccurs="0">
329 <xs:complexType>
330 <xs:sequence>
331 <xs:element name="Interface" type="tInterface"
332 maxOccurs="unbounded"/>
333 </xs:sequence>
334 </xs:complexType>
335 </xs:element>
336 <xs:element name="ValidSource" minOccurs="0">
337 <xs:complexType>
338 <xs:attribute name="typeRef" type="xs:QName" use="required"/>
339 </xs:complexType>
340 </xs:element>
341 <xs:element name="ValidTarget" minOccurs="0">
342 <xs:complexType>
343 <xs:attribute name="typeRef" type="xs:QName" use="required"/>
344 </xs:complexType>
345 </xs:element>
346 </xs:sequence>
347 </xs:extension>
348 </xs:complexContent>
349 </xs:complexType>
350
351 <xs:complexType name="tRelationshipTypeImplementation">
352 <xs:complexContent>
353 <xs:extension base="tExtensibleElements">
354 <xs:sequence>
355 <xs:element name="Tags" type="tTags" minOccurs="0"/>
356 <xs:element name="DerivedFrom" minOccurs="0">
357 <xs:complexType>
358 <xs:attribute name="relationshipTypeImplementationRef"
359 type="xs:QName" use="required"/>
360 </xs:complexType>
361 </xs:element>
362 <xs:element name="RequiredContainerFeatures"
363 type="tRequiredContainerFeatures" minOccurs="0"/>
364 <xs:element name="ImplementationArtifacts"
365 type="tImplementationArtifacts" minOccurs="0"/>
366 </xs:sequence>
367 <xs:attribute name="name" type="xs:NCName" use="required"/>
368 <xs:attribute name="targetNamespace" type="xs:anyURI"
369 use="optional"/>
370 <xs:attribute name="relationshipType" type="xs:QName"
371 use="required"/>
372 <xs:attribute name="abstract" type="tBoolean" use="optional"
373 default="no"/>
374 <xs:attribute name="final" type="tBoolean" use="optional"
375 default="no"/>
376 </xs:extension>
377 </xs:complexContent>
378 </xs:complexType>
379
380 <xs:complexType name="tRelationshipTemplate">
381 <xs:complexContent>
382 <xs:extension base="tEntityTemplate">
383 <xs:sequence>
384 <xs:element name="SourceElement">
385 <xs:complexType>
386 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
387 </xs:complexType>
388 </xs:element>
389 <xs:element name="TargetElement">
390 <xs:complexType>
391 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
392 </xs:complexType>
393 </xs:element>
394 <xs:element name="RelationshipConstraints" minOccurs="0">
395 <xs:complexType>
396 <xs:sequence>
397 <xs:element name="RelationshipConstraint"
398 maxOccurs="unbounded">
399 <xs:complexType>
400 <xs:sequence>
401 <xs:any namespace="##other" processContents="lax"
402 minOccurs="0"/>
403 </xs:sequence>
404 <xs:attribute name="constraintType" type="xs:anyURI"
405 use="required"/>
406 </xs:complexType>
407 </xs:element>
408 </xs:sequence>
409 </xs:complexType>
410 </xs:element>
411 </xs:sequence>
412 <xs:attribute name="name" type="xs:string" use="optional"/>
413 </xs:extension>
414 </xs:complexContent>
415 </xs:complexType>
416
417 <xs:complexType name="tNodeType">
418 <xs:complexContent>
419 <xs:extension base="tEntityType">
420 <xs:sequence>
421 <xs:element name="RequirementDefinitions" minOccurs="0">
422 <xs:complexType>
423 <xs:sequence>
424 <xs:element name="RequirementDefinition"
425 type="tRequirementDefinition" maxOccurs="unbounded"/>
426 </xs:sequence>
427 </xs:complexType>
428 </xs:element>
429 <xs:element name="CapabilityDefinitions" minOccurs="0">
430 <xs:complexType>
431 <xs:sequence>
432 <xs:element name="CapabilityDefinition"
433 type="tCapabilityDefinition" maxOccurs="unbounded"/>
434 </xs:sequence>
435 </xs:complexType>
436 </xs:element>
437 <xs:element name="InstanceStates"
438 type="tTopologyElementInstanceStates" minOccurs="0"/>
439 <xs:element name="Interfaces" minOccurs="0">
440 <xs:complexType>
441 <xs:sequence>
442 <xs:element name="Interface" type="tInterface"
443 maxOccurs="unbounded"/>
444 </xs:sequence>
445 </xs:complexType>
446 </xs:element>
447 </xs:sequence>
448 </xs:extension>
449 </xs:complexContent>
450 </xs:complexType>
451
452 <xs:complexType name="tNodeTypeImplementation">
453 <xs:complexContent>
454 <xs:extension base="tExtensibleElements">
455 <xs:sequence>
456 <xs:element name="Tags" type="tTags" minOccurs="0"/>
457 <xs:element name="DerivedFrom" minOccurs="0">
458 <xs:complexType>
459 <xs:attribute name="nodeTypeImplementationRef" type="xs:QName"
460 use="required"/>
461 </xs:complexType>
462 </xs:element>
463 <xs:element name="RequiredContainerFeatures"
464 type="tRequiredContainerFeatures" minOccurs="0"/>
465 <xs:element name="ImplementationArtifacts"
466 type="tImplementationArtifacts" minOccurs="0"/>
467 <xs:element name="DeploymentArtifacts" type="tDeploymentArtifacts"
468 minOccurs="0"/>
469 </xs:sequence>
470 <xs:attribute name="name" type="xs:NCName" use="required"/>
471 <xs:attribute name="targetNamespace" type="xs:anyURI"
472 use="optional"/>
473 <xs:attribute name="nodeType" type="xs:QName" use="required"/>
474 <xs:attribute name="abstract" type="tBoolean" use="optional"
475 default="no"/>
476 <xs:attribute name="final" type="tBoolean" use="optional"
477 default="no"/>
478 </xs:extension>
479 </xs:complexContent>
480 </xs:complexType>
481
482 <xs:complexType name="tRequirementType">
483 <xs:complexContent>
484 <xs:extension base="tEntityType">
485 <xs:attribute name="requiredCapabilityType" type="xs:QName"
486 use="optional"/>
487 </xs:extension>
488 </xs:complexContent>
489 </xs:complexType>
490
491 <xs:complexType name="tRequirementDefinition">
492 <xs:complexContent>
493 <xs:extension base="tExtensibleElements">
494 <xs:sequence>
495 <xs:element name="Constraints" minOccurs="0">
496 <xs:complexType>
497 <xs:sequence>
498 <xs:element name="Constraint" type="tConstraint"
499 maxOccurs="unbounded"/>
500 </xs:sequence>
501 </xs:complexType>
502 </xs:element>
503 </xs:sequence>
504 <xs:attribute name="name" type="xs:string" use="required"/>
505 <xs:attribute name="requirementType" type="xs:QName"
506 use="required"/>
507 <xs:attribute name="lowerBound" type="xs:int" use="optional"
508 default="1"/>
509 <xs:attribute name="upperBound" use="optional" default="1">
510 <xs:simpleType>
511 <xs:union>
512 <xs:simpleType>
513 <xs:restriction base="xs:nonNegativeInteger">
514 <xs:pattern value="([1-9]+[0-9]*)"/>
515 </xs:restriction>
516 </xs:simpleType>
517 <xs:simpleType>
518 <xs:restriction base="xs:string">
519 <xs:enumeration value="unbounded"/>
520 </xs:restriction>
521 </xs:simpleType>
522 </xs:union>
523 </xs:simpleType>
524 </xs:attribute>
525 </xs:extension>
526 </xs:complexContent>
527 </xs:complexType>
528
529 <xs:complexType name="tRequirement">
530 <xs:complexContent>
531 <xs:extension base="tEntityTemplate">
532 <xs:attribute name="name" type="xs:string" use="required"/>
533 </xs:extension>
534 </xs:complexContent>
535 </xs:complexType>
536
537 <xs:complexType name="tCapabilityType">
538 <xs:complexContent>
539 <xs:extension base="tEntityType"/>
540 </xs:complexContent>
541 </xs:complexType>
542
543 <xs:complexType name="tCapabilityDefinition">
544 <xs:complexContent>
545 <xs:extension base="tExtensibleElements">
546 <xs:sequence>
547 <xs:element name="Constraints" minOccurs="0">
548 <xs:complexType>
549 <xs:sequence>
550 <xs:element name="Constraint" type="tConstraint"
551 maxOccurs="unbounded"/>
552 </xs:sequence>
553 </xs:complexType>
554 </xs:element>
555 </xs:sequence>
556 <xs:attribute name="name" type="xs:string" use="required"/>
557 <xs:attribute name="capabilityType" type="xs:QName"
558 use="required"/>
559 <xs:attribute name="lowerBound" type="xs:int" use="optional"
560 default="1"/>
561 <xs:attribute name="upperBound" use="optional" default="1">
562 <xs:simpleType>
563 <xs:union>
564 <xs:simpleType>
565 <xs:restriction base="xs:nonNegativeInteger">
566 <xs:pattern value="([1-9]+[0-9]*)"/>
567 </xs:restriction>
568 </xs:simpleType>
569 <xs:simpleType>
570 <xs:restriction base="xs:string">
571 <xs:enumeration value="unbounded"/>
572 </xs:restriction>
573 </xs:simpleType>
574 </xs:union>
575 </xs:simpleType>
576 </xs:attribute>
577 </xs:extension>
578 </xs:complexContent>
579 </xs:complexType>
580
581 <xs:complexType name="tCapability">
582 <xs:complexContent>
583 <xs:extension base="tEntityTemplate">
584 <xs:attribute name="name" type="xs:string" use="required"/>
585 </xs:extension>
586 </xs:complexContent>
587 </xs:complexType>
588
589 <xs:complexType name="tArtifactType">
590 <xs:complexContent>
591 <xs:extension base="tEntityType"/>
592 </xs:complexContent>
593 </xs:complexType>
594
595 <xs:complexType name="tArtifactTemplate">
596 <xs:complexContent>
597 <xs:extension base="tEntityTemplate">
598 <xs:sequence>
599 <xs:element name="ArtifactReferences" minOccurs="0">
600 <xs:complexType>
601 <xs:sequence>
602 <xs:element name="ArtifactReference" type="tArtifactReference"
603 maxOccurs="unbounded"/>
604 </xs:sequence>
605 </xs:complexType>
606 </xs:element>
607 </xs:sequence>
608 <xs:attribute name="name" type="xs:string" use="optional"/>
609 </xs:extension>
610 </xs:complexContent>
611 </xs:complexType>
612
613 <xs:complexType name="tDeploymentArtifacts">
614 <xs:sequence>
615 <xs:element name="DeploymentArtifact" type="tDeploymentArtifact"
616 maxOccurs="unbounded"/>
617 </xs:sequence>
618 </xs:complexType>
619
620 <xs:complexType name="tDeploymentArtifact">
621 <xs:complexContent>
622 <xs:extension base="tExtensibleElements">
623 <xs:attribute name="name" type="xs:string" use="required"/>
624 <xs:attribute name="artifactType" type="xs:QName" use="required"/>
625 <xs:attribute name="artifactRef" type="xs:QName" use="optional"/>
626 </xs:extension>
627 </xs:complexContent>
628 </xs:complexType>
629
630 <xs:complexType name="tImplementationArtifacts">
631 <xs:sequence>
632 <xs:element name="ImplementationArtifact" maxOccurs="unbounded">
633 <xs:complexType>
634 <xs:complexContent>
635 <xs:extension base="tImplementationArtifact"/>
636 </xs:complexContent>
637 </xs:complexType>
638 </xs:element>
639 </xs:sequence>
640 </xs:complexType>
641
642 <xs:complexType name="tImplementationArtifact">
643 <xs:complexContent>
644 <xs:extension base="tExtensibleElements">
645 <xs:attribute name="interfaceName" type="xs:anyURI"
646 use="optional"/>
647 <xs:attribute name="operationName" type="xs:NCName"
648 use="optional"/>
649 <xs:attribute name="artifactType" type="xs:QName" use="required"/>
650 <xs:attribute name="artifactRef" type="xs:QName" use="optional"/>
651 </xs:extension>
652 </xs:complexContent>
653 </xs:complexType>
654
655 <xs:complexType name="tPlans">
656 <xs:sequence>
657 <xs:element name="Plan" type="tPlan" maxOccurs="unbounded"/>
658 </xs:sequence>
659 <xs:attribute name="targetNamespace" type="xs:anyURI"/>
660 </xs:complexType>
661
662 <xs:complexType name="tPlan">
663 <xs:complexContent>
664 <xs:extension base="tExtensibleElements">
665 <xs:sequence>
666 <xs:element name="Precondition" type="tCondition" minOccurs="0"/>
667 <xs:element name="InputParameters" minOccurs="0">
668 <xs:complexType>
669 <xs:sequence>
670 <xs:element name="InputParameter" type="tParameter"
671 maxOccurs="unbounded"/>
672 </xs:sequence>
673 </xs:complexType>
674 </xs:element>
675 <xs:element name="OutputParameters" minOccurs="0">
676 <xs:complexType>
677 <xs:sequence>
678 <xs:element name="OutputParameter" type="tParameter"
679 maxOccurs="unbounded"/>
680 </xs:sequence>
681 </xs:complexType>
682 </xs:element>
683 <xs:choice>
684 <xs:element name="PlanModel">
685 <xs:complexType>
686 <xs:sequence>
687 <xs:any namespace="##other" processContents="lax"/>
688 </xs:sequence>
689 </xs:complexType>
690 </xs:element>
691 <xs:element name="PlanModelReference">
692 <xs:complexType>
693 <xs:attribute name="reference" type="xs:anyURI"
694 use="required"/>
695 </xs:complexType>
696 </xs:element>
697 </xs:choice>
698 </xs:sequence>
699 <xs:attribute name="id" type="xs:ID" use="required"/>
700 <xs:attribute name="name" type="xs:string" use="optional"/>
701 <xs:attribute name="planType" type="xs:anyURI" use="required"/>
702 <xs:attribute name="planLanguage" type="xs:anyURI" use="required"/>
703 </xs:extension>
704 </xs:complexContent>
705 </xs:complexType>
706
707 <xs:complexType name="tPolicyType">
708 <xs:complexContent>
709 <xs:extension base="tEntityType">
710 <xs:sequence>
711 <xs:element name="AppliesTo" type="tAppliesTo"/>
712 </xs:sequence>
713 <xs:attribute name="policyLanguage" type="xs:anyURI"
714 use="optional"/>
715 </xs:extension>
716 </xs:complexContent>
717 </xs:complexType>
718
719 <xs:complexType name="tPolicyTemplate">
720 <xs:complexContent>
721 <xs:extension base="tEntityTemplate">
722 <xs:attribute name="name" type="xs:string" use="optional"/>
723 </xs:extension>
724 </xs:complexContent>
725 </xs:complexType>
726
727 <xs:complexType name="tAppliesTo">
728 <xs:sequence>
729 <xs:element name="NodeTypeReference" maxOccurs="unbounded">
730 <xs:complexType>
731 <xs:attribute name="typeRef" type="xs:QName" use="required"/>
732 </xs:complexType>
733 </xs:element>
734 </xs:sequence>
735 </xs:complexType>
736
737 <xs:complexType name="tPolicy">
738 <xs:complexContent>
739 <xs:extension base="tExtensibleElements">
740 <xs:attribute name="name" type="xs:string" use="optional"/>
741 <xs:attribute name="policyType" type="xs:QName" use="required"/>
742 <xs:attribute name="policyRef" type="xs:QName" use="optional"/>
743 </xs:extension>
744 </xs:complexContent>
745 </xs:complexType>
746
747 <xs:complexType name="tConstraint">
748 <xs:sequence>
749 <xs:any namespace="##other" processContents="lax"/>
750 </xs:sequence>
751 <xs:attribute name="constraintType" type="xs:anyURI" use="required"/>
752 </xs:complexType>
753
754 <xs:complexType name="tPropertyConstraint">
755 <xs:complexContent>
756 <xs:extension base="tConstraint">
757 <xs:attribute name="property" type="xs:string" use="required"/>
758 </xs:extension>
759 </xs:complexContent>
760 </xs:complexType>
761
762 <xs:complexType name="tExtensions">
763 <xs:complexContent>
764 <xs:extension base="tExtensibleElements">
765 <xs:sequence>
766 <xs:element name="Extension" type="tExtension"
767 maxOccurs="unbounded"/>
768 </xs:sequence>
769 </xs:extension>
770 </xs:complexContent>
771 </xs:complexType>
772
773 <xs:complexType name="tExtension">
774 <xs:complexContent>
775 <xs:extension base="tExtensibleElements">
776 <xs:attribute name="namespace" type="xs:anyURI" use="required"/>
777 <xs:attribute name="mustUnderstand" type="tBoolean" use="optional"
778 default="yes"/>
779 </xs:extension>
780 </xs:complexContent>
781 </xs:complexType>
782
783 <xs:complexType name="tParameter">
784 <xs:attribute name="name" type="xs:string" use="required"/>
785 <xs:attribute name="type" type="xs:string" use="required"/>
786 <xs:attribute name="required" type="tBoolean" use="optional"
787 default="yes"/>
788 </xs:complexType>
789
790 <xs:complexType name="tInterface">
791 <xs:sequence>
792 <xs:element name="Operation" type="tOperation"
793 maxOccurs="unbounded"/>
794 </xs:sequence>
795 <xs:attribute name="name" type="xs:anyURI" use="required"/>
796 </xs:complexType>
797
798 <xs:complexType name="tExportedInterface">
799 <xs:sequence>
800 <xs:element name="Operation" type="tExportedOperation"
801 maxOccurs="unbounded"/>
802 </xs:sequence>
803 <xs:attribute name="name" type="xs:anyURI" use="required"/>
804 </xs:complexType>
805
806 <xs:complexType name="tOperation">
807 <xs:complexContent>
808 <xs:extension base="tExtensibleElements">
809 <xs:sequence>
810 <xs:element name="InputParameters" minOccurs="0">
811 <xs:complexType>
812 <xs:sequence>
813 <xs:element name="InputParameter" type="tParameter"
814 maxOccurs="unbounded"/>
815 </xs:sequence>
816 </xs:complexType>
817 </xs:element>
818 <xs:element name="OutputParameters" minOccurs="0">
819 <xs:complexType>
820 <xs:sequence>
821 <xs:element name="OutputParameter" type="tParameter"
822 maxOccurs="unbounded"/>
823 </xs:sequence>
824 </xs:complexType>
825 </xs:element>
826 </xs:sequence>
827 <xs:attribute name="name" type="xs:NCName" use="required"/>
828 </xs:extension>
829 </xs:complexContent>
830 </xs:complexType>
831
832 <xs:complexType name="tExportedOperation">
833 <xs:choice>
834 <xs:element name="NodeOperation">
835 <xs:complexType>
836 <xs:attribute name="nodeRef" type="xs:IDREF" use="required"/>
837 <xs:attribute name="interfaceName" type="xs:anyURI"
838 use="required"/>
839 <xs:attribute name="operationName" type="xs:NCName"
840 use="required"/>
841 </xs:complexType>
842 </xs:element>
843 <xs:element name="RelationshipOperation">
844 <xs:complexType>
845 <xs:attribute name="relationshipRef" type="xs:IDREF"
846 use="required"/>
847 <xs:attribute name="interfaceName" type="xs:anyURI"
848 use="required"/>
849 <xs:attribute name="operationName" type="xs:NCName"
850 use="required"/>
851 </xs:complexType>
852 </xs:element>
853 <xs:element name="Plan">
854 <xs:complexType>
855 <xs:attribute name="planRef" type="xs:IDREF" use="required"/>
856 </xs:complexType>
857 </xs:element>
858 </xs:choice>
859 <xs:attribute name="name" type="xs:NCName" use="required"/>
860 </xs:complexType>
861
862 <xs:complexType name="tCondition">
863 <xs:sequence>
864 <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
865 </xs:sequence>
866 <xs:attribute name="expressionLanguage" type="xs:anyURI"
867 use="required"/>
868 </xs:complexType>
869
870 <xs:complexType name="tTopologyElementInstanceStates">
871 <xs:sequence>
872 <xs:element name="InstanceState" maxOccurs="unbounded">
873 <xs:complexType>
874 <xs:attribute name="state" type="xs:anyURI" use="required"/>
875 </xs:complexType>
876 </xs:element>
877 </xs:sequence>
878 </xs:complexType>
879
880 <xs:complexType name="tArtifactReference">
881 <xs:choice minOccurs="0" maxOccurs="unbounded">
882 <xs:element name="Include">
883 <xs:complexType>
884 <xs:attribute name="pattern" type="xs:string" use="required"/>
885 </xs:complexType>
886 </xs:element>
887 <xs:element name="Exclude">
888 <xs:complexType>
889 <xs:attribute name="pattern" type="xs:string" use="required"/>
890 </xs:complexType>
891 </xs:element>
892 </xs:choice>
893 <xs:attribute name="reference" type="xs:anyURI" use="required"/>
894 </xs:complexType>
895
896 <xs:complexType name="tRequiredContainerFeatures">
897 <xs:sequence>
898 <xs:element name="RequiredContainerFeature"
899 type="tRequiredContainerFeature" maxOccurs="unbounded"/>
900 </xs:sequence>
901 </xs:complexType>
902
903 <xs:complexType name="tRequiredContainerFeature">
904 <xs:attribute name="feature" type="xs:anyURI" use="required"/>
905 </xs:complexType>
906
907 <xs:simpleType name="tBoolean">
908 <xs:restriction base="xs:string">
909 <xs:enumeration value="yes"/>
910 <xs:enumeration value="no"/>
911 </xs:restriction>
912 </xs:simpleType>
913
914 <xs:simpleType name="importedURI">
915 <xs:restriction base="xs:anyURI"/>
916 </xs:simpleType>
917
918</xs:schema>
This appendix contains the full sample used in this specification.
E.1 Sample Service Topology Definition
01 <Definitions name="MyServiceTemplateDefinition"
02 targetNamespace="http://www.example.com/sample">
03 <Tags>
04 <Tag name=”author” value=”someone@example.com”/>
05 </Tags>
06
07 <Types>
08 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
09 elementFormDefault="qualified"
10 attributeFormDefault="unqualified">
11 <xs:element name="ApplicationProperties">
12 <xs:complexType>
13 <xs:sequence>
14 <xs:element name="Owner" type="xs:string"/>
15 <xs:element name="InstanceName" type="xs:string"/>
16 <xs:element name="AccountID" type="xs:string"/>
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>
20 <xs:element name="AppServerProperties">
21 <xs:complexType>
22 <xs:sequence>
23 <element name="HostName" type="xs:string"/>
24 <element name="IPAddress" type="xs:string"/>
25 <element name="HeapSize" type="xs:positiveInteger"/>
26 <element name="SoapPort" type="xs:positiveInteger"/>
27 </xs:sequence>
28 </xs:complexType>
29 </xs:element>
30 </xs:schema>
31 </Types>
32
33 <ServiceTemplate id="MyServiceTemplate">
34 <TopologyTemplate id="SampleApplication">
35
36 <NodeTemplate id="MyApplication"
37 name="My Application"
38 nodeType="abc:Application">
39 <Properties>
40 <ApplicationProperties>
41 <Owner>Frank</Owner>
42 <InstanceName>Thomas’ favorite application</InstanceName>
43 </ApplicationProperties>
44 </Properties>
45 <NodeTemplate/>
46
47 <NodeTemplate id="MyAppServer"
48 name="My Application Server"
49 nodeType="abc:ApplicationServer"
50 minInstances="0"
51 maxInstances="unbounded"/>
52
53 <RelationshipTemplate id="MyDeploymentRelationship"
54 relationshipType="deployedOn">
55 <SourceElement id="MyApplication"/>
56 <TargetElement id="MyAppServer"/>
57 </RelationshipTemplate>
58
59 </TopologyTemplate>
60
61 <Plans>
62 <Plan id="DeployApplication"
63 name="Sample Application Build Plan"
64 planType="http://docs.oasis-
65 open.org/tosca/ns/2011/12/PlanTypes/BuildPlan"
66 planLanguage="http://www.omg.org/spec/BPMN/20100524/MODEL">
67
68 <PreCondition expressionLanguage="www.example.com/text"> ?
69 Run only if funding is available
70 </PreCondition>
71
72 <PlanModel>
73 <process name="DeployNewApplication" id="p1">
74 <documentation>This process deploys a new instance of the
75 sample application.
76 </documentation>
77
78 <task id="t1" name="CreateAccount"/>
79
80 <task id="t2" name="AcquireNetworkAddresses"
81 isSequential="false"
82 loopDataInput="t2Input.LoopCounter"/>
83 <documentation>Assumption: t2 gets data of type “input”
84 as input and this data has a field names “LoopCounter”
85 that contains the actual multiplicity of the task.
86 </documentation>
87
88 <task id="t3" name="DeployApplicationServer"
89 isSequential="false"
90 loopDataInput="t3Input.LoopCounter"/>
91
92 <task id="t4" name="DeployApplication"
93 isSequential="false"
94 loopDataInput="t4Input.LoopCounter"/>
95
96 <sequenceFlow id="s1" targetRef="t2" sourceRef="t1"/>
97 <sequenceFlow id="s2" targetRef="t3" sourceRef="t2"/>
98 <sequenceFlow id="s3" targetRef="t4" sourceRef="t3"/>
99 </process>
100 </PlanModel>
101 </Plan>
102
103 <Plan id="RemoveApplication"
104 planType="http://docs.oasis-
105 open.org/tosca/ns/2011/12/PlanTypes/TerminationPlan"
106 planLanguage="http://docs.oasis-
107 open.org/wsbpel/2.0/process/executable">
108 <PlanModelReference reference="prj:RemoveApp"/>
109 </Plan>
110 </Plans>
111
112 </ServiceTemplate>
113
114 <NodeType name="Application">
115 <documentation xml:lang="EN">
116 A reusable definition of a node type representing an
117 application that can be deployed on application servers.
118 </documentation>
119 <NodeTypeProperties element="ApplicationProperties"/>
120 <InstanceStates>
121 <InstanceState state="http://www.example.com/started"/>
122 <InstanceState state="http://www.example.com/stopped"/>
123 </InstanceStates>
124 <Interfaces>
125 <Interface name="DeploymentInterface">
126 <Operation name="DeployApplication">
127 <InputParameters>
128 <InputParamter name="InstanceName"
129 type="xs:string"/>
130 <InputParamter name="AppServerHostname"
131 type="xs:string"/>
132 <InputParamter name="ContextRoot"
133 type="xs:string"/>
134 </InputParameters>
135 </Operation>
136 </Interface>
137 </Interfaces
138 </NodeType>
139
140 <NodeType name="ApplicationServer"
141 targetNamespace="http://www.example.com/sample">
142 <NodeTypeProperties element="AppServerProperties"/>
143 <Interfaces>
144 <Interface name="MyAppServerInterface">
145 <Operation name="AcquireNetworkAddress"/>
146 <Operation name="DeployApplicationServer"/>
147 </Interface>
148 </Interfaces>
149 </NodeType>
150
151 <RelationshipType name="deployedOn">
152 <documentation xml:lang="EN">
153 A reusable definition of relation that expresses deployment of
154 an artifact on a hosting environment.
155 </documentation>
156 </RelationshipType>
157
158 </Definitions>
Revision |
Date |
Editor |
Changes Made |
wd-01 |
2012-01-26 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-1: Initial working draft based on input spec delivered to TOSCA TC. Copied all content from input spec and just changed namespace. Added line numbers to whole document. |
wd-02 |
2012-02-23 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-6: Reviewed and adapted normative statement keywords according to RFC2119. |
wd-03 |
2012-03-06 |
Arvind Srinivasan, Thomas Spatzier |
Changes for JIRA Issue TOSCA-10: Marked all occurrences of keywords from the TOSCA language (element and attribute names) in Courier New font. |
wd-04 |
2012-03-22 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-4: Changed definition of NodeType Interfaces element; adapted text and examples |
wd-05 |
2012-03-30 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-5: Changed definition of NodeTemplate to include ImplementationArtifact element; adapted text Added Acknowledgements section in Appendix |
wd-06 |
2012-05-03 |
Thomas Spatzier, Derek Palma |
Changes for JIRA Issue TOSCA-15: Added clarifying section about artifacts (see section 3.2); Implemented editorial changes according to OASIS staff recommendations; updated Acknowledgements section |
wd-07 |
2012-06-15 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-20: Added abstract attribute to NodeType for sub-issue 2; Added final attribute to NodeType for sub-issue 4; Added explanatory text on Node Type properties for sub-issue 8 |
wd-08 |
2012-06-29 |
Thomas Spatzier, Derek Palma |
Changes for JIRA Issue TOSCA-23: Added interfaces and introduced inheritance for RelationshipType; based on wd-07 Added reference to XML element and attribute naming scheme used in this spec |
wd-09 |
2012-07-16 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-17: Specifies the format of a CSAR file; |
wd-10 |
2012-07-30 |
Thomas Spatzier, |
Changes for JIRA Issue TOSCA-18 and related issues: Introduced concept of Requirements and Capabilities; Restructuring of some paragraphs to improve readability |
wd-11 |
2012-08-25 |
Thomas Spatzier, |
Changes for JIRA Issue TOSCA-13: Changes for JIRA Issue TOSCA-38: Changes for JIRA Issue TOSCA-41: Changes for JIRA Issue TOSCA-47: Changes for JIRA Issue TOSCA-48 (partly): |
wd-12 |
2012-09-29 |
Thomas Spatzier, |
Editorial changes for TOSCA-10: Changes for JIRA Issue TOSCA-28,29: Changes for JIRA Issue TOSCA-38: Changes for JIRA Issue TOSCA-52: Changes for JIRA Issue TOSCA-54: Changes for JIRA Issue TOSCA-56: Clarifying rewording in section 2.8.2 Changes for JIRA Issue TOSCA-58: Updated roster as of 2012-09-29 |
wd-13 |
2012-10-26 |
Thomas Spatzier, |
Changes for JIRA Issue TOSCA-10: Changes for JIRA Issues TOSCA-36/37: Added PolicyType and PolicyTemplate elements to allow for re-usable definitions of policies. Changes for JIRA Issue TOSCA-57: Changes for JIRA Issue TOSCA-59: Some additional minor changes in wording. Changes for JIRA Issue TOSCA-63: |
wd-14 |
2012-11-19 |
Thomas Spatzier |
Changes for JIRA Issue TOSCA-76: Multiple general editorial fixes: Fixed schema problems in tPolicyTemplate and tPolicyType Added text to Conformance section. |