

Extensible Resource Identifier (XRI)
Resolution Version 2.0
Committee Specification 01

12 April 2008
Specification URIs:

This Version:

http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.html
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.pdf
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.doc (Authoritative)

Previous Version:
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.html
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.pdf
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.doc (Authoritative)

Latest Version:
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.pdf
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.doc

Technical Committee:
OASIS eXtensible Resource Identifier (XRI) TC

Chairs:
Gabe Wachob, AmSoft <gabe.wachob@amsoft.net>
Drummond Reed, Cordance <drummond.reed@cordance.net>

Editors:
Gabe Wachob, AmSoft <gabe.wachob@amsoft.net>
Drummond Reed, Cordance <drummond.reed@cordance.net>
Les Chasen, NeuStar <les.chasen@neustar.biz>
William Tan, NeuStar <william.tan@neustar.biz>
Steve Churchill, XDI.org <steven.churchill@xdi.org>

Related Work:
This specification replaces or supercedes:

• Extensible Resource Identifier (XRI) Resolution Version 2.0, Committee Draft 01, March
2005

• Extensible Resource Identifier (XRI) Version 1.0, Committee Draft 01, January 2004
This specification is related to:

• Extensible Resource Identifier (XRI) Syntax Version 2.0, Committee Specification,
December 2005

• Extensible Resource Identifier (XRI) Metadata Version 2.0, Committee Draft 01, March
2005

Declared XML Namespace(s)
xri://$res

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 1 of 131

http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.html
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.pdf
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cs01/xri-resolution-V2.0-cs-01.doc
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.html
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.pdf
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xri-resolution-V2.0-cd-03.doc
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.pdf
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.doc
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xri
mailto:gabe.wachob@amsoft.net
mailto:drummond.reed@cordance.net
mailto:gabe.wachob@amsoft.net
mailto:drummond.reed@cordance.net
mailto:les.chasen@neustar.biz
mailto:william.tan@neustar.biz
mailto:steven.churchill@xdi.org

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 2 of 131

xri://$xrds
xri://$xrd
xri://$xrd*($v*2.0)
xri://$res*auth
xri://$res*auth*($v*2.0)
xri://$res*proxy
xri://$res*proxy*($v*2.0)

Abstract:
This document defines a simple generic format for resource description (XRDS documents), a
protocol for obtaining XRDS documents from HTTP(S) URIs, and generic and trusted protocols
for resolving Extensible Resource Identifiers (XRIs) using XRDS documents and HTTP(S) URIs.
These protocols are intended for use with both HTTP(S) URIs as defined in [RFC2616] and with
XRIs as defined by Extensible Resource Identifier (XRI) Syntax Version 2.0 [XRISyntax] or
higher. For a dictionary of XRIs defined to provide standardized identifier metadata, see
Extensible Resource Identifier (XRI) Metadata Version 2.0 [XRIMetadata]. For a basic
introduction to XRIs, see the XRI 2.0 FAQ [XRIFAQ].

Status:
This document was last revised or approved by the XRI Technical Committee on the above date.
The level of approval is also listed above. Check the “Latest Version” or “Latest Approved
Version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/xri.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/xri/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/xri.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 3 of 131

Notices
Copyright © OASIS® 1993–2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", “Extensible Resource Identifier”, and “XRI” are trademarks of OASIS, the owner and
developer of this specification, and should be used only to refer to the organization and its official outputs.
OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for
above guidance.

http://www.oasis-open.org/who/trademark.php

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 4 of 131

Table of Contents

1 Introduction ... 11

1.1 Overview of XRI Resolution Architecture ... 11
1.2 Structure of this Specification ... 14
1.3 Terminology and Notation ... 15
1.4 Examples .. 15
1.5 Normative References .. 15
1.6 Non-Normative References .. 16

2 Conformance .. 17
2.1 Conformance Targets ... 17
2.2 Conformance Claims .. 17
2.3 XRDS Clients .. 17
2.4 XRDS Servers .. 17
2.5 XRI Local Resolvers ... 18

2.5.1 Generic .. 18
2.5.2 HTTPS ... 18
2.5.3 SAML ... 18

2.6 XRI Proxy Resolvers ... 18
2.6.1 Generic .. 18
2.6.2 HTTPS ... 18
2.6.3 SAML ... 18

2.7 XRI Authority Servers ... 19
2.7.1 Generic .. 19
2.7.2 HTTPS ... 19
2.7.3 SAML ... 19

2.8 Extensions .. 19
2.9 Language .. 19

3 Namespaces ... 20
3.1 XRI Namespaces for XRI Resolution ... 20

3.1.1 XRIs Reserved for XRI Resolution .. 20
3.1.2 XRIs Assigned to XRI Resolution Service Types .. 20

3.2 XML Namespaces for XRI Resolution .. 21
3.3 Media Types for XRI Resolution ... 21

4 XRDS Documents .. 23
4.1 XRDS and XRD Namespaces and Schema Locations .. 23
4.2 XRD Elements and Attributes ... 23

4.2.1 Management Elements ... 25
4.2.2 Trust Elements .. 26
4.2.3 Synonym Elements ... 27
4.2.4 Service Endpoint Descriptor Elements .. 27
4.2.5 Service Endpoint Trust Elements .. 29
4.2.6 Service Endpoint Selection Elements ... 29

4.3 XRD Attribute Processing Rules ... 30

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 5 of 131

4.3.1 ID Attribute ... 30
4.3.2 Version Attribute .. 30
4.3.3 Priority Attribute ... 30

4.4 XRI and IRI Encoding Requirements .. 31
5 XRD Synonym Elements .. 32

5.1 Query Identifiers ... 32
5.1.1 HTTP(S) URI Query Identifiers .. 32
5.1.2 XRI Query Identifiers ... 32

5.2 Synonym Elements ... 33
5.2.1 LocalID .. 33
5.2.2 EquivID .. 33
5.2.3 CanonicalID ... 34
5.2.4 CanonicalEquivID .. 34

5.3 Redirect and Ref Elements ... 35
5.4 XRD Equivalence .. 35
5.5 Synonym Verification .. 36
5.6 Synonym Selection ... 36

6 Discovering an XRDS Document from an HTTP(S) URI ... 37
6.1 Overview ... 37
6.2 HEAD Protocol .. 37
6.3 GET Protocol .. 37

7 XRI Resolution Flow ... 39
8 Inputs and Outputs ... 41

8.1 Inputs .. 41
8.1.1 QXRI (Authority String, Path String, and Query String) .. 43
8.1.2 Resolution Output Format ... 43
8.1.3 Service Type.. 44
8.1.4 Service Media Type ... 45

8.2 Outputs ... 45
8.2.1 XRDS Document ... 47
8.2.2 XRD Element ... 47
8.2.3 URI List .. 48
8.2.4 HTTP(S) Redirect .. 48

9 Generic Authority Resolution Service ... 49
9.1 XRI Authority Resolution ... 49

9.1.1 Service Type and Service Media Type ... 49
9.1.2 Protocol ... 50
9.1.3 Requesting an XRDS Document using HTTP(S) .. 52
9.1.4 Failover Handling .. 53
9.1.5 Community Root Authorities .. 54
9.1.6 Self-Describing XRDS Documents .. 55
9.1.7 Qualified Subsegments ... 55
9.1.8 Cross-References ... 56
9.1.9 Selection of the Next Authority Resolution Service Endpoint ... 56
9.1.10 Construction of the Next Authority URI ... 57

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 6 of 131

9.1.11 Recursing Authority Resolution ... 57
9.2 IRI Authority Resolution .. 58

9.2.1 Service Type and Media Type ... 58
9.2.2 Protocol ... 58
9.2.3 Optional Use of HTTPS ... 58

10 Trusted Authority Resolution Service ... 60
10.1 HTTPS .. 60

10.1.1 Service Type and Service Media Type ... 60
10.1.2 Protocol ... 60

10.2 SAML .. 60
10.2.1 Service Type and Service Media Type ... 61
10.2.2 Protocol ... 61
10.2.3 Recursing Authority Resolution ... 62
10.2.4 Client Validation of XRDs .. 63
10.2.5 Correlation of ProviderID and KeyInfo Elements .. 64

10.3 HTTPS+SAML .. 64
10.3.1 Service Type and Service Media Type ... 64
10.3.2 Protocol ... 65

11 Proxy Resolution Service ... 66
11.1 Service Type and Media Types .. 66
11.2 HXRIs .. 66
11.3 HXRI Query Parameters ... 67
11.4 HXRI Encoding/Decoding Rules ... 68
11.5 HTTP(S) Accept Headers ... 70
11.6 Null Resolution Output Format ... 70
11.7 Outputs and HTTP(S) Redirects ... 70
11.8 Differences Between Proxy Resolution Servers ... 71
11.9 Combining Authority and Proxy Resolution Servers .. 71

12 Redirect and Ref Processing .. 72
12.1 Cardinality ... 74
12.2 Precedence ... 74
12.3 Redirect Processing .. 75
12.4 Ref Processing ... 76
12.5 Nested XRDS Documents .. 77

12.5.1 Redirect Examples .. 77
12.5.2 Ref Examples .. 81

12.6 Recursion and Backtracking ... 84
13 Service Endpoint Selection .. 85

13.1 Processing Rules .. 85
13.2 Service Endpoint Selection Logic ... 87
13.3 Selection Element Matching Rules ... 88

13.3.1 Selection Element Match Options ... 88
13.3.2 The Match Attribute ... 88
13.3.3 Absent Selection Element Matching Rule ... 89
13.3.4 Empty Selection Element Matching Rule .. 89

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 7 of 131

13.3.5 Multiple Selection Element Matching Rule .. 89
13.3.6 Type Element Matching Rules .. 89
13.3.7 Path Element Matching Rules ... 90
13.3.8 MediaType Element Matching Rules .. 92

13.4 Service Endpoint Matching Rules ... 92
13.4.1 Service Endpoint Match Options ... 92
13.4.2 Select Attribute Match Rule ... 92
13.4.3 All Positive Match Rule .. 92
13.4.4 Default Match Rule .. 92

13.5 Service Endpoint Selection Rules .. 93
13.5.1 Positive Match Rule ... 93
13.5.2 Default Match Rule .. 93

13.6 Pseudocode .. 93
13.7 Construction of Service Endpoint URIs .. 95

13.7.1 The append Attribute ... 95
13.7.2 The uric Parameter .. 96

14 Synonym Verification .. 97
14.1 Redirect Verification .. 97
14.2 EquivID Verification .. 97
14.3 CanonicalID Verification ... 98

14.3.1 HTTP(S) URI Verification Rules .. 99
14.3.2 XRI Verification Rules ... 99
14.3.3 CanonicalEquivID Verification ... 99
14.3.4 Verification Status Attributes ... 100
14.3.5 Examples ... 101

15 Status Codes and Error Processing ... 106
15.1 Status Elements .. 106
15.2 Status Codes .. 106
15.3 Status Context Strings .. 109
15.4 Returning Errors in Plain Text or HTML ... 109
15.5 Error Handling in Recursing and Proxy Resolution .. 109

16 Use of HTTP(S) .. 110
16.1 HTTP Errors .. 110
16.2 HTTP Headers .. 110

16.2.1 Caching ... 110
16.2.2 Location ... 110
16.2.3 Content-Type ... 110

16.3 Other HTTP Features ... 110
16.4 Caching and Efficiency ... 111

16.4.1 Resolver Caching .. 111
16.4.2 Synonyms .. 111

17 Extensibility and Versioning ... 112
17.1 Extensibility ... 112

17.1.1 Extensibility of XRDs ... 112
17.1.2 Other Points of Extensibility .. 113

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 8 of 131

17.2 Versioning ... 113
17.2.1 Version Numbering .. 113
17.2.2 Versioning of the XRI Resolution Specification ... 113
17.2.3 Versioning of Protocols ... 114
17.2.4 Versioning of XRDs ... 114

18 Security and Data Protection .. 115
18.1 DNS Spoofing or Poisoning .. 115
18.2 HTTP Security .. 115
18.3 SAML Considerations ... 115
18.4 Limitations of Trusted Resolution ... 115
18.5 Synonym Verification .. 116
18.6 Redirect and Ref Management ... 116
18.7 Community Root Authorities ... 116
18.8 Caching Authorities ... 116
18.9 Recursing and Proxy Resolution .. 116
18.10 Denial-Of-Service Attacks ... 116

A. Acknowledgments .. 117
B. RelaxNG Schema for XRDS and XRD ... 118
C. XML Schema for XRDS and XRD .. 121
D. Media Type Definition for application/xrds+xml.. 125
E. Media Type Definition for application/xrd+xml ... 126
F. Example Local Resolver Interface Definition ... 127
G. Revision History .. 131

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 9 of 131

 Table of Figures
Figure 1: Four typical scenarios for XRI authority resolution. ... 13
Figure 2: Top-level flowchart of XRI resolution phases. ... 39
Figure 3: Input processing flowchart. .. 42
Figure 4: Output processing flowchart. ... 46
Figure 5: Authority resolution flowchart. .. 50
Figure 6: XRDS request flowchart. ... 52
Figure 7: Redirect and Ref processing flowchart. ... 73
Figure 8: Service endpoint (SEP) selection flowchart. .. 85
Figure 9: Service endpoint (SEP) selection logic flowchart. ... 87

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 10 of 131

Table of Tables
Table 1: Comparing DNS and XRI resolution architecture. .. 11
Table 2: XRIs reserved for XRI resolution. ... 20
Table 3: XRIs assigned to identify XRI resolution service types... 20
Table 4: XML namespace prefixes used in this specification. .. 21
Table 5: Media types defined or used in this specification. .. 21
Table 6: Parameters for the media types defined in Table 5. ... 22
Table 7: The four XRD synonym elements. .. 32
Table 8: Input parameters for XRI resolution. ... 41
Table 9: Subparameters of the QXRI input parameter. .. 43
Table 10: Outputs of XRI resolution. ... 45
Table 11: Service Type and Service Media Type values for generic authority resolution. 49
Table 12: Parsing the first subsegment of an XRI that begins with a global context symbol. 56
Table 13: Parsing the first subsegment of an XRI that begins with a cross-reference. 56
Table 14: Examples of the Next Authority URIs constructed using different types of cross-references. ... 56
Table 15: Service Type and Service Media Type values for HTTPS trusted authority resolution. 60
Table 16: Service Type and Service Media Type values for SAML trusted authority resolution. 61
Table 17: Service Type and Service Media Type values for HTTPS+SAML trusted authority resolution. . 64
Table 18: Service Type and Service Media Type values for proxy resolution. ... 66
Table 19: Binding of logical XRI resolution parameters to QXRI query parameters. 67
Table 20: Example of HXRI components prior to transformation to URI-normal form. 69
Table 21: Example of HXRI components after transformation to URI-normal form. 69
Table 22: Example of HXRI components after application of the required encoding rules. 69
Table 23: Comparison of Redirect and Ref elements. .. 72
Table 24: Match options for selection elements. .. 88
Table 25: Enumerated values of the global match attribute and corresponding matching rules. 88
Table 26: Examples of applying the Path element matching rules. .. 91
Table 27: Match options for service endpoints. .. 92
Table 28: Values of the append attribute and the corresponding QXRI component to append. 95
Table 29: Error codes for XRI resolution. .. 108

1 Introduction 1

Extensible Resource Identifier (XRI) provides a uniform syntax for abstract structured identifiers
as defined in

2
3
4
5
6
7
8
9

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

[XRISyntax]. Because XRIs may be used across a wide variety of communities and
applications (as Web addresses, database keys, filenames, object IDs, XML IDs, tags, etc.), no
single resolution mechanism may prove appropriate for all XRIs. However, in the interest of
promoting interoperability, this specification defines a simple generic resource description format
called XRDS (Extensible Resource Descriptor Sequence), a standard protocol for requesting
XRDS documents using HTTP(S) URIs, and standard protocol for resolving XRIs using XRDS
documents and HTTP(S) URIs. Both generic and trusted versions of the XRI resolution protocol
are defined (the latter using HTTPS [RFC2818] and/or signed SAML assertions [SAML]). In
addition, an HTTP(S) proxy resolution service is specified both to provide network-based
resolution services and for backwards compatibility with existing HTTP(S) infrastructure.

1.1 Overview of XRI Resolution Architecture 13

Resolution is the function of dereferencing an identifier to a set of metadata describing the
identified resource. For example, in DNS, a domain name is typically resolved using the UDP
protocol into a set of resource records describing a host. If the resolver does not have the answer
cached, it will start by querying one of the well-known DNS root nameservers for the fully qualified
domain name. Since domain names work from right to left, and the root nameservers know only
about top level domains, they will return the NS (name server) records for the top-level domain.
The resolver will then repeat the same query to those name servers and “walk down the tree”
until the domain name is fully resolved or an error is encountered.
A simple non-recursing resolver will rely on a recursing nameserver to do this work. For example,
it will send a query for the fully qualified domain name docs.oasis-open.org to a local
nameserver. If the nameserver doesn't have the answer cached, it will resolve the domain name
and return the results back to the resolver (and cache the results for subsequent queries).
XRI resolution follows this same architecture except at a higher level of abstraction, i.e., rather
than using UDP to resolve a domain name into a text-based resource descriptor, it uses HTTP(S)
to resolve an XRI into an XML-based resource descriptor called an XRDS document. Table 1
provides a high-level comparison between DNS and XRI resolution architectures.

Resolution Component DNS Architecture XRI Architecture

Identifier domain name XRI (authority + path + query)

Resource record format text (resource record) XML (XRDS document)

Attribute identifier string anyURI

Network endpoint identifier IP address URI

Synonyms CNAME LocalID, EquivID, CanonicalID,
CanonicalEquivID

Primary resolution protocol UDP HTTP(S)

Trusted resolution options DNSSEC HTTPS and/or SAML

Resolution client resolver resolver

Resolution server authoritative nameserver authority server

Recursing resolution recursing nameserver recursing authority server or
proxy resolver

30 Table 1: Comparing DNS and XRI resolution architecture.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 11 of 131

As Table 1 notes, XRI resolution architecture supports both recursing authority servers and proxy
resolvers. A proxy resolver is simply an HTTP(S) interface to a local XRI resolver (one
implemented using a platform-specific API). Proxy resolvers enable applications—even those that
only understand HTTP URIs—to easily access the functions of an XRI resolver remotely.

31
32
33
34

35

36

Figure 1 shows four scenarios of how these components might interact to resolve
xri://(tel:+1-201-555-0123)*foo*bar (unlike DNS, this works from left-to-right).

1

2

3

4

1

4

3

2

1
6

2
3 4

5

Authority
server

Local
resolver

Local
resolver

Proxy
resolver

Proxy
resolver

A) Local resolver B) Local resolver using recursing authority
server

C) Proxy resolver D) Proxy resolver using recursing authority
server

Authority
server

Authority
server

Recursing authority
server

Authority
server

Authority
server

Authority
server

Recursing authority
server

*foo?

XML

*bar?

XML

*foo*bar?

XML

*bar?

XML

(tel:+1-201-555-0123)
*foo*bar?

*foo?

*bar?

XML

4

3 *bar?

XML

XML

XML

1
6

XML

2 5
XML*foo*bar?

(tel:+1-201-555-0123)
*foo*bar?

 37

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 12 of 131

38

39

41
42
43
44
45
46
47
48
49
50

52
53
54
55
56

57

59
60
61
62

64
65
66

68
69
70
71
72
73

75
76
77
78

80
81
82
83

84

Figure 1: Four typical scenarios for XRI authority resolution.

Each of these scenarios may involve two phases of XRI resolution:
• Phase 1: Authority resolution. This is the phase required to resolve the authority component 40

of an XRI into an XRDS document describing the target authority. Authority resolution works
iteratively from left-to-right across each subsegment in the authority component of the XRI. In
XRIs, subsegments are delimited using either a specified set of symbol characters or
parentheses. For example, in the XRI xri://(tel:+1-201-555-0123)*foo*bar, the
authority subsegments are (tel:+1-201-555-0123) (the community root authority, in this
case a URI expressed as an cross-reference delimited with parentheses), *foo, (the first
resolvable subsegment), and *bar, (the second resolvable subsegment). Note that a
resolver must be preconfigured (or have its own way of discovering) the community root
authority starting point, so the community root subsegment is not resolved except in one
special case (see section 9.1.6).

• Phase 2: Optional service endpoint selection. Once authority resolution is complete, there is 51
an optional second phase of XRI resolution to select a specific type of metadata from the final
XRDS document retrieved called a service endpoint (SEP). Service endpoints are descriptors
of concrete URIs at which network services are available for the target resource. Additional
XRI resolution parameters as well as the path component of an XRI may be used as service
endpoint selection criteria.

It is worth highlighting several other key differences between DNS and XRI resolution:
• HTTP. As a resolution protocol, HTTP not only makes it easy to deploy XRI resolution 58

services (including proxy resolution services), but also allows them to employ both HTTP
security standards (e.g., HTTPS) and XML-based security standards (e.g., SAML). Although
less efficient than UDP, HTTP(S) is suitable for the higher level of abstraction represented by
XRIs and can take advantage of the full caching capabilities of modern web infrastructure.

• XRDS documents. This simple, extensible XML resource description format makes it easy to 63
describe the capabilities of any XRI-, IRI-, or URI-identified resource in a manner that can be
consumed by any XML-aware application (or even by non-XRI aware browsers via a proxy
resolver).

• Service endpoint descriptors. DNS can use NAPTR records to do string transformations into 67
URIs representing network endpoints. XRDS documents have service endpoint descriptors—
elements that describe the set of URIs at which a particular type of service is available. Each
service endpoint may present a different type of data or metadata representing or describing
the identified resource. Thus XRI resolution can serve as a lightweight, interoperable
discovery mechanism for resource attributes available via HTTP(S), LDAP, UDDI, SAML,
WS-Trust, or other directory or discovery protocols.

• Synonyms. DNS uses the CNAME attribute to establish equivalence between domain names. 74
XRDS architecture supports four synonym elements (LocalID, EquivID, CanonicalID, and
CanonicalEquivID) to provide robust support for mapping XRIs, IRIs, or URIs to other XRIs,
IRIs, or URIs that identify the same target resource. This is particularly useful for discovering
and mapping to persistent identifiers as often required by trust infrastructures.

• Redirects and Refs. XRDS architecture also includes two mechanisms for distributed XRDS 79
document management. The Redirect element allows an identifier authority to manage
multiple XRDS documents describing a target resource from different network locations. The
Ref element allows one identifier authority to delegate all or part of an XRDS document to a
different identifier authority.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 13 of 131

1.2 Structure of this Specification 85

86

88

90

91
92

94

97
98

99
100

102

104

106

108
109

111
112

114
115

117

119

122

124

126

This specification is structured into the following sections:
• Conformance (section 2) specifies the conformance targets and conformance claims for this 87

specification.
• Namespaces (section 3) specifies the XRI and XML namespaces and media types used for 89

the XRI resolution protocol.

The next three sections cover XRDS documents and the requirements for XRDS clients and
servers:
• XRDS Documents (section 4) specifies a simple, flexible XML-based container for XRI 93

resolution metadata, service endpoints, and/or other metadata describing a resource.
• XRDS Synonyms (section 5) specifies usage of the four XRDS synonym elements. 95
• Discovering an XRDS Document from an HTTP(S) URI (section 6) specifies a protocol for 96

obtaining an XRDS description of a resource by starting from an HTTP(S) URI identifying the
resource.

The remaining sections cover XRI resolution and the requirements for XRI authority servers, local
resolvers, and proxy resolvers:
• XRI Resolution Flow (section 7) provides a top-level flowchart of the XRI resolution function 101

together with a list of other supporting flowcharts used throughout the specification.
• Inputs and Outputs (section 8) specifies the input parameters, output formats, and associated 103

processing rules.
• Generic Authority Resolution (section 9) specifies a simple resolution protocol for the 105

authority component of an XRI using HTTP/HTTPS as a transport.
• Trusted Authority Resolution (section 10) specifies three extensions to generic authority 107

resolution for creating a chain of trust between the participating identifier authorities using
HTTPS connections, SAML assertions, or both.

• Proxy Resolution (section 11) specifies an HTTP(S) interface for an XRI resolver plus a 110
format for expressing an XRI as an HTTP(S) URI to provide backwards compatibility with
existing HTTP(S) infrastructure.

• Redirect and Ref Processing (section 12) specifies how a resolver follows a reference from 113
one XRDS document to another to enable federation of XRDS documents across multiple
network locations (Redirects) or identifier authorities (Refs).

• Service Endpoint Selection (section 13) specifies an optional second phase of resolution for 116
selecting a set of service endpoints from an XRDS document.

• Synonym Verification (section 14) specifies how a resolver can verify that one XRI, IRI, or 118
HTTP(S) URI is an authorized synonym for another.

• Status Codes and Error Processing (section 15) specifies status reporting and error handling. 120
• Use of HTTP(S) (section 16) specifies how the XRDS and XRI resolution protocols leverage 121

features of the HTTP(S) protocol.
• Extensibility and Versioning (section 17) describes how the XRI resolution protocol can be 123

easily extended and how new versions will be identified and accommodated.
• Security and Data Protection (section 18) summarizes key security and privacy 125

considerations for XRI resolution infrastructure.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 14 of 131

1.3 Terminology and Notation 127

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in

128
129
130
131
132
133
134
135
136

[RFC2119]. When these words are not capitalized
in this document, they are meant in their natural language sense.
This specification uses the Augmented Backus-Naur Form (ABNF) syntax notation defined in
[RFC4234].
Other terms used in this document and not defined herein are defined in the glossary in Appendix
C of [XRISyntax].
Formatting conventions used in this document:

137 Examples look like this.

138

139

141
142
143
144
145

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

ABNF productions look like this.

In running text, XML elements, attributes, and values look like this.

1.4 Examples 140

The specification includes short examples as necessary to clarify interpretation. However, to
minimize non-normative material, it does not include extensive examples of XRI resolution
requests and responses. Many such examples are available via open source implementations,
operating XRI registry and resolution services, and public websites about XRI. For a list of such
resources, see the Wikipedia page on XRI [WikipediaXRI].

1.5 Normative References 146

[DNSSEC] D. Eastlake, Domain Name System Security Extensions,
http://www.ietf.org/rfc/rfc2535, IETF RFC 2535, March 1999.

[RFC2045] N. Borenstein, N. Freed, Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies,
http://www.ietf.org/rfc/rfc2045.txt, IETF RFC 2045, November 1996.

[RFC2046] N. Borenstein, N. Freed, Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types, http://www.ietf.org/rfc/rfc2046.txt, IETF RFC
2046, November 1996.

[RFC2119] S. Bradner, Key Words for Use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[RFC2141] R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC
2141, May 1997.

[RFC2483] M. Meallling, R. Daniel Jr., URI Resolution Services Necessary for URN
Resolution, http://www.ietf.org/rfc/rfc2483.txt, IETF RFC 2483, January
1999.

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, IETF RFC 2616, June 1999.

[RFC2818] E. Rescorla, HTTP over TLS, http://www.ietf.org/rfc/rfc2818.txt, IETF
RFC 2818, May 2000.

[RFC3023] M. Murata, S. St.Laurent, D. Kohn, XML Media Types,
http://www.ietf.org/rfc/rfc3023.txt, IETF RFC 3023, January 2001.

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier
(URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt, IETF RFC
3986, January 2005.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 15 of 131

http://www.ietf.org/rfc/rfc2535
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2483.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.zvon.org/tmRFC/RFC2616/Output/index.html
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3986.txt

[RFC4234] D. H. Crocker and P. Overell, Augmented BNF for Syntax Specifications:
ABNF,

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218

http://www.ietf.org/rfc/rfc4234.txt, IETF RFC 4234, October 2005.
[RFC4288] N. Freed, J. Klensin, Media Type Specifications and Registration

Procedures, http://www.ietf.org/rfc/rfc4288.txt, IETF RFC 4288,
December 2005.

[SAML] S. Cantor, J. Kemp, R. Philpott, E. Maler, Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0,
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip, March
2005.

[Unicode] The Unicode Consortium. The Unicode Standard, Version 4.1.0, defined
by: The Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley,
2003. ISBN 0-321-18578-1), as amended by Unicode 4.0.1
(http://www.unicode.org/versions/Unicode4.0.1) and by Unicode 4.1.0
(http://www.unicode.org/versions/Unicode4.1.0), March, 2005.

[UUID] Open Systems Interconnection – Remote Procedure Call, ISO/IEC
11578:1996, http://www.iso.org/, August 2001.

[XML] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau,
Extensible Markup Language (XML) 1.0, Third Edition, World Wide Web
Consortium, http://www.w3.org/TR/REC-xml/, February 2004.

[XMLDSig] D. Eastlake, J. Reagle, D. Solo et al., XML-Signature Syntax and
Processing, World Wide Web Consortium,
http://www.w3.org/TR/xmldsig-core/, February, 2002.

[XMLID] J. Marsh, D. Veillard, N. Walsh, xml:id Version 1.0, World Wide Web
Consortium, http://www.w3.org/TR/2005/REC-xml-id-20050909,
September 2005.

[XMLSchema] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML Schema Part
1: Structures Second Edition, World Wide Web Consortium,
http://www.w3.org/TR/xmlschema-1/, October 2004.

[XMLSchema2] P. Biron, A. Malhotra, XML Schema Part 2: Datatypes Second Edition,
World Wide Web Consortium, http://www.w3.org/TR/xmlschema-2/,
October 2004.

[XRIMetadata] D. Reed, Extensible Resource Identifier (XRI) Metadata V2.0,
http://docs.oasis-open.org/xri/xri/V2.0/xri-metadata-V2.0-cd-01.pdf,
March 2005.

[XRISyntax] D. Reed, D. McAlpin, Extensible Resource Identifier (XRI) Syntax V2.0,
http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/xri-syntax-V2.0-
cs.pdf, November 2005.

1.6 Non-Normative References 209

[XRIFAQ] OASIS XRI Technical Committee, XRI 2.0 FAQ, http://www.oasis-
open.org/committees/xri/faq.php, Work-In-Progress, March 2006.

[XRIReqs] G. Wachob, D. Reed, M. Le Maitre, D. McAlpin, D. McPherson,
Extensible Resource Identifier (XRI) Requirements and Glossary v1.0,
http://www.oasis-open.org/committees/download.php/2523/xri-
requirements-and-glossary-v1.0.doc, June 2003.

[WikipediaXRI] Wikipedia entry on XRI (Extensible Resource Identifier),
http://en.wikipedia.org/wiki/XRI, Wikipedia Foundation.

[Yadis] J. Miller, Yadis Specification Version 1.0, http://yadis.org/, March 2006.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 16 of 131

http://www.ietf.org/rfc/rfc4234.txt
http://www.ietf.org/rfc/rfc4288.txt
http://www.unicode.org/versions/Unicode4.0.1
http://www.unicode.org/versions/Unicode4.1.0
http://www.iso.org/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2005/REC-xml-id-20050909
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://docs.oasis-open.org/xri/xri/V2.0/xri-metadata-V2.0-cd-01.pdf
http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/xri-syntax-V2.0-cs.pdf
http://docs.oasis-open.org/xri/xri-syntax/2.0/specs/cs01/xri-syntax-V2.0-cs.pdf
http://www.oasis-open.org/committees/xri/faq.php
http://www.oasis-open.org/committees/xri/faq.php
http://www.oasis-open.org/committees/download.php/2523/xri-requirements-and-glossary-v1.0.doc
http://www.oasis-open.org/committees/download.php/2523/xri-requirements-and-glossary-v1.0.doc
http://en.wikipedia.org/wiki/XRI
http://yadis.org/

2 Conformance 219

220
221

223
224
225
226
227
228
229
230
231

232
233
234

236
237
238
239
240

242
243
244
245
246

248
249
250
251
252

This section specifies the conformance targets of this specification and the requirements that
apply to each of them.

2.1 Conformance Targets 222

The conformance targets of this specification are:
1. XRDS clients, which provide a limited subset of the functionality of XRI resolvers.
2. XRDS servers, which provide a limited subset of the functionality of XRI authority servers.
3. XRI local resolvers, which may implement any combination of the generic, HTTPS, or

SAML resolution protocols.
4. XRI proxy resolvers, which may implement any combination of the generic, HTTPS, or

SAML resolution protocols.
5. XRI authority servers, which may implement any combination of the generic, HTTPS, or

SAML resolution protocols.

Note that a single implementation may serve any combination of these functions. For example, an
XRI authority server may also function as an XRDS client and server and an XRI local and proxy
resolver.

2.2 Conformance Claims 235

A claim of conformance with this specification MUST meet the following requirements:
1. It MUST state which conformance targets it implements.
2. If the conformance target is an XRI local resolver, XRI proxy resolver, or XRI authority

server, it MUST state which resolution protocols are supported, i.e., generic, HTTPS,
and/or SAML.

2.3 XRDS Clients 241

An implementation conforms to this specification as an XRDS client if it meets the following
conditions:

1. It MAY implement parsing of XRDS Documents as specified in section 4.
2. It MUST implement the client requirements of the XRDS request protocol specified in

section 6.

2.4 XRDS Servers 247

An implementation conforms to this specification as an XRDS server if it meets the following
conditions:

1. It MUST produce valid XRDS Documents as specified in section 4.
2. It MUST implement the server requirements of the XRDS request protocol specified in

section 6.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 17 of 131

2.5 XRI Local Resolvers 253

2.5.1 Generic 254

255
256
257
258
259
260
261
262
263
264
265

267
268
269
270

272
273
274
275
276
277

280
281
282

284
285
286

288
289
290

An implementation conforms to this specification as a generic local resolver if it meets the
following conditions:

1. It parses XRDS documents as specified in section 4.
2. It processes resolution inputs and outputs as specified in section 8.
3. It implements the resolver requirements of the generic resolution protocol specified in

section 9.
4. It implements the Redirect and Ref processing rules specified in section 12.
5. It implements the Service Endpoint Selection processing rules specified in section 13.
6. It implements the Synonym Verification processing rules specified in section 14.
7. It implements the Status Code and Error Processing rules specified in section 15.
8. It follows the HTTP(S) usage recommendations specified in section 16.

2.5.2 HTTPS 266

An implementation conforms to this specification as an HTTPS local resolver if it meets all the
requirements of a generic local resolver plus the following conditions:

1. It implements the resolver requirements of the HTTPS trusted resolution protocol
specified in section 10.1.

2.5.3 SAML 271

An implementation conforms to this specification as a SAML local resolver if it meets all the
requirements of a generic local resolver plus the following conditions:

1. It implements the resolver requirements of the SAML trusted resolution protocol specified
in section 10.2.

2. It SHOULD also meet the requirements of an HTTPS local resolver. This is STRONGLY
RECOMMENDED for confidentiality of SAML interactions.

2.6 XRI Proxy Resolvers 278

2.6.1 Generic 279

An implementation conforms to this specification as a generic proxy resolver if it meets all the
requirements of a generic local resolver plus the following conditions:

1. It implements the requirements for a proxy resolver specified in section 11.

2.6.2 HTTPS 283

An implementation conforms to this specification as a HTTPS proxy resolver if it meets all the
requirements of a HTTPS local resolver plus the following conditions:

1. It implements the requirements for a HTTPS proxy resolver specified in section 11.

2.6.3 SAML 287

An implementation conforms to this specification as a SAML proxy resolver if it meets all the
requirements of a SAML local resolver plus the following conditions:

1. It implements the requirements for a proxy resolver specified in section 11.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 18 of 131

291
292

295
296
297
298
299
300
301
302
303

305
306
307
308

310
311
312
313
314
315

317
318
319
320

322
323

2. It SHOULD also meet the requirements of an HTTPS proxy resolver. This is STRONGLY
RECOMMENDED for confidentiality of SAML interactions.

2.7 XRI Authority Servers 293

2.7.1 Generic 294

An implementation conforms to this specification as a generic authority server if it meets the
following conditions:

1. It produces XRDS documents as specified in section 4.
2. It assigns XRDS synonyms as specified in section 5.
3. It processes resolution inputs and outputs as specified in section 8.
4. It implements the server requirements of the generic resolution protocol specified in

section 9.
5. It implements the Status Code and Error Processing rules specified in section 15.
6. It follows the HTTP(S) usage recommendations specified in section 16.

2.7.2 HTTPS 304

An implementation conforms to this specification as an HTTPS authority server if it meets all the
requirements of a generic authority server plus the following conditions:

1. It implements the server requirements of the HTTPS trusted resolution protocol specified
in section 10.1.

2.7.3 SAML 309

An implementation conforms to this specification as an SAML authority server if it meets all the
requirements of a generic authority server plus the following conditions:

1. It implements the server requirements of the SAML trusted resolution protocol specified
in section 10.2.

2. It SHOULD also meet the requirements of an HTTPS authority server. This is
STRONGLY RECOMMENDED for confidentiality of SAML interactions.

2.8 Extensions 316

The protocols and XML documents defined in this specification MAY be extended. To maintain
interoperability, extensions MUST use the extensibility architecture specified in section 17.
Extensions MUST NOT be implemented in a manner that would cause them to be non-
interoperable with implementations that do not implement the extensions.

2.9 Language 321

This specification’s normative language is English. Translation into other languages is
encouraged.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 19 of 131

3 Namespaces 324

3.1 XRI Namespaces for XRI Resolution 325

As defined in section 2.2.1.2 of [XRISyntax], the GCS symbol $ is reserved for specified
identifiers, i.e., those assigned and defined by XRI TC specifications, other OASIS specifications,
or other standards bodies. (See also

326
327
328
329

331
332

[XRIMetadata].) This section specifies the $ namespaces
reserved for XRI resolution.

3.1.1 XRIs Reserved for XRI Resolution 330

The XRIs in Table 2 are assigned by this specification for the purposes of XRI resolution and
resource description.

XRI
(in URI-Normal Form)

Usage See
Section

xri://$res Namespace for XRI resolution service types 3.1.2

xri://$xrds Namespace for the generic XRDS (Extensible
Resource Descriptor Sequence) schema (not
versioned)

3.2

xri://$xrd Namespace for the XRD (Extensible Resource
Descriptor) schema (versioned)

3.2

xri://$xrd*($v*2.0) Version 2.0 of above (using an XRI version
identifier as defined in [XRIMetadata])

3.2

333

335

Table 2: XRIs reserved for XRI resolution.

3.1.2 XRIs Assigned to XRI Resolution Service Types 334

The XRIs in Table 3 are assigned to the XRI resolution service types defined in this specification.

XRI Usage See
Section

xri://$res*auth Authority resolution service 9

xri://$res*auth*($v*2.0) Version 2.0 of above 9

xri://$res*proxy HTTP(S) proxy resolution service 11

xri://$res*proxy*($v*2.0) Version 2.0 of above 11

336

337
338
339

340

Table 3: XRIs assigned to identify XRI resolution service types.

Using the standard XRI extensibility mechanisms described in [XRISyntax], the $res
namespace may be extended by other authorities besides the XRI Technical Committee. See
[XRIMetadata] for more information about extending $ namespaces.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 20 of 131

3.2 XML Namespaces for XRI Resolution 341

Throughout this document, the following XML namespace prefixes have the meanings defined in 342
343 Table 4 whether or not they are explicitly declared in the example or text.

Prefix XML Namespace Reference

xs http://www.w3.org/2001/XMLSchema [XMLSchema]

saml urn:oasis:names:tc:SAML:2.0:assertion [SAML]

ds http://www.w3.org/2000/09/xmldsig# [XMLDSig]

xrds xri://$xrds Section 3.1.1 of
this document

xrd xri://$xrd*($v*2.0) Section 3.1.1 of
this document

344

346
347
348
349
350
351

Table 4: XML namespace prefixes used in this specification.

3.3 Media Types for XRI Resolution 345

Because XRI resolution architecture is based on HTTP, it makes use of standard media types as
defined by [RFC2046], particularly in HTTP Accept headers as specified in [RFC2616]. Table 5
specifies the media types used for XRI resolution. Note that in XRI authority resolution, these
media types MUST be passed as HTTP Accept header values. By contrast, in XRI proxy
resolution these media types MUST be passed as query parameters in an HTTP(S) URI as
specified in section 11.

Media Type Usage Reference

application/xrds+xml Content type for returning the full XRDS
document describing a resolution chain

Appendix D

application/xrd+xml Content type for returning only the final
XRD element in a resolution chain

Appendix E

text/uri-list Content type for returning a list of URIs
output from the service endpoint selection
process defined in section 12

Section 5 of
[RFC2483]

352

353
354
355
356

357

Table 5: Media types defined or used in this specification.

To provide full control of XRI resolution, the media types specified in Table 5 accept the media
type parameters defined in Table 6. All are Boolean flags. Note that when these media type
parameters are appended to a media type in the XRI proxy resolver interface, the semicolon
character used to concatenate them MUST be percent-encoded as specified in section 11.4.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 21 of 131

358

Media Type
Parameter

Default
Value

Usage See
Section

https FALSE Specifies use of HTTPS trusted resolution 10.1

saml FALSE Specifies use of SAML trusted resolution 10.2

refs TRUE Specifies whether Refs should be followed during
resolution (by default they are followed)

12.4

sep FALSE Specifies whether service endpoint selection should
be performed

13

nodefault_t TRUE Specifies whether a default match on a Type service
endpoint selection element is allowed

13.3

nodefault_p TRUE Specifies whether a default match on a Path service
endpoint selection element is allowed

13.3

nodefault_m TRUE Specifies whether a default match on a MediaType
service endpoint selection element is allowed

13.3

uric FALSE Specifies whether a resolver should automatically
construct service endpoint URIs

13.7.1

cid TRUE Specifies whether automatic canonical ID verifi-
cation should performed

14.3

359

360
361

Table 6: Parameters for the media types defined in Table 5.

When used as logical XRI resolution input parameters, these media type parameters will be
referred to as subparameters.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 22 of 131

4 XRDS Documents 362

363
364
365
366
367

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

390

393
394

396
397
398
399

400

XRI resolution provides resource description metadata using a simple, extensible XML format
called an XRDS (Extensible Resource Descriptor Sequence) document. An XRDS document
contains one or more XRD (Extensible Resource Descriptor) elements. While this specification
defines only the XRD elements necessary to support XRI resolution, XRD elements can easily be
extended to publish any form of metadata about the resources they describe.

4.1 XRDS and XRD Namespaces and Schema Locations 368

An XRDS document is intended to serve exclusively as an XML container document for XML
schemas from other XML namespaces. Therefore it has only a single root element xrds:XRDS in
its own XML namespace identified by the XRI xri://$xrds. It also has two attributes,
redirect and ref, that are used to identify the resource described by the XRDS document.
Both are of type anyURI. Use of these attributes is defined in section 12.5.
The elements in the XRD schema are intended for generic resource description, including the
metadata necessary for XRI resolution. Since the XRD schema has simple semantics that may
evolve over time, the version defined in this specification uses the XML namespace
xri://$xrd*($v*2.0). This namespace is versioned using XRI version metadata as defined
in [XRIMetadata].
The attributes defined in both the XRDS and XRD schemas are not namespace qualified. In order
to prevent conflicts, attributes defined in extensions MUST be namespace qualified.
This namespace architecture enables the XRDS namespace to remain constant while allowing
the XRD namespace (and the namespaces of other XML elements that may be included in an
XRDS document) to be versioned over time. See section 17.2 for more about versioning of the
XRD schema.
The locations of the normative RelaxNG schema files for an XRDS document and an XRD
element as defined by this specification are:
• xrds.rnc: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrds.mc 387
• xrd.rnc: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrd.mc 388
• 389

The following URIs will always reference the latest versions of these files:
• xrds.rnc: http://docs.oasis-open.org/xri/2.0/specs/xrds.rnc 391
• xrd.rnc: http://docs.oasis-open.org/xri/2.0/specs/xrd.rnc 392

A reference listing of each of these files is provided in Appendix B, and a reference listing of the
informative W3C XML Schema versions is provided in Appendix C.

4.2 XRD Elements and Attributes 395

The following example XRDS instance document illustrates the elements and attributes defined in
the XRD schema. Note that because it is provided by the community root authority
(tel:+1-201-555-0123), it includes only one XRD describing the subsegment *foo.
Examples in later sections show multiple XRDs.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 23 of 131

http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrds.mc
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrd.mc
http://docs.oasis-open.org/xri/2.0/specs/xrds.rnc
http://docs.oasis-open.org/xri/2.0/specs/xrd.rnc

401

<XRDS xmlns="xri://$xrds" ref="xri://(tel:+1-201-555-0123)*foo"> 402
 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”> 403
 <Query>*foo</Query> 404
 <Status code="100"/> 405
 <ServerSt 100atus code=" "/> 406
 <Expires>2005-05-30T09:30:10Z</Expires> 407
 <ProviderID>xri://(tel:+1-201-555-0123)</ProviderID> 408
 <LocalID>*baz</LocalID> 409
 <EquivID>https://example.com/example/resource/</EquivID> 410
 <CanonicalID>xri://(tel:+1-201-555-0123)!1234</CanonicalID> 411

412 <CanonicalEquivID>
 xri://=!4a76!c2f7!9033.78bd 413

414 </CanonicalEquivID>
415 <Service>

 <ProviderID> 416
 xri://(tel:+1-201-555-0123)!1234 417
 </ProviderID> 418
 <Type>xri://$res*auth*($v*2.0)</Type> 419
 <MediaType>application/xrds+xml</MediaType> 420
 <URI priority=”10”>http://resolve.example.com /URI> <421
 <URI priority=”15”>http://resolve2.example.com</URI> 422
 <URI>https://resolve.example.com</URI> 423

424 </Service>
425 <Service>

 <ProviderID> 426
 xri://(tel:+1-201-555-0123)!1234 427
 </ProviderID> 428
 <Type>xri://$res*auth*($v*2.0)</Type> 429
 <MediaType>application/xrds+xml;https=true</MediaType> 430
 <URI>https://resolve.example.com</URI> 431

432 </Service>
433 <Service>

 <Type match="null" /> 434
 <Path select="true">/media/pictures</Path> 435
 <MediaType select="true image/jpeg "> </MediaType>436
 <URI append="path" >http://pictures.example.com</URI> 437

438 </Service>
439 <Service>

 <Type match="null" /> 440
 <Path select="true" /media/videos Path> > </441
 <MediaType select="true video/mpeg e> "> </MediaTyp442
 <URI append="path" >http://videos.example.com</URI> 443

444 </Service>
445 <Service>

 <ProviderID> xri://!!1000!1234.5678</ProviderID> 446
 <Type match="null > " /447
 <Path match="default" /> 448
 <URI>http://example.com/local</URI> 449

450 </Service>
451 <Service>

 <Type http://example.com/some/service/v3.1 ype> > </T452
 <URI>http://example.com/some/service/endpoint</URI> 453
 <LocalID>https://example.com/example/resource/</LocalID> 454

455 </Service>
456 </XRD>
457

458
459
460

461

</XRDS>

A link to the normative RelaxNG schema definition of the XRD schema is provided in Appendix B.
Additional normative requirements that cannot be captured in XML schema notation are specified
in the following sections. In the case of any conflict, the normative text in this section shall prevail.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 24 of 131

4.2.1 Management Elements 462

463
464
465
466
467
468

469
470
471
472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487

488
489
490

491
492
493
494
495

496

497
498
499
500

501
502
503

504

505

The first set of elements are used to manage XRDs, particularly from the perspective of caching,
error handling, and delegation. Note that to prevent processing conflicts, the XRD schema
permits a choice of either xrd:XRD/xrd:Redirect elements or xrd:XRD/xrd:Ref elements
but not both.
xrd:XRD

Container element for all other XRD elements. Attributes:

• xml:id (type xs:ID). OPTIONAL except in trusted resolution where it is
REQUIRED to uniquely identify this element within the containing xrds:XRDS
document. See sections 4.3.1 and 12.5. Note that this attribute is not explicitly
declared in the normative schema as it is an implicit XML attribute defined in
[XMLID].

• idref (type xs:idref). OPTIONAL except in trusted resolution where it is
REQUIRED when an XRD element in a nested xrds:XRDS document must
reference a previously included XRD instance. See sections 4.3.1 and 12.5.

• version (type xs:string). OPTIONAL for uses outside of XRI resolution but
REQUIRED for XRI resolution as defined in section 4.3.2.

xrd:XRD/xrd:Type
0 or more per xrd:XRD element. A unique identifier of type xs:anyURI that identifies
the type of this XRD. This element is provided to support XRD extensibility as described
in section 17.1.1. If no instances of this element are present, the type is as defined by this
specification. If one or more instances of this element are present, the requirements of
the specified XRD type SHOULD be defined by an extension specification, which
SHOULD be dereferenceable from the URI, IRI, or XRI used as the value of this element.
In all cases XRD processors MAY ignore instances of this element and process the XRD
as specified in this document.

xrd:XRD/xrd:Query
0 or 1 per xrd:XRD element. Expresses the XRI, IRI, or URI reference in URI-normal
form whose resolution results in this xrd:XRD element. See section 5.1.

xrd:XRD/xrd:Status
0 or 1 per xrd:XRD element. RECOMMENDED for all XRDs. REQUIRED if the resolver
must report certain error conditions. The contents of the element are a human-readable
message string describing the status of the response as determined by the resolver. For
XRI resolution, values of the Status element are defined in section 15. Attributes:

• code (type xs:int). REQUIRED. Provides a numeric status code. See section 15.

• cid (type xs:enumeration). OPTIONAL except when REQUIRED to report the
results of CanonicalID verification as defined in section 14.3.4.

• ceid (type xs:enumeration). OPTIONAL except when REQUIRED to report the
results of CanonicalID verification as defined in section 14.3.4.

xrd:XRD:xrd:ServerStatus
0 or 1 per xrd:XRD element. Used by an XRI authority server to report the status of a
resolution request to an XRI resolver. See section 15.1. Attributes:

• code (type xs:int). REQUIRED. Provides a numeric status code. See section 15.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 25 of 131

mailto:/NamingAuthority/LocalAccess/@type

xrd:XRD/xrd:Expires 506
507
508
509
510
511
512
513
514

515
516
517
518
519

520

521
522

523
524
525
526
527
528

529

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546

0 or 1 per xrd:XRD element. The date/time, in the form of xs:dateTime, after which
this XRD cannot be relied upon. To promote interoperability, this date/time value
SHOULD use the UTC "Z" time zone and SHOULD NOT use fractional seconds. A
resolver MUST NOT use an XRD after the time stated here. A resolver MAY discard this
XRD before the time indicated in this result. If the HTTP transport caching semantics
specify an expiry time earlier than the time expressed in this attribute, then a resolver
MUST NOT use this XRD after the expiry time declared in the HTTP headers per section
13.2 of [RFC2616]. See section 16.2.1.

xrd:XRD/xrd:Redirect
0 or more per xrd:XRD element. Type xs:anyURI. MUST contain an absolute HTTP(S)
URI. Choice between this or the xrd:XRD/xrd:Ref element below. MUST be
processed by a resolver to locate another XRDS document authorized to describe the
target resource as defined in section 12. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

• append (type xs:enumeration). OPTIONAL. Governs construction of the final
redirect URI as defined in section 13.7.

xrd:XRD/xrd:Ref
0 or more more per xrd:XRD element. Type xs:anyURI. MUST contain an absolute
XRI. Choice between this or the xrd:XRD/xrd:Redirect element above. MUST be
processed by a resolver (depending on the value of the refs subparameter) to locate
another XRDS document authorized to describe the target resource as defined in section
12. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

4.2.2 Trust Elements 530

The second set of elements are for applications where trust must be established in the identifier
authority providing the XRD. These elements are OPTIONAL for generic authority resolution
(section 9), but may be REQUIRED for specific types of trusted authority resolution (section 10)
and CanonicalID verification (section 14.3).
xrd:XRD/xrd:ProviderID

0 or 1 per xrd:XRD element. A unique identifier of type xs:anyURI for the parent
authority providing this XRD. The value of this element MUST be a persistent identifier.
There MUST be negligible probability that the value of this element will be assigned as an
identifier to any other authority. It is RECOMMENDED to use a fully persistent XRI as
defined in [XRISyntax]. If a URN [RFC2141] or other persistent identifer is used, it is
RECOMMENDED to express it as an XRI cross-reference as defined in [XRISyntax].
Note that for XRI authority resolution, the authority identified by this element is the parent
authority (the provider of the current XRD), not the child authority (the target of the
current XRD). The latter is identified by the xrd:XRD/xrd:Service/xrd:ProviderID
element inside a authority resolution service endpoint (see below).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 26 of 131

xrd:XRD/saml:Assertion 547
548
549
550
551
552

553
554
555
556
557

559
560
561
562
563
564
565
566

567

568
569
570
571

572

573
574
575
576

577
578
579
580

582
583
584
585
586
587
588

0 or 1 per xrd:XRD element. A SAML assertion from the provider of the current XRD
that asserts that the information contained in the current XRD is authoritative. Because
the assertion is digitally signed and the digital signature encompasses the containing
xrd:XRD element, it also provides a mechanism for the recipient to detect unauthorized
changes since the last time the XRD was published.

Note that while a saml:Issuer element is required within a saml:Assertion element,
this specification makes no requirement as to the value of the saml:Issuer element. It
is up to the XRI community root authority to place restrictions, if any, on the
saml:Issuer element. A suitable approach is to use an XRI in URI-normal form that
identifies the community root authority. See section 9.1.3.

4.2.3 Synonym Elements 558

In XRDS architecture, an identifier is a synonym of the query identifier (the identifier resolved to
obtain the XRDS document) if it is not character-for-character equivalent but identifies the same
target resource (the resource to which the identifier was assigned by the identifier authority). The
normative rules for synonym usage are specified in section 5.
xrd:XRD/xrd:LocalID

0 or more per xrd:XRD element. Type xs:anyURI. Asserts an interchangeable
synonym for the value of the xrd:Query element. See section 5.2.1 for detailed
requirements. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

xrd:XRD/xrd:EquivID
0 or more per xrd:XRD element. Type xs:anyURI. Asserts an absolute identifier for the
target resource that is not equivalent to the CanonicalID or CanonicalEquivID (see
below). See section 5.2.2 for detailed requirements. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

xrd:XRD/xrd:CanonicalID
0 or 1 per xrd:XRD element. Type xs:anyURI. Asserts the canonical identifier assigned
to the target resource by the authority providing the XRD. See section 5.2.3 for detailed
requirements.

xrd:XRD/xrd:CanonicalEquivID
0 or 1 per xrd:XRD element. Type xs:anyURI. Asserts the canonical identifier for the
target resource assigned by any identifier authority. See section 5.2.4 for detailed
requirements.

4.2.4 Service Endpoint Descriptor Elements 581

The next set of elements is used to describe service endpoints—the set of network endpoints
advertised in an XRD for performing delegated resolution, obtaining further metadata, or
interacting directly with the target resource. Again, because there can be more than one instance
of a service endpoint that satisfies a service endpoint selection query, or more than one instance
of these elements inside a service descriptor, these elements all accept the global priority
attribute (section 4.3.3).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 27 of 131

IMPORTANT: Establishing unambiguous priority is especially important for service endpoints
because they are used to control the direction of authority resolution, the order of Redirect and
Ref processing, and the prioritization of the final service endpoint URIs selected (if any). See
section

589
590
591
592
593
594
595
596
597

598

599
600
601
602
603
604

605

606
607
608
609
610
611
612

613

614
615

616
617
618
619
620

621

622
623
624
625
626

627

628

4.3.3 for rules and recommendations about usage of the priority attribute.
Note that to prevent processing conflicts, the XRD schema permits only one of these element
types in a service endpoint: xrd:URI, xrd:Redirect, or xrd:Ref.
xrd:XRD/xrd:Service

0 or more per xrd:XRD element. The container element for service endpoint metadata.
Referred to by the abbreviation SEP. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

xrd:XRD/xrd:Service/xrd:LocalID
0 or more per xrd:XRD/xrd:Service element. Identical to the
xrd:XRD/xrd:LocalID element defined above except this synonym is asserted by the
provider of the service and not the parent authority for the XRD. MAY be used to provide
one or more identifiers by which the target resource SHOULD be identified in the context
of the service endpoint. See section 5.2.1 for detailed requirements. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

xrd:XRD/xrd:Service/xrd:URI
0 more per xrd:XRD/xrd:Service element. Type xs:anyURI. Choice between this or
the xrd:XRD/xrd:Service/xrd:Redirect or xrd:XRD/xrd:Service/xrd:Ref
elements. If present, it indicates a transport-level URI for accessing the capability
described by the parent Service element. For the service types defined for XRI resolution
in section 3.1.2, this URI MUST be an HTTP or HTTPS URI. Other services may use
other transport protocols. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

• append (type xs:enumeration). OPTIONAL. Governs construction of the final
service endpoint URI as defined in section 13.7.

xrd:XRD/xrd:Service/xrd:Redirect
0 more per xrd:XRD/xrd:Service element. Choice between this or the
xrd:XRD/xrd:Service/xrd:URI or xrd:XRD/xrd:Service/xrd:Ref elements.
Identical to the xrd:XRD/xrd:Redirect element defined above except processed only
in the context of service endpoint selection. See section 12. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

xrd:XRD/ xrd:Service/xrd:Ref
0 more per xrd:XRD/xrd:Service element. Choice between this or the
xrd:XRD/xrd:Service/xrd:URI or xrd:XRD/xrd:Service/xrd:Redirect
elements. Identical to the xrd:XRD/xrd:Ref element defined above except processed
only in the context of service endpoint selection. See section 12. Attributes:

• priority (type xs:nonNegativeInteger). OPTIONAL. See section 4.3.3.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 28 of 131

4.2.5 Service Endpoint Trust Elements 629

Similar to the XRD trust elements defined above, these elements enable trust to be established in
the provider of the service endpoint. These elements are OPTIONAL for generic authority
resolution (section

630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661

662

663

664
665
666
667

668

669

670
671
672

9), but REQUIRED for SAML trusted authority resolution (section 10.2).
xrd:XRD/xrd:Service/xrd:ProviderID

0 or 1 per xrd:XRD/xrd:Service element. Identical to the
xrd:XRD/xrd:ProviderID above, except this identifies the provider of the described
service endpoint instead of the provider of the XRD. For an XRI authority resolution
service endpoint, it identifies the child authority who will perform resolution of subsequent
XRI subsegments. In SAML trusted resolution, when a resolution request is made to the
child authority at this service endpoint, the contents of the xrd:XRD/xrd:ProviderID
element in the response MUST match the content of this element for correlation as
defined in section 10.2.5. The same usage MAY apply to other services not defined in
this specification. Authors of other specifications employing XRD service endpoints
SHOULD define the scope and usage of this element, particularly for trust verification.

xrd:XRD/xrd:Service/ds:KeyInfo
0 or 1 per xrd:XRD/xrd:Service element. This element provides the digital signature
metadata necessary to validate interaction with the resource identified by the
xrd:XRD/xrd:Service/xrd:ProviderID (above). In XRI resolution, this element
comprises the key distribution method for SAML trusted authority resolution as defined in
section 10.2.5. The same usage MAY apply to other services not defined in this
specification.

4.2.6 Service Endpoint Selection Elements 651

The final set of service endpoint descriptor elements is used in XRI resolution for service endpoint
selection. These all include two global attributes used for this purpose: match and select.
xrd:XRD/xrd:Service/xrd:Type

0 or more per xrd:XRD/xrd:Service element. A unique identifier of type xs:anyURI
that identifies the type of capability available at this service endpoint. See section 3.1.2
for the resolution service types defined in this specification. If a service endpoint does not
include at least one xrd:Type element, the service type is effectively described by the
type of URI specified in the xrd:XRD/xrd:Service/xrd:URI element, i.e., an HTTP
URI specifies an HTTP service. See section 13.3.6 for Type element matching rules.
Attributes:

• match (type xs:enumeration). OPTIONAL. See section 13.3.2.

• select (type xs:boolean). OPTIONAL. See section 13.4.2.

xrd:XRD/xrd:Service/xrd:Path
0 or more per xrd:XRD/xrd:Service element. Of type xs:string. Contains a string
meeting the xri-path production defined in section 2.2.3 of [XRISyntax]. See section
13.3.7 for Path element matching rules. Attributes:

• match (type xs:enumeration). OPTIONAL. See section 13.3.2.

• select (type xs:boolean). OPTIONAL. See section 13.4.2.

xrd:XRD/xrd:Service/xrd:MediaType
0 or more per xrd:XRD/xrd:Service element. Of type xs:string. The media type of
content available at this service endpoint. The value of this element MUST be of the form

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 29 of 131

mailto:/NamingAuthority/LocalAccess/@type

of a media type defined in [RFC2046]. See section 3.3 for the media types used in XRI
resolution. See section

673
674

675

676

677
678
679
680

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

702
703
704
705
706
707

709
710
711
712
713
714

13.3.8 for MediaType element matching rules. Attributes:

• match (type xs:enumeration). OPTIONAL. See section 13.3.2.

• select (type xs:boolean). OPTIONAL. See section 13.4.2.

The XRD schema (Appendix B) allows other elements and attributes from other namespaces to
be added throughout. As described in section 17.1.1, these points of extensibility can be used to
deploy new XRI resolution schemes, new service description schemes, or other metadata about
the described resource.

4.3 XRD Attribute Processing Rules 681

4.3.1 ID Attribute 682

For uses such as SAML trusted resolution (section 10.2) that require unique identification of
multiple XRD elements within an XRDS document, the XRD element uses the implicit xml:id
attribute as defined by the W3C XML ID specification [XMLID]. Note that this attribute is NOT
explicitly declared in either the RelaxNG schema in Appendix B or the XML Schema in Appendix
C since it is inherently included by the extensibility design of both schemas.
If present, the value of this attribute MUST be unique for all elements in the containing XML
document. Because an XRI resolver may need to assemble multiple XRDs received from different
authority servers into one XRDS document, there MUST be negligible probability that the value of
the xrd:XRD/@xml:id attribute is not globally unique. For this reason the value of this attribute
SHOULD be a UUID as defined by [UUID] prefixed by a single underscore character (“_”) in
order to make it a legal NCName as required by [XMLID]. However, the value of this attribute
MAY be generated by any algorithm that fulfills the same requirements of global uniqueness and
NCName conformance.
Note that when an XRI resolver is assembling multiple XRDs into a single XRDS document, their
XML document order MUST match the order in which they were resolved (see section 9.1.2).
Also, if Redirect or Ref processing requires the same XRD to be included in an XRDS document
twice (via a nested XRDS document), that XRD MUST reference the previous instance using the
xrd:XRD/@idref attribute as defined in section 12.5.

4.3.2 Version Attribute 701

Unlike the XRDS element, which is not intended to be versioned, the xrd:XRD element has the
optional attribute xrd:XRD/@version. Use of this attribute is REQUIRED for XRI resolution.
The value of this attribute MUST be the exact numeric version value of the XRI Resolution
specification to which the containing XRD element conforms. See sections 3.1.1 and 17.2.1.
General rules about versioning of the XRI resolution protocol are defined in section 17.2. Specific
rules for processing the XRD version attribute are specified in section 17.2.4.

4.3.3 Priority Attribute 708

Certain XRD elements involved in the XRI resolution process (xrd:Redirect, xrd:Ref,
xrd:Service, and xrd:URI) may be present multiple times in an XRDS document to enable
delegation, provide redundancy, expose differing capabilities, or other purposes. In this case XRD
authors SHOULD use the global priority attribute to prioritize selection of these element
instances. Like the priority attribute of DNS records, this attribute accepts a non-negative integer
value.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 30 of 131

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

Following are the normative processing rules that apply whenever there is more than one
instance of the same type of element selected in an XRD (if there is only one instance selected,
the priority attribute is ignored.)

1. The consuming application SHOULD select the element instance with the lowest numeric
value of the priority attribute. For example, an element with priority attribute value
of “10” should be selected before an element with a priority attribute value of “11”,
and an element with priority attribute value of “11” should be selected before an
element with a priority attribute value of “25”. Zero is the highest priority attribute
value. Null is the lowest priority attribute value—it is the equivalent of a value of
infinity. It is RECOMMENDED to use a large finite value (100 or more) rather than a null
value.

2. If an element has no priority attribute, its priority attribute value is considered to
be null, i.e., the lowest possible priority value. Rather than omitting a priority attribute,
it is RECOMMENDED that XRI authorities follow the standard practice in DNS and set
the default priority attribute value to “10”.

3. If two or more instances of the same element type have identical priority attribute
values (including the null value), the consuming application SHOULD select one of the
instances at random. This consuming application SHOULD NOT simply choose the first
instance that appears in XML document order.

IMPORTANT: It is vital that implementers observe the preceding rule in order to support 734
intentional redundancy or load balancing semantics. At the same time, it is vital that XRDS 735
authors understand that this rule can result in non-deterministic behavior if two or more of the 736
same type of synonym elements or service endpoint elements are included with the same priority 737
in an XRD but are NOT intended for redundancy or load balancing. 738

739
740
741
742
743
744
745
746

748
749
750
751
752
753
754
755
756
757
758
759
760

4. An element selected according to these rules is referred to in this specification as the
highest priority element. If this element is subsequently disqualified from the set of
qualified elements, the next element selected according to these rules is referred to as
the next highest priority element. If a resolution operation specifying selection of the
highest priority element fails, the resolver SHOULD attempt to select the next highest
priority element unless otherwise specified. This process SHOULD be continued for all
other instances of the qualified elements until success is achieved or all instances are
exhausted.

4.4 XRI and IRI Encoding Requirements 747

The W3C XML 1.0 specification [XML] requires values of XML elements of type xs:anyURI to
be valid IRIs. Thus all XRIs used as the values of XRD elements of this type MUST be in at least
IRI-normal form as defined in section 2.3 of [XRISyntax].
A further restriction applies to XRIs or IRIs used in XRI resolution because it relies on HTTP(S) as
a transport protocol. Therefore when an XRI or IRI is used as the value of an xrd:Query,
xrd:LocalID, xrd:EquivID, xrd:CanonicalID, xrd:CanonicalEquivID,
xrd:Redirect, xrd:Ref, xrd:Type, or xrd:Path element, it MUST be in URI-normal form
as defined in section 2.3 of [XRISyntax].
Note: XRIs composed entirely of valid URI characters and which do not use XRI parenthetical
cross-reference syntax do not require escaping in the transformation to URI-normal form.
However, XRIs that use characters valid only in IRIs or that use XRI parenthetical cross-reference
syntax may require percent encoding in the transformation to URI-normal form as explained in
section 2.3 of [XRISyntax].

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 31 of 131

5 XRD Synonym Elements 761

XRDS architecture includes support for synonyms—XRIs, IRIs, or URIs that are not character-for-
character equivalent, but which identify the same target resource (in the same context, or across
different contexts).

762
763
764 Table 7 lists the four synonym elements supported in XRDs.

XRD Synonym
Element

Cardinality Resolution
Scope

Assigning
Authority

Resolves to
different XRD?

LocalID Zero-or-more Local MUST be the
parent authority

MUST NOT

EquivID Zero-or-more Global Any authority SHOULD

CanonicalID Zero-or-one Global MUST be the
parent authority

MUST NOT

CanonicalEquivID Zero-or-one Global Any authority SHOULD

765

766

768
769
770
771
772
773

775
776
777
778
779
780

782
783
784
785
786
787
788
789
790
791

Table 7: The four XRD synonym elements.

This section specifies the normative rules for usage of each XRD synonym element.

5.1 Query Identifiers 767

Each XRI synonym element asserts a synonym for the query identifier. This is the identifier
resolved to obtain the XRDS document containing the XRD asserting the synonym. A fully-
qualified query identifier may be either:

1. A valid absolute HTTP(S) URI that does not contain an XRI.
2. A valid absolute XRI, either in a standard XRI form as defined in [XRISyntax], or

encoded in an HTTP(S) URI (called an HXRI) as specified in section 11.2.

5.1.1 HTTP(S) URI Query Identifiers 774

If the fully-qualified query identifier is an absolute HTTP(S) URI, the XRDS document to which it
resolves (via the protocol specified in section 6) MUST contain a single XRD. This XRD MAY
include an xrd:Query element; if present, the value MUST be equivalent to the original HTTP(S)
URI query identifier.
In this single XRD, all synonym elements in Table 7 assert synonyms for the original HTTP(S)
URI.

5.1.2 XRI Query Identifiers 781

If the fully-qualifed query identifier is an absolute XRI, the XRDS document to which it resolves
(via the protocol specified in section 9.1.2) MAY contain multiple XRDs, each XRD corresponding
to one subsegment of the authority component of the XRI. Each XRD SHOULD include an
xrd:Query element that echos back the XRI subsegment described by this XRD. This is called
the local query identifier, because it represents just one subsegment of the fully-qualifed query
identifier.
At any point in the XRI resolution chain, the combination of the community root authority XRI
(section 9.1.3) plus all local query identifiers resolved in all XRDs up to that point is called the
current fully-qualified query identifier. When the resolution chain is complete, the current fully-
qualified query identifier is equal to the starting fully-qualifed query identifier.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 32 of 131

792
793
794

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

In each XRD in the resolution chain, the LocalID element asserts a synonym for the local query
identifier, and the EquivID, CanonicalID, and CanonicalEquivID elements assert a synonym for
the current fully-qualified query identifier.

5.2 Synonym Elements 795

5.2.1 LocalID 796

In an XRD, a synonym for the local query identifier is asserted using the xrd:LocalID element.
LocalIDs may be used at both the XRD level (as a child of the root xrd:XRD element) and at the
service endpoint (SEP) level (as a child of the root xrd:XRD/xrd:Service element).
At the XRD level, the value of the xrd:XRD/xrd:LocalID element asserts a synonym that is
interchangeable with the contents of the xrd:Query element in the XRD. This means that
resolution of a LocalID in the context of the same parent authority using the same resolution
query parameters as the current query MUST result in an equivalent XRD as defined in section
5.4. It also means an XRI resolver MAY use a LocalID as an alternate key for the XRD in its
cache (see section 16.4.2).
If the parent authority has assigned a persistent local identifier to the resource described by an
XRD, it SHOULD return this persistent identifier as an xrd:XRD/xrd:LocalID value in any
resolution response for a reassignable local identifier for the same resource. The reverse MAY
also be true, however parent authorities MAY adopt privacy or other policies that restrict the
reassignable synonyms returned for any particular resolution request.
At the SEP level, the xrd:XRD/xrd:Service/xrd:LocalID element MAY be used to express
either a local or global identifier for the target resource in the context of the specific service being
described. If present, consuming applications SHOULD use the value of the highest priority
instance of the xrd:XRD/xrd:Service/xrd:LocalID element to identify the target resource
in the context of this service endpoint. If not present, consuming applications SHOULD select a
synonym as defined in section 5.6.

SPECIAL SECURITY CONSIDERATIONS: A parent authority SHOULD NOT permit a child 817
authority to edit a LocalID value in an XRD without authenticating the child authority and verifying 818
that the child authority is authorized to use this LocalID value either at the XRD level and/or the 819
SEP level. 820

822
823
824
825
826
827
828
829
830
831

5.2.2 EquivID 821

In an XRD, any synonym for the current fully-qualified query identifier except a CanonicalID or a
CanonicalEquivID (see below) is asserted using the xrd:EquivID element. Unlike a LocalID, an
EquivID is NOT REQUIRED to be issued by the parent authority.
An EquivID MUST be an absolute identifier. For durability of the reference, it is RECOMMENDED
to use a persistent identifier such as a persistent XRI [XRISyntax] or a URN [RFC2141].
An EquivID element is OPTIONAL in an XRD except in two cases:

1. When it is REQUIRED as a backpointer to verify another EquivID element in a different
XRD as specified in section 14.2.

2. When it is REQUIRED as a backpointer to verify a CanonicalEquivID element as
specified in section 14.3.3.

SPECIAL SECURITY CONSIDERATIONS: An EquivID synonym SHOULD NOT be trusted 832
unless it is verified. This function is not performed automatically by XRI resolvers but may be 833
easily performed by consuming applications using one additional XRI resolution call as specified 834
in section 14.2. A parent authority SHOULD NOT permit a child authority to edit the EquivID value 835
in an XRD without authenticating the child authority and verifying that the child authority is 836

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 33 of 131

authorized to use this EquivID value. A parent authority SHOULD NOT assert an EquivID 837
element if the identifier authority to whom it points is not authorized to make a CanonicalEquivID 838
assertion. 839

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

859
860

862

5.2.3 CanonicalID 840

The purpose of the xrd:CanonicalID element is to assert the canonical identifier assigned by
the parent authority to the target resource described by an XRD. It plays a special role in XRD
synonym architecture because it is the ultimate test of XRD equivalance as defined in section 5.4.
A CanonicalID MUST meet all the requirements of an EquivID plus the following:

1. It MUST be an identifier for which the parent authority is the final authority. This means
that resolution of a CanonicalID using the same resolution query parameters as the
current query MUST result in an equivalent XRD as defined in section 5.4.

2. If the CanonicalID is any XRI except a community root authority XRI (section 9.1.3), it
MUST consist of the parent authority's CanonicalID plus one additional subsegment. (In
XRI resolution the parent authority’s CanonicalID is always in the immediately preceding
XRD in the same XRDS document, not in a nested XRDS document produced as a result
of Redirect and Ref processing as defined in section 12.5.) For example, if the
CanonicalID asserted for a target resource is @!1!2!3, then the CanonicalID for the
parent authority must be @!1!2. See section 14.3.2 for details.

3. Once assigned, a parent authority SHOULD NEVER: a) change or reassign a
CanonicalID value, or b) stop asserting a CanonicalID element in an XRD in which it has
been asserted. For this reason, it is STRONGLY RECOMMENDED to use a persistent
identifier such as a persistent XRI [XRISyntax] or a URN [RFC2141].

As a best practice, a parent authority SHOULD ALWAYS publish a CanonicalID element in an
XRD, even if its value is equivalent to the current fully-qualified query identifier. This practice:
• Makes it unambiguous to consuming applications which absolute synonym they should use to 861

identify the target resource in the context of the parent authority.
• Enables child authorities to issue their own verifiable CanonicalIDs. 863
• Enables verification of a CanonicalEquivID if asserted (below). 864

SPECIAL SECURITY CONSIDERATIONS: A CanonicalID synonym SHOULD NOT be trusted 865
unless it is verified. CanonicalID verification is performed automatically during resolution by an 866
XRI resolver unless this function is explicitly turned off; see section 14. A parent authority 867
SHOULD NOT permit a child authority to edit the CanonicalID value in an XRD without 868
authenticating the child authority and verifying that the child authority is authorized to use this 869
CanonicalID value. 870

872
873
874
875
876
877
878
879
880
881

5.2.4 CanonicalEquivID 871

The purpose of the xrd:CanonicalEquivID element is to assert a canonical synonym for the
fully-qualified query identifier for which the parent authority MAY NOT be authoritative. A
CanonicalEquivID MUST meet all the requirements of an EquivID plus the following:

1. In order for the value of the xrd:CanonicalEquivID element to be verified: a) the
XRD in which it appears MUST include a CanonicalID that can be verified as specified in
section 14.2, and b) the XRD to which it resolves MUST meet the rules specified in
section 14.3.3. In particular, those rules require that the CanonicalID of that XRD match
the asserted CanonicalEquivID.

2. For the same reasons as with a CanonicalID, it is STRONGLY RECOMMENDED to use
a persistent identifier such as a persistent XRI [XRISyntax] or a URN [RFC2141].

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 34 of 131

882
883
884
885

886
887
888
889

3. Although the CanonicalEquivID associated with a CanonicalID MAY change over time, at
any one point in time, every XRD from the same parent authority that asserts the same
CanonicalID value MUST assert the same CanonicalEquivID value if the XRD includes a
CanonicalEquivID element.

As a best practice, a parent authority SHOULD publish a CanonicalEquivID in an XRD if
consuming applications SHOULD be able to persistently identify the target resource using this
identifier in other contexts. Also, a CanonicalEquivID value SHOULD change very infrequently, if
at all.

SPECIAL SECURITY CONSIDERATIONS: A CanonicalEquivID synonym SHOULD NOT be 890
trusted unless it is verified. Verification of the value of the CanonicalEquivID element in the final 891
XRD in an XRDS document is performed automatically during resolution by an XRI resolver 892
unless this function is explicitly turned off; see section 14. A parent authority SHOULD NOT 893
permit a child authority to edit the CanonicalEquivID value in an XRD without authenticating the 894
child authority and verifying that the child authority is authorized to use this CanonicalEquivID 895
value. 896

898
899
900
901
902
903
904
905
906
907
908
909
910

5.3 Redirect and Ref Elements 897

While similar in some ways to synonym elements, the xrd:Redirect and xrd:Ref elements
MUST NOT be used to assert a synonym. Instead their purpose is to assert that a different XRDS
document is authorized to serve as an equally valid descriptor of the target resource. These
elements enable separation of synonym assertion semantics vs. distributed XRDS document
authorization semantics.
In the same way as a LocalID, both a Redirect and a Ref may be used in an XRD at either the
XRD level (as a child of the root xrd:XRD element) and at the SEP level (as a child of the root
xrd:XRD/xrd:Service element). The complete rules for Redirect and Ref processing in XRI
resolution are specified in section 12.
If two independent resources are later merged into the same resource, e.g., two businesses are
merged into one, the use of an EquivID, CanonicalID, or CanonicalEquivID element SHOULD be
combined with the use of a Redirect or Ref element to provide the semantics of BOTH identifier
synonymity and XRDS authorization.

SPECIAL SECURITY CONSIDERATIONS: A parent authority SHOULD NOT permit a child 911
authority to edit a Redirect or Ref value in an XRD without authenticating the child authority and 912
verifying that the child authority is authorized to use this Redirect or Ref value at either the XRD 913
level and/or the SEP level. 914

916
917
918
919
920
921
922
923

924
925
926
927

5.4 XRD Equivalence 915

LocalID and CanonicalID synonyms are required to resolve to an XRD that is equivalent to the
XRD in which the synonym is asserted. Two XRDs MUST be considered equivalent if they meet
the following rules:

1. Both XRDs contain a CanonicalID element.
2. The values of these CanonicalID elements are equivalent according to the equivalence

rules of the applicable identifier scheme. Note that these identifiers MUST be in URI-
normal form as specified in section 4.4. In addition, if the CanonicalID values are
HTTP(S) URIs, fragments MUST be considered significant in comparison.

In addition, while not strictly required for XRD equivalence, section 5.2.4 REQUIRES that two
equivalent XRDs issued at the same point in time assert the same CanonicalEquivID value if they
both contain a CanonicalEquivID element. It is RECOMMENDED that all other elements in the
XRD that are not relative to a specific resolution request also be equivalent.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 35 of 131

5.5 Synonym Verification 928

For security purposes, it is STRONGLY RECOMMENDED that a consuming application not rely
on EquivID, CanonicalID, or CanonicalEquivID synonyms unless they are verified as specified in
section

929
930
931

933
934
935

938
939

941
942

944
945

947
948

14.

5.6 Synonym Selection 932

It is out of the scope of this specification to specify policies consuming applications should use to
select their desired synonym(s) to identify a target resource. However, the following are
RECOMMENDED best practices:
• Only select a verified synonym (see above). 936
• Select a persistent synonym, particularly if a long term or immutable reference is required. If 937

a persistent synonym is present, other reassignable synonyms (including the current fully-
qualified query identifier) SHOULD be treated only as temporary identifiers.

• Select a CanonicalID if present, verified, and persistent. This identifier SHOULD be used 940
whenever referencing the target resource in the context of the parent authority issuing the
CanonicalID.

• If possible, also select a CanonicalEquivID if present, verified, and persistent. This identifier 943
SHOULD be used as a reference to the target resource in any context other than that of the
parent authority.

• When selecting a synonym to use in the context of a specific service endpoint, follow the 946
recommendations for use of the xrd:XRD/xrd:Service/xrd:LocalID element as
specified in section 5.2.1.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 36 of 131

6 Discovering an XRDS Document from an 949

HTTP(S) URI 950

951
952
953
954

956
957
958
959
960
961
962
963

965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981

983
984
985
986
987

A resource described by an XRDS document and potentially identified by one or more XRIs may
also be identified with one or more HTTP(S) URIs. For backwards compatibility with HTTP(S)
infrastructure, this section defines two protocols, originally specified in [Yadis], for discovering an
XRDS document starting with an HTTP(S) URI.

6.1 Overview 955

There are two protocols for discovery of an XRDS document from an HTTP(S) URI:
1. HEAD protocol: using an HTTP(S) HEAD request to obtain a header with XRDS

document location information as specified in section 6.2.
2. GET protocol: using an HTTP(S) GET request with content negotiation as specified in

section 6.3.
An XRDS server MUST support the GET protocol and MAY support the HEAD protocol. An
XRDS client MAY attempt the HEAD protocol but MUST attempt the GET protocol if the HEAD
protocol fails.

6.2 HEAD Protocol 964

Under this protocol the XRDS client MUST begin by issuing an HTTP(S) HEAD request. This
request SHOULD include an Accept header specifying the content type
application/xrds+xml.
The response from the XRDS server MUST be HTTP(S) response-headers only, which MAY
include one or both of the following:

1. An X-XRDS-Location response-header.
2. A content type response-header specifying the content type application/xrds+xml.

If the response includes the first option above, the value of the X-XRDS-Location response-
header MUST be an HTTP(S) URI which gives the location of an XRDS document describing the
target resource. The XRDS client MUST then request this document as specified in section 6.3.
If the response includes the second option above, the XRDS client MUST request the XRDS
document from the original HTTP(S) URI as specified in section 6.3.
If the response includes both options above, the value of the X-XRDS-Location element in the
HTTP(S) response-header MUST take precedence.
If response includes neither of the two options above, this protocol fails and the XRDS client
MUST fall back to using the protocol specified in section 6.3.
In all cases the HTTP(S) status messages and error codes defined in [RFC2616] apply.

6.3 GET Protocol 982

Under this protocol the XRDS client MUST begin by issuing an HTTP(S) GET request. This
request SHOULD include an Accept header specifying the content type
application/xrds+xml.
The XRDS server response MUST be one of four options:

1. HTTP(S) response-headers only as defined in section 6.2.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 37 of 131

2. HTTP(S) response-headers as defined in section 6.2 together with a document, which
MAY be either document type specified in options 3 or 4 below.

988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

3. A valid HTML document with a <head> element that includes a <meta> element with an
http-equiv attribute equal to X-XRDS-Location.

4. A valid XRDS document (content type application/xrds+xml).
If the response is only HTTP(S) response headers as defined in section 6.2, or if in addition to
these response headers it includes any document other than the two document types defined in
the third and fourth options above, the protocol MUST proceed as defined in section 6.2, except
that there is no fallback to this section if that protocol fails.
If the response is only an HTML document as defined in the third option above, the value of the
<meta> element with an http-equiv attribute equal to X-XRDS-Location MUST be an
HTTP(S) URI which gives the location of an XRDS document describing the target resource. If
this HTTP(S) URI is identical to the starting HTTP(S) URI, this is a loop and the protocol fails.
Otherwise, the XRDS client MUST request the XRDS document from this URI using an HTTP(S)
GET. This request SHOULD include an Accept header specifying the content type
application/xrds+xml.
If the response includes both an HTTP(S) response header and the HTML document defined in
the third option above, the value of the X-XRDS-Location element in the HTTP(S) response-
header MUST take precedence.
If the response includes an XRDS document as specified in the fourth option above, the protocol
has completed successfully.
In all cases the HTTP(S) status messages and error codes defined in [RFC2616] apply.
Note: If the XRDS server supports content negotiation, the response SHOULD include a Vary:
header to allow caches to properly interpret future requests. This header SHOULD be present
even in the case where the HTML page is returned (instead of an XRDS document).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 38 of 131

7 XRI Resolution Flow 1013

Logically, XRI resolution is a function invoked by an application to dereference an XRI into a
descriptor of the target resource (or in some cases to a representation of the resource itself).

1014
1015
1016
1017

Figure 2 is a top-level flowchart of this function highlighting the two major phases: authority
resolution followed by optional service endpoint selection.

 1018
1019 Figure 2: Top-level flowchart of XRI resolution phases.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 39 of 131

1020
1021

Branches of this top-level flowchart are used throughout the specification to provide a logical
overview of key components of XRI resolution. The branch flowcharts include:
• Figure 3: Input processing (section 8.1). 1022
• Figure 4: Output processing (section 8.2). 1023
• Figure 5: Authority resolution (section 9). 1024
• Figure 6: XRDS requests (section 9.1.3). 1025
• Figure 7: Redirect and Ref processing (section 12). 1026
• Figure 8: Service endpoint selection (section 13). 1027
• Figure 9: Service endpoint selection logic (section 13.2). 1028

IMPORTANT: In all cases the flowcharts are informative and the specification text is normative. 1029
However, the flowcharts are recommended as an aid in reading the specification. In particular, 1030
those highlighted in bold above illustrate the recursive calls for authority resolution and service 1031
endpoint selection used during Redirect and Ref processing (section 12). Implementers should 1032
pay special attention to these calls and the guidance in section 12.6, Recursion and Backtracking. 1033

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 40 of 131

8 Inputs and Outputs 1034

This section defines the logical inputs and outputs of XRI resolution together with their processing
rules. It does not specify a binding to a particular local resolver interface. A binding to an HTTP
interface for XRI proxy resolvers is specified in section

1035
1036
1037
1038

1040
1041
1042
1043

11. For purposes of illustration, a binding
to a non-normative, language-neutral API is suggested in Appendix F.

8.1 Inputs 1039

Table 8 summarizes the logical input parameters to XRI resolution and whether they are
applicable in the authority resolution phase or the service endpoint selection phase. In this
specification, references to these parameters use the logical names in the first column. Local
APIs MAY use different names for these parameters and MAY define additional parameters.

Logical Input
Parameter Name

Type Required/
Optional

Default Resolution Phase Section

QXRI (query XRI)
including Authority
String, Path String,
and Query String

xs:anyURI Required N/A Authority
Resolution

(except Path String
which is used in
Service Endpoint

Selection)

8.1.1

Resolution Output
Format

xs:string
(media type)

Optional Null Authority
Resolution

8.1.2

Service Type xs:anyURI Optional Null Service Endpoint
Selection

8.1.3

Service Media Type xs:string
(media type)

Optional Null Service Endpoint
Selection

8.1.4

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1058

Table 8: Input parameters for XRI resolution.

The following general rules apply to all input parameters as well as to all XRD elements
throughout this specification:

1. The presence of an input parameter, subparameter, or XRD element with an empty value
MUST be treated as equivalent to the absence of that input parameter, subparameter, or
XRD element. (Note that this rule does not apply to XRD attributes.)

2. From a programmatic standpoint, both conditions above MUST be considered as
equivalent to setting the value of that parameter, subparameter, or element to null.

3. In an XRD element, an attribute with an empty value is an error and MUST NOT be
interpreted as the default value or any other value of that attribute.

4. As required by [XMLSchema2], for all Boolean subparameters: a) the string values true
and false MUST be considered case-insensitive (lowercase is RECOMMENDED), b)
the values true and 1 MUST be considered equivalent, b) the values false and 0
MUST be considered equivalent.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 41 of 131

1059 Figure 3 is a flowchart (non-normative) illustrating the processing of input parameters.

 1060
1061

1062
1063

1064

Figure 3: Input processing flowchart.

The following sections specify additional validation and usage requirements that apply to
particular input parameters.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 42 of 131

8.1.1 QXRI (Authority String, Path String, and Query String) 1065

The QXRI (query XRI) is the only REQUIRED input parameter. Per [XRISyntax], a QXRI consists
of three logical subparameters as defined in

1066
1067 Table 9.

Logical
Parameter

Name

Type Required/
Optional

Value

Authority
String

xs:string Required Contents of the authority component of the
QXRI, NOT including the XRI scheme name or
leading double forward slashes (“//”) or a
terminating single forward slash (“/”).

Path
String

xs:string Optional Contents of the path component of the QXRI,
NOT including the leading single forward slash
(“/”) or terminating delimiter (such as “/”, “?”, “#”,
whitespace, or CRLF). If the path component is
absent or empty, the value is null.

Query
String

xs:string Optional Contents of the query component of the QXRI,
NOT including leading question mark (“?”) or
terminating delimiter (such as “#”, white space,
or CRLF). If the query component is absent or
empty, the value is null.

1068

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1084
1085

Table 9: Subparameters of the QXRI input parameter.

The fourth possible component of a QXRI—a fragment—is by definition resolved locally relative
to the target resource identified by the combination of the Authority, Path, and Query
components, and as such does not play a role in XRI resolution.
Following are the constraints on the value of the QXRI parameter.

1. It MUST be a valid absolute XRI according to the ABNF defined in [XRISyntax]. To
resolve a relative XRI reference, it must be converted into an absolute XRI using the
procedure defined in section 2.4 of [XRISyntax].

2. For authority or proxy resolution as defined in this specification, the QXRI MUST be in
URI-normal form as defined in section 2.3.1 of [XRISyntax]. A local resolver API MAY
support the input of other XRI forms but SHOULD document the normal form(s) it
supports and its normalization policies.

3. When a QXRI is included as part of an HXRI (section 11.2) for XRI proxy resolution, the
QXRI MUST be normalized as specified in section 11.2, and all HXRI query parameters
MUST follow the encoding rules specified in sections 11.3 and 11.4.

8.1.2 Resolution Output Format 1083

The Resolution Output Format is an OPTIONAL parameter that, together with its subparameters,
is used to specify:
• The media type for the resolution response. 1086
• Whether generic or trusted resolution must be used by the resolver. 1087
• Whether Refs should be followed during resolution. 1088
• Whether CanonicalID verification should not be performed during resolution. 1089
• Whether service endpoint selection should be performed on the final XRD. 1090

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 43 of 131

• Whether default matches should be ignored during service endpoint selection. 1091
• Whether URIs should automatically be constructed in the final XRD. 1092

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125
1126

1128
1129
1130
1131
1132
1133
1134
1135

Following are the normative requirements for the use of this parameter.
1. The Resolution Output Format MUST be one of the values specified in Table 5 and MAY

include any of the subparameters specified in Table 6.
2. If the value of the https subparameter is TRUE, the resolver MUST use the HTTPS

trusted authority resolution protocol specified in section 10.1 (or return an error indicating
this is not supported).

3. If the value of the saml subparameter is TRUE, the resolver MUST use the SAML trusted
authority resolution protocol specified in section 10.2 (or return an error indicating this is
not supported).

4. If the value of both the https and saml subparameters are TRUE, the resolver MUST
use the HTTPS+SAML trusted authority resolution protocol specified in section 10.3 (or
return an error indicating this is not supported).

5. If the value of the cid subparameter is TRUE or null, or if the parameter is absent, the
resolver MUST perform CanonicalID verification as specified in section 14.3. If the value
of the cid subparameter is FALSE, the resolver MUST NOT perform CanonicalID
verification.

6. If the value of the refs subparameter is TRUE or null, or if the parameter is absent, the
resolver MUST perform Ref processing as specified in section 12. If the value of the
refs subparameter is FALSE, the resolver MUST NOT perform Ref processing and
must return an error if a Ref is encountered as specified in section 12.

7. If the value of the sep subparameter is TRUE, the resolver MUST perform service
endpoint selection on the final XRD (even if the values of all service endpoint selection
parameters are null). If the value of the sep subparameter is FALSE or null, or if the
parameter is absent, the resolver MUST NOT perform service endpoint selection on the
final XRD unless it is required to produce a URI List or HTTP(S) redirect. See section 8.2.

8. If the value of the nodefault_t, nodefault_p, or nodefault_m subparameter is
TRUE, the resolver MUST ignore default matches on the corresponding service endpoint
selection element categories as specified in section 13.3.2.

9. If the value of the uric subparameter is TRUE, the resolver MUST perform service
endpoint URI construction as specified in section 13.7.1. If the value of the uric
subparameter is FALSE or null, or if the parameter is absent, the resolver MUST NOT
perform service endpoint URI construction.

Future versions of this specification, or other specifications for XRI resolution, MAY use other
values for Resolution Output Format or its subparameters.

8.1.3 Service Type 1127

The Service Type is an OPTIONAL value of type xs:anyURI used to request a specific type of
service in the service endpoint selection phase (section 11). The value of this parameter MUST
be a valid absolute XRI, IRI, or URI in URI-normal form as defined by [XRISyntax]. (Note that
URI-normal form is required so this parameter may be passed to a proxy resolver in a QXRI
query parameter as defined in section 11.) The Service Type values defined for XRI resolution
services are specified in section 3.1.2. The rules for matching the value of the Service Type
parameter to the value of the xrd:XRD/xrd:Service/xrd:Type element are specified in
section 13.3.6.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 44 of 131

8.1.4 Service Media Type 1136

The Service Media Type is an OPTIONAL string used to request a specific media type in the
service endpoint selection phase (section

1137
1138
1139
1140
1141
1142

1144
1145
1146

11). The value of this parameter MUST be a valid
media type as defined by [RFC2046]. The Service Media Type values defined for XRI resolution
services are specified in section 3.3. The rules for matching the value of the Service Media Type
parameter to the value of the xrd:XRD/xrd:Service/xrd:MediaType element are specified
in section 13.3.8.

8.2 Outputs 1143

Table 10 summarizes the logical outputs of XRI resolution. Note that these are defined in terms of
media types returned by authority servers and proxy resolvers. A local resolver API MAY
implement other representations of these media types.

Logical Output
Format Name

Media Type Value (when
requesting XRI authority

resolution only)

Media Type Value (when
requesting service endpoint

selection)

XRDS Document application/xrds+xml application/xrds+xml;sep=true

XRD Element application/xrd+xml application/xrd+xml;sep=true

URI List N/A text/uri-list

HTTP(S) Redirect N/A null

1147

1148

Table 10: Outputs of XRI resolution.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 45 of 131

1149
1150
1151

Figure 4 is a flowchart illustrating the process of producing these output formats once the auth-
ority resolution and optional service endpoint selection phases are complete. Note that in the first
two output options, errors are reported directly in the XRDs, so no special error format is needed.

Output
URI List

Construct service
endpoint URI(s)

Output
XRDS DocumentYes

Resolution
Output Format =

XRD
Document?

Remove
unselected service

endpoints

Order all elements
by priority

Output
XRD Document

No

Yes

Resolution
Output Format =

XRDS
Document?

Order service
endpoint URIs

by priority

Resolution
Output Format =

URI List?

No

Yes

Construct service
endpoint URI

Output
HTTP(S) redirect

(proxy resolver only)

No

Select highest
priority service
endpoint URI

Error?

Output
 plain text errorYes

Error?

No

Begin Output
Processing

No

uric=true? Construct service
endpoint URI(s) Yes

No

uric=true?

sep=true?

Construct service
endpoint URI(s)

No

Yes

Yes

Input:
1) Output of Authority Resolution
2) (If applicable) Output of SEP Selection

Note:
An error will be
reported in the
Status element of
the final XRD

Note:
An error will be
reported in the
Status element

 1152
1153

1154

1155

Figure 4: Output processing flowchart.

The following sections provide additional construction and validation requirements.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 46 of 131

8.2.1 XRDS Document 1156

If the value of the Resolution Output Format parameter is application/xrds+xml, the
following rules apply.

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1. The output MUST be a valid XRDS document according to the schema defined in
Appendix B.

2. The XRDS document MUST contain an ordered list of xrd:XRD elements—one for each
authority subsegment successfully resolved by the resolver client. This list MUST appear
in the same order as the corresponding subsegments in the Authority String.

3. Each of the contained XRD elements must be a valid XRD element according to the
schema defined in Appendix B.

4. The XRD elements MUST conform to the additional requirements in section 4.
5. If the value of the saml subparameter of the Resolution Output Format is TRUE, the

XRD elements MUST conform to the additional requirements in section 10.2.
6. If Redirect or Ref processing is necessary during the authority resolution or service

endpoint selection process, it MUST result in a valid nested XRDS document as defined
in section 12.

7. If the value of the sep subparameter is TRUE, service endpoint selection MUST be
performed as defined in section 13, even if the values of all three service endpoint
selection input parameters (Service Type, Path String, and Service Media Type) are null.

IMPORTANT: No filtering of the final XRD is performed when returning an XRDS document. 1175
Filtering is only performed when the requested Resolution Output Format is an XRD element – 1176
see the next section. 1177

1178
1179
1180
1181
1182

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

8. If the value of the cid subparameter is TRUE, synonym verification MUST be reported
using the xrd:Status element of each XRD in the XRDS document as defined in
section 14.

9. If the output is an error, this error MUST be returned using the xrd:Status element of
the final XRD in the XRDS document as defined in section 15.

8.2.2 XRD Element 1183

If the value of the Resolution Output Format parameter is application/xrd+xml, the following
rules apply.

1. The output MUST be a valid XRD element according to the schema defined in Appendix
B.

2. The XRD elements MUST conform to the additional requirements in section 4.
3. If the value of the saml subparameter of the Resolution Output Format is TRUE, the

XRD element MUST conform to the additional requirements in section 10.2.
4. If the value of the sep subparameter is FALSE or null, or if this parameter is absent, the

XRD MUST be the final XRD in the XRDS document produced as a result of authority
resolution. Service endpoint selection or any other filtering of the XRD element MUST
NOT be performed.

5. If the value of the sep subparameter is TRUE, service endpoint selection MUST be
performed as defined in section 13, even if the values of all service endpoint selection
input parameters are null.

6. If service endpoint selection is performed, the only xrd:Service elements in the XRD
element MUST be those selected according to the rules specified in section 13. If no
service endpoints were selected by those rules, no xrd:Service elements will be

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 47 of 131

present. In addition, all elements within the XRD element that are subject to the global
priority attribute (even if the attribute is absent or null) MUST be returned in order of
highest to lowest priority as defined in section

1201
1202
1203 4.3.3.

IMPORTANT: Any other filtering of the XRD element MUST NOT be performed. Note that this 1204
means that if the XRD element includes a SAML signature element as defined in section 10.2, 1205
this element is still returned inside the XRD element even though it may not be able to be verified 1206
by a consuming application. 1207

1208
1209
1210
1211
1212

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

7. If the value of the cid subparameter is TRUE, synonym verification MUST be reported
using the xrd:Status element of each XRD in the XRDS document as defined in
section 14.

8. If the output is an error, this error MUST be returned using the xrd:Status element as
defined in section 15.

8.2.3 URI List 1213

If the value of the Resolution Output Format parameter is text/uri-list, the following rules
apply.

1. For this output, service endpoint selection is REQUIRED, even if the values of all service
endpoint selection input parameters are null.

2. If authority resolution and service endpoint selection are both successful, the output
MUST be a valid URI List as defined by section 5 of [RFC2483].

3. If, after applying the service endpoint selection rules, more than one service endpoint is
selected, the highest priority xrd:XRD/xrd:Service element MUST be selected as
defined in section 4.3.3.

4. If the final selected xrd:XRD/xrd:Service element contains a
xrd:XRD/xrd:Service/xrd:Redirect or xrd:XRD/xrd:Service/xrd:Ref
element, Redirect and Ref processing MUST be performed as described in section 12.
This rule applies iteratively to each new XRDS document resolved.

5. From the final selected xrd:XRD/xrd:Service element, the service endpoint URI(s)
MUST be constructed as defined in section 13.7.1.

6. The URIs MUST be returned in order of highest to lowest priority of the source xrd:URI
elements within the selected xrd:Service element as defined in section 4.3.3. When
two or more of the source xrd:URI elements have equal priority, their constructed URIs
SHOULD be returned in random order.

1233

1234
1235

1237
1238

IMPORTANT: Any other filtering of the URI list MUST NOT be performed.

7. If the output is an error, it MUST be returned with the content type text/plain as
defined in section 15.

8.2.4 HTTP(S) Redirect 1236

In XRI proxy resolution, the Resolution Output Format parameter may be null. In this case the
output of a proxy resolver is an HTTP(S) redirect as defined in section 11.7.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 48 of 131

9 Generic Authority Resolution Service 1239

As discussed in section 1.1 and illustrated in Figure 2, authority resolution is the first phase of XRI
resolution. This phase applies only to resolving the subsegments in the Authority String of the
QXRI. The Authority String may identify either an XRI authority or an IRI authority as described in
section 2.2.1 of

1240
1241
1242
1243
1244
1245
1246
1247
1248

1251

[XRISyntax].
XRI authorities and IRI authorities have different syntactic structures, partially due to the higher
level of abstraction represented by XRI authorities. For this reason, XRI authorities are resolved
to XRDS documents one subsegment at a time as specified in section 9.1. IRI authorities, since
they are based on DNS names or IP addresses, are resolved into an XRDS document through a
special HTTP(S) request using the entire IRI authority component as specified in section 9.1.11.

9.1 XRI Authority Resolution 1249

9.1.1 Service Type and Service Media Type 1250

The protocol defined in this section is identified by the values in Table 11.

Service Type Service Media Type Subparameters

xri://$res*auth*($v*2.0) application/xrds+xml OPTIONAL (see important
note below)

1252

1253
1254

Table 11: Service Type and Service Media Type values for generic authority resolution.

A generic authority resolution service endpoint advertised in an XRDS document MUST use the
Service Type identifier and MAY use the Service Media Type identifier defined in Table 11.

BACKWARDS COMPATIBILITY NOTE: Earlier drafts of this specification used a subparameter 1255
called trust. This has been deprecated in favor of new subparameters for each trusted 1256
resolution option, i.e., https=true and saml=true. However, implementations SHOULD 1257
consider the following values equivalent both for the purpose of service endpoint selection within 1258
XRDS documents and as HTTP(S) Accept header values in XRI authority resolution requests: 1259
 application/xrds+xml 1260
 application/xrds+xml;trust=none 1261
 application/xrds+xml;https=false 1262
 application/xrds+xml;saml=false 1263
 application/xrds+xml;https=false;saml=false 1264
 application/xrds+xml;saml=false;https=false 1265

1266

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 49 of 131

9.1.2 Protocol 1267

1268 Figure 5 (non-normative) illustrates the overall logical flow of generic authority resolution.

 1269
1270 Figure 5: Authority resolution flowchart.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 50 of 131

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

1298

Following are the normative requirements for behavior of an XRI resolver and an XRI authority
server when performing generic XRI authority resolution:

1. Each request for an XRDS document using HTTP(S) MUST conform to the requirements
in section 9.1.3.

2. For errors in XRDS document resolution requests, a resolver MUST implement failover
handling as specified in section 9.1.4.

3. The resolver MUST be preconfigured with or have a means of obtaining the XRDS
document describing the community root authority for the XRI to be resolved as defined
in section 9.1.5.

4. The resolver MAY obtain the XRDS document describing the community root authority by
requesting a self-describing XRDS document as defined in section 9.1.6.

5. Resolution of each subsegment in the Authority String after the community root
subsegment MUST proceed in subsegment order (left-to-right) using fully qualified
subsegment values as defined in section 9.1.7.

6. Subsegments that use XRI parenthetical cross-reference syntax MUST be resolved as
defined in section 9.1.8.

7. For each iteration of the authority resolution process, the next authority resolution service
endpoint MUST be selected as specified in section 9.1.9.

8. For each iteration of the authority resolution process, an HTTP(S) URI (called the Next
Authority URI) MUST be constructed according to the algorithm specified in section
9.1.10.

9. A resolver MAY request that a recursing authority server perform resolution of multiple
subsegments as defined in section 9.1.11.

10. For each iteration of the authority resolution process, a resolver MUST perform Redirect
and Ref processing as specified in section 12. Note that if Redirect and Ref processing is
successful, it will result in a nested XRDS document as specified in section 12.5 and
illustrated in Figure 6.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 51 of 131

9.1.3 Requesting an XRDS Document using HTTP(S) 1299

1300 Figure 6 (non-normative) illustrates the logical flow for requesting an XRDS document.

1301
1302
1303

1304
1305
1306

Figure 6: XRDS request flowchart.

Note that the term “Record” in Figure 6 means that if the Resolution Output Format is an XRDS
document, this is the logical operation of appending either an XRD or an XRDS document at the
proper nesting level within that output. See the examples in section 12.5.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 52 of 131

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

1340
1341
1342

1344

1346

1347
1348
1349
1350

1352

1354
1355

Following are the normative requirements for an XRI resolver and an XRI authority server when
requesting an XRDS document:

1. Each resolution request MUST be an HTTP(S) GET to the Next Authority URI and MUST
contain an Accept header with the media type identifier defined in Table 11. Note that in
XRI authority resolution, this Accept header is NOT interpreted as an XRI resolution input
parameter, but simply as the media type being requested from the server. This differs
from XRI proxy resolution, where the Accept header MAY be used to specify the Service
Media Type resolution parameter. See section 11.5.

2. The ultimate HTTP(S) response from an authority server to a successful resolution
request MUST contain either: a) a 2XX response with a valid XRDS document containing
an XRD element for each authority subsegment resolved, or b) a 304 response signifying
that the cached version on the resolver is still valid (depending on the client’s HTTP(S)
request). There is no restriction on intermediate redirects (i.e., 3XX result codes) or other
result codes (e.g., a 100 HTTP response) that eventually result in a 2XX or 304 response
through normal operation of [RFC2616].

3. The HTTP(S) response from an authority server MUST return the media type requested
by the resolver. The response SHOULD NOT include any subparameters supplied by the
resolver in the request. If the resolver receives such parameters in the response, the
resolver MUST ignore them and do its own independent verification that the response
fulfills the requested parameters.

4. Any ultimate response besides an HTTP 2XX or 304 SHOULD be considered an error in
the resolution process. In this case, the resolver MUST implement failover handling as
specified in section 9.1.4.

5. If all authority resolution service endpoints fail, the resolver SHOULD return the
appropriate error code and context message as specified in section 15. In recursing
resolution, such an error MUST be returned by the recursing authority server to the
resolver as specified in section 15.5.

6. All other uses of HTTP(S) in this protocol MUST comply with the requirements in section
16. In particular, HTTP caching semantics SHOULD be leveraged to the greatest extent
possible to maintain the efficiency and scalability of the HTTP-based resolution system.
The recommended use of HTTP caching headers is described in more detail in section
16.2.1.

9.1.4 Failover Handling 1339

XRI infrastructure has the same requirements as DNS infrastructure for stability, redundancy, and
network performance. This means XRI authority and proxy resolution services are subject to the
same requirements as DNS nameservers. For example:
• Critical authority or proxy resolution servers SHOULD be operated from a minimum of two 1343

physically separate network locations to prevent a single point of failure.
• Authority or proxy resolution servers handling heavy loads SHOULD operate from multiple 1345

servers and take advantage of load balancing technologies.

However, such capabilities are effective only if resolvers or other client applications implement
proper failover handling. Because XRI resolution takes place at a layer above DNS resolution,
resolvers have two ways to discover additional network endpoints at which authority or proxy
resolution services are available.
• DNS round robin/failover: The domain name of an authority resolution service endpoint URI 1351

may be associated with more than one IP address.
• XRI round robin/failover: The XRDS document describing an XRI authority may publish 1353

multiple URI elements for its authority resolution service endpoint, or multiple authority
resolution service endpoints, or both.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 53 of 131

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

To take advantage of both these options, the following rules apply to failover handling:
1. A resolver SHOULD first try an alternate IP address for the current authority resolution

service endpoint if the endpoint uses DNS round robin.
2. If all alternate IP addresses fail, a resolver MUST try the next highest priority authority

resolution URI in the current authority resolution service endpoint, if available.
3. If all URIs in the current authority resolution service endpoint fail, a resolver MUST try the

next highest priority authority resolution service endpoint, if available, until all authority
resolution service endpoints are exhausted.

4. A resolver SHOULD only return an error if all network endpoints associated with the
authority resolution service fail to respond.

IMPORTANT: These rules also apply to any client of an XRI proxy resolver. Failure to observe 1366
this warning means the proxy resolver can become a point of failure. 1367

1368
1369
1370
1371

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

1396

1399

1400
1401

One final consideration: DNS caching mechanisms should respect the TTL (Time To Live)
settings in DNS records. However, different software languages and frameworks handle DNS
caching differently. It is RECOMMENDED to check the default settings to ensure that a library or
application is not caching DNS results indefinitely.

9.1.5 Community Root Authorities 1372

Identifier management policies are defined on a community-by-community basis. For XRI
identifier authorities, the resolution community is specified by the first (leftmost) subsegment of
the authority component of the XRI. This is referred to as the community root authority, and it
represents the authority server(s) that answer resolution queries at this root. When a resolution
community chooses to create a new community root authority, it SHOULD define policies for
assigning and managing identifiers under this authority. Furthermore, it SHOULD define what
resolution protocol(s) may be used for these identifiers.
For an XRI authority, the community root may be either a global context symbol (GCS) character
or top-level cross-reference as specified in section 2.2.1.1 of [XRISyntax]. In either case, the
corresponding root XRDS document (or its equivalent) specifies the top-level authority resolution
service endpoints for that community.
The community root authority SHOULD publish a self-describing XRDS document as defined in
section 9.1.6. This XRDS document SHOULD be available at the HTTP(S) URI(s) that serve as
the community's root authority resolution service endpoints. This community root XRDS
document, or its location, must be known a priori and is part of the configuration of an XRI
resolver, similar to the specification of root DNS servers for a DNS resolver. Note that it is not
strictly necessary to publish this information in an XRDS document—it may be supplied in any
format that enables configuration of the XRI resolvers in the community. However, publishing a
self-describing XRDS document at a known location simplifies this process and enables dynamic
configuration of community resolvers.
As a best practice, it is RECOMMENDED that community root XRDS document contain:
• The root HTTPS resolution service endpoint(s) if HTTPS trusted resolution is supported. 1394
• A valid self-signed SAML assertion accessible via HTTPS or other secure means if SAML 1395

trusted resolution is supported.
• Both of the above if HTTPS+SAML trusted resolution is supported. 1397
• The service endpoints and supported media types of the community's XRI proxy resolver(s) if 1398

proxy resolution is supported.

For a list of public community root authorities and the locations of their community root XRDS
documents, see the Wikipedia entry on XRI [WikipediaXRI].

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 54 of 131

9.1.6 Self-Describing XRDS Documents 1402

1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

1418
1419
1420
1421
1422
1423
1424

An identifier authority MAY publish a self-describing XRDS document, i.e., one produced by the
same identifier authority that it describes. A resolver MAY request a self-describing XRDS
document from a target identifier authority using either of two methods:

1. If the resolver knows an HTTP(S) URI for the target authority's XRI authority resolution
service endpoint, it may use the resolution protocol specified in section 6 to request an
XRDS document directly from this HTTP(S) URI. This HTTP(S) URI may be known a
priori (as is often the case with community root authorities, above), or it may be
discovered from other identifier authorities via the resolution protocols defined in this
specification.

2. If the resolver knows: a) an XRI of the target authority as a community root authority, and
b) an HTTP(S) URI for a proxy resolver configured for this community root authority, it
may use the proxy resolution protocol specifed in section 11 to query the proxy resolver
for the community root authority XRI. This query MUST include only a single subsegment
identifying the community root authority and MUST NOT include any additional
subsegments.

If an identifier authority had an authority resolution service endpoint at
http://example.com/auth-res-service/, an example of the first method would be to
issue an HTTP(S) GET request to that URI with an Accept header specifying the content type
application/xrds+xml. See section 6.3 for more details.
If an identifier authority with the community root authority identifier xri://(example) was
registered with the XRI proxy resolver http://xri.example.com/, an example of the second
method would be to issue an HTTP(S) GET request to the following URI:

1425

1426
1427

http://xri.example.com/(example)?_xrd_r=application/xrds+xml

Note that a proxy resolver may use the first method to publish its own self-describing XRDS
document at the HTTP(S) URI(s) for its proxy resolution service.

IMPORTANT: A self-describing XRDS document MUST only be issued by an identifier authority 1428
when describing itself. It MUST NOT be included in an XRDS document when describing a 1429
different identifier authority. In the latter case the self-describing XRDS document for the 1430
community root authority is implicit. 1431

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

1443

9.1.7 Qualified Subsegments 1432

A qualified subsegment is defined by the productions whose names start with xri-subseg in
section 2.2.3 of [XRISyntax] including the leading syntactic delimiter (“*” or “!”). A qualified
subsegment MUST include the leading syntactic delimiter even if it was optionally omitted in the
original XRI (see section 2.2.3 of [XRISyntax]).
If the first subsegment of an XRI authority is a GCS character and the following subsegment does
not begin with a “*” (indicating a reassignable subsegment) or a “!” (indicating a persistent
subsegment), then a “*” is implied and MUST be added when constructing the qualified
subsegment as specified in section 9.1.7. Table 12 and Table 13 illustrate the differences
between parsing a reassignable subsegment following a GCS character and parsing a cross-
reference, respectively.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 55 of 131

http://example.com/authority/resolution/service
http://example.com/authority/resolution/service

1444

XRI xri://@example*internal/foo

XRI Authority @example*internal

Community Root Authority @

First Qualified Subsegment Resolved *example

1445 Table 12: Parsing the first subsegment of an XRI that begins with a global context symbol.

XRI xri://(http://www.example.com)*internal/foo

XRI Authority (http://www.example.com)*internal

Community Root Authority (http://www.example.com)

First Qualified Subsegment Resolved *internal

1446

1448
1449
1450
1451
1452
1453
1454
1455

Table 13: Parsing the first subsegment of an XRI that begins with a cross-reference.

9.1.8 Cross-References 1447

Any subsegment within an XRI authority component may be a cross-reference (see section 2.2.2
of [XRISyntax]). Cross-references are resolved identically to any other subsegment because the
cross-reference is considered opaque, i.e., the value of the cross-reference (including the
parentheses) is the literal value of the subsegment for the purpose of resolution.
Table 14 provides several examples of resolving cross-references. In these examples,
subsegment !b resolves to a Next Authority Resolution Service Endpoint URI of
http://example.com/xri/ and recursing authority resolution is not being requested.

Example XRI Next Authority URI after resolving
xri://@!a!b

xri://@!a!b!(@!1!2!3)*e/f http://example.com/xri/!(@!1!2!3)
xri://@!a!b*(mailto:jd@example.com)*e/f http://example.com/xri/*(mailto:jd@example.com)
xri://@!a!b*($v*2.0)*e/f http://example.com/xri/*($v*2.0)
xri://@!a!b*(c*d)*e/f http://example.com/xri/*(c*d)
xri://@!a!b*(foo/bar)*e/f http://example.com/xri/*(foo%2Fbar)

1456

1458
1459
1460
1461
1462
1463
1464
1465

Table 14: Examples of the Next Authority URIs constructed using different types of cross-references.

9.1.9 Selection of the Next Authority Resolution Service Endpoint 1457

For each iteration of authority resolution, the resolver MUST select the next authority resolution
service endpoint from the current XRD as specified in section 13. For generic authority resolution,
this selection process MUST use the parameters specified in Table 11. For trusted authority
resolution, this selection process MUST use the parameters specified in Table 15, Table 16, or
Table 17. In all cases, an explicit match on the xrd:XRD/xrd:Service/xrd:Type element is
REQUIRED, so during authority resolution, a resolver MUST set the nodefault parameter to a
value of nodefault=type in order to override selection of a default service endpoint as
specified in section 13.3.2.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 56 of 131

9.1.10 Construction of the Next Authority URI 1466

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476

1477

1480

1481
1482

Once the next authority resolution service endpoint is selected, the resolver MUST construct a
URI for the next HTTP(S) request, called the Next Authority URI, by concatenating two strings as
specified in this section.
The first string is called the Next Authority Resolution Service Endpoint URI. To construct it, the
resolver MUST:

1. Select the highest priority URI of the highest priority authority resolution service endpoint
selected in section 9.1.9.

2. Apply the service endpoint URI construction algorithm based the value of the append
attribute as defined in section 13.7.

3. Append a forward slash (“/”) if the URI does not already end in a forward slash.

The second string is called the Next Authority String and it consists of either:
• The next fully qualified subsegment to be resolved (see section 9.1.7), or 1478
• In the case of recursing resolution, the next fully qualified subsegment to be resolved plus 1479

any additional subsegments for which recursing resolution is requested (see section 9.1.11).

The final step is to append the Next Authority String directly to the Next Authority Resolution
Service Endpoint URI. The resulting URI is called the Next Authority URI.
BACKWARDS COMPATIBILITY NOTE: Earlier versions of this specification required the Next 1483
Authority String to be appended to the path component of the Next Authority Resolution Service 1484
Endpoint URI. This rule was changed to give XRI authorities greater control over the structure of 1485
incoming resolution requests—for example, to enable Next Authority Strings to appear as query 1486
parameters. 1487

1488
1489

Construction of the Next Authority URI is more formally described in this pseudocode for
resolving a “next-auth-string” via a “next-auth-res-sep-uri”:

1490 if (next-auth-res-sep-uri does not end in "/"):
1491 append "/" to next-auth-res-sep-uri
1492
1493 if (next-auth-string is not preceded with "*" or "!" delimiter):
1494 prepend "*" to next-auth-string
1495
1496

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

append uri-escape(next-auth-string) to next-auth-res-sep-uri

9.1.11 Recursing Authority Resolution 1497

If an authority server offers recursing resolution, an XRI resolver MAY request resolution of
multiple authority subsegments in one transaction. If a resolver makes such a request, the
responding authority server MAY perform the additional recursing resolution steps requested. In
this case the recursing authority server acts as a resolver to the other authority resolution service
endpoints that need to be queried. Alternatively, the recursing authority server may retrieve XRDs
from its local cache until it reaches a subsegment whose XRD is not locally cached, or it may
simply recurse only as far as it is authoritative.
If an authority server performs any recursing resolution, it MUST return an ordered list of
xrd:XRD elements (and nested xrd:XRDS elements if Redirects or Refs are followed as
specified in section 12) in an xrd:XRDS document for all subsegments resolved as defined in
section 8.2.1.
A recursing authority server MAY resolve fewer subsegments than requested by the resolver. The
recursing authority server is under no obligation to resolve more than the first subsegment (for
which it is, by definition, authoritative).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 57 of 131

1512
1513
1514

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526

1528
1529
1530

1532
1533
1534
1535
1536
1537
1538

If the recursing authority server does not resolve the entire set of subsegments requested, the
resolver MUST continue the authority resolution process itself. At any stage, however, the
resolver MAY request recursing resolution of any or all of the remaining authority subsegments.

9.2 IRI Authority Resolution 1515

From the standpoint of generic authority resolution, an IRI authority component represents either
a DNS name or an IP address at which an XRDS document describing the authority may be
retrieved using HTTP(S). Thus IRI authority resolution simply involves making an HTTP(S) GET
request to a URI constructed from the IRI authority component. The resulting XRDS document
can then be consumed in the same manner as one obtained using XRI authority resolution.
While the use of IRI authorities provides backwards compatibility with the large installed base of
DNS- and IP-identifiable resources, IRI authorities do not support the additional layer of
abstraction, delegation, and extensibility offered by XRI authority syntax. Therefore IRI authorities
are NOT RECOMMENDED for new deployments of XRI identifiers.
This section defines IRI authority resolution as a simple extension to the XRI authority resolution
protocol defined in the preceding section.

9.2.1 Service Type and Media Type 1527

Because IRI authority resolution takes place at a level “below” XRI authority resolution, it cannot
be described in an XRD, and thus there is no corresponding resolution service type. IRI authority
resolution uses the same media type as generic XRI authority resolution.

9.2.2 Protocol 1531

Following are the normative requirements for IRI authority resolution that differ from generic XRI
authority resolution:

1. The Next Authority URI (section 9.1.10) is constructed by extracting the entire IRI
authority component and prepending the string http://. See the exception in section
9.2.3.

2. The HTTP GET request MUST include an HTTP Accept header containing only the
following:

1539

1540
1541

Accept: application/xrds+xml

3. The HTTP GET request MUST have a Host: header (as defined in section 14.23 of
[RFC2616]) containing the value of the IRI authority component. For example:

1542

1543
1544
1545
1546

1547
1548

1550
1551
1552
1553

Host: example.com

4. An HTTP server acting as an IRI authority SHOULD respond with an XRDS document
containing the XRD describing that authority.

5. The responding server MUST use the value of the Host: header to populate the
xrd:XRD/xrd:Query element in the resulting XRD.

Note that because IRI authority resolution is required to process the entire IRI authority
component in a single step, recursing authority resolution does not apply.

9.2.3 Optional Use of HTTPS 1549

Section 10 of this specification defines trusted resolution only for XRI authorities. Trusted
resolution is not defined for IRI Authorities. If, however, an IRI authority is known to respond to
HTTPS requests (by some means outside the scope of this specification), then the resolver MAY
use HTTPS as the access protocol for retrieving the authority’s XRD. If the resolver is satisfied,

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 58 of 131

via transport level security mechanisms, that the response is from the expected IRI authority, the
resolver MAY consider this an HTTPS trusted resolution response as defined in section

1554
1555 10.1.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 59 of 131

10 Trusted Authority Resolution Service 1556

This section defines three options for performing trusted XRI authority resolution as an extension
of the generic authority resolution protocol defined in section

1557
1558
1559

1561
1562
1563
1564

1566

9.1—one using HTTPS, one using
SAML assertions, and one using both.

10.1 HTTPS 1560

HTTPS authority resolution is a simple extension to generic authority resolution in which all
communication with authority resolution service endpoints is carried out over HTTPS. This
provides transport-level security and server authentication, however it does not provide message-
level security or a means for a responder to provide different responses for different requestors.

10.1.1 Service Type and Service Media Type 1565

The protocol defined in this section is identified by the values in Table 15.

Service Type Service Media Type Subparameters

xri://$res*auth*($v*2.0) application/xrds+xml https=true

1567

1568
1569
1570
1571

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

1588
1589
1590
1591
1592

Table 15: Service Type and Service Media Type values for HTTPS trusted authority resolution.

An HTTPS trusted resolution service endpoint advertised in an XRDS document MUST use the
Service Type identifier and Service Media Type identifier (including the https=true parameter)
defined in Table 15. In addition, the identifier authority MUST use an HTTPS URI as the value of
the xrd:URI element(s) for this service endpoint.

10.1.2 Protocol 1572

Following are the normative requirements for HTTPS trusted authority resolution that differ from
generic authority resolution (section 9.1):

1. All authority resolution service endpoints MUST be selected using the values defined in
Table 15.

2. All authority resolution requests, including the starting request to a community root
authority, MUST use the HTTPS protocol as defined in [RFC2818]. This includes all
intermediate redirects, as well as all authority resolution requests resulting from Redirect
and Ref processing as defined in section 12. A successful HTTPS response MUST be
received from each authority in the resolution chain or the output MUST be error.

3. All authority resolution requests MUST contain an HTTPS Accept header with the media
type identifier defined in Table 15 (including the https=true subparameter).

4. If the resolver finds that an authority in the resolution chain does not support HTTPS at
any of its authority resolution service endpoints, the resolver MUST return a 23x error as
defined in section 15.

10.2 SAML 1587

In SAML trusted resolution, the resolver uses the Resolution Output Format subparameter
saml=true and the authority server responds with an XRDS document containing an XRD with
an additional element—a digitally signed SAML [SAML] assertion that asserts the validity of the
containing XRD. SAML trusted resolution provides message integrity but does not provide
confidentiality. For this reason is is RECOMMENDED to combine SAML trusted resolution with

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 60 of 131

HTTPS trusted resolution as defined in section 10.3. Message confidentiality may also be
achieved with other security protocols used in conjunction with this specification. SAML trusted
resolution also does not provide a means for an authority to provide different responses for
different requestors; client authentication is explicitly out-of-scope for version 2.0 of XRI
resolution.

1593
1594
1595
1596
1597

1599

10.2.1 Service Type and Service Media Type 1598

The protocol defined in this section is identified by the values in Table 16.

Service Type Service Media Type Subparameters

xri://$res*auth*($v*2.0) application/xrds+xml saml=true

1600

1601
1602
1603
1604

1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Table 16: Service Type and Service Media Type values for SAML trusted authority resolution.

A SAML trusted resolution service endpoint advertised in an XRDS document MUST use the
Service Type identifier and Service Media Type identifier defined in Table 16 (including the
saml=true subparameter). In addition, for transport security the identifier authority SHOULD
offer at least one HTTPS URI as the value of the xrd:URI element(s) for this service endpoint.

10.2.2 Protocol 1605

10.2.2.1 Client Requirements 1606

For a resolver, trusted resolution is identical to the generic resolution protocol (section 9.1) with
the addition of the following requirements:

1. All authority resolution service endpoints MUST be selected using the values defined in
Table 16. A resolver SHOULD NOT request SAML trusted resolution service from an
authority unless the authority advertises a resolution service endpoint matching these
values.

2. Authority resolution requests MAY use either the HTTP or HTTPS protocol. The latter is
RECOMMENDED for confidentiality.

3. All authority resolution requests MUST contain an HTTP(S) Accept header with the
media type identifier defined in Table 16 (including the saml=true subparameter). This
is the media type of the requested response.

IMPORTANT: Clients willing to accept either generic or trusted responses MAY use a 1618
combination of media type identifiers in the Accept header as described in section 14.1 of 1619
[RFC2616]. Media type identifiers SHOULD be ordered according to the client’s preference for 1620
the media type of the response. If a client performing generic authority resolution receives an 1621
XRD containing SAML elements, it MAY choose not to validate the signature or perform any 1622
processing of these elements. 1623

1624
1625
1626
1627
1628
1629

4. A resolver MAY request recursing authority resolution of multiple subsegments as
defined in section 10.2.3.

5. The resolver MUST individually validate each XRD it receives in the resolution chain
according to the rules defined in section 10.2.4. When xrd:XRD elements come both
from freshly-retrieved XRDS documents and from a local cache, a resolver MUST ensure
that these requirements are satisfied each time a resolution request is performed.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 61 of 131

10.2.2.2 Server Requirements 1630

For an authority server, trusted resolution is identical to the generic resolution protocol (section 1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667

1669
1670
1671
1672
1673

9.1) with the addition of the following requirements:
1. The HTTP(S) response to a trusted resolution request MUST include a content type of

application/xrds+xml;saml=true.
2. The XRDS document returned by the resolution service MUST contain a

saml:Assertion element as an immediate child of the xrd:XRD element that is valid
per the processing rules described by [SAML].

3. The saml:Assertion element MUST contain a valid enveloped digital signature as
defined by [XMLDSig] and as constrained by section 5.4 of [SAML].

4. The signature MUST apply to the xrd:XRD element that contains the signed SAML
assertion. Specifically, the signature MUST contain a single
ds:SignedInfo/ds:Reference element, and the URI attribute of this reference
MUST refer to the xrd:XRD element that is the immediate parent of the signed SAML
assertion. The URI reference MUST NOT be empty and it MUST refer to the identifier
contained in the xrd:XRD/@xml:id attribute.

5. [SAML] specifies that the digital signature enveloped by the SAML assertion MAY contain
a ds:KeyInfo element. If this element is included, it MUST describe the key used to
verify the digital signature element. However, because the signing key is known in
advance by the resolution client, the ds:KeyInfo element SHOULD be omitted from the
ds:Signature element of the SAML assertion.

6. The xrd:XRD/xrd:Query element MUST be present, and the value of this field MUST
match the XRI authority subsegment requested by the client.

7. The xrd:XRD/xrd:ProviderID element MUST be present and its value MUST match
the value of the xrd:XRD/xrd:Service/xrd:ProviderID element in an XRD
advertising availability of trusted resolution service from this authority as required in
section 10.2.5.

8. The xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element MUST be
present and equal to the xrd:XRD/xrd:Query element.

9. The NameQualifier attribute of the
xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element MUST be
present and MUST be equal to the xrd:XRD/xrd:ProviderID element.

10. There MUST be exactly one saml:AttributeStatement present in the
xrd:XRD/saml:Assertion element. It MUST contain exactly one saml:Attribute
element with a Name attribute value of xri://$xrd*($v*2.0). This
saml:Attribute element MUST contain exactly one saml:AttributeValue
element whose text value is a URI reference to the xml:id attribute of the xrd:XRD
element that is the immediate parent of the saml:Assertion element.

10.2.3 Recursing Authority Resolution 1668

If a resolver requests trusted resolution of multiple authority subsegments (see section 9.1.8), a
recursing authority server SHOULD attempt to perform trusted resolution on behalf of the resolver
as described in this section. However, if the resolution service is not able to obtain trusted XRDs
for one or more additional recursing subsegments, it SHOULD return only the trusted XRDs it has
obtained and allow the resolver to continue.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 62 of 131

10.2.4 Client Validation of XRDs 1674

1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

For each XRD returned as part of a trusted resolution request, the resolver MUST validate the
XRD according to the rules defined in this section.

1. The xrd:XRD/saml:Assertion element MUST be present.
2. This assertion MUST be valid per the processing rules described by [SAML].
3. The saml:Assertion MUST contain a valid enveloped digital signature as defined by

[XMLDSig] and constrained by Section 5.4 of [SAML].
4. The signature MUST apply to the xrd:XRD element containing the signed SAML

assertion. Specifically, the signature MUST contain a single
ds:SignedInfo/ds:Reference element, and the URI attribute of this reference
MUST refer to the xml:id attribute of the xrd:XRD element that is the immediate parent
of the signed SAML assertion.

5. If the digital signature enveloped by the SAML assertion contains a ds:KeyInfo
element, the resolver MAY reject the signature if this key does not match the signer’s
expected key as specified by the ds:KeyInfo element present in the XRD Descriptor
that was used to describe the current authority. See section 10.2.5.

6. The value of the xrd:XRD/xrd:Query element MUST match the subsegment whose
resolution resulted in the current XRD.

7. The value of the xrd:XRD/xrd:ProviderID element MUST match the value of the
xrd:XRD/xrd:Service/xrd:ProviderID element in any XRD advertising availability
of trusted resolution service from this authority as required in section 10.2.5.

8. The value of the xrd:XRD/xrd:ProviderID element MUST match the value of the
NameQualifier attribute of the
xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element.

9. The value of the xrd:XRD/xrd:Query element MUST match the value of the
xrd:XRD/saml:Assertion/saml:Subject/saml:NameID element.

10. There MUST exist exactly one
xrd:XRD/saml:Assertion/saml:AttributeStatment with exactly one
saml:Attribute element that has a Name attribute value of xri://$xrd*($v*2.0).
This saml:Attribute element must have exactly one saml:AttributeValue
element whose text value is a URI reference to the xml:id attribute of the xrd:XRD
element that is the immediate parent of the signed SAML assertion.

If any of the above requirements are not met for an XRD in the trusted resolution chain, the result
MUST NOT be considered a valid trusted resolution response as defined by this specification.
Note that this does not preclude a resolver from considering alternative resolution paths. For
example, if an XRD advertising SAML trusted resolution service has two or more
xrd:XRD/xrd:Service/xrd:URI elements and the response from one service endpoint fails
to meet the requirements above, the client MAY repeat the validation process using the second
URI. If the second URI passes the tests, it MUST be considered a trusted resolution response as
defined by this document and SAML trusted resolution may continue.
If the above requirements are met, and the code attribute of the xrd:XRD/xrd:ServerStatus
element is 100 (SUCCESS), the resolver MUST add an xrd:XRD/xrd:Status element
reporting a status of 100 (SUCCESS) as specified in section 15. Note that this added element
MUST be disregarded if a consuming application wishes to verify the SAML signature itself. (If
necessary, the consuming application may request the XRDS document it wishes to verify directly
from the SAML authority resolution server.)
If all SAML trusted resolution paths fail, the resolver MUST return the appropriate 23x trusted
resolution error as defined in section 15.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 63 of 131

10.2.5 Correlation of ProviderID and KeyInfo Elements 1722

Each XRI authority participating in SAML trusted authority resolution MUST be associated with at
least one unique persistent identifier expressed in the
xrd:XRD/xrd:Service/xrd:ProviderID element of any XRD advertising trusted authority
resolution service. This ProviderID value MUST NOT ever be reassigned to another XRI
authority. While a ProviderID may be any valid URI that meets these requirements, it is
STRONGLY RECOMMENDED to use a persistent identifier such as a persistent XRI

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

1752

[XRISyntax] or a URN [RFC2141].
The purpose of ProviderIDs in XRI resolution is to enable resolvers to correlate the metadata in
an XRD advertising SAML trusted authority resolution service with the response received from a
SAML trusted resolution service endpoint. If the signed XRD response contains the same
ProviderID as the XRD used to advertise a service, and the resolver has reason to trust the
signature, the resolver can trust that the XRD response has not been maliciously replaced with
another XRD.
There is no defined discovery process for the ProviderID for a community root authority; it must
be published in a self-describing XRDS document (or other equivalent description—see sections
9.1.5 and 9.1.6) and verified independently. Once the community root XRDS document is known,
the ProviderID for delegated XRI authorities within this community MAY be discovered using the
xrd:XRD/xrd:Service/xrd:ProviderID element of authority resolution service endpoints.
This trust mechanism MAY also be used for other services offered by an authority.
In addition, the metadata necessary for SAML trusted authority resolution or other SAML [SAML]
interactions MAY be discovered using the ds:KeyInfo element (section 4.2.) Again, if this
element is present in an XRD advertising SAML authority resolution service (or any other
service), and the client has reason to trust this XRD, the client MAY use the associated
ProviderID to correlate the contents of this element with a signed response.
To assist resolvers in using this key discovery mechanism, it is important that trusted authority
servers be configured to sign responses in such a way that the signature can be verified using the
correlated ds:KeyInfo element. For more information, see [SAML].

10.3 HTTPS+SAML 1750

10.3.1 Service Type and Service Media Type 1751

The protocol defined in this section is identified by the values in Table 17.

Service Type Service Media Type Subparameters

xri://$res*auth*($v*2.0) application/xrds+xml https=true
saml=true

1753

1754
1755
1756
1757

1758

Table 17: Service Type and Service Media Type values for HTTPS+SAML trusted authority resolution.

An HTTPS+SAML trusted resolution service endpoint advertised in an XRDS document MUST
use the Service Type identifier and Service Media Type identifier defined in Table 17 (including
the https=true and saml=true subparameters). In addition, the identifier authority MUST use
an HTTPS URI as the value of the xrd:URI element(s) for this service endpoint.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 64 of 131

10.3.2 Protocol 1759

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

Following are the normative requirements for HTTPS+SAML trusted authority resolution.
1. All authority resolution service endpoints MUST be selected using the values defined in

Table 17.
2. All authority resolution requests and responses, including the starting request to a

community root authority, MUST conform to both the requirements of the HTTPS trusted
resolution protocol defined in section 10.1 and the SAML trusted resolution protocol
defined in section 10.2.

3. All authority resolution requests MUST contain an HTTPS Accept header with the media
type identifier defined in Table 17 (including both the https=true and saml=true
parameters). This MUST be interpreted as the value of the Resolution Output Format
input parameter.

4. If the resolver finds that an authority in the resolution chain does not support both HTTPS
and SAML, the resolver MUST return a 23x error as defined in section 15.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 65 of 131

11 Proxy Resolution Service 1773

The preceding sections have defined XRI resolution as a set of logical functions. This section
defines a mapping of these functions to an HTTP(S) interface for remote invocation. This
mapping is based on a standard syntax for expressing an XRI as an HTTP URI, called an HXRI,
as defined in section

1774
1775
1776
1777
1778
1779

1781

1783
1784

1786
1787

1789

11.2. HXRIs also enable XRI resolution input parameters to be encoded as
query parameters in the HXRI.
Proxy resolution is useful for:
• Offloading XRI resolution and service endpoint selection processing from a client to an 1780

HTTP(S) server.
• Optimizing XRD caching for a resolution community (a caching proxy resolver). Proxy 1782

resolvers SHOULD use caching to resolve the same QXRIs or QXRI components for multiple
clients as defined in section 16.4.

• Returning HTTP(S) redirects to clients such as browsers that have no native understanding 1785
of XRIs but can process HXRIs. This provides backwards compatibility with the large installed
base of existing HTTP clients.

11.1 Service Type and Media Types 1788

The protocol defined in this section is identified by the values in Table 18.

Service Type Service Media Types Subparameters

xri://$res*proxy*($v*2.0) application/xrds+xml
application/xrd+xml

text/uri-list

All subparameters specified
in Table 6

1790

1791
1792

1794
1795

1797
1798
1799
1800
1801
1802
1803
1804
1805

1807
1808
1809

Table 18: Service Type and Service Media Type values for proxy resolution.

A proxy resolution service endpoint advertised in an XRDS document MUST use the Service
Type identifier and Service Media Type identifiers defined in Table 18. In addition:
• An HTTPS proxy resolver MUST specify the media type parameter https=true and MUST 1793

offer at least one HTTPS URI as the value of the xrd:URI element(s) for this service
endpoint.

• A SAML proxy resolver MUST specify the media type parameter saml=true and SHOULD 1796
offer at least one HTTPS URI as the value of the xrd:URI element(s) for this service
endpoint.

It may appear to be of limited value to advertise proxy resolution service in an XRDS document if
a resolver must already know how to perform local XRI resolution in order to retrieve this
document. However, advertising a proxy resolution service in the XRDS document for a
community root authority (sections 9.1.3 and 9.1.6) can be very useful for applications that need
to consume XRI proxy resolution services or automatically generate HXRIs for resolution by non-
XRI-aware clients in that community. Those applications may discover the current URI(s) and
resolution capabilities of a proxy resolver from this source.

11.2 HXRIs 1806

The first step in an HTTP binding of the XRI resolution interface is to specify how the QXRI
parameter is passed within an HTTP(S) URI. Besides providing a binding for proxy resolution,
defining a standard syntax for expressing an XRI as an HTTP XRI (HXRI) has two other benefits:

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 66 of 131

• It allows XRIs to be used anyplace an HTTP URI can appear, including in Web pages, 1810
electronic documents, email messages, instant messages, etc. 1811

1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824

• It allows XRI-aware processors and search agents to recognize an HXRI and extract the 1812
embedded XRI for direct resolution, processing, and indexing.

To make this syntax as simple as possible for XRI-aware processors or search agents to
recognize, an HXRI consists of a fully qualified HTTP or HTTPS URI authority component that
begins with the domain name segment “xri.”. The QXRI is then appended as the entire local
path (and query component, if present). The QXRI MUST NOT include the xri:// prefix and
MUST be in URI-normal form as defined in [XRISyntax]. (If a proxy resolver receives an HXRI
containing a QXRI beginning with an xri:// prefix, it SHOULD remove it before continuing.) In
essence, the proxy resolver URI (including the forward slash after the domain name) serves as a
machine-readable alternate prefix for an absolute XRI in URI-normal form.
The normative ABNF for an HXRI is defined below based on the ireg-name, xri-hier-part,
and iquery productions defined in [XRISyntax]. XRIs that need to be understood by non-XRI-
aware clients SHOULD be published as HTTP URIs conforming to this HXRI production.

1825 HXRI = proxy-resolver "/" QXRI

1826 proxy-resolver = ("http://" / "https://") proxy-reg-name

1827 proxy-reg-name = "xri." ireg-name

1828

1829
1830
1831
1832
1833
1834

1836
1837
1838
1839

QXRI = xri-hier-part ["?" i-query]

URI processors that recognize XRIs SHOULD interpret the local part of an HTTP or HTTPS URI
(the path segment(s) and optional query segment) as an XRI provided that: a) it conforms to this
ABNF, and b) the first segment of the path conforms to the xri-authority or iauthority productions
in [XRISyntax].
For references to communities that offer public XRI proxy resolution services, see the Wikipedia
entry on XRI [WikipediaXRI].

11.3 HXRI Query Parameters 1835

In proxy resolution, the XRI resolution input parameters defined in section 8.1 are bound to an
HTTP(S) interface using the conventional web model of encoding them in an HTTP(S) URI, which
in this case is an HXRI. The binding of the logical parameter names to HXRI component parts is
defined in Table 19.

Logical Parameter Name HXRI Component HXRI Query
Parameter Name

QXRI Entire path and query string of
HXRI (exclusive of HXRI query

parameters listed below)

N/A

Resolution Output Format HXRI query parameter _xrd_r

Service Type HXRI query parameter _xrd_t

Service Media Type HXRI query parameter _xrd_m

1840

1841

Table 19: Binding of logical XRI resolution parameters to QXRI query parameters.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 67 of 131

Following are the rules for the use of the parameters specified in Table 19. 1842
1843
1844
1845

1. The QXRI MUST be normalized as specified in section 11.2.
2. If the original QXRI has an existing query component, the HXRI query parameters MUST

be appended to that query component.

IMPORTANT: The query parameter names in Table 19 were chosen to minimize the probability of 1846
collision with any pre-existing query parameter names in the QXRI. If there is any conflict, the 1847
pre-existing query parameter names MUST be percent-encoded prior to transformation into an 1848
HXRI. 1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

3. After proxy resolution, the HXRI query parameters MUST subsequently be removed from
the QXRI query component. The existing QXRI query component MUST NOT be altered
in any other way, i.e., it must be passed through with no changes in parameter order,
escape encoding, etc.

4. If the original QXRI does not have a query component, one MUST be added to pass any
HXRI query parameters. After proxy resolution, this query component MUST be entirely
removed.

5. If the original QXRI had a null query component (only a leading question mark), or a
query component consisting of only question marks, one additional leading question mark
MUST be added before adding any HXRI query parameters. After proxy resolution, any
HXRI query parameters and exactly one leading question mark MUST be removed. See
the URI construction steps defined in section 13.6.

6. Each HXRI query parameter MUST be delimited from other parameters by an ampersand
(“&”).

7. Each HXRI query parameter MUST be delimited from its value by an equals sign (“=”).
8. If an HXRI query parameter includes one of the media type parameters defined in Table

6, it MUST be delimited from the HXRI query parameter with a semicolon (“;”).
9. The fully-composed HXRI MUST be encoded and decoded as specified in section 11.4.
10. If any HXRI query parameter name is included but its value is empty, the value of the

parameter MUST be considered null.

11.4 HXRI Encoding/Decoding Rules 1870

To conform with the typical requirements of web server URI parsing libraries, HXRIs MUST be
encoded prior to input to a proxy resolver and decoded prior to output from a proxy resolver.
Because web server libraries typically perform some of these decoding functions automatically,
implementers MUST ensure that a proxy resolver, when used in conjunction with a specific web
server, accomplishes the full set of HXRI decoding steps specified in this section. In particular,
these decoding steps MUST be performed prior to any comparison operations defined in this
specification.
Before any HXRI-specific encoding steps are performed, the QXRI portion of the HXRI (including
all HXRI query parameters) MUST be transformed into URI-normal form as defined in section 2.3
of [XRISyntax]. This means characters not allowed in URIs, such as SPACE, or characters that
are valid only in IRIs, such as UCS characters above the ASCII range, MUST be percent
encoded. Also, the plus sign character (“+”) MUST NOT be used to encode the SPACE character
because in decoding the percent-encoded sequence %2B MUST be interpreted as the plus sign
character (“+”).
Once the HXRI is in URI-normal form, the following sequence of encoding steps MUST be
performed in the order specified before an HXRI is submitted to a proxy resolver.

1887 IMPORTANT: this sequence of steps is not idempotent, so it MUST be performed only once.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 68 of 131

1888
1889
1890
1891
1892
1893
1894
1895
1896

1897
1898
1899

1900
1901
1902
1903

1. First, in order to preserve percent-encoding when the HXRI is passed through a web
server, all percent signs MUST be themselves percent-encoded, i.e., a SPACE encoded
as %20 will become %2520.

2. Second, to prevent misinterpretation of HXRI query parameters, any occurrences of the
ampersand character (“&”) within an HXRI query parameter that are NOT used to delimit
it from another query parameter MUST be percent encoded using the sequence %26.

3. Third, to prevent misinterpretation of the semicolon character by the web server, any
semicolon used to delimit one of the media type parameters defined in Table 6 from the
media type value MUST be percent-encoded using the sequence %3B.

To decode an encoded HXRI back into URI-normal form, the above sequence of steps MUST be
performed in reverse order. Again, the sequence is not idempotent so it MUST be performed only
once.

Table 20 illustrates the components of an example HXRI before transformation to URI-normal
form. The characters requiring percent encoding are highlighted in red. Note the space in the
string hello planète. Also, for purposes of illustration, the Type component contains a query
string (which would not normally appear in a Type identifier).

QXRI https://xri.example.com/=example*résumé/path?query

_xrd_r _xrd_r=application/xrds+xml;https=true;sep=true

_xrd_t _xrd_t=http://example.org/test?a=1&b=hello planète

_xrd_m _xrd_m=application/atom+xml

1904

1905
1906
1907

Table 20: Example of HXRI components prior to transformation to URI-normal form.

Table 21 illustrates these components after transformation to URI-normal form. Characters that
have been percent-encoded are in blue. Characters still requiring percent encoding according to
the rules defined in this section are highlighted in red.

QXRI https://xri.example.com/=example*r%E9sum%E9/path?query

_xrd_r _xrd_r=application/xrds+xml;https=true;sep=true

_xrd_t _xrd_t=http://example.org/test?a=1&b=hello%20plan%E8te

_xrd_m _xrd_m=application/atom+xml

1908

1909

Table 21: Example of HXRI components after transformation to URI-normal form.

Table 22 illustrates the components after all encoding rules defined in this section are applied.

QXRI https://xri.example.com/=example*r%25E9sum%25E9/path?query

_xrd_r _xrd_r=application/xrds+xml%3Bhttps=true%3Bsep=true

_xrd_t _xrd_t=http://example.org/test?a=1%26b=hello%2520plan%25E8te

_xrd_m _xrd_m=application/atom+xml

1910

1911

Table 22: Example of HXRI components after application of the required encoding rules.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 69 of 131

1912 Following is the fully-encoded HXRI:

https://xri.example.com/=example*r%25E9sum%25E9/path?query 1913
&_xrd_r=application/xrds+xml%3Bhttps=true%3Bsep=true 1914
&_xrd_t=http://example.org/test?a=1%26b=hello%2520plan%25E8te 1915
&_xrd_m=application/atom+xml 1916

1917
1918

Following is the fully decoded HXRI returned to URI-normal form. Note that the proxy resolver
MUST leave the HXRI in URI-normal form for any further processing.

https://xri.example.com/=example*r%E9sum%E9/path?query 1919
&_xrd_r=application/xrds+xml;https=true;sep=true 1920
&_xrd_t=http://example.org/test?a=1&b=hello%20plan%E8te 1921
&_xrd_m=application/atom+xml 1922

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939
1940
1941
1942
1943
1944
1945
1946

1948
1949
1950
1951
1952
1953
1954
1955
1956

11.5 HTTP(S) Accept Headers 1923

In proxy resolution, one XRI resolution input parameter, the Service Media Type (section 8.1.4)
MAY be passed to a proxy resolver via the HTTP(S) Accept header of a resolution request. The
following rules apply to this input:

1. As described in section 14.1 of [RFC2616], the Accept header content type MAY consist
of multiple media type identifiers. If so, the proxy resolver MUST choose only one to
accept. A proxy resolver client SHOULD order media type identifiers according to the
client’s preference and a proxy resolver server SHOULD choose the client’s highest
preference.

2. If the value of the Accept header content type is null, this MUST be interpreted as the
value of the Service Media Type parameter.

3. If the value of the Service Media Type parameter is explicitly set via the _xrd_m query
parameter in the HXRI (including to a null value), this MUST take precedence over any
value set via an HTTP(S) Accept header.

11.6 Null Resolution Output Format 1937

Unlike authority resolution as defined in the preceding sections, a proxy resolver MAY receive a
resolution request where the Resolution Output Format input parameter value is null—either
because this parameter is absent or because it was explicitly set to null using the _xrd_r query
parameter.
If the value of the Resolution Output Format value is null, a resolver MUST proceed as if the
following media type parameters had the following values: https=false, saml=false,
refs=true, sep=true, nodefault_t=false, nodefault_p=false,
nodefault_m=false, and uric=false. In addition, the output MUST be an HTTP(S) redirect
as defined in the following section.

11.7 Outputs and HTTP(S) Redirects 1947

For all values of the Resolution Output Format parameter except null, a proxy resolver MUST
follow the output rules defined in section 8.2.
If the value of the Resolution Output Format is null, and the output is not an error, a proxy
resolver MUST follow the rules for output of a URI List as defined in section 8.2.3. However,
instead of returning a URI list, it MUST return the highest priority URI (the first one in the list) as
an HTTP(S) 3XX redirect with the Accept header content type set to the value of the Service
Media Type parameter.
If the output is an error, a proxy resolver SHOULD return a human-readable error message as
specified in section 15.4.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 70 of 131

1957
1958
1959
1960

1962
1963
1964
1965
1966
1967

1969
1970
1971
1972
1973
1974
1975

These rules enable XRI proxy resolvers to serve clients that do not understand XRI syntax or
resolution (such as non-XRI-enabled browsers) by automatically returning a redirect to the
service endpoint identified by a combination of the QXRI and the value of the HTTP(S) Accept
header (if any).

11.8 Differences Between Proxy Resolution Servers 1961

An XRI proxy resolution request MAY be sent to any proxy resolver that will accept it. All XRI
proxy resolvers SHOULD deliver uniform responses given the same QXRI and other input
parameters. However, because proxy resolvers may potentially need to make decisions about
network errors, Redirect and Ref processing, and trust policies on behalf of the client they are
proxying, and these decisions may be based on local policy, in some cases different proxy
resolvers may return different results.

11.9 Combining Authority and Proxy Resolution Servers 1968

The majority of DNS nameservers are recursing nameservers that answer both queries for which
they are authoritative and queries which they must forward to other nameservers. The same rule
applies in XRI architecture: in many cases the optimum configuration will be combining an
authority server and proxy resolver in the same server. This server can publish a self-describing
XRDS document (section 9.1.6) that advertises both its authority resolution and proxy resolution
service endpoints. It can also optimize caching of XRDs for clients in its resolution community
(see section 16.4).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 71 of 131

12 Redirect and Ref Processing 1976

The purpose of the xrd:Redirect and xrd:Ref elements is to enable identifier authorities to
distribute and delegate management of XRDS documents. There are two primary use cases for
using multiple XRDS documents to describe the same resource:

1977
1978
1979

1981
1982

1984
1985
1986

1987
1988

• One identifier authority needs to manage descriptions of the resource from different physical 1980
locations on the network, e.g., registry, directory, webserver, blog, etc. This is the purpose of
the xrd:Redirect element.

• One identifier authority needs to delegate all or part of resource description to a different 1983
identifier authority, e.g., an individual might delegate responsibility for different aspects of an
XRDS to his/her spouse, school, employer, doctor, etc. This is the purpose of the xrd:Ref
element.

Table 23 summarizes the similarities and differences between the xrd:Redirect and xrd:Ref
elements.

Requirement Redirect Ref

Must contain HTTP(S) URI XRI

Accepts the same append attribute as the xrd:URI
element

Yes No

Delegates to a different identifier authority No Yes

Must include a subset of the synonyms available in
the source XRD

Yes No

Available at both XRD level and SEP level Yes Yes

Processed automatically if present at the XRD level Yes Yes

Always results in nested XRDS document, even if only
to report an error

Yes Yes

Required attribute of XRDS element for nested XRDS
document

redirect ref

Number of XRDs in nested XRDS document 1 1 or more

1989

1990
1991

Table 23: Comparison of Redirect and Ref elements.

The combination of Redirect and Ref elements should enable identifier authorities to implement a
wide variety of distributed XRDS management policies.
IMPORTANT: Since they involve recursive calls, XRDS authors SHOULD use Redirects and Refs 1992
carefully and SHOULD perform special testing on XRDS documents containing Redirects and/or 1993
Refs to ensure they yield expected results. In particular implementers should study the recursive 1994
calls between authority resolution and service endpoint selection illustrated in Figure 2, Figure 5, 1995
Figure 7, and Figure 8 and see the guidance in section 12.6, Recursion and Backtracking. 1996

1997

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 72 of 131

1998 Figure 7 (non-normative) illustrates the logical flow of Redirect and Ref processing.

Redirect
selected?

Select highest priority
Redirect not yet selected

Branch to
Authority

Resolution
flowchart
(Fig 5)

Invalid
Redirect URI?

Start Redirect and
Ref Processing

Output non-null set of
selected SEPs

No

Output 25x error Ref
selected?

Branch to
Authority

Resolution
flowchart

(Fig 5)

Error?

No Output 26x error

No

No

Branch to
Input

Processing
flowchart

(Fig 3)

Input:
1) New XRI
2) All other resolution parameters
same as current query

Output:
List of Next Authority Resolution
Service Endpoint URIs or error

Input:
Redirect URI

Input:
1) List of Next Authority
Resolution Service
Endpoint URIs
2) Next Authority String
(section 9.1.10)

Output:
XRDS document or error

Output:
XRDS document or error

Input:
XRD or SEP (Note that input of a
SEP results in different output)

No

Redirect?

Yes

No

Select highest priority
Ref not yet selected

Yes

Yes

Yes

Construct Redirect URI

No

Yes

Yes

Yes

refs=false? Output error 262
REF_NOT_FOLLOWED

No

Yes

Input = SEP?

Branch to
SEP

Selection
flowchart

(Fig 8)

Input:
1) Set of SEPs from final XRD
2) Same SEP selection
parameters as current query

Output:
Non-null set of selected
SEPs or error

Error?

Input = SEP?

Branch to
SEP

Selection
flowchart

(Fig 8)

Input:
1) Set of SEPs from final XRD
2) Same SEP selection
parameters as current query

Output:
Non-null set of selected
SEPs or error

Error?

Yes Yes

No No

YesYes

Output final XRD Output final XRDNoNo

Error? Error?

1999
2000

2001

Figure 7: Redirect and Ref processing flowchart.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 73 of 131

12.1 Cardinality 2002

Redirect and Ref elements may be used both at the XRD level (as a child of the xrd:XRD
element) and the SEP level (as a child of the xrd:XRD/xrd:Service element) within an XRD.
In both cases, to simplify processing, the XRD schema (Appendix B) enforces the following rules:

2003
2004
2005

2007

2009

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

• At the XRD level, an XRD MAY contain only one of the following: zero-or-more 2006
xrd:Redirect or zero-or-more xrd:Ref elements.

• At the SEP level, a SEP MAY contain only one of the following: zero-or-more xrd:URI 2008
elements, zero-or-more xrd:Redirect elements, or zero-or-more xrd:Ref elements.

12.2 Precedence 2010

XRDS authors should take special note of the following precedence rules for Redirect and Refs.
1. If a Redirect or Ref element is present at the XRD level, it MUST be processed

immediately before a resolver continues with authority resolution, performs service
endpoint selection (required or optional), or returns its final output. This rule applies
recursively to all XRDS documents resolved as a result of Redirect or Ref processing.

2. If a Redirect or Ref element is not present at the XRD level, but is present in the highest
priority service endpoint selected by the rules in section 13, it MUST be processed
immediately before a resolver completes service endpoint selection (required or optional),
or returns its final output. This rule also applies recursively to all XRDS documents
resolved as a result of Redirect or Ref processing.

IMPORTANT: Due to these rules, even if a resolver has resolved the final subsegment of an XRI, 2021
the authority resolution phase is still not complete as long as the final XRD has a Redirect or Ref 2022
at the XRD level. This Redirect or Ref MUST be resolved until it returns an XRD that does not 2023
contain an Redirect or Ref at the XRD level. The same rule applies to the optional service 2024
endpoint selection phase: it is not complete until it locates a final XRD that contains the requested 2025
SEP but: a) the XRD does not contain an Redirect or Ref at the XRD level, and b) the highest 2026
priority selected SEP does not contain a Redirect or Ref. 2027

2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041

2042
2043
2044
2045
2046

Based on these rules, the following best practices are recommended.
1. XRDS authors SHOULD NOT put any service endpoints in an XRD that contains a

Redirect or Ref at the XRD level because by definition these service endpoints will be
ignored.

2. XRDS authors SHOULD use a Redirect or Ref element at the XRD level if they wish to
relocate or delegate resolution behavior regardless of any service endpoint query.

3. XRDS authors SHOULD use a Redirect or Ref element in a service endpoint for which
they expect a POSITIVE match as defined in section 13.4.1 if they wish to control
resolution behavior based an explicit service endpoint match.

4. XRDS authors SHOULD use a Redirect or Ref element in a service endpoint for which
they expect a DEFAULT match as defined in section 13.4.1 if they wish to control
resolution behavior based on the absence of an explicit service endpoint match.

5. XRDS authors SHOULD NOT include two or more SEPs of equal priority in an XRD if
they contain Redirects or Refs that will make resolution ambiguous or non-deterministic.

Also note that, during the authority resolution phase, a Redirect or Ref placed in the highest
priority authority resolution SEP of an XRD will have effectively the same result as a Redirect or
Ref placed at the XRD level. The first option (placement in the SEP) SHOULD be used if the XRD
contains other service endpoints or metadata describing the resource. The second option
(placement at the XRD level) SHOULD be used only if the XRD contains no service endpoints.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 74 of 131

12.3 Redirect Processing 2047

The purpose of the xrd:Redirect element is to enable an authority to redirect from an XRDS
document managed in one network location (e.g., a registry) to a different XRDS document
managed in a different network location by the same authority (e.g., a web server, blog, etc.) It is
similar to an HTTP(S) redirect; however, it is managed at the XRDS document level rather than
HTTP(S) transport level. Note that unlike a Ref, a Redirect does NOT delegate to a different XRI
authority, but only to the same authority at a different network location.

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

Following are the normative rules for processing of the xrd:Redirect element.
1. To process a Redirect at either the XRD or SEP level, the resolver MUST begin by

selecting the highest priority xrd:XRD/xrd:Redirect element in the XRD or SEP.
2. If the value of the resolution subparameter https is FALSE, or the subparameter is

absent or empty, the value of the selected xrd:Redirect element MUST be EITHER a
valid HTTP URI or a valid HTTPS URI. If not, the resolver MUST select the next highest
priority xrd:Redirect element. If all instances of this element fail, the resolver MUST
stop and return the error 251 INVALID_REDIRECT in the XRD containing the Redirect
or as a plain text error message as specified in section 15.

3. If the value of the resolution subparameter https is TRUE, the value of the selected
xrd:Redirect element MUST be a valid HTTPS URI. If not, the resolver MUST select
the next highest priority xrd:Redirect element. If all instances of this element fail, the
resolver MUST stop and return the error 252 INVALID_HTTPS_REDIRECT in the XRD
containing the Redirect or as a plain text error message as specified in section 15.

4. Once a valid xrd:Redirect element has been selected, if the
xrd:XRD/xrd:Redirect element includes the append attribute, the resolver MUST
construct the final HTTP(S) URI as defined in section 13.7.

5. The resolver MUST request a new XRDS document from the final HTTP(S) URI using the
protocol defined in section 9.1.3. If the Resolution Output Format is an XRDS document,
the resolver MUST embed a nested XRDS document containing an XRD representing
the Redirect as specified in section 12.5.

6. If resolution of an xrd:Redirect element fails during the authority resolution phase of
the original resolution query, or if resolution of an xrd:Redirect element fails during
the optional service endpoint selection phase OR the final XRD does not contain the
requested SEP, then the resolver MUST report the error in the final XRD of the nested
XRDS document using the status codes defined in section 15. (One nested XRDS
document will be added for each Redirect attempted by the resolver.) The resolver MUST
then select the next highest priority xrd:Redirect element from the original XRD or
SEP and repeat rule 7. For more details, see section 12.6, Recursion and Backtracking.

7. If resolution of all xrd:Redirect elements in the XRD or SEP that originally triggered
Redirect processing fails, the resolver MUST stop and return a 25x error in the XRD
containing the Redirect or as a plain text error message as specified in section 15. The
resolver MUST NOT try any other SEPs even if multiple SEPs were selected as specified
in section 13.

8. If resolution succeeds, the resolver MUST verify the synonym elements in the new XRD
as specified in section 14.1. If synonym verification fails, the resolver MUST stop and
return the error specified in that section.

9. If the value of the resolution subparameter saml is TRUE, the resolver MUST verify the
signature on the XRD as specified in section 10.2.4. If signature verification fails, the
resolver MUST stop and return the error specified in that section.

10. If Redirect resolution succeeds, further authority resolution or service endpoint selection
MUST continue based on the new XRD.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 75 of 131

12.4 Ref Processing 2096

The purpose of the xrd:Ref element is to enable one authority to delegate management of all or
part of an XRDS document to another authority. For example, an individual might delegate
management of all or portions of an XRDS document to his/her spouse, school, employer, doctor,
etc. This delegation may cover the entire document (an XRD level Ref), or only one or more
specific service endpoints within the document (a SEP level Ref).

2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

2142

Following are the normative rules for processing of the xrd:Ref element.
1. Ref processing is only performed if the value of the refs subparameter (Table 6) is

TRUE or it is absent or empty. If the value is FALSE and the XRD contains at least one
xrd:Ref element that could be followed to complete the resolution query, the resolver
MUST stop and return the error 262 REF_NOT_FOLLOWED in the XRD containing the
Ref or as a plain text error message as defined in section 15. The rules below presume
that refs=true.

2. To process a Ref at either the XRD or SEP level, the resolver MUST begin by selecting
the highest priority xrd:XRD/xrd:Ref element from the XRD or SEP.

3. The value of the selected xrd:Ref element MUST be a valid absolute XRI. If not, the
resolver MUST select the next highest priority xrd:Ref element. If all instances of this
element fail, the resolver MUST stop and return the error 261 INVALID_REF in the XRD
containing the Ref or as a plain text error message as defined in section 15.

4. Once a valid xrd:XRD/xrd:Ref value is selected, the resolver MUST begin resolution
of a new XRDS document from this XRI using the protocols defined in this specification.
Other than the QXRI, the resolver MUST use the same resolution query parameters as
the original query. If the Resolution Output Format is an XRDS document, the resolver
MUST embed a nested XRDS document containing an XRD representing the Ref as
defined in section 12.5.

5. If resolution of an xrd:Ref element fails during the authority resolution phase of the
original resolution query, or if resolution of an xrd:Ref element fails during the optional
service endpoint selection phase OR the final XRD does not contain the requested
service endpoint, then the resolver MUST record the nested XRDS document as far as
resolution was successful, including the relevant status codes for each XRD as specified
in section 15. The resolver MUST then select the next highest priority xrd:Ref element
as specified above and repeat rule 5. For more details, see section 12.6, Recursion and
Backtracking.

6. If resolution of all xrd:Ref elements in the XRD or SEP originating Ref processing fails,
the resolver MUST stop and return a 26x error in the XRD containing the Ref or as a
plain text error message as specified in section 15. The resolver MUST NOT try any
other SEPs even if multiple SEPs were selected as specified in section 13.

7. If resolution of an xrd:Ref element succeeds and cid=true, the resolver MUST
perform CanonicalID verification across all XRDs in the nested XRDS document as
specified in section 14.3. Note that each set of XRDs in each new nested XRDS
document produced as a result of Redirect or Ref processing constitutes its own
CanonicalID verification chain. CanonicalID verification never crosses between XRDS
documents. See section 12.5 for examples.

8. If resolution of an xrd:Ref element succeeds and the final XRD contains the service
endpoint(s) necessary to continue or complete the original resolution query, further
authority resolution or service endpoint selection MUST continue based on the final XRD.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 76 of 131

12.5 Nested XRDS Documents 2143

2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155

2157

2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170

2172
2173
2174
2175
2176

Processing of a Redirect or Ref ALWAYS produces a new XRDS document that describes the
Redirect or Ref that was followed, even if the result was an error. If the final requested Resolution
Output Format is NOT an XRDS document, this new XRDS document is only needed to obtain
the metadata necessary to continue or complete resolution. However, if the final requested
Resolution Output Format is an XRDS document, each XRDS document produced as a result of
Redirect or Ref processing MUST be nested inside the outer XRDS document immediately
following the xrd:XRD element containing the xrd:Redirect or xrd:Ref element being
followed. If more than one Redirect or Ref element is resolved due to an error, the corresponding
nested XRDS documents MUST be included in the same order as the Redirect or Ref elements
that were followed to produce them.
Each new XRDS document is a recursive authority resolution call and MUST conform to all
authority resolution requirements. In addition, the following rules apply:
• For a Redirect, the xrds:XRDS/@redirect attribute of the nested XRDS document MUST 2156

contain the fully-constructed HTTP(S) URI it describes as specified in section 12.3.
• For a Ref, the xrds:XRDS/@ref attribute of the nested XRDS document MUST contain the 2158

exact value of the xrd:XRD/xrd:Ref element it describes.
This allows a consuming application to verify the complete chain of XRDs obtained to resolve the
original query identifier even if resolution traverses multiple Redirects or Refs, and even if errors
were encountered. Like the outer XRDS document, nested XRDS documents MUST NOT include
an XRD for the community root subsegment because this is part of the configuration of the
resolver.
In addition, during SAML trusted resolution, if a nested XRDS document includes an XRD with an
xml:id attribute value matching the xml:id attribute value of any previous XRD in the chain of
resolution requests beginning with the original QXRI, the resolver MUST replace this XRD with an
empty XRD element. The resolver MUST set this empty element's idref attribute value to the
value of the xml:id attribute of the matched XRD element. This prevents conflicting xml:id
values.

12.5.1 Redirect Examples 2171

Example #1:
In this example the original query identifier is xri://@a. The first XRD contains an XRD-level
Redirect to http://a.example.com/. The elements and attributes specific to Redirect
processing are shown in bold. CanonicalIDs are included to illustrate the synonym verification
rule in section 12.3.

<XRDS xmlns="xri://$xrds" ref="xri://@a"> 2177
2178 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2179 <Query>*a</Query>
2180 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2181
 <Redirect>http://a.example.com/</Redirect> 2182

2183 ...
2184 </XRD>

 <XRDS redirect="http://a.example.com/"> 2185
2186 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2187 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;SAME AS XRDS #1 CID #1 2188
2189 ...
2190 <Service>
2191 <Type>http://openid.net/signon/1.0</Type>
2192 <URI>http://openid.example.com/</URI>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 77 of 131

2193 </Service>
2194 </XRD>
2195 </XRDS>
2196

2197
2198
2199
2200
2201
2202

</XRDS>

Example #2:
In this example the original query identifier is xri://@a*b*c. The second XRD contains a SEP-
level Redirect in its authority resolution SEP to http://other.example.com/. Note that
because authority resolution is not complete when this Redirect is encountered, it continues in the
outer XRDS after the nested XRDS representing the Redirect is complete. Again, CanonicalIDs
are included to illustrate the synonym verification rule.

<XRDS xmlns="xri://$xrds" ref="xri://@a*b*c"> 2203
2204 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2205 <Query>*a</Query>
2206 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2207
2208 ...
2209 <Service>
2210 <Type>xri://$res*auth*($v*2.0)</Type>
2211 <URI>http://a.example.com/</URI>
2212 </Service>
2213 </XRD>
2214 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2215 <Query>*b</Query>
2216 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;XRDS #1 CID #2 2217
2218 ...
2219 <Service>
2220 <Type>xri://$res*auth*($v*2.0)</Type>

 <Redirect>http://other.example.com</Redirect> 2221
2222 </Service>
2223 </XRD>

 <XRDS redirect="http://other.example.com"> 2224
2225 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2226 <Query>*b</Query>
2227 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;SAME AS XRDS #1 CID #2 2228
2229 ...
2230 <Service>
2231 <Type>xri://$res*auth*($v*2.0)</Type>
2232 <URI>http://b.example.com/</URI>
2233 </Service>
2234 </XRD>
2235 </XRDS>
2236 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2237 <Query>*c</Query>
2238 <ProviderID>xri://@!1!2</ProviderID>

 <CanonicalID>xri://@!1!2!3</CanonicalID> ;XRDS #1 CID #3 2239
2240 ...
2241 <Service>
2242 ...final service endpoints described here...
2243 </Service>
2244 </XRD>
2245 </XRDS>
2246
2247

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 78 of 131

Example #3: 2248
2249
2250
2251

In this example the original query identifier is again xri://@a*b*c. This time the final XRD
contains a SEP-level Redirect to http://other.example.com/. Because authority resolution
is complete, the outer XRDS ends with a nested XRDS representing the SEP-level Redirect.

2252 <XRDS xmlns="xri://$xrds" ref="xri://@a*b*c">
2253 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2254 <Query>*a</Query>
2255 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2256
2257 ...
2258 <Service>
2259 <Type>xri://$res*auth*($v*2.0)</Type>
2260 <URI>http://a.example.com/</URI>
2261 </Service>
2262 </XRD>
2263 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2264 <Query>*b</Query>
2265 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;XRDS #1 CID #2 2266
2267 ...
2268 <Service>
2269 <Type>xri://$res*auth*($v*2.0)</Type>
2270 <URI>http://b.example.com/</URI>
2271 </Service>
2272 </XRD>
2273 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2274 <Query>*c</Query>
2275 <ProviderID>xri://@!1!2</ProviderID>

 <CanonicalID>xri://@!1!2!3</CanonicalID> ;XRDS #1 CID #3 2276
2277 ...
2278 <Service>
2279 <Type>http://openid.net/signon/1.0</Type>
2280 <Redirect>http://r.example.com/openid</Redirect>
2281 </Service>
2282 </XRD>
2283 <XRDS redirect="http://r.example.com/openid">
2284 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2285 <ProviderID>xri://@!1!2</ProviderID>

 <CanonicalID>xri://@!1!2!3</CanonicalID> ;SAME AS XRDS #1 CID #3 2286
2287 ...
2288 <Service>
2289 <Type>http://openid.net/signon/1.0</Type>
2290 <URI>http://openid.example.com/</URI>
2291 </Service>
2292 </XRD>
2293 </XRDS>
2294

2295

</XRDS>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 79 of 131

Example #4: 2296
2297
2298
2299
2300

In this final example the query identifier is xri://@a*b. The first XRD contains an XRD-level
Redirect to http://a.example.com/, and this XRDS document in turn contains a second
redirect to http://b.example.com/. Chaining redirects in this manner is NOT
RECOMMENDED but is shown here to clarify how XRDS document nesting works.

<XRDS xmlns="xri://$xrds" ref="xri://@a*b"> 2301
2302 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2303 <Query>*a</Query>
2304 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2305
 <Redirect>http://a.example.com/</Redirect> 2306

2307 ...
2308 </XRD>

 <XRDS redirect="http://a.example.com/"> 2309
2310 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2311 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;SAME AS XRDS #1 CID #1 2312
 <Redirect>http://b.example.com/</Redirect> 2313

2314 ...
 </XRD> 2315
 <XRDS redirect="http://b.example.com/"> 2316

2317 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2318 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;SAME AS XRDS #1 CID #1 2319
2320 ...
2321 <Service>
2322 <Type>xri://$res*auth*($v*2.0)</Type>
2323 <URI>http://b.example.com/</URI>
2324 </Service>
2325 </XRD>
2326 </XRDS>
2327 </XRDS>
2328 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2329 <Query>*b</Query>
2330 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;XRDS #1 CID #2 2331
2332 ...
2333 <Service>
2334 <Type>xri://$res*auth*($v*2.0)</Type>
2335 <URI>http://b.example.com/</URI>
2336 </Service>
2337 </XRD>
2338
2339
2340

</XRDS>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 80 of 131

12.5.2 Ref Examples 2341

Example #1: 2342
2343
2344
2345

In this example the original query identifier is xri://@a. The first XRD contains an XRD-level
Ref to xri://@x*y. The CanonicalID values are included to illustrate the CanonicalID
verification rules in section 14.3.

<XRDS xmlns="xri://$xrds" ref="xri://@a"> 2346
2347 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2348 <Query>*a</Query>
2349 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2350
 <Ref>xri://@x*y</Ref> 2351
 </XRD> 2352
 <XRDS ref="xri://@x*y"> 2353

2354 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2355 <Query>*x</Query>
2356 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!7</CanonicalID> ;XRDS #2 CID #1 2357
2358 ...
2359 <Service>
2360 <Type>xri://$res*auth*($v*2.0)</Type>
2361 <URI>http://x.example.com/</URI>
2362 </Service>
2363 </XRD>
2364 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2365 <Query>*y</Query>
2366 <ProviderID>xri://@!7</ProviderID>

 <CanonicalID>xri://@!7!8</CanonicalID> ;XRDS #2 CID #2 2367
2368 ...
2369 <Service>
2370 <Type>xri://$res*auth*($v*2.0)</Type>
2371 <URI>http://y.example.com/</URI>
2372 </Service>
2373 <Service>
2374 <Type>http://openid.net/signon/1.0</Type>
2375 <URI>http://openid.example.com/</URI>
2376 </Service>
2377 </XRD>
2378 </XRDS>
2379

2380
2381
2382
2383
2384
2385

</XRDS>

Example #2:
In this example the original query identifier is xri://@a*b*c. The second XRD contains a SEP-
level Ref in its authority resolution SEP to xri://@x*y. Note that because authority resolution is
not complete when this Ref is encountered, it continues in the outer XRDS after the nested XRDS
representing the Ref. Note especially how the CanonicalIDs progress to satisfy the CanonicalID
verification rules specified in section 14.3.

<XRDS xmlns="xri://$xrds" ref="xri://@a*b*c"> 2386
2387 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2388 <Query>*a</Query>
2389 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2390
2391 ...
2392 <Service>
2393 <Type>xri://$res*auth*($v*2.0)</Type>
2394 <URI>http://a.example.com/</URI>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 81 of 131

2395 </Service>
2396 </XRD>
2397 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2398 <Query>*b</Query>
2399 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;XRDS #1 CID #2 2400
2401 ...
2402 <Service>
2403 <Type>xri://$res*auth*($v*2.0)</Type>

 <Ref>xri://@x*y</Ref> 2404
2405 </Service>

 </XRD> 2406
 <XRDS ref="xri://@x*y"> 2407

2408 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2409 <Query>*x</Query>
2410 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!7</CanonicalID> ;XRDS #2 CID #1 2411
2412 ...
2413 <Service>
2414 <Type>xri://$res*auth*($v*2.0)</Type>
2415 <URI>http://x.example.com/</URI>
2416 </Service>
2417 </XRD>
2418 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2419 <Query>*y</Query>
2420 <ProviderID>xri://@!7</ProviderID>

 <CanonicalID>xri://@!7!8</CanonicalID> ;XRDS #2 CID #2 2421
2422 ...
2423 <Service>
2424 <Type>xri://$res*auth*($v*2.0)</Type>
2425 <URI>http://y.example.com/</URI>
2426 </Service>
2427 </XRD>
2428 </XRDS>
2429 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2430 <Query>*c</Query>
2431 <ProviderID>xri://@!1!2</ProviderID>

 <CanonicalID>xri://@!1!2!3</CanonicalID> ;XRDS #1 CID #3 IS 2432
CHILD OF XRDS #1 CID #2 2433

2434 ...
2435 <Service>
2436 ...final service endpoints described here...
2437 </Service>
2438 </XRD>
2439

2440
2441
2442
2443

</XRDS>

Example #3:
In this example the original query identifier is again xri://@a*b*c. This time the final XRD
contains a SEP-level Ref to xri://@x*y. Because authority resolution is complete, the outer
XRDS ends with a nested XRDS representing the SEP-level Ref.

<XRDS xmlns="xri://$xrds" ref="xri://@a*b*c"> 2444
2445 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2446 <Query>*a</Query>
2447 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!1</CanonicalID> ;XRDS #1 CID #1 2448
2449 ...
2450 <Service>
2451 <Type>xri://$res*auth*($v*2.0)</Type>
2452 <URI>http://a.example.com/</URI>
2453 </Service>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 82 of 131

2454 </XRD>
2455 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2456 <Query>*b</Query>
2457 <ProviderID>xri://@!1</ProviderID>

 <CanonicalID>xri://@!1!2</CanonicalID> ;XRDS #1 CID #2 2458
2459 ...
2460 <Service>
2461 <Type>xri://$res*auth*($v*2.0)</Type>
2462 <URI>http://a.example.com/</URI>
2463 </Service>
2464 </XRD>
2465 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2466 <Query>*c</Query>
2467 <ProviderID>xri://@!1!2</ProviderID>

 <CanonicalID>xri://@!1!2!3</CanonicalID> ;XRDS #1 CID #3 2468
2469 ...
2470 <Service>
2471 <Type>http://openid.net/signon/1.0</Type>

 <Ref>xri://@x*y</Ref> 2472
2473 </Service>

 </XRD> 2474
 <XRDS ref="xri://@x*y"> 2475

2476 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2477 <Query>*x</Query>
2478 <ProviderID>xri://@</ProviderID>

 <CanonicalID>xri://@!7</CanonicalID> ;XRDS #2 CID #1 2479
2480 ...
2481 <Service>
2482 <Type>xri://$res*auth*($v*2.0)</Type>
2483 <URI>http://x.example.com/</URI>
2484 </Service>
2485 </XRD>
2486 <XRD xmlns="xri://$xrd*($v*2.0)" version=”2.0”>
2487 <Query>*y</Query>
2488 <ProviderID>xri://@!7</ProviderID>

 <CanonicalID>xri://@!7!8</CanonicalID> ;XRDS #2 CID #2 2489
2490 ...
2491 <Service>
2492 <Type>xri://$res*auth*($v*2.0)</Type>
2493 <URI>http://y.example.com/</URI>
2494 </Service>
2495 <Service>
2496 <Type>http://openid.net/signon/1.0</Type>
2497 <URI>http://openid.example.com/</URI>
2498 </Service>
2499 </XRD>
2500 </XRDS>
2501
2502

</XRDS>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 83 of 131

12.6 Recursion and Backtracking 2503

Redirect and Ref processing triggers recursive calls to authority resolution that produce nested
XRDS documents. This recursion can continue to any depth, i.e., a Redirect may contain another
Redirect or a Ref, and a Ref may contain another Ref or a Redirect. To avoid confusion, either in
resolver implementations or in XRDS documents, it is important to clarify the “backtracking” rules.
The following should be read in conjunction with the flowcharts in

2504
2505
2506
2507
2508
2509

2511
2512
2513
2514
2515

2517
2518
2519
2520
2521

2523
2524
2525
2526
2527
2528
2529

2531
2532
2533
2534

2536

2537
2538

Figure 2, Figure 5, Figure 7,
and Figure 8.
• Separation of phases. Redirect and Ref processing invoked during the authority resolution 2510

phase is separate and distinct from Redirect and Ref processing invoked during the optional
service endpoint selection phase (see Figure 2). Redirect or Ref processing during the former
MUST successfully complete authority resolution or else return an error. Redirect or Ref
processing during the latter MUST successfully locate the requested service endpoint or else
return an error, i.e., it MUST NOT backtrack into the authority resolution phase.

• First recursion point. The first time a resolver encounters a Redirect or a Ref within a phase is 2516
called the first recursion point. There MUST be at most one first recursion point during the
authority resolution phase and at most one first recursion point during the optional service
endpoint selection phase. During the authority resolution phase, the first recursion point MAY
be either an XRD or a service endpoint (SEP). During the optional service endpoint selection
phase, the first recursion point MUST be a SEP.

• Priority order. As specified in sections 12.3 and 12.4, once a resolver reaches a first 2522
recursion point during the authority resolution stage, it MUST process Redirects or Refs in
priority order until either it successfully completes authority resolution (and the final XRD
does not contain an XRD-level Redirect or Ref), or until all Redirects or Refs have failed.
Similarly, once a resolver reaches a first recursion point during the optional service endpoint
selection phase, it MUST process Redirect or Ref in priority order until either it successfully
locates the requested SEP (and that SEP does not contain a Redirect or Ref), or until all
Redirects or Refs have failed.

• Next recursion point. If a Redirect or Ref leads to another Redirect or Ref, this is called the 2530
next recursion point. The same rules apply to the next recursion point as apply to the first
recursion point, except that if all attempts to resolve a Redirect or Ref at a next recursion
point fail, the resolver MUST return to the previous recursion point and continue trying any
untried Redirects or Refs until either it is successful or all Redirects or Refs have failed.

• Termination. If the resolver returns to the first recursion point and all of its Redirects or Refs 2535
have failed, the resolver MUST stop and return an error.

To avoid excessive recursion and inefficient resolution responses, XRDS authors are
RECOMMENDED to use as few Redirects or Refs in a resolution chain as possible.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 84 of 131

13 Service Endpoint Selection 2539

The second phase of XRI resolution is called service endpoint selection. As noted in Figure 2, this
phase is invoked automatically for each iteration of authority resolution after the first in order to
select the Next Authority Resolution Service Endpoint as defined in section

2540
2541
2542
2543
2544

2546

9.1.9. It is also
performed after authority resolution is complete if optional service endpoint selection is
requested.

13.1 Processing Rules 2545

Figure 8 (non-normative) shows the overall logical flow of the service endpoint selection process.

 2547
2548 Figure 8: Service endpoint (SEP) selection flowchart.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 85 of 131

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561

2562

Following are the normative rules for the overall service endpoint selection process:
1. The inputs for service endpoint selection are defined in Table 8.
2. For the set of all service endpoints (xrd:XRD/xrd:Service elements) in the XRD,

service endpoint selection MUST follow the logic defined in section 13.2. The output of
this process MUST be either the null set or a selected set of one or more service
endpoints.

3. If, after applying the service endpoint selection logic, the selected set is null, this function
MUST return the error 241 SEP_NOT_FOUND.

4. If, after applying the service endpoint selection logic, the selected set is not null and the
highest priority selected service endpoint contains an
xrd:XRD/xrd:Service/xrd:Redirect or xrd:XRD/xrd:Service/xrd:Ref
element, it MUST first be processed as specified in section 12. This is a recursive call
that will produce a nested XRDS document as defined in section 12.5.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 86 of 131

13.2 Service Endpoint Selection Logic 2563

Selection of service endpoints (SEPs) within an XRD is managed using service endpoint
selection elements (SELs). As shown in

2564
2565
2566
2567
2568

Figure 9 (non-normative), the selection process first
applies SEL matching rules (section 13.3), followed by SEP matching rules (section 13.4), to the
set of all SEPs in the XRD. It then applies SEP selection rules (section 13.5) to determine the
final output.

 2569
2570

2571

Figure 9: Service endpoint (SEP) selection logic flowchart.

The following sections provide the normative rules for each section of this flowchart.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 87 of 131

13.3 Selection Element Matching Rules 2572

2573

2575
2576
2577
2578

The first set of rules govern the matching of selection elements.

13.3.1 Selection Element Match Options 2574

As defined in section 4.2.6, there are three categories of service endpoint selection elements:
xrd:Type, xrd:Path, and xrd:MediaType. Within each service endpoint, there is a match
option for each of the three categories of selection elements. Matches are tri-state: the three
options and their corresponding precedence order are defined in Table 24:

Match Option Match Condition Precedence

POSITIVE A successful match based on the value of the match
attribute as defined in 13.3.2 OR a successful match based
the contents of the selection element as defined in sections
13.3.6 - 13.3.8.

1

DEFAULT The value of the match attribute is default OR there is no
instance of this type of selection element contained in the
service endpoint as defined in section 13.3.3.

0

NEGATIVE The selection element does not satisfy either condition
above.

-1

2579

2580

Table 24: Match options for selection elements.

The Precedence order is used in the Multiple Selection Element Matching Rule (section 13.3.5).

IMPORTANT: Failure of a POSITIVE match does not necessarily mean a NEGATIVE match; it 2581
may still qualify as a DEFAULT match. 2582

2584
2585
2586
2587
2588
2589

13.3.2 The Match Attribute 2583

All three service endpoint selection elements accept the optional match attribute. This attribute
gives XRDS authors precise control over selection of SEPs based on the QXRI and other service
endpoint selection parameters. An enumerated list of the values for the match attribute is defined
in Table 25. If the match attribute is present with one of these values, the contents of the
selection element MUST be ignored, and the corresponding matching rule MUST be applied. If
the match attribute is absent or has any other value, the rules in this section do not apply.

Value Matching Rule Applied to Corresponding Input Parameter

any Automatically a POSITIVE match (i.e., input parameter is ignored).

default Automatically a DEFAULT match (i.e., input parameter is ignored) UNLESS the
value of the Resolution Output Format nodefault_t, nodefault_p or
nodefault_m subparameter is set to TRUE for the applicable category of
selection element, in which case it is a NEGATIVE match.

non-null Any input value except null is a POSITIVE match. An input value of null is a
NEGATIVE match.

null An input value of null is a POSITIVE match. Any other input value is a
NEGATIVE match.

2590 Table 25: Enumerated values of the global match attribute and corresponding matching rules.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 88 of 131

BACKWARDS COMPATIBILITY NOTE: earlier working drafts of this specification included the 2591
values match="none" and match="contents". Both are deprecated. The former is no longer 2592
supported and the latter is now the default behaviour of any selection element that does not 2593
include the match attribute. Implementers SHOULD accept these values accordingly. 2594

2596
2597
2598
2599

2601
2602
2603

2605
2606
2607
2608
2609

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625

2626
2627

2628

13.3.3 Absent Selection Element Matching Rule 2595

If a service endpoint does not contain at least one instance of a particular category of selection
element, it MUST be considered equivalent to the service endpoint having a DEFAULT match on
that category of selection element UNLESS overriden by a nodefault_* parameter as specified
in Table 25.

13.3.4 Empty Selection Element Matching Rule 2600

If a selection element is present in a service endpoint but the element is empty, and if the element
does not contain a match attribute, it MUST be considered equivalent to having a match
attribute with a value of null.

13.3.5 Multiple Selection Element Matching Rule 2604

Each service endpoint has only one match option for each category of selection element.
Therefore if a service endpoint contains more than one instance of the same category of selection
element (i.e., more than one xrd:Type, xrd:Path, or xrd:MediaType element), the match for
that category of selection element MUST be the match for the selection element(s) with the
highest precedence match option as defined in Table 24.

13.3.6 Type Element Matching Rules 2610

The following rules apply to matching the value of the input Service Type parameter with the
contents of a non-emtpy xrd:XRD/xrd:Service/xrd:Type element when its match attribute
is absent.

1. If the value is an XRI or IRI, it MUST be in URI-normal form as defined in section 4.4.
2. Prior to comparsion (and only for the purpose of comparison), the values of the Service

Type parameter and the xrd:XRD/xrd:Service/xrd:Type element SHOULD be
normalized according to the requirements of their identifier scheme. In particular, if an
XRI, IRI, or URI uses hierarchical syntax and does not include a local part (a path and/or
query component) after the authority component, a trailing forward slash after the
authority component MUST NOT be considered significant in comparisions. In all other
cases, a trailing forward slash MUST be considered significant in comparisons unless this
rule is overridden by scheme-specific comparision rules.

3. To result in a POSITIVE match on this selection element, the values MUST be equivalent
according to the equivalence rules of the applicable identifier scheme. Any other result is
a NEGATIVE match on this selection element.

As a best practice, service architects SHOULD assign identifiers for service types that are in URI-
normal form, do not require further normalization, and are easy to match.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 89 of 131

13.3.7 Path Element Matching Rules 2629

The following rules apply to matching the value of the input Path String (the path portion of the
QXRI as defined in section

2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650

2651

8.1.1) with the contents of a non-empty
xrd:XRD/xrd:Service/xrd:Path element when its match attribute is absent.

1. If the value is a relative XRI or an IRI it MUST be in URI-normal form as defined in
section 4.4.

2. Prior to comparison, the leading forward slash separating an XRI authority component
from the path component MUST be prepended to the Path String. Any subsequent
forward slash, including trailing forward slashes, MUST be significant in comparisions.

3. The contents of the xrd:XRD/xrd:Service/xrd:Path element SHOULD include the
leading forward slash separating the XRI authority component from the path. If it does
not, one MUST be prepended prior to comparision.

4. Equivalence comparison SHOULD be performed using Caseless Matching as defined in
section 3.13 of [Unicode].

5. To result in a POSITIVE match on this selection element, the value of the Path String
MUST be a subsegment stem match with the contents of the
xrd:XRD/xrd:Service/xrd:Path element. A subsegment stem match is defined as
the entire Path String being character-for-character equivalent with any continuous
sequence of subsegments or segments (including empty subsegments and empty
segments) in the contents of the Path element beginning from the most significant
(leftmost) subsegment. Subsegments and segments are formally defined in [XRISyntax].
Any other result MUST be a NEGATIVE match on this selection element.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 90 of 131

Examples of this rule are shown in Table 26. 2652

QXRI (Path in bold) XRD Path Element Match

@example <Path match="null"/> POSITIVE

@example <Path></Path> POSITIVE

@example <Path>/</Path> POSITIVE

@example/ <Path>/</Path> POSITIVE

@example// <Path>/</Path> NEGATIVE

@example// <Path>//</Path> POSITIVE

@example// <Path>/foo</Path> NEGATIVE

@example/foo <Path>/foo</Path> POSITIVE

@example//foo <Path>/foo</Path> NEGATIVE

@example//foo <Path>//foo</Path> POSITIVE

@example/foo*bar <Path>/foo</Path> NEGATIVE

@example/foo*bar <Path>/foo*bar</Path> POSITIVE

@example/foo*bar <Path>/foo*bar/</Path> POSITIVE

@example/foo*bar <Path>/foo*bar/baz</Path> POSITIVE

@example/foo*bar <Path>/foo*bar*baz</Path> POSITIVE

@example/foo*bar <Path>/foo*bar!baz</Path> POSITIVE

@example/foo*bar/ <Path>/foo*bar</Path> NEGATIVE

@example/foo*bar/ <Path>/foo*bar/</Path> POSITIVE

@example/foo*bar/ <Path>/foo*bar/baz</Path> POSITIVE

@example/foo*bar/ <Path>/foo*bar*baz</Path> NEGATIVE

@example/foo!bar <Path>/foo*bar</Path> NEGATIVE

@example/foo!bar <Path>/foo!bar*baz</Path> POSITIVE

@example/(+foo) <Path>/(+foo)</Path> POSITIVE

@example/(+foo)*bar <Path>/(+foo)</Path> NEGATIVE

@example/(+foo)*bar <Path>/(+foo)*bar</Path> POSITIVE

@example/(+foo)*bar <Path>/(+foo)*bar*baz</Path> POSITIVE

@example/(+foo)!bar <Path>/(+foo)*bar</Path> NEGATIVE

2653

2654

Table 26: Examples of applying the Path element matching rules.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 91 of 131

13.3.8 MediaType Element Matching Rules 2655

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667

2669
2670

2672

The following rules apply to matching the value of the input Service Media Type parameter with
the contents of of a non-empty xrd:XRD/xrd:Service/xrd:MediaType element when its
match attribute is absent.

1. The values of the Service Media Type parameter and the xrd:MediaType element
SHOULD be normalized according to the rules for media types in section 3.7 of
[RFC2616] prior to input. (The rules are that media type and media type parameter
names are case-insensitive, but parameter values may or may not be case-sensitive
depending on the semantics of the parameter name. XRI Resolution Output Format
parameters and subparameters are all case-insensitive.) XRI resolvers MAY perform
normalization of these values but MUST NOT be required to do so.

2. To be a POSITIVE match on this selection element, the values MUST be character-for-
character equivalent. Any other result is a NEGATIVE match on this selection element.

13.4 Service Endpoint Matching Rules 2668

The next set of matching rules govern the matching of service endpoints based on the matches of
the selection elements they contain.

13.4.1 Service Endpoint Match Options 2671

For each service endpoint in an XRD, there are three match options as defined in Table 27:

Match Option Condition

POSITIVE Meets the Select Attribute Match Rule (section 13.4.2) or the All
Positive Match Rule (section 13.4.3).

DEFAULT Meets the Default Match Rule (section 13.4.4).

NEGATIVE The service endpoint does not satisfy either condition above.

2673

2675
2676
2677
2678
2679
2680

2682
2683
2684
2685

2687
2688
2689

Table 27: Match options for service endpoints.

13.4.2 Select Attribute Match Rule 2674

All three service endpoint selection elements accept the optional select attribute. This attribute
is a Boolean value used to govern matching of the containing service endpoint according to the
following rule. If service endpoint contains a selection element with a POSITIVE match as defined
in section 13.3, and the value of this selection element’s select attribute is TRUE, the service
endpoint automatically MUST be a POSITIVE match, i.e., all other selection elements for this
service endpoint MUST be ignored.

13.4.3 All Positive Match Rule 2681

If a service endpoint has a POSITIVE match on all three categories of selection elements
(xrd:Type, xrd:MediaType, and xrd:Path) as defined in section 13.3, the service endpoint
MUST be a POSITIVE match. If even one of the three selection element match types is not
POSITIVE, this rule fails.

13.4.4 Default Match Rule 2686

If a service endpoint fails the Select Attribute Match Rule and the All Positive Match Rule, but
none of the three categories of selection elements has a NEGATIVE match as defined in section
13.3, the service endpoint MUST be a DEFAULT match.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 92 of 131

13.5 Service Endpoint Selection Rules 2690

2691

2693
2694
2695

2697
2698
2699
2700
2701
2702
2703
2704
2705

2707
2708
2709
2710
2711

2715
2716
2717
2718
2719
2720
2721
2722
2723
2724

The final set of rules governs the selection of service endpoints based on their matches.

13.5.1 Positive Match Rule 2692

After applying the matching rules to service endpoints in section 13.4, all service endpoints that
have a POSITIVE match MUST be selected. Only if there are no service endpoints with a
POSITIVE match is the Default Match Rule invoked.

13.5.2 Default Match Rule 2696

If the Positive Match Rule above fails, then the service endpoints with a DEFAULT match that
have the highest number of POSITIVE matches on each category of selection element MUST be
selected. This means:

1. The service endpoints in the DEFAULT set that have two POSITIVE selection element
matches MUST be selected.

2. If the previous set is empty, the service endpoints in the DEFAULT set that have one
POSITIVE selection element match MUST be selected.

3. If the previous set is empty, all service endpoints in the DEFAULT set MUST be selected.
4. If the previous set is empty, no service endpoint is selected and the return set is null.

13.6 Pseudocode 2706

The following pseudocode provides a precise description of the service endpoint selection logic.
The pseudocode is normative, however if there is a conflict between it and the rules stated in the
preceeding sections, the preceeding sections shall prevail.
The pseudocode uses nine Boolean flags to record the match state for each category of selection
element (SEL) in a service endpoint (SEP):
• Postive.x (where x = Type, Path, or MediaType) 2712
• Default.x (where x = Type, Path, or MediaType) 2713
• Present.x (where x = Type, Path, or MediaType) 2714

The variable Nodefault.x refers to the value of the nodefault_t (Type), nodefault_p
(Path), and nodefault_m (MediaType) subparameters as explained in Table 25.
Note that the complete set of nine SEL match flags is needed for each SEP. The pseudocode first
does a loop through all SEPs in the XRD to:

1. Set the SEL match flags according to the rules specified in section 13.3;
2. Process the SEL match flags to apply the SEP matching rules specified in section 13.4;
3. Apply the positive SEP selection rule specified in section 13.5.1.

After this loop is complete, the pseudocode tests to see if default SEP selection processing is
required. If so, it performs a second loop applying the default SEP selection rules specified in
section 13.5.2.
NOTE: In this pseudocode, when the words POSITIVE, DEFAULT, or NEGATIVE appear in 2725
UPPERCASE, they refer to the SEL match type or SEP match type as defined in Table 24 and 2726
Table 27. When they appear in First Letter Caps, they refer to the Boolean flags defined above. 2727

2728

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 93 of 131

2729

2730 FOR EACH SEP
2731 CREATE set of nine SEL match flags (see text above)
2732 SET all flags to FALSE
2733 FOR EACH SEL of category x (where x=Type, Path, or Mediatype)
2734 SET Present.x=TRUE
2735 IF match type on this SEL is POSITIVE
2736 IF select="true" ;see 13.4.2
2737 ADD SEP TO SELECTED SET
2738 NEXT SEP
2739 ELSE
2740 SET Positive.x=TRUE
2741 ENDIF
2742 ELSEIF match="default" ;see 13.3.2
2743 IF Positive.x != TRUE AND ;see 13.3.5
2744 Nodefault.x != TRUE ;see 13.3.2
2745 SET Default.x=TRUE
2746 ENDIF
2747 ENDIF
2748 ENDFOR
2749 FOR EACH category x (where x=Type, Path, or Mediatype)
2750 IF Present.x=FALSE ;see 13.3.3
2751 IF Nodefault.x != TRUE ;see 13.3.2
2752 SET Default.x=TRUE
2753 ENDIF
2754 ENDIF
2755 ENDFOR
2756 IF Positive.Type=TRUE AND
2757 Positive.Path=TRUE AND
2758 Positive.Mediatype=TRUE ;see 13.4.3
2759 ADD SEP TO SELECTED SET
2760 NEXT SEP
2761 ELSEIF SELECTED SET != EMPTY ;see 13.5.1
2762 NEXT SEP
2763 ELSEIF (Positive.Type=TRUE OR Default.Type=TRUE) AND
2764 (Positive.Path=TRUE OR Default.Path=TRUE) AND
2765 (Positive.MediaType=TRUE OR Default.MediaType=TRUE)
2766 ADD SEP TO DEFAULT SET ;see 13.4.4
2767 ENDIF
2768 ENDFOR
2769 IF SELECTED SET = EMPTY
2770 FOR EACH SEP IN DEFAULT SET ;see 13.5.2
2771 IF (Positive.Type=TRUE AND Positive.Path=TRUE) OR
2772 (Positive.Type=TRUE AND Positive.MediaType=TRUE) OR
2773 (Positive.Path=TRUE AND Positive.MediaType=TRUE)
2774 ADD SEP TO SELECTED SET
2775 ENDIF
2776 ENDFOR
2777 IF SELECTED SET = EMPTY
2778 FOR EACH SEP IN DEFAULT SET ;see 13.5.2
2779 IF Positive.Type=TRUE OR
2780 Positive.Path=TRUE OR
2781 Positive.MediaType=TRUE
2782 ADD SEP TO SELECTED SET
2783 ENDIF
2784 ENDFOR
2785 ENDIF
2786 ENDIF
2787 IF SELECTED SET != EMPTY
2788 RETURN SELECTED SET
2789 ELSE
2790 RETURN DEFAULT SET
2791 ENDIF

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 94 of 131

13.7 Construction of Service Endpoint URIs 2792

2793
2794

2798
2799

The final step in the service endpoint selection process is construction of the service endpoint
URI(s). This step is necessary if either:
• The resolution output format is a URI List. 2795
• Automatic URI construction is requested using the uric parameter. 2796

13.7.1 The append Attribute 2797

The append attribute of a xrd:XRD/xrd:Service/xrd:URI element is used to specify how
the final URI is constructed. The values of this attribute are shown in Table 28.

Value Component of QXRI to Append

none None. This is the default if the append attribute is absent

local The entire local part of the QXRI, defined as being one of three cases:
a) If only a path is present, the Path String including the leading forward
slash
b) If only a query is present, the Query String including the leading
question mark
c) If both a path and a query are present, the entire combination of the
Path String including the leading forward slash and the Query String plus
the leading question mark
Note that as defined in section 8.1.1, a fragment is never part of a QXRI.

authority Authority String only (including the community root subsegment) not
including the trailing forward slash

path Path String including the leading forward slash

query Query String including the leading question mark

qxri Entire QXRI

2800

2801
2802

Table 28: Values of the append attribute and the corresponding QXRI component to append.

If the append attribute is absent, the default value is none. Following are the rules for
construction of the final service endpoint URI based on the value of the append attribute.

IMPORTANT: Implementers must follow these rules exactly in order to give XRDS authors 2803
precise control over construction of service endpoint URIs. 2804

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814

1. If the value is none, the exact contents of the xrd:URI element MUST be returned
directly without any further processing.

2. For any other value, the exact value in URI-normal form of the QXRI component specified
in Table 28, including any leading delimiter(s) and without any additional escaping or
percent encoding MUST be appended directly to the exact contents of the xrd:URI
element including any trailing delimiter(s). If the value of the QXRI component specified in
Table 28 consists of only a leading delimiter, then this value MUST be appended
according to these rules. If the value of the QXRI component specified in Table 28 is null,
then the contents of the xrd:URI element MUST be returned directly exactly as if the
value of the append attribute was none.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 95 of 131

3. If any HXRI query parameters for proxy resolution were added to an existing QXRI query
component as defined in section

2815
2816
2817
2818
2819
2820
2821

11.3, these query parameters MUST be removed prior
to performing the append operation as also defined in section 11.3. In particular, if after
removal of these query parameters the QXRI query component consists of only a string
of one or more question marks (the delimiting question mark plus zero or more additional
question marks) then exactly one question mark MUST also be removed. This preserves
the query component of the original QXRI if it was null or contained only question marks.

IMPORTANT: Construction of HTTP(S) URIs for authority resolution service endpoints is defined 2822
in section 9.1.10. Note that this involves an additional step taken after all URI construction steps 2823
specified in this section are complete. In other words, if the URI element of an authority resolution 2824
service endpoint includes an append attribute, the Next Authority Resolution Service URI MUST 2825
be fully constructed according to the algorithm in this section before appending the Next Authority 2826
String as defined in section 9.1.10. 2827
WARNING: Use of any value of the append attribute other than authority on the URI element 2828
for an authority resolution service endpoint is NOT RECOMMENDED due to the complexity it 2829
introduces. 2830

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844

13.7.2 The uric Parameter 2831

The uric subparameter of the Resolution Output Format is used to govern whether a resolver
should perform construction of the URI automatically on behalf of a consuming application.
Following are the processing rules for this parameter:

1. If uric=true, a resolver MUST apply the URI construction rules specified in section
13.7.1 to each xrd:XRD/xrd:Service/xrd:URI element in the final XRD in the
resolution chain. Note that this step is identical to the processing a resolver must perform
to output a URI list.

2. The resolver MUST replace the value of each xrd:XRD/xrd:Service/xrd:URI
element in the final XRD with the fully constructed URI value.

3. The resolver MUST subsequently remove the append attribute from each
xrd:XRD/xrd:Service/xrd:URI element in the final XRD.

4. If uric=false or the parameter is absent or empty, a resolver MUST NOT perform any
of the processing specified in this section.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 96 of 131

14 Synonym Verification 2845

2846
2847
2848

2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860

2861

2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873

2874

2877

As described in section 5, a consuming application must be able to verify the security of the
binding between the fully-qualified query identifier (the identifier resolved to an XRDS document)
and any synonyms asserted in the final XRD. This section defines synonym verification rules.

14.1 Redirect Verification 2849

As specified in section 12.3, XRI resolvers MUST verify the synonyms asserted in the XRD
obtained by following a Redirect element. These rules are:

1. If resolution of the Redirect succeeds, the resolver MUST first verify that the set of XRD
synonym elements (as specified in section 5.2) contained in the new XRD are equivalent
to or a subset of those contained in the XRD containing the Redirect.

2. Secondly, the resolver MUST verify that the content of each synonym element contained
in the new XRD is exactly equivalent to the content of the corresponding element in the
XRD containing the Redirect.

3. If either rule above fails, the resolver MUST stop and return the error 253
REDIRECT_VERIFY_FAILED in the XRD where the error occurred or as a plain text error
message as defined in section 15.

For examples see section 12.5.1.

14.2 EquivID Verification 2862

Although XRI resolvers do not automatically perform EquivID synonym verification, a consuming
application can easily request it using the following steps:

1. First request resolution for the original query identifier with CanonicalID verification
enabled (cid=true).

2. From the final XRD in the resolution chain, select the EquivID for which verification is
desired.

3. Request resolution of the EquivID identifier.
4. From the final XRD in this second resolution chain, determine if there is either: a) a

xrd:XRD/xrd:EquivID element, or b) a xrd:XRD/xrd:CanonicalEquivID element
whose value matches the verified CanonicalID of the original query identifier. If there is a
match, the EquivID is verified; otherwise it is not verified.

Example:
• Fully-Qualified Query Identifier: http://example.com/user 2875

• Asserted EquivID: xri://=!1000.c78d.402a.8824.bf20 2876

First XRDS (for http://example.com/user — simplified for illustration purposes):
2878 <XRDS>
2879 <XRD>

 <EquivID>xri://=!1000.c78d.402a.8824.bf20</EquivID> 2880
 <CanonicalID>http://example.com/user</CanonicalID> 2881

2882 <Service priority="10">
2883 ...
2884 </Service>
2885 ...
2886 </XRD>
2887 </XRDS>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 97 of 131

Second XRDS (for xri://=!1000.c78d.402a.8824.bf20): 2888
2889 <XRDS>
2890 <XRD>

 <Query>!1000.c78d.402a.8824.bf20</Query> 2891
 <ProviderID>xri://=</ProviderID> 2892
 <EquivID>http://example.com/user</EquivID> 2893
 <CanonicalID>xri://=!1000.c78d.402a.8824.bf20</CanonicalID> 2894

2895 <Service priority="10">
2896 ...
2897 </Service>
2898 ...
2899 </XRD>
2900

2901
2902

2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922

</XRDS>

The EquivID is verified because the XRD in the second XRDS asserts an EquivID backpointer to
the CanonicalID of the XRD in the first XRDS.

14.3 CanonicalID Verification 2903

XRI resolvers automatically perform verification of CanonicalID and CanonicalEquivID synonyms
unless this function is explicitly turned off using the Resolution Output Format subparameter cid.
The following synonym verification MUST be applied by an XRI resolver if cid=true or the
parameter is absent or empty, and MUST NOT be applied if cid=false.

1. If the value of the xrd:XRD/xrd:CanonicalID element is an HTTP(S) URI, it MUST
be verified as specified in section 14.3.1.

2. If the value of the xrd:XRD/xrd:CanonicalID element is an XRI, it MUST be verified
as specified in section 14.3.2.

3. If the value of the xrd:XRD/xrd:CanonicalID element is any other identifier,
CanonicalID verification fails and the resolver MUST return the CanonicalID verification
status specified in section 14.3.4.

4. If CanonicalID verification succeeds but the final XRD in the resolution chain also
contains a xrd:XRD/xrd:CanonicalEquivID element, it MUST also be verified as
specified in section 14.3.3, and the resolver MUST return the CanonicalEquivID
verification status as specified in section 14.3.4.

5. In all cases, since synonym verification depends on trusting each authority in the
resolution chain, trusted resolution (section 10) SHOULD be used with either
https=true or saml=true or both to provide additional assurance of the authenticity of
the results.

IMPORTANT: There is no guarantee that all XRDs that describe the same target resource will 2923
return the same verified CanonicalID or CanonicalEquivID. Different parent authorities may assert 2924
different CanonicalIDs or CanonicalEquivIDs for the same target resource and all of these may all 2925
be verifiable. In addition, due to Redirect and Ref processing, the verified CanonicalID or 2926
CanonicalEquivID returned for an XRI MAY differ depending on the resolution input parameters. 2927
For example, as described in section 12, a request for a specific service endpoint type may 2928
trigger processing of a Redirect or Ref resulting in a nested XRDS document. The final XRD in 2929
the nested XRDS document may come from a different parent authority and have a different but 2930
still verifiable CanonicalID or CanonicalEquivID. 2931

2932

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 98 of 131

14.3.1 HTTP(S) URI Verification Rules 2933

To verify that an HTTP(S) URI is a valid CanonicalID synonym for a fully-qualified query identifier
(defined in section

2934
2935
2936
2937
2938
2939
2940

2941

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965

5.1), a resolver MUST verify that all the following tests are successful:
1. The fully-qualified query identifier MUST also be an HTTP(S) URI.
2. The query identifier MUST be resolved as specified in section 6.
3. The asserted CanonicalID synonym MUST be an HTTP(S) URI equivalent to: a) the fully-

qualified query identifier, or b) the fully-qualified query identifier plus a valid fragment as
defined by [RFC3986].

See the example in section 14.3.5.

14.3.2 XRI Verification Rules 2942

To verify that an XRI is a valid CanonicalID synonym for a fully-qualified query identifier (defined
in section 5.1), a resolver MUST verify that all the following tests are successful.

1. In the first XRD in the resolution chain, the value of the xrd:XRD/xrd:CanonicalID
element MUST consist of two parts:

1) The value of the xrd:XRD/xrd:CanonicalID element for the community root
authority as configured in the XRI resolver or asserted in a self-describing XRD
from the community root authority (or via another equivalent mechanism as
described in section 9.1.6).

2) One additional XRI subsegment as defined in [XRISyntax]. For example, if the
value of the xrd:XRD/xrd:CanonicalID element for the community root
authority was @, then the following would all be verified values for the
xrd:XRD/xrd:CanonicalID element in the first XRD in the resolution chain:
@!1, @!1234, @!example, @example (note that @example is not
recommended because it is not a persistent identifier).

2. For each subsequent XRD in the resolution chain, the value of the
xrd:XRD/xrd:CanonicalID element MUST consist of the value the
xrd:XRD/xrd:CanonicalID element of the preceding XRD in the same XRDS
document plus one additional XRI subsegment. For example, if the value of the
xrd:XRD/xrd:CanonicalID element asserted in an XRD is @!1!2!3, then the value
of the xrd:XRD/xrd:CanonicalID element in the immediately preceding XRD in the
same XRDS document must be @!1!2.

3. If Redirect or Ref processing is required during resolution as specified in section 12, the
rules above MUST also apply for each nested XRDS document.

IMPORTANT: Each set of XRDs in each new nested XRDS document produced as a result of 2966
Redirect or Ref processing constitutes its own CanonicalID verification chain. CanonicalID 2967
verification never crosses between XRDS documents. See the examples in section 12.5. 2968

2970
2971
2972
2973
2974
2975
2976

14.3.3 CanonicalEquivID Verification 2969

CanonicalID verification also requires verification of a CanonicalEquivID only if it is present in the
final XRD in the resolution chain. Since CanonicalEquivID verification typically requires an extra
resolution cycle, restricting automatic verification to the final XRD in the resolution chain ensures
it will add at most one additional resolution cycle.
CanonicalEquivID verification MUST NOT be performed unless CanonicalID verification as
specified in section 14.3 has completed successfully. The resulting value is called the verified
CanonicalID.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 99 of 131

2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989

To verify that a CanonicalEquivID is an authorized synonym for a verified CanonicalEquivID, a
resolver MUST verify that either: a) the value of the CanonicalEquivID element is character-by-
character equivalent to the verified CanonicalID (since both appear in the same XRD, all other
normalization rules are waived), or b) that all the following tests are successful:

1. The asserted CanonicalEquivID value MUST be a valid HTTP(S) URI or XRI.
2. The asserted CanonicalEquivID value MUST resolve successfully to an XRDS document

according to the rules in this specification using the same resolution parameters as in the
original resolution request.

3. The CanonicalID in the final XRD of the resolved XRDS document MUST be verified and
MUST be equivalent to the asserted CanonicalEquivID.

4. The final XRD in the resolved XRDS document MUST contain either an EquivID or a
CanonicalEquivID “backpointer” whose value is equivalent to the verified CanonicalID in
the XRD asserting the CanonicalEquivID.

SPECIAL SECURITY CONSIDERATION: See section 5.2.2 regarding the rules for provisioning 2990
of xrd:XRD/xrd:EquivID and xrd:XRD/xrd:CanonicalEquivID elements in an XRD. 2991

2993
2994
2995

2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

3008
3009
3010
3011

3012

14.3.4 Verification Status Attributes 2992

If CanonicalID verification is performed, an XRI resolver MUST return the CanonicalID and
CanonicalEquivID verification status using an attribute of the xrd:XRD/xrd:Status element in
each XRD in the output as follows:

1. CanonicalID verification MUST be reported using the cid attribute.
2. CanonicalEquivID verification MUST be reported using the ceid attribute.
3. Both attributes accept four enumerated values: absent if the element is not present, off

if verification is not performed, verified if the element is verified, and failed if
verification fails.

4. The off value applies to both elements if CanonicalID verification is not performed
(cid=false).

5. The off value applies to the CanonicalEquivID element in any XRD before the final XRD
if CanonicalID verification is performed (cid=true), because a resolver only verifies this
element in the final XRD.

6. If cid=true and verification of any CanonicalID element fails, verification of all
CanonicalIDs in all subsequent XRDs in the same XRDS document MUST fail.

From these verification status attributes, a consuming application can confirm on every XRD in
the XRDS document whether the CanonicalID is present and has been verified. In addition, for
the final XRD in the XRDS document, it can confirm whether the CanonicalEquivID element is
present and has been verified.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 100 of 131

14.3.5 Examples 3013

Example #1: 3014

3017

• Fully-Qualified Query Identifier: http://example.com/user 3015

• Asserted CanonicalID: http://example.com/user#1234 3016

XRDS (simplified for illustration purposes):
3018 <XRDS ref="http://example.com/user">
3019 <XRD>

 <CanonicalID>http://example.com/user#1234</CanonicalID> 3020
3021 <Service priority="10">
3022 ...
3023 </Service>
3024 ...
3025 </XRD>
3026

3027

</XRDS>

The asserted CanonicalID satisfies the HTTP(S) URI verification rules in section 14.3.1.
 3028

3029

3032

Example #2:
• Fully-Qualified Query Identifier: =example.name*delegate.name 3030

• Asserted CanonicalID: =!1000.62b1.44fd.2855!1234 3031

XRDS (for =example.name*delegate.name):
3033 <XRDS ref="xri://=example.name*delegate.name">
3034 <XRD>
3035 <Query>*example.name</Query>

 <ProviderID>xri://=</ProviderID> 3036
 <LocalID>!1000.62b1.44fd.2855</LocalID> 3037
 <CanonicalID>xri://=!1000.62b1.44fd.2855</CanonicalID> 3038

3039 <Service>
3040 <ProviderID>xri://=!1000.62b1.44fd.2855</ProviderID>
3041 <Type>xri://$res*auth*($v*2.0)</Type>
3042 <MediaType>application/xrds+xml</MediaType>
3043 <URI priority=”10”>http://resolve.example.com</URI>
3044 <URI priority=”15”>http://resolve2.example.com</URI>
3045 <URI>https://resolve.example.com</URI>
3046 </Service>
3047 ...
3048 </XRD>
3049 <XRD>
3050 <Query>*delegate.name</Query>
3051 <ProviderID>xri://=!1000.62b1.44fd.2855</ProviderID>

 <LocalID>!1234</LocalID> 3052
 <CanonicalID>xri://=!1000.62b1.44fd.2855!1234</CanonicalID> 3053

3054 <Service priority="1">
3055 ...
3056 </Service>
3057 ...
3058 </XRD>
3059

3060

</XRDS>

The asserted CanonicalID satisifies the XRI verification rules in section 14.3.2.
 3061

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 101 of 131

Example #3: 3062

3066

• Fully-Qualified Query Identifier: http://example.com/user 3063

• Asserted CanonicalID: http://example.com/user 3064

• Asserted CanonicalEquivID: https://different.example.net/path/user 3065

First XRDS (for http://example.com/user):
3067 <XRDS ref="http://example.com/user">
3068 <XRD>

 <CanonicalID>http://example.com/user</CanonicalID> 3069
3070 <CanonicalEquivID>

 https://different.example.net/path/user 3071
 </CanonicalEquivID> 3072

3073 <Service priority="10">
3074 ...
3075 </Service>
3076 ...
3077 </XRD>
3078

3079

</XRDS>

Second XRDS (for https://different.example.net/path/user):
3080 <XRDS ref="https://different.example.net/path/user">
3081 <XRD>

 <EquivID>http://example.com/user</EquivID> 3082
 <CanonicalID>https://different.example.net/path/user</CanonicalID> 3083

3084 <Service priority="10">
3085 ...
3086 </Service>
3087 ...
3088 </XRD>
3089

3090
3091
3092

</XRDS>

The CanonicalEquivID asserted in the first XRDS satisifies the verification rules in section 14.3.3
because it resolves to a second XRDS that asserts an EquivID backpointer to the CanonicalID of
the first XRDS.
 3093

3094

3098

Example #4:
• Fully-Qualified Query Identifier: http://example.com/user 3095

• Asserted CanonicalID: http://example.com/user 3096

• Asserted CanonicalEquivID: =!1000.62b1.44fd.2855 3097

XRDS (for http://example.com/user):
3099 <XRDS ref="http://example.com/user">
3100 <XRD>

 <CanonicalID>http://example.com/user</CanonicalID> 3101
 <CanonicalEquivID>xri://=!1000.62b1.44fd.2855</CanonicalEquivID> 3102

3103 <Service priority="10">
3104 ...
3105 </Service>
3106 ...
3107 </XRD>
3108

3109

</XRDS>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 102 of 131

XRDS (for xri://=!1000.62b1.44fd.2855): 3110
3111 <XRDS ref="xri://=!1000.62b1.44fd.2855">
3112 <XRD>

 <Query>!1000.62b1.44fd.2855</Query> 3113
 <ProviderID>xri://=</ProviderID> 3114
 <EquivID>http://example.com/user D> </EquivI3115
 <CanonicalID>xri://=!1000.62b1.44fd.2855</CanonicalID> 3116

3117 <Service priority="10">
3118 ...
3119 </Service>
3120 ...
3121 </XRD>
3122

3123
3124
3125

</XRDS>

The CanonicalEquivID asserted in the first XRDS satisifies the verification rules in section 14.3.3
because it resolves to a second XRDS that asserts an EquivID backpointer to the CanonicalID of
the first XRDS.

3126

3127

3131

Example #5:
• Fully-Qualified Query Identifier: =example.name 3128

• Asserted CanonicalID: xri://=!1000.62b1.44fd.2855 3129

• Asserted CanonicalEquivID: https://example.com/user 3130

First XRDS (for =example.name):
3132 <XRDS ref="xri://=example.name">
3133 <XRD>
3134 <Query>*example.name</Query>

 <ProviderID>xri://=</ProviderID> 3135
 <LocalID>!1000.62b1.44fd.2855</LocalID> 3136
 <CanonicalID>xri://=!1000.62b1.44fd.2855 CanonicalID> </3137
 <CanonicalEquivID>https://example.com/user</CanonicalEquivID> 3138

3139 <Service priority="10">
3140 ...
3141 </Service>
3142 ...
3143 </XRD>
3144

3145

</XRDS>

Second XRDS (for https://example.com/user):
3146 <XRDS ref="https://example.com/user">
3147 <XRD>

 <EquivID>xri://=!1000.62b1.44fd.2855</EquivID> 3148
 <CanonicalID>https://example.com/user</CanonicalID> 3149

3150 <Service priority="10">
3151 ...
3152 </Service>
3153 ...
3154 </XRD>
3155

3156
3157
3158

</XRDS>

The CanonicalEquivID asserted in the first XRDS satisifies the verification rules in section 14.3.3
because it resolves to a second XRDS that asserts an EquivID backpointer to the CanonicalID of
the first XRDS.
 3159

3160

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 103 of 131

Example #6: 3161

3165

• Fully-Qualified Query Identifier: =example.name*delegate.name 3162

• Asserted CanonicalID: xri://=!1000.62b1.44fd.2855!1234 3163

• Asserted CanonicalEquivID: @!1000.f3da.9056.aca3!5555 3164

First XRDS (for =example.name*delegate.name):
3166 <XRDS ref="xri://=example.name*delegate.name">
3167 <XRD>
3168 <Query>*example.name</Query>

 <ProviderID>xri://=</ProviderID> 3169
 <LocalID>!1000.62b1.44fd.2855</LocalID> 3170
 <CanonicalID>xri://=!1000.62b1.44fd.2855</CanonicalID> 3171

3172 <Service>
3173 <ProviderID>xri://=!1000.62b1.44fd.2855</ProviderID>
3174 <Type>xri://$res*auth*($v*2.0)</Type>
3175 <MediaType>application/xrds+xml</MediaType>
3176 <URI priority=”10”>http://resolve.example.com</URI>
3177 <URI priority=”15”>http://resolve2.example.com</URI>
3178 <URI>https://resolve.example.com</URI>
3179 </Service>
3180 ...
3181 </XRD>
3182 <XRD>
3183 <Query>*delegate.name</Query>
3184 <ProviderID>xri://=!1000.62b1.44fd.2855</ProviderID>

 <LocalID>!1234</LocalID> 3185
 <CanonicalID>xri://=!1000.62b1.44fd.2855!1234</CanonicalID> 3186
 <CanonicalEquivID> 3187
 xri://@11000.f3da.9056.aca3!5555 3188
 </CanonicalEquivID> 3189

3190 <Service priority="1">
3191 ...
3192 </Service>
3193 ...
3194 </XRD>
3195 </XRDS>

• Second XRDS (for @!1000.f3da.9056.aca3!5555): 3196

<XRDS ref="xri://@!1000.f3da.9056.aca3!5555"> 3197
 <XRD> 3198
 <Query>!1000.f3da.9056.aca3</Query> 3199
 <ProviderID>xri://@</ProviderID> 3200
 <CanonicalID>xri://@!1000.f3da.9056.aca3</CanonicalID> 3201
 <Service> 3202
 <ProviderID>xri://@!1000.f3da.9056.aca3</ProviderID> 3203
 <Type>xri://$res*auth*($v*2.0)</Type> 3204
 <MediaType>application/xrds+xml</MediaType> 3205
 <URI priority=”10”>http://resolve.example.com</URI> 3206
 <URI priority=”15”>http://resolve2.example.com</URI> 3207
 <URI>https://resolve.example.com</URI> 3208
 </Service> 3209
 ... 3210
 </XRD> 3211
 <XRD> 3212
 <Query>!5555</Query> 3213
 <ProviderID>xri://@!1000.f3da.9056.aca3</ProviderID> 3214
 <LocalID>!5555</LocalID> 3215
 <EquivID>xri://=!1000.62b1.44fd.2855!1234</EquivID> 3216

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 104 of 131

 <CanonicalID>xri://@!1000.f3da.9056.aca3!5555</CanonicalID> 3217
 <Service priority="1"> 3218
 ... 3219
 </Service> 3220
 ... 3221
 </XRD> 3222
</XRDS> 3223

3224
3225
3226

The CanonicalEquivID asserted in the final XRD of the first XRDS satisifies the verification rules
in section 14.3.3 because it resolves to a second XRDS whose final XRD asserts an EquivID
backpointer to the CanonicalID of the final XRD in the first XRDS.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 105 of 131

15 Status Codes and Error Processing 3227

15.1 Status Elements 3228

3229

3231

3233
3234
3235

3236
3237
3238
3239

XRDS architecture uses two XRD elements for status reporting:
• The xrd:XRD/xrd:ServerStatus element is used by an authority server to report the 3230

server-side status of a resolution query to a resolver.
• The xrd:XRD/xrd:Status element is used by a resolver to report the client-side status of 3232

a resolution query to a consuming application. Note that attributes and contents of this
element MAY differ from those of the xrd:XRD/xrd:ServerStatus element due to either
client-side error detection or reporting of CanonicalID verification status (section 14.3.4).

Following are the normative rules that apply to usage of these elements:
1. For XRDS servers and clients, each of these elements is OPTIONAL.
2. An XRI authority server is REQUIRED to include an xrd:XRD/xrd:ServerStatus

element for each XRD in a resolution response.

BACKWARDS COMPATIBILITY NOTE: The xrd:XRD/xrd:ServerStatus element was not 3240
included in earlier versions of this specification. If an older authority resolution server does not 3241
produce this element in generic or HTTPS trusted resolution, a resolver SHOULD generate it. For 3242
SAML trusted resolution, a resolver MUST NOT generate it. 3243

3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256

3258
3259

3263

3264

3. An XRI resolver is REQUIRED to add an xrd:XRD/xrd:Status element to each XRD
If the Resolution Output Format is an XRDS document or an XRD element.

4. In SAML trusted resolution, a resolver MUST verify the SAML signature on the XRD
received from the server as specified in section 10.2.4 before adding the
xrd:XRD/xrd:Status element to the XRD. Because this modifies the XRD, a
consuming application may not be able to easily verify the SAML signature itself. Should
this be necessary, the consuming application may request the XRD it wishes to verify
directly from an authority server using the SAML trusted resolution protocol in section
10.2.

5. These elements MUST include the status codes specified in section 15.2 as the value of
the required code attribute.

6. These elements SHOULD contain the status context strings specified in section 15.3.
Authority servers or resolvers MAY add additional information to status context strings.

15.2 Status Codes 3257

XRI resolution status codes are patterned after the HTTP model. They are broken into three
major categories:
• 1xx: Success—the requested resolution operation was completed successfully. 3260
• 2xx: Permanent errors—the resolver encountered an error from which it could not recover. 3261
• 3xx: Temporary errors—the resolver encountered an error condition that may be only 3262

temporary.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 106 of 131

3265

3273
3274

The 2xx and 3xx categoryes are broken into seven minor categories:
• x0x: General error that may take place during any phase of resolution. 3266
• x1x: Input error 3267
• x2x: Generic authority resolution error. 3268
• x3x: Trusted authority resolution error. 3269
• x4x: Service endpoint (SEP) selection error. 3270
• x5x: Redirect error. 3271
• x6x: Ref error. 3272

The full list of XRI resolution status codes is defined in Table 29.

Code Symbolic Status Phase(s) Description

100 SUCCESS Any Operation was successful.

200 PERM_FAIL Any Generic permanent failure.

201 NOT_IMPLEMENTED Any The requested function (trusted resolution,
service endpoint selection) is not implement
by the resolver.

202 LIMIT_EXCEEDED Any A locally configured resource limit was
exceeded. Examples: number of Redirect or
Refs to follow, number of XRD elements that
can be handled, size of an XRDS document.

210 INVALID_INPUT Input Generic input error.

211 INVALID_QXRI Input Input QXRI does not conform to XRI syntax.

212 INVALID_OUTPUT_FORMAT Input Input Resolution Output Format is invalid.

213 INVALID_SEP_TYPE Input Input Service Type is invalid.

214 INVALID_SEP_MEDIA_TYPE Input Input Service Media Type is invalid.

215 UNKNOWN_ROOT Input Community root specified in QXRI is not
configured in the resolver.

220 AUTH_RES_ERROR Authority
resolution

Generic authority resolution error.

221 AUTH_RES_NOT_FOUND Authority
resolution

The subsegment cannot be resolved due to a
missing authority resolution service endpoint
in an XRD.

222 QUERY_NOT_FOUND Authority
resolution

Responding authority does not have an XRI
matching the query.

223 UNEXPECTED_XRD Authority
resolution

Value of the xrd:Query element does not
match the subsegment requested.

224 INACTIVE Authority
resolution

The query XRI has been assigned but the
authority does not provide resolution
metadata.

3275

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 107 of 131

3276

230 TRUSTED_RES_ERROR Trusted
resolution

Generic trusted resolution error.

231 HTTPS_RES_NOT_FOUND Trusted
resolution

The resolver was unable to locate an HTTPS
authority resolution endpoint.

232 SAML_RES_NOT_FOUND Trusted
resolution

The resolver was unable to locate a SAML
authority resolution endpoint.

233 HTTPS+SAML_RES_
NOT_FOUND

Trusted
resolution

The resolver was unable to locate an
HTTPS+SAML authority resolution endpoint.

234 UNVERIFIED_SIGNATURE Trusted
resolution

Signature verification failed.

240 SEP_SELECTION_ERROR SEP
selection

Generic service endpoint selection error.

241 SEP_NOT_FOUND SEP
selection

The requested service endpoint could not be
found in the current XRD or via Redirect or
Ref processing.

250 REDIRECT_ERROR Redirect
Processing

Generic Redirect error.

251 INVALID_REDIRECT Redirect
Processing

At least one Redirect element was found but
resolution failed.

252 INVALID_HTTPS_REDIRECT Redirect
Processing

https=true but a Redirect element
containing an HTTPS URI was not found.

253 REDIRECT_VERIFY_FAILED Redirect
Processing

Synonym verification failed in an XRD after
following a redirect. See section 12.3

260 REF_ERROR Ref
Processing

Generic Ref processing error.

261 INVALID_REF Ref
Processing

A valid Ref XRI was not found.

262 REF_NOT_FOLLOWED Ref
Processing

At least one Ref was present but the refs
parameter was set to false.

300 TEMPORARY_FAIL Any Generic temporary failure.

301 TIMEOUT_ERROR Any Locally-defined timeout limit has lapsed during
an operation (e.g. network latency).

320 NETWORK_ERROR Authority
resolution

Generic error during authority resolution
phase (includes uncaught exception, system
error, network error).

321 UNEXPECTED_RESPONSE Authority
resolution

When querying an authority server, the server
returned a non-200 HTTP status.

322 INVALID_XRDS Authority
resolution

Invalid XRDS received from an authority
server (includes malformed XML, truncated
content, or wrong content type).

3277 Table 29: Error codes for XRI resolution.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 108 of 131

15.3 Status Context Strings 3278

Each status code in Table 29 MAY be returned with an optional status context string that provides
additional human-readable information about the status or error condition. When the Resolution
Output Format is an XRDS document or XRD element, this string is returned as the contents of
the xrd:XRD/xrd:ServerStatus and xrd:XRD/xrd:Status elements. When the
Resolution Output Format is a URI List, this string MUST be returned as specified in section

3279
3280
3281
3282
3283
3284
3285

3287
3288

3290

3292

3293
3294
3295
3296

3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311

15.4.
Implementers SHOULD provide error context strings with additional information about an error
and possible solutions whenever it can be helpful to developers or end users.

15.4 Returning Errors in Plain Text or HTML 3286

If the Resolution Output Format is a URI List as defined in section 8.2, an error MUST be
returned with the content type text/plain. In this content:

• The first line MUST consist of only the numeric error code as defined in section 15.2 followed 3289
by a CRLF.

• The second line is RECOMMENDED; if present it MUST contain the error context string as 3291
defined in section 15.3.

The same rules apply if the Resolution Output Format is an HTTP(S) Redirect as defined in
section 8.2, except the media type MAY also be text/html. It is particularly important in this
case to return an error message that will be understandable to an end-user who may have no
knowledge of XRI resolution or the fact that the error is coming from an XRI proxy resolver.

15.5 Error Handling in Recursing and Proxy Resolution 3297

In recursing and proxy resolution (sections 9.1.8 and 11), a server is acting as a client resolver for
other authority resolution service endpoints. If in this intermediary capacity it receives an
unrecoverable error, it MUST return the error to the originating client in the output format
specified by the value of the requested Resolution Output Format as defined in section 8.2.
If the output format is an XRDS document, it MUST contain xrd:XRD elements for all
subsegments successfully resolved or retrieved from cache prior to the error. Each XRD MUST
include the xrd:ServerStatus element as reported by the authoritative server. The final
xrd:XRD element MUST include the xrd:Query element that produced the error and the
xrd:Status element that describes the error as defined above.
If the output format is an XRD element, it MUST include the xrd:Query element that produced
the error, the xrd:ServerStatus element as reported by the authoritative server, and the
xrd:Status element that describes the error as defined above.
If this output format is a URI List or an HTTP(S) redirect, a proxy resolver SHOULD return a
human-readable error message as specified in section 15.4.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 109 of 131

16 Use of HTTP(S) 3312

16.1 HTTP Errors 3313

When a resolver encounters fatal HTTP(S) errors during the resolution process, it MUST return
the appropriate XRI resolution error code and error message as defined in section

3314
3315
3316

3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331

3333
3334
3335

3337
3338
3339
3340
3341
3342
3343
3344

3346
3347
3348

15. In this way
calling applications do not have to deal separately with XRI and HTTP error messages.

16.2 HTTP Headers 3317

16.2.1 Caching 3318

The HTTP caching capabilities described by [RFC2616] should be leveraged for all XRDS and
XRI resolution protocols. Specifically, implementations SHOULD implement the caching model
described in section 13 of [RFC2616], and in particular, the “Expiration Model” of section 13.2, as
this requires the fewest round-trip network connections.
All XRI resolution servers SHOULD send the Cache-Control or Expires headers in their
responses per section 13.2 of [RFC2616] unless there are overriding security or policy reasons to
omit them.
Note that HTTP Cache headers SHOULD NOT conflict with expiration information in an XRD.
That is, the expiration date specified by HTTP caching headers SHOULD NOT be later than any
of the expiration dates for any of the xrd:Expires elements returned in the HTTP response.
This implies that recursing and proxy resolvers SHOULD compute the “soonest” expiration date
for the XRDs in a resolution chain and ensure a later date is not specified by the HTTP caching
headers for the HTTP response.

16.2.2 Location 3332

During HTTP interaction, “Location” headers may be present per [RFC2616] (i.e., during 3XX
redirects). Redirects SHOULD be made cacheable through appropriate HTTP headers, as
specified in section 16.2.1.

16.2.3 Content-Type 3336

For authority resolution, the Content-Type header in the 2XX responses MUST contain the media
type identifier values specified in Table 11 (for generic resolution), Table 15 (for HTTPS trusted
resolution), Table 16 (for SAML trusted resolution), or Table 17 (or HTTPS+SAML trusted
resolution).
Following the optional service endpoint selection phase, clients and servers MAY negotiate
content type using standard HTTP content negotiation features. Regardless of whether this
feature is used, however, the server MUST respond with an appropriate media type in the
Content-Type header if the resource is found and an appropriate content type is returned.

16.3 Other HTTP Features 3345

HTTP provides a number of other features including transfer-coding, proxying, validation-model
caching, and so forth. All these features may be used insofar as they do not conflict with the
required uses of HTTP described in this document.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 110 of 131

16.4 Caching and Efficiency 3349

16.4.1 Resolver Caching 3350

3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372

3374
3375
3376
3377
3378
3379
3380
3381
3382
3383

In addition to HTTP-level caching, resolution clients are encouraged to perform caching at the
application level. For best results, however, resolution clients SHOULD be conservative with
caching expiration semantics, including cache expiration dates. This implies that in a series of
HTTP redirects, for example, the results of the entire process SHOULD only be cached as long
as the shortest period of time allowed by any of the intermediate HTTP responses.
Because not all HTTP client libraries expose caching expiration to applications, identifier
authorities SHOULD NOT use cacheable redirects with expiration times sooner than the
expiration times of other HTTP responses in the resolution chain. In general, all XRI deployments
should be mindful of limitations in current HTTP clients and proxies.
The cache expiration time of an XRD may also be explicitly limited by the parent authority. If the
expiration time in the xrd:Expires element is sooner than the expiration time calculated from
the HTTP caching semantics, the XRD MUST be discarded before the expiration time in
xrd:Expires. Note also that a saml:Assertion element returned during SAML trusted
resolution has its own signature expiration semantics as defined in [SAML]. While this may
invalidate the SAML signature, a resolver MAY still use the balance of the contents of the XRD if
it is not expired by HTTP caching semantics or the xrd:Expires element.
With both application-level and HTTP-level caching, the resolution process is designed to have
minimal overhead. Resolution of each qualified subsegment of an XRI authority component is a
separate step described by a separate XRD, so intermediate results can typically be cached in
their entirety. For this reason, resolution of higher-level (i.e., further to the left) qualified
subsegments, which are common to more identifiers, will naturally result in a greater number of
cache hits than resolution of lower-level subsegments.

16.4.2 Synonyms 3373

The publication of synonyms in XRDS documents (section 5) can further increase cache
efficiency. If an XRI resolution request produces a cache hit on a synonym, the following rules
apply:

1. If the cache hit is on a LocalID synonym, the resolver MAY return the cached XRD
element if: a) it is from the correct ProviderID, b) it has not expired, and c) it was obtained
using the same trusted resolution and synonym verification parameters as the current
resolution request.

2. If the cache hit is on a CanonicalID synonym, the resolver MAY return the entire cached
XRDS document if: a) it has not expired, and b) it was obtained using the same trusted
resolution and synonym verification parameters as the current resolution request.

IMPORTANT: The effect of these rules is that the application calling an XRI resolver MAY receive 3384
back an XRD element, or an XRDS document containing XRD element(s), in which the value of 3385
the <xrd:Query> element does not match the resolution request, but in which the value of an 3386
<xrd:LocalID> element does match the resolution request. This is acceptable for the generic 3387
and HTTPS trusted resolution protocols but not the SAML trusted resolution protocol, where the 3388
value of the <xrd:Query> element MUST match the resolution request as specified in section 3389
10.2.4. 3390

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 111 of 131

17 Extensibility and Versioning 3391

17.1 Extensibility 3392

17.1.1 Extensibility of XRDs 3393

3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413

The XRD schema in Appendix B use an an open-content model that is designed to be extended
with other metadata. In most places, extension elements and attributes from namespaces other
than xri://$xrd*($v*2.0) are explicitly allowed. These extension points are designed to
simplify default processing using a “Must Ignore” rule. The base rule is that unrecognized
elements and attributes, and the content and child elements of unrecognized elements, MUST be
ignored. As a consequence, elements that would normally be recognized by a processor MUST
be ignored if they appear as descendants of an unrecognized element.
Extension elements MUST NOT require new interpretation of elements defined in this document.
If an extension element is present, a processor MUST be able to ignore it and still correctly
process the XRDS document.
Extension specifications MAY simulate “Must Understand” behavior by applying an “enclosure”
pattern. Elements defined by the XRD schema in Appendix B whose meaning or interpretation is
modified by extension elements can be wrapped in an extension container element defined by the
extension specification. This extension container element SHOULD be in the same namespace
as the other extension elements defined by the extension specification.
Using this design, all elements whose interpretations are modified by the extension will now be
contained in the extension container element and thus will be ignored by clients or other
applications unable to process the extension. The following example illustrates this pattern using
an extension container element from an extension namespace (other:SuperService) that
contains an extension element (other:ExtensionElement):

3414 <XRD>
3415 <Service>
3416 …
3417 </Service>
3418 <other:SuperService>
3419 <Service>
3420 …
3421 <other:ExtensionElement>…</other:ExtensionElement>
3422 </Service>
3423 </other:SuperService>
3424

3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435

</XRD>

In this example, the other:ExtensionElement modifies the interpretation or processing rules
for the parent xrd:Service element and therefore must be understood by the consumer for the
proper interpretation of the parent xrd:Service element. To preserve the correct interpretation
of the xrd:Service element in this context, the xrd:Service element is “wrapped” in the
other:SuperService element so only consumers that understand elements in the
other:SuperService namespace will attempt to process the xrd:Service element.
The addition of extension elements does not change the requirement for SAML signatures to be
verified across all elements, whether recognized or not.
Specifications extending XRDs MAY use the xrd:XRD/xrd:Type element to indicate to an XRD
processor that an XRD conforms to the requirements of the extension specification. Such
specification SHOULD be dereferenceable from the URI, IRI, or XRI used as the value of the

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 112 of 131

xrd:XRD/xrd:Type element. However XRD processors MAY ignore instances of this element
and process the XRD as specified in this document.

3436
3437

3439
3440

3442

3444
3445

3449

3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467

3469
3470
3471

3472

3474
3475
3476
3477

17.1.2 Other Points of Extensibility 3438

The use of HTTP(S), XML, XRIs, and URIs in the design of XRDS documents, XRD elements,
and XRI resolution architecture provides additional specific points of extensibility:
• Specification of new resolution service types or other service types using XRIs, IRIs, or URIs 3441

as values of the xrd:Type element.

• Specification of new resolution output formats or features using media types and media type 3443
parameters as values of the xrd:MediaType element as defined in [RFC2045] and
[RFC2046].

• HTTP negotiation of content types, language, encoding, etc. as defined by [RFC2616]. 3446
• Use of HTTP redirects (3XX) or other response codes defined by [RFC2616]. 3447
• Use of cross-references within XRIs, particularly for associating new types of metadata with a 3448

resource. See [XRISyntax] and [XRIMetadata].

17.2 Versioning 3450

Versioning of the XRI specification set is expected to occur infrequently. Should it be necessary,
this section describes versioning guidelines.
In general, this specification follows the same versioning guidelines as established in section
4.2.1 of [SAML]:

In general, maintaining namespace stability while adding or changing the content of a
schema are competing goals. While certain design strategies can facilitate such changes,
it is complex to predict how older implementations will react to any given change, making
forward compatibility difficult to achieve. Nevertheless, the right to make such changes in
minor revisions is reserved, in the interest of namespace stability. Except in special
circumstances (for example, to correct major deficiencies or to fix errors),
implementations should expect forward-compatible schema changes in minor revisions,
allowing new messages to validate against older schemas.
Implementations SHOULD expect and be prepared to deal with new extensions and
message types in accordance with the processing rules laid out for those types. Minor
revisions MAY introduce new types that leverage the extension facilities described in [this
section]. Older implementations SHOULD reject such extensions gracefully when they
are encountered in contexts that dictate mandatory semantics.

17.2.1 Version Numbering 3468

Specifications from the OASIS XRI Technical Committee use a Major and Minor version number
expressed in the form Major.Minor. The version number MajorB.MinorB is higher than the version
number MajorA.MinorA if and only if:

MajorB > MajorA OR ((MajorB = MajorA) AND MinorB > MinorA)

17.2.2 Versioning of the XRI Resolution Specification 3473

New releases of the XRI Resolution specification may specify changes to the resolution protocols
and/or the XRD schema in Appendix B. When changes affect either of these, the resolution
service type version number will be changed. Where changes are purely editorial, the version
number will not be changed.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 113 of 131

3478
3479
3480

3482
3483
3484
3485
3486
3487
3488
3489
3490

3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504

In general, if a change is backward-compatible, the new version will be identified using the
current major version number and a new minor version number. If the change is not backward-
compatible, the new version will be identified with a new major version number.

17.2.3 Versioning of Protocols 3481

The protocols defined in this document may also be versioned by future releases of the XRI
Resolution specification. If these protocols are not backward-compatible with older
implementations, they will be assigned a new XRI with a new version identifier for use in
identifying their service type in XRDs. See section 3.1.2.
Note that it is possible for version negotiation to happen in the protocol itself. For example, HTTP
provides a mechanism to negotiate the version of the HTTP protocol being used. If and when an
XRI resolution protocol provides its own version-negotiation mechanism, the specification is likely
to continue to use the same XRI to identify the protocol as was used in previous versions of the
XRI Resolution specification.

17.2.4 Versioning of XRDs 3491

The xrd:XRDS document element is intended to be a completely generic container, i.e., to have
no specific knowledge of the elements it may contain. Therefore it has no version indicator, and
can remain stable indefinitely because there is no need to version its namespace.
The xrd:XRD element has a version attribute. This attribute is OPTIONAL for this version of
the XRI resolution specification (version 2.0). This attribute will be REQUIRED for all future
versions of this specification. When used, the value of this attribute MUST be the exact numeric
version value of the XRI Resolution specification to which its containing elements conform.
When new versions of the XRI Resolution specification are released, the namespace for the XRD
schema may or may not be changed. If there is a major version number change, the namespace
for the xrd:XRD schema is likely to change. If there is only a minor version number change, the
namespace for the xrd:XRD schema may remain unchanged.
Note that conformance to a specific XRD version does not preclude an author from including
extension elements from a different namespace in the XRD. See section 17.1 above.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 114 of 131

18 Security and Data Protection 3505

3506
3507
3508
3509

3511
3512
3513
3514
3515
3516
3517
3518
3519

3521
3522
3523
3524
3525
3526
3527
3528
3529
3530

3532
3533
3534

3536
3537
3538
3539
3540
3541
3542
3543

Significant portions of this specification deal directly with security issues; these will not be
summarized again here. In addition, basic security practices and typical risks in resolution
protocols are well-documented in many other specifications. Only security considerations directly
relevant to XRI resolution are included here.

18.1 DNS Spoofing or Poisoning 3510

When XRI resolution is deployed to use HTTP URIs or other URIs which include DNS names, the
accuracy of the XRI resolution response may be dependent on the accuracy of DNS queries. For
those deployments where DNS is not trusted, the resolution infrastructure may be deployed with
HTTP URIs that use IP addresses in the authority portion of HTTP URIs and/or with the trusted
resolution mechanisms defined by this specification. Resolution results obtained using trusted
resolution can be evaluated independently of DNS resolution results. While this does not solve
the problem of DNS spoofing, it does allow the client to detect an error condition and reject the
resolution result as untrustworthy. In addition, [DNSSEC] may be considered if DNS names are
used in HTTP URIs.

18.2 HTTP Security 3520

Many of the security considerations set forth in HTTP/1.1 [RFC2616] apply to XRI Resolution
protocols defined here. In particular, confidentiality of the communication channel is not
guaranteed by HTTP. Server-authenticated HTTPS should be used in cases where confidentiality
of resolution requests and responses is desired.
Special consideration should be given to proxy and caching behaviors to ensure accurate and
reliable responses from resolution requests. For various reasons, network topologies increasingly
have transparent proxies, some of which may insert VIA and other headers as a consequence, or
may even cache content without regard to caching policies set by a resource’s HTTP authority.
Implementations of XRI Proxies and caching authorities should also take special note of the
security recommendations in HTTP/1.1 [RFC2616] section 15.7.

18.3 SAML Considerations 3531

SAML trusted authority resolution must adhere to the rules defined by the SAML 2.0 Core
Specification [SAML]. Particularly noteworthy are the XML Transform restrictions on XML
Signature and the enforcement of the SAML Conditions element regarding the validity period.

18.4 Limitations of Trusted Resolution 3535

While the trusted resolution protocols specified in this document provide a way to verify the
integrity of a successful XRI resolution, it may not provide a way to verify the integrity of a
resolution failure. Reasons for this limitation include the prevalence of non-malicious network
failures, the existence of denial-of-service attacks, and the ability of a man-in-the-middle attacker
to modify HTTP responses when resolution is not performed over HTTPS.
Additionally, there is no revocation mechanism for the keys used in trusted resolution. Therefore,
a signed resolution's validity period should be limited appropriately to mitigate the risk of an
incorrect or invalid resolution.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 115 of 131

18.5 Synonym Verification 3544

As discussed in section 5, XRI and XRDS infrastructure has rich support for identifier synonyms,
including synonyms that cross security domains. For this reason it is particularly important that
identifier authorities, including registries, registrars, directory administrators, identity providers,
and other parties who issue XRIs and manage XRDS documents, enforce the security policies
highlighted in section

3545
3546
3547
3548
3549

3551
3552
3553
3554
3555

3557
3558
3559
3560
3561
3562
3563

3565
3566
3567
3568

3570
3571
3572
3573

3575
3576

5 regarding registration and management of XRDS synonym elements.

18.6 Redirect and Ref Management 3550

As discussed in sections 5.3 and 12, XRI and XRDS infrastructure includes the capability to
distribute and delegate XRDS document management across multiple network locations or
identifier authorities. Identifier authorities should follow the security precautions highlighted in
section 5.3 to ensure Redirects and Refs are properly authorized and represent the intended
delegation policies.

18.7 Community Root Authorities 3556

The XRI authority information for a community root needs to be well-known to the clients that
request resolution within that community. For trusted resolution, this includes the authority
resolution service endpoint URIs, the xrd:XRD/xrd:ProviderID, and the ds:KeyInfo
information. An acceptable means of providing this information is for the community root authority
to produce a self-signed XRD and publish it to a server-authenticated HTTPS endpoint. Special
care should be taken to ensure the correctness of such an XRD; if this information is incorrect, an
attacker may be able to convince a client of an incorrect result during trusted resolution.

18.8 Caching Authorities 3564

In addition to traditional HTTP caching proxies, XRI proxy resolvers may be a part of the
resolution topology. Such proxy resolvers should take special precautions against cache
poisoning, as these caching entities may represent trusted decision points within a deployment’s
resolution architecture.

18.9 Recursing and Proxy Resolution 3569

During recursing resolution, subsegments of the XRI authority component for which the resolving
network endpoint is not authoritative may be revealed to that service endpoint. During proxy
resolution, some or all of an XRI is provided to the proxy resolver.
In both cases, privacy considerations should be evaluated before disclosing such information.

18.10 Denial-Of-Service Attacks 3574

XRI Resolution, including trusted resolution, is vulnerable to denial-of-service (DOS) attacks
typical of systems relying on DNS and HTTP(S).

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 116 of 131

A. Acknowledgments 3577

3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588

3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599

3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610

The editors would like to thank the following current and former members of the OASIS XRI TC
for their particular contributions to this and previous versions of this specification:

• William Barnhill, Booz Allen and Hamilton
• Dave McAlpin, Epok
• Chetan Sabnis, Epok
• Peter Davis, Neustar
• Victor Grey, PlaNetwork
• Mike Lindelsee, Visa International
• Markus Sabadello, XDI.org
• John Bradley
• Kermit Snelson

The editors would also like to acknowledge the contributions of the other members of the OASIS
XRI Technical Committee, whose other voting members at the time of publication were:

• Geoffrey Strongin, Advanced Micro Devices
• Ajay Madhok, AmSoft Systems
• Dr. XiaoDong Lee, China Internet Network Information
• Nat Sakimura, Nomura Research
• Owen Davis, PlaNetwork
• Fen Labalme, PlaNetwork
• Marty Schleiff, The Boeing Company
• Dave Wentker, Visa International
• Paul Trevithick

The editors also would like to acknowledge the following people for their contributions to previous
versions of OASIS XRI specifications (affiliations listed for OASIS members):
Marc Le Maitre, Cordance Corporation; Thomas Bikeev, EAN International; Krishna Sankar,
Cisco; Winston Bumpus, Dell; Joseph Moeller, EDS; Steve Green, Epok; Lance Hood, Jerry
Kindall, Adarbad Master, Davis McPherson, Chetan Sabnis, and Loren West, Epok; Phillipe
LeBlanc, Jim Schreckengast, and Xavier Serret, Gemplus; John McGarvey, IBM; Reva Modi,
Infosys; Krishnan Rajagopalan, Novell; Masaki Nishitani, Tomonori Seki, and Tetsu Watanabe,
Nomura Research Institute; James Bryce Clark, OASIS; Marc Stephenson, TSO; Mike Mealling,
Verisign; Rajeev Maria, Terence Spielman, and John Veizades, Visa International; Lark Allen and
Michael Willett, Wave Systems; Matthew Dovey; Eamonn Neylon; Mary Nishikawa; Lars Marius
Garshol; Norman Paskin; and Bernard Vatant.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 117 of 131

B. RelaxNG Schema for XRDS and XRD 3611

3612
3613

Following are the locations of the normative RelaxNG compact schema files for XRDS and XRD
as defined by this specification:
• xrds.rnc: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrds.mc 3614
• xrd.rnc: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrd.mc 3615

IMPORTANT: The xrd.rnc schema does NOT include deprecated attribute values that are 3616
recommended for backwards compatibility. See the highlighted Backwards Compatibility notes in 3617
sections 9.1.1 and 13.3.2 for more details. 3618

3619

3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666

Listings of these files are provided in this appendix for reference but are non-normative.

xrds.rnc
namespace xrds = "xri://$xrds"
namespace xrd = "xri://$xrd*($v*2.0)"
namespace local = ""
datatypes xs = "http://www.w3.org/2001/XMLSchema-datatypes"

any.element =
 element * {
 (attribute* { text }*
 | text
 | any.element)*
 }

any.external.element =
 element * - (xrd:XRD | xrds:XRDS) {
 (attribute * { text } *
 | text
 | any.element)*
 }

other.attribute = attribute * - (local:*) { text }

start = XRDS

XRDS = element xrds:XRDS {
 other.attribute *,
 (attribute ref { xs:anyURI } | attribute redirect { xs:anyURI })?,
 (any.external.element | XRDS | external "xrd.rnc")*
}

xrd.rnc
default namespace = "xri://$xrd*($v*2.0)"
namespace xrd = "xri://$xrd*($v*2.0)"
namespace saml = "urn:oasis:names:tc:SAML:2.0:assertion"
namespace ds = "http://www.w3.org/2000/09/xmldsig#"
namespace local = ""

datatypes xs = "http://www.w3.org/2001/XMLSchema-datatypes"

start = XRD

anyelementbody =
 (attribute * {text}
 | text
 | element * {anyelementbody})*

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 118 of 131

http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrds.mc
http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrd.mc

3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737

non.xrd.element = element * - xrd:* {
 anyelementbody
}

other.attribute = attribute * - (local:* | xrd:*) { text }

XRD = element XRD {
 other.attribute *,
 attribute idref { xs:IDREF } ?,
 attribute version { "2.0" } ?,
 XRDType *,
 Query ?,
 Status ?,
 ServerStatus ?,
 Expires ?,
 ProviderID ?,
 (Redirect+ | Ref+) ?,
 LocalID *,
 EquivID *,
 CanonicalID ?,
 CanonicalEquivID ?,
 Service *,
 element saml:Assertion { anyelementbody } ?,
 non.xrd.element *
}

XRDType = element Type {
 other.attribute *,
 xs:anyURI
}

Query = element Query {
 other.attribute *,
 text
}

append.attribute =
 attribute append { "none" | "local" | "authority" | "path" | "query" | "qxri" }

Status = element Status {
 other.attribute *,
 attribute code { xs:integer },
 attribute cid { "absent" | "off" | "verified" | "failed" } ?,
 attribute ceid { "absent" | "off" | "verified" | "failed" } ?,
 text
}

ServerStatus = element ServerStatus {
 other.attribute *,
 attribute code { xs:integer },
 text
}

Expires = element Expires {
 other.attribute *,
 xs:dateTime
}

ProviderID = element ProviderID {
 other.attribute *,
 xs:anyURI
}

Redirect = element Redirect {
 other.attribute *,
 attribute priority { xs:integer }?,
 append.attribute ?,
 xs:anyURI
}

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 119 of 131

3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805

Ref = element Ref {
 other.attribute *,
 attribute priority { xs:integer }?,
 xs:anyURI
}

LocalID = element LocalID {
 other.attribute *,
 attribute priority { xs:integer } ?,
 xs:anyURI
}

EquivID = element EquivID {
 other.attribute *,
 attribute priority { xs:integer } ?,
 xs:anyURI
}

CanonicalID = element CanonicalID {
 other.attribute *,
 xs:anyURI
}

CanonicalEquivID = element CanonicalEquivID {
 other.attribute *,
 xs:anyURI
}

Service = element Service {
 other.attribute *,
 attribute priority { xs:integer }?,
 ProviderID?,
 ServiceType *,
 Path *,
 MediaType *,
 (URI+ | Redirect+ | Ref+)?,
 LocalID *,
 element ds:KeyInfo { anyelementbody }?,
 non.xrd.element *
}

URI = element URI {
 other.attribute *,
 attribute priority { xs:integer }?,
 append.attribute ?,
 xs:anyURI
}

selection.attributes = attribute match { "any" | "default" | "non-null" | "null" } ?,
 attribute select { xs:boolean } ?

ServiceType = element Type {
 other.attribute *,
 selection.attributes,
 xs:anyURI
}

Path = element Path {
 other.attribute *,
 selection.attributes,
 xs:string
}

MediaType = element MediaType {
 other.attribute *,
 selection.attributes,
 xs:string
}

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 120 of 131

C. XML Schema for XRDS and XRD 3806

3807
3808
3809

Following are the locations of the non-normative W3C XML Schema files for XRDS and XRD as
defined by this specification. Note that these are provided for reference only as they are not able
to fully express the extensibility semantics of the RelaxNG versions.
• xrds.xsd: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrds.xsd 3810
• xrd.xsd: http://docs.oasis-open.org/xri/xri-resolution/2.0/specs/cd03/xrd.xsd 3811

IMPORTANT: The xrd.xsd schema does NOT include deprecated attribute values that are 3812
recommended for backwards compatibility. See the highlighted Backwards Compatibility notes in 3813
sections 9.1.1 and 13.3.2 for more details. 3814

3815

3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862

Listings of these files are provided in this appendix for reference.

xrds.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xrds="xri://$xrds"
targetNamespace="xri://$xrds" elementFormDefault="qualified">
 <!-- Utility patterns -->
 <xs:attributeGroup name="otherattribute">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:attributeGroup>
 <xs:group name="otherelement">
 <xs:choice>
 <xs:any namespace="##other" processContents="lax"/>
 <xs:any namespace="##local" processContents="lax"/>
 </xs:choice>
 </xs:group>
 <!-- Patterns for elements -->
 <xs:element name="XRDS">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="xrds:otherelement" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attributeGroup ref="xrds:otherattribute"/>
 <!--XML Schema does not currently offer a means to express that only one of
the following two attributes may be used in any XRDS element, i.e., an XRDS document may
describe EITHER a redirect identifier or a ref identifier but not both.-->
 <xs:attribute name="redirect" type="xs:anyURI" use="optional"/>
 <xs:attribute name="ref" type="xs:anyURI" use="optional"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

xrd.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xrd="xri://$xrd*($v*2.0)"
targetNamespace="xri://$xrd*($v*2.0)" elementFormDefault="qualified">
 <!-- Utility patterns -->
 <xs:attributeGroup name="otherattribute">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:attributeGroup>
 <xs:group name="otherelement">
 <xs:choice>
 <xs:any namespace="##other" processContents="lax"/>
 <xs:any namespace="##local" processContents="lax"/>
 </xs:choice>
 </xs:group>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 121 of 131

http://docs.oasis-open.org/xri/2.0/specs/cd02/xrds.xsd
http://docs.oasis-open.org/xri/2.0/specs/cd02/xrd.xsd

3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932

 <xs:attributeGroup name="priorityAttrGrp">
 <xs:attribute name="priority" type="xs:nonNegativeInteger" use="optional"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="codeAttrGrp">
 <xs:attribute name="code" type="xs:int" use="required"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="verifyAttrGrp">
 <xs:attribute name="cid" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="absent"/>
 <xs:enumeration value="off"/>
 <xs:enumeration value="verified"/>
 <xs:enumeration value="failed"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ceid" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="absent"/>
 <xs:enumeration value="off"/>
 <xs:enumeration value="verified"/>
 <xs:enumeration value="failed"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:attributeGroup name="selectionAttrGrp">
 <xs:attribute name="match" use="optional" default="default">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="default"/>
 <xs:enumeration value="any"/>
 <xs:enumeration value="non-null"/>
 <xs:enumeration value="null"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="select" type="xs:boolean" use="optional" default="false"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="appendAttrGrp">
 <xs:attribute name="append" use="optional" default="none">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="local"/>
 <xs:enumeration value="authority"/>
 <xs:enumeration value="path"/>
 <xs:enumeration value="query"/>
 <xs:enumeration value="qxri"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:complexType name="URIPattern">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="URIPriorityPattern">
 <xs:simpleContent>
 <xs:extension base="xrd:URIPattern">
 <xs:attributeGroup ref="xrd:priorityAttrGrp"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 122 of 131

3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003

 <xs:complexType name="URIPriorityAppendPattern">
 <xs:simpleContent>
 <xs:extension base="xrd:URIPriorityPattern">
 <xs:attributeGroup ref="xrd:appendAttrGrp"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="StringPattern">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="StringSelectionPattern">
 <xs:simpleContent>
 <xs:extension base="xrd:StringPattern">
 <xs:attributeGroup ref="xrd:selectionAttrGrp"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <!-- Patterns for elements -->
 <xs:element name="XRD">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="xrd:Type" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:Query" minOccurs="0"/>
 <xs:element ref="xrd:Status" minOccurs="0"/>
 <xs:element ref="xrd:ServerStatus" minOccurs="0"/>
 <xs:element ref="xrd:Expires" minOccurs="0"/>
 <xs:element ref="xrd:ProviderID" minOccurs="0"/>
 <xs:choice>
 <xs:element ref="xrd:Redirect" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:Ref" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:element ref="xrd:LocalID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:EquivID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:CanonicalID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:CanonicalEquivID" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="xrd:Service" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xrd:otherelement" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="idref" type="xs:IDREF" use="optional"/>
 <xs:attribute name="version" type="xs:string" use="optional" fixed="2.0"/>
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Type">
 <xs:complexType>
 <!--XML Schema does not offer a means to express that usage of the following
group of optional attributes is only defined when the Type element is used in the context
of the xrd:XRD/xrd:Service element, and not when it is used in the context of the xrd:XRD
element.-->
 <xs:simpleContent>
 <xs:extension base="xrd:URIPattern">
 <xs:attributeGroup ref="xrd:selectionAttrGrp"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Query" type="xrd:StringPattern"/>
 <xs:element name="Status">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xrd:StringPattern">
 <xs:attributeGroup ref="xrd:codeAttrGrp"/>
 <xs:attributeGroup ref="xrd:verifyAttrGrp"/>
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:extension>
 </xs:simpleContent>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 123 of 131

4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063

 </xs:complexType>
 </xs:element>
 <xs:element name="ServerStatus">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xrd:StringPattern">
 <xs:attributeGroup ref="xrd:codeAttrGrp"/>
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Expires">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:dateTime">
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="ProviderID" type="xrd:URIPattern"/>
 <xs:element name="Redirect" type="xrd:URIPriorityAppendPattern"/>
 <xs:element name="Ref" type="xrd:URIPriorityPattern"/>
 <xs:element name="LocalID">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xrd:StringPattern">
 <xs:attributeGroup ref="xrd:priorityAttrGrp"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="EquivID" type="xrd:URIPriorityPattern"/>
 <xs:element name="CanonicalID" type="xrd:URIPriorityPattern"/>
 <xs:element name="CanonicalEquivID" type="xrd:URIPriorityPattern"/>
 <xs:element name="Service">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="xrd:ProviderID" minOccurs="0"/>
 <xs:element ref="xrd:Type" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:Path" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:MediaType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:choice>
 <xs:element ref="xrd:URI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:Redirect" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xrd:Ref" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:element ref="xrd:LocalID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xrd:otherelement" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attributeGroup ref="xrd:priorityAttrGrp"/>
 <xs:attributeGroup ref="xrd:otherattribute"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Path" type="xrd:StringSelectionPattern"/>
 <xs:element name="MediaType" type="xrd:StringSelectionPattern"/>
 <xs:element name="URI" type="xrd:URIPriorityAppendPattern"/>
</xs:schema>

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 124 of 131

D. Media Type Definition for application/xrds+xml 4064

This section is prepared in anticipation of filing a media type registration meeting the
requirements of

4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085

[RFC4288].
Type name: application
Subtype name: xrds+xml
Required parameters: None
Optional parameters: See Table 6 of this document.
Encoding considerations: Identical to those of "application/xml" as described in [RFC3023],
Section 3.2.
Security considerations: As defined in this specification. In addition, as this media type uses the
"+xml" convention, it shares the same security considerations as described in [RFC3023],
Section 10.
Interoperability considerations: There are no known interoperability issues.
Published specification: This specification.
Applications that use this media type: Applications conforming to this specification use this
media type.
Person & email address to contact for further information: Drummond Reed, OASIS XRI
Technical Committee Co-Chair, drummond.reed@cordance.net
Intended usage: COMMON
Restrictions on usage: None
Author: OASIS XRI TC
Change controller: OASIS XRI TC

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 125 of 131

E. Media Type Definition for application/xrd+xml 4086

This section is prepared in anticipation of filing a media type registration meeting the
requirements of

4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107

[RFC4288].
Type name: application
Subtype name: xrd+xml
Required parameters: None
Optional parameters: See Table 6 of this document.
Encoding considerations: Identical to those of "application/xml" as described in [RFC3023],
Section 3.2.
Security considerations: As defined in this specification. In addition, as this media type uses the
"+xml" convention, it shares the same security considerations as described in [RFC3023],
Section 10.
Interoperability considerations: There are no known interoperability issues.
Published specification: This specification.
Applications that use this media type: Applications conforming to this specification use this
media type.
Person & email address to contact for further information: Drummond Reed, OASIS XRI
Technical Committee Co-Chair, drummond.reed@cordance.net
Intended usage: COMMON
Restrictions on usage: None
Author: OASIS XRI TC
Change controller: OASIS XRI TC

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 126 of 131

F. Example Local Resolver Interface Definition 4108

4109
4110
4111
4112
4113
4114
4115

Following is a non-normative language-neutral example interface definition for a XRI resolver
consistent with the requirements of this specification.
The interface definition is provided as five operations where each operation takes two or more of
the following input parameters. These input parameters correspond to the normative text in
section 8.1. In all of these parameters, the value empty string (“”) is interpreted the same as the
value null.

Parameter name Description

QXRI Query XRI as defined in section 8.1.1.

sepType Service Types as defined in section 8.1.3

sepMediaType Service Media Type as defined in section 8.1.4

flags Language binding-specific representation of
resolution flags defined in the following table.

4116
4117
4118
4119
4120

The flags parameter is a binding-specific container data structure that encapsulates the
following subparameters of the Resolution Output Format parameter. All of these are Boolean
parameters defined in Table 6 in section 3.3.

Subparameter Description

https,

saml
Specifies use of HTTPS or SAML trusted resolution
as defined in sections 10.1 and 10.2.

refs Specifies whether Refs should be followed during
resolution as defined in section 12.4.

nodefault_t,

nodefault_p,

nodefault_m

Specifies whether a default match is allowed on the
Type, Path, or MediaType elements respectively
during service endpoint selection as defined in
section 13.3.

uric Specifies whether a resolver should automatically
construct service endpoint URIs as defined in section
13.7.1.

cid Specifies whether automatic canonical ID verification
should performed as defined in section 14.3.

4121
4122
4123
4124
4125
4126
4127

Note that one subparameter defined in in Table 6, sep (service endpoint), is not included in this
flags table because it is implicitly represented in the operation being called. The five operations
shown in the table below correspond to the five possible combinations of the value of the
Resolution Output Format parameter and the sep subparameter. (Note that if the Resolution
Output Format is URI List, the sep subparameter MUST be considered to be TRUE, so there is
no resolveAuthToURIList operation.)

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 127 of 131

4128

 Operation name Resolution Output Format
Parameter Value

sep Subparameter
Value

1 resolveAuthToXRDS application/xrds+xml false

2 resolveAuthToXRD application/xrd+xml false

3 resolveSepToXRDS application/xrds+xml true

4 resolveSepToXRD application/xrd+xml true

5 resolveSepToURIList text/uri-list ignored

4129

4130

Following is the API and descriptions of the five operations.

1. Resolve Authority to XRDS

Result resolveAuthToXRDS(4131
 in string QXRI, in Flags flags); 4132

4134

4136

4138

4140
4141
4142

• Performs authority resolution only (sections 9 and 10) and outputs an XRDS document as 4133
specified in section 8.2.1 when the sep subparameter is FALSE.

• Only the authority component of the QXRI is processed by this function. If the QXRI contains 4135
a path or query component, it is ignored.

• Returns a binding-specific representation of the resolution result which may include, but is not 4137
limited to, XRDS output, success/failure code, exceptions and error context.

• The XRD element(s) in the output XRDS will be signed or not depending on the value of the 4139
saml flag.

2. Resolve Authority to XRD

Result resolveAuthToXRD(4143
 in string QXRI, in Flags flags); 4144

4146

4148

4150

4152
4153

• Performs authority resolution only (sections 9 and 10) and outputs an XRD element as 4145
specified in section 8.2.2 when the sep subparameter is FALSE.

• Only the authority component of the QXRI is processed by this function. If the QXRI contains 4147
a path or query component, it is ignored.

• Returns a binding-specific representation of the resolution result which may include, but is not 4149
limited to, XRD output, success/failure code, exceptions and error context.

• The output XRD will be signed or not depending on the value of the saml flag. 4151

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 128 of 131

3. Resolve Service Endpoint to XRDS 4154

Result resolveSEPToXRDS(4155
 in string QXRI, in string sepType, 4156
 in string sepMediaType, in Flags flags); 4157

4159

4161

4163
4164
4165
4166

4168
4169
4170

• Performs authority resolution (sections 9 and 10) and service endpoint selection (section 13) 4158
and outputs the XRDS as specified in section 8.2.1 when the sep subparameter is TRUE.

• Returns a binding-specific representation of the resolution result which may include, but is not 4160
limited to, XRDS output, success/failure code, exceptions and error context.

• The final XRD in the output XRDS will either contain at least one instance of the requested 4162
service endpoint or an error. IMPORTANT: Although the resolver will perform service
selection, the final XRD is NOT filtered when the Resolution Output Format is an XRDS
document. Filtering is only performed when the Resolution Output Format is an XRD
document (below).

• The XRD element(s) in the output XRDS will be signed or not depending on the value of 4167
saml flag.

4. Resolve Service Endpoint to XRD

Result resolveSEPToXRD(4171
 in string QXRI, in string sepType, 4172
 in string sepMediaType, in Flags flags); 4173

4175

4177

4179
4180

4182
4183
4184
4185

• Performs authority resolution (sections 9 and 10) and service endpoint selection (section 13) 4174
and outputs an XRD as specified in section 8.2.2 when the sep subparameter is TRUE.

• Returns a binding-specific representation of the resolution result which may include, but is not 4176
limited to, XRD output, success/failure code, exceptions and error context.

• The output XRD will contain at least one instance of the requested service endpoint or an 4178
error. Also, all elements in the output XRD subject to the global priority attribute will be
returned in order of highest to lowest priority. See section 8.2.2 for details.

• The XRD element will be signed or not depending on the value of saml flag, however that 4181
signature may not be able to be independently verified because the XRD has been filtered to
contain only the selected service endpoints.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 129 of 131

5. Resolve Service Endpoint to URI List 4186

Result resolveSepToURIList(4187
 in string QXRI, in string sepType, 4188
 in string sepMediaType, in Flags flags); 4189

4191

4193

4195
4196
4197

• Performs authority resolution (sections 9 and 10) and service endpoint selection (section 13) 4190
and outputs a non-empty URI List or an error as specified in section 8.2.3.

• Returns a binding-specific representation of the resolution result which may include, but not 4192
limited to, URI-list output, success/failure code, exceptions and error context.

• If successful, the output URI-list will contain zero or more elements. It is possible that the 4194
selected service contains no URI element and it is up to the consuming application to
interpret such a result.

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 130 of 131

XRI Resolution 2.0 Committee Specification 01 12 April 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. Page 131 of 131

G. Revision History 4198

Committee Draft 01 of this specification was published in March 2005 and is available at: 4199

4201
4202

4204
4205

4207

4209
4210
4211
4212

4215

4217
4218
4219

4221

4223

4225

4229

4232

• http://www.oasis-open.org/committees/download.php/11853 4200

Significant changes were made based on implementation feedback, resulting in a new
implementers draft (Working Draft 10) published in March 2006:
• http://www.oasis-open.org/committees/download.php/17293 4203

All revisions since Working Draft 10 have been tracked on the XRI Technical Committee wiki
page for Working Draft 11:
• http://wiki.oasis-open.org/xri/Xri2Cd02/ResWorkingDraft11 4206

A copy of this wiki page as of the date of this specification has been archived at:
• http://www.oasis-open.org/committees/download.php/26277 4208

Due to the extent of the revisions from Committee Draft 01, Committee Draft 02 should be
considered a new document.
Committee Draft 03 includes the following revisions based on comments received during the
public review of Committee Draft 02:
• The reference to the XRI Syntax 2.0 specification in section 1.5 was updated. 4213
• The XRD elements in sections 4.2.1 – 4.2.6 were reformatted to include attribute definitions 4214

as separate bullet points (per comment received from Eran Hammer-Lahav).
• The xrd:XRD/xrd:Type element was added to the XRD schema (section 4.2.1 and 4216

Appendix B and C) to reuse the xrd:XRD/xrd:Service/xrd:Type element at the XRD
level in order to support extension specifications (per comment received from Eran Hammer-
Lahav). A reference to this change was added in section 17.1.1

• The flowcharts in Figures 5, 6, 7, and 8 were edited for improved clarity about recording 4220
XRDs and nested XRDS documents and clarify using a Redirect URI as an input.

• The Next Authority URI construction algorithm in section 9.1.10 was revised slightly to 4222
accommodate using query strings.

• The wording of the bullet points in section 12.1 were clarified (per comment received from 4224
Eran Hammer-Lahav).

• A fourth example was added in section 12.5.1 to illustrate double XRDS nesting. 4226
• Clarifications were made to the pseudocode in section 13.6. 4227
• The CanonicalID verification rule for XRIs was simplified to eliminate the need to involve the 4228

xrd:XRD/xrd:ProviderID element (per suggestion from editor William Tan).

• Several typos and incorrect internal references were fixed. 4230
• Several errors were fixed in the RNC schema. 4231

http://www.oasis-open.org/committees/download.php/11853
http://www.oasis-open.org/committees/download.php/17293
http://wiki.oasis-open.org/xri/Xri2Cd02/ResWorkingDraft11
http://www.oasis-open.org/committees/download.php/26277

	1 Introduction
	1.1 Overview of XRI Resolution Architecture
	1.2 Structure of this Specification
	1.3 Terminology and Notation
	1.4 Examples
	1.5 Normative References
	1.6 Non-Normative References

	2 Conformance
	2.1 Conformance Targets
	2.2 Conformance Claims
	2.3 XRDS Clients
	2.4 XRDS Servers
	2.5 XRI Local Resolvers
	2.5.1 Generic
	2.5.2 HTTPS
	2.5.3 SAML

	2.6 XRI Proxy Resolvers
	2.6.1 Generic
	2.6.2 HTTPS
	2.6.3 SAML

	2.7 XRI Authority Servers
	2.7.1 Generic
	2.7.2 HTTPS
	2.7.3 SAML

	2.8 Extensions
	2.9 Language

	3 Namespaces
	3.1 XRI Namespaces for XRI Resolution
	3.1.1 XRIs Reserved for XRI Resolution
	3.1.2 XRIs Assigned to XRI Resolution Service Types

	3.2 XML Namespaces for XRI Resolution
	3.3 Media Types for XRI Resolution

	4 XRDS Documents
	4.1 XRDS and XRD Namespaces and Schema Locations
	4.2 XRD Elements and Attributes
	4.2.1 Management Elements
	4.2.2 Trust Elements
	4.2.3 Synonym Elements
	4.2.4 Service Endpoint Descriptor Elements
	4.2.5 Service Endpoint Trust Elements
	4.2.6 Service Endpoint Selection Elements

	4.3 XRD Attribute Processing Rules
	4.3.1 ID Attribute
	4.3.2 Version Attribute
	4.3.3 Priority Attribute

	4.4 XRI and IRI Encoding Requirements
	5.1 Query Identifiers
	5.1.1 HTTP(S) URI Query Identifiers
	5.1.2 XRI Query Identifiers

	5.2 Synonym Elements
	5.2.1 LocalID
	5.2.2 EquivID
	5.2.3 CanonicalID
	5.2.4 CanonicalEquivID

	5.3 Redirect and Ref Elements
	5.4 XRD Equivalence
	5.5 Synonym Verification
	5.6 Synonym Selection

	6 Discovering an XRDS Document from an HTTP(S) URI
	6.1 Overview
	6.2 HEAD Protocol
	6.3 GET Protocol

	7 XRI Resolution Flow
	8 Inputs and Outputs
	8.1 Inputs
	8.1.1 QXRI (Authority String, Path String, and Query String)
	8.1.2 Resolution Output Format
	8.1.3 Service Type
	8.1.4 Service Media Type

	8.2 Outputs
	8.2.1 XRDS Document
	8.2.2 XRD Element
	8.2.3 URI List
	8.2.4 HTTP(S) Redirect

	9 Generic Authority Resolution Service
	9.1 XRI Authority Resolution
	9.1.1 Service Type and Service Media Type
	9.1.2 Protocol
	9.1.3 Requesting an XRDS Document using HTTP(S)
	9.1.4 Failover Handling
	9.1.5 Community Root Authorities
	9.1.6 Self-Describing XRDS Documents
	9.1.7 Qualified Subsegments
	9.1.8 Cross-References
	9.1.9 Selection of the Next Authority Resolution Service Endpoint
	9.1.10 Construction of the Next Authority URI
	9.1.11 Recursing Authority Resolution

	9.2 IRI Authority Resolution
	9.2.1 Service Type and Media Type
	9.2.2 Protocol
	9.2.3 Optional Use of HTTPS

	10 Trusted Authority Resolution Service
	10.1 HTTPS
	10.1.1 Service Type and Service Media Type
	10.1.2 Protocol

	10.2 SAML
	10.2.1 Service Type and Service Media Type
	10.2.2 Protocol
	10.2.2.1 Client Requirements
	10.2.2.2 Server Requirements

	10.2.3 Recursing Authority Resolution
	10.2.4 Client Validation of XRDs
	10.2.5 Correlation of ProviderID and KeyInfo Elements

	10.3 HTTPS+SAML
	10.3.1 Service Type and Service Media Type
	10.3.2 Protocol

	11 Proxy Resolution Service
	11.1 Service Type and Media Types
	11.2 HXRIs
	11.3 HXRI Query Parameters
	11.4 HXRI Encoding/Decoding Rules
	11.5 HTTP(S) Accept Headers
	11.6 Null Resolution Output Format
	11.7 Outputs and HTTP(S) Redirects
	11.8 Differences Between Proxy Resolution Servers
	11.9 Combining Authority and Proxy Resolution Servers

	12 Redirect and Ref Processing
	12.1 Cardinality
	12.2 Precedence
	12.3 Redirect Processing
	12.4 Ref Processing
	12.5 Nested XRDS Documents
	12.5.1 Redirect Examples
	12.5.2 Ref Examples

	12.6 Recursion and Backtracking

	13 Service Endpoint Selection
	13.1 Processing Rules
	13.2 Service Endpoint Selection Logic
	13.3.6 Type Element Matching Rules
	13.3.7 Path Element Matching Rules
	13.3.8 MediaType Element Matching Rules

	13.4 Service Endpoint Matching Rules
	13.4.1 Service Endpoint Match Options
	13.4.2 Select Attribute Match Rule
	13.4.3 All Positive Match Rule
	13.4.4 Default Match Rule

	13.5 Service Endpoint Selection Rules
	13.5.1 Positive Match Rule
	13.5.2 Default Match Rule

	13.6 Pseudocode
	13.7 Construction of Service Endpoint URIs

	14 Synonym Verification
	14.1 Redirect Verification
	14.2 EquivID Verification
	14.3 CanonicalID Verification
	14.3.1 HTTP(S) URI Verification Rules
	14.3.2 XRI Verification Rules
	14.3.3 CanonicalEquivID Verification
	14.3.4 Verification Status Attributes
	14.3.5 Examples

	15 Status Codes and Error Processing
	15.1 Status Elements
	15.2 Status Codes
	15.3 Status Context Strings
	15.4 Returning Errors in Plain Text or HTML
	15.5 Error Handling in Recursing and Proxy Resolution

	16 Use of HTTP(S)
	16.1 HTTP Errors
	16.2 HTTP Headers
	16.2.1 Caching
	16.2.2 Location
	16.2.3 Content-Type

	16.3 Other HTTP Features
	16.4 Caching and Efficiency
	16.4.1 Resolver Caching
	16.4.2 Synonyms

	17 Extensibility and Versioning
	17.1 Extensibility
	17.1.1 Extensibility of XRDs
	17.1.2 Other Points of Extensibility

	17.2 Versioning
	17.2.1 Version Numbering
	17.2.2 Versioning of the XRI Resolution Specification
	17.2.3 Versioning of Protocols
	17.2.4 Versioning of XRDs

	18 Security and Data Protection
	18.1 DNS Spoofing or Poisoning
	18.2 HTTP Security
	18.3 SAML Considerations
	18.4 Limitations of Trusted Resolution
	18.5 Synonym Verification
	18.6 Redirect and Ref Management
	18.7 Community Root Authorities
	18.8 Caching Authorities
	18.9 Recursing and Proxy Resolution
	18.10 Denial-Of-Service Attacks

