
Core and hierarchical role based access
control (RBAC) profile of XACML v2.0

OASIS Standard, 1 February 2005

Document identifier:
access_control-xacml-2.0-rbac-profile1-spec-os

Location:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

Editor:
Anne Anderson, Sun Microsystems (anne.anderson@sun.com)

Abstract:
This specification defines a profile for the use of XACML in expressing policies that use role
based access control (RBAC). It extends the XACML Profile for RBAC Version 1.0 to include a
recommended AttributeId for roles, but reduces the scope to address only “core” and
“hierarchical” RBAC. This specification has also been updated to apply to XACML 2.0.

Status:
This version of the specification is an approved OASIS Standard.

Access Control TC members should send comments on this specification to the
xacml@lists.oasis-open.org list. Others should use the comment form at http://oasis-
open.org/committees/comments/form.php?wg_abbrev=xacml.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Access Control TC web page (http://www.oasis-
open.org/committees/xacml/ipr.php).

For any errata document for this specification, please refer to the Access Control TC web page
(http://www.oasis-open.org/committees/xacml).

Copyright © OASIS Open 2004-2005 All Rights Reserved.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 1 of 23

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Table of Contents
1 Introduction (non-normative)...3

1.1 Notation..3

1.2 Terminology.. ...3

1.3 Scope 4

1.4 Role...4

1.5 Policies..5

1.6 Multi-Role Permissions..6

2 Example (non-normative)...7

2.1 Permission <PolicySet> for the manager role...8

2.2 Permission <PolicySet> for employee role..9

2.3 Role <PolicySet> for the manager role...10

2.4 Role <PolicySet> for employee role..10

2.5 HasPrivilegesOfRole Policies and Requests..11

3 Assigning and Enabling Role Attributes (non-normative).. .13

4 Implementing the RBAC Model (non-normative)...16

4.1 Core RBAC... ...16

4.2 Hierarchical RBAC... .17

5 Profile (normative)..18

5.1 Roles and Role Attributes..18

5.2 Role Assignment or Enablement...18

5.3 Access Control...18

6 Identifiers (normative)...20

6.1 Profile Identifier.. ...20

6.2 Role Attribute... ..20

6.3SubjectCategory..20

6.4 Action Attribute Values...20

7 References...21

7.1 Normative References..21

7.2 Non-normative References.. ...21

A. Acknowledgments...22

B. Notices..23

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 2 of 23

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

1 Introduction (non-normative)
This specification defines a profile for the use of the OASIS eXtensible Access Control Markup Language
(XACML) [XACML] to meet the requirements for “core” and “hierarchical” role based access control
(RBAC) as specified in [ANSI-RBAC]. Use of this profile requires no changes or extensions to standard
XACML Versions 1.0, 1.1, or 2.0 (although examples must be modified slightly for Versions 1.0 and 1.1).
It extends the XACML Profile for RBAC Version 1.0 [RBAC-V1] to include a recommended XACML
AttributeId for roles, but reduces the scope to address only “core” and “hierarchical” RBAC. The
specification has also been updated for XACML 2.0.

This specification begins with a non-normative explanation of the building blocks from which the RBAC
solution is constructed. A full example illustrates these building blocks. The specification then discusses
how these building blocks may be used to implement the various elements of the RBAC model
presented in [ANSI-RBAC]. Finally, the normative section of the specification describes compliant uses
of the building blocks in implementing an RBAC solution.

This specification assumes the reader is somewhat familiar with XACML. A brief overview sufficient to
understand these examples is available in [XACMLIntro]. An introduction to the RBAC model is available
in [RBACIntro].

1.1 Notation
In order to improve readability, the examples in this specification assume use of the following XML
Internal Entity declarations:

^lt;!ENTITY xml "http://www.w3.org/2001/XMLSchema#">
^lt;!ENTITY rule-combine
 "urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:">
^lt;!ENTITY policy-combine
 "urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:">
^lt;!ENTITY function "urn:oasis:names:tc:xacml:1.0:function:">
^lt;!ENTITY subject-category
 "urn:oasis:names:tc:xacml:1.0:subject-category:">
^lt;!ENTITY subject "urn:oasis:names:tc:xacml:1.0:subject:">
^lt;!ENTITY role "urn:oasis:names:tc:xacml:2.0:subject:role">
^lt;!ENTITY roles "urn:example:role-values:">
^lt;!ENTITY resource "urn:oasis:names:tc:xacml:1.0:resource:">
^lt;!ENTITY action "urn:oasis:names:tc:xacml:1.0:action:">
^lt;!ENTITY actions "urn:oasis:names:tc:xacml:2.0:actions:">
^lt;!ENTITY environment "urn:oasis:names:tc:xacml:1.0:environment:">

For example, “&xml;string” is equivalent to “http://www.w3.org/2001/XMLSchema#string”.

1.2 Terminology
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and
optional in this document are to be interpreted as described in IETF RFC 2119 [RFC2119].

attribute - in this specification, the term “attribute” refers to an XACML <Attribute>. An XACML
<Attribute> is an element in an XACML Request having among its components an attribute name
identifier, a data type identifier, and an attribute value. Each <Attribute> is associated either with
one of the subjects (Subject Attribute), the protected resource (Resource Attribute), the action to be
taken on the resource (Action Attribute), or the environment of the Request (Environment Attribute).
Attributes are referenced in a policy by using an <AttributeSelector> (an XPath expression) or one
of the following: <SubjectAttributeDesignator>, <ResourceAttributeDesignator>,
<ActionAttributeDesignator>, or <EnvironmentAttributeDesignator>.

HasPrivilegesOfRole policy – an optional type of <Policy> that can be included in a Permission
<PolicySet> to allow support queries asking if a subject “has the privileges of” a specific role. See
Section 2.5: HasPrivilegesOfRole Policies and Requests.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 3 of 23

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

junior role – in a role hierarchy, Role A is junior to Role B if Role B inherits all the permissions
associated with Role A.

multi-role permissions – a set of permissions for which a user must hold more than one role
simultaneously in order to gain access.

PDP - Policy Decision Point. An entity that evaluates an access request against one or more policies to
produce an access decision.

permission – the ability or right to perform some action on some resource, possibly only under certain
specified conditions.

PPS – Permission <PolicySet>. See Section 1.5: Policies.

RBAC – role based access control. A model for controlling access to resources where permitted actions
on resources are identified with roles rather than with individual subject identities.

Role Enablement Authority - an entity that assigns role attributes and values to users or enables role
attributes and values during a user's session.

RPS – Role <PolicySet>. See Section 1.5: Policies.

role – a job function within the context of an organization that has associated semantics regarding the
authority and responsibility conferred on the user assigned to the role [ANSI-RBAC].

senior role – in a role hierarchy, Role A is senior to Role B if Role A inherits all the permissions
associated with Role B.

policy – a set of rules indicating which subjects are permitted to access which resources using which
actions under which conditions.

1.3 Scope
Role based access control allows policies to be specified in terms of subject roles rather than strictly in
terms of individual subject identities. This is important for scalability and manageability of access control
systems.

The policies specified in this profile can answer three types of questions:

1. If a subject has roles R1 , R2, ... Rn enabled, can subject X access a given resource using a given
action?

2. Is subject X allowed to have role Ri enabled?

3. If a subject has roles R1 , R2, ... Rn enabled, does that mean the subject will have permissions
associated with a given role R'? That is, is role R' either equal to or junior to any of roles R1 , R2, ...
Rn?

The policies specified in this profile do not answer the question “What set of roles does subject X have?”
That question must be handled by a Role Enablement Authority, and not directly by an XACML PDP.
Such an entity may make use of XACML policies, but will need additional information. See Section 3:
Assigning and Enabling Role Attributes for more information about Role Enablement Authorities.

The policies specified in this profile assume all the roles for a given subject have already been enabled
at the time an authorization decision is requested. They do not deal with an environment in which roles
must be enabled dynamically based on the resource or actions a subject is attempting to perform. For
this reason, the policies specified in this profile also do not deal with static or dynamic “Separation of
Duty” (see [ANSI-RBAC]). A future profile may address the requirements of this type of environment.

1.4 Role
In this profile, roles are expressed as XACML Subject Attributes. There are two exceptions: in a Role
Assignment <PolicySet> or <Policy> and in a HasPrivilegesOfRole <Policy>, the role appears as
a Resource Attribute. See Section 2.5: HasPrivilegesOfRole Policies and Requests and Section 3:
Assigning and Enabling Role Attributes for more information.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 4 of 23

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Role attributes may be expressed in either of two ways, depending on the requirements of the
application environment. In some environments there may be a small number of “role attributes”, where
the name of each such attribute is some name indicating “role”, and where the value of each such
attribute indicates the name of the role held. For example, in this first type of environment, there may be
one “role attribute” having the AttributeId “&role;” (this profile recommends use of this identifier).
The possible roles are values for this one attribute, and might be “&roles;officer”,
“&roles;manager”, and “&roles;employee”. This way of expressing roles works best with the
XACML way of expressing policies. This method of identifying roles is also most conducive to
interoperability.

Alternatively, in other application environments, there may be a number of different attribute identifiers,
each indicating a different role. For example, in this second type of environment, there might be three
attribute identifiers: “urn:someapp:attributes:officer-role”,
“urn:someapp:attributes:manager-role”, and “urn:someapp:attributes:employee-
role”. In this case the value of the attribute may be empty or it may contain various parameters
associated with the role. XACML policies can handle roles expressed in this way, but not as naturally as
in the first way.

XACML supports multiple subjects per access request, indicating various entities that may be involved in
making the request. For example, there is usually a human user who initiates the request, at least
indirectly. There are usually one or more applications or code bases that generate the actual low-level
access request on behalf of the user. There is some computing device on which the application or code
base is executing, and this device may have an identity such an IP address. XACML identifies each
such Subject with a SubjectCategory xml attribute that indicates the type of subject being
described. For example, the human user has a SubjectCategory of &subject-
category;access-subject (this is the default category); the application that generates the access
request has a SubjectCategory of &subject-category;codebase and so on. In this profile, a
role attribute may be associated with any of the categories of subjects involved in making an access
request.

1.5 Policies
In this profile, four types of policies are specified.

1. Role <PolicySet> or RPS : a <PolicySet> that associates holders of a given role attribute and
value with a Permission <PolicySet> that contains the actual permissions associated with the given
role. The <Target> element of a Role <PolicySet> limits the applicability of the <PolicySet>
to subjects holding the associated role attribute and value. Each Role <PolicySet> references a
single corresponding Permission <PolicySet> but does not contain or reference any other
<Policy> or <PolicySet> elements.

2. Permission <PolicySet> or PPS: a <PolicySet> that contains the actual permissions associated
with a given role. It contains <Policy> elements and <Rules> that describe the resources and
actions that subjects are permitted to access, along with any further conditions on that access, such
as time of day. A given Permission <PolicySet> may also contain references to Permission
<PolicySet>s associated with other roles that are junior to the given role, thereby allowing the
given Permission <PolicySet> to inherit all permissions associated with the role of the referenced
Permission <PolicySet>. The <Target> element of a Permission <PolicySet>, if present,
must not limit the subjects to which the <PolicySet> is applicable.

3. Role Assignment <Policy> or <PolicySet>: a <Policy> or <PolicySet> that defines which
roles can be enabled or assigned to which subjects. It may also specify restrictions on combinations
of roles or total number of roles assigned to or enabled for a given subject. This type of policy is used
by a Role Enablement Authority. Use of a Role Assignment <Policy> or <PolicySet> is optional.

4. HasPrivilegesOfRole <Policy>: a <Policy> in a Permission <PolicySet> that supports requests
asking whether a subject has the privileges associated with a given role. If this type of request is to
be supported, then a HasPrivilegesOfRole <Policy> must be included in each Permission
<PolicySet>. Support for this type of <Policy>, and thus for requests asking whether a subject
has the privileges associated with a given role, is optional.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 5 of 23

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Permission <PolicySet> instances must be stored in the policy repository in such a way that they can
never be used as the initial policy for an XACML PDP; Permission <PolicySet> instances must be
reachable only through the corresponding Role <PolicySet>. This is because, in order to support
hierarchical roles, a Permission <PolicySet> must be applicable to every subject. The Permission
<PolicySet> depends on its corresponding Role <PolicySet> to ensure that only subjects holding
the corresponding role attribute will gain access to the permissions in the given Permission
<PolicySet>.

Use of separate Role <PolicySet> and Permission <PolicySet> instances allows support for
Hierarchical RBAC, where a more senior role can acquire the permissions of a more junior role. A
Permission <PolicySet> that does not reference other Permission <PolicySet> elements could
actually be an XACML <Policy> rather than a <PolicySet>. Requiring it to be a <PolicySet>,
however, allows its associated role to become part of a role hierarchy at a later time without requiring
any change to other policies.

1.6 Multi-Role Permissions
In this profile, it is possible to express policies where a user must hold several roles simultaneously in
order to gain access to certain permissions. For example, changing the care instructions for a hospital
patient may require that the Subject performing the action have both the physician role and the staff
role.

These policies may be expressed using a Role <PolicySet> where the <Target> element requires
the Subject to have all necessary role attributes. This is done by using a single <Subject> element
containing multiple <SubjectMatch> elements. The associated Permission <PolicySet> should
specify the permissions associated with Subjects who simultaneously have all the specified roles
enabled.

The Permission <PolicySet> associated with a multi-role policy may reference the Permission
<PolicySet> instances associated with other roles, and thus may inherit permissions from other roles.
The permissions associated with a given multi-role <PolicySet> may also be inherited by another role
if the other role includes a reference to the Permission <PolicySet> associated with the multi-role
policy in its own Permission <PolicySet>.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 6 of 23

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

2 Example (non-normative)
This section presents a complete example of the types of policies associated with role based access
control.

The example uses XACML 2.0 syntax. For XACML 1.0 and 1.1, the xmlns references should be
changed to use the 1.0 or 1.1 schema identifiers. A <Target> element containing only
<AnySubject/>, <AnyResource/>, and <AnyAction/> should be added if there is no <Target>
element. <AnySubject/>, <AnyResource/> and <AnyAction/> elements should be added to a
<Target> element that does not have an instance <Subjects>, <Resources>, or <Actions>,
respectively. In <Condition> elements, the specified <Condition> tags should be removed and the
top-level <Apply> element with its FunctionId should be changed to a <Condition> element.

Assume an organization uses two roles, manager and employee. In this example, they are expressed
as two separate values for a single XACML Attribute with AttributeId “&role;”. The &role; Attribute
values corresponding to the two roles are “&roles;employee” and “&roles;manager”. An
employee has permission to create a purchase order. A manager has permission to sign a purchase
order, plus any permissions associated with the employee role. The manager role therefore is senior to
the employee role, and the employee role is junior to the manager role.

According to this profile, there will be two Permission <PolicySet> instances: one for the manager role
and one for the employee role. The manager Permission <PolicySet> will give any Subject the
specific permission to sign a purchase order and will reference the employee Permission <PolicySet>
in order to inherit its permissions. The employee Permission <PolicySet> will give any Subject the
permission to create a purchase order.

According to this profile, there will also be two Role <PolicySet> instances: one for the manager role
and one for the employee role. The manager Role <PolicySet> will contain a <Target> requiring
that the Subject hold a &role; Attribute with a value of “&roles;manager”. It will reference the
manager Permission <PolicySet>. The employee Role <PolicySet> will contain a <Target>
requiring that the Subject hold a &role; Attribute with a value of “&roles;employee”. It will
reference the employee Permission <PolicySet>.

The actual XACML policies implementing this example follow. An example of a Role Assignment Policy
is included in Section 3: Assigning and Enabling Role Attributes.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 7 of 23

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

2.1 Permission <PolicySet> for the manager role
The following Permission <PolicySet> contains the permissions associated with the manager role.
The PDP's policy retrieval must be set up such that access to this <PolicySet> is gained only by
reference from the manager Role <PolicySet>.

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="PPS:manager:role"
 PolicyCombiningAlgId="&policy-combine;permit-overrides">

 <!-- Permissions specifically for the manager role -->
 <Policy PolicyId="Permissions:specifically:for:the:manager:role"
 RuleCombiningAlgId="&rule-combine;permit-overrides">

 <!-- Permission to sign a purchase order -->
 <Rule RuleId="Permission:to:sign:a:purchase:order"
 Effect="Permit">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;string-equal">
 <AttributeValue
DataType="&xml;string">purchase order</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&resource;resource-id"
 DataType="&xml;string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="&function;string-equal">
 <AttributeValue
 DataType="&xml;string">sign</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="&action;action-id"
 DataType="&xml;string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
 </Policy>

 <!-- Include permissions associated with employee role -->
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
</PolicySet>

Table 1 Permission <PolicySet> for managers

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 8 of 23

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

2.2 Permission <PolicySet> for employee role
The following Permission <PolicySet> contains the permissions associated with the employee role.
The PDP's policy retrieval must be set up such that access to this <PolicySet> is gained only by
reference from the employee Role <PolicySet> or by reference from the more senior manager Role
<PolicySet> via the manager Permission <PolicySet>.

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="PPS:employee:role"
 PolicyCombiningAlgId="&policy-combine;permit-overrides">

 <!-- Permissions specifically for the employee role -->
 <Policy PolicyId="Permissions:specifically:for:the:employee:role"
 RuleCombiningAlgId="&rule-combine;permit-overrides">

 <!-- Permission to create a purchase order -->
 <Rule RuleId="Permission:to:create:a:purchase:order"
 Effect="Permit">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;string-equal">
 <AttributeValue
DataType="&xml;string">purchase order</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&resource;resource-id"
 DataType="&xml;string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="&function;string-equal">
 <AttributeValue
 DataType="&xml;string">create</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="&action;action-id"
 DataType="&xml;string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
 </Policy>
</PolicySet>

Table 2 Permission <PolicySet> for employees

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 9 of 23

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

2.3 Role <PolicySet> for the manager role
The following Role <PolicySet> is applicable, according to its <Target>,only to Subjects who hold
a &role; Attribute with a value of “&roles;manager”. The <PolicySetIdReference> points to the
Permission <PolicySet> associated with the manager role. That Permission <PolicySet> may be
viewed in Section 2.1: Permission <PolicySet> for the manager role above.

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="RPS:manager:role"
 PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&roles;manager</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 </Target>

 <!-- Use permissions associated with the manager role -->
 <PolicySetIdReference>PPS:manager:role</PolicySetIdReference>
</PolicySet>

Table 3 Role <PolicySet> for managers

2.4 Role <PolicySet> for employee role
The following Role <PolicySet> is applicable, according to its <Target>,only to Subjects who hold
a &role; Attribute with a value of “&roles;employee”. The <PolicySetIdReference> points to
the Permission <PolicySet> associated with the employee role. That Permission <PolicySet> may
be viewed in Section 2.2: Permission <PolicySet> for employee role above.

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="RPS:employee:role"
 PolicyCombiningAlgId="&policy-combine;permit-overrides">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&roles;employee</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 </Target>

 <!-- Use permissions associated with the employee role -->
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
</PolicySet>

Table 4 Role <PolicySet> for employees

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 10 of 23

311

312

313

314

315

316

317

318

319

320

321

322

323

324

2.5 HasPrivilegesOfRole Policies and Requests
An XACML RBAC system MAY choose to support queries of the form “Does this subject have the
privileges of role X?” If so, each Permission <PolicySet> MUST contain a HasPrivilegesOfRole
<Policy>.

For the Permission <PolicySet> for managers, the HasPrivilegesOfRole <Policy> would look as follows:
 <!-- HasPrivilegesOfRole Policy for manager role -->
 <Policy PolicyId="Permission:to:have:manager:role:permissions"
 RuleCombiningAlgId="&rule-combine;permit-overrides">

 <!-- Permission to have manager role permissions -->
 <Rule RuleId="Permission:to:have:manager:permissions"
 Effect="Permit">
 <Condition>
 <Apply FunctionId=”&function;and”>
 <Apply FunctionId=”&function;anyURI-is-in”>
 <AttributeValue
DataType=”&xml;anyURI”>&roles;manager</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </Apply>
 <Apply FunctionId=”&function;anyURI-is-in”>
 <AttributeValue
DataType=”&xml;anyURI”>&actions;hasPrivilegesofRole</AttributeValue>
 <ActionAttributeDesignator
 AttributeId=”&action;action-id”
 DataType=”&xml;anyURI”/>
 </Apply>
 </Apply>
 </Condition>
 </Rule>
 </Policy>

Table 5 HasPrivilegesOfRole <Policy> for manager role

For the Permission <PolicySet> for employees, the HasPrivilegesOfRole <Policy> would look as follows:
 <!-- HasPrivilegesOfRole Policy for employee role -->
 <Policy PolicyId="Permission:to:have:employee:role:permissions"
 RuleCombiningAlgId="&rule-combine;permit-overrides">

 <!-- Permission to have employee role permissions -->
 <Rule RuleId="Permission:to:have:employee:permissions"
 Effect="Permit">
 <Condition>
 <Apply FunctionId=”&function;and”>
 <Apply FunctionId=”&function;anyURI-is-in”>
 <AttributeValue
DataType=”&xml;anyURI”>&roles;employee</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </Apply>
 <Apply FunctionId=”&function;anyURI-is-in”>
 <AttributeValue
DataType=”&xml;anyURI”>&actions;hasPrivilegesofRole</AttributeValue>
 <ActionAttributeDesignator
 AttributeId=”&action;action-id”
 DataType=”&xml;anyURI”/>
 </Apply>
 </Apply>
 </Condition>
 </Rule>
 </Policy>

Table 6 HasPrivilegesOfRole <Policy> for employee role

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 11 of 23

325

326

327

328

329

330

331

332

A Request asking whether subject Anne has the privileges associated with &roles;manager would look
as follows.

<Request>
 <Subject>
 <Attribute AttributeId=”&subject;subject-id”
DataType=”&xml;string”>
 <AttributeValue>Anne</AttributeValue>
 </Attribute>
 </Subject>
 <Resource>
 <Attribute AttributeId=”&role;”
DataType=”&xml;anyURI”>
 <AttributeValue>&roles;manager</AttributeValue>
 </Attribute>
 </Resource>
 <Action>
 <Attribute AttributeId=”&action;action-id”
DataType="&xml;anyURI">&actions;hasPrivilegesOfRole</AttributeValue>
 </Attribute>
 </Action>
</Request>

Table 7 Example of HasPrivilegesOfRole Request

Either the <Request> must contain Anne's direct roles (in this case, &roles;employee), or else the
PDP's Context Handler must be able to discover them. HasPrivilegesOfRole Policies do not do the job
of associating roles with subjects. See Section 3: Assigning and Enabling Role Attributes for more
information on how roles are associated with subjects.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 12 of 23

333

334

335

336

337

338

3 Assigning and Enabling Role Attributes (non-
normative)

The assignment of various role attributes to users and the enabling of those attributes within a session
are outside the scope of the XACML PDP. There must be one or more separate entities, referred to a
Role Enablement Authorities, implemented to perform these functions. This profile assumes that the
presence in the XACML Request Context of a role attribute for a given user (Subject) is a valid
assignment at the time the access decision is requested

So where do a subject's role attributes come from? What does one of these Role Enablement
Authorities look like? The answer is implementation dependent, but some possibilities can be
suggested.

In some cases, role attributes might come from an identity management service that maintains
information about a user, including the subject's assigned or allowed roles; the identity management
service acts as the Role Enablement Authority. This service might store static role attributes in an LDAP
directory, and a PDP's Context Handler might retrieve them from there. Or this service might respond to
requests for a subject's role attributes from a PDP's Context Handler, where the requests are in the form
of SAML Attribute Queries.

Role Enablement Authorities MAY use an XACML Role Assignment <Policy> or <PolicySet> to
determine whether a subject is allowed to have a particular role attribute and value enabled. A Role
Assignment <Policy> or <PolicySet> answers the question “Is subject X allowed to have role Ri

enabled?” It does not answer the question “Which set of roles is subject X allowed to have enabled?”
The Role Enablement Authority must have some way of knowing which role or roles to submit a request
for. For example, the Role Enablement Authority might maintain a list of all possible roles, and, when
asked for the roles associated with a given subject, make a request against the Role Assignment policies
for each candidate role.

In this profile, Role Assignment policies are a different set from the Role <PolicySet> and Permission
<PolicySet> instances used to determine the access permissions associated with each role. Role
Assignment policies are to be used only when the XACML Request comes from a Role Enablement
Authority. This separation may be managed in various ways, such as by using different PDPs with
different policy stores or requiring <Request> elements for role enablement queries to include a
<Subject> with a SubjectCategory of “&subject-category;role-enablement-
authority”.

There is no fixed form for a Role Assignment <Policy>. The following example illustrates one possible
form. It contains two XACML <Rule> elements. The first <Rule> states that Anne and Seth and
Yassir are allowed to have the “&roles;employee” role enabled between the hours of 9am and
5pm. The second <Rule> states that Steve is allowed to have the “&roles;manager” role enabled,
with no restrictions on time of day.

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicyId="Role:Assignment:Policy"
 RuleCombiningAlgId="&rule-combine;permit-overrides">

<!-- Employee role requirements rule -->
<Rule RuleId="employee:role:requirements" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="&function;string-equal">
 <AttributeValue
 DataType="&xml;string">Seth</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="&subject;subject-id"

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 13 of 23

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

 DataType="&xml;string"/>
 </SubjectMatch>
 </Subject>
 <Subject>
 <SubjectMatch MatchId="&function;string-equal">
 <AttributeValue
 DataType="&xml;string">Anne</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="&subject;subject-id"
 DataType="&xml;string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&roles;employee</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&actions;enableRole</AttributeVa
lue>
 <ActionAttributeDesignator
 AttributeId="&action;action-id"
 DataType="&xml;anyURI"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition>
 <Apply FunctionId="&function;and">
 <Apply FunctionId="&function;time-greater-than-or-equal">
 <Apply FunctionId="&function;time-one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId="&environment;current-time"
 DataType="&xml;time"/>
 </Apply>
 <AttributeValue
 DataType="&xml;time">9h</AttributeValue>
 </Apply>
 <Apply FunctionId="&function;time-less-than-or-equal">
 <Apply FunctionId="&function;time-one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId="&environment;current-time"
 DataType="&xml;time"/>
 </Apply>
 <AttributeValue
 DataType="&xml;time">17h</AttributeValue>
 </Apply>

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 14 of 23

 </Apply>
 </Condition>
</Rule>

<!-- Manager role requirements rule -->
<Rule RuleId="manager:role:requirements" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="&function;string-equal">
 <AttributeValue
 DataType="&xml;string">Steve</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="&subject;subject-id"
 DataType="&xml;string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&roles;:manager</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="&role;"
 DataType="&xml;anyURI"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="&function;anyURI-equal">
 <AttributeValue
 DataType="&xml;anyURI">&actions;enableRole</AttributeVa
lue>
 <ActionAttributeDesignator
 AttributeId="&action;action-id"
 DataType="&xml;anyURI"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
</Rule>
</Policy>

Table 8 Role Assignment <Policy> Example

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 15 of 23

376

4 Implementing the RBAC Model (non-normative)
The following sections describe how to use XACML policies to implement various components of the
RBAC model as described in [ANSI-RBAC].

4.1 Core RBAC
Core RBAC, as defined in [ANSI-RBAC], includes the following five basic data elements:

1. Users

2. Roles

3. Objects

4. Operations

5. Permissions

Users are implemented using XACML Subjects. Any of the XACML SubjectCategory values may
be used, as appropriate.

Roles are expressed using one or more XACML Subject Attributes. The set of roles is very application-
and policy domain-specific, and it is very important that different uses of roles not be confused. For
these reasons, this profile does not attempt to define any standard set of role values, although this profile
does recommend use of a common AttributeId value of
“urn:oasis:names:tc:xacml:2.0:subject:role”. It is recommended that each application or
policy domain agree on and publish a unique set of AttributeId values, DataType values, and
<AttributeValue> values that will be used for the various roles relevant to that domain.

Objects are expressed using XACML Resources.

Operations are expressed using XACML Actions.

Permissions are expressed using XACML Role <PolicySet> and Permission <PolicySet>
instances as described in previous sections.

Core RBAC requires support for multiple users per role, multiple roles per user, multiple permissions per
role, and multiple roles per permission. Each of these requirements can be satisfied by XACML policies
based on this profile as follows. Note, however, that the actual assignment of roles to users is outside
the scope of the XACML PDP. For more information see Section 3: Assigning and Enabling Role
Attributes.

XACML allows multiple Subjects to be associated with a given role attribute. XACML Role
<PolicySet>s defined in terms of possession of a particular role <Attribute> and
<AttributeValue> will apply to any requesting user for which that role <Attribute> and
<AttributeValue> are in the XACML Request Context.

XACML allows multiple role attributes or role attribute values to be associated with a given Subject. If
a Subject has multiple roles enabled, then any Role <PolicySet> instance applying to any of those
roles may be evaluated, and the permissions in the corresponding Permission <PolicySet> will be
permitted. As described in Section 1.6: Multi-Role Permissions, it is even possible to define policies that
require a given Subject to have multiple role attributes or values enabled at the same time. In this
case, the permissions associated with the multiple-role requirement will apply only to a Subject having
all the necessary role attributes and values at the time an XACML Request Context is presented to the
PDP for evaluation.

The Permission <PolicySet> associated with a given role may allow access to multiple resources
using multiple actions. XACML has a rich set of constructs for composing permissions, so there are
multiple ways in which multi-permission roles may be expressed. Any Role A may be associated with a
Permission <PolicySet> B by including a <PolicySetIdReference> to Permission <PolicySet>
B in the Permission <PolicySet> associated with the Role A. In this way, the same set of permissions

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 16 of 23

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

may be associated with more than one role.

In addition to the basic Core RBAC requirements, XACML policies using this profile can also express
arbitrary conditions on the application of particular permissions associated with a role. Such conditions
might include limiting the permissions to a given time period during the day, or limiting the permissions to
role holders who also possess some other attribute, whether it is a role attribute or not.

4.2 Hierarchical RBAC
Hierarchical RBAC, as defined in [ANSI-RBAC], expands Core RBAC with the ability to define
inheritance relations between roles. For example, Role A may be defined to inherit all permissions
associated with Role B. In this case, Role A is considered to be senior to Role B in the role hierarchy. If
Role B in turn inherits permissions associated with Role C, then Role A will also inherit those
permissions by virtue of being senior to Role B.

XACML policies using this profile can implement role inheritance by including a
<PolicySetIdReference> to the Permission <PolicySet> associated with one role inside the
Permission <PolicySet> associated with another role. The role that includes the
<PolicySetIdReference> will then inherit the permissions associated with the referenced role.

This profile structures policies in such a way that inheritance properties may be added to a role at any
time without requiring changes to <PolicySet> instances associated with any other roles. An
organization may not initially use role hierarchies, but may later decide to make use of this functionality
without having to rewrite existing policies.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 17 of 23

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

5 Profile (normative)

5.1 Roles and Role Attributes
Roles SHALL be expressed using one or more XACML Attributes. Each application domain using this
profile for role based access control SHALL define or agree upon one or more AttributeId values to be
used for role attributes. Each such AttributeId value SHALL be associated with a set of permitted values
and their DataTypes. Each permitted value for such an AttributeId SHALL have well-defined semantics
for the use of the corresponding value in policies.

This profile RECOMMENDS use of the “urn:oasis:names:tc:xacml:2.0:subject:role”
AttributeId value for all role attributes. Instances of this Attribute SHOULD have a DataType of
“http://www.w3.org/2001/XMLSchema#anyURI”.

5.2 Role Assignment or Enablement
A Role Enablement Authority, responsible for assigning roles to users and for enabling roles for use
within a user's session, MAY use an XACML Role Assignment <Policy> or <PolicySet> to
determine which users are allowed to enable which roles and under which conditions. There is no
prescribed form for a Role Assignment <Policy> or <PolicySet>. It is RECOMMENDED that roles in
a Role Assignment <Policy> or <PolicySet> be expressed as Resource Attributes, where the
AttributeId is &role; and the <AttributeValue> is the URI for the relevant role value. It is
RECOMMENDED that the action of assigning or enabling a role be expressed as an Action Attribute,
where the AttributeId is &action;action-id, the DataType is &xml;anyURI, and the
<AttributeValue> is &actions;enableRole.

5.3 Access Control
Role based access control SHALL be implemented using two types of <PolicySet>s: Role
<PolicySet>, Permission <PolicySet>. The specific functions and requirements of these two types
of <PolicySet>s are as follows.

For each role, one Role <PolicySet> SHALL be defined. Such a <PolicySet> SHALL contain a
<Target> element that makes the <PolicySet> applicable only to Subjects having the XACML
Attribute associated with the given role; the <Target> element SHALL NOT restrict the Resource,
Action, or Environment. Each Role <PolicySet> SHALL contain a single
<PolicySetIdReference> element that references the unique Permission <PolicySet> associated
with the role. The Role <PolicySet> SHALL NOT contain any other <Policy>, <PolicySet>,
<PolicyIdReference>, or <PolicySetIdReference> elements.

For each role, one Permission <PolicySet> SHALL be defined. Such a <PolicySet> SHALL contain
<Policy> and <Rule> elements that specify the types of access permitted to Subjects having the given
role. The <Target> of the <PolicySet> and its included or referenced <PolicySet>, <Policy>,
and <Rule> elements SHALL NOT limit the Subjects to which the Permission <PolicySet> is
applicable.

If a given role inherits permissions from one or more junior roles, then the Permission <PolicySet> for
the given (senior) role SHALL include a <PolicySetIdReference> element for each junior role. Each
such <PolicySetIdReference> shall reference the Permission <PolicySet> associated with the
junior role from which the senior role inherits.

A Permission <PolicySet> MAY include a HasPrivilegesOfRole <Policy>. Such a <Policy>
SHALL have a <Rule> element with an effect of “Permit”. This Rule SHALL permit any Subject to
perform an Action with an Attribute having an AttributeId of &action;action-id, a DataType of
&xml;anyURI, and an <AttributeValue> having a value of &actions;hasPrivilegesOfRole
on a Resource having an Attribute that is the role to which the Permission <PolicySet> applies (for
example, an AttributeId of &role;, a DataType of &xml;anyURI, and an <AttributeValue>

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 18 of 23

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

whose value is the URI of the specific role value). Note that the role Attribute, which is a Subject
Attribute in a Role <PolicySet> <Target>, is treated as a Resource Attribute in a
HasPrivilegesOfRole <Policy>.

The organization of any repository used for policies and the configuration of the PDP SHALL ensure that
the PDP can never use a Permission <PolicySet> as the PDP's initial policy.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 19 of 23

487

488

489

490

491

6 Identifiers (normative)
This profile defines the following URN identifiers.

6.1 Profile Identifier
The following identifier SHALL be used as the identifier for this profile when an identifier in the form of a
URI is required.

urn:oasis:names:tc:xacml:2.0:profiles:rbac:core-hierarchical

6.2 Role Attribute
The following identifier MAY be used as the AttributeId for role Attributes.

urn:oasis:names:tc:xacml:2.0:subject:role

6.3 SubjectCategory
The following identifier MAY be used as the SubjectCategory for Subject Attributes identifying that a
Request is coming from a Role Enablement Authority.

urn:oasis:names:tc:xacml:2.0:subject-category:role-enablement-authority

6.4 Action Attribute Values
The following identifier MAY be used as the <AttributeValue> of the &action;action-id Attribute
in a HasPrivilegesOfRole <Policy>.

urn:oasis:names:tc:xacml:2.0:actions:hasPrivilegesOfRole

The following identifier MAY be used as the <AttributeValue> of the &action;action-id Attribute
in a Role Assignment <Policy>.

urn:oasis:names:tc:xacml:2.0:actions:enableRole

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 20 of 23

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

7 References

7.1 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF

RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt
[XACML] T. Moses, ed., OASIS eXtensible Access Control Markup Language (XACML)

Version 2.0, OASIS Standard, 1 February 2005, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, S. Godik,
T. Moses, eds., OASIS eXtensible Access Control Markup Language (XACML)
Version 1.1, Committee Specification, 7 August 2003, http://www.oasis-
open.org/committees/xacml/repository/cs-xacml-specification-1.1.pdf; and S.
Godik, T. Moses, eds., OASIS eXtensible Access Control Markup Language
(XACML) Version 1.0, OASIS Standard, 18 February 2003, http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-1.0.pdf.

7.2 Non-normative References
[ANSI-RBAC] NIST, Role Based Access Control, ANSI INCITS 359-2004,

http://csrc.nist.gov/rbac/ .
[RBACIntro] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R. Chandramouli, Proposed

NIST Standard for Role-Based Access Control, ACM Transaction on Information
and System Security, Vol. 4, No. 3, August 2001, pages 224-274,
http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf.

[RBAC-V1] A. Anderson, ed., XACML Profile for Role Based Access Control (RBAC),
OASIS Access Control TC Committee Draft 01, 13 February 2004,
http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf.

[XACMLIntro] OASIS XACML TC, A Brief Introduction to XACML, 14 March 2003,
http://www.oasis-
open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html,.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 21 of 23

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

A. Acknowledgments

The following individuals contributed to the development of the specification:
Anne Anderson
Anthony Nadalin
Bill Parducci
Daniel Engovatov
Don Flinn
Ed Coyne
Ernesto Damiani
Frank Siebenlist
Gerald Brose
Hal Lockhart
Haruyuki Kawabe
James MacLean
John Merrells
Ken Yagen
Konstantin Beznosov
Michiharu Kudo
Michael McIntosh
Pierangela Samarati
Pirasenna Velandai Thiyagarajan
Polar Humenn
Rebekah Metz
Ron Jacobson
Satoshi Hada
Sekhar Vajjhala
Seth Proctor
Simon Godik
Steve Anderson
Steve Crocker
Suresh Damodaran
Tim Moses
Von Welch
Ravi Sandhu
John Barkley
Ramaswamy Chandramouli
David Ferraiolo
Rick Kuhn
Serban Gavrila
Aleksey Studnev

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 22 of 23

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577
578

B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004-2005. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

access_control-xacml-2.0-rbac-profile1-spec-os 1 February 2005
Copyright © OASIS Open 2004-2005. All Rights Reserved. Page 23 of 23

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

