© O ~N O O

10
11

12
13

14
15
16

17
18
19
20

21
22

23

24
25

OASIS 19

eXtensible Access Control Markup Language
(XACML) Version 2.0

OASIS Standard, 1 Feb 2005

Document Identifier: oasis-access_control-xacml-2.0-core-spec-0s

LLocation: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Editor:

Tim Moses, Entrust Inc. (tim.moses@entrust.com)

Abstract:

Status:

This specification defines version 2.0 of the extensible access-control markup language.

This version of the specification is an approved OASIS Standard within the OASIS Access
Control TC.

Access Control TC members should send comments on this specification to the
xacml@lists.oasis-open.org list. Others may use the following link and complete the
comment form: http://oasis-open.org/committees/comments/form.php?wg_abbrev=xacml.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Access Control TC web page (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml).

For any errata page for this specification, please refer to the Access Control TC web page
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml).

The non-normative errata page for this specification is located at

WwWWw.0asis-open.org/committees/access-control.
Copyright © OASIS Open 2004-2005 All Rights Reserved.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 141

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Table of contents

1. INtroduction (NON-NOIMALIVE).....ccciitiiiiiitiei ettt e e et e e e sabr e e e s abbeeeenees 8
1.1. €1 (01 YOO PP PP PPPPRPTUPR 8
111 Preferred tEIMS. ... ettt e e bt e e s b e e e s anneee e e 8
1.1.2 REIAIEA TEIMIS ... e e 10
1.2. N\ o1 = 11T] o TP U PP PP PPPRTRPRN 10
1.3. Schema organization and NAMESPACESuuvveieeeeeiiiiiiireieee e e s eiirrrrr e e e e e s s s srrerreeeeeeaaanns 10
2. Background (NON-NOIMALIVE)ccoiiiiiiiiieiee e e cctre e e e e e e s r e e e e e s e s stbe e e e e e e e s e s sntnreeeeaeeeeannns 11
2.1 =0 [T =T 4 =1] £ P 11
2.2. Rule and policy COMDBININGovviieiiiiiiiiee e e e e e nnrere e e e e 12
2.3. (07e] ga] o] 1o 1T To ir=1{o o411 10 1S USSR 12
24, MUIEIPIE SUDJECES ...ttt e et e e st e e e e sbreeeeanes 13
2.5. Policies based on subject and resource attributes...........ccccevvieeiiiiiiiiiiiee e, 13
2.6. Multi-valued attriDULEScooueiiiiieie e 14
2.7. Policies based 0N reSOUIrCE CONTENIS.ciiuriieiiiiiee ittt e e e srnee e 14
2.8. (0] 0=] - 110] £ TN PP UP PP PP PP PP 14
2.9. POlICY iSTIDULION. ..ot e et e e e e e e rnb b aeeaaaaeas 15
2% O TR = o 1o VAT o (=3 o TSR PPPRI 15
2% Y Y o153 1 = Tox 1 o T == PRSI 16
2.12. Actions performed in conjunction with enforcement.............ccccccoi i, 16
I T Y/ [o To 1= SN (o B T 1 0 =117) IS 16
3.1 Data-floOW MOGEL.......cooiiiiiie e 16
3.2. XACML CONIEXL....ceeiirieiee it ettt e s e e s e e e s e e e e e e e e e ennes 16
3.3. Policy 1anguage MOUELueiiiiiiee et 16
3.31 [SRR 16
3.3.2 POLICY .ttt s 16
3.3.3 POHCY SBL ..ttt e e e e e e e e e e e s e e e e aaaeas 16
4. EXamples (NON-NOMIALIVE)........uuuiiiiieaiiiiitie ittt e e et e e e e e e s e st b e e e e e e e e s e annbbeaeeaaaeans 16
4.1. EXAMPIE DNttt ettt e e e e e r e e e e e e e aeeaaaeas 16
41.1 EXAMPIE POIICY ..o 16
4.1.2 EXample reqUESE CONIEXT.......cc.uiiiiiiiee it e e e e e e e e s s nreeeeeaeeas 16
4.1.3 EXample reSPONSE CONEXLuuviiiiieeeiiiiiiiieie e e e e s s st tree e e e e e e e s s e e e e e e e s s nnnrneeeeeees 16
4.2. = Y0] o] L= A1 T PP 16
421 Example medical record iNSTANCEc.evviiiieeeeiie e 16
42.2 EXamPpIe reqUESE CONTEXE.....ciuiiiieiiiiiie ettt 16
4.2.3 Example plain-language MUIEScoooiiiiiiiii e 16
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 2 of 141

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

4.2.4 Example XACML rule iNStANCEScccvviieieee e et e e seee e e e e e e snananeee e e 16

5. Policy syntax (normative, with the exception of the schema fragments)...........cccccvvvveeeeiiiinns 16
5.1. Element SPOLICYSEESoiiiiiiiet ettt 16
5.2. Element KDESCIIPLIONuviiiii ittt ettt st e e s e e st e e e e sbreeeeeaes 16
5.3. Element <POoliCySetDefaultS>..........cooiiiiiiiii e 16
5.4. Element SXPathVErSiON >ooiiiiiiiiiiie et e e 16
5.5. EIEMENT STAIGEES ...ttt e e e e e bbb e e e e e e e e e eaabbeaeeaaeas 16
5.6. Element SSUDJECES> ...t 16
5.7. ElemMENt SSUDJECES ... 16
5.8. Element <SUDJECIMALCNSoooiice e 16
5.9. ElemMent SRESOUICESSiiiiiiiiiie ettt bbb snee e 16
5.10. ElemMent SRESOUICES.......ccuiiiiiieiiee ettt et e s nn e s e nnne e 16
5.11. Element KRESOUICEMAICHSciiiiiieiici e 16
5.12. ElEMENT SACHONSS ...ttt ettt e et e e sttt e e s stb et e e s sabe e e e e snnneeeeans 16
513, ElEMENT SACHON ...ooiiiiiiiie ittt ettt e e st b e e e s bt e e e s abbe e e e s nabeeea e 16
5.14. Element SACHONMAICNSooiiiiiiiie i ee e 16
5.15. Element KENVIFONMENTSSoiiiiiiiiiiiiiie ettt et e e e e s snneee e 16
5.16. Element KENVIFONMENTS>oiiiiiiiiii ettt e e 16
5.17. Element <ENVIronmMentMatCh>occiiiiiiiiiii e 16
5.18. Element <PolicySetldREfErENCESccoiiiiiiiiiiiiiiee e 16
5.19. Element <PoliCyldREfEIENCESouviiiiiii i 16
5.20. SIMPIE tyPE VeISIONTYPE. ..uuiiiiee e ettt e e ee st e e e e s s r e e e e e s s e san e a e e e e e e e s s s santrnneeeeeas 16
5.21. Simple type VersioNMatChTYPE........uuuiiiiie it er e e e e e e e e snnaaane e e e s 16
o =T 01T o1 AR o] o Y PP 16
5.23. Element <PoliCYyDEfaUIIS>ccooiiiiiiieie e 16
5.24. Element <ComMbDINErParameters>........c.uiiiiiiiiiiiiiiiie ettt 16
5.25. Element <CombDINErParameters.........ccuiiiiiiiiii it 16
5.26. Element <RUleCombiNerParamMeters™ooiiiiiiiiiiiiiie ittt 16
5.27. Element <PolicyCombinerParameters=>ccccccuuiieiiiiiee i stieee e siiee e ssveee e snaeee e 16
5.28. Element <PolicySetCombinerParameters>..........ccooiii ittt eiiieeeee e 16
5.29. EleMENt SRUIE> ...ttt e et e e e e e e e e ennb e reeaaeas 16
5.30. SIMPIe tyPe Eff@C Ty PO . uiiiiiiiiii et e e e e e r e e e e e e e aeees 16
5.31. Element <VariableDefinition>ccooiiiiiiici e 16
5.32. Element <VariableReferenCe> ... 16
5.33. ElemMeNnt KEXPrESSIONuuiiiiie it s st e e e e s e e e e e e s e e e e s e e 16
5.34, Element SCONAILIONScoiiiiiiiii e 16

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 3 of 141

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

IR S T 1 =T 0T o1 AR Y o] o] Y P 16

5.36. Element SFUNCHONSoooiiiiiiii ettt 16
5.37. Complex type AttributeDeSigNatOr TYPE.oiuviiie ittt sbeeee e 16
5.38. Element <SubjectAttribUtEDESIGNALOI™eiiiiiiiiie et 16
5.39. Element <ResourceAttributeDeSIgNators...........ccouviiiiiiiiiiiiiiiee e 16
5.40. Element <ACtiONALtribUtEDESIGNALOr>cooiiiiiiiiiiie e 16
5.41. Element <EnvironmentAttributeDeSIgNatorsccoiiiiiiiiiiiiiiie e 16
5.42. Element SAHNDUIESEIECIOISviiiiiiiiie et 16
5.43. Element SAUMNDUIEVAIUES.........cooiiiiiee e 16
5.44. Element KOBIGAtiONS Sccciiiiiiiiiiiice e e e e e e aa e 16
5.45. Element KODBIGAatioN >cciiiiiiiiiiiiiiiece e e e e e e aa e 16
5.46. Element <AtINbDUIEASSIGNMENTSoviiiiii i e e 16

Context syntax (normative with the exception of the schema fragments)............ccccccvvveveenenn. 16
6.1. ElemMeENnt SREQUESTSoiiiiiiie ettt e et e e e sbre e e 16
6.2. ElemMENt SSUDJECTS ...t 16
6.3. ElemMENt SRESOUICESoiiiiiiiie et e e et e et e e s nnbeee e 16
6.4. Element KRESOUICECONTENTSoiiiiiiiiie ittt e e e e 16
6.5. ElEMENT SACHONeiiiiiieie ittt et e e s st et e e s b e e e e s b e e e e s anneeee e 16
6.6. Element SENVIFTONMENTSoiiiiiiie ettt e e e 16
6.7. Element SAIIDULES ... e 16
6.8. Element SAHRHDULEVAIUES..........oociiiii e 16
6.9. EleMENt KRESPONSE Sttt e e e e e e e s s e st e e e e e e e s e snnraaeeeeeeas 16
6.10. Element SRESUIE>cooiii e 16
6.11. Element SDECISIONSccoiiiiiriieiiei ettt s e 16
B.12. ElEmMENt SSTATUSSoiiiiieiii ettt et 16
6.13. Element SSTAtUSCOUESuiiiiiiiiiee ettt et e et e e s snb e e s sbneeeean 16
6.14. Element SSTAtUSMESSATE™coicuiiiiiiiiiie ettt st e e sb e e e s abneeeean 16
6.15. Element <StatUSDELal>..........cooiiiiiiiiiii e 16
6.16. Element <MisSiNgAHHDUIEDELAII>ooooiiiiiiiiii e 16

Functional requirements (NOFMALIVE)uuiiiiiiiiii ittt e e e eeeaae s 16
7.1 Policy enforCemeEnt POINToooi i a e e e e 16

7.1.1. BASE PEP ... 16

7.1.2. (=T 1Y = 11T I ! T 16

7.1.3. Permit-bDIaSEA PEPcoooiiiiiiie e 16
7.2. ATIDULE @VAIUALION.......oieiiiiiii e 16

7.2.1. Structured attribDULESoooiii e 16

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 4 of 141

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

7.2.2. F N L1 o101 1= o = Vo USRS 16

7.2.3. Multivalued attriDULES.ooiiiiiee e 16
7.2.4. ALHDULE MACRING . ..ot 16
7.2.5. ALIDULE RELMEVAL ..o 16
7.2.6. ENVIironment ALHDULESooiiiiiiii s 16
7.3. EXPresSSion @VAIUATIONuiiiiiiii ittt e e et e e e e e e e e ranbreaeeeaeas 16
7.4. ANtNMELIC @VAIUALIONeiiiiieiee et ee e 16
7.5. MALCH VAIUALIONeeiiiiiiiei ettt e s e e s e e e s sreeee e e 16
7.6. IV o [A =LY Z= L T L] o TSR 16
7.7. VariableReference EVAlUALIoNcocuiiiiiiiiiieiie e 16
7.8. CONAILION EVAIUBLIONeeeeiiee ittt st e st snre e nneeennneas 16
7.9. RUIE @VAIUALION ...ttt e e e 16
A% O TR =] o V=Y 7= 11 =\ 4o] o 1SR 16
7.11. POIlICY Set @VAlUALIONeiiiiiiiie ittt e e b e e e s anbeee e 16
7.12. HIierarChiCal FESOUICTESocuuiii ettt ettt ettt e et e e sab e e e e sbr e e e e sbneeeeanes 16
7.13. AULhOFMZAtiON TECISIONeiiiiiiiii ittt e e et e e e snnreee e 16
A T @ o] o = 1o L ST UUPU PP PPPPPPPPR 16
7.15. EXCeption NANAINGcooiiieiiiiie ettt e e e as 16
7.15.1. Unsupported FUNCHONAITYeeiiiiieiee e 16
7.15.2. SYNtaX @N0 tYPE EITOIS .eeeeieeeiiiiiiitie et e e e e e eee e e e e e e e s e sitbrrr e e e e e e s e s rarareeeeeeessassanraaneeeeeas 16
7.15.3. MISSING AHIIDULES......uviieiii e e e e e e e s e reeeeee s 16
XACML extensibility points (NON-NOMALIVE)ceeieiiiiiiiiiiiieee e e e e 16
8.1. Extensible XML attribute tyPeS......coceviiiiieee e e e e s neanan e e 16
8.2. Structured attriDULESoooiiiicce s 16
Security and privacy considerations (NON-NOMALIVE).........cceeiiriuriiriiiee i e e e e s sesnreeeeeee e 16
9.1. TRFEAL MOUEL ... et eb e e 16
9.1.1. UNauthorized AISCIOSUIEuuiiiiiiiiiee et 16
9.1.2. MESSAGE TEPIAY . ieeeieee ittt ettt s 16
9.1.3. MESSAGE INSEITIONeeiiiiiie ittt e e e e ettt e e e e e e e s ib b be e e e e e e e e e e e nnbreaeeeaaas 16
9.1.4. MESSAGE AEIETIONeeeiiiee it a e a e 16
9.1.5. Message MOAIfICALION..........oi i e s 16
9.1.6. NOLAPPIICADIE TESUILScei e e e 16
9.1.7. [N T=To F= LA = U] [T 16
9.2. Y= 1 =0 T Vo £ SR 16
9.2.1. AUNENTICALION ... 16
9.2.2. (o] T3 V=T a0 11 0T 1S3 1= L1 [o 1SS 16
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 5 of 141

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

9.2.3. (7o) a1 T F=T o1 1= 1SS 16

9.2.4. [0 1103V 01 (=T |] 2SS 16
9.2.5. POlICY IHENTIIEIS. ...t e 16
9.2.6. TRUSEMOAEL ...t e s e e e 16
9.2.7. L 1177 T PP PP PP PPPP PRI 16
10. CoNfOrMAaNCE (NOMMALIVE)eiiiiei ittt e ettt e e e e e et et e e e e e s e bbbe e e e e e e e e aanbabreeeaaeeesanreeeeeas 16
(0I5 B [011 oo 18 od 1 o] O PO P PP PPPPPRP 16
10.2. ConformanCe tabIESooiiiiie s 16
10.2.1. SChEM@ ElEMENS.....oiiiiii it 16
10.2.2. 1dentifier PrefiXES......ooi i 16
020 T A o o) 1 12 11 SRR 16
10.2.4. SEAIUS COUEBSeeieiriie ittt ettt r et st s e e nn e e ne e e nnr e e 16
10.2.5. AWFDULES...ccoeeie e 16
10.2.6. [o =701 () =T £ OO UUPPPPOTPPPPPUPRP 16
10.2.7. DAL TYPES et r e 16
10.2.8. FUNCHIONS ...ttt et e st e e et e e e sbb e e e e enbb e e e e ennbeas 16
L1, RETEIEINCES ..ttt ettt ekt e e ekttt e e e s b et e e aab e e e e e aab b et e e sabb et e eanbn e e e anrreee s 16
Appendix A. Data-types and functions (NOrMEALIVE)couiiiiiiiiiiie e 16
N S | 011 £ o [¥ od 1 (o] ¢ [TP PO PP PP PPPPPPPPPPPRN 16
Y B T - B 1Y/ 012 PO 16
AL FUNCHIONS .ttt stttk e btk et e st et e sab e e e b e e e sa b e e e eb b e e eabeeebneesnneeennneenneens 16
A3.1 [SLo [0 1 YA o] (=T o= L= SRR 16
A.3.2 AFthMELIC FUNCHIONSeiiiiiieec e 16
A.3.3 String coNVErsion fUNCIONSuuiiiiieii e 16
A.3.4 Numeric data-type conversion fUNCLONScooviiiiiiiiie e 16
A.3.5 LOGICAl FUNCHIONS ...t e e 16
A.3.6 Numeric comparison fUNCHIONScoiiiiiiiiiiiiiie e 16
A.3.7 Date and time arithmetic fUNCLIONSoiiiiiiiii e 16
A.3.8 Non-numeric comparison FUNCHONSuuiiiiiiiiiiiiiee e 16
A.3.9 SHING FUNCLIONS ... a e e r e eaeeas 16
A.3.10 (27T [N {0 o Tox 1o o £ TP PRSP 16
A3.11 SEETUNCHONS ...ttt s e e nnne e 16
A.3.12 Higher-order bag fUNCLIONScuiiii oo 16
A.3.13 Regular-expression-based funCHONS...........cvvieiiiiiiiiie e 16
A.3.14 Special MatCh FUNCHONS.........oocece e 16
A.3.15 XPath-based FUNCHONScooiiiiiiie e 16
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 6 of 141

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

A.3.16 Extension functions and primitive tYPEScuveeeiieiiiiieeieee e 16

Appendix B. XACML identifiers (NOrMAaLIVE)ccuuviiiieee e e e e e s vrrre e e e e s e 16
B.1. XACML NAMESPACESuttiieiiieeiiiiire ettt e e e et e et e e e s e e e e e et e et e e e e e s aban e e e e e e e s s annrnneees 16
B.2. ACCESS SUDJECT CAtEUONIESveiieiiiiiee ittt ettt e e s b e e e st e e e s sabreee e 16
[R T B T L= T 1 01T T OO RRPRPPPPP 16
B.4. SUDJECE AttrDULES ... 16
B.6. RESOUICE AttrDULES. ...t 16
B.7. ACHON GIIDULES ...ttt et e st e e s et e e snn e e e e nnneeee s 16
B.8. ENVIrONMENT AtrIDULEScciiiiiiiieiiet et e e nee s 16
B.O. SHAIUS COURS ..otttk b ettt st e e sa b e e st e e e st b e e et e e e sbneesnre e e snreenree e 16
(2 3% O R @0 oo o] T o J=11o o] 111] 0 EST 16
Appendix C. Combining algorithms (NOMMALIVE)covvieiiiiiiiiieeee e 16
C.1. =T)20 1Y 4 T [PPSR 16
c.2. Ordered-deny-0VEITIAESuuiie ittt st e e e e 16
C.3. PEIMIt-OVEITIAESeei ettt et et e e e st e e e s nbn e e s anneas 16
Cc.4. Ordered-permit-OVEITIAEScoii ittt e e 16
C.5. FIrSt-apPlICADIE ...t e e e e e e e eaaees 16
C.6. ONly-0NE-APPlICADIE ..ot a e 16
AppendiX D. ACKNOWIEBAGMENTS ..ot e e e e e e e e e e e s snbeeaeas 16
PN o] 01T o To [D e S N[0 1 ot 16
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 7 of 141

227

228

229

230

231

232

233

234
235

236
237

238
239
240
241

242
243

244

245
246
247
248
249
250
251
252

253
254

1.Introduction (non-normative)

1.1. Glossary

1.1.1 Preferred terms
Access - Performing an action
Access control - Controlling access in accordance with a policy
Action - An operation on a resource

Applicable policy - The set of policies and policy sets that governs access for a specific
decision request

Attribute - Characteristic of a subject, resource, action or environment that may be referenced
in a predicate or target (see also — named attribute)

Authorization decision - The result of evaluating applicable policy, returned by the PDP to the
PEP. A function that evaluates to “Permit”, “Deny”, “Indeterminate” or “NotApplicable", and
(optionally) a set of obligations

Bag — An unordered collection of values, in which there may be duplicate values

Condition - An expression of predicates. A function that evaluates to "True", "False" or
“Indeterminate”

Conjunctive sequence - a sequence of predicates combined using the logical ‘AND’ operation

Context - The canonical representation of a decision request and an authorization decision
Context handler - The system entity that converts decision requests in the native request format
to the XACML canonical form and converts authorization decisions in the XACML canonical form
to the native response format

Decision — The result of evaluating a rule, policy or policy set

Decision request - The request by a PEP to a PDP to render an authorization decision
Disjunctive sequence - a sequence of predicates combined using the logical ‘OR’ operation

Effect - The intended consequence of a satisfied rule (either "Permit" or "Deny")

Environment - The set of attributes that are relevant to an authorization decision and are
independent of a particular subject, resource or action

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 141

255
256
257

258
259

260
261

262

263
264

265
266
267
268

269
270
271
272
273

274

275
276

277

278

279

280

281

282
283

284
285
286
287
288
289
290

Named attribute — A specific instance of an attribute, determined by the attribute name and type,
the identity of the attribute holder (which may be of type: subject, resource, action or
environment) and (optionally) the identity of the issuing authority

Obligation - An operation specified in a policy or policy set that should be performed by the PEP
in conjunction with the enforcement of an authorization decision

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a set of
obligations. May be a component of a policy set

Policy administration point (PAP) - The system entity that creates a policy or policy set

Policy-combining algorithm - The procedure for combining the decision and obligations from
multiple policies

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an
authorization decision. This term is defined in a joint effort by the IETF Policy Framework
Working Group and the Distributed Management Task Force (DMTF)/Common Information Model
(CIM) in [RFC3198]. This term corresponds to "Access Decision Function" (ADF) in [ISO10181-3].

Policy enforcement point (PEP) - The system entity that performs access control, by making
decision requests and enforcing authorization decisions. This term is defined in a joint effort by
the IETF Policy Framework Working Group and the Distributed Management Task Force
(DMTF)/Common Information Model (CIM) in [RFC3198]. This term corresponds to "Access
Enforcement Function" (AEF) in [ISO10181-3].

Policy information point (PIP) - The system entity that acts as a source of attribute values

Policy set - A set of policies, other policy sets, a policy-combining algorithm and (optionally) a
set of obligations. May be a component of another policy set

Predicate - A statement about attributes whose truth can be evaluated

Resource - Data, service or system component

Rule - A target, an effect and a condition. A component of a policy

Rule-combining algorithm - The procedure for combining decisions from multiple rules
Subject - An actor whose attributes may be referenced by a predicate

Target - The set of decision requests, identified by definitions for resource, subject and action,
that a rule, policy or policy set is intended to evaluate

Type Unification - The method by which two type expressions are "unified". The type expressions
are matched along their structure. Where a type variable appears in one expression it is then
"unified" to represent the corresponding structure element of the other expression, be it another
variable or subexpression. All variable assignments must remain consistent in both structures.
Unification fails if the two expressions cannot be aligned, either by having dissimilar structure, or by
having instance conflicts, such as a variable needs to represent both "xs:string" and "xs:integer".
For a full explanation of type unification, please see [Hancock].

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 141

291

292
293

294

295
296

297
298

299

300
301

302
303
304

305
306

307
308
309
310

311
312
313

314
315
316
317
318
319
320

321
322

323
324
325

326

327

1.1.2 Related terms

In the field of access control and authorization there are several closely related terms in common
use. For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: group and role.

In place of the terms: privilege, permission, authorization, entittement and right, we use the term
rule.

The term object is also in common use, but we use the term resource in this specification.

Requestors and initiators are covered by the term subject.

1.2. Notation

This specification contains schema conforming to W3C XML Schema and normative text to
describe the syntax and semantics of XML-encoded policy statements.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in IETF RFC 2119 [RFC2119]

"they MUST only be used where it is actually required for interoperation or to limit
behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

Listings of XACML schema appear like this.

[a01] Example code listings appear like this.
Conventional XML namespace prefixes are used throughout the listings in this specification to

stand for their respective namespaces as follows, whether or not a namespace declaration is
present in the example:

e The prefix xacml : stands for the XACML policy namespace.

e The prefix xacml-context: stands for the XACML context namespace.

e The prefix ds: stands for the W3C XML Signhature namespace [DS].

e The prefix xs: stands for the W3C XML Schema namespace [XS].

e The prefix xf: stands for the XQuery 1.0 and XPath 2.0 Function and Operators
specification namespace [XF].

This specification uses the following typographical conventions in text: <XACMLE lement>,
<ns:ForeignElement>, Attribute, Datatype, OtherCode. Terms in italic bold-face are
intended to have the meaning defined in the Glossary.

1.3. Schema organization and namespaces
The XACML policy syntax is defined in a schema associated with the following XML namespace:

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 10 of 141

328

329
330

331

332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354

355
356
357

358

359

360
361

362
363

364

365
366

367

urn:oasis:names:tc:xacml:2_0:policy

The XACML context syntax is defined in a schema associated with the following XML namespace:
urn:oasis:names:tc:xacml:2.0:context

2.Background (non-normative)

The "economics of scale" have driven computing platform vendors to develop products with very
generalized functionality, so that they can be used in the widest possible range of situations. "Out
of the box", these products have the maximum possible privilege for accessing data and executing
software, so that they can be used in as many application environments as possible, including
those with the most permissive security policies. In the more common case of a relatively
restrictive security policy, the platform's inherent privileges must be constrained, by configuration.

The security policy of a large enterprise has many elements and many points of enforcement.
Elements of policy may be managed by the Information Systems department, by Human
Resources, by the Legal department and by the Finance department. And the policy may be
enforced by the extranet, mail, WAN and remote-access systems; platforms which inherently
implement a permissive security policy. The current practice is to manage the configuration of each
point of enforcement independently in order to implement the security policy as accurately as
possible. Consequently, it is an expensive and unreliable proposition to modify the security policy.
And, it is virtually impossible to obtain a consolidated view of the safeguards in effect throughout
the enterprise to enforce the policy. At the same time, there is increasing pressure on corporate
and government executives from consumers, shareholders and regulators to demonstrate "best
practice" in the protection of the information assets of the enterprise and its customers.

For these reasons, there is a pressing need for a common language for expressing security policy.
If implemented throughout an enterprise, a common policy language allows the enterprise to
manage the enforcement of all the elements of its security policy in all the components of its
information systems. Managing security policy may include some or all of the following steps:
writing, reviewing, testing, approving, issuing, combining, analyzing, modifying, withdrawing,
retrieving and enforcing policy.

XML is a natural choice as the basis for the common security-policy language, due to the ease with
which its syntax and semantics can be extended to accommodate the unique requirements of this
application, and the widespread support that it enjoys from all the main platform and tool vendors.

2.1. Requirements
The basic requirements of a policy language for expressing information system security policy are:

e To provide a method for combining individual rules and policies into a single policy set that
applies to a particular decision request.

e To provide a method for flexible definition of the procedure by which rules and policies are
combined.

e To provide a method for dealing with multiple subjects acting in different capacities.

e To provide a method for basing an authorization decision on attributes of the subject and
resource.

e To provide a method for dealing with multi-valued attributes.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 11 of 141

368
369

370
371

372
373

374
375

376
377

378
379

380
381
382

383

384
385
386
387
388
389

390
391
392
393
394

395
396
397

398
399
400

401
402

403

404
405
406
407

e To provide a method for basing an authorization decision on the contents of an information
resource.

e To provide a set of logical and mathematical operators on attributes of the subject, resource
and environment.

e To provide a method for handling a distributed set of policy components, while abstracting the
method for locating, retrieving and authenticating the policy components.

e To provide a method for rapidly identifying the policy that applies to a given action, based upon
the values of attributes of the subjects, resource and action.

e To provide an abstraction-layer that insulates the policy-writer from the details of the application
environment.

e To provide a method for specifying a set of actions that must be performed in conjunction with
policy enforcement.

The motivation behind XACML is to express these well-established ideas in the field of access-
control policy using an extension language of XML. The XACML solutions for each of these
requirements are discussed in the following sections.

2.2. Rule and policy combining

The complete policy applicable to a particular decision request may be composed of a number of
individual rules or policies. For instance, in a personal privacy application, the owner of the
personal information may define certain aspects of disclosure policy, whereas the enterprise that is
the custodian of the information may define certain other aspects. In order to render an
authorization decision, it must be possible to combine the two separate policies to form the
single policy applicable to the request.

XACML defines three top-level policy elements: <Rule>, <Policy> and <PolicySet>. The
<Rule> element contains a Boolean expression that can be evaluated in isolation, but that is not
intended to be accessed in isolation by a PDP. So, it is not intended to form the basis of an
authorization decision by itself. It is intended to exist in isolation only within an XACML PAP,
where it may form the basic unit of management, and be re-used in multiple policies.

The <Pol icy> element contains a set of <Rule> elements and a specified procedure for
combining the results of their evaluation. It is the basic unit of policy used by the PDP, and so itis
intended to form the basis of an authorization decision.

The <PolicySet> element contains a set of <Pol icy> or other <Pol icySet> elements and a
specified procedure for combining the results of their evaluation. It is the standard means for
combining separate policies into a single combined policy.

Hinton et al [Hinton94] discuss the question of the compatibility of separate policies applicable to
the same decision request.

2.3. Combining algorithms

XACML defines a number of combining algorithms that can be identified by a
RuleCombiningAlgld or PolicyCombiningAlgld attribute of the <Policy> or <PolicySet>
elements, respectively. The rule-combining algorithm defines a procedure for arriving at an
authorization decision given the individual results of evaluation of a set of rules. Similarly, the

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 12 of 141

408
409
410

411

412

413

414

415
416
417

418
419

420
421
422

423
424
425
426
427
428

429
430

431

432

433
434
435
436
437
438

439

440
441
442
443
444
445
446
447

policy-combining algorithm defines a procedure for arriving at an authorization decision given
the individual results of evaluation of a set of policies. Standard combining algorithms are defined
for:

e Deny-overrides (Ordered and Unordered),
o Permit-overrides (Ordered and Unordered),
e First-applicable and

e Only-one-applicable.

In the case of the Deny-overrides algorithm, if a single <Rulle> or <Pol icy> element is
encountered that evaluates to "Deny", then, regardless of the evaluation result of the other <Rule>
or <Policy> elements in the applicable policy, the combined result is "Deny".

Likewise, in the case of the Permit-overrides algorithm, if a single "Permit" result is encountered,
then the combined result is "Permit".

In the case of the “First-applicable” combining algorithm, the combined result is the same as the
result of evaluating the first <Rule>, <Policy> or <PolicySet> element in the list of rules
whose target is applicable to the decision request.

The "Only-one-applicable" policy-combining algorithm only applies to policies. The result of this
combining algorithm ensures that one and only one policy or policy set is applicable by virtue of
their targets. If no policy or policy set applies, then the result is "NotApplicable", but if more than
one policy or policy set is applicable, then the result is "Indeterminate". When exactly one policy
or policy set is applicable, the result of the combining algorithm is the result of evaluating the
single applicable policy or policy set.

Policies and policy sets may take parameters that modify the behaviour of the combining
algorithms. However, none of the standard combining algorithms is affected by parameters.

Users of this specification may, if necessary, define their own combining algorithms.

2.4. Multiple subjects

Access-control policies often place requirements on the actions of more than one subject. For
instance, the policy governing the execution of a high-value financial transaction may require the
approval of more than one individual, acting in different capacities. Therefore, XACML recognizes
that there may be more than one subject relevant to a decision request. An attribute called
“subject-category” is used to differentiate between subjects acting in different capacities. Some
standard values for this attribute are specified, and users may define additional ones.

2.5. Policies based on subject and resource attributes

Another common requirement is to base an authorization decision on some characteristic of the
subject other than its identity. Perhaps, the most common application of this idea is the subject's
role [RBAC]. XACML provides facilities to support this approach. Attributes of subjects
contained in the request context may be identified by the <SubjectAttributeDesignator>
element. This element contains a URN that identifies the attribute. Alternatively, the
<AttributeSelector> element may contain an XPath expression over the request context to
identify a particular subject attribute value by its location in the context (see Section 2.11 for an
explanation of context).

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 13 of 141

448
449
450

451
452
453
454
455
456

457

458
459
460
461
462
463

464
465
466

467

468
469
470
471
472

473
474
475

476
477

478

479
480
481
482
483
484
485

486
487
488
489

XACML provides a standard way to reference the attributes defined in the LDAP series of
specifications [LDAP-1, LDAP-2]. This is intended to encourage implementers to use standard
attribute identifiers for some common subject attributes.

Another common requirement is to base an authorization decision on some characteristic of the
resource other than its identity. XACML provides facilities to support this approach. Attributes of
the resource may be identified by the <ResourceAttributeDesignator> element. This
element contains a URN that identifies the attribute. Alternatively, the <AttributeSelector>
element may contain an XPath expression over the request context to identify a particular
resource attribute value by its location in the context.

2.6. Multi-valued attributes

The most common techniques for communicating attributes (LDAP, XPath, SAML, etc.) support
multiple values per attribute. Therefore, when an XACML PDP retrieves the value of a named
attribute, the result may contain multiple values. A collection of such values is called a bag. A
bag differs from a set in that it may contain duplicate values, whereas a set may not. Sometimes
this situation represents an error. Sometimes the XACML rule is satisfied if any one of the
attribute values meets the criteria expressed in the rule.

XACML provides a set of functions that allow a policy writer to be absolutely clear about how the
PDP should handle the case of multiple attribute values. These are the “higher-order” functions
(see Section A.3).

2.7. Policies based on resource contents

In many applications, it is required to base an authorization decision on data contained in the
information resource to which access is requested. For instance, a common component of privacy
policy is that a person should be allowed to read records for which he or she is the subject. The
corresponding policy must contain a reference to the subject identified in the information resource
itself.

XACML provides facilities for doing this when the information resource can be represented as an
XML document. The <AttributeSelector> element may contain an XPath expression over the
request context to identify data in the information resource to be used in the policy evaluation.

In cases where the information resource is not an XML document, specified attributes of the
resource can be referenced, as described in Section 2.4.

2.8. Operators

Information security policies operate upon attributes of subjects, the resource, the action and
the environment in order to arrive at an authorization decision. In the process of arriving at the
authorization decision, attributes of many different types may have to be compared or computed.
For instance, in a financial application, a person's available credit may have to be calculated by
adding their credit limit to their account balance. The result may then have to be compared with the
transaction value. This sort of situation gives rise to the need for arithmetic operations on
attributes of the subject (account balance and credit limit) and the resource (transaction value).

Even more commonly, a policy may identify the set of roles that are permitted to perform a
particular action. The corresponding operation involves checking whether there is a non-empty
intersection between the set of roles occupied by the subject and the set of roles identified in the
policy. Hence the need for set operations.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 14 of 141

490
491
492
493
494
495
496
497

498
499

500
501

502
503
504

505
506

507

508
509
510
511
512
513
514

515
516
517
518

519

520
521
522
523
524

525

526
527
528
529

530
531
532

XACML includes a number of built-in functions and a method of adding non-standard functions.
These functions may be nested to build arbitrarily complex expressions. This is achieved with the
<Apply> element. The <Apply> element has an XML attribute called Functionld that identifies
the function to be applied to the contents of the element. Each standard function is defined for
specific argument data-type combinations, and its return data-type is also specified. Therefore,
data-type consistency of the policy can be checked at the time the policy is written or parsed.
And, the types of the data values presented in the request context can be checked against the
values expected by the policy to ensure a predictable outcome.

In addition to operators on numerical and set arguments, operators are defined for date, time and
duration arguments.

Relationship operators (equality and comparison) are also defined for a number of data-types,
including the RFC822 and X.500 name-forms, strings, URIs, etc..

Also noteworthy are the operators over Boolean data-types, which permit the logical combination of
predicates in a rule. For example, a rule may contain the statement that access may be
permitted during business hours AND from a terminal on business premises.

The XACML method of representing functions borrows from MathML [MathML] and from the
XQuery 1.0 and XPath 2.0 Functions and Operators specification [XF].

2.9. Policy distribution

In a distributed system, individual policy statements may be written by several policy writers and
enforced at several enforcement points. In addition to facilitating the collection and combination of
independent policy components, this approach allows policies to be updated as required. XACML
policy statements may be distributed in any one of a number of ways. But, XACML does not
describe any normative way to do this. Regardless of the means of distribution, PDPs are
expected to confirm, by examining the policy's <Target> element that the policy is applicable to
the decision request that it is processing.

<Policy> elements may be attached to the information resources to which they apply, as
described by Perritt [Perritt93]. Alternatively, <Pol icy> elements may be maintained in one or
more locations from which they are retrieved for evaluation. In such cases, the applicable policy
may be referenced by an identifier or locator closely associated with the information resource.

2.10. Policy indexing

For efficiency of evaluation and ease of management, the overall security policy in force across an
enterprise may be expressed as multiple independent policy components. In this case, it is
necessary to identify and retrieve the applicable policy statement and verify that it is the correct
one for the requested action before evaluating it. This is the purpose of the <Target> element in
XACML.

Two approaches are supported:

1. Policy statements may be stored in a database,. In this case, the PDP should form a database
query to retrieve just those policies that are applicable to the set of decision requests to
which it expects to respond. Additionally, the PDP should evaluate the <Target> element of
the retrieved policy or policy set statements as defined by the XACML specification.

2. Alternatively, the PDP may be loaded with all available policies and evaluate their <Target>
elements in the context of a particular decision request, in order to identify the policies and
policy sets that are applicable to that request.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 15 of 141

533

534

535
536
537
538
539
540
541
542
543

544
545
546
547

548
549

550
551
552

553
554
555
556

557

558
559
560
561
562
563
564
565
566

567

568

569

570

The use of constraints limiting the applicability of a policy were described by Sloman [Sloman94].

2.11. Abstraction layer

PEPs come in many forms. For instance, a PEP may be part of a remote-access gateway, part of
a Web server or part of an email user-agent, etc.. Itis unrealistic to expect that all PEPs in an
enterprise do currently, or will in the future, issue decision requests to a PDP in a common format.
Nevertheless, a particular policy may have to be enforced by multiple PEPs. It would be inefficient
to force a policy writer to write the same policy several different ways in order to accommodate the
format requirements of each PEP. Similarly attributes may be contained in various envelope types
(e.g. X.509 attribute certificates, SAML attribute assertions, etc.). Therefore, there is a need for a
canonical form of the request and response handled by an XACML PDP. This canonical form is
called the XACML context. Its syntax is defined in XML schema.

Naturally, XACML-conformant PEPs may issue requests and receive responses in the form of an
XACML context. But, where this situation does not exist, an intermediate step is required to
convert between the request/response format understood by the PEP and the XACML context
format understood by the PDP.

The benefit of this approach is that policies may be written and analyzed independent of the
specific environment in which they are to be enforced.

In the case where the native request/response format is specified in XML Schema (e.g. a SAML-
conformant PEP), the transformation between the native format and the XACML context may be
specified in the form of an Extensible Stylesheet Language Transformation [XSLT].

Similarly, in the case where the resource to which access is requested is an XML document, the
resource itself may be included in, or referenced by, the request context. Then, through the use
of XPath expressions [XPath] in the policy, values in the resource may be included in the policy
evaluation.

2.12. Actions performed in conjunction with enforcement

In many applications, policies specify actions that MUST be performed, either instead of, or in
addition to, actions that MAY be performed. This idea was described by Sloman [Sloman94].
XACML provides facilities to specify actions that MUST be performed in conjunction with policy
evaluation in the <Obl igations> element. This idea was described as a provisional action by
Kudo [Kudo00]. There are no standard definitions for these actions in version 2.0 of XACML.
Therefore, bilateral agreement between a PAP and the PEP that will enforce its policies is required
for correct interpretation. PEPs that conform with v2.0 of XACML are required to deny access
unless they understand and can discharge all of the <Obl igations> elements associated with the
applicable policy. <Obligations> elements are returned to the PEP for enforcement.

3. Models (non-normative)

The data-flow model and language model of XACML are described in the following sub-sections.
3.1. Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 141

571

572

573
574
575
576
577

578

579
580

581

582
583

584

585
586

access 2. access request——p» PEP 13. obligations ———m| obI|gaF|ons
requester service

3. request 12. response

4. request
notification

| 5. attribute
PDP queries » context 9. resource resource
l——10. attributes————— handler content

11. response »
J context
6. atiribute g ribute
query
7c. resource
. attributes
1. policy 7b. environment

attributes

7a. subject

attributes

PAP environment

Figure 1 - Data-flow diagram

Note: some of the data-flows shown in the diagram may be facilitated by a repository. For instance,
the communications between the context handler and the PIP or the communications between the
PDP and the PAP may be facilitated by a repository. The XACML specification is not intended to
place restrictions on the location of any such repository, or indeed to prescribe a particular
communication protocol for any of the data-flows.

The model operates by the following steps.

1. PAPs write policies and policy sets and make them available to the PDP. These policies or
policy sets represent the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native request format,
optionally including attributes of the subjects, resource, action and environment.

4. The context handler constructs an XACML request context and sends it to the PDP.

5. The PDP requests any additional subject, resource, action and environment attributes from
the context handler.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 141

587
588
589
590

501
592

593
594

595
596

597

598
599

600

601
602
603
604
605
606
607
608
609
610
611
612

613
614

615
616

617

The context handler requests the attributes from a PIP.
The PIP obtains the requested attributes.

The PIP returns the requested attributes to the context handler.

© © N o

Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally) the resource to the PDP.
The PDP evaluates the policy.

11. The PDP returns the response context (including the authorization decision) to the context
handler.

12. The context handler translates the response context to the native response format of the
PEP. The context handler returns the response to the PEP.

13. The PEP fulfills the obligations.

14. (Not shown) If access is permitted, then the PEP permits access to the resource; otherwise, it
denies access.

3.2. XACML context

XACML is intended to be suitable for a variety of application environments. The core language is
insulated from the application environment by the XACML context, as shown in Figure 2, in which
the scope of the XACML specification is indicated by the shaded area. The XACML context is
defined in XML schema, describing a canonical representation for the inputs and outputs of the
PDP. Attributes referenced by an instance of XACML policy may be in the form of XPath
expressions over the context, or attribute designators that identify the attribute by subject,
resource, action or environment and its identifier, data-type and (optionally) its issuer.
Implementations must convert between the attribute representations in the application environment
(e.g., SAML, J2SE, CORBA, and so on) and the attribute representations in the XACML context.
How this is achieved is outside the scope of the XACML specification. In some cases, such as
SAML, this conversion may be accomplished in an automated way through the use of an XSLT
transformation.

(B

xacml
Policy.xml

domain-specific
inputs

xacml Context/ xacml Context/ domain-specific
PDP
Request.xml Response.xml outputs

Figure 2 - XACML context

Note: The PDP is not required to operate directly on the XACML representation of a policy. It may
operate directly on an alternative representation.

See Section 7.2.5 for a more detailed discussion of the request context.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 141

618

619
620
621
622
623

624
625

626

627
628

3.3. Policy language model

The policy language model is shown in Figure 3. The main components of the model are:
e Rule;

e Policy; and

e Policy set.

These are described in the following sub-sections.

1 PolicySet
*>————
1
0.. ’ Q
1 [L
1
Policy
Combining
Alogorithm
1 0.* 0.*
1 1
Target & Policy Obligation
0.1 ¢
1 0.*
1 1L
0..* 1
Subject Resource Action Environment Rule
Combining
Algorithm
0.*
1 Rule
-
T 1
0.1 1
Condition Effect

Figure 3 - Policy language model

3.3.1 Rule

A rule is the most elementary unit of policy. It may exist in isolation only within one of the major
actors of the XACML domain. In order to exchange rules between major actors, they must be

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 19 of 141

629
630

631
632
633
634

635

636
637
638
639
640

641
642
643
644
645
646

647
648

649
650
651
652
653

654
655
656
657
658
659

660
661
662
663

664
665
666
667
668

encapsulated in a policy. A rule can be evaluated on the basis of its contents. The main
components of a rule are:

e atarget;
e an effect and
e acondition.

These are discussed in the following sub-sections.

3.3.1.1. Rule target

The target defines the set of:
e resources;

e subjects;

e actions and

e environment

to which the rule is intended to apply. The <Condition> element may further refine the
applicability established by the target. If the rule is intended to apply to all entities of a particular
data-type, then the corresponding entity is omitted from the target. An XACML PDP verifies that
the matches defined by the target are satisfied by the subjects, resource, action and
environment attributes in the request context. Target definitions are discrete, in order that
applicable rules may be efficiently identified by the PDP.

The <Target> element may be absent from a <Rule>. In this case, the target of the <Rule> is
the same as that of the parent <Pol icy> element.

Certain subject name-forms, resource name-forms and certain types of resource are internally
structured. For instance, the X.500 directory name-form and RFC 822 name-form are structured
subject name-forms, whereas an account number commonly has no discernible structure. UNIX
file-system path-names and URIs are examples of structured resource name-forms. And an XML
document is an example of a structured resource.

Generally, the name of a node (other than a leaf node) in a structured name-form is also a legal
instance of the name-form. So, for instance, the RFC822 name "med.example.com” is a legal
RFC822 name identifying the set of mail addresses hosted by the med.example.com mail server.
And the XPath/XPointer value //xacml-context:Request/xacml-context:Resource/xacml-
context:ResourceContent/md: record/md:patient/ is a legal XPath/XPointer value identifying a
node-set in an XML document.

The question arises: how should a name that identifies a set of subjects or resources be
interpreted by the PDP, whether it appears in a policy or a request context? Are they intended to
represent just the node explicitly identified by the name, or are they intended to represent the entire
sub-tree subordinate to that node?

In the case of subjects, there is no real entity that corresponds to such a node. So, names of this
type always refer to the set of subjects subordinate in the name structure to the identified node.
Consequently, non-leaf subject names should not be used in equality functions, only in match
functions, such as “urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match” not
“urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal” (see Appendix A).

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 20 of 141

669

670
671

672

673
674

675

676
677

678
679
680
681

682
683

684

685
686
687
688
689

690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705

3.3.1.2. Effect

The effect of the rule indicates the rule-writer's intended consequence of a "True" evaluation for
the rule. Two values are allowed: "Permit" and "Deny".

3.3.1.3. Condition

Condition represents a Boolean expression that refines the applicability of the rule beyond the
predicates implied by its target. Therefore, it may be absent.

3.3.2 Policy

From the data-flow model one can see that rules are not exchanged amongst system entities.
Therefore, a PAP combines rules in a policy. A policy comprises four main components:

e atarget;

e arule-combining algorithm-identifier;
e asetofrules;and

e obligations.

Rules are described above. The remaining components are described in the following sub-
sections.

3.3.2.1. Policy target

An XACML <PolicySet>, <Policy> or <Rule> element contains a <Target> element that
specifies the set of subjects, resources, actions and environments to which it applies. The
<Target> of a <PolicySet> or <Policy> may be declared by the writer of the <PolicySet> or
<Policy>, or it may be calculated from the <Target> elements of the <PolicySet>, <Policy>
and <Rule> elements that it contains.

A system entity that calculates a <Target> in this way is not defined by XACML, but there are two
logical methods that might be used. In one method, the <Target> element of the outer
<PolicySet> or <Policy> (the "outer component”) is calculated as the union of all the
<Target> elements of the referenced <PolicySet>, <Policy> or <Rule> elements (the "inner
components"). In another method, the <Target> element of the outer component is calculated as
the intersection of all the <Target> elements of the inner components. The results of evaluation in
each case will be very different: in the first case, the <Target> element of the outer component
makes it applicable to any decision request that matches the <Target> element of at least one
inner component; in the second case, the <Target> element of the outer component makes it
applicable only to decision requests that match the <Target> elements of every inner
component. Note that computing the intersection of a set of <Target> elements is likely only
practical if the target data-model is relatively simple.

In cases where the <Target> of a <Policy> is declared by the policy writer, any component
<Rule> elements in the <Pol icy> that have the same <Target> element as the <Policy>
element may omit the <Target> element. Such <Rule> elements inherit the <Target> of the
<Policy> in which they are contained.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 21 of 141

706

707
708
709
710
711

712

713

714

715
716

717

718
719
720
721
722
723
724

725

726
727
728
729
730

731

732

733
734

735
736

3.3.2.2. Rule-combining algorithm

The rule-combining algorithm specifies the procedure by which the results of evaluating the
component rules are combined when evaluating the policy, i.e. the Decision value placed in the
response context by the PDP is the value of the policy, as defined by the rule-combining
algorithm. A policy may have combining parameters that affect the operation of the rule-
combining algorithm.

See Appendix C for definitions of the normative rule-combining algorithms.

3.3.2.3. Obligations

Obligations may be added by the writer of the policy.

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to
the PEP in the response context. Section 7.14 explains which obligations are to be returned.

3.3.3 Policy set

A policy set comprises four main components:
e atarget;

e apolicy-combining algorithm-identifier

e asetof policies; and

e obligations.

The target and policy components are described above. The other components are described in
the following sub-sections.

3.3.3.1. Policy-combining algorithm

The policy-combining algorithm specifies the procedure by which the results of evaluating the
component policies are combined when evaluating the policy set, i.e. the Decision value placed
in the response context by the PDP is the result of evaluating the policy set, as defined by the
policy-combining algorithm. A policy set may have combining parameters that affect the
operation of the policy-combining algorithm.

See Appendix C for definitions of the normative policy-combining algorithms.

3.3.3.2. Obligations

The writer of a policy set may add obligations to the policy set, in addition to those contained in
the component policies and policy sets.

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations
to the PEP in its response context. Section 7.14 explains which obligations are to be returned.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 22 of 141

737

738
739
740
741

742

743

744
745

746
747

4. Examples (non-normative)

This section contains two examples of the use of XACML for illustrative purposes. The first example
is a relatively simple one to illustrate the use of target, context, matching functions and subject
attributes. The second example additionally illustrates the use of the rule-combining algorithm,
conditions and obligations.

4.1. Example one

4.1.1 Example policy

Assume that a corporation named Medi Corp (identified by its domain name: med.example.com)
has an access control policy that states, in English:

Any user with an e-mail name in the "med.example.com" namespace is allowed to perform
any action on any resource.

An XACML policy consists of header information, an optional text description of the policy, a
target, one or more rules and an optional set of obligations.

[a02] <?xml version="1.0" encoding="UTF-8"?>

[a03] <Policy

[a04] xmlIns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

[a05] xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

[a06] xsi:schemalLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
http://docs.oasis-open.org/xacml/access_control-xacml-2_0-policy-schema-os.xsd"
[a07] Policyld="urn:oasis:names:tc:example:SimplePolicyl"

[a08] RuleCombiningAlgld="identifier:rule-combining-algorithm:deny-overrides'>
[a09] <Description>

[a10] Medi Corp access control policy

[a11] </Description>

[a12] <Target/>

[a13] <Rule

[a14] Ruleld= "urn:oasis:names:tc:xacml:2_0:example:SimpleRulel™

[al5] Effect="Permit'>

[al6] <Description>
[a17] Any subject with an e-mail name in the med.example.com domain
[a18] can perform any action on any resource.

[a19] </Description>
[a20] <Target>

[a21] <Subjects>

[a22] <Subject>

[a23] <SubjectMatch

[a24] Matchld="urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match">
[a25] <Attributevalue

[a26] DataType=""http://www.w3.0rg/2001/XMLSchema#string">

[a27] med.example.com

[a28] </Attributevalue>

[a29] <SubjectAttributeDesignator

[a30] Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
[a31] DataType="'urn:oasis:names:tc:xacml:1_0:data-type:rfc822Name'/>
[a32] </SubjectMatch>

[a33] </Subject>

[a34] </Subjects>

[a35] </Target>
[a36] </Rule>
[a37] </Policy>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 23 of 141

787
788

789
790
791

792
793
794

795
796
797
798
799
800

801

802
803
804
805
806

807

808
809

810
811
812
813
814
815
816

817

818
819
820
821
822

823
824
825
826
827
828
829
830

[a02] is a standard XML document tag indicating which version of XML is being used and what the
character encoding is.

[a03] introduces the XACML Policy itself.
[a04] - [a05] are XML namespace declarations.
[a04] gives a URN for the XACML policies schema.

[a07] assigns a name to this policy instance. The name of a policy has to be unique for a given
PDP so that there is no ambiguity if one policy is referenced from another policy. The version
attribute is omitted, so it takes its default value of “1.0".

[a08] specifies the algorithm that will be used to resolve the results of the various rules that may be
in the policy. The deny-overrides rule-combining algorithm specified here says that, if any rule
evaluates to “Deny”, then the policy must return “Deny”. If all rules evaluate to “Permit”, then the
policy must return “Permit”. The rule-combining algorithm, which is fully described in Appendix
C, also says what to do if an error were to occur when evaluating any rule, and what to do with
rules that do not apply to a particular decision request.

[a09] - [al1] provide a text description of the policy. This description is optional.

[a12] describes the decision requests to which this policy applies. If the subject, resource,
action and environment in a decision request do not match the values specified in the policy
target, then the remainder of the policy does not need to be evaluated. This target section is
useful for creating an index to a set of policies. In this simple example, the target section says the
policy is applicable to any decision request.

[al13] introduces the one and only rule in this simple policy.

[al4] specifies the identifier for this rule. Just as for a policy, each rule must have a unique
identifier (at least unique for any PDP that will be using the policy).

[al5] says what effect this rule has if the rule evaluates to “True”. Rules can have an effect of
either “Permit” or “Deny”. In this case, if the rule is satisfied, it will evaluate to “Permit”, meaning
that, as far as this one rule is concerned, the requested access should be permitted. If arule
evaluates to “False”, then it returns a result of “NotApplicable”. If an error occurs when evaluating
the rule, then the rule returns a result of “Indeterminate”. As mentioned above, the rule-
combining algorithm for the policy specifies how various rule values are combined into a single
policy value.

[al6] - [a19] provide a text description of this rule. This description is optional.

[a20] introduces the target of the rule. As described above for the target of a policy, the target of
a rule describes the decision requests to which this rule applies. If the subject, resource,
action and environment in a decision request do not match the values specified in the rule
target, then the remainder of the rule does not need to be evaluated, and a value of
“NotApplicable” is returned to the rule evaluation.

The rule target is similar to the target of the policy itself, but with one important difference. [a23]-
[a32] spells out a specific value that the subject in the decision request must match. The
<SubjectMatch> element specifies a matching function in the Matchld attribute, a literal value of
“med.example.com” and a pointer to a specific subject attribute in the request context by means
of the <SubjectAttributeDesignator> element. The matching function will be used to
compare the literal value with the value of the subject attribute . Only if the match returns “True”
will this rule apply to a particular decision request. If the match returns “False”, then this rule will
return a value of “NotApplicable”.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 24 of 141

831
832
833

834
835

836

[a36] closes the rule. In this rule, all the work is done in the <Target> element. In more complex
rules, the <Target> may have been followed by a <Condition> element (which could also be a
set of conditions to be ANDed or ORed together).

[a37] closes the policy. As mentioned above, this policy has only one rule, but more complex
policies may have any number of rules.

4.1.2 Example request context

Let's examine a hypothetical decision request that might be submitted to a PDP that executes the
policy above. In English, the access request that generates the decision request may be stated
as follows:

Bart Simpson, with e-mail name "bs@simpsons.com"”, wants to read his medical record at
Medi Corp.

In XACML, the information in the decision request is formatted into a request context statement
that looks as follows:

[@38] <?xml version="1.0" encoding="UTF-8"?>

[a39] <Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""

[a40] xsi:schemalLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
http://docs.oasis-open.org/xacml/access_control-xacml-2._0-context-schema-os.xsd">
[a41] <Subject>

[a42] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType=""urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name'>

[a43] <AttributevValue>
[a44] bs@simpsons.com
[a45] </AttributeValue>

[a46] </Attribute>
[a47] </Subject>
[a48] <Resource>

[a49] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-
id" DataType="http://www.w3.0rg/2001/XMLSchema#anyURI"">

[a50] <AttributevValue>

[a51] file://example/med/record/patient/BartSimpson

[a52] </AttributeValue>

[a53] </Attribute>
[a54] </Resource>
[a55] <Action>

[a56] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

[a57] <Attributevalue>

[a58] read

[a59] </AttributeValue>

[a60] </Attribute>

[a61] </Action>

[a62] <Environment/>

[a63] </Request>

[a38] - [a40] contain the header information for the request context, and are used the same way
as the header for the policy explained above.

The <Subject> element contains one or more attributes of the entity making the access request.
There can be multiple subjects, and each subject can have multiple attributes. In this case, in
[a41] - [a47], there is only one subject, and the subject has only one attribute: the subject's
identity, expressed as an e-mail name, is “bs@simpsons.com”. In this example, the subject-
category attribute is omitted. Therefore, it adopts its default value of “access-subject”.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 25 of 141

882
883
884
885
886

887
888
889

890

891
892
893

894
895
896
897

898
899
900
901

902

The <Resource> element contains one or more attributes of the resource to which the subject (or
subjects) has requested access. There can be only one <Resource> per decision request”.
Lines [a48] - [a54] contain the one attribute of the resource to which Bart Simpson has requested
access: the resource identified by its file URI, which is
“file://medico/record/patient/BartSimpson”.

The <Action> element contains one or more attributes of the action that the subject (or
subjects) wishes to take on the resource. There can be only one action per decision request.
[a55] - [a61] describe the identity of the action Bart Simpson wishes to take, which is “read”.

The <Environment> element, [a62], is empty.

[a63] closes the request context. A more complex request context may have contained some
attributes not associated with the subject, the resource or the action. These would have been
placed in an optional <Environment> element following the <Action> element.

The PDP processing this request context locates the policy in its policy repository. It compares
the subject, resource, action and environment in the request context with the subjects,
resources, actions and environments in the policy target. Since the policy target is empty, the
policy matches this context.

The PDP now compares the subject, resource, action and environment in the request context
with the target of the one rule in this policy. The requested resource matches the <Target>
element and the requested action matches the <Target> element, but the requesting subject-id
attribute does not match "med.example.com".

4.1.3 Example response context

As a result of evaluating the policy, there is no rule in this policy that returns a "Permit" result for
this request. The rule-combining algorithm for the policy specifies that, in this case, a result of
"NotApplicable" should be returned. The response context looks as follows:

[a64] <?xml version="1.0" encoding="UTF-8"?>

[a65] <Response xmlns='"urn:oasis:names:tc:xacml:2._.0:context:schema:os"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
xsi:schemaLocation="urn:oasis:names:tc:xacml:2_0:context:schema:os
http://docs.oasis-open.org/xacml/xacml-core-2.0-context-schema-os.xsd">

[a66] <Result>

[a67] <Decision>NotApplicable</Decision>

[a68] </Result>

[a69] </Response>

[a64] - [a65] contain the same sort of header information for the response as was described above
for a policy.

The <Result> element in lines [a66] - [a68] contains the result of evaluating the decision request
against the policy. In this case, the result is “NotApplicable”. A policy can return “Permit”, “Deny”,
“NotApplicable” or “Indeterminate”. Therefore, the PEP is required to deny access.

[a69] closes the response context.

! Some exceptions are described in the XACML Profile for Multiple Resources [MULT].

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 26 of 141

921
922

923
924

925

4.2. Example two

This section contains an example XML document, an example request context and example
XACML rules. The XML document is a medical record. Four separate rules are defined. These

illustrate a rule-combining algorithm, conditions and obligations.

4.2.1 Example medical record instance

The following is an instance of a medical record to which the example XACML rules can be
applied. The <record> schema is defined in the registered namespace administered by Medi

Corp.

[a70] <?xml version="1.0" encoding="UTF-8"?>
[a71] <record xmlns="urn:example:med:schemas:record"

[a72] xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

[a73] <patient>

[a74] <patientName>

[a75] <first>Bartholomew</first>

[a76] <last>Simpson</last>

[a77] </patientName>

[a78] <patientContact>

[a79] <street>27 Shelbyville Road</street>
[a80] <city>Springfield</city>

[a81] <state>MA</state>

[a82] <zip>12345</zip>

[a83] <phone>555.123.4567</phone>

[a84] <fax/>

[a85] <email/>

[a86] </patientContact>

[a87] <patientDoB>1992-03-21</patientDoB>
[a88] <patientGender>male</patientGender>
[a89] <patient-number>555555</patient-number>
[a90] </patient>

[a91] <parentGuardian>

[a92] <parentGuardianld>HS001</parentGuardianld>
[a93] <parentGuardianName>

[a94] <first>Homer</first>

[a95] <last>Simpson</last>

[a96] </parentGuardianName>

[a97] <parentGuardianContact>

[a98] <street>27 Shelbyville Road</street>
[299] <city>Springfield</city>

[a100] <state>MA</state>

[a101] <zip>12345</zip>

[a102] <phone>555.123.4567</phone>

[a103] <fax/>

[a104] <emai I>homers@aol .com</emai l>

[a105] </parentGuardianContact>
[a106] </parentGuardian>

[a107] <primaryCarePhysician>
[a108] <physicianName>

[a109] <first>Julius</first>
[a110] <last>Hibbert</last>
[al11] </physicianName>

[a112] <physicianContact>

[a113] <street>1 First St</street>
[a114] <city>Springfield</city>
[al15] <state>MA</state>

[a116] <zip>12345</zip>

[a117] <phone>555.123.9012</phone>
[a118] <fax>555.123.9013</fax>

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

1 February 2005
Page 27 of 141

[a119] <email/>

[a120] </physicianContact>

[a121] <registrationlD>ABC123</registrationlD>
[a122] </primaryCarePhysician>

[a123] <insurer>

[al24] <name>Blue Cross</name>
[a125] <street>1234 Main St</street>
[a126] <city>Springfield</city>
[a127] <state>MA</state>

[a128] <zip>12345</zip>

[a129] <phone>555.123.5678</phone>
[a130] <fax>555.123.5679</Fax>
[a131] <email/>

[a132] </insurer>

[a133] <medical>
[a134] <treatment>

[a135] <drug>

[a136] <name>methylphenidate hydrochloride</name>

[a137] <dai lyDosage>30mgs</dai lyDosage>

[a138] <startDate>1999-01-12</startDate>

[a139] </drug>

[a140] <comment>

[al41] patient exhibits side-effects of skin coloration and carpal
degeneration

[a142] </comment>

[a143] </treatment>
[a144] <result>

[a145] <test>blood pressure</test>

[al46] <value>120/80</value>

[a147] <date>2001-06-09</date>

[a148] <performedBy>Nurse Betty</performedBy>

[a149] </result>
[a150] </medical>
[a151] </record>

4.2.2 Example request context

The following example illustrates a request context to which the example rules may be applicable.
It represents a request by the physician Julius Hibbert to read the patient date of birth in the record
of Bartholomew Simpson.

[a152] <?xml version="1.0" encoding=""UTF-8"?>

[a153] <Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'™ xsi:schemalLocation="
urn:oasis:names:tc:xacml:2._0:context:schema:os http://docs.oasis-
open.org/xacml/access_control-xacml-2.0-context-schema-os.xsd">

[a154] <Subject>

[al55] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject-category"
DataType="http://www.w3.0rg/2001/XMLSchema#anyURI"">

[al156] <AttributeValue>urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject</Attributevalue>

[al57] </Attribute>

[a158] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string" Issuer="med.example.com'>
[a159] <AttributeValue>CN=Julius Hibbert</AttributeValue>

[a160] </Attribute>

[a161] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject:name-
format"” DataType="http://www.w3.0rg/2001/XMLSchema#anyURI""
Issuer="med.example.com">

[a162] <Attributevalue>

[a163] urn:oasis:names:tc:xacml:1.0:datatype:x500name

[al64] </AttributeValue>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 28 of 141

[a1l65] </Attribute>

[al66] <Attribute
Attributeld="urn:oasis:names:tc:xacml:2_0:example:attribute:role"
DataType="http://www.w3.0rg/2001/XMLSchema#string" Issuer="med.example.com'>
[a167] <AttributeValue>physician</AttributeValue>

[a168] </Attribute>

[a169] <Attribute
Attributeld="urn:oasis:names:tc:xacml:2_0:example:attribute:physician-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string” Issuer="med.example.com">
[a170] <AttributeValue>jh1234</AttributeValue>

[al71] </Attribute>

[a172] </Subject>

[a173] <Resource>

[a174] <ResourceContent>

[al175] <md:record xmlns:md=""urn:example:med:schemas:record"
xsi:schemaLocation="urn:example:med:schemas:record
http:www._med.example.com/schemas/record.xsd >

[a176] <md:patient>

[a177] <md:patientDoB>1992-03-21</md: patientDoB>
[a178] <md:patient-number>555555</md: patient-number>
[a179] </md:patient>

[a180] </md:record>

[a1l81] </ResourceContent>

[a182] <Attribute Attributeld="urn:oasis:names:tc:xacml:1_0:resource:resource-
id" DataType="http://www.w3.0rg/2001/XMLSchema#string">

[a183] <AttributevValue>

[a184] //med.example.com/records/bart-simpson.xml#

[a185] xmIns(md=:Resource/ResourceContent/xpointer

[a186] (/md:record/md:patient/md:patientDoB)

[a187] </AttributeValue>

[a188] </Attribute>

[a189] </Resource>

[a190] <Action>

[a191] <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

[a192] <AttributeValue>read</AttributeValue>

[a193] </Attribute>

[a194] </Action>

[a195] <Environment/>

[a196] </Request>

[a1l52] - [a153] Standard namespace declarations.

[al54] - [a172] Subject attributes are placed in the <Subject> element of the <Request>
element. Each attribute consists of the attribute meta-data and the attribute value. There is only
one subject involved in this request.

[al55] - [a157] Each <Subject> element has a SubjectCategory attribute. The value of this
attribute describes the role that the related subject plays in making the decision request. The
value of “access-subject” denotes the identity for which the request was issued.

[a158] - [a160] Subject subject-id attribute.
[al61] - [a165] The format of the subject-id.

[a166] - [a168] Subject role attribute.

[a1l69] - [al71] Subject physician-id attribute.

[a173] - [a189] Resource attributes are placed in the <Resource> element of the <Request>
element. Each attribute consists of attribute meta-data and an attribute value.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 29 of 141

1090
1091

1092
1093

1094
1095
1096

1097

1098

1099
1100

1101
1102

1103
1104

1105
1106

1107

1108

[al74] - [a181] Resource content. The XML resource instance, access to all or part of which may
be requested, is placed here.

[a182] - [a188] The identifier of the Resource instance for which access is requested, which is an
XPath expression into the <ResourceContent> element that selects the data to be accessed.

[a190] - [a194] Action attributes are placed in the <Action> element of the <Request> element.
[a192] Action identifier.

[a195] The empty <Environment> element.

4.2.3 Example plain-language rules

The following plain-language rules are to be enforced:

Rule 1: A person, identified by his or her patient number, may read any record for which he
or she is the designated patient.

Rule 2: A person may read any record for which he or she is the designated parent or
guardian, and for which the patient is under 16 years of age.

Rule 3: A physician may write to any medical element for which he or she is the designated
primary care physician, provided an email is sent to the patient.

Rule 4: An administrator shall not be permitted to read or write to medical elements of a
patient record.

These rules may be written by different PAPs operating independently, or by a single PAP.
4.2.4 Example XACML rule instances

4241 Rulel

Rule 1 illustrates a simple rule with a single <Condition> element. It also illustrates the use of
the <VariableDefinition> element to define a function that may be used throughout the
policy. The following XACML <Rule> instance expresses Rule 1:

[a197] <?xml version="1.0" encoding=""UTF-8"?>

[a198] <Policy

[@a199] xmIns="urn:oasis:names:tc:xacml:2_0:policy:schema:os" xmlns:xacml-
context=""urn:oasis:names:tc:xacml:2.0:context:schema:os"

[@200] xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="
urn:oasis:names:tc:xacml:2_0:policy:schema:os http://docs.oasis-
open.org/xacml/access_control-xacml-2.0-context-schema-os.xsd"

[a201] xmIns:md="http://www.med.example.com/schemas/record.xsd"

[@202] Policyld="urn:oasis:names:tc:xacml:2.0:example:policyid:1"

[@203] RuleCombiningAlgld="urn:oasis:names:tc:xacml:1_0:rule-combining-
algorithm:deny-overrides">

[a204] <PolicyDefaults>

[a205] <XPathVersion>http://www.w3.0rg/TR/1999/Rec-xpath-
19991116</XPathVersion>

[a206] </PolicyDefaults>

[a207] <Target/>

[a208] <VariableDefinition Variableld="17590034">

[2a209] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
[a210] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-
and-only"'>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 30 of 141

[a211]

<SubjectAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:2.0:example:attribute:patient-number"

[a212]
[a213]
[a214]
[a215]
[a216]
[a217]
context
[a218]
[a219]
[a220]
[a221]
[a222]
[a223]
[a224]
[a225]
[a226]
[a227]
[a228]
[a229]
[a230]
[a231]
[a232]
[a233]
equal™>
[a234]
[a235]
[a236]
[a237]
[a238]
[a239]
[a240]
[a241]

DataType="http://www._w3.0rg/2001/XMLSchema#string"/>
</Apply>
<Apply
Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<AttributeSelector
RequestContextPath="//xacml-context:Resource/xacml-

:ResourceContent/md:record/md:patient/md:patient-number/text()""

DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</Apply>
</Apply>
</VariableDefinition>
<Rule
Ruleld=""urn:oasis:names:tc:xacml:2_0:example:ruleid:1"
Effect=""Permit">
<Description>
A person may read any medical record in the
http://www_med.example.com/schemas/record.xsd namespace
for which he or she is the designated patient
</Description>
<Target>
<Resources>
<Resource>
<ResourceMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string-

<AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
urn:example:med:schemas:record
</AttributeValue>
<ResourceAttributeDesignator Attributeld=
"urn:oasis:names:tc:xacml:2._0:resource:target-namespace"
DataType="http://www._w3_.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
<ResourceMatch Matchld=""urn:oasis:names:tc:xacml:1.0:function:xpath-

node-match'>

[a242]
[a243]
[a244]
[a245]

<AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string’>
/md:record

</AttributevValue>

<ResourceAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:1.0:resource:xpath"

[a246] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a247] </ResourceMatch>

[a248] </Resource>

[a249] </Resources>

[a250] <Actions>

[a251] <Action>

[a252] <ActionMatch

[a253] Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
[a254] <AttributeValue DataType="http://www._.w3.0rg/2001/XMLSchema#string'>
[a255] read

[a256] </AttributevValue>

[a257] <ActionAttributeDesignator

[a258] Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
[a259] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a260] </ActionMatch>

[a261] </Action>

[a262] </Actions>

[a263] </Target>

[a264] <Condition>

[a265] <VariableReference Variableld="17590034"/>

[a266] </Condition>

[a267] </Rule>

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 31 of 141

1195
1196

1197
1198

1199
1200
1201

1202
1203
1204

1205
1206
1207
1208
1209
1210
1211

1212
1213

1214
1215
1216
1217
1218
1219

1220
1221
1222
1223

1224

1225
1226
1227

1228

1229
1230

1231
1232

1233
1234

1235
1236
1237
1238

[a268] </Policy>
[a199] - [a201] XML namespace declarations.

[a205] XPath expressions in the policy are to be interpreted according to the 1.0 version of the
XPath specification.

[a208] - [a221] A <VariableDefinition> element. It defines a function that evaluates the truth
of the statement: the patient-number subject attribute is equal to the patient-number in the
resource.

[a209] The Functionld attribute names the function to be used for comparison. In this case,
comparison is done with the “urn:oasis:names:tc:xacml:1.0:function:string-equal” function; this
function takes two arguments of type “http://www.w3.0rg/2001/XMLSchema##string”.

[a210] The first argument of the variable definition is a function specified by the Functionld
attribute. Since urn:oasis:names:tc:xacml:1.0:Ffunction:string-equal takes
arguments of type “http://www.w3.0rg/2001/XMLSchema#string” and
SubjectAttributeDesignator selects a bag of type
“http:/Amww.w3.0rg/2001/XMLSchema#string”, “urn:oasis:names:tc:xacml:1.0:function:string-one-
and-only” is used. This function guarantees that its argument evaluates to a bag containing exactly
one value.

[a211] The SubjectAttributeDesignator selects a bag of values for the patient-number
subject attribute in the request context.

[a215] The second argument of the variable definition is a function specified by the Functionld
attribute. Since “urn:oasis:names:tc:xacml:1.0:function:string-equal” takes arguments of type
“http://mvww.w3.0rg/2001/XMLSchemat#string” and the AttributeSelector selects a bag of type
“http:/iww.w3.0rg/2001/XMLSchema#string”, “urn:oasis:names:tc:xacml:1.0:function:string-one-
and-only” is used. This function guarantees that its argument evaluates to a bag containing exactly
one value.

[a216] The <AttributeSelector> element selects a bag of values from the request context
using a free-form XPath expression. In this case, it selects the value of the patient-number in
the resource. Note that the namespace prefixes in the XPath expression are resolved with the
standard XML namespace declarations.

[a223] Rule identifier.

[a224] Rule effect declaration. When a rule evaluates to ‘True’ it emits the value of the Effect
attribute. This value is then combined with the Effect values of other rules according to the rule-
combining algorithm.

[a225] - [a229] Free form description of the rule.

[a230] - [a263] A rule target defines a set of decision requests that the rule is intended to
evaluate. In this example, the <Subjects> and <Environments> elements are omitted.

[a231] - [a249] The <Resources> element contains a disjunctive sequence of <Resource>
elements. In this example, there is just one.

[a232] - [a248] The <Resource> element encloses the conjunctive sequence of
ResourceMatch elements. In this example, there are two.

[a233] - [a240] The first <ResourceMatch> element compares its first and second child elements
according to the matching function. A match is positive if the value of the first argument matches
any of the values selected by the second argument. This match compares the target namespace of
the requested document with the value of “urn:example:med:schemas:record”.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 32 of 141

1239 [a233] The Matchld attribute names the matching function.
1240 [a235] Literal attribute value to match.

1241 [a237] - [a239] The <ResourceAttributeDesignator> element selects the target namespace
1242 from the resource contained in the request context. The attribute name is specified by the
1243 Attributeld.

1244 [a241] - [a247] The second <ResourceMatch> element. This match compares the results of two
1245 XPath expressions. The second XPath expression is the location path to the requested XML

1246 element and the first XPath expression is the literal value “/md:-record”. The “xpath-node-match”
1247 function evaluates to “True” if the requested XML element is below the “/md: record” element.

1248 [a250] - [a262] The <Actions> element contains a disjunctive sequence of <Action> elements.
1249 In this case, there is just one <Action> element.

1250 [a251] - [a261] The <Action> element contains a conjunctive sequence of <ActionMatch>
1251 elements. In this case, there is just one <ActionMatch> element.

1252 [a252] - [a260] The <ActionMatch> element compares its first and second child elements

1253 according to the matching function. The match is positive if the value of the first argument matches
1254 any of the values selected by the second argument. In this case, the value of the action-id
1255 action attribute in the request context is compared with the literal value “read”.

1256 [a264] - [a266] The <Condition> element. A condition must evaluate to “True” for the rule to be
1257 applicable. This condition contains a reference to a variable definition defined elsewhere in the
1258 policy.

1259 4.2.4.2. Rule?2

1260 Rule 2 illustrates the use of a mathematical function, i.e. the <Apply> element with functionld
1261 "urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration" to calculate the date of the
1262 patient’s sixteenth birthday. It also illustrates the use of predicate expressions, with the

1263 functionld "urn:oasis:names:tc:xacml:1.0:function:and". This example has one function

1264 embedded in the <Condition> element and another one referenced in a

1265 <VariableDefinition> element.

1266 [a269] <?xml version="1.0" encoding=""UTF-8"?>

1267 [a270] <Policy

1268 [a271] xmIns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"™ xmlns:xacml-

1269 context="urn:oasis:names:tc:xacml:2.0:context:schema:os"

1270 [a272] xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

1271 Xxsi:schemalLocation=""urn:oasis:names:tc:xacml:2.0:policy:schema:os

1272 http://docs.oasis-open.org/xacml/access_control-xacml-2.0-policy-schema-os.xsd"
1273 [a273] xmIns:xf="http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816/#""

1274 [a274] xmIns:md=""http:www.med.example.com/schemas/record.xsd"

1275 [a275] Policyld="urn:oasis:names:tc:xacml:2._.0:example:policyid:2"

1276 RuleCombiningAlgld="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-
1277 overrides'>

1278 [a276] <PolicyDefaults>

1279 [a277] <XPathVersion>http://www.w3.0rg/TR/1999/Rec-xpath-

1280 19991116</XPathVersion>

1281 [a278] </PolicyDefaults>

1282 [a279] <Target/>

1283 [a280] <VariableDefinition Variableld="17590035">

1284 [a281] <Apply Functionld="urn:oasis:names:tc:xacml:2.0:function:date-less-or-
1285 equal'>

1286 [a282] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:date-one-and-
1287 only">
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 33 of 141

[a283]
[a284]
[a285]
[a286]
[a287]

<EnvironmentAttributeDesignator

Attributeld= "urn:oasis:names:tc:xacml:1.0:environment:current-date"
DataType="http://www_w3.0org/2001/XMLSchema#date' />
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:date-add-

yearMonthDuration'>

[a288]
only">
[a289]
[a290]
[a291]
[a292]
[a293]
[a294]

<Apply Functionld="urn:oasis:names:tc:xacml:1_0:function:date-one-and-

<AttributeSelector RequestContextPath=
""//md:record/md:patient/md:patientDoB/text()"
DataType="http://www.w3.0rg/2001/XMLSchema#date"' />
</Apply>

<Attributevalue
DataType="http://www.w3.0rg/TR/2002/WD-xquery-operators-

20020816#yearMonthDuration®>

[a295]
[a296]
[a297]
[a298]
[a299]
[a300]
[a301]
[a302]
[a303]
[a304]
[a305]
[a306]
[a307]
[a308]
[a309]
[a310]
[a311]
[a312]
[a313]
[a314]
[a315]
[a316]
[a317]
[a318]
[a319]

<xf:dt-yearMonthDuration>
P16Y
</xf:dt-yearMonthDuration>
</AttributevValue>
</Apply>
</Apply>
</VariableDefinition>
<Rule
Ruleld=""urn:oasis:names:tc:xacml:2_0:example:ruleid:2"
Effect=""Permit">
<Description>
A person may read any medical record in the
http://www._med.example.com/records.xsd namespace
for which he or she is the designated parent or guardian,
and for which the patient is under 16 years of age
</Description>
<Target>
<Resources>
<Resource>
<ResourceMatch
Matchld="urn:oasis:names:tc:xacml:1._.0:function:string-equal*>
<AttributeVvalue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
http://www.med.example.com/schemas/record.xsd
</AttributeValue>
<ResourceAttributeDesignator Attributeld=

""urn:oasis:names:tc:xacml:2.0:resource:target-namespace"

[a320]
[a321]
[a322]
[a323]
[a324]
[a325]
[a326]
[a327]

DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

</ResourceMatch>

<ResourceMatch

Matchld=""urn:oasis:names:tc:xacml:1.0:function:xpath-node-match">

<AttributeVvalue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
/md:record

</AttributeValue>

<ResourceAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:1.0:resource:xpath"

[a328] DataType="http://www._w3.0rg/2001/XMLSchema#string"/>

[a329] </ResourceMatch>

[a330] </Resource>

[a331] </Resources>

[a332] <Actions>

[a333] <Action>

[a334] <ActionMatch

[a335] Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>

[a336] <AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string’>
[a337] read

[a338] </AttributevValue>

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 34 of 141

[a339] <ActionAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
[a340] DataType="http://www._w3.0rg/2001/XMLSchema#string"/>
[a341] </ActionMatch>

[a342] </Action>

[a343] </Actions>

[a344] </Target>

[a345] <Condition>

[a346] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:and">

[a347] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
[a348] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-
and-only">

[a349] <SubjectAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:2_.0:example:attribute:
[a350] parent-guardian-id"

[a351] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a352] </Apply>

[a353] <Apply

[a354] Functionld=""urn:oasis:names:tc:xacml:1.0:function:string-one-and-
only'">

[a355] <AttributeSelector

[a356] RequestContextPath="//xacml-context:Resource/xacml-
context:ResourceContent/md: record/md: parentGuardian/md:parentGuardianld/text()"
[a357] DataType="http://www._w3.0rg/2001/XMLSchema#string"/>

[a358] </Apply>

[a359] </Apply>

[a360] <VariableReference Variableld="17590035"/>

[a361] </Apply>

[a362] </Condition>

[a363] </Rule>

[a364] </Policy>

[a280] - [a301] The <VariableDefinition> element contains part of the condition (i.e. is the
patient under 16 years of age?). The patient is under 16 years of age if the current date is less than
the date computed by adding 16 to the patient’s date of birth.

[a281] - [a300] “urn:oasis:names:tc:xacml:1.0:function:date-less-or-equal” is used to compute the
difference of two date arguments.

[a282] - [a286] The first date argument uses “urn:oasis:names:tc:xacml:1.0:function:date-one-and-
only" to ensure that the bag of values selected by its argument contains exactly one value of type
“http://www.w3.0rg/2001/XMLSchema#date”.

[a284] The current date is evaluated by selecting the
“urn:oasis:names:tc:xacml:1.0:environment:current-date” environment attribute.

[a287] - [a299] The second date argument uses “urn:oasis:names:tc:xacml:1.0:function:date-add-
yearMonthDuration” to compute the date of the patient’s sixteenth birthday by adding 16 years to
the patient’s date of birth. The first of its arguments is of type
“http:/mww.w3.0rg/2001/XMLSchema#date” and the second is of type
“http://mvww.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration”.

[a289] The <AttributeSelector> element selects the patient’s date of birth by taking the XPath
expression over the resource content.

[a293] - [a298] Year Month Duration of 16 years.

[a311] - [a344] Rule declaration and rule target. See Rule 1 in Section 4.2.4.1 for the detailed
explanation of these elements.

[a345] - [a362] The <Condition> element. The condition must evaluate to “True” for the rule to
be applicable. This condition evaluates the truth of the statement: the requestor is the designated

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 35 of 141

1402 parent or guardian and the patient is under 16 years of age. It contains one embedded <Apply>
1403 element and one referenced <VariableDefinition> element.

1404 [a346] The condition uses the “urn:oasis:names:tc:xacml:1.0:function:and” function. This is a
1405 Boolean function that takes one or more Boolean arguments (2 in this case) and performs the
1406 logical “AND” operation to compute the truth value of the expression.

1407 [a347] - [a359] The first part of the condition is evaluated (i.e. is the requestor the designated
1408 parent or guardian?). The function is “urn:oasis:names:tc:xacml:1.0:function:string-equal” and it
1409 takes two arguments of type “http://www.w3.0rg/2001/XMLSchema#string”.

1410 [a348] designates the first argument. Since “urn:oasis:names:tc:xacml:1.0:function:string-equal”
1411 takes arguments of type “http://www.w3.0rg/2001/XMLSchema#string”,

1412 “urn:oasis:names:tc:xacml:1.0:function:string-one-and-only” is used to ensure that the subject
1413 attribute “urn:oasis:names:tc:xacml:2.0:example:attribute:parent-guardian-id” in the request
1414 context contains exactly one value.

1415 [a353] designates the second argument. The value of the subject attribute
1416 “urn:oasis:names:tc:xacml:2.0:example:attribute:parent-guardian-id” is selected from the request
1417 context using the <SubjectAttributeDesignator> element.

1418 [a354] As above, the “urn:oasis:names:tc:xacml:1.0:function:string-one-and-only” is used to ensure
1419 that the bag of values selected by it's argument contains exactly one value of type
1420 “http://mvww.w3.0rg/2001/XMLSchemat#tstring”.

1421 [a355] The second argument selects the value of the <md : parentGuardianld> element from the
1422 resource content using the <AttributeSelector> element. This element contains a free-form
1423 XPath expression, pointing into the request context. Note that all namespace prefixes in the XPath
1424 expression are resolved with standard namespace declarations. The AttributeSelector

1425 evaluates to the bag of values of type “http://www.w3.0rg/2001/XMLSchema#string”.

1426 [a360] references the <VariableDefinition> element, where the second part of the condition
1427 is defined.

1428 42.4.3. Rule3

1429 Rule 3 illustrates the use of an obligation. The XACML <Rule> element syntax does not include
1430 an element suitable for carrying an obligation, therefore Rule 3 has to be formatted as a
1431 <Policy> element.

1432 [a365] <?xml version="1.0" encoding="UTF-8"?>

1433 [a366] <Policy

1434 [a367] xmlIns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" xmlns:xacml-
1435 context=""urn:oasis:names:tc:xacml:2.0:context:schema:os"

1436 [a368] xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

1437 [a369] xsi:schemalLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
1438 http://docs.oasis-open.org/xacml/access_control-xacml-2.0-policy-schema-os.xsd"
1439 [a370] xmIns:md=""http:www.med.example.com/schemas/record.xsd"

1440 [a371] Policyld="urn:oasis:names:tc:xacml:2_.0:example:policyid:3"

1441 [a372] RuleCombiningAlgld="urn:oasis:names:tc:xacml:1.0:rule-combining-
1442 algorithm:deny-overrides'>

1443 [a373] <Description>

1444 [a374] Policy for any medical record in the

1445 [a375] http://www.med.example.com/schemas/record.xsd namespace

1446 [a376] </Description>

1447 [a377] <PolicyDefaults>

1448 [a378] <XPathVersion>http://www.w3.0rg/TR/1999/Rec-xpath-

1449 19991116</XPathVersion>

1450 [a379] </PolicyDefaults>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 36 of 141

[a380]
[a381]
[a382]
[a383]
[a384]
[a385]
[a386]
[a387]
[a388]
[a389]
[a390]
[a391]
[a392]
[a393]
[a394]
[a395]
[a396]
[a397]
[a398]
[a399]
[a400]
[a401]
[a402]
[a403]
[a404]
[a405]
[a406]
[a407]
[a408]
[a409]
[a410]

<Target>
<Resources>
<Resource>
<ResourceMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
<Attributevalue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
urn:example:med:schemas:record
</AttributeValue>
<ResourceAttributeDesignator Attributeld=
"urn:oasis:names:tc:xacml:1.0:resource:target-namespace"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>
</Resources>
</Target>
<Rule Ruleld="urn:oasis:names:tc:xacml:2_0:example:ruleid:3"
Effect="Permit'>
<Description>
A physician may write any medical element in a record
for which he or she is the designated primary care
physician, provided an email is sent to the patient
</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
<AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string"
physician
</AttributeValue>
<SubjectAttributeDesignator Attributeld=

"urn:oasis:names:tc:xacml:2_0:example:attribute:role"

[a411]
[a412]
[a413]
[a414]
[a415]
[a416]
[a417]
[a418]
[a419]
[a420]
[a421]
[a422]
[a423]

DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch
Matchld="urn:oasis:names:tc:xacml:1._0:function:xpath-node-match">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
/md:record/md:medical
</AttributeValue>
<ResourceAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:1.0:resource:xpath"

[a424]
[a425]
[a426]
[a427]
[a428]
[a429]
[a430]
[a431]
[a432]
[a433]
[a434]
[a435]
[a436]

DataType="http://www._w3.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
<AttributeValue
DataType=""http://www.w3.0rg/2001/XMLSchema#string">
write
</AttributeValue>
<ActionAttributeDesignator

Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"

[a437]
[a438]

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</ActionMatch>

1 February 2005
Page 37 of 141

[a439] </Action>

[a440] </Actions>

[a441] </Target>

[a442] <Condition>

[a443] <Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal’>
[a444] <Apply

[a445] Functionld="urn:oasis:names:tc:xacml:1._0:function:string-one-and-only">
[a446] <SubjectAttributeDesignator

[a447] Attributeld="urn:oasis:names:tc:xacml:2_0:example:
attribute:physician-id"

[a448] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a449] </Apply>
[a450] <Apply

[a451] Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:string-one-and-only'>
[a452] <AttributeSelector RequestContextPath=
[a453] "'//xacml-context:Resource/xacml-

context:ResourceContent/md: record/md:primaryCarePhysician/md:registrationlD/text(

[a454] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
[a455] </Apply>
[a456] </Apply>

[a457] </Condition>

[a458] </Rule>

[a459] <Obligations>

[a460] <Obligation
Obligationld="urn:oasis:names:tc:xacml:example:obligation:email"
[a461] FulfillOn="Permit'">

[a462] <AttributeAssignment
Attributeld="urn:oasis:names:tc:xacml:2.0:example:attribute:mailto"
[a463] DataType="http://www._w3.0rg/2001/XMLSchema#string">

[a464] <AttributeSelector RequestContextPath=
[a465] "//md:/record/md:patient/md:patientContact/md:email""
[a466] DataType="http://www.w3.0rg/2001/XMLSchema#string'/> ;

[a467] </AttributeAssignment>

[a468] <AttributeAssignment
Attributeld="urn:oasis:names:tc:xacml:2_0:example:attribute:text"
[a469] DataType="http://www.w3.0rg/2001/XMLSchema#string">
[a470] Your medical record has been accessed by:

[a471] </AttributeAssignment>

[a472] <AttributeAssignment
Attributeld="urn:oasis:names:tc:xacml:2_0:example:attribute:text"
[a473] DataType="http://www.w3.0rg/2001/XMLSchema#string">

[a474] &It;SubjectAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1._.0:subject:subject-id"
[a475] DataType=""http://www.w3.0rg/2001/XMLSchema#string'/>

[a476] </AttributeAssignment>
[a477] </Obligation>

[a478] </Obligations>

[a479] </Policy>

[a366] - [a372] The <Policy> element includes standard namespace declarations as well as policy
specific parameters, such as Policyld and RuleCombiningAlgld.

[a371] Policy identifier. This parameter allows the policy to be referenced by a policy set.

[a372] The Rule combining algorithm identifies the algorithm for combining the outcomes of rule
evaluation.

[a373] - [a376] Free-form description of the policy.

[a379] - [a394] Policy target. The policy target defines a set of applicable decision requests. The
structure of the <Target> element in the <Policy> is identical to the structure of the <Target>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 38 of 141

1570
1571

1572
1573

1574

1575
1576

1577
1578

1579
1580

1581
1582
1583
1584

1585
1586
1587
1588

1589
1590
1591

1592
1593

1594
1595

1596
1597

1598

1599
1600

element in the <Rule>. In this case, the policy target is the set of all XML resources that conform
to the namespace “urn:example:med:schemas:record”.

[a395] The only <Rule> element included in this <Policy>. Two parameters are specified in the
rule header: Ruleld and Effect.

[a402] - [a441] The rule target further constrains the policy target.

[a405] - [a412] The <SubjectMatch> element targets the rule at subjects whose
“urn:oasis:names:tc:xacml:2.0:example:attribute:role” subject attribute is equal to “physician”.

[a417] - [a425] The <ResourceMatch> element targets the rule at resources that match the
XPath expression “/md:record/md:medical”.

[a430] - [a438] The <ActionMatch> element targets the rule at actions whose
“urn:oasis:names:tc:xacml:1.0:action:action-id” action attribute is equal to “write”.

[a442] - [a457] The <Condition> element. For the rule to be applicable to the decision request,
the condition must evaluate to “True”. This condition compares the value of the
“urn:oasis:names:tc:xacml:2.0:example:attribute:physician-id” subject attribute with the value of
the <registrationld> element in the medical record that is being accessed.

[a459] - [a478] The <Obligations> element. Obligations are a set of operations that must be
performed by the PEP in conjunction with an authorization decision. An obligation may be
associated with a “Permit” or “Deny” authorization decision. The element contains a single
obligation.

[a460] - [a477] The <Obl igation> element consists of the Obl igationld attribute, the
authorization decision value for which it must be fulfilled, and a set of attribute assignments. The
PDP does not resolve the attribute assignments. This is the job of the PEP.

[a460] The Obligationld attribute identifies the obligation. In this case, the PEP is required to
send email.

[a461] The Ful Fi 1 10n attribute defines the authorization decision value for which this
obligation must be fulfilled. In this case, when access is permitted.

[a462] - [a467] The first parameter indicates where the PEP will find the email address in the
resource.

[a468] - [a471] The second parameter contains literal text for the email body.

[a472] - [a476] The third parameter indicates where the PEP will find further text for the email body
in the resource.

42.4.4. Rule4

Rule 4 illustrates the use of the "Deny" Effect value, and a <Rule> with no <Condition>
element.

[a480] <?xml version="1.0" encoding="UTF-8"?>

[a481] <Policy

[a482] xmIns=""urn:oasis:names:tc:xacml:2.0:policy:schema:os"

[2483] xmIns:xsi="http://www.w3_0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
http://docs.oasis-open.org/xacml/access_control-xacml-2_0-policy-schema-os.xsd"
[a484] xmIns:md="http:www.med.example.com/schemas/record.xsd"

[a485] Policyld="urn:oasis:names:tc:xacml:2_0:example:policyid:4"

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 39 of 141

[a2486] RuleCombiningAlgld="urn:oasis:names:tc:xacml:1_0:rule-combining-
algorithm:deny-overrides">

[a487] <PolicyDefaults>

[a488] <XPathVersion>http://www.w3.0rg/TR/1999/Rec-xpath-
19991116</XPathVersion>

[a489] </PolicyDefaults>

[a490] <Target/>

[a491] <Rule

[@492] Ruleld="urn:oasis:names:tc:xacml:2_0:example:ruleid:4"
[a493] Effect="Deny">

[a494] <Description>

[a495] An Administrator shall not be permitted to read or write
[a496] medical elements of a patient record in the
[a497] http://www.med.example.com/records.xsd namespace.

[a498] </Description>
[a499] <Target>
[a500] <Subjects>

[a501] <Subject>

[a502] <SubjectMatch

[a503] Matchld=""urn:oasis:names:tc:xacml:1.0:function:string-equal'>

[a504] <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
[a505] administrator

[a506] </Attributevalue>

[a507] <SubjectAttributeDesignator Attributeld=

[a508] "urn:oasis:names:tc:xacml:2.0:example:attribute:role”

[a509] DataType="http://www._w3_.0rg/2001/XMLSchema#string"/>

[a510] </SubjectMatch>

[a511] </Subject>

[a512] </Subjects>

[a513] <Resources>

[a514] <Resource>

[a515] <ResourceMatch

[a516] Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>

[a517] <AttributevValue DataType="http://www.w3.0rg/2001/XMLSchema#string’>
[a518] urn:example:med:schemas:record

[a519] </AttributevValue>

[a520] <ResourceAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:resource:target-namespace"

[a521] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a522] </ResourceMatch>

[a523] <ResourceMatch

[a524] Matchld="urn:oasis:names:tc:xacml:1._0:function:xpath-node-match">
[a525] <AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
[a526] /md:record/md:medical

[a527] </AttributevValue>

[a528] <ResourceAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:resource:xpath"

[a529] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a530] </ResourceMatch>

[a531] </Resource>

[a532] </Resources>

[a533] <Actions>

[a534] <Action>

[a535] <ActionMatch

[a536] Matchld="urn:oasis:names:tc:xacml:1_0:function:string-equal'>

[a537] <AttributeVvalue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
[a538] read

[a539] </Attributevalue>

[a540] <ActionAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"

[a541] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a542] </ActionMatch>

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 40 of 141

1714

1715
1716
1717

1718
1719

[a543] </Action>

[a544] <Action>

[a545] <ActionMatch

[a546] Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal'>
[a547] <AttributeValue DataType="http://www._.w3.0rg/2001/XMLSchema#string'>
[a548] write

[a549] </AttributeValue>

[a550] <ActionAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"

[a551] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a552] </ActionMatch>

[a553] </Action>

[a554] </Actions>
[a555] </Target>
[a556] </Rule>
[a557] </Policy>

[a492] - [a493] The <Rule> element declaration.

[a493] Rule Effect. Every rule that evaluates to “True” emits the rule effect as its value. This
rule Effect is “Deny” meaning that according to this rule, access must be denied when it
evaluates to “True”.

[a494] - [a498] Free form description of the rule.

[a499] - [a555] Rule target. The Rule target defines the set of decision requests that are
applicable to the rule.

[a502] - [a510] The <SubjectMatch> element targets the rule at subjects whose
“urn:oasis:names:tc:xacml:2.0:example:attribute:role” subject attribute is equal to
“administrator”.

[a513] - [a532] The <Resources> element contains one <Resource> element, which (in turn)
contains two <ResourceMatch> elements. The target matches if the resource identified by the
request context matches both resource match criteria.

[a515]-[a522] The first <ResourceMatch> element targets the rule at resources
whose “urn:oasis:names:tc:xacml:2.0:resource:target-namespace” resource attribute
is equal to “urn:example:med:schemas:record”.

[a523] - [a530] The second <ResourceMatch> element targets the rule at XML elements that
match the XPath expression “/md:record/md:medical”.

[a533] - [a554] The <Actions> element contains two <Action> elements, each of which contains
one <ActionMatch> element. The target matches if the action identified in the request context
matches either of the action match criteria.

[a535] - [a552] The <ActionMatch> elements target the rule at actions whose
“urn:oasis:names:tc:xacml:1.0:action:action-id” action attribute is equal to "read” or “write”.

This rule does not have a <Condition> element.

4.2.45. Example PolicySet

This section uses the examples of the previous sections to illustrate the process of combining
policies. The policy governing read access to medical elements of a record is formed from each of
the four rules described in Section 4.2.3. In plain language, the combined rule is:

o Either the requestor is the patient; or

e the requestor is the parent or guardian and the patient is under 16; or

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 41 of 141

e the requestor is the primary care physician and a notification is sent to the patient; and
e the requestor is not an administrator.

The following policy set illustrates the combined policies. Policy 3 is included by reference and
policy 2 is explicitly included.

[a558] <?xml version="1.0" encoding="UTF-8"?>

[a559] <PolicySet

[a560] xmlIns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
[a561] xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
http://docs.oasis-open.org/xacml/access_control-xacml-2_0-policy-schema-os.xsd"
[a562] PolicySetld=

[a563] "urn:oasis:names:tc:xacml:2_0:example:policysetid:1"
[a564] PolicyCombiningAlgld=""urn:oasis:names:tc:xacml:1.0:

[a565] policy-combining-algorithm:deny-overrides'>

[a566] <Description>

[a567] Example policy set.

[a568] </Description>

[a569] <Target>

[a570] <Resources>

[a571] <Resource>

[a572] <ResourceMatch

[a573] Matchld="urn:oasis:names:tc:xacml:1._.0:function:string-equal*>
[a574] <AttributeVvalue DataType="http://www.w3.0rg/2001/XMLSchema#string'>
[a575] urn:example:med:schema:records

[a576] </AttributevValue>

[a577] <ResourceAttributeDesignator Attributeld=

[a578] ""urn:oasis:names:tc:xacml:1.0:resource:target-namespace"
[a579] DataType="http://www.w3.0rg/2001/XMLSchema#string"/>

[a580] </ResourceMatch>

[a581] </Resource>

[a582] </Resources>

[a583] </Target>

[a584] <PolicyldReference>

[a585] urn:oasis:names:tc:xacml:2.0:example:policyid:3

[a586] </PolicyldReference>

[a587] <Policy

[a588] Policyld="urn:oasis:names:tc:xacml:2_.0:example:policyid:2"
[a589] RuleCombiningAlgld=

[a590] ""'urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides'>
[a591] <Target/>

[@592] <Rule Ruleld="urn:oasis:names:tc:xacml:2_0:example:ruleid:1"
[a593] Effect="Permit'>

[a594] </Rule>

[a595] <Rule Ruleld="urn:oasis:names:tc:xacml:2_0:example:ruleid:2"
[a596] Effect="Permit'">

[a597] </Rule>

[a598] <Rule Ruleld="urn:oasis:names:tc:xacml:2_0:example:ruleid:4"
[a599] Effect="Deny">

[a600] </Rule>

[a601] </Policy>

[a602] </PolicySet>

[a559] - [a565] The <PolicySet> element declaration. Standard XML namespace declarations
are included.

[a562] The PolicySetld attribute is used for identifying this policy set for possible inclusion in
another policy set.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 42 of 141

1776
1777
1778

1779

1780
1781

1782

1783
1784

[a564] The policy combining algorithm identifier. Policies and policy sets in this policy set are
combined according to the specified policy combining algorithm when the authorization
decision is computed.

[a566] - [a568] Free form description of the policy set.

[a569] - [a583] The policy set <Target> element defines the set of decision requests that are
applicable to this <PolicySet> element.

[a584] Pol icyldReference includes a policy by id.

[a588] Policy 2 is explicitly included in this policy set. The rules in Policy 2 are omitted for
clarity.

5. Policy syntax (normative, with the exception of
the schema fragments)

5.1. Element <PolicySet>

The <PolicySet> element is a top-level element in the XACML policy schema. <PolicySet>is
an aggregation of other policy sets and policies. Policy sets MAY be included in an enclosing
<PolicySet> element either directly using the <Pol icySet> element or indirectly using the
<PolicySetldReference> element. Policies MAY be included in an enclosing <PolicySet>
element either directly using the <Pol icy> element or indirectly using the
<PolicyldReference> element.

A <PolicySet> element MAY be evaluated, in which case the evaluation procedure defined in
Section 7.11 SHALL be used.

If a <PolicySet> element contains references to other policy sets or policies in the form of
URLSs, then these references MAY be resolvable.

Policy sets and policies included in a <PolicySet> element MUST be combined using the
algorithm identified by the PolicyCombiningAlgld attribute. <PolicySet> is treated exactly
like a <Policy>in all policy combining algorithms.

The <Target> element defines the applicability of the <Pol icySet> element to a set of decision
requests. If the <Target> element within the <Pol icySet> element matches the request
context, then the <PolicySet> element MAY be used by the PDP in making its authorization
decision. See Section 7.11.

The <Obligations> element contains a set of obligations that MUST be fulfilled by the PEP in
conjunction with the authorization decision. If the PEP does not understand, or cannot fulfill, any
of the obligations, then it MUST act as if the PDP had returned a “Deny” authorization decision
value. See Section 7.14.

<xs:element name=""PolicySet" type="'xacml:PolicySetType'/>
<xs:complexType name="PolicySetType'>
<Xs:sequence>
<xs:element ref="xacml:Description’™ minOccurs="0"/>
<xs:element ref="xacml:PolicySetDefaults'" minOccurs="0"/>
<xs:element ref="xacml:Target"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref=""xacml:PolicySet"/>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 43 of 141

<xs:element ref="xacml:Policy"/>
<xs:element ref=""xacml:PolicySetldReference"/>
<xs:element ref="xacml:PolicyldReference'/>
<xs:element ref="xacml:CombinerParameters'/>
<xs:element ref="xacml:PolicyCombinerParameters'"/>
<xs:element ref=""xacml:PolicySetCombinerParameters'/>
</xs:choice>
<xs:element ref=""xacml:Obligations" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="PolicySetld" type="xs:anyURI" use="required"/>
<xs:attribute name="Version™ type="xacml:VersionType" default="1.0"/>
<xs:attribute name="PolicyCombiningAlgld" type='Xxs:anyURI" use="required'/>
</xs:complexType>

The <PolicySet> element is of PolicySetType complex type.
The <Pol icySet> element contains the following attributes and elements:
PolicySetld [Required]

Policy set identifier. It is the responsibility of the PAP to ensure that no two policies
visible to the PDP have the same identifier. This MAY be achieved by following a
predefined URN or URI scheme. If the policy set identifier is in the form of a URL, then it
MAY be resolvable.

Version [Default 1.0]
The version number of the PolicySet.
PolicyCombiningAlgld [Required]

The identifier of the policy-combining algorithm by which the <PolicySet>,
<CombinerParameters>, <PolicyCombinerParameters> and
<PolicySetCombinerParameters> components MUST be combined. Standard
policy-combining algorithms are listed in Appendix C. Standard policy-combining
algorithm identifiers are listed in Section B.10.

<Description> [Optional]
A free-form description of the policy set.
<PolicySetDefaults> [Optional]

A set of default values applicable to the policy set. The scope of the
<PolicySetDefaults> element SHALL be the enclosing policy set.

<Target> [Required]

The <Target> element defines the applicability of a policy set to a set of decision
requests.

The <Target> element MAY be declared by the creator of the <PolicySet> or it MAY be
computed from the <Target> elements of the referenced <Pol icy> elements, either as
an intersection or as a union.

<PolicySet> [Any Number]
A policy set that is included in this policy set.
<Policy> [Any Number]

A policy that is included in this policy set.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 44 of 141

1860

1861
1862

1863

1864
1865

1866

1867
1868

1869
1870
1871

1872
1873

1874

1875
1876
1877

1878

1879
1880

1881

<PolicySetldReference> [Any Number]

A reference to a policy set. that MUST be included in this policy set. If
<PolicySetldReference> is a URL, then it MAY be resolvable.

<PolicyldReference> [Any Number]

A reference to a policy that MUST be included in this policy set. If the
<PolicyldReference> is a URL, then it MAY be resolvable.

<Obligations> [Optional]

Contains the set of <Obligation> elements. See Section 7.14 for a description of how
the set of obligations to be returned by the PDP shall be determined.

<CombinerParameters> [Optional]
Contains a sequence of <CombinerParameter> elements.
<PolicyCombinerParameters> [Optional]

Contains a sequence of <CombinerParameter> elements that are associated with a
particular <Policy> or <Pol icyldReference> element within the <Pol icySet>.

<PolicySetCombinerParameters> [Optional]

Contains a sequence of <CombinerParameter> elements that are associated with a
particular <Pol icySet> or <PolicySetldReference> element within the
<PolicySet>.

5.2. Element <Description>

The <Description> element contains a free-form description of the <PolicySet>, <Policy>
or <Rule> element. The <Description> elementis of xs:string simple type.

<xs:element name="Description’” type='"xs:string'/>

5.3. Element <PolicySetDefaults>

The <PolicySetDefaults> element SHALL specify default values that apply to the
<PolicySet> element.
<xs:element name=""PolicySetDefaults' type=""xacml:DefaultsType"/>
<xs:complexType name="DefaultsType”>
<xs:sequence>
<xs:choice>
<xs:element ref="xacml:XPathVersion” minOccurs="0"/>
</xs:choice>
</Xs:sequence>
</xs:complexType>

<PolicySetDefaults> element is of DefaultsType complex type.
The <Pol icySetDefaults> element contains the following elements:
<XPathVersion> [Optional]

Default XPath version.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 45 of 141

1897

1898
1899

1900
1901

1902
1903

5.4. Element <XPathVersion>

The <XPathVersion> element SHALL specify the version of the XPath specification to be used by
<AttributeSelector> elements and XPath-based functions in the policy set or policy.

<xs:element name="XPathVersion" type='xs:anyURI"/>

The URI for the XPath 1.0 specification is “http://www.w3.0rg/TR/1999/Rec-xpath-19991116". The
<XPathVersion> element is REQUIRED if the XACML enclosing policy set or policy contains
<AttributeSelector> elements or XPath-based functions.

5.5. Element <Target>

The <Target> element identifies the set of decision requests that the parent element is intended
to evaluate. The <Target> element SHALL appear as a child of a <PolicySet> and <Policy>
element and MAY appear as a child of a <Rule> element. It contains definitions for subjects,
resources, actions and environments.

The <Target> element SHALL contain a conjunctive sequence of <Subjects>, <Resources>
<Actions> and <Environments> elements. For the parent of the <Target> element to be
applicable to the decision request, there MUST be at least one positive match between each
section of the <Target> element and the corresponding section of the <xacml -
context:Request> element.
<xs:element name=""Target' type="'xacml:TargetType"/>
<xs:complexType name="TargetType'>
<Xs:sequence>
<xs:element ref="xacml:Subjects™ minOccurs="0"/>
<xs:element ref="xacml:Resources" minOccurs="0"/>

<xs:element ref=""xacml:Actions"™ minOccurs="0"/>
<xs:element ref="xacml:Environments" minOccurs="0"/>
</Xs:sequence>
</xs:complexType>

The <Target> element is of TargetType complex type.
The <Target> element contains the following elements:
<Subjects> [Optional]

Matching specification for the subject attributes in the context. If this element is missing,
then the target SHALL match all subjects.

<Resources> [Optional]

Matching specification for the resource attributes in the context. If this elementis
missing, then the target SHALL match all resources.

<Actions> [Optional]

Matching specification for the action attributes in the context. If this element is missing,
then the target SHALL match all actions.

<Environments> [Optional]

Matching specification for the environment attributes in the context. If this element is
missing, then the target SHALL match all environments.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 46 of 141

1949

1950
1951
1952
1953
1954
1955
1956
1957

1958
1959
1960

1961
1962

5.6. Element <Subjects>

The <Subjects> element SHALL contain a disjunctive sequence of <Subject> elements.

<xs:element name="Subjects" type="xacml:SubjectsType"/>
<xs:complexType name="'SubjectsType''>
<Xs:seguence>
<xs:element ref=""xacml:Subject” maxOccurs=""unbounded"/>
</Xs:sequence>
</xs:complexType>

The <Subjects> element is of SubjectsType complex type.
The <Subjects> element contains the following elements:
<Subject> [One to Many, Required]

See Section 5.7.

5.7. Element <Subject>

The <Subject> element SHALL contain a conjunctive sequence of <SubjectMatch>
elements.
<xs:element name="'Subject" type='xacml:SubjectType'/>
<xs:complexType name="'SubjectType'>
<xs:sequence>
<xs:element ref=""xacml:SubjectMatch" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

The <Subject> element is of SubjectType complex type.
The <Subject> element contains the following elements:
<SubjectMatch> [One to Many]

A conjunctive sequence of individual matches of the subject attributes in the request
context and the embedded attribute values. See Section 5.8.

5.8. Element <SubjectMatch>

The <SubjectMatch> element SHALL identify a set of subject-related entities by matching
attribute values in a <xacml-context:Subject> element of the request context with the
embedded attribute value.

<xs:element name="'SubjectMatch”™ type='"'xacml:SubjectMatchType"/>
<xs:complexType name="SubjectMatchType">
<xs:sequence>
<xs:element ref="xacml:AttributeValue"/>
<xs:choice>
<xs:element ref=""xacml:SubjectAttributeDesignator'/>
<xs:element ref="xacml:AttributeSelector'/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="Matchld" type="'xs:anyURI" use="‘required'/>
</xs:complexType>

The <SubjectMatch> element is of SubjectMatchType complex type.

The <SubjectMatch> element contains the following attributes and elements:

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 47 of 141

1980

1981
1982

1983
1984
1985

1986
1987

1988

1989
1990
1991

2004

2005
2006
2007
2008
2009
2010
2011
2012

2013
2014
2015

2016
2017

Matchld [Required]

Specifies a matching function. The value of this attribute MUST be of type xs:anyURI with
legal values documented in Section 7.5.

<xacml :AttributeValue> [Required]
Embedded attribute value.
<SubjectAttributeDesignator> [Required choice]

MAY be used to identify one or more attribute values in a <Subject> element of the
request context.

<AttributeSelector> [Required choice]

MAY be used to identify one or more attribute values in the request context. The XPath
expression SHOULD resolve to an attribute in a <Subject> element of the request
context.

5.9. Element <Resources>

The <Resources> element SHALL contain a disjunctive sequence of <Resource> elements.

<xs:element name=""Resources” type="xacml:ResourcesType'/>
<xs:complexType name="ResourcesType'>
<xXs:sequence>
<xs:element ref="xacml:Resource" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

The <Resources> element is of ResourcesType complex type.
The <Resources> element contains the following elements:
<Resource> [One to Many, Required]

See Section 5.10.

5.10. Element <Resource>

The <Resource> element SHALL contain a conjunctive sequence of <ResourceMatch>
elements.
<xs:element name=""Resource' type="xacml:ResourceType"/>
<xs:complexType name=""ResourceType"'>
<xs:sequence>
<xs:element ref="xacml:ResourceMatch' maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

The <Resource> element is of ResourceType complex type.
The <Resource> element contains the following elements:
<ResourceMatch> [One to Many]

A conjunctive sequence of individual matches of the resource attributes in the request
context and the embedded attribute values. See Section 5.11.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 48 of 141

5.11. Element <ResourceMatch>

The <ResourceMatch> element SHALL identify a set of resource-related entities by matching
attribute values in the <xacml-context:Resource> element of the request context with the
embedded attribute value.
<xs:element name=""ResourceMatch"™ type=""xacml:ResourceMatchType'/>
<xs:complexType name="‘ResourceMatchType"'>
<xs:sequence>
<xs:element ref="xacml:Attributevalue'/>
<xs:choice>
<xs:element ref=""xacml:ResourceAttributeDesignator'/>
<xs:element ref="xacml:AttributeSelector"/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="Matchld™ type="'xs:anyURI'" use="required'/>
</xs:complexType>

The <ResourceMatch> element is of ResourceMatchType complex type.
The <ResourceMatch> element contains the following attributes and elements:
Matchld [Required]

Specifies a matching function. Values of this attribute MUST be of type xs:anyURI, with
legal values documented in Section 7.5.

<xacml :AttributeValue> [Required]
Embedded attribute value.
<ResourceAttributeDesignator> [Required Choice]

MAY be used to identify one or more attribute values in the <Resource> element of the
request context.

<AttributeSelector> [Required Choice]

MAY be used to identify one or more attribute values in the request context. The XPath
expression SHOULD resolve to an attribute in the <Resource> element of the request
context.

5.12. Element <Actions>

The <Actions> element SHALL contain a disjunctive sequence of <Action> elements.

<xs:element name="Actions" type="'xacml:ActionsType"'/>
<xs:complexType name="‘ActionsType'>
<Xs:seguence>
<xs:element ref="xacml:Action” maxOccurs="unbounded’/>
</Xs:sequence>
</xs:complexType>

The <Actions> element is of ActionsType complex type.
The <Actions> element contains the following elements:
<Action> [One to Many, Required]

See Section 5.13.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 49 of 141

5.13. Element <Action>

The <Action> element SHALL contain a conjunctive sequence of <ActionMatch> elements.

<xs:element name="‘Action' type="'xacml:ActionType"/>
<xs:complexType name="ActionType'>
<Xs:seguence>
<xs:element ref="xacml:ActionMatch" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

The <Action> element is of ActionType complex type.
The <Action> element contains the following elements:
<ActionMatch> [One to Many]

A conjunctive sequence of individual matches of the action attributes in the request
context and the embedded attribute values. See Section 5.14.

5.14. Element <ActionMatch>

The <ActionMatch> element SHALL identify a set of action-related entities by matching attribute
values in the <xacml-context:Action> element of the request context with the embedded
attribute value.
<xs:element name="ActionMatch" type="xacml:ActionMatchType'/>
<xs:complexType name="‘ActionMatchType'>
<xs:sequence>
<xs:element ref="xacml:Attributevalue'/>
<xs:choice>
<xs:element ref=""xacml:ActionAttributeDesignator/>
<xs:element ref="xacml:AttributeSelector'/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="Matchld™ type="'xs:anyURI'" use="required'/>
</xs:complexType>

The <ActionMatch> element is of ActionMatchType complex type.
The <ActionMatch> element contains the following attributes and elements:
Matchld [Required]

Specifies a matching function. The value of this attribute MUST be of type xs:anyURI, with
legal values documented in Section 7.5.

<xacml :AttributeValue> [Required]
Embedded attribute value.
<ActionAttributeDesignator> [Required Choice]

MAY be used to identify one or more attribute values in the <Action> element of the
request context.

<AttributeSelector> [Required Choice]

MAY be used to identify one or more attribute values in the request context. The XPath
expression SHOULD resolve to an attribute in the <Action> element of the context.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 50 of 141

5.15. Element <Environments>

The <Environments> element SHALL contain a disjunctive sequence of <Environment>
elements.
<xs:element name="Environments"™ type="xacml:EnvironmentsType"/>
<xs:complexType name="EnvironmentsType">

<xs:sequence>

<xs:element ref="xacml:Environment" maxOccurs="unbounded"/>

</Xs:sequence>

</xs:complexType>

The <Environments> element is of EnvironmentsType complex type.
The <Environments> element contains the following elements:
<Environment> [One to Many, Required]

See Section 5.16.

5.16. Element <Environment>

The <Environment> element SHALL contain a conjunctive sequence of
<EnvironmentMatch> elements.
<xs:element name="Environment" type="xacml:EnvironmentType'/>
<xs:complexType name="EnvironmentType'>

<xs:sequence>

<xs:element ref="xacml:EnvironmentMatch" maxOccurs="unbounded"/>

</Xs:sequence>

</xs:complexType>

The <Environment> element is of EnvironmentType complex type.
The <Environment> element contains the following elements:
<EnvironmentMatch> [One to Many]

A conjunctive sequence of individual matches of the environment attributes in the
request context and the embedded attribute values.

5.17. Element <EnvironmentMatch>

The <EnvironmentMatch> element SHALL identify an environment by matching attribute values
in the <xacml-context:Environment> element of the request context with the embedded
attribute value.

<xs:element name="EnvironmentMatch” type="xacml:EnvironmentMatchType"/>
<xs:complexType name="EnvironmentMatchType">
<xs:sequence>
<xs:element ref="xacml:AttributeValue"/>
<xs:choice>
<xs:element ref=""xacml:EnvironmentAttributeDesignator"'/>
<xs:element ref="xacml:AttributeSelector'/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="Matchld" type="'xs:anyURI" use="‘required'/>
</xs:complexType>

The <EnvironmentMatch> element is of EnvironmentMatchType complex type.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 51 of 141

2143
2144

2145
2146

2147
2148
2149

2150
2151

2152

2153
2154
2155

The <EnvironmentMatch> element contains the following attributes and elements:
Matchld [Required]

Specifies a matching function. The value of this attribute MUST be of type xs:anyURI, with
legal values documented in Section A.3.

<xacml :AttributeValue> [Required]
Embedded attribute value.
<EnvironmentAttributeDesignator> [Required Choice]

MAY be used to identify one or more attribute values in the <Environment> element of
the request context.

<AttributeSelector> [Required Choice]

MAY be used to identify one or more attribute values in the request context. The XPath
expression SHOULD resolve to an attribute in the <Environment> element of the
request context.

5.18. Element <PolicySetldReference>

The <PolicySetldReference> element SHALL be used to reference a <PolicySet> element
by id. If <PolicySetldReference> is a URL, then it MAY be resolvable to the <PolicySet>
element. However, the mechanism for resolving a policy set reference to the corresponding
policy set is outside the scope of this specification.
<xs:element name=""PolicySetldReference" type="xacml:ldReferenceType"/>
xs:complexType name="ldReferenceType'>
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name='"xacml:Version" type='xacml:VersionMatchType"
use="‘optional"/>
<xs:attribute name="xacml:EarliestVersion" type="'xacml:VersionMatchType"
use="‘optional"'/>
<xs:attribute name='"xacml:LatestVersion" type="xacml:VersionMatchType"
use="‘optional"'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Element <PolicySetldReference> is of xacml:IdReferenceType complex type.
IdReferenceType extends the xs:anyURI type with the following attributes:
Version [Optional]

Specifies a matching expression for the version of the policy set referenced.
EarliestVersion [Optional]

Specifies a matching expression for the earliest acceptable version of the policy set
referenced.

LatestVersion [Optional]

Specifies a matching expression for the latest acceptable version of the policy set
referenced.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 52 of 141

2184
2185
2186
2187
2188

2189

2190
2191
2192
2193

2194
2195

2219

2220
2221

2222
2223
2224

The matching operation is defined in Section 5.21. Any combination of these attributes MAY be
present in a <PolicySetldReference>. The referenced policy set MUST match all
expressions. If none of these attributes is present, then any version of the policy set is acceptable.
In the case that more than one matching version can be obtained, then the most recent one
SHOULD be used.

5.19. Element <PolicyldReference>

The <xacml :PolicyldReference> element SHALL be used to reference a <Pol icy> element
by id. If <PolicyldReference> is a URL, then it MAY be resolvable to the <Policy> element.
However, the mechanism for resolving a policy reference to the corresponding policy is outside
the scope of this specification.

<xs:element name="PolicyldReference" type="'xacml:ldReferenceType"'/>
Element <PolicyldReference> is of xacml:IdReferenceType complex type (see Section 5.18) .

5.20. Simple type VersionType

Elements of this type SHALL contain the version number of the policy or policy set.

<xs:simpleType name="VersionType'>
<xs:restriction base="xs:string">
<xs:pattern value="(\d+\.)*\d+"/>
</xs:restriction>
</xs:simpleType>

The version number is expressed as a sequence of decimal numbers, each separated by a period
(.). ‘d+' represents a sequence of one or more decimal digits.

5.21. Simple type VersionMatchType

Elements of this type SHALL contain a restricted regular expression matching a version number
(see Section 5.20). The expression SHALL match versions of a referenced policy or policy set
that are acceptable for inclusion in the referencing policy or policy set.
<xs:simpleType name="VersionMatchType'>

<xs:restriction base="'xs:string">

<xs:pattern value=""(Q\d+][*)\D)*O\d+]*|\+)"/>

</xs:restriction>
</xs:simpleType>
A version match is '.-separated, like a version string. A number represents a direct numeric match.
A *' means that any single number is valid. A '+' means that any number, and any subsequent
numbers, are valid. In this manner, the following four patterns would all match the version string
'1.2.3:'1.2.3,'1.*.3", '1.2.* and ‘1.+".

5.22. Element <Policy>

The <Policy> element is the smallest entity that SHALL be presented to the PDP for evaluation.

A <Policy> element MAY be evaluated, in which case the evaluation procedure defined in
Section 7.10 SHALL be used.

The main components of this element are the <Target>, <Rule>, <CombinerParameters>,
<RuleCombinerParameters> and <Obligations> elements and the RuleCombiningAlgld
attribute.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 53 of 141

The <Target> element defines the applicability of the <Policy> element to a set of decision
requests. If the <Target> element within the <Pol icy> element matches the request context,
then the <Pol icy> element MAY be used by the PDP in making its authorization decision. See
Section 7.10.

The <Pol icy> element includes a sequence of choices between <VariableDefinition> and
<Rule> elements.

Rules included in the <Pol icy> element MUST be combined by the algorithm specified by the
RuleCombiningAlgld attribute.

The <Obl igations> element contains a set of obligations that MUST be fulfilled by the PEP in
conjunction with the authorization decision.
<xs:element name=""Policy" type="xacml:PolicyType"/>
<xs:complexType name="PolicyType'>
<xs:sequence>
<xs:element ref="xacml:Description’™ minOccurs="0"/>
<xs:element ref=""xacml:PolicyDefaults'" minOccurs="0"/>
<xs:element ref="xacml:CombinerParameters™ minOccurs="0"/>
<xs:element ref=""xacml:Target"/>
<xs:choice maxOccurs="unbounded">
<xs:element ref="xacml:CombinerParameters"™ minOccurs="0"/>
<xs:element ref="xacml:RuleCombinerParameters"™ minOccurs="0"/>
<xs:element ref="xacml:VariableDefinition"/>
<xs:element ref="xacml:Rule"/>
</xs:choice>
<xs:element ref=""xacml:Obligations'™ minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="Policyld" type="xs:anyURI" use="required"/>
<xs:attribute name="Version" type="'xacml:VersionType" default="1.0"/>
<xs:attribute name="RuleCombiningAlgld" type="xs:anyURI" use="required"/>
</xs:complexType>

The <Pol icy> element is of PolicyType complex type.
The <Pol icy> element contains the following attributes and elements:
Policyld [Required]

Policy identifier. It is the responsibility of the PAP to ensure that no two policies visible to
the PDP have the same identifier. This MAY be achieved by following a predefined URN or
URI scheme. If the policy identifier is in the form of a URL, then it MAY be resolvable.

Version [Default 1.0]
The version number of the Policy.
RuleCombiningAlgld [Required]

The identifier of the rule-combining algorithm by which the <Policy>,
<CombinerParameters> and <RuleCombinerParameters> components MUST be
combined. Standard rule-combining algorithms are listed in Appendix C. Standard rule-
combining algorithm identifiers are listed in Section B.10.

<Description> [Optional]
A free-form description of the policy. See Section 5.2.

<PolicyDefaults> [Optional]

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 54 of 141

2270
2271

2272
2273
2274
2275
2276
2277

2278
2279
2280

2281

2282
2283

2284

2285
2286
2287
2288

2289

2290
2291
2292

Defines a set of default values applicable to the policy. The scope of the
<PolicyDefaults> element SHALL be the enclosing policy.

<CombinerParameters> [Optional]

A sequence of parameters to be used by the rule-combining algorithm.
<RuleCombinerParameters> [Optional]

A sequence of parameters to be used by the rule-combining algorithm.
<Target> [Required]

The <Target> element defines the applicability of a <Policy> to a set of decision requests.

The <Target> element MAY be declared by the creator of the <Pol icy> element, or it
MAY be computed from the <Target> elements of the referenced <Rule> elements either
as an intersection or as a union.

<VariableDefinition> [Any Number]

Common function definitions that can be referenced from anywhere in a rule where an
expression can be found.

<Rule> [Any Number]

A sequence of rules that MUST be combined according to the RuleCombiningAlgld
attribute. Rules whose <Target> elements match the decision request MUST be
considered. Rules whose <Target> elements do not match the decision request SHALL
be ignored.

<Obligations> [Optional]

A conjunctive sequence of obligations that MUST be fulfilled by the PEP in conjunction
with the authorization decision. See Section 7.14 for a description of how the set of
obligations to be returned by the PDP SHALL be determined.

5.23. Element <PolicyDefaults>

The <Pol icyDefaults> element SHALL specify default values that apply to the <Policy>
element.
<xs:element name=""PolicyDefaults" type="xacml:DefaultsType'/>
<xs:complexType name="DefaultsType’>
<xs:sequence>
<xs:choice>
<xs:element ref="xacml:XPathVersion” minOccurs="0"/>
</xs:choice>
</Xs:sequence>
</xs:complexType>

<PolicyDefaults> elementis of DefaultsType complex type.
The <Pol icyDefaults> element contains the following elements:
<XPathVersion> [Optional]

Default XPath version.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 55 of 141

5.24. Element <CombinerParameters>

The <CombinerParameters> element conveys parameters for a policy- or rule-combining
algorithm.

If multiple <CombinerParameters> elements occur within the same policy or policy set, they
SHALL be considered equal to one <CombinerParameters> element containing the
concatenation of all the sequences of <CombinerParameters> contained in all the aforementioned
<CombinerParameters> elements, such that the order of occurence of the
<CominberParameters> elements is preserved in the concatenation of the
<CombinerParameter> elements.

Note that none of the combining algorithms specified in XACML 2.0 is parameterized.

<xs:element name=""CombinerParameters' type="xacml:CombinerParametersType'/>
<xs:complexType name="CombinerParametersType">
<Xs:sequence>
<xs:element ref="xacml:CombinerParameter” minOccurs="0"
maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

The <CombinerParameters> element is of CombinerParametersType complex type.
The <CombinerParameters> element contains the following elements:
<CombinerParameter> [Any Number]

A single parameter. See Section 5.25.

Support for the <CombinerParameters> element is optional.

5.25. Element <CombinerParameter>

The <CombinerParameter> element conveys a single parameter for a policy- or rule-
combining algorithm.

<xs:element name="‘CombinerParameter’ type=""xacml:CombinerParameterType"/>
<xs:complexType name="‘CombinerParameterType"'>
<xs:sequence>
<xs:element ref="xacml:AttributeValue"/>
</Xs:sequence>
<xs:attribute name="ParameterName' type='Xxs:string' use="required"/>
</xs:complexType>

The <CombinerParameter> element is of CombinerParameterType complex type.
The <CombinerParameter> element contains the following attribute:
ParameterName [Required]

The identifier of the parameter.
AttributeValue [Required]

The value of the parameter.

Support for the <CombinerParameter> element is optional.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 56 of 141

5.26. Element <RuleCombinerParameters>

The <RuleCombinerParameters> element conveys parameters associated with a particular
rule within a policy for a rule-combining algorithm.

Each <RuleCombinerParameters> element MUST be associated with a rule contained within
the same policy. If multiple <RuleCombinerParameters> elements reference the same rule,
they SHALL be considered equal to one <RuleCombinerParameters> element containing the
concatenation of all the sequences of <CombinerParameters> contained in all the aforementioned
<RuleCombinerParameters> elements, such that the order of occurence of the
<RuleCominberParameters> elements is preserved in the concatenation of the
<CombinerParameter> elements.

Note that none of the rule-combining algorithms specified in XACML 2.0 is parameterized.

<xs:element name="RuleCombinerParameters"
type=""xacml :RuleCombinerParametersType' />
<xs:complexType name="RuleCombinerParametersType'>
<xs:complexContent>
<xs:extension base="xacml:CombinerParametersType'>
<xs:attribute name="RuleldRef" type='"Xxs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <RuleCombinerParameters> element contains the following elements:
RuleldRef [Required]
The identifier of the <Rule> contained in the policy.

Support for the <RuleCombinerParameters> element is optional, only if support for combiner
parameters is optional.

5.27. Element <PolicyCombinerParameters>

The <PolicyCombinerParameters> element conveys parameters associated with a particular
policy within a policy set for a policy-combining algorithm.

Each <Pol icyCombinerParameters> element MUST be associated with a policy contained
within the same policy set. If multiple <PolicyCombinerParameters> elements reference the
same policy, they SHALL be considered equal to one <PolicyCombinerParameters> element
containing the concatenation of all the sequences of <CombinerParameters> contained in all the
aforementioned <Pol icyCombinerParameters> elements, such that the order of occurence of
the <PolicyCominberParameters> elements is preserved in the concatenation of the
<CombinerParameter> elements.

Note that none of the policy-combining algorithms specified in XACML 2.0 is parameterized.

<xs:element name=""PolicyCombinerParameters"
type=""xacml :PolicyCombinerParametersType"/>
<xs:complexType name="PolicyCombinerParametersType'>
<xs:complexContent>
<xs:extension base='"xacml:CombinerParametersType''>
<xs:attribute name="PolicyldRef" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 57 of 141

2392
2393

2394
2395

2396
2397

2398
2399

2429

2430
2431

The <PolicyCombinerParameters> element is of PolicyCombinerParametersType complex
type.

The <PolicyCombinerParameters> element contains the following elements:
PolicyldRef [Required]

The identifier of a <Policy> or the value of a <PolicyldReference> contained in the
policy set.

Support for the <PolicyCombinerParameters> element is optional, only if support for
combiner parameters is optional.

5.28. Element <PolicySetCombinerParameters>

The <PolicySetCombinerParameters> element conveys parameters associated with a
particular policy set within a policy set for a policy-combining algorithm.

Each <Pol icySetCombinerParameters> element MUST be associated with a policy set
contained within the same policy set. If multiple <PolicySetCombinerParameters> elements
reference the same policy set, they SHALL be considered equal to one
<PolicySetCombinerParameters> element containing the concatenation of all the sequences
of <CombinerParameters> contained in all the aforementioned
<PolicySetCombinerParameters> elements, such that the order of occurence of the
<PolicySetCominberParameters> elements is preserved in the concatenation of the
<CombinerParameter> elements.

Note that none of the policy-combining algorithms specified in XACML 2.0 is parameterized.

<xs:element name="PolicySetCombinerParameters"
type=""xacml :PolicySetCombinerParametersType"/>
<xs:complexType name="PolicySetCombinerParametersType"'>
<xs:complexContent>
<xs:extension base="xacml:CombinerParametersType'>
<xs:attribute name="PolicySetldRef" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <PolicySetCombinerParameters> element is of PolicySetCombinerParametersType
complex type.

The <PolicySetCombinerParameters> element contains the following elements:
PolicySetldRef [Required]

The identifier of a <PolicySet> or the value of a <Pol icySetldReference> contained
in the policy set.

Support for the <PolicySetCombinerParameters> element is optional, only if support for
combiner parameters is optional.

5.29. Element <Rule>

The <Rule> element SHALL define the individual rules in the policy. The main components of
this element are the <Target> and <Condition> elements and the Effect attribute.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 58 of 141

2468
2469
2470
2471
2472
2473

A <Rule> element MAY be evaluated, in which case the evaluation procedure defined in Section
7.9 SHALL be used.
<xs:element name="Rule" type="xacml:RuleType'/>
<xs:complexType name="RuleType'>
<xs:sequence>
<xs:element ref=""xacml:Description’ minOccurs="0"/>
<xs:element ref="xacml:Target” minOccurs="0"/>
<xs:element ref="xacml:Condition" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="Ruleld" type='xs:string" use="required'/>
<xs:attribute name="Effect"” type='"xacml:EffectType' use="required"/>
</xs:complexType>

The <Rule> element is of RuleType complex type.
The <Rule> element contains the following attributes and elements:
Ruleld [Required]

A string identifying this rule.
Effect [Required]

Rule effect. The value of this attribute is either “Permit” or “Deny”.
<Description> [Optional]

A free-form description of the rule.
<Target> [Optional]

Identifies the set of decision requests that the <Rule> element is intended to evaluate. If
this element is omitted, then the target for the <Rulle> SHALL be defined by the
<Target> element of the enclosing <Policy> element. See Section 7.6 for details.

<Condition> [Optional]

A predicate that MUST be satisfied for the rule to be assigned its Effect value.

5.30. Simple type EffectType

The EffectType simple type defines the values allowed for the Effect attribute of the <Rule>
element and for the Ful ¥i 1 10n attribute of the <Obligation> element.
<xs:simpleType name="EffectType'>
<xs:restriction base="'xs:string">
<xs:enumeration value="Permit"/>
<xs:enumeration value="Deny"/>
</xs:restriction>
</xs:simpleType>

5.31. Element <VariableDefinition>

The <VariableDefinition> element SHALL be used to define a value that can be referenced
by a <VariableReference> element. The name supplied for its Variableld attribute SHALL
NOT occur in the Variableld attribute of any other <VariableDefinition> element within the
encompassing policy. The <vVariableDefinition> element MAY contain undefined
<VariableReference> element, but if it does, a corresponding <VariableDefinition> element
MUST be defined later in the encompassing policy. <VariableDefinition> elements MAY be

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 59 of 141

2474 grouped together or MAY be placed close to the reference in the encompassing policy. There
2475 MAY be zero or more references to each <VariableDefinition> element.

2476 <xs:element name="VariableDefinition" type="xacml:VariableDefinitionType"/>
2477 <xs:complexType name="VariableDefinitionType'>

2478 <Xs:seguence>

2479 <xs:element ref="xacml:Expression"/>

2480 </Xs:sequence>

2481 <xs:attribute name="Variableld" type='xs:string" use="required'/>

2482 </xs:complexType>

2483 The <vVariableDefinition> element is of VariableDefinitionType complex type. The
2484 <VariableDefinition> element has the following elements and attributes:

2485 <Expression> [Required]
2486 Any element of ExpressionType complex type.
2487 Variableld [Required]

2488 The name of the variable definition.

2489 5.32. Element <VariableReference>

2490 The <vVariableReference> element is used to reference a value defined within the same

2491 encompassing <Policy> element. The <VariableReference> element SHALL refer to the
2492 <VariableDefinition> element by string equality on the value of their respective Variableld
2493 attributes. There SHALL exist one and only one <VariableDefinition> within the same

2494 encompassing <Pol icy> element to which the <VariableReference> refers. There MAY be
2495 zero or more <VariableReference> elements that refer to the same <vVariableDefinition>
2496 element.

2497 <xs:element name="VariableReference" type="xacml:VariableReferenceType"

2498 substitutionGroup="xacml:Expression’/>
2499 <xs:complexType name="VariableReferenceType'>

2500 <xs:complexContent>

2501 <xs:extension base="xacml:ExpressionType'>

2502 <xs:attribute name="Variableld"” type="xs:string"” use="required"/>
2503 </xs:extension>

2504 </xs:complexContent>

2505 </xs:complexType>

2506 The <VariableReference> element is of the VariableReferenceType complex type, which is of
2507 the ExpressionType complex type and is a member of the <Expression> element substitution
2508 group. The <vVariableReference> element MAY appear any place where an <Expression>
2509 element occurs in the schema.

2510 The <VariableReference> element has the following attributes:
2511 Variableld [Required]

2512 The name used to refer to the value defined in a <VariableDefinition> element.

2513 5.33. Element <Expression>

2514 The <Expression> element is not used directly in a policy. The <Expression> element
2515 signifies that an element that extends the ExpressionType and is a member of the
2516 <Expression> element substitution group SHALL appear in its place.

2517 <xs:element name="Expression' type="xacml:ExpressionType' abstract="true"/>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 60 of 141

2518
2519

2520
2521
2522
2523

<xs:complexType name="ExpressionType' abstract="true"/>

The following elements are in the <Expression> element substitution group:

<Apply>, <AttributeSelector>, <AttributeValue>, <Function>,
<VariableReference>, <ActionAttributeDesignator>,
<ResourceAttributeDesignator>, <SubjectAttributeDesignhator> and
<EnvironmentAttributeDesignator>.

5.34. Element <Condition>

The <Condition> element is a Boolean function over subject, resource, action and
environment attributes or functions of attributes.
<xs:element name=""Condition"™ type="xacml:ConditionType'/>
<xs:complexType name="ConditionType"'>

<Xs:seguence>

<xs:element ref=""xacml:Expression'/>

</Xs:sequence>

</xs:complexType>

The <Condition> contains one <Expression> element, with the restriction that the
<Expression> return data-type MUST be “http://www.w3.0rg/2001/XMLSchema#boolean”.
Evaluation of the <Condition> element is described in Section 7.8.

5.35. Element <Apply>

The <Apply> element denotes application of a function to its arguments, thus encoding a function
call. The <Apply> element can be applied to any combination of the members of the
<Expression> element substitution group. See Section 5.33.
<xs:element name="Apply" type="xacml:ApplyType"
substitutionGroup="xacml :Expression’/>
<xs:complexType name="ApplyType"'>
<xs:complexContent>
<xs:extension base='"'xacml:ExpressionType'>
<xs:sequence>
<xs:element ref="xacml:Expression” minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
<xs:attribute name="Functionld" type='xs:anyURI" use="required'/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <Apply> element is of ApplyType complex type.
The <Apply> element contains the following attributes and elements:
Functionld [Required]

The identifier of the function to be applied to the arguments. XACML-defined functions are
described in Appendix A.

<Expression> [Optional]

Arguments to the function, which may include other functions.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 61 of 141

5.36. Element <Function>

The <Function> element SHALL be used to name a function as an argument to the function
defined by the parent <Apply> element. In the case where the parent <Apply> element is a
higher-order bag function, the named function is applied to every element of the bag or bags
identified in the other arguments of the parent element. The higher-order bag functions are
described in Section A3A.3.12.
<xs:element name="'Function" type="xacml:FunctionType"
substitutionGroup="xacml :Expression'/>
<xs:complexType name="'FunctionType'>
<xs:complexContent>
<xs:extension base='"'xacml:ExpressionType''>
<xs:attribute name="Functionld” type="xs:anyURI"™ use="‘required'/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The Function element is of FunctionType complex type.
The Function element contains the following attributes:
Functionld [Required]

The identifier of the function.

5.37. Complex type AttributeDesignatorType

The AttributeDesignatorType complex type is the type for elements that identify attributes by
name. It contains the information required to match attributes in the request context. See Section
7.2.4.

It also contains information to control behaviour in the event that no matching attribute is presentin
the context.

Elements of this type SHALL NOT alter the match semantics of named attributes, but MAY narrow
the search space.
<xs:complexType name="'AttributeDesignatorType'>
<xs:complexContent>
<xs:extension base="xacml:ExpressionType'>
<xs:attribute name="Attributeld"” type="xs:anyURI" use="required"/>
<xs:attribute name="DataType' type="xs:anyURI"™ use="required"/>
<xs:attribute name="lIssuer" type=''xs:string" use="optional'/>
<xs:attribute name="MustBePresent' type=''xs:boolean' use="optional"
default=""false"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

A named attribute SHALL match an attribute if the values of their respective Attributeld,
DataType and Issuer attributes match. The attribute designator's Attributeld MUST match,
by URI equality, the Attributeld of the attribute. The attribute designator’'s DataType MUST
match, by URI equality, the DataType of the same attribute.

If the Issuer attribute is present in the attribute designator, then it MUST match, using the
“urn:oasis:names:tc:xacml:1.0:function:string-equal” function, the Issuer of the same attribute. If
the Issuer is not present in the attribute designator, then the matching of the attribute to the
named attribute SHALL be governed by Attributeld and DataType attributes alone.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 62 of 141

2606
2607
2608
2609

2610
2611

2612
2613
2614

2615
2616
2617

2618

2619
2620
2621
2622
2623

2624
2625
2626
2627

2628
2629
2630
2631
2632

2633
2634

2635
2636

2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647

The <AttributeDesignatorType> contains the following attributes:
Attributeld [Required]

This attribute SHALL specify the Attributeld with which to match the attribute.
DataType [Required]

The bag returned by the <AttributeDesignator> element SHALL contain values of this
data-type.

Issuer [Optional]
This attribute, if supplied, SHALL specify the 1ssuer with which to match the attribute.
MustBePresent [Optional]

This attribute governs whether the element returns “Indeterminate” or an empty bag in the
event the named attribute is absent from the request context. See Section 7.2.5. Also
see Sections 7.15.2 and 7.15.3.

5.38. Element <SubjectAttributeDesignator>

The <SubjectAttributeDesignator> element retrieves a bag of values for a named
categorized subject attribute from the request context. A subject attribute is an attribute
contained within a <Sub ject> element of the request context. A categorized subject is a subject
that is identified by a particular subject-category attribute. A named categorized subject attribute
is a named subject attribute for a particular categorized subject.

The <SubjectAttributeDesignator> element SHALL return a bag containing all the subject
attribute values that are matched by the named categorized subject attribute. In the event that
no matching attribute is present in the context, the MustBePresent attribute governs whether this
element returns an empty bag or “Indeterminate”. See Section 7.2.5.

The SubjectAttributeDesignatorType extends the match semantics of the
AttributeDesignatorType (See Section 5.37) such that it narrows the attribute search space to
the specific categorized subject such that the value of this element’'s SubjectCategory attribute
matches, by URI equality, the value of the request context’s <Subject> element’s
SubjectCategory attribute.

If the request context contains multiple subjects with the same SubjectCategory XML attribute,
then they SHALL be treated as if they were one categorized subject.

The <SubjectAttributeDesignator> MAY appear in the <SubjectMatch> element and
MAY be passed to the <Apply> element as an argument.

<xs:element name="'SubjectAttributeDesignator"
type=""xacml :SubjectAttributeDesignatorType"
substitutionGroup="xacml :Expression’/>
<xs:complexType name="SubjectAttributeDesignatorType">
<xs:complexContent>
<xs:extension base='"xacml:AttributeDesignatorType"'>
<xs:attribute name="SubjectCategory" type="'xs:anyURI" use="optional™
default="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject'/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 63 of 141

2648
2649
2650

2651

2652
2653
2654
2655

2656

2657
2658
2659
2660
2661
2662

2663
2664
2665
2666

2667
2668

2669
2670

2671
2672

2673
2674

2675

2676
2677
2678
2679
2680
2681

2682
2683
2684
2685

2686
2687

2688
2689

The <SubjectAttributeDesignator> element is of type SubjectAttributeDesignatorType.
The SubjectAttributeDesignatorType complex type extends the AttributeDesignatorType
complex type with a SubjectCategory attribute.

SubjectCategory [Optional]

This attribute SHALL specify the categorized subject from which to match named subject
attributes. If SubjectCategory is not present, then its default value of
“urn:oasis:names:tc:xacml:1.0:subject-category:access-subject” SHALL be used. Standard
values of the SubjectCategory are listed in Section B.2.

5.39. Element <ResourceAttributeDesignator>

The <ResourceAttributeDesignator> element retrieves a bag of values for a named
resource attribute from the request context. A resource attribute is an attribute contained
within the <Resource> element of the request context. A named resource attribute is a named
attribute that matches a resource attribute. A named resource attribute SHALL be considered
present if there is at least one resource attribute that matches the criteria set out below. A
resource attribute value is an attribute value that is contained within a resource attribute.

The <ResourceAttributeDesignator> element SHALL return a bag containing all the
resource attribute values that are matched by the named resource attribute. In the event that no
matching attribute is present in the context, the MustBePresent attribute governs whether this
element returns an empty bag or “Indeterminate”. See Section 7.2.5.

A named resource attribute SHALL match a resource attribute as per the match semantics
specified in the AttributeDesignatorType complex type. See Section 5.37.

The <ResourceAttributeDesignator> MAY appear in the <ResourceMatch> element and
MAY be passed to the <Apply> element as an argument.

<xs:element name='"ResourceAttributeDesignator"
type=""xacml :AttributeDesignatorType" substitutionGroup=""xacml:Expression/>

The <ResourceAttributeDesignator> element is of the AttributeDesignatorType complex
type.

5.40. Element <ActionAttributeDesignator>

The <ActionAttributeDesignator> element retrieves a bag of values for a named action
attribute from the request context. An action attribute is an attribute contained within the
<Action> element of the request context. A named action attribute has specific criteria
(described below) with which to match an action attribute. A named action attribute SHALL be
considered present, if there is at least one action attribute that matches the criteria. An action
attribute value is an attribute value that is contained within an action attribute.

The <ActionAttributeDesignator> element SHALL return a bag of all the action attribute
values that are matched by the named action attribute. In the event that no matching attribute is
present in the context, the MustBePresent attribute governs whether this element returns an
empty bag or “Indeterminate”. See Section 7.2.5.

A named action attribute SHALL match an action attribute as per the match semantics specified
in the AttributeDesignatorType complex type. See Section 5.37.

The <ActionAttributeDesignator> MAY appear in the <ActionMatch> element and MAY
be passed to the <Apply> element as an argument.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 64 of 141

2690
2691

2692
2693

2694

2695
2696
2697
2698
2699
2700
2701

2702
2703
2704
2705

2706
2707

2708
2709

2710
2711

2712
2713

2714

2715
2716

2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735

<xs:element name="‘ActionAttributeDesignator"™ type="xacml:AttributeDesignatorType"
substitutionGroup="xacml :Expression"/>

The <ActionAttributeDesignator> element is of the AttributeDesignatorType complex
type.

5.41. Element <EnvironmentAttributeDesignator>

The <EnvironmentAttributeDesignator> element retrieves a bag of values for a named
environment attribute from the request context. An environment attribute is an attribute
contained within the <Environment> element of request context. A named environment
attribute has specific criteria (described below) with which to match an environment attribute. A
named environment attribute SHALL be considered present, if there is at least one environment
attribute that matches the criteria. An environment attribute value is an attribute value that is
contained within an environment attribute.

The <EnvironmentAttributeDesignator> element SHALL evaluate to a bag of all the
environment attribute values that are matched by the named environment attribute. In the
event that no matching attribute is present in the context, the MustBePresent attribute governs
whether this element returns an empty bag or “Indeterminate”. See Section 7.2.5.

A named environment attribute SHALL match an environment attribute as per the match
semantics specified in the AttributeDesignatorType complex type. See Section 5.37.

The <EnvironmentAttributeDesignator> MAY be passed to the <Apply> element as an
argument.

<xs:element name="EnvironmentAttributeDesignator"
type=""xacml :AttributeDesignatorType" substitutionGroup=""xacml:Expression/>

The <EnvironmentAttributeDesignator> element is of the AttributeDesignatorType
complex type.

5.42. Element <AttributeSelector>

The <AttributeSelector> element identifies attributes by their location in the request context.
Support for the <AttributeSelector> elementis OPTIONAL.

The <AttributeSelector> element's RequestContextPath XML attribute SHALL contain a
legal XPath expression whose context node is the <xacml-context:Request> element. The
AttributeSelector element SHALL evaluate to a bag of values whose data-type is specified by
the element’s DataType attribute. If the DataType specified in the AttributeSelector is a
primitive data type defined in [XF] or [XS], then the value returned by the XPath expression SHALL
be converted to the DataType specified in the <AttributeSelector> using the constructor
function below [XF Section 4] that corresponds to the DataType. If an error results from using the
constructor function, then the value of the <AttributeSelector> SHALL be "Indeterminate".

xs:string()
xs:boolean()
xs:integer()
xs:double()
xs:dateTime()
xs:date()

xs:time()
xs:hexBinary()
xs:base64Binary()
xs:anyURI()

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 65 of 141

2779

2780

2781
2782
2783

xf:yearMonthDuration()
xf:dayTimeDuration()

If the DataType specified in the AttributeSelector is not one of the preceding primitive
DataTypes, then the AttributeSelector SHALL return a bag of instances of the specified
DataType. If an error occurs when converting the values returned by the XPath expression to the
specified DataType, then the result of the AttributeSelector SHALL be "Indeterminate".

Each node selected by the specified XPath expression MUST be either a text node, an attribute
node, a processing instruction node or a comment node. The string representation of the value of
each node MUST be converted to an attribute value of the specified data-type, and the result of
the AttributeSelector is the bag of the attribute values generated from all the selected
nodes.

If the node selected by the specified XPath expression is not one of those listed above (i.e. a text
node, an attribute node, a processing instruction node or a comment node), then the result of the
enclosing policy SHALL be "Indeterminate” with a StatusCode value of
"urn:oasis:names:tc:xacml:1.0:status:syntax-error".

<xs:element name="AttributeSelector" type="'xacml:AttributeSelectorType"
substitutionGroup="xacml :Expression"/>
<xs:complexType name="AttributeSelectorType'>
<xs:complexContent>
<xs:extension base='"'xacml:ExpressionType''>
<xs:attribute name="RequestContextPath"™ type="xs:string" use="required"/>
<xs:attribute name='"DataType' type="'xs:anyURI" use="required"/>
<xs:attribute name="MustBePresent” type='xs:boolean’ use="optional®
default="false"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <AttributeSelector> element is of AttributeSelectorType complex type.
The <AttributeSelector> element has the following attributes:
RequestContextPath [Required]

An XPath expression whose context node is the <xacml-context:Request> element.
There SHALL be no restriction on the XPath syntax. See also Section 5.4.

DataType [Required]

The bag returned by the <AttributeSelector> element SHALL contain values of this
data-type.

MustBePresent [Optional]

This attribute governs whether the element returns “Indeterminate” or an empty bag in the
event the XPath expression selects no node. See Section 7.2.5. Also see Sections 7.15.2
and 7.15.3.

5.43. Element <AttributeValue>

The <xacml : AttributeValue> element SHALL contain a literal attribute value.

<xs:element name="AttributeValue" type="xacml:AttributeValueType"
substitutionGroup="xacml :Expression"/>

<xs:complexType name="AttributeValueType" mixed="true'>
access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 66 of 141

<xs:complexContent>
<xs:extension base='"xacml:ExpressionType'>
<Xs:seguence>
<Xs:any namespace="'##any" processContents=""lax" minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
<xs:attribute name="DataType' type="xs:anyURI"™ use="required"/>
<xs:anyAttribute namespace="##any" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <xacml : AttributeValue> element is of AttributeValueType complex type.
The <xacml : AttributeValue> element has the following attributes:
DataType [Required]

The data-type of the attribute value.

5.44. Element <Obligations>

The <Obligations> element SHALL contain a set of <Obligation> elements.

Support for the <Obligations> element is OPTIONAL.

<xs:element name="Obligations" type="xacml:ObligationsType'/>
<xs:complexType name="ObligationsType'>
<xs:sequence>
<xs:element ref="xacml:Obligation” maxOccurs="unbounded’/>
</Xs:sequence>
</xs:complexType>

The <Obligations> element is of ObligationsType complexType.
The <Obl igations> element contains the following element:
<Obligation> [One to Many]

A sequence of obligations. See Section 5.45.

5.45. Element <Obligation>

The <Obligation> element SHALL contain an identifier for the obligation and a set of attributes
that form arguments of the action defined by the obligation. The Ful i 110n attribute SHALL
indicate the effect for which this obligation must be fulfilled by the PEP.
<xs:element name=""Obligation’ type="'xacml:ObligationType"/>
<xs:complexType name="ObligationType'>

<xs:sequence>

<xs:element ref="xacml:AttributeAssignment' minOccurs="0"

maxOccurs=""unbounded*/>

</Xs:sequence>

<xs:attribute name="Obligationld"” type="xs:anyURI" use="required'/>

<xs:attribute name="FulfillOn" type="xacml:EffectType" use="required'/>
</xs:complexType>

The <Obligation> element is of ObligationType complexType. See Section 7.14 for a
description of how the set of obligations to be returned by the PDP is determined.

The <Obl igation> element contains the following elements and attributes:

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 67 of 141

2828

2829
2830

2831
2832
2833

2834
2835

2836

2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851

2852
2853
2854
2855

2856
2857

2858

2859
2860
2861
2862
2863
2864

2865

Obligationld [Required]

Obligation identifier. The value of the obligation identifier SHALL be interpreted by the
PEP.

Fulfil110n [Required]
The effect for which this obligation must be fulfilled by the PEP.
<AttributeAssignment> [Optional]

Obligation arguments assignment. The values of the obligation arguments SHALL be
interpreted by the PEP.

5.46. Element <AttributeAssignment>

The <AttributeAssignment> element is used for including arguments in obligations. It SHALL
contain an Attributeld and the corresponding attribute value, by extending the
AttributeValueType type definition. The <AttributeAssignment> element MAY be used in
any way that is consistent with the schema syntax, which is a sequence of <xs:any> elements.
The value specified SHALL be understood by the PEP, but it is not further specified by XACML.
See Section 7.14. Section 4.2.4.3 provides a number of examples of arguments included in
obligations.
<xs:element name="AttributeAssignment" type=''xacml:AttributeAssignmentType"/>
<xs:complexType name="AttributeAssignmentType™ mixed=""true'">
<xs:complexContent>
<xs:extension base="xacml:AttributeValueType">
<xs:attribute name="Attributeld" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The <AttributeAssignment> element is of AttributeAssignmentType complex type.
The <AttributeAssignment> element contains the following attributes:
Attributeld [Required]

The attribute Identifier.

6. Context syntax (normative with the exception of
the schema fragments)

6.1. Element <Request>

The <Request> element is a top-level element in the XACML context schema. The <Request>
element is an abstraction layer used by the policy language. For simplicity of expression, this
document describes policy evaluation in terms of operations on the context. However a
conforming PDP is not required to actually instantiate the context in the form of an XML document.
But, any system conforming to the XACML specification MUST produce exactly the same
authorization decisions as if all the inputs had been transformed into the form of an <xacml-

context:Request> element.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 68 of 141

2901

2902
2903
2904

2905
2906

The <Request> element contains <Subject>, <Resource>, <Action> and <Environment>
elements. There may be multiple <Sub ject> elements and, under some conditions, multiple
<Resource> elements®. Each child element contains a sequence of <xacml -
context:Attribute> elements associated with the subject, resource, action and
environment respectively. These <Attribute> elements MAY form a part of policy evaluation.
<xs:element name=""Request" type="xacml-context:RequestType'/>
<xs:complexType name="‘RequestType'>
<Xs:sequence>
<xs:element ref="xacml-context:Subject"™ maxOccurs="unbounded"/>
<xs:element ref="xacml-context:Resource'" maxOccurs="unbounded"/>
<xs:element ref=""xacml-context:Action"/>
<xs:element ref="xacml-context:Environment"/>
</Xs:sequence>
</xs:complexType>

The <Request> element is of RequestType complex type.
The <Request> element contains the following elements:
<Subject> [One to Many]

Specifies information about a subject of the request context by listing a sequence of
<Attribute> elements associated with the subject. One or more <Subject> elements
are allowed. A subject is an entity associated with the access request. For example, one
subject might represent the human user that initiated the application from which the
request was issued; another subject might represent the application’s executable code
responsible for creating the request; another subject might represent the machine on
which the application was executing; and another subject might represent the entity that is
to be the recipient of the resource. Attributes of each of these entities MUST be enclosed
in separate <Subject> elements.

<Resource> [One to Many]

Specifies information about the resource or resources for which access is being
requested by listing a sequence of <Attribute> elements associated with the resource.
It MAY include a <ResourceContent> element.

<Action> [Required]

Specifies the requested action to be performed on the resource by listing a set of
<Attribute> elements associated with the action.

<Environment> [Required]

Contains a set of <Attribute> elements for the environment.

6.2. Element <Subject>

The <Subject> element specifies a subject by listing a sequence of <Attribute> elements
associated with the subject.
<xs:element name="Subject" type="xacml-context:SubjectType'/>

<xs:complexType name="'SubjectType'>
<xs:sequence>

% The conditions under which multiple <Resource> elements are allowed are described in the
XACML Profile for Multiple Resources [MULT].

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 69 of 141

<xs:element ref=""xacml-context:Attribute'” minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
<xs:attribute name="SubjectCategory" type="'xs:anyURI"
default="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject'/>
</xs:complexType>

The <Subject> element is of SubjectType complex type.
The <Subject> element contains the following elements and attributes:
SubjectCategory [Optional]

This attribute indicates the role that the parent <Subject> played in the formation of the
access request. If this attribute is not present in a given <Subject> element, then the
default value of “urn:oasis:names:tc:xacml:1.0:subject-category:access-subject” SHALL be
used, indicating that the parent <Sub ject> element represents the entity ultimately
responsible for initiating the access request.

If more than one <Subject> element contains a "urn:oasis:names:tc:xacml:2.0:subject-
category" attribute with the same value, then the PDP SHALL treat the contents of those
elements as if they were contained in the same <Subject> element.

<Attribute> [Any Number]
A sequence of attributes that apply to the subject.

Typically, a <Subject> element will contain an <Attribute> with an Attributeld of
“urn:oasis:names:tc:xacml:1.0:subject:subject-id”, containing the identity of the subject.

A <Subject> element MAY contain additional <Attribute> elements.

6.3. Element <Resource>

The <Resource> element specifies information about the resource to which access is requested,
by listing a sequence of <Attribute> elements associated with the resource. It MAY include the
resource content.

<xs:element name=""Resource'" type="xacml-context:ResourceType"/>
<xs:complexType name='‘ResourceType’'>
<Xs:seguence>
<xs:element ref=""xacml-context:ResourceContent" minOccurs="0"/>
<xs:element ref=""xacml-context:Attribute" minOccurs="0"
maxOccurs=""unbounded" />
</Xs:sequence>
</xs:complexType>

The <Resource> element is of ResourceType complex type.
The <Resource> element contains the following elements:
<ResourceContent> [Optional]

The resource content.
<Attribute> [Any Number]

A sequence of resource attributes.

The <Resource> element MAY contain one or more <Attribute> elements with an
Attributeld of “urn:oasis:names:tc:xacml:2.0:resource:resource-id”. Each such

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 70 of 141

2949 <Attribute> SHALL be an absolute and fully-resolved representation of the identity of

2950 the single resource to which access is being requested. If there is more than one such
2951 absolute and fully-resolved representation, and if any <Attribute> with this

2952 Attributeld is specified, then an <Attribute> for each such distinct representation of
2953 the resource identity SHALL be specified. All such <Attribute> elements SHALL refer
2954 to the same single resource instance. A Profile for a particular resource MAY specify a
2955 single normative representation for instances of the resource; in this case, any

2956 <Attribute> with this Attributeld SHALL use only this one representation.

2957 A <Resource> element MAY contain additional <Attribute> elements.

2958 6.4. Element <ResourceContent>

2959 The <ResourceContent> element is a notional placeholder for the content of the resource. If an
2960 XACML policy references the contents of the resource by means of an <AttributeSelector>
2961 element, then the <ResourceContent> element MUST be included in the

2962 RequestContextPath string.

2963 <xs:complexType name="ResourceContentType' mixed=""true”>

2964 <Xs:sequence>

2965 <xS:any namespace="##any' processContents="lax" minOccurs="0"
2966 maxOccurs="unbounded"/>

2967 </Xxs:sequence>

2968 <xs:anyAttribute namespace="##any" processContents="lax"/>

2969 </xs:complexType>
2970 The <ResourceContent> element is of ResourceContentType complex type.

2971 The <ResourceContent> element allows arbitrary elements and attributes.

2972 6.5. Element <Action>

2973 The <Action> element specifies the requested action on the resource, by listing a set of
2974 <Attribute> elements associated with the action.

2975 <xs:element name="Action" type="xacml-context:ActionType"/>
2976 <xs:complexType name="ActionType''>

2977 <xs:sequence>

2978 <xs:element ref=""xacml-context:Attribute" minOccurs="0"
2979 maxOccurs=""unbounded"/>

2980 </Xs:seguence>

2981 </xs:complexType>
2982 The <Action> element is of ActionType complex type.

2983 The <Action> element contains the following elements:
2984 <Attribute> [Any Number]

2985 List of attributes of the action to be performed on the resource.

2986 6.6. Element <Environment>

2987 The <Environment> element contains a set of attributes of the environment.

2988 <xs:element name="Environment" type="xacml-context:EnvironmentType'/>
2989 <xs:complexType name="EnvironmentType'>
2990 <XSs:sequence>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 71 of 141

<xs:element ref="xacml-context:Attribute” minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>

The <Environment> element is of EnvironmentType complex type.
The <Environment> element contains the following elements:
<Attribute>[Any Number]

A list of environment attributes. Environment attributes are attributes that are not
associated with either the resource, the action or any of the subjects of the access
request.

6.7. Element <Attribute>

The <Attribute> element is the central abstraction of the request context. It contains attribute
meta-data and one or more attribute values. The attribute meta-data comprises the attribute
identifier and the attribute issuer. <AttributeDesignator> and <AttributeSelector>
elements in the policy MAY refer to attributes by means of this meta-data.
<xs:element name="'Attribute" type="'xacml-context:AttributeType'/>
<xs:complexType name="AttributeType'>

<xs:sequence>

<xs:element ref="xacml-context:AttributeValue™ maxOccurs="unbounded"/>

</Xs:sequence>

<xs:attribute name="Attributeld"” type="xs:anyURI" use="required"/>

<xs:attribute name="DataType' type="xs:anyURI"™ use="required"/>

<xs:attribute name="lIssuer" type='xs:string" use="optional'/>
</xs:complexType>

The <Attribute> element is of AttributeType complex type.
The <Attribute> element contains the following attributes and elements:
Attributeld [Required]

The Attribute identifier. A number of identifiers are reserved by XACML to denote
commonly used attributes. See Appendix B.

DataType [Required]

The data-type of the contents of the <xacml-context:AttributeValue> element.
This SHALL be either a primitive type defined by the XACML 2.0 specification or a type
(primitive or structured) defined in a namespace declared in the <xacml-context>
element.

Issuer [Optional]

The Attribute issuer. For example, this attribute value MAY be an xX500Name that binds to
a public key, or it may be some other identifier exchanged out-of-band by issuing and
relying parties.

<xacml-context:AttributeValue> [One to Many]

One or more attribute values. Each attribute value MAY have contents that are empty,
occur once or occur multiple times.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 72 of 141

6.8. Element <AttributeValue>

The <xacml-context:AttributeValue> element contains the value of an attribute.

<xs:element name="AttributeValue"™ type="xacml-context:AttributeValueType'/>
<xs:complexType name="AttributeValueType'" mixed="true”>

<Xs:seguence>

<XS:any namespace="'##any" processContents="lax" minOccurs="0"

maxOccurs=""unbounded"/>

</Xs:sequence>

<xs:anyAttribute namespace="##any" processContents="lax"/>
</xs:complexType>

The <xacml-context:AttributeValue> element is of AttributeValueType complex type.

The data-type of the <xacml-context:AttributeValue> SHALL be specified by using the
DataType attribute of the parent <Attribute> element.

6.9. Element <Response>

The <Response> element is a top-level element in the XACML context schema. The
<Response> element is an abstraction layer used by the policy language. Any proprietary
system using the XACML specification MUST transform an XACML context <Response> element
into the form of its authorization decision.

The <Response> element encapsulates the authorization decision produced by the PDP . It includes
a sequence of one or more results, with one <Result> element per requested resource. Multiple
results MAY be returned by some implementations, in particular those that support the XACML
Profile for Requests for Multiple Resources [MULT]. Support for multiple results is OPTIONAL.
<xs:element name=""Response’ type="xacml-context:ResponseType'/>
<xs:complexType name="'ResponseType"'>

<Xs:sequence>

<xs:element ref="xacml-context:Result" maxOccurs="unbounded"/>

</Xs:sequence>

</xs:complexType>

The <Response> element is of ResponseType complex type.
The <Response> element contains the following elements:
<Result> [One to Many]

An authorization decision result. See Section 6.10.

6.10. Element <Result>

The <Result> element represents an authorization decision result for the resource specified by
the Resourceld attribute. It MAY include a set of obligations that MUST be fulfilled by the PEP.
If the PEP does not understand or cannot fulfill an obligation, then it MUST act as if the PDP had
denied access to the requested resource.

<xs:complexType name="ResultType'>
<Xs:seguence>
<xs:element ref="xacml-context:Decision"/>

<xs:element ref=""xacml:Obligations" minOccurs="0"/>
</Xs:sequence>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 73 of 141

3076 <xs:attribute name="Resourceld"” type="xs:string" use="optional"/>
3077 </xs:complexType>

3078 The <Result> element is of ResultType complex type.
3079 The <Result> element contains the following attributes and elements:

3080 Resourceld [Optional]

3081 The identifier of the requested resource. If this attribute is omitted, then the resource
3082 identity is that specified by the “urn:oasis:names:tc:xacml:1.0:resource:resource-id”
3083 resource attribute in the corresponding <Request> element.

3084 <Decision> [Required]
3085 The authorization decision: “Permit”, “Deny”, “Indeterminate” or “NotApplicable”.

3086 <Status> [Optional]

3087 Indicates whether errors occurred during evaluation of the decision request, and

3088 optionally, information about those errors. If the <Response> element contains <Result>
3089 elements whose <Status> elements are all identical, and the <Response> element is
3090 contained in a protocol wrapper that can convey status information, then the common

3091 status information MAY be placed in the protocol wrapper and this <Status> element
3092 MAY be omitted from all <Result> elements.

3093 <Obligations> [Optional]

3094 A list of obligations that MUST be fulfilled by the PEP. If the PEP does not understand or
3095 cannot fulfill an obligation, then it MUST act as if the PDP had denied access to the
3096 requested resource. See Section 7.14 for a description of how the set of obligations to
3097 be returned by the PDP is determined.

3098 6.11. Element <Decision>

3099 The <Decision> element contains the result of policy evaluation.

3100 <xs:element name="Decision" type="xacml-context:DecisionType"/>
3101 <xs:simpleType name="DecisionType'>

3102 <xs:restriction base="xs:string">

3103 <xs:enumeration value="Permit"/>

3104 <xs:enumeration value="Deny"/>

3105 <xs:enumeration value="Indeterminate"/>
3106 <xs:enumeration value="NotApplicable"/>
3107 </xs:restriction>

3108 </xs:simpleType>
3109 The <Decision> element is of DecisionType simple type.

3110 The values of the <Decision> element have the following meanings:

3111 “Permit”: the requested access is permitted.

3112 “Deny”: the requested access is denied.

3113 “Indeterminate”: the PDP is unable to evaluate the requested access. Reasons for such

3114 inability include: missing attributes, network errors while retrieving policies, division by

3115 zero during policy evaluation, syntax errors in the decision request or in the policy, etc..

3116 “NotApplicable”: the PDP does not have any policy that applies to this decision request.
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 74 of 141

3117 6.12. Element <Status>

3118 The <Status> element represents the status of the authorization decision result.

3119 <xs:element name="Status' type="xacml-context:StatusType'/>
3120 <xs:complexType name="StatusType''>

3121 <xs:sequence>

3122 <xs:element ref="xacml-context:StatusCode"/>

3123 <xs:element ref="xacml-context:StatusMessage' minOccurs="0"/>
3124 <xs:element ref="xacml-context:StatusDetail" minOccurs="0"/>
3125 </Xxs:sequence>

3126 </xs:complexType>
3127 The <Status> element is of StatusType complex type.

3128 The <Status> element contains the following elements:
3129 <StatusCode> [Required]

3130 Status code.

3131 <StatusMessage> [Optional]

3132 A status message describing the status code.
3133 <StatusDetai 1> [Optional]

3134 Additional status information.

3135 6.13. Element <StatusCode>

3136 The <StatusCode> element contains a major status code value and an optional sequence of
3137 minor status codes.

3138 <xs:element name="StatusCode'" type="xacml-context:StatusCodeType'/>
3139 <xs:complexType name="StatusCodeType'>

3140 <xs:sequence>
3141 <xs:element ref="xacml-context:StatusCode" minOccurs="0"/>
3142 </Xxs:sequence>
3143 <xs:attribute name="Value" type="'xs:anyURI'" use="required"/>

3144 </xs:complexType>
3145 The <StatusCode> element is of StatusCodeType complex type.

3146 The <StatusCode> element contains the following attributes and elements:
3147 Value [Required]

3148 See Section B.9 for a list of values.

3149 <StatusCode> [Any Number]

3150 Minor status code. This status code qualifies its parent status code.

3151 6.14. Element <StatusMessage>

3152 The <StatusMessage> element is a free-form description of the status code.
3153 <xs:element name="StatusMessage" type="'xs:string"/>

3154 The <StatusMessage> element is of xs:string type.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 75 of 141

6.15. Element <StatusDetail>

The <StatusDetai I> element qualifies the <Status> element with additional information.

<xs:element name="'StatusDetail" type="xacml-context:StatusDetailType'/>
<xs:complexType name="'StatusDetailType">
<Xs:seguence>
<XS:any namespace="'##any" processContents="lax" minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
</xs:complexType>

The <StatusDetai > element is of StatusDetailType complex type.
The <StatusDetai I> element allows arbitrary XML content.

Inclusion of a <StatusDetai I> element is optional. However, if a PDP returns one of the
following XACML-defined <StatusCode> values and includes a <StatusDetai I> element, then
the following rules apply.

urn:oasis:names:tc:xacml:1.0:status:ok
A PDP MUST NOT return a <StatusDetai I> element in conjunction with the “ok” status value.
urn:oasis:names:tc:xacml:1.0:status:missing-attribute

A PDP MAY choose not to return any <StatusDetai 1> information or MAY choose to return a
<StatusDetali I> element containing one or more <xacml-context:
MissingAttributeDetai l> elements.

urn:oasis:names:tc:xacml:1.0:status:syntax-error

A PDP MUST NOT return a <StatusDetai I> element in conjunction with the “syntax-error” status
value. A syntax error may represent either a problem with the policy being used or with the
request context. The PDP MAY return a <StatusMessage> describing the problem.

urn:oasis:names:tc:xacml:1.0:status:processing-error

A PDP MUST NOT return <StatusDetai I> element in conjunction with the “processing-error”
status value. This status code indicates an internal problem in the PDP. For security reasons, the
PDP MAY choose to return no further information to the PEP. In the case of a divide-by-zero error
or other computational error, the PDP MAY return a <StatusMessage> describing the nature of
the error.

6.16. Element <MissingAttributeDetail>

The <MissingAttributeDetai l> element conveys information about attributes required for
policy evaluation that were missing from the request context.

<xs:element name="MissingAttributeDetail" type="xacml-
context:MissingAttributeDetailType"/>
<xs:complexType name="MissingAttributeDetailType'>
<Xs:seguence>
<xs:element ref="xacml-context:AttributeValue" minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
<xs:attribute name="Attributeld” type="xs:anyURI" use="required"/>
<xs:attribute name='"DataType' type="'xs:anyURI" use="required"/>
<xs:attribute name="Issuer"” type='Xxs:string"” use="optional'/>
</xs:complexType>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 76 of 141

3199
3200
3201
3202
3203
3204
3205
3206
3207
3208

3209
3210
3211
3212
3213
3214

3215

3216
3217

3218

3219

3220
3221
3222

3223

3224
3225
3226

3227
3228
3229

3230
3231

The <MissingAttributeDetai l> element is of MissingAttributeDetailType complex type.
The <MissingAttributeDetal> element contains the following attributes and elements:
AttributeValue [Optional]

The required value of the missing attribute.
<Attributeld> [Required]

The identifier of the missing attribute.
<DataType> [Required]

The data-type of the missing attribute.
Issuer [Optional]

This attribute, if supplied, SHALL specify the required Issuer of the missing attribute.

If the PDP includes <xacml-context:AttributeValue> elements in the <MissingAttributeDetail>
element, then this indicates the acceptable values for that attribute. If no <xacml-
context:AttributeValue> elements are included, then this indicates the names of attributes that the
PDP failed to resolve during its evaluation. The list of attributes may be partial or complete. There
is no guarantee by the PDP that supplying the missing values or attributes will be sufficient to
satisfy the policy.

7.Functional requirements (normative)

This section specifies certain functional requirements that are not directly associated with the
production or consumption of a particular XACML element.

7.1. Policy enforcement point

This section describes the requirements for the PEP.

An application functions in the role of the PEP if it guards access to a set of resources and asks
the PDP for an authorization decision. The PEP MUST abide by the authorization decision as
described in one of the following sub-sections

7.1.1. Base PEP

If the decision is "Permit", then the PEP SHALL permit access. If obligations accompany the
decision, then the PEP SHALL permit access only if it understands and it can and will discharge
those obligations.

If the decision is "Deny", then the PEP SHALL deny access. If obligations accompany the
decision, then the PEP shall deny access only if it understands, and it can and will discharge
those obligations.

If the decision is “Not Applicable”, then the PEP’s behavior is undefined.

If the decision is “Indeterminate”, then the PEP’s behavior is undefined.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 77 of 141

3232

3233
3234
3235

3236

3237
3238

3239

3240
3241
3242

3243

3244
3245

3246

3247
3248
3249
3250
3251
3252

3253

3254
3255
3256

3257
3258
3259
3260
3261

3262
3263

3264

3265
3266
3267
3268
3269

3270
3271

7.1.2. Deny-biased PEP

If the decision is "Permit", then the PEP SHALL permit access. If obligations accompany the
decision, then the PEP SHALL permit access only if it understands and it can and will discharge
those obligations.

All other decisions SHALL result in the denial of access.

Note: other actions, e.g. consultation of additional PDPs, reformulation/resubmission of the
decision request, etc., are not prohibited.

7.1.3. Permit-biased PEP

If the decision is "Deny", then the PEP SHALL deny access. If obligations accompany the
decision, then the PEP shall deny access only if it understands, and it can and will discharge
those obligations.

All other decisions SHALL result in the permission of access.

Note: other actions, e.g. consultation of additional PDPs, reformulation/resubmission of the
decision request, etc., are not prohibited.

7.2. Attribute evaluation

Attributes are represented in the request context by the context handler, regardless of whether
or not they appeared in the original decision request, and are referred to in the policy by subject,
resource, action and environment attribute designators and attribute selectors. A named
attribute is the term used for the criteria that the specific subject, resource, action and
environment attribute designators and selectors use to refer to particular attributes in the
subject, resource, action and environment elements of the request context, respectively.

7.2.1. Structured attributes

<xacml :AttributeValue> and <xacml-context:AttributeValue> elements MAY contain
an instance of a structured XML data-type, for example <ds:KeylInfo>. XACML 2.0 supports
several ways for comparing the contents of such elements.

1. In some cases, such elements MAY be compared using one of the XACML string functions,
such as “string-regexp-match”, described below. This requires that the element be given
the data-type "http://www.w3.0rg/2001/XMLSchema##string". For example, a structured
data-type that is actually a ds:KeyInfo/KeyName would appear in the Context as:

<AttributeValue DataType="http://www._.w3.0rg/2001/XMLSchema#string'>
&I1t;ds:KeyName> jhibbert-key</ds:KeyName>
</AttributeValue>

In general, this method will not be adequate unless the structured data-type is quite simple.

2. An<AttributeSelector> element MAY be used to select the contents of a leaf sub-
element of the structured data-type by means of an XPath expression. That value MAY
then be compared using one of the supported XACML functions appropriate for its primitive
data-type. This method requires support by the PDP for the optional XPath expressions
feature.

3. An<AttributeSelector> element MAY be used to select any node in the structured
data-type by means of an XPath expression. This hode MAY then be compared using one

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 78 of 141

3272
3273

3274

3275

3276
3277
3278

3279
3280
3281
3282
3283
3284
3285

3286
3287
3288

3289

3290
3291
3292
3293
3294

3295

3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310

of the XPath-based functions described in Section A.3. This method requires support by
the PDP for the optional XPath expressions and XPath functions features.

See also Section 8.2.

7.2.2. Attribute bags

XACML defines implicit collections of its data-types. XACML refers to a collection of values that are
of a single data-type as a bag. Bags of data-types are needed because selections of nodes from
an XML resource or XACML request context may return more than one value.

The <AttributeSelector> element uses an XPath expression to specify the selection of data
from an XML resource. The result of an XPath expression is termed a node-set, which contains all
the leaf nodes from the XML resource that match the predicate in the XPath expression. Based on
the various indexing functions provided in the XPath specification, it SHALL be implied that a
resultant node-set is the collection of the matching nodes. XACML also defines the
<AttributeDesignator> element to have the same matching methodology for attributes in the
XACML request context.

The values in a bag are not ordered, and some of the values may be duplicates. There SHALL be
no notion of a bag containing bags, or a bag containing values of differing types. l.e. a bag in
XACML SHALL contain only values that are of the same data-type.

7.2.3. Multivalued attributes

If a single <Attribute> element in a request context contains multiple <xacml -
context:AttributeValue> child elements, then the bag of values resulting from evaluation of
the <Attribute> element MUST be identical to the bag of values that results from evaluating a
context in which each <xacml-context:AttributeValue> element appears in a separate
<Attribute> element, each carrying identical meta-data.

7.2.4. Attribute Matching

A named attribute includes specific criteria with which to match attributes in the context. An
attribute specifies an Attributeld and DataType, and a named attribute also specifies the
Issuer. A named attribute SHALL match an attribute if the values of their respective
Attributeld, DataType and optional 1ssuer attributes match within their particular element -
subject, resource, action or environment - of the context. The Attributeld of the named
attribute MUST match, by URI equality, the Attributeld of the corresponding context attribute.
The DataType of the named attribute MUST match, by URI equality, the DataType of the
corresponding context attribute. If Issuer is supplied in the named attribute, then it MUST
match, using the urn:oasis:names:tc:xacml:1.0:function:string-equal function, the
Issuer of the corresponding context attribute. If Issuer is not supplied in the named attribute,
then the matching of the context attribute to the named attribute SHALL be governed by
Attributeld and DataType alone, regardless of the presence, absence, or actual value of
Issuer in the corresponding context attribute. In the case of an attribute selector, the matching
of the attribute to the named attribute SHALL be governed by the XPath expression and
DataType.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 79 of 141

3311

3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326

3327

3328
3329
3330
3331

3332

3333
3334
3335
3336
3337
3338
3339
3340
3341

3342
3343
3344
3345
3346
3347
3348
3349
3350

7.2.5. Attribute Retrieval

The PDP SHALL request the values of attributes in the request context from the context handler.
The PDP SHALL reference the attributes as if they were in a physical request context document,
but the context handler is responsible for obtaining and supplying the requested values by
whatever means it deems appropriate. The context handler SHALL return the values of
attributes that match the attribute designator or attribute selector and form them into a bag of
values with the specified data-type. If no attributes from the request context match, then the
attribute SHALL be considered missing. If the attribute is missing, then MustBePresent
governs whether the attribute designator or attribute selector returns an empty bag or an
“Indeterminate” result. If MustBePresent is “False” (default value), then a missing attribute
SHALL result in an empty bag. If MustBePresent is “True”, then a missing attribute SHALL
result in “Indeterminate”. This “Indeterminate” result SHALL be handled in accordance with the
specification of the encompassing expressions, rules, policies and policy sets. If the result is
“Indeterminate”, then the Attributeld, DataType and Issuer of the attribute MAY be listed in
the authorization decision as described in Section 7.13. However, a PDP MAY choose not to
return such information for security reasons.

7.2.6. Environment Attributes

Standard environment attributes are listed in Section B.8. If a value for one of these attributes is
supplied in the decision request, then the context handler SHALL use that value. Otherwise, the
context handler SHALL supply a value. In the case of date and time attributes, the supplied
value SHALL have the semantics of the "date and time that apply to the decision request".

7.3. Expression evaluation

XACML specifies expressions in terms of the elements listed below, of which the <Apply> and
<Condition> elements recursively compose greater expressions. Valid expressions SHALL be
type correct, which means that the types of each of the elements contained within <Apply> and
<Condition> elements SHALL agree with the respective argument types of the function that is
named by the Functionld attribute. The resultant type of the <Apply> or <Condition>
element SHALL be the resultant type of the function, which MAY be narrowed to a primitive data-
type, or a bag of a primitive data-type, by type-unification. XACML defines an evaluation result of
"Indeterminate”, which is said to be the result of an invalid expression, or an operational error
occurring during the evaluation of the expression.

XACML defines these elements to be in the substitution group of the <Expression> element:
o <xacml:Attributevalue>

o <xacml:SubjectAttributeDesignator>

o <xacml:ResourceAttributeDesignator>

e <xacml:ActionAttributeDesignator>

o <xacml:EnvironmentAttributeDesighator>

o <xacml:AttributeSelector>

o <xacml:Apply>

e <xacml:Condition>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 80 of 141

3351
3352

3353

3354
3355
3356
3357

3358

3359
3360

3361
3362

3363

3364
3365

3366
3367
3368
3369

3370
3371
3372
3373
3374

3375
3376
3377
3378
3379
3380
3381
3382
3383

3384
3385

3386
3387
3388

e <xacml:Function>

e <xacml:VariableReference>

7.4. Arithmetic evaluation

IEEE 754 [IEEE 754] specifies how to evaluate arithmetic functions in a context, which specifies
defaults for precision, rounding, etc. XACML SHALL use this specification for the evaluation of all
integer and double functions relying on the Extended Default Context, enhanced with double
precision:

flags - all setto 0

trap-enablers - all set to O (IEEE 854 §7) with the exception of the “division-by-zero” trap
enabler, which SHALL be setto 1

precision - is set to the designated double precision

rounding - is set to round-half-even (IEEE 854 §4.1)

7.5. Match evaluation

Attribute matching elements appear in the <Target> element of rules, policies and policy sets.
They are the following:

<SubjectMatch>
<ResourceMatch>
<ActionMatch>
<EnvironmentMatch>

These elements represent Boolean expressions over attributes of the subject, resource, action
and environment, respectively. A matching element contains a Matchld attribute that specifies
the function to be used in performing the match evaluation, an <xacml : AttributeValue> and an
<AttributeDesignator> or <AttributeSelector> element that specifies the attribute in the
context that is to be matched against the specified value.

The Matchld attribute SHALL specify a function that compares two arguments, returning a result
type of "http://www.w3.0rg/2001/XMLSchema#hboolean”. The attribute value specified in the
matching element SHALL be supplied to the Matchld function as its first argument. An element of
the bag returned by the <AttributeDesignator> or <AttributeSelector> element SHALL
be supplied to the Matchld function as its second argument, as explained below. The DataType
of the <xacml : AttributeValue> SHALL match the data-type of the first argument expected by
the Matchld function. The DataType of the <AttributeDesignhator> or
<AttributeSelector> element SHALL match the data-type of the second argument expected
by the Matchld function.

The XACML standard functions that meet the requirements for use as a Matchld attribute value
are:

urn:oasis:names:tc:xacml:2.0:function:-type-equal
urn:oasis:names:tc:xacml:2.0:function:-type-greater-than

urn:oasis:names:tc:xacml:2.0:function:-type-greater-than-or-equal

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 81 of 141

urn:oasis:names:tc:xacml:2.0:function:-type-less-than
urn:oasis:names:tc:xacml:2.0:function:-type-less-than-or-equal
urn:oasis:names:tc:xacml:2.0:function:-type-match

In addition, functions that are strictly within an extension to XACML MAY appear as a value for the
Matchld attribute, and those functions MAY use data-types that are also extensions, so long as
the extension function returns a Boolean result and takes two single base types as its inputs. The
function used as the value for the Matchld attribute SHOULD be easily indexable. Use of non-
indexable or complex functions may prevent efficient evaluation of decision requests.

The evaluation semantics for a matching element is as follows. If an operational error were to
occur while evaluating the <AttributeDesignator> or <AttributeSelector> element, then
the result of the entire expression SHALL be "Indeterminate”. If the <AttributeDesignator> or
<AttributeSelector> element were to evaluate to an empty bag, then the result of the
expression SHALL be "False". Otherwise, the Matchld function SHALL be applied between the
<xacml :AttributeValue> and each element of the bag returned from the
<AttributeDesignator> or <AttributeSelector> element. If at least one of those function
applications were to evaluate to "True", then the result of the entire expression SHALL be "True".
Otherwise, if at least one of the function applications results in "Indeterminate”, then the result
SHALL be "Indeterminate”. Finally, if all function applications evaluate to "False", then the result of
the entire expression SHALL be "False".

It is also possible to express the semantics of a target matching element in a condition. For
instance, the target match expression that compares a “subject-name” starting with the name
“John” can be expressed as follows:

<SubjectMatch
Matchld="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string”>
John.*
</AttributeValue>
<SubjectAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1._.0:subject:subject-id”
DataType="http://www.w3.0rg/2001/XMLSchema#string”/>
</SubjectMatch>

Alternatively, the same match semantics can be expressed as an <Apply> element in a condition
by using the “urn:oasis:names:tc:xacml:1.0:function:any-of” function, as follows:
<Apply Functionld="urn:oasis:names:tc:xacml:1_0:function:any-of’>
<Function
Functionld="urn:oasis:names:tc:xacml:1_0:function:string-regexp-match”/>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string’>
John._*
</AttributeValue>
<SubjectAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id”
DataType="http://www.w3.0rg/2001/XMLSchema#string”/>
</Apply>

7.6. Target evaluation

The target value SHALL be "Match" if the subjects, resources, actions and environments
specified in the target all match values in the request context. If any one of the subjects,
resources, actions and environments specified in the target are “Indeterminate”, then the target
SHALL be “Indeterminate”. Otherwise, the target SHALL be “No match”. The target match table is
shown in Table 1.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 82 of 141

3439

3440
3441
3442
3443

3444
3445
3446
3447

3448
3449

3450
3451

Subjects value | Resources Actions value Environments Target value
value value

“Match” “Match” “Match” “Match” “Match”

“No match” “Match” or “No | “Match” or “No | “Match” or “No “No match”
match” match” match”

“Match” or “No | “No match” “Match” or “No | “Match” or “No “No match”

match” match” match”

“Match” or “No | “Match” or “No | “No match” “Match” or “No “No match”

match” match” match”

“Match” or “No | “Match” or “No | “Match” or “No | “No match” “No match”

match” match” match”

“Indeterminate” | Don't care Don't care Don't care “Indeterminate”

Don't care “Indeterminate” | Don't care Don't care “Indeterminate”

Don't care Don't care “Indeterminate” | Don't care “Indeterminate”

Don't care Don't care Don't care “Indeterminate” | “Indeterminate”

Table 1 - Target match table

The subjects, resources, actions and environments SHALL match values in the request context
if at least one of their <Subject>, <Resource>, <Action> or <Environment> elements,
respectively, matches a value in the request context. The subjects match table is shown in Table
2. The resources, actions and environments match tables are analogous.

<Subject> values <Subjects> Value

At least one “Match” “Match”

None matches and at “Indeterminate”

least one “Indeterminate”

All “No match”

Table 2 - Subjects match table
A subject, resource, action or environment SHALL match a value in the request context if the
value of all its <SubjectMatch>, <ResourceMatch>, <ActionMatch> or
<EnvironmentMatch> elements, respectively, are “True”.

“No match”

The subject match table is shown in Table 3. The resource, action and environment match
tables are analogous.

<SubjectMatch> <Subject> Value
values
All “True” “Match”

No “False” and at least “Indeterminate”

one “Indeterminate”

At least one “False” “No match”

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

1 February 2005
Page 83 of 141

3452

3453

3454
3455
3456
3457

3458
3459
3460
3461
3462
3463
3464

3465

3466
3467
3468
3469

3470

3471
3472

3473

3474
3475
3476

3477
3478

Table 3 - Subject match table

7.7. VariableReference Evaluation

The <VariableReference> element references a single <VariableDefinition> element
contained within the same <Policy> element. A <VariableReference> that does not
reference a particular <VariableDefinition> element within the encompassing <Policy>
element is called an undefined reference. Policies with undefined references are invalid.

In any place where a <VariableReference> occurs, it has the effect as if the text of the
<Expression> element defined in the <VariableDefinition> element replaces the
<VariableReference> element. Any evaluation scheme that preserves this semantic is
acceptable. For instance, the expression in the <VariableDefinition> element may be
evaluated to a particular value and cached for multiple references without consequence. (l.e. the
value of an <Expression> element remains the same for the entire policy evaluation.) This
characteristic is one of the benefits of XACML being a declarative language.

7.8. Condition evaluation

The condition value SHALL be "True" if the <Condition> element is absent, or if it evaluates to
"True". Its value SHALL be "False" if the <Condition> element evaluates to "False". The
condition value SHALL be "Indeterminate”, if the expression contained in the <Condtion>
element evaluates to "Indeterminate."

7.9. Rule evaluation

A rule has a value that can be calculated by evaluating its contents. Rule evaluation involves
separate evaluation of the rule's target and condition. The rule truth table is shown in Table 4.

Target Condition Rule Value
“Match” “True” Effect

“Match” “False” “NotApplicable”
“Match” “Indeterminate” | “Indeterminate”
“No-match” Don't care “NotApplicable”
“Indeterminate” | Don'’t care “Indeterminate”

Table 4 - Rule truth table

If the target value is "No-match" or “Indeterminate” then the rule value SHALL be “NotApplicable”
or “Indeterminate”, respectively, regardless of the value of the condition. For these cases,
therefore, the condition need not be evaluated.

If the target value is “Match” and the condition value is “True”, then the effect specified in the
enclosing <Rule> element SHALL determine the rule’s value.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 84 of 141

3479

3480
3481
3482

3483
3484
3485
3486
3487

3488

3489

3490
3491
3492
3493
3494
3495
3496

3497
3498
3499

3500
3501
3502

3503
3504
3505
3506
3507
3508
3509

7.10. Policy evaluation

The value of a policy SHALL be determined only by its contents, considered in relation to the
contents of the request context. A policy's value SHALL be determined by evaluation of the
policy's target and rules.

The policy's target SHALL be evaluated to determine the applicability of the policy. If the target
evaluates to "Match", then the value of the policy SHALL be determined by evaluation of the
policy's rules, according to the specified rule-combining algorithm. If the target evaluates to
"No-match”, then the value of the policy SHALL be "NotApplicable”. If the target evaluates to
"Indeterminate”, then the value of the policy SHALL be "Indeterminate”.

The policy truth table is shown in Table 5.

Target Rule values Policy Value
“Match” At least one rule | Specified by the rule-
value is its Effect | combining algorithm
“Match” All rule values “NotApplicable”
are
“NotApplicable”
“Match” At least one rule | Specified by the rule-
value is combining algorithm
“Indeterminate”
“No-match” Don't care “NotApplicable”
“Indeterminate” | Don't care “Indeterminate”

Table 5 - Policy truth table

A rules value of "At least one rule value is its Effect” means either that the <Rule> element is
absent, or one or more of the rules contained in the policy is applicable to the decision request
(i.e., it returns the value of its “Effect”; see Section 7.9). A rules value of “All rule values are
‘NotApplicable™ SHALL be used if no rule contained in the policy is applicable to the request and if
no rule contained in the policy returns a value of “Indeterminate”. If no rule contained in the
policy is applicable to the request, but one or more rule returns a value of “Indeterminate”, then the
rules SHALL evaluate to "At least one rule value is ‘Indeterminate™.

If the target value is "No-match" or “Indeterminate” then the policy value SHALL be
“NotApplicable” or “Indeterminate”, respectively, regardless of the value of the rules. For these
cases, therefore, the rules need not be evaluated.

If the target value is “Match” and the rule value is “At least one rule value is it's Effect” or “At least
one rule value is ‘Indeterminate™, then the rule-combining algorithm specified in the policy
SHALL determine the policy value.

Note that none of the rule-combining algorithms defined by XACML 2.0 take parameters.
However, non-standard combining algorithms MAY take parameters. In such a case, the values
of these parameters associated with the rules, MUST be taken into account when evaluating the
policy. The parameters and their types should be defined in the specification of the combining
algorithm. If the implementation supports combiner parameters and if combiner parameters are
present in a policy, then the parameter values MUST be supplied to the combining algorithm
implementation.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 85 of 141

3510

3511
3512
3513
3514

3515
3516
3517
3518
3519

3520

3521

3522
3523
3524
3525
3526
3527
3528
3529
3530
3531

3532
3533
3534

3535
3536
3537

3538
3539
3540
3541

7.11. Policy Set evaluation

The value of a policy set SHALL be determined by its contents, considered in relation to the
contents of the request context. A policy set's value SHALL be determined by evaluation of the
policy set's target, policies and policy sets, according to the specified policy-combining
algorithm.

The policy set's target SHALL be evaluated to determine the applicability of the policy set. If the
target evaluates to "Match" then the value of the policy set SHALL be determined by evaluation of
the policy set's policies and policy sets, according to the specified policy-combining algorithm.
If the target evaluates to "No-match”, then the value of the policy set shall be "NotApplicable". If
the target evaluates to "Indeterminate”, then the value of the policy set SHALL be "Indeterminate".

The policy set truth table is shown in Table 6.

Target Policy values Policy Set Value

“Match” At least one policy | Specified by the policy-
value is its combining algorithm
Decision

“Match” All policy values “NotApplicable”
are

“NotApplicable”

“Match” At least one policy | Specified by the policy-
value is combining algorithm
“Indeterminate”

“No-match” Don't care “NotApplicable”

“Indeterminate” | Don't care “Indeterminate”

Table 6 — Policy set truth table

A policies value of "At least one policy value is its Decision" SHALL be used if there are no
contained or referenced policies or policy sets, or if one or more of the policies or policy sets
contained in or referenced by the policy set is applicable to the decision request (i.e., returns a
value determined by its combining algorithm) A policies value of “All policy values are
‘NotApplicable™ SHALL be used if no policy or policy set contained in or referenced by the policy
set is applicable to the request and if no policy or policy set contained in or referenced by the
policy set returns a value of “Indeterminate”. If no policy or policy set contained in or referenced
by the policy set is applicable to the request but one or more policy or policy set returns a value
of “Indeterminate”, then the policies SHALL evaluate to "At least one policy value is
‘Indeterminate™.

If the target value is "No-match" or “Indeterminate” then the policy set value SHALL be
“NotApplicable” or “Indeterminate”, respectively, regardless of the value of the policies. For these
cases, therefore, the policies need not be evaluated.

If the target value is “Match” and the policies value is “At least one policy value is its Decision” or
“At least one policy value is ‘Indeterminate™, then the policy-combining algorithm specified in the
policy set SHALL determine the policy set value.

Note that none of the policy-combining algorithms defined by XACML 2.0 take parameters.
However, non-standard combining algorithms MAY take parameters. In such a case, the values
of these parameters associated with the policies, MUST be taken into account when evaluating the
policy set. The parameters and their types should be defined in the specification of the

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 86 of 141

3542
3543
3544

3545

3546
3547
3548
3549

3550

3551
3552
3553
3554

3555
3556
3557

3558
3559

3560

3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575

3576

3577

3578

3579

3580
3581

combining algorithm. If the implementation supports combiner parameters and if combiner
parameters are present in a policy, then the parameter values MUST be supplied to the
combining algorithm implementation.

7.12. Hierarchical resources

It is often the case that a resource is organized as a hierarchy (e.qg. file system, XML document).
XACML provides several optional mechanisms for supporting hierarchical resources. These are
described in the XACML Profile for Hierarchical Resources [HIER] and in the XACML Profile for
Requests for Multiple Resources [MULT].

7.13. Authorization decision

In relation to a particular decision request, the PDP is defined by a policy-combining algorithm
and a set of policies and/or policy sets. The PDP SHALL return a response context as if it had
evaluated a single policy set consisting of this policy-combining algorithm and the set of
policies and/or policy sets.

The PDP MUST evaluate the policy set as specified in Sections 5 and 7. The PDP MUST return a
response context, with one <Decision> element of value "Permit", "Deny", "Indeterminate" or
"NotApplicable".

If the PDP cannot make a decision, then an "Indeterminate” <Decision> element SHALL be
returned.

7.14. Obligations

A policy or policy set may contain one or more obligations. When such a policy or policy set is
evaluated, an obligation SHALL be passed up to the next level of evaluation (the enclosing or
referencing policy, policy set or authorization decision) only if the effect of the policy or policy
set being evaluated matches the value of the Ful ¥i 110n attribute of the obligation.

As a consequence of this procedure, no obligations SHALL be returned to the PEP if the policies
or policy sets from which they are drawn are not evaluated, or if their evaluated result is
"Indeterminate” or "NotApplicable”, or if the decision resulting from evaluating the policy or policy
set does not match the decision resulting from evaluating an enclosing policy set.

If the PDP's evaluation is viewed as a tree of policy sets and policies, each of which returns
"Permit" or "Deny", then the set of obligations returned by the PDP to the PEP will include only the
obligations associated with those paths where the effect at each level of evaluation is the same as
the effect being returned by the PDP. In situations where any lack of determinism is unacceptable,
a deterministic combining algorithm, such as ordered-deny-overrides, should be used.

Also, see Section 7.1.

7.15. Exception handling

XACML specifies behaviour for the PDP in the following situations.

7.15.1. Unsupported functionality

If the PDP attempts to evaluate a policy set or policy that contains an optional element type or
function that the PDP does not support, then the PDP SHALL return a <Decision> value of

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 87 of 141

3582
3583
3584

3585

3586
3587
3588

3589
3590
3591

3592

3593
3594
3595
3596

3597

3598
3599
3600
3601
3602

3603

3604
3605

3606

3607
3608
3609
3610

3611

3612
3613

3614

3615
3616

3617

"Indeterminate”. If a <StatusCode> element is also returned, then its value SHALL be
"urn:oasis:names:tc:xacml:1.0:status:syntax-error" in the case of an unsupported element type, and
"urn:oasis:names:tc:xacml:1.0:status:processing-error” in the case of an unsupported function.

7.15.2. Syntax and type errors

If a policy that contains invalid syntax is evaluated by the XACML PDP at the time a decision
request is received, then the result of that policy SHALL be "Indeterminate" with a StatusCode
value of "urn:oasis:names:tc:xacml:1.0:status:syntax-error".

If a policy that contains invalid static data-types is evaluated by the XACML PDP at the time a
decision request is received, then the result of that policy SHALL be "Indeterminate" with a
StatusCode value of "urn:oasis:names:tc:xacml:1.0:status:processing-error".

7.15.3. Missing attributes

The absence of matching attributes in the request context for any of the attribute designators or
selectors that are found in the policy SHALL result in a <Decision> element containing the
"Indeterminate” value, as described in Sections 5.37 and 5.42. If, in this case, and a status code is
supplied, then the value

"urn:oasis:names:tc:xacml:1.0:status:missing-attribute"

SHALL be used, to indicate that more information is needed in order for a definitive decision to be
rendered. In this case, the <Status> element MAY list the names and data-types of any
attributes of the subjects, resource, action or environment that are needed by the PDP to refine
its decision (see Section 6.16). A PEP MAY resubmit a refined request context in response to a
<Decision> element contents of "Indeterminate" with a status code of

"urn:oasis:names:tc:xacml:1.0:missing-attribute”

by adding attribute values for the attribute names that were listed in the previous response. When
the PDP returns a <Decision> element contents of "Indeterminate"”, with a status code of

"urn:oasis:names:tc:xacml:1.0:missing-attribute”,

it MUST NOT list the names and data-types of any attribute of the subject, resource, action or
environment for which values were supplied in the original request. Note, this requirement forces
the PDP to eventually return an authorization decision of "Permit", "Deny" or "Indeterminate” with
some other status code, in response to successively-refined requests.

8. XACML extensibility points (non-normative)

This section describes the points within the XACML model and schema where extensions can be
added

8.1. Extensible XML attribute types

The following XML attributes have values that are URIs. These may be extended by the creation of
new URIs associated with new semantics for these attributes.

Attributeld,

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 88 of 141

3618
3619
3620
3621
3622
3623
3624
3625
3626

3627

3628
3629
3630
3631

3632
3633
3634
3635
3636
3637
3638
3639

3640
3641
3642

3643
3644

3645
3646
3647
3648

3649

3650
3651

3652
3653
3654

DataType,

Functionld,

Matchlid,
Obligationld,
PolicyCombiningAlgld,
RuleCombiningAlgld,
StatusCode,
SubjectCategory.

See Section 5 for definitions of these attribute types.

8.2. Structured attributes

<xacml :AttributeValue> and <xacml-context:AttributeValue> elements MAY
contain an instance of a structured XML data-type. Section 7.2.1 describes a number of standard
techniques to identify data items within such a structured attribute. Listed here are some additional
techniques that require XACML extensions.

1. For a given structured data-type, a community of XACML users MAY define new attribute
identifiers for each leaf sub-element of the structured data-type that has a type conformant
with one of the XACML-defined primitive data-types. Using these new attribute identifiers,
the PEPs or context handlers used by that community of users can flatten instances of
the structured data-type into a sequence of individual <Attribute> elements. Each such
<Attribute> element can be compared using the XACML-defined functions. Using this
method, the structured data-type itself never appears in an <xacml -
context:AttributeValue> element.

2. A community of XACML users MAY define a new function that can be used to compare a
value of the structured data-type against some other value. This method may only be used
by PDPs that support the new function.

9. Security and privacy considerations (non-
normative)

This section identifies possible security and privacy compromise scenarios that should be
considered when implementing an XACML-based system. The section is informative only. It is left
to the implementer to decide whether these compromise scenarios are practical in their
environment and to select appropriate safeguards.

9.1. Threat model

We assume here that the adversary has access to the communication channel between the
XACML actors and is able to interpret, insert, delete and modify messages or parts of messages.

Additionally, an actor may use information from a former message maliciously in subsequent
transactions. It is further assumed that rules and policies are only as reliable as the actors that
create and use them. Thus it is incumbent on each actor to establish appropriate trust in the other
access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 89 of 141

3655
3656

3657
3658
3659
3660

3661
3662
3663
3664

3665
3666

3667

3668
3669
3670
3671
3672
3673
3674

3675

3676

3677
3678
3679

3680

3681
3682

3683

3684
3685

3686
3687
3688
3689
3690

3691

3692
3693

actors upon which it relies. Mechanisms for trust establishment are outside the scope of this
specification.

The messages that are transmitted between the actors in the XACML model are susceptible to
attack by malicious third parties. Other points of vulnerability include the PEP, the PDP and the
PAP. While some of these entities are not strictly within the scope of this specification, their
compromise could lead to the compromise of access control enforced by the PEP.

It should be noted that there are other components of a distributed system that may be
compromised, such as an operating system and the domain-name system (DNS) that are outside
the scope of this discussion of threat models. Compromise in these components may also lead to a
policy violation.

The following sections detail specific compromise scenarios that may be relevant to an XACML
system.

9.1.1. Unauthorized disclosure

XACML does not specify any inherent mechanisms to protect the confidentiality of the messages
exchanged between actors. Therefore, an adversary could observe the messages in transit. Under
certain security policies, disclosure of this information is a violation. Disclosure of attributes or the
types of decision requests that a subject submits may be a breach of privacy policy. In the
commercial sector, the consequences of unauthorized disclosure of personal data may range from
embarrassment to the custodian to imprisonment and large fines in the case of medical or financial
data.

Unauthorized disclosure is addressed by confidentiality safeguards.

9.1.2. Message replay

A message replay attack is one in which the adversary records and replays legitimate messages
between XACML actors. This attack may lead to denial of service, the use of out-of-date
information or impersonation.

Prevention of replay attacks requires the use of message freshness safeguards.

Note that encryption of the message does not mitigate a replay attack since the message is simply
replayed and does not have to be understood by the adversary.

9.1.3. Message insertion

A message insertion attack is one in which the adversary inserts messages in the sequence of
messages between XACML actors.

The solution to a message insertion attack is to use mutual authentication and message sequence
integrity safeguards between the actors. It should be noted that just using SSL mutual
authentication is not sufficient. This only proves that the other party is the one identified by the
subject of the X.509 certificate. In order to be effective, it is necessary to confirm that the certificate
subject is authorized to send the message.

9.1.4. Message deletion

A message deletion attack is one in which the adversary deletes messages in the sequence of
messages between XACML actors. Message deletion may lead to denial of service. However, a

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 90 of 141

3694
3695

3696
3697

3698

3699
3700
3701

3702

3703
3704
3705
3706

3707
3708
3709
3710

3711
3712
3713
3714
3715

3716
3717
3718
3719
3720

3721
3722
3723
3724
3725
3726
3727
3728

3729

3730
3731
3732
3733
3734

3735
3736
3737

properly designed XACML system should not render an incorrect authorization decision as a result
of a message deletion attack.

The solution to a message deletion attack is to use message sequence integrity safeguards
between the actors.

9.1.5. Message modification

If an adversary can intercept a message and change its contents, then they may be able to alter an
authorization decision. A message integrity safeguard can prevent a successful message
modification attack.

9.1.6. NotApplicable results

A result of "NotApplicable" means that the PDP could not locate a policy whose target matched
the information in the decision request. In general, it is highly recommended that a "Deny" effect
policy be used, so that when a PDP would have returned "NotApplicable", a result of "Deny" is
returned instead.

In some security models, however, such as those found in many Web Servers, an authorization
decision of "NotApplicable" is treated as equivalent to "Permit". There are particular security
considerations that must be taken into account for this to be safe. These are explained in the
following paragraphs.

If "NotApplicable" is to be treated as "Permit", it is vital that the matching algorithms used by the
policy to match elements in the decision request be closely aligned with the data syntax used by
the applications that will be submitting the decision request. A failure to match will result in
“NotApplicable” and be treated as "Permit". So an unintended failure to match may allow
unintended access.

Commercial http responders allow a variety of syntaxes to be treated equivalently. The "%" can be
used to represent characters by hex value. The URL path "/../" provides multiple ways of specifying
the same value. Multiple character sets may be permitted and, in some cases, the same printed
character can be represented by different binary values. Unless the matching algorithm used by
the policy is sophisticated enough to catch these variations, unintended access may be permitted.

It may be safe to treat "NotApplicable" as "Permit” only in a closed environment where all
applications that formulate a decision request can be guaranteed to use the exact syntax
expected by the policies. In a more open environment, where decision requests may be received
from applications that use any legal syntax, it is strongly recommended that "NotApplicable” NOT
be treated as "Permit" unless matching rules have been very carefully designed to match all
possible applicable inputs, regardless of syntax or type variations. Note, however, that according to
Section 7.1, a PEP must deny access unless it receives an explicit “Permit” authorization
decision.

9.1.7. Negative rules

A negative rule is one that is based on a predicate not being "True". If not used with care,
negative rules can lead to a policy violation, therefore some authorities recommend that they not
be used. However, negative rules can be extremely efficient in certain cases, so XACML has
chosen to include them. Nevertheless, it is recommended that they be used with care and avoided
if possible.

A common use for negative rules is to deny access to an individual or subgroup when their
membership in a larger group would otherwise permit them access. For example, we might want to
write a rule that allows all Vice Presidents to see the unpublished financial data, except for Joe,

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 91 of 141

3738
3739
3740
3741
3742
3743

3744
3745
3746
3747
3748
3749
3750

3751
3752
3753
3754
3755
3756
3757
3758

3759

3760

3761
3762

3763
3764
3765

3766
3767
3768
3769

3770
3771
3772
3773

3774

3775
3776

3777
3778
3779

who is only a Ceremonial Vice President and can be indiscreet in his communications. If we have
complete control over the administration of subject attributes, a superior approach would be to
define “Vice President” and “Ceremonial Vice President” as distinct groups and then define rules
accordingly. However, in some environments this approach may not be feasible. (It is worth noting
in passing that, generally speaking, referring to individuals in rules does not scale well. Generally,
shared attributes are preferred.)

If not used with care, negative rules can lead to policy violation in two common cases. They are:
when attributes are suppressed and when the base group changes. An example of suppressed
attributes would be if we have a policy that access should be permitted, unless the subject is a
credit risk. If it is possible that the attribute of being a credit risk may be unknown to the PDP for
some reason, then unauthorized access may result. In some environments, the subject may be
able to suppress the publication of attributes by the application of privacy controls, or the server or
repository that contains the information may be unavailable for accidental or intentional reasons.

An example of a changing base group would be if there is a policy that everyone in the engineering
department may change software source code, except for secretaries. Suppose now that the
department was to merge with another engineering department and the intent is to maintain the
same policy. However, the new department also includes individuals identified as administrative
assistants, who ought to be treated in the same way as secretaries. Unless the policy is altered,
they will unintentionally be permitted to change software source code. Problems of this type are
easy to avoid when one individual administers all policies, but when administration is distributed,
as XACML allows, this type of situation must be explicitly guarded against.

9.2. Safeguards

9.2.1. Authentication

Authentication provides the means for one party in a transaction to determine the identity of the
other party in the transaction. Authentication may be in one direction, or it may be bilateral.

Given the sensitive nature of access control systems, it is important for a PEP to authenticate the
identity of the PDP to which it sends decision requests. Otherwise, there is a risk that an
adversary could provide false or invalid authorization decisions, leading to a policy violation.

It is equally important for a PDP to authenticate the identity of the PEP and assess the level of trust
to determine what, if any, sensitive data should be passed. One should keep in mind that even
simple "Permit" or "Deny" responses could be exploited if an adversary were allowed to make
unlimited requests to a PDP.

Many different techniques may be used to provide authentication, such as co-located code, a
private network, a VPN or digital signatures. Authentication may also be performed as part of the
communication protocol used to exchange the contexts. In this case, authentication may be
performed either at the message level or at the session level.

9.2.2. Policy administration

If the contents of policies are exposed outside of the access control system, potential subjects
may use this information to determine how to gain unauthorized access.

To prevent this threat, the repository used for the storage of policies may itself require access
control. In addition, the <Status> element should be used to return values of missing attributes
only when exposure of the identities of those attributes will not compromise security.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 92 of 141

3780

3781
3782
3783
3784

3785

3786
3787
3788
3789
3790
3791

3792
3793
3794
3795
3796

3797
3798
3799

3800

3801
3802

3803
3804
3805

3806
3807
3808

3809

3810
3811
3812
3813
3814

3815
3816
3817
3818
3819
3820

9.2.3. Confidentiality

Confidentiality mechanisms ensure that the contents of a message can be read only by the desired
recipients and not by anyone else who encounters the message while it is in transit. There are two
areas in which confidentiality should be considered: one is confidentiality during transmission; the
other is confidentiality within a <Policy> element.

9.2.3.1. Communication confidentiality

In some environments it is deemed good practice to treat all data within an access control system
as confidential. In other environments, policies may be made freely available for distribution,
inspection and audit. The idea behind keeping policy information secret is to make it more difficult
for an adversary to know what steps might be sufficient to obtain unauthorized access. Regardless
of the approach chosen, the security of the access control system should not depend on the
secrecy of the policy.

Any security considerations related to transmitting or exchanging XACML <Policy> elements are
outside the scope of the XACML standard. While it is often important to ensure that the integrity
and confidentiality of <Pol icy> elements is maintained when they are exchanged between two
parties, it is left to the implementers to determine the appropriate mechanisms for their
environment.

Communications confidentiality can be provided by a confidentiality mechanism, such as SSL.
Using a point-to-point scheme like SSL may lead to other vulnerabilities when one of the end-points
is compromised.

9.2.3.2. Statement level confidentiality

In some cases, an implementation may want to encrypt only parts of an XACML <Policy>
element.

The XML Encryption Syntax and Processing Candidate Recommendation from W3C can be used
to encrypt all or parts of an XML document. This specification is recommended for use with
XACML.

It should go without saying that if a repository is used to facilitate the communication of cleartext
(i.e., unencrypted) policy between the PAP and PDP, then a secure repository should be used to
store this sensitive data.

9.2.4. Policy integrity

The XACML policy, used by the PDP to evaluate the request context, is the heart of the system.
Therefore, maintaining its integrity is essential. There are two aspects to maintaining the integrity of
the policy. One is to ensure that <Pol icy> elements have not been altered since they were
originally created by the PAP. The other is to ensure that <Pol icy> elements have not been
inserted or deleted from the set of policies.

In many cases, both aspects can be achieved by ensuring the integrity of the actors and
implementing session-level mechanisms to secure the communication between actors. The
selection of the appropriate mechanisms is left to the implementers. However, when policy is
distributed between organizations to be acted on at a later time, or when the policy travels with the
protected resource, it would be useful to sign the policy. In these cases, the XML Signature
Syntax and Processing standard from W3C is recommended to be used with XACML.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 93 of 141

3821
3822
3823
3824
3825
3826

3827

3828
3829
3830
3831
3832
3833
3834
3835

3836

3837
3838
3839
3840
3841

3842
3843

3844
3845
3846

3847
3848

3849
3850
3851

3852
3853

3854

3855
3856
3857
3858
3859
3860
3861
3862

Digital signatures should only be used to ensure the integrity of the statements. Digital signatures
should not be used as a method of selecting or evaluating policy. That is, the PDP should not
request a policy based on who signed it or whether or not it has been signed (as such a basis for
selection would, itself, be a matter of policy). However, the PDP must verify that the key used to
sign the policy is one controlled by the purported issuer of the policy. The means to do this are
dependent on the specific signature technology chosen and are outside the scope of this document.

9.2.5. Policy identifiers

Since policies can be referenced by their identifiers, it is the responsibility of the PAP to ensure
that these are unique. Confusion between identifiers could lead to misidentification of the
applicable policy. This specification is silent on whether a PAP must generate a new identifier
when a policy is modified or may use the same identifier in the modified policy. This is a matter of
administrative practice. However, care must be taken in either case. If the identifier is reused,
there is a danger that other policies or policy sets that reference it may be adversely affected.
Conversely, if a new identifier is used, these other policies may continue to use the prior policy,
unless it is deleted. In either case the results may not be what the policy administrator intends.

9.2.6. Trust model

Discussions of authentication, integrity and confidentiality safeguards necessarily assume an
underlying trust model: how can one actor come to believe that a given key is uniquely associated
with a specific, identified actor so that the key can be used to encrypt data for that actor or verify
signatures (or other integrity structures) from that actor? Many different types of trust model exist,
including strict hierarchies, distributed authorities, the Web, the bridge and so on.

It is worth considering the relationships between the various actors of the access control system in
terms of the interdependencies that do and do not exist.

¢ None of the entities of the authorization system are dependent on the PEP. They may
collect data from it, for example authentication data, but are responsible for verifying it
themselves.

e The correct operation of the system depends on the ability of the PEP to actually enforce
policy decisions.

e The PEP depends on the PDP to correctly evaluate policies. This in turn implies that the
PDP is supplied with the correct inputs. Other than that, the PDP does not depend on the
PEP.

o The PDP depends on the PAP to supply appropriate policies. The PAP is not dependent
on other components.

9.2.7. Privacy

It is important to be aware that any transactions that occur with respect to access control may
reveal private information about the actors. For example, if an XACML policy states that certain
data may only be read by subjects with “Gold Card Member” status, then any transaction in which
a subject is permitted access to that data leaks information to an adversary about the subject's
status. Privacy considerations may therefore lead to encryption and/or to access control
requirements surrounding the enforcement of XACML policy instances themselves: confidentiality-
protected channels for the request/response protocol messages, protection of subject attributes in
storage and in transit, and so on.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 94 of 141

3863
3864
3865

3866

3867

3868

3869
3870
3871

3872

3873
3874
3875
3876
3877

3878

3879

3880

Selection and use of privacy mechanisms appropriate to a given environment are outside the scope
of XACML. The decision regarding whether, how and when to deploy such mechanisms is left to
the implementers associated with the environment.

10. Conformance (normative)

10.1. Introduction

The XACML specification addresses the following aspect of conformance:

The XACML specification defines a number of functions, etc. that have somewhat special
application, therefore they are not required to be implemented in an implementation that claims to
conform with the OASIS standard.

10.2.Conformance tables

This section lists those portions of the specification that MUST be included in an implementation of
a PDP that claims to conform with XACML v2.0. A set of test cases has been created to assist in
this process. These test cases are hosted by Sun Microsystems and can be located from the
XACML Web page. The site hosting the test cases contains a full description of the test cases and
how to execute them.

Note: "M" means mandatory-to-implement. "O" means optional.

10.2.1. Schema elements

The implementation MUST support those schema elements that are marked “M”.

Element name M/0
xacml-context:Action M
xacml-context:Attribute
xacml-context:AttributeValue
xacml-context:Decision
xacml-context:Environment
xacml-context:MissingAttributeDetail
xacml-context:0Obligations
xacml-context:Request
xacml-context:Resource
xacml-context:ResourceContent
xacml-context:Response
xacml-context:Result
xacml-context:Status
xacml-context:StatusCode
xacml-context:StatusDetail
xacml-context:StatusMessage
xacml-context:Subject

xacml :Action

xacml :ActionAttributeDesignator
xacml :ActionMatch

xacml :Actions

xacml :Apply

xacml : AttributeAssignment

xacml :AttributeSelector

xacml :AttributeValue

SEO00=EEEEEEESEOOEEEEOEEOEEEEEZT

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 95 of 141

xacml :CombinerParameters
xacml :CombinerParameter
xacml :Condition

xacml -:Description

xacml :Environment

xacml :EnvironmentMatch

xacml :EnvironmentAttributeDesignator
xacml z:Environments

xacml :Expression

xacml :Function
xacml:Obligation
xacml:Obligations
xacml:Policy

xacml :PolicyCombinerParameters
xacml:PolicyDefaults
xacml:PolicyldReference
xacml:PolicySet

xacml :PolicySetDefaults
xacml :PolicySetldReference
xacml :Resource

xacml :ResourceAttributeDesignator
xacml :ResourceMatch

xacml :Resources

xacml :Rule

xacml :RuleCombinerParameters
xacml:Subject

xacml :SubjectMatch
xacml:Subjects

xacml:Target

xacml :VariableDefinition
xacml :VariableReference
xacml : XPathVersion

o000 =ss=zs0o0o0o=zZzo0oo0o0ossssss=s==0OO0O

3881 10.2.2. Identifier Prefixes

3882 The following identifier prefixes are reserved by XACML.

Identifier

urn:oasis:names:tc:xacml:2.0
urn:oasis:names:tc:xacml:2.0:conformance-test
urn:oasis:names:tc:xacml:2.0:context
urn:oasis:names:tc:xacml:2.0:example
urn:oasis:names:tc:xacml:1.0:function
urn:oasis:names:tc:xacml:2.0:function
urn:oasis:names:tc:xacml:2._.0:policy
urn:oasis:names:tc:xacml:1.0:subject
urn:oasis:names:tc:xacml:1.0:resource
urn:oasis:names:tc:xacml:1.0:action
urn:oasis:names:tc:xacml:1.0:environment
urn:oasis:names:tc:xacml:1.0:status

3883 10.2.3. Algorithms

3884 The implementation MUST include the rule- and policy-combining algorithms associated with the
3885 following identifiers that are marked "M".

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 96 of 141

3886

3887

3888
3889
3890

3891

3892
3893
3894
3895

3896

3897
3898
3899

3900
3901
3902

Algorithm M/0

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-
overrides

=ZESEZ=EZ=EIN

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm: first-applicable M
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm: first- M
applicable
urn-oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one- M
applicable
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny- M
overrides
urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-deny- M
overrides
urn-oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-permit- M
overrides

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-permit- | M

overrides

10.2.4. Status Codes

Implementation support for the <StatusCode> element is optional, but if the element is supported,
then the following status codes must be supported and must be used in the way XACML has
specified.

Identifier M/0

urn:oasis:names:tc:xacml:1.0:status:missing-attribute
urn:oasis:names:tc:xacml:1._.0:status:ok
urn-oasis:names:tc:xacml:1.0:status:processing-error

EEZ=EZ=EIN

urn:oasis:names:tc:xacml:1.0:status:syntax-error

10.2.5. Attributes

The implementation MUST support the attributes associated with the following identifiers as
specified by XACML. If values for these attributes are not present in the decision request, then
their values MUST be supplied by the context handler. So, unlike most other attributes, their
semantics are not transparent to the PDP.

Identifier MZ0

urn:oasis:names:tc:xacml:1.0:environment:current-time
urn:oasis:names:tc:xacml:1.0:environment:current-date

===\

urn:oasis:names:tc:xacml:1.0:environment:current-dateTime

10.2.6. Identifiers

The implementation MUST use the attributes associated with the following identifiers in the way
XACML has defined. This requirement pertains primarily to implementations of a PAP or PEP that
uses XACML, since the semantics of the attributes are transparent to the PDP

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 97 of 141

3903

3904

3905
3906

3907

3908
3909

Identifier

=
(@]

urn:oasis:names:tc:xacml:1.0:subject:authn-locality:dns-name
urn:oasis:names:tc:xacml:1.0:subject:authn-locality:ip-address
urn:oasis:names:tc:xacml:1.0:subject:authentication-method
urn:oasis:names:tc:xacml:1.0:subject:authentication-time
urn:oasis:names:tc:xacml:1.0:subject:key-info
urn:oasis:names:tc:xacml:1.0:subject:request-time
urn:oasis:names:tc:xacml:1.0:subject:session-start-time
urn:oasis:names:tc:xacml:1.0:subject:subject-id
urn:oasis:names:tc:xacml:1.0:subject:subject-id-qualifier
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
urn:oasis:names:tc:xacml:1.0:subject-category:codebase
urn:oasis:names:tc:xacml:1.0:subject-category:intermediary-subject
urn:oasis:names:tc:xacml:1.0:subject-category:recipient-subject
urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine
urn:oasis:names:tc:xacml:1.0:resource:resource-location
urn:oasis:names:tc:xacml:1.0:resource:resource-id
urn:oasis:names:tc:xacml:1.0:resource:simple-file-name
urn:oasis:names:tc:xacml:1.0:action:action-id
urn:oasis:names:tc:xacml:1._0:action:implied-action

OOO=EZ00000=EZT0000O0OO0OO0O0O00O0OIN

10.2.7. Data-types

The implementation MUST support the data-types associated with the following identifiers marked

IIMII.

Data-type

=
(@]

http://www.w3.0rg/2001/XMLSchema#string
http://www.w3.0rg/2001/XMLSchema#boolean
http://www.w3.0rg/2001/XMLSchema#integer
http://www.w3.0rg/2001/XMLSchema#double
http://www.w3.0rg/2001/XMLSchema#time
http://www.w3.0rg/2001/XMLSchema#date
http://www.w3.0rg/2001/XMLSchema#dateTime
http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#dayTimeDuration
http://www.w3.0rg/TR/2002/WD-xquery-operators-
20020816#yearMonthDuration
http://www.w3.0rg/2001/XMLSchema#anyURI
http://www.w3.0rg/2001/XMLSchema#hexBinary
http://www.w3.0rg/2001/XMLSchema#base64Binary
urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name
urn:oasis:names:tc:xacml:1.0:data-type:x500Name

SEEZSE=SESESS===(N

===

10.2.8. Functions

The implementation MUST properly process those functions associated with the identifiers marked

with an "M".

Function MZ0
urn:oasis:names:tc:xacml:1.0:function:string-equal M
urn:oasis:names:tc:xacml:1.0:function:boolean-equal M
urn:oasis:names:tc:xacml:1.0:function: integer-equal M
urn:oasis:names:tc:xacml:1.0:function:double-equal M
urn:oasis:names:tc:xacml:1.0:function:date-equal M
urn:oasis:names:tc:xacml:1.0:function:time-equal M
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 98 of 141

urn:oasis:names:tc:xacml:1.0:function:dateTime-equal
urn:oasis:names:tc:xacml:1.0:Ffunction:dayTimeDuration-equal
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-equal
urn-oasis:names:tc:xacml:1.0:function:anyURI-equal
urn:oasis:names:tc:xacml:1.0:function:x500Name-equal
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal
urn:oasis:names:tc:xacml:1.0:function:hexBinary-equal
urn:oasis:names:tc:xacml:1.0:function:base64Binary-equal
urn:oasis:names:tc:xacml:1.0:function:integer-add
urn:oasis:names:tc:xacml:1.0:function:double-add
urn:oasis:names:tc:xacml:1.0:function:integer-subtract
urn:oasis:names:tc:xacml:1.0:function:double-subtract
urn:oasis:names:tc:xacml:1.0:function:integer-multiply
urn:oasis:names:tc:xacml:1.0:function:double-multiply
urn:oasis:names:tc:xacml:1.0:function:integer-divide
urn:oasis:names:tc:xacml:1.0:function:double-divide
urn:oasis:names:tc:xacml:1.0:function: integer-mod
urn:oasis:names:tc:xacml:1.0:function:integer-abs
urn:oasis:names:tc:xacml:1.0:function:double-abs
urn:oasis:names:tc:xacml:1.0:function:round
urn:oasis:names:tc:xacml:1.0:function:floor
urn:oasis:names:tc:xacml:1.0:function:string-normalize-space
urn:oasis:names:tc:xacml:1.0:function:string-normalize-to-lower-case
urn:oasis:names:tc:xacml:1.0:function:double-to-integer
urn:oasis:names:tc:xacml:1.0:Ffunction:integer-to-double
urn:oasis:names:tc:xacml:1.0:function:or
urn:oasis:names:tc:xacml:1.0:function:and
urn:oasis:names:tc:xacml:1.0:function:n-of
urn:oasis:names:tc:xacml:1.0:function:not
urn:oasis:names:tc:xacml:1.0:function:integer-greater-than
urn:oasis:names:tc:xacml:1.0:Ffunction: integer-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:integer-less-than
urn:oasis:names:tc:xacml:1.0:function: integer-less-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:double-greater-than
urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:double-less-than
urn:oasis:names:tc:xacml:1.0:function:double-less-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-add-dayTimeDuration
urn:oasis:names:tc:xacml:1.0:function:dateTime-add-yearMonthDuration
urn:oasis:names:tc:xacml:1.0:function:dateTime-subtract-dayTimeDuration
urn:oasis:names:tc:xacml:1.0:function:dateTime-subtract-
yearMonthDuration
urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration
urn-oasis:names:tc:xacml:1.0:function:date-subtract-yearMonthDuration
urn:oasis:names:tc:xacml:1.0:function:string-greater-than
urn:oasis:names:tc:xacml:1.0:function:string-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:string-less-than
urn:oasis:names:tc:xacml:1.0:function:string-less-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:time-greater-than
urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:time-less-than
urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal
urn:oasis:names:tc:xacml:2._0:function:time-in-range
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than

EEEsEEE=ESEsEESEEESESESEESEESESEESEESESEEESESEEESEESESEEESEEESEESEEEEEEREEREREE

EEEEEEEEsEEEEEEEEESREE

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 99 of 141

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-greater-than
urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-less-than
urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:string-one-and-only
urn:oasis:names:tc:xacml:1.0:function:string-bag-size
urn:oasis:names:tc:xacml:1.0:function:string-is-in
urn:oasis:names:tc:xacml:1.0:function:string-bag
urn:oasis:names:tc:xacml:1.0:function:boolean-one-and-only
urn:oasis:names:tc:xacml:1.0:function:boolean-bag-size
urn:oasis:names:tc:xacml:1.0:function:boolean-is-in
urn:oasis:names:tc:xacml:1.0:function:boolean-bag
urn:oasis:names:tc:xacml:1.0:function: integer-one-and-only
urn:oasis:names:tc:xacml:1.0:function:integer-bag-size
urn:oasis:names:tc:xacml:1.0:function:integer-is-in
urn:oasis:names:tc:xacml:1.0:function:integer-bag
urn:oasis:names:tc:xacml:1.0:function:double-one-and-only
urn:oasis:names:tc:xacml:1.0:function:double-bag-size
urn:oasis:names:tc:xacml:1.0:function:double-is-in
urn:oasis:names:tc:xacml:1.0:function:double-bag
urn:oasis:names:tc:xacml:1.0:function:time-one-and-only
urn:oasis:names:tc:xacml:1.0:function:time-bag-size
urn:oasis:names:tc:xacml:1.0:function:time-is-in
urn:oasis:names:tc:xacml:1.0:Ffunction:time-bag
urn:oasis:names:tc:xacml:1.0:function:date-one-and-only
urn:oasis:names:tc:xacml:1.0:function:date-bag-size
urn:oasis:names:tc:xacml:1.0:function:date-is-in
urn:oasis:names:tc:xacml:1.0:function:date-bag
urn:oasis:names:tc:xacml:1.0:function:dateTime-one-and-only
urn:oasis:names:tc:xacml:1.0:function:dateTime-bag-size
urn:oasis:names:tc:xacml:1.0:function:dateTime-is-in
urn:oasis:names:tc:xacml:1.0:function:dateTime-bag
urn:oasis:names:tc:xacml:1.0:function:anyURI-one-and-only
urn:oasis:names:tc:xacml:1.0:function:anyURI-bag-size
urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in
urn:oasis:names:tc:xacml:1.0:function:anyURI-bag
urn:oasis:names:tc:xacml:1.0:function:hexBinary-one-and-only
urn:oasis:names:tc:xacml:1.0:function:hexBinary-bag-size
urn:oasis:names:tc:xacml:1.0:function:hexBinary-is-in
urn:oasis:names:tc:xacml:1.0:function:hexBinary-bag
urn:oasis:names:tc:xacml:1.0:function:base64Binary-one-and-only
urn:oasis:names:tc:xacml:1.0:function:base64Binary-bag-size
urn:oasis:names:tc:xacml:1.0:function:base64Binary-is-in
urn:oasis:names:tc:xacml:1.0:function:base64Binary-bag
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-one-and-only
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-bag-size
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-is-in
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-bag
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-one-and-only
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-bag-size
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-is-in
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-bag
urn:oasis:names:tc:xacml:1.0:function:x500Name-one-and-only
urn:oasis:names:tc:xacml:1.0:Ffunction:x500Name-bag-size
urn:oasis:names:tc:xacml:1.0:function:x500Name-is-in

EEEEEs=EsEEsE=EsSEE=ESESEES=ESESEESESEEESESEEESESEEESEESEEEESEESEEESEEEEEEESEESESEESESESEEEEEEEEREEREERE

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 100 of 141

urn:oasis:names:tc:xacml:1.0:Ffunction:x500Name-bag
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-one-and-only
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-bag-size
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-is-in
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-bag
urn:oasis:names:tc:xacml:2.0:function:string-concatenate
urn:oasis:names:tc:xacml:2.0:function:uri-string-concatenate
urn:oasis:names:tc:xacml:1.0:function:any-of
urn:oasis:names:tc:xacml:1.0:function:all-of
urn:oasis:names:tc:xacml:1.0:function:any-of-any
urn:oasis:names:tc:xacml:1.0:function:all-of-any
urn:oasis:names:tc:xacml:1.0:function:any-of-all
urn:oasis:names:tc:xacml:1.0:function:all-of-all
urn-oasis:names:tc:xacml:1.0:function:map
urn:oasis:names:tc:xacml:1.0:function:x500Name-match
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match
urn:oasis:names:tc:xacml:1.0:function:string-regexp-match
urn:oasis:names:tc:xacml:2._.0:function:anyURI-regexp-match
urn:oasis:names:tc:xacml:2.0:function: ipAddress-regexp-match
urn:oasis:names:tc:xacml:2.0:function:dnsName-regexp-match
urn:oasis:names:tc:xacml:2.0:function:rfc822Name-regexp-match
urn:oasis:names:tc:xacml:2.0:function:x500Name-regexp-match
urn:oasis:names:tc:xacml:1.0:function:xpath-node-count
urn:oasis:names:tc:xacml:1.0:function:xpath-node-equal
urn:oasis:names:tc:xacml:1.0:function:xpath-node-match
urn:oasis:names:tc:xacml:1.0:function:string-intersection
urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:string-union
urn:oasis:names:tc:xacml:1.0:function:string-subset
urn:oasis:names:tc:xacml:1.0:function:string-set-equals
urn:oasis:names:tc:xacml:1.0:function:boolean-intersection
urn:oasis:names:tc:xacml:1.0:function:boolean-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:boolean-union
urn:oasis:names:tc:xacml:1.0:function:boolean-subset
urn:oasis:names:tc:xacml:1.0:function:boolean-set-equals
urn:oasis:names:tc:xacml:1.0:function:integer-intersection
urn:oasis:names:tc:xacml:1.0:function: integer-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:integer-union
urn:oasis:names:tc:xacml:1.0:function:integer-subset
urn:oasis:names:tc:xacml:1.0:function:integer-set-equals
urn:oasis:names:tc:xacml:1.0:function:double-intersection
urn:oasis:names:tc:xacml:1.0:function:double-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:double-union
urn:oasis:names:tc:xacml:1.0:function:double-subset
urn:oasis:names:tc:xacml:1.0:function:double-set-equals
urn:oasis:names:tc:xacml:1.0:function:time-intersection
urn:oasis:names:tc:xacml:1.0:function:time-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:time-union
urn:oasis:names:tc:xacml:1.0:function:time-subset
urn:oasis:names:tc:xacml:1.0:function:time-set-equals
urn:oasis:names:tc:xacml:1.0:function:date-intersection
urn:oasis:names:tc:xacml:1.0:function:date-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:date-union
urn:oasis:names:tc:xacml:1.0:function:date-subset
urn:oasis:names:tc:xacml:1.0:function:date-set-equals
urn:oasis:names:tc:xacml:1.0:function:dateTime-intersection

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 101 of 141

EEEEEEE=ESEsEESEEEESEESESESEESESESEESEESESESEESESEESEEEE=ESEOOOSESEESEEEESEEEESEESEEEEEESEREREESEERE

3910

3911

3912
3913

3914
3915
3916

3917
3918

urn:oasis:names:tc:xacml:1.0:function:dateTime-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:dateTime-union
urn:oasis:names:tc:xacml:1.0:function:dateTime-subset
urn:oasis:names:tc:xacml:1.0:function:dateTime-set-equals
urn:oasis:names:tc:xacml:1.0:function:anyURI-intersection
urn:oasis:names:tc:xacml:1.0:function:anyURI-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:anyURI-union
urn:oasis:names:tc:xacml:1.0:function:anyURI-subset
urn:oasis:names:tc:xacml:1.0:function:anyURI-set-equals
urn:oasis:names:tc:xacml:1.0:function:hexBinary-intersection
urn:oasis:names:tc:xacml:1.0:function:hexBinary-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:Ffunction:hexBinary-union
urn:oasis:names:tc:xacml:1.0:function:hexBinary-subset
urn:oasis:names:tc:xacml:1.0:function:hexBinary-set-equals
urn:oasis:names:tc:xacml:1.0:function:base64Binary-intersection
urn:oasis:names:tc:xacml:1.0:function:base64Binary-at-least-one-member-
of

urn:oasis:names:tc:xacml:1.0:function:base64Binary-union
urn:oasis:names:tc:xacml:1.0:function:base64Binary-subset
urn:oasis:names:tc:xacml:1.0:function:base64Binary-set-equals
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-intersection
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-at-least-one-
member-of

urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-union
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-subset
urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-set-equals
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-intersection
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-at-least-one-
member-of
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-union
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-subset
urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-set-equals
urn:oasis:names:tc:xacml:1.0:function:x500Name-intersection
urn:oasis:names:tc:xacml:1.0:function:x500Name-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:x500Name-union
urn:oasis:names:tc:xacml:1.0:function:x500Name-subset
urn:oasis:names:tc:xacml:1.0:function:x500Name-set-equals
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-intersection
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-at-least-one-member-of
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-union
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-subset
urn:oasis:names:tc:xacml:1.0:function:rfc822Name-set-equals

=EEEEE=EsEEEEEEEEEEERE

===

===

EEEEsEEEsEEEEEEEEE

11. References

[DS] D. Eastlake et al., XML-Signature Syntax and Processing,
http://iwww.w3.0rg/TR/xmldsig-core/, World Wide Web Consortium.
[Hancock] Hancock, "Polymorphic Type Checking", in Simon L. Peyton Jones,

"Implementation of Functional Programming Languages", Section 8,
Prentice-Hall International, 1987

[Haskell] Haskell, a purely functional language. Available at
http://iwww.haskell.org/

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 102 of 141

3919
3920
3921

3922
3923
3924

3925
3926

3927
3928
3929

3930
3931
3932

3933
3934

3935
3936

3937
3938
3939

3940
3941
3942

3943
3944
3945
3946

3947
3948
3949

3950
3951

3952
3953

3954
3955

3956
3957

3958
3959

3960
3961

3962
3963
3964

3965
3966

[Hier]

[Hinton94]

[IEEE754]

[1SO10181-3]

[Kudo00]

[LDAP-1]
[LDAP-2]

[MathML]

[Multi]

[Perritt93]

[RBAC]

[RegEX]
[RFC2119]
[RFC2396]
[RFC2732
[RFC3198]
[SAML]

[Sloman94]

[XACMLV1.0]

Anderson, A., ed., "Hierarchical resource profile of XACML v2.0", OASIS
Standard, 1 February 2005, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf

Hinton, H, M, Lee,, E, S, The Compatibility of Policies, Proceedings 2nd
ACM Conference on Computer and Communications Security, Nov 1994,
Fairfax, Virginia, USA.

IEEE Standard for Binary Floating-Point Arithmetic 1985, ISBN 1-5593-
7653-8, IEEE Product No. SH10116-TBR

ISO/IEC 10181-3:1996 Information technology — Open Systems
Interconnection -- Security frameworks for open systems: Access control
framework.

Kudo M and Hada S, XML document security based on provisional
authorization, Proceedings of the Seventh ACM Conference on Computer
and Communications Security, Nov 2000, Athens, Greece, pp 87-96.

RFC2256, A summary of the X500(96) User Schema for use with LDAPV3,
Section 5, M Wahl, December 1997 http:/iwww.ietf.org/rfc/rfc2798.txt

RFC2798, Definition of the inetOrgPerson, M. Smith, April 2000
http://iwww.ietf.org/rfc/rfc2798.txt

Mathematical Markup Language (MathML), Version 2.0, W3C
Recommendation, 21 February 2001. Available at:
http:/iwww.w3.0rg/TR/MathML2/

Anderson, A., ed., "Multiple resource profile of XACML v2.0", OASIS
Standard, 1 February 2005, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-spec-os.pdf

Perritt, H. Knowbots, Permissions Headers and Contract Law, Conference
on Technological Strategies for Protecting Intellectual Property in the
Networked Multimedia Environment, April 1993. Available at:
http://www.ifla.org/documents/infopol/copyright/perh2.txt

Role-Based Access Controls, David Ferraiolo and Richard Kuhn, 15th
National Computer Security Conference, 1992. Available at:
http://csrc.nist.gov/rbac

XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001,
Appendix D. Available at: http://www.w3.0rg/TR/xmlschema-0/

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://iwww.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997

Berners-Lee T, Fielding R, Masinter L, Uniform Resource Identifiers (URI):
Generic Syntax. Available at: http://www.ietf.org/rfc/rfc2396.txt

Hinden R, Carpenter B, Masinter L, Format for Literal IPv6 Addresses in
URL's. Available at: http://www.ietf.org/rfc/rfc2732.txt

IETF RFC 3198: Terminology for Policy-Based Management, November
2001. http://mwww.ietf.org/rfc/rfc3198.txt

Security Assertion Markup Language available from http://www.oasis-
open.org/committees/security/#documents

Sloman, M. Policy Driven Management for Distributed Systems. Journal
of Network and Systems Management, Volume 2, part 4. Plenum Press.
1994.

Extensible access control markup language (XACML) Version 1.0. OASIS
Standard. 18 February 2003. Available at: http://www.oasis-

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 103 of 141

3967
3968

3969
3970
3971
3972

3973
3974
3975

3976
3977
3978

3979
3980

3981
3982

3983

[XACMLV1.1]

open.org/apps/org/workgroup/xacml/download.php/940/oasis-xacml-
1.0.pdf

Extensible access control markup language (XACML) Version 1.1. OASIS
Committee Specification. 7 August 2003. Available at: http://www.oasis-
open.org/apps/org/workgroup/xacml/download.php/4104/cs-xacml-
specification-1.1.pdf

[XF] XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft
16 August 2002. Available at: http://www.w3.0rg/TR/2002/WD-xquery-
operators-20020816

[XS] XML Schema, parts 1 and 2. Available at:
http://iwww.w3.0rg/TR/xmlschema-1/ and
http://iwww.w3.0rg/TR/xmlschema-2/

[XPath] XML Path Language (XPath), Version 1.0, W3C Recommendation 16
November 1999. Available at: http://www.w3.0rg/TR/xpath

[XSLT] XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16
November 1999. Available at: http://www.w3.0rg/TR/xslt

access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 104 of 141

3984

3985

3986
3987

3988
3989
3990
3991

3992

3993
3994
3995
3996
3997

3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013

4014
4015

Appendix A. Data-types and functions (normative)

A.l.Introduction

This section specifies the data-types and functions used in XACML to create predicates for
conditions and target matches.

This specification combines the various standards set forth by IEEE and ANSI for string
representation of numeric values, as well as the evaluation of arithmetic functions. It describes the
primitive data-types and bags. The standard functions are named and their operational semantics
are described.

A.2. Data-types

Although XML instances represent all data-types as strings, an XACML PDP must reason about
types of data that, while they have string representations, are not just strings. Types such as
Boolean, integer and double MUST be converted from their XML string representations to values
that can be compared with values in their domain of discourse, such as numbers. The following
primitive data-types are specified for use with XACML and have explicit data representations:

e http://www.w3.0rg/2001/XMLSchematstring

e http://www.w3.0rg/2001/XMLSchemat#boolean

e http://www.w3.0rg/2001/XMLSchema#integer

e http://www.w3.0rg/2001/XMLSchemat#double

e http://www.w3.0rg/2001/XMLSchemattime

e http://www.w3.0rg/2001/XMLSchema#date

e http://www.w3.0rg/2001/XMLSchema#dateTime

e http://www.w3.0rg/2001/XMLSchema#anyURI

e http://www.w3.0rg/2001/XMLSchema#hexBinary

e http://www.w3.0rg/2001/XMLSchema#base64Binary

e http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#dayTimeDuration
e http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration
e urn:oasis:names:tc:xacml:1.0:data-type:x500Name

e urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name

e urn:oasis:names:tc:xacml:2.0:data-type:ipAddress

e urn:oasis:names:tc:xacml:2.0:data-type:dnsName

For the sake of improved interoperability, it is RECOMMENDED that all time references be in UTC
time.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 105 of 141

4016
4017

4018
4019
4020
4021
4022

4023
4024

4025

4026
4027
4028

4029

4030
4031
4032

4033

4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062

An XACML PDP SHALL be capable of converting string representations into various primitive data-
types. For integers and doubles, XACML SHALL use the conversions described in [IEEE754].

XACML defines three data-types; these are:
“urn:oasis:names:tc:xacml:1.0:data-type:x500Name”,
“urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name”
“urn:oasis:names:tc:xacml:2.0:data-type:ipAddress”
“urn:oasis:names:tc:xacml:2.0:data-type:dnsName” and

These types represent identifiers for subjects or resources and appear in several standard
applications, such as TLS/SSL and electronic mail.

X.500 directory name

The “urn:oasis:names:tc:xacml:1.0:data-type:x500Name” primitive type represents an ITU-T Rec.
X.520 Distinguished Name. The valid syntax for such a name is described in IETF RFC 2253
"Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names"

RFC 822 name

The “urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name” primitive type represents an electronic
mail address. The valid syntax for such a name is described in IETF RFC 2821, Section 4.1.2,
Command Argument Syntax, under the term "Mailbox".

IP address

The “urn:oasis:names:tc:xacml:2.0:data-type:ipAddress” primitive type represents an IPv4 or IPv6
network address, with optional mask and optional port or port range. The syntax SHALL be:

ipAddress = address ["/" mask] [":" [portrange]]

For an IPv4 address, the address and mask are formatted in accordance with the syntax for a
"host" in IETF RFC 2396 "Uniform Resource Identifiers (URI): Generic Syntax", section 3.2.

For an IPv6 address, the address and mask are formatted in accordance with the syntax for an
"ipvereference” in IETF RFC 2732 "Format for Literal IPv6 Addresses in URL's". (Note that an IPv6
address or mask, in this syntax, is enclosed in literal "[" "]" brackets.)

DNS name
The “urn:oasis:names:tc:xacml:2.0:data-type:dnsName” primitive type represents a Domain Name
Service (DNS) host name, with optional port or port range. The syntax SHALL be:

dnsName = hostname [":' portrange]

The hostname is formatted in accordance with IETF RFC 2396 "Uniform Resource Identifiers (URI):
Generic Syntax", section 3.2, except that a wildcard "*" may be used in the left-most component of
the hostname to indicate "any subdomain" under the domain specified to its right.

For both the “urn:oasis:names:tc:xacml:2.0:data-type:ipAddress” and
“urn:oasis:names:tc:xacml:2.0:data-type:dnsName” data-types, the port or port range syntax
SHALL be

portrange = portnumber | "-"portnumber | portnumber"-"[porthumber]

where "porthumber" is a decimal port number. If the port number is of the form "-x", where "x" is a
port number, then the range is all ports numbered "x" and below. If the port number is of the form

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 106 of 141

4063 "x-", then the range is all ports numbered "x" and above. [This syntax is taken from the Java
4064 SocketPermission.]

aes A.3.Functions

4066 XACML specifies the following functions. If an argument of one of these functions were to evaluate
4067 to "Indeterminate”, then the function SHALL be set to "Indeterminate".
4068 A.3.1 Equality predicates

4069 The following functions are the equality functions for the various primitive types. Each function for a
4070 particular data-type follows a specified standard convention for that data-type.

4071 e urn;oasis:names:tc:xacml:1.0:function:string-equal

4072 This function SHALL take two arguments of data-type

4073 “http://mvww.w3.0rg/2001/XMLSchema#tstring” and SHALL return an

4074 “http://mvww.w3.0rg/2001/XMLSchema#boolean”. The function SHALL return "True" if and
4075 only if the value of both of its arguments are of equal length and each string is determined
4076 to be equal byte-by-byte according to the function “integer-equal”. Otherwise, it SHALL
4077 return “False”.

4078 e urn:oasis:names:tc:xacml:1.0:function:boolean-equal

4079 This function SHALL take two arguments of data-type

4080 “http://mvww.w3.0rg/2001/XMLSchema#boolean” and SHALL return an

4081 “http://mvww.w3.0rg/2001/XMLSchema#boolean”. The function SHALL return "True" if and
4082 only if the arguments are equal. Otherwise, it SHALL return “False”.

4083 e urn:oasis:names:tc:xacml:1.0:function:integer-equal

4084 This function SHALL take two arguments of data-type

4085 “http://mvww.w3.0rg/2001/XMLSchemattinteger” and SHALL return an

4086 “http://vww.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation on
4087 integers according to IEEE 754 [IEEE 754].

4088 e urn:oasis:names:tc:xacml:1.0:function:double-equal

4089 This function SHALL take two arguments of data-type

4090 “http://mvww.w3.0rg/2001/XMLSchema#double” and SHALL return an

4091 “http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation on
4092 doubles according to IEEE 754 [IEEE 754].

4093 e urn:oasis:names:tc:xacml:1.0:function:date-equal

4094 This function SHALL take two arguments of data-type

4095 “http://mvww.w3.0rg/2001/XMLSchema#date” and SHALL return an

4096 “http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation
4097 according to the “op:date-equal” function [XF Section 8.3.11].

4098 e urn;oasis:names:tc:xacml:1.0:function:time-equal

4099 This function SHALL take two arguments of data-type

4100 “http://mww.w3.0rg/2001/XMLSchemattime” and SHALL return an

4101 “http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation

4102 according to the “op:time-equal” function [XF Section 8.3.14].
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 107 of 141

4103

4104
4105
4106
4107

4108

4109
4110
4111
4112
4113
4114

4115

4116
4117
4118
4119
4120
4121

4122

4123
4124
4125
4126

4127

4128
4129
4130
4131
4132

4133
4134

4135
4136
4137

4138
4139
4140

4141

4142
4143

e urn:oasis:names:tc:xacml:1.0:function:dateTime-equal

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#dateTime” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation
according to the “op:dateTime-equal” function [XF Section 8.3.8].

e urn:oasis:names:tc:xacml:1.0:function:dayTimeDuration-equal

This function SHALL take two arguments of data-type "http://www.w3.0rg/TR/2002/WD-
xquery-operators-20020816#dayTimeDuration" and SHALL return an
"http://www.w3.0rg/2001/XMLSchema#boolean”. This function shall perform its evaluation
according to the "op:dayTimeDuration-equal” function [XF Section 8.3.5]. Note that the
lexical representation of each argument MUST be converted to a value expressed in
fractional seconds [XF Section 8.2.2].

e urn:oasis:names:tc:xacml:1.0:function:yearMonthDuration-equal

This function SHALL take two arguments of data-type "http://www.w3.0rg/TR/2002/WD-
xquery-operators-20020816#yearMonthDuration" and SHALL return an
"http://lwww.w3.0rg/2001/XMLSchema#boolean”. This function shall perform its evaluation
according to the "op:yearMonthDuration-equal” function [XF Section 8.3.2]. Note that the
lexical representation of each argument MUST be converted to a value expressed in
integer months [XF Section 8.2.1].

e urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

This function SHALL take two arguments of data-type
“http://mvww.w3.0rg/2001/XMLSchema#anyURI” and SHALL return an
“http://vww.w3.0rg/2001/XMLSchema#boolean”. It SHALL perform its evaluation
according to the “op:anyURI-equal” function [XF Section 10.2.1].

e urn:oasis:names:tc:xacml:1.0:function:x500Name-equal

This function SHALL take two arguments of "urn:oasis:names:tc:xacml;1.0:data-
type:x500Name" and SHALL return an "http://www.w3.0rg/2001/XMLSchema#boolean". It
SHALL return “True” if and only if each Relative Distinguished Name (RDN) in the two
arguments matches. Otherwise, it SHALL return “False”. Two RDNSs shall be said to
match if and only if the result of the following operations is “True".

1. Normalize the two arguments according to IETF RFC 2253 "Lightweight Directory
Access Protocol (v3): UTF-8 String Representation of Distinguished Names".

2. If any RDN contains multiple attributeTypeAndValue pairs, re-order the Attribute
ValuePairs in that RDN in ascending order when compared as octet strings
(described in ITU-T Rec. X.690 (1997 E) Section 11.6 "Set-of components").

3. Compare RDNSs using the rules in IETF RFC 3280 "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile", Section
4.1.2.4 "Issuer".

e urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal

This function SHALL take two arguments of data-type “urn:oasis:names:tc:xacml:1.0:data-
type:rfc822Name” and SHALL return an “http://www.w3.0rg/2001/XMLSchemat#boolean”.

¥ ITU-T Rec. X.520 contains rules for matching X500 names, but these are very complex and
require knowledge of the syntax of various AttributeTypes. IETF RFC 3280 contains simplified
matching rules that the XACML x500Name-equal function uses.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 108 of 141

4144
4145
4146
4147

4148

4149
4150

4151

4152
4153
4154
4155
4156
4157
4158
4159

4160

4161
4162
4163
4164
4165
4166
4167
4168

4169

4170
4171
4172
4173
4174
4175
4176

4177
4178
4179
4180
4181
4182
4183
4184
4185

It SHALL return “True” if and only if the two arguments are equal. Otherwise, it SHALL

return “False”. An RFC822 name consists of a local-part followed by "@" followed by a
domain-part. The local-part is case-sensitive, while the domain-part (which is usually a
DNS host name) is not case-sensitive. Perform the following operations:

1. Normalize the domain-part of each argument to lower case

2. Compare the expressions by applying the function
“urn:oasis:names:tc:xacml:1.0:function:string-equal” to the normalized arguments.

urn:oasis:names:tc:xacml:1.0:function:hexBinary-equal

This function SHALL take two arguments of data-type
“http://mvww.w3.0rg/2001/XMLSchema#hexBinary” and SHALL return an
“http://wvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if the octet
sequences represented by the value of both arguments have equal length and are equal in
a conjunctive, point-wise, comparison using the
“urn:oasis:names:tc:xacml:1.0:function:integer-equal” function. Otherwise, it SHALL return
“False”. The conversion from the string representation to an octet sequence SHALL be as
specified in [XS Section 8.2.15].

urn:oasis:names:tc:xacml:1.0:function:base64Binary-equal

This function SHALL take two arguments of data-type
“http://mvww.w3.0rg/2001/XMLSchema#base64Binary” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if the octet
sequences represented by the value of both arguments have equal length and are equal in
a conjunctive, point-wise, comparison using the
“urn:oasis:names:tc:xacml:1.0:function:integer-equal” function. Otherwise, it SHALL return
“False”. The conversion from the string representation to an octet sequence SHALL be as
specified in [XS Section 8.2.16].

A.3.2 Arithmetic functions

All of the following functions SHALL take two arguments of the specified data-type, integer or
double, and SHALL return an element of integer or double data-type, respectively. However, the
“add” functions MAY take more than two arguments. Each function evaluation SHALL proceed as
specified by their logical counterparts in IEEE 754 [IEEE 754]. In an expression that contains any
of these functions, if any argument is "Indeterminate”, then the expression SHALL evaluate to
"Indeterminate”. In the case of the divide functions, if the divisor is zero, then the function SHALL
evaluate to “Indeterminate”.

urn:oasis:names:tc:xacml:1.0:function:integer-add
This function MAY have two or more arguments.
urn:oasis:names:tc:xacml:1.0:function:double-add
This function MAY have two or more arguments.
urn:oasis:names:tc:xacml:1.0:function:integer-subtract
urn:oasis:names:tc:xacml:1.0:function:double-subtract
urn:oasis:names:tc:xacml:1.0:function:integer-multiply
urn:oasis:names:tc:xacml:1.0:function:double-multiply

urn:oasis:names:tc:xacml:1.0:function:integer-divide

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 109 of 141

4186
4187

4188
4189
4190
4191

4192
4193
4194
4195

4196

4197
4198

4199

4200
4201
4202

4203

4204
4205
4206

4207

4208
4209
4210

4211

4212
4213
4214
4215

4216

4217
4218
4219

4220

4221
4222

e urn:oasis:names:tc:xacml:1.0:function:double-divide
e urn:oasis:names:tc:xacml:1.0:function:integer-mod

The following functions SHALL take a single argument of the specified data-type. The round and
floor functions SHALL take a single argument of data-type
“http://www.w3.0rg/2001/XMLSchema#double” and return a value of the data-type
“http://www.w3.0rg/2001/XMLSchema#double”.

e urn:oasis:names:tc:xacml:1.0:function:integer-abs
e urn:oasis:names:tc:xacml:1.0:function:double-abs

urn:oasis:names:tc:xacml:1.0:function:round

urn:oasis:names:tc:xacml:1.0:function:floor

A.3.3 String conversion functions

The following functions convert between values of the data-type
“http://www.w3.0rg/2001/XMLSchema#string” primitive types.

e urn:oasis:names:tc:xacml:1.0:function:string-normalize-space

This function SHALL take one argument of data-type
“http://lwww.w3.0rg/2001/XMLSchema##string” and SHALL normalize the value by stripping
off all leading and trailing white space characters.

e urn:oasis:names:tc:xacml:1.0:function:string-normalize-to-lower-case

This function SHALL take one argument of data-type
“http://lwww.w3.0rg/2001/XMLSchema#string” and SHALL normalize the value by
converting each upper case character to its lower case equivalent.

A.3.4 Numeric data-type conversion functions

The following functions convert between the data-type
“http://www.w3.0rg/2001/XMLSchema#integer” and” http://www.w3.0rg/2001/XMLSchema#double”
primitive types.

e urn;oasis:names:tc:xacml:1.0:function:double-to-integer

This function SHALL take one argument of data-type
“http://www.w3.0rg/2001/XMLSchema#double” and SHALL truncate its numeric value to a
whole number and return an element of data-type
“http://www.w3.0rg/2001/XMLSchema#integer”.

e urn;oasis:names:tc:xacml:1.0:function:integer-to-double

This function SHALL take one argument of data-type
“http://www.w3.0rg/2001/XMLSchematinteger” and SHALL promote its value to an element
of data-type “http://www.w3.0rg/2001/XMLSchema#double” with the same numeric value.

A.3.5 Logical functions

This section contains the specification for logical functions that operate on arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#boolean”.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 110 of 141

4223

4224
4225
4226
4227

4228

4229
4230
4231
4232

4233

4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244

4245

4246
4247
4248
4249

4250
4251
4252
4253
4254
4255

4256

4257
4258

4259
4260
4261
4262
4263
4264

e urn:oasis:names:tc:xacml:1.0:function:or

This function SHALL return "False" if it has no arguments and SHALL return "True" if at
least one of its arguments evaluates to "True". The order of evaluation SHALL be from first
argument to last. The evaluation SHALL stop with a result of "True" if any argument
evaluates to "True", leaving the rest of the arguments unevaluated.

e urn:oasis:names:tc:xacml:1.0:function:and

This function SHALL return "True" if it has no arguments and SHALL return "False" if one of
its arguments evaluates to "False". The order of evaluation SHALL be from first argument
to last. The evaluation SHALL stop with a result of "False" if any argument evaluates to
"False", leaving the rest of the arguments unevaluated.

e urn:oasis:names:tc:xacml:1.0:function:n-of

The first argument to this function SHALL be of data-type
http://www.w3.0rg/2001/XMLSchema#integer. The remaining arguments SHALL be of
data-type http://www.w3.0rg/2001/XMLSchema#boolean. The first argument specifies the
minimum number of the remaining arguments that MUST evaluate to "True" for the
expression to be considered "True". If the first argument is 0, the result SHALL be "True".
If the number of arguments after the first one is less than the value of the first argument,
then the expression SHALL result in "Indeterminate”. The order of evaluation SHALL be:
first evaluate the integer value, then evaluate each subsequent argument. The evaluation
SHALL stop and return "True" if the specified number of arguments evaluate to "True". The
evaluation of arguments SHALL stop if it is determined that evaluating the remaining
arguments will not satisfy the requirement.

e urn:oasis:names:tc:xacml:1.0:function:not

This function SHALL take one argument of data-type
“http:/Amww.w3.0rg/2001/XMLSchema#boolean”. If the argument evaluates to "True", then
the result of the expression SHALL be "False". If the argument evaluates to "False", then
the result of the expression SHALL be "True".

Note: When evaluating and, or, or n-of, it MAY NOT be necessary to attempt a full evaluation of
each argument in order to determine whether the evaluation of the argument would result in
"Indeterminate”. Analysis of the argument regarding the availability of its attributes, or other
analysis regarding errors, such as "divide-by-zero", may render the argument error free. Such
arguments occurring in the expression in a position after the evaluation is stated to stop need not
be processed.

A.3.6 Numeric comparison functions

These functions form a minimal set for comparing two numbers, yielding a Boolean result. They
SHALL comply with the rules governed by IEEE 754 [IEEE 754].

e urn:oasis:names:tc:xacml:1.0:function:integer-greater-than

e urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal
e urn:oasis:names:tc:xacml:1.0:function:integer-less-than

e urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal

e urn:oasis:names:tc:xacml:1.0:function:double-greater-than

e urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 111 of 141

4265
4266

4267

4268
4269

4270
4271
4272
4273
4274
4275

4276

4277
4278
4279
4280
4281
4282

4283

4284
4285
4286
4287
4288
4289
4290
4291
4292

4293

4294
4295
4296
4297
4298
4299
4300
4301
4302

4303

4304
4305
4306
4307
4308
4309

urn:oasis:names:tc:xacml:1.0:function:double-less-than

urn:oasis:names:tc:xacml:1.0:function:double-less-than-or-equal

A.3.7 Date and time arithmetic functions

These functions perform arithmetic operations with date and time.

urn:oasis:names:tc:xacml:1.0:function:dateTime-add-dayTimeDuration

This function SHALL take two arguments, the first SHALL be of data-type
“http://www.w3.0rg/2001/XMLSchema#dateTime” and the second SHALL be of data-type
“http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#dayTimeDuration”. 1t SHALL
return a result of “http://www.w3.0rg/2001/XMLSchema#dateTime”. This function SHALL
return the value by adding the second argument to the first argument according to the
specification of adding durations to date and time [XS Appendix E].

urn:oasis:names:tc:xacml:1.0:function:date Time-add-yearMonthDuration

This function SHALL take two arguments, the first SHALL be a
“http://www.w3.0rg/2001/XMLSchema#dateTime” and the second SHALL be a
“http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration”. It
SHALL return a result of “http://www.w3.0rg/2001/XMLSchema#dateTime”. This function
SHALL return the value by adding the second argument to the first argument according to
the specification of adding durations to date and time [XS Appendix E].

urn:oasis:names:tc:xacml:1.0:function:dateTime-subtract-dayTimeDuration

This function SHALL take two arguments, the first SHALL be a
“http://www.w3.0rg/2001/XMLSchema#dateTime” and the second SHALL be a
“http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#dayTimeDuration”. 1t SHALL
return a result of “http://www.w3.0rg/2001/XMLSchema#dateTime”. If the second argument
is a positive duration, then this function SHALL return the value by adding the
corresponding negative duration, as per the specification [XS Appendix E]. If the second
argument is a negative duration, then the result SHALL be as if the function
“urn:oasis:names:tc:xacml:1.0:function:dateTime-add-dayTimeDuration” had been applied
to the corresponding positive duration.

urn:oasis:names:tc:xacml:1.0:function:date Time-subtract-yearMonthDuration

This function SHALL take two arguments, the first SHALL be a
“http://www.w3.0rg/2001/XMLSchema#dateTime” and the second SHALL be a
“http:/lwww.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration”. It
SHALL return a result of “http://www.w3.0rg/2001/XMLSchema#dateTime”. If the second
argument is a positive duration, then this function SHALL return the value by adding the
corresponding negative duration, as per the specification [XS Appendix E]. If the second
argument is a negative duration, then the result SHALL be as if the function
“urn:oasis:names:tc:xacml:1.0:function:date Time-add-yearMonthDuration” had been
applied to the corresponding positive duration.

urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration

This function SHALL take two arguments, the first SHALL be a
“http://www.w3.0rg/2001/XMLSchema#date” and the second SHALL be a
“http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration”. It
SHALL return a result of “http://www.w3.0rg/2001/XMLSchema#date”. This function
SHALL return the value by adding the second argument to the first argument according to
the specification of adding duration to date [XS Appendix E].

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 112 of 141

4310

4311
4312
4313
4314
4315
4316
4317
4318
4319

4320

4321
4322

4323
4324
4325
4326
4327
4328
4329
4330
4331

4332

4333
4334
4335
4336
4337
4338

4339

4340
4341
4342
4343
4344
4345
4346
4347
4348

4349

4350
4351
4352
4353
4354
4355

urn:oasis:names:tc:xacml:1.0:function:date-subtract-yearMonthDuration

This function SHALL take two arguments, the first SHALL be a
“http://www.w3.0rg/2001/XMLSchema#date” and the second SHALL be a
“http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration”. It
SHALL return a result of “http://www.w3.0rg/2001/XMLSchema#date”. If the second
argument is a positive duration, then this function SHALL return the value by adding the
corresponding negative duration, as per the specification [XS Appendix E]. If the second
argument is a negative duration, then the result SHALL be as if the function
“urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration” had been applied to
the corresponding positive duration.

A.3.8 Non-numeric comparison functions

These functions perform comparison operations on two arguments of non-numerical types.

urn:oasis:names:tc:xacml:1.0:function:string-greater-than

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#string” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
arguments are compared byte by byte and, after an initial prefix of corresponding bytes
from both arguments that are considered equal by
“urn:oasis:names:tc:xacml:1.0:function:integer-equal”, the next byte by byte comparison is
such that the byte from the first argument is greater than the byte from the second
argument by the use of the function “urn:oasis:names:tc:xacml:2.0:function:integer-greater-
then”. Otherwise, it SHALL return “False”.

urn:oasis:names:tc:xacml:1.0:function:string-greater-than-or-equal

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#string” and SHALL return an
“http:/vww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return a result as if evaluated
with the logical function “urn:oasis:names:tc:xacml:1.0:function:or” with two arguments
containing the functions “urn:oasis:names:tc:xacml:1.0:function:string-greater-than” and
“urn:oasis:names:tc:xacml:1.0:function:string-equal” containing the original arguments

urn:oasis:names:tc:xacml:1.0:function:string-less-than

This function SHALL take two arguments of data-type
“http:/mww.w3.0rg/2001/XMLSchema#string” and SHALL return an
“http:/vww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
arguments are compared byte by byte and, after an initial prefix of corresponding bytes
from both arguments that are considered equal by
“urn:oasis:names:tc:xacml:1.0:function:integer-equal”, the next byte by byte comparison is
such that the byte from the first argument is less than the byte from the second argument
by the use of the function “urn:oasis:names:tc:xacml:1.0:function:integer-less-than”.
Otherwise, it SHALL return “False”.

urn:oasis:names:tc:xacml:1.0:function:string-less-than-or-equal

This function SHALL take two arguments of data-type
“http://mvww.w3.0rg/2001/XMLSchemat#tstring” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return a result as if evaluated
with the function “urn:oasis:names:tc:xacml:1.0:function:or” with two arguments containing
the functions “urn:oasis:names:tc:xacml:1.0:function:string-less-than” and
“urn:oasis:names:tc:xacml:1.0:function:string-equal” containing the original arguments.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 113 of 141

4356

4357
4358
4359
4360
4361
4362
4363

4364

4365
4366
4367
4368
4369
4370
4371
4372

4373

4374
4375
4376
4377
4378
4379
4380

4381

4382
4383
4384
4385
4386
4387
4388

4389

4390
4391
4392
4393
4394
4395
4396
4397
4398

4399

4400
4401
4402

urn:oasis:names:tc:xacml:1.0:function:time-greater-than

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#time” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is greater than the second argument according to the order relation specified
for “http://www.w3.0rg/2001/XMLSchema#time” [XS Section 3.2.8]. Otherwise, it SHALL
return “False”. Note: it is illegal to compare a time that includes a time-zone value with one
that does not. In such cases, the time-in-range function should be used.

urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal

This function SHALL take two arguments of data-type
“http://lwww.w3.0rg/2001/XMLSchema#time” and SHALL return an
“http://lwww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is greater than or equal to the second argument according to the order
relation specified for “http://www.w3.0rg/2001/XMLSchema#time” [XS Section 3.2.8].
Otherwise, it SHALL return “False”. Note: it is illegal to compare a time that includes a
time-zone value with one that does not. In such cases, the time-in-range function should
be used.

urn:oasis:names:tc:xacml:1.0:function:time-less-than

This function SHALL take two arguments of data-type
“http:/Amww.w3.0rg/2001/XMLSchema#time” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than the second argument according to the order relation specified for
“http://wvww.w3.0rg/2001/XMLSchema#time” [XS Section 3.2.8]. Otherwise, it SHALL
return “False”. Note: it is illegal to compare a time that includes a time-zone value with one
that does not. In such cases, the time-in-range function should be used.

urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal

This function SHALL take two arguments of data-type
“http://mvww.w3.0rg/2001/XMLSchemat#time” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than or equal to the second argument according to the order relation
specified for “http://www.w3.0rg/2001/XMLSchema#time” [XS Section 3.2.8]. Otherwise, it
SHALL return “False”. Note: it is illegal to compare a time that includes a time-zone value
with one that does not. In such cases, the time-in-range function should be used.

urn:oasis:names:tc:xacml:1.0:function:time-in-range

This function SHALL take three arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#time” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if the first
argument falls in the range defined inclusively by the second and third arguments.
Otherwise, it SHALL return “False”. Regardless of its value, the third argument SHALL be
interpreted as a time that is equal to, or later than by less than twenty-four hours, the
second argument. If no time zone is provided for the first argument, it SHALL use the
default time zone at the context handler. If no time zone is provided for the second or third
arguments, then they SHALL use the time zone from the first argument.

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than

This function SHALL take two arguments of data-type
“http:/Amww.w3.0rg/2001/XMLSchema#dateTime” and SHALL return an
“http:/vww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 114 of 141

4403
4404
4405
4406

4407

4408
4409
4410
4411
4412
4413
4414
4415

4416

4417
4418
4419
4420
4421
4422
4423

4424

4425
4426
4427
4428
4429
4430
4431

4432

4433
4434
4435
4436
4437
4438
4439

4440

4441
4442
4443
4444
4445
4446
4447

4448

first argument is greater than the second argument according to the order relation specified
for “http://lwww.w3.0rg/2001/XMLSchema#dateTime” by [XF Section 3.2.7]. Otherwise, it
SHALL return “False”. Note: if a dateTime value does not include a time-zone value, then
an implicit time-zone value SHALL be assigned, as described in [XF].

e urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#dateTime” and SHALL return an
“http://lwww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is greater than or equal to the second argument according to the order
relation specified for “http://www.w3.0rg/2001/XMLSchema#dateTime” by [XF Section
3.2.7]. Otherwise, it SHALL return “False”. Note: if a dateTime value does not include a
time-zone value, then an implicit time-zone value SHALL be assigned, as described in
[XF].

e urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than

This function SHALL take two arguments of data-type
“http://lwww.w3.0rg/2001/XMLSchema#dateTime” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than the second argument according to the order relation specified for
“http://mww.w3.0rg/2001/XMLSchema#dateTime” by [XF Section 3.2.7]. Otherwise, it
SHALL return “False”. Note: if a dateTime value does not include a time-zone value, then
an implicit time-zone value SHALL be assigned, as described in [XF].

e urn;oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal

This function SHALL take two arguments of data-type
“http://mww.w3.0rg/2001/XMLSchema# dateTime” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than or equal to the second argument according to the order relation
specified for “http://www.w3.0rg/2001/XMLSchema#dateTime” by [XF Section 3.2.7].
Otherwise, it SHALL return “False”. Note: if a dateTime value does not include a time-zone
value, then an implicit time-zone value SHALL be assigned, as described in [XF].

e urn:oasis:names:tc:xacml:1.0:function:date-greater-than

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#date” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is greater than the second argument according to the order relation specified
for “http://www.w3.0rg/2001/XMLSchema#date” by [XF Section 3.2.9]. Otherwise, it SHALL
return “False”. Note: if a date value does not include a time-zone value, then an implicit
time-zone value SHALL be assigned, as described in [XF].

e urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#date” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is greater than or equal to the second argument according to the order
relation specified for “http://www.w3.0rg/2001/XMLSchema#date” by [XF Section 3.2.9].
Otherwise, it SHALL return “False”. Note: if a date value does not include a time-zone
value, then an implicit time-zone value SHALL be assigned, as described in [XF].

e urn:oasis:names:tc:xacml:1.0:function:date-less-than

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 115 of 141

4449
4450
4451
4452
4453
4454
4455

4456

4457
4458
4459
4460
4461
4462
4463

4464

4465

4466
4467

4468
4469
4470
4471

4472

4473
4474
4475
4476
4477

4478

4479
4480
4481

4482

4483
4484
4485

4486

4487
4488

4489

This function SHALL take two arguments of data-type
“http://www.w3.0rg/2001/XMLSchema#date” and SHALL return an
“http://lwww.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than the second argument according to the order relation specified for
“http://www.w3.0rg/2001/XMLSchema#date” by [XF Section 3.2.9]. Otherwise, it SHALL
return “False”. Note: if a date value does not include a time-zone value, then an implicit
time-zone value SHALL be assigned, as described in [XF].

e urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

This function SHALL take two arguments of data-type
“http://lwww.w3.0rg/2001/XMLSchema#date” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and only if the
first argument is less than or equal to the second argument according to the order relation
specified for “http://www.w3.0rg/2001/XMLSchema#date” by [XF Section 3.2.9]. Otherwise,
it SHALL return “False”. Note: if a date value does not include a time-zone value, then an
implicit time-zone value SHALL be assigned, as described in [XF].

A.3.9 String functions

The following functions operate on strings and URIs.

e urn:oasis:names:tc:xacml:2.0:function:string-concatenate

This function SHALL take two or more arguments of data-type
"http://www.w3.0rg/2001/XMLSchematstring” and SHALL return a
"http://www.w3.0rg/2001/XMLSchemat#string”. The result SHALL be the concatenation, in
order, of the arguments.

e urn:oasis:names:tc:xacml:2.0:function:url-string-concatenate

This function SHALL take one argument of data-type
"http://www.w3.0rg/2001/XMLSchema#anyURI" and one or more arguments of type
"http://www.w3.0rg/2001/XMLSchemat#string”, and SHALL return a
"http://www.w3.0rg/2001/XMLSchema#anyURI". The result SHALL be the URI constructed
by appending, in order, the "string" arguments to the "anyURI" argument.

A.3.10 Bag functions

These functions operate on a bag of ‘type’ values, where type is one of the primitive data-types.
Some additional conditions defined for each function below SHALL cause the expression to
evaluate to "Indeterminate”.

e urn:oasis:names:tc:xacml:1.0:function:type-one-and-only

This function SHALL take a bag of ‘type’ values as an argument and SHALL return a value
of ‘-type’. It SHALL return the only value in the bag. If the bag does not have one and only
one value, then the expression SHALL evaluate to "Indeterminate”.

e urn:oasis:names:tc:xacml:1.0:function:type-bag-size

This function SHALL take a bag of ‘type’ values as an argument and SHALL return an
“http://lwww.w3.0rg/2001/XMLSchema##integer” indicating the number of values in the bag.

e urn:oasis:names:tc:xacml:1.0:function:type-is-in

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 116 of 141

4490
4491
4492
4493
4494

4495

4496
4497
4498

4499

4500
4501

4502
4503
4504
4505
4506

4507

4508
4509
4510
4511

4512

4513
4514
4515
4516

4517

4518
4519
4520
4521
4522

4523

4524
4525
4526
4527
4528
4529

This function SHALL take an argument of ‘type’ as the first argument and a bag of type
values as the second argument and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. The function SHALL evaluate to "True" if
and only if the first argument matches by the "urn:oasis:names:tc:xacml:x.x:function:type-
equal" any value in the bag. Otherwise, it SHALL return “False”.

urn:oasis:names:tc:xacml:1.0:function:type-bag

This function SHALL take any number of arguments of ‘type’ and return a bag of ‘type’
values containing the values of the arguments. An application of this function to zero
arguments SHALL produce an empty bag of the specified data-type.

A.3.11Set functions

These functions operate on bags mimicking sets by eliminating duplicate elements from a bag.

urn:oasis:names:tc:xacml:1.0:function:type-intersection

This function SHALL take two arguments that are both a bag of ‘type’ values. It SHALL
return a bag of ‘type’ values such that it contains only elements that are common between
the two bags, which is determined by "urn:oasis:names:tc:xacml:x.x:function:type-equal”.
No duplicates, as determined by "urn:oasis:names:tc:xacml:x.x:function:type-equal”,
SHALL exist in the result.

urn:oasis:names:tc:xacml:1.0:function:type-at-least-one-member-of

This function SHALL take two arguments that are both a bag of ‘type’ values. It SHALL
return a “http://www.w3.0rg/2001/XMLSchema#boolean”. The function SHALL evaluate to
"True" if and only if at least one element of the first argument is contained in the second
argument as determined by "urn:oasis:names:tc:xacml:x.x:function:type-is-in".

urn:oasis:names:tc:xacml:1.0:function:type-union

This function SHALL take two arguments that are both a bag of ‘type’ values. The
expression SHALL return a bag of ‘type’ such that it contains all elements of both bags.
No duplicates, as determined by "urn:oasis:names:tc:xacml:x.x:function:type-equal”,
SHALL exist in the result.

urn:oasis:names:tc:xacml:1.0:function:type-subset

This function SHALL take two arguments that are both a bag of ‘type’ values. It SHALL
return a “http://www.w3.0rg/2001/XMLSchema#boolean”. It SHALL return "True" if and
only if the first argument is a subset of the second argument. Each argument SHALL be
considered to have had its duplicates removed, as determined by
"urn:oasis:names:tc:xacml:x.x:function:type-equal”, before the subset calculation.

urn:oasis:names:tc:xacml:1.0:function:type-set-equals

This function SHALL take two arguments that are both a bag of ‘type’ values. It SHALL
return a “http://www.w3.0rg/2001/XMLSchema#boolean”. 1t SHALL return the result of
applying "urn:oasis:names:tc:xacml:1.0:function:and" to the application of
"urn:oasis:names:tc:xacml:x.x:function:type-subset" to the first and second arguments and
the application of "urn:oasis:names:tc:xacml:x.x:function:type-subset" to the second and
first arguments.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 117 of 141

4530

4531
4532

4533
4534
4535

4536
4537
4538
4539
4540
4541

4542
4543

4544
4545
4546

4547
4548
4549
4550
4551
4552
4553
4554
4555

4556
4557
4558

4559
4560
4561

4562
4563
4564
4565
4566
4567
4568

4569

4570
4571
4572

A.3.12Higher-order bag functions

This section describes functions in XACML that perform operations on bags such that functions
may be applied to the bags in general.

In this section, a general-purpose functional language called Haskell [Haskell] is used to formally
specify the semantics of these functions. Although the English description is adequate, a formal
specification of the semantics is helpful.

For a quick summary, in the following Haskell notation, a function definition takes the form of
clauses that are applied to patterns of structures, namely lists. The symbol “[]” denotes the empty
list, whereas the expression “(x:xs)” matches against an argument of a non-empty list of which “x”
represents the first element of the list, and “xs” is the rest of the list, which may be an empty list.
We use the Haskell notion of a list, which is an ordered collection of elements, to model the XACML
bags of values.

A simple Haskell definition of a familiar function “urn:oasis:names:tc:xacml:1.0:function:and” that
takes a list of values of type Boolean is defined as follows:

and:: [Bool] -> Bool
and [] =True
and (x:xs) =X && (and xs)

The first definition line denoted by a “::” formally describes the data-type of the function, which takes
a list of Booleans, denoted by “[Bool]”, and returns a Boolean, denoted by “Bool”. The second
definition line is a clause that states that the function “and” applied to the empty list is "True". The
third definition line is a clause that states that for a non-empty list, such that the first element is “x”,
which is a value of data-type Bool, the function “and” applied to x SHALL be combined with, using
the logical conjunction function, which is denoted by the infix symbol “&&”, the result of recursively
applying the function “and” to the rest of the list. Of course, an application of the “and” function is
"True" if and only if the list to which it is applied is empty or every element of the list is "True". For
example, the evaluation of the following Haskell expressions,

(and []), (and [True]), (and [True,True)), (and [True, True,False])
evaluate to "True", "True", "True", and "False", respectively.
e urn:oasis:names:tc:xacml:1.0:function:any-of

This function applies a Boolean function between a specific primitive value and a bag of
values, and SHALL return "True" if and only if the predicate is "True" for at least one
element of the bag.

This function SHALL take three arguments. The first argument SHALL be an

<xacml :Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a value of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression SHALL be evaluated
as if the function named in the <xacml : Function> argument were applied to the second
argument and each element of the third argument (the bag) and the results are combined
with “urn:oasis:names:tc:xacml:1.0:function:or”.

In Haskell, the semantics of this operation are as follows:

any of :: (a->b->Bool)->a->[b]->Bool

any of f a [] = False
any of f a (x:ixs) =(f a x) || (any_of f a xs)
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 118 of 141

In the above notation, “f” is the function to be applied, “a” is the primitive value, and “(x:xs)”
represents the first element of the list as “x” and the rest of the list as “xs”.

For example, the following expression SHALL return "True":

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:any-of’>
<Function Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal”/>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#string”>Paul</AttributeValue>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-bag”’>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”>John</AttributeValue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#string”>Paul</AttributeValue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>George</Attributevalue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>Ringo</AttributeValue>
</Apply>
</Apply>

This expression is "True" because the first argument is equal to at least one of the
elements of the bag, according to the function.

e urn:oasis:names:tc:xacml:1.0:function:all-of

This function applies a Boolean function between a specific primitive value and a bag of
values, and returns "True" if and only if the predicate is "True" for every element of the bag.

This function SHALL take three arguments. The first argument SHALL be an

<xacml :Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a value of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression SHALL be evaluated
as if the function named in the <xacml : Function> argument were applied to the second
argument and each element of the third argument (the bag) and the results were combined
using “urn:oasis:names:tc:xacml:1.0:function:and”.

In Haskell, the semantics of this operation are as follows:

all_of:: (a->b->Bool) ->a->[b]->Bool
allof f a] =True
all of f a (x:xs) =(f a x) && (all_of f a xs)

In the above notation, “f” is the function to be applied, “a” is the primitive value, and “(x:xs)”
represents the first element of the list as “x” and the rest of the list as “xs”.

For example, the following expression SHALL evaluate to "True™:

<Apply Functionld="urn:oasis:names:tc:xacml:1_0:function:all-of’>
<Function Functionld="urn:oasis:names:tc:xacml:2.0:function:integer-greater”/>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”>10</Attributevalue>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:integer-bag”>
<AttributeValue
DataType="http://www._w3_.0rg/2001/XMLSchema#integer”>9</AttributeVvValue>
<AttributevValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”>3</AttributeValue>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>4</AttributeVvValue>
<AttributeValue
DataType="http://www._w3_.0rg/2001/XMLSchema#integer”>2</AttributeVvValue>
</Apply>
</Apply>

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 119 of 141

This expression is "True" because the first argument (10) is greater than all of the elements
of the bag (9,3,4 and 2).

e urn:oasis:names:tc:xacml:1.0:function:any-of-any

This function applies a Boolean function between each element of a bag of values and
each element of another bag of values, and returns "True" if and only if the predicate is
"True" for at least one comparison.

This function SHALL take three arguments. The first argument SHALL be an

<xacml :Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression SHALL be evaluated
as if the function named in the <xacml : Function> argument were applied between
every element of the second argument and every element of the third argument and the
results were combined using “urn:oasis:names:tc:xacml:1.0:function:or”. The semantics
are that the result of the expression SHALL be "True" if and only if the applied predicate is
"True" for at least one comparison of elements from the two bags.

In Haskell, taking advantage of the “any_of” function defined above, the semantics of the
“any_of _any” function are as follows:

any of any: (a->b->Bool) ->[a]->[b]->Bool
any of any f [] yS = False
any_of any f (x:xs) ys = (any_of f x ys) || (any_of _any f xs ys)

In the above notation, “f” is the function to be applied and “(x:xs)” represents the first
element of the list as “X” and the rest of the list as “xs”.

For example, the following expression SHALL evaluate to "True™:

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:any-of-any”>
<Function Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal”/>
<Apply Functionld="urn:oasis:names:tc:xacml:1._0:function:string-bag”>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>Ringo</AttributeValue>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>Mary</AttributeValue>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1._0:function:string-bag”>
<AttributeValue
DataType="http://www.w3_.0rg/2001/XMLSchema#string”’>John</AttributeValue>
<AttributeValue
DataType="http://www.w3_.0rg/2001/XMLSchema#string”’>Paul</AttributeValue>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>George</AttributeValue>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>Ringo</AttributeValue>
</Apply>
</Apply>

This expression is "True" because at least one of the elements of the first bag, namely
“Ringo”, is equal to at least one of the elements of the second bag.
e urn:oasis:names:tc:xacml:1.0:function:all-of-any

This function applies a Boolean function between the elements of two bags. The
expression SHALL be “True” if and only if the supplied predicate is "True' between each
element of the first bag and any element of the second bag.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 120 of 141

This function SHALL take three arguments. The first argument SHALL be an

<xacml :Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression SHALL be evaluated
as if the “urn:oasis:names:tc:xacml:1.0:function:any-of” function had been applied to each
value of the first bag and the whole of the second bag using the supplied xacml:Function,
and the results were then combined using “urn:oasis:names:tc:xacml:1.0:function:and”.

In Haskell, taking advantage of the “any_of” function defined in Haskell above, the
semantics of the “all_of any” function are as follows:

all_of any: (a->b->Bool) ->[a]->[b]->Bool
all_of_any f [] ys =True
all_of _any f (x:xs) vys = (any_of f x ys) && (all_of _any f xs ys)

In the above notation, “f" is the function to be applied and “(x:xs)” represents the first
element of the list as “x” and the rest of the list as “xs”.

For example, the following expression SHALL evaluate to "True™:
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:all-of-any”>
<Function Functionld="urn:oasis:names:tc:xacml:2_0:function:integer-greater”/>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:integer-bag”>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>10</AttributeValue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>20</AttributeValue>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:integer-bag”>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>1</AttributeValue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>3</AttributeValue>
<AttributeValue
DataType="http://www._w3_.0org/2001/XMLSchema#integer”>5</AttributeVvalue>
<AttributeValue
DataType="http://www_w3_.0org/2001/XMLSchema#integer”’>19</AttributeValue>
</Apply>
</Apply>
This expression is “True” because each of the elements of the first bag is greater than at
least one of the elements of the second bag.

e urn:oasis:names:tc:xacml:1.0:function:any-of-all

This function applies a Boolean function between the elements of two bags. The
expression SHALL be “True” if and only if the supplied predicate is “True” between each
element of the second bag and any element of the first bag.

This function SHALL take three arguments. The first argument SHALL be an

<xacml :Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression SHALL be evaluated
as if the "rn:oasis:names:tc:xacml:1.0:function:any-of” function had been applied to each
value of the second bag and the whole of the first bag using the supplied xacml:Function,
and the results were then combined using “urn:oasis:names:tc:xacml:1.0:function:and”.

In Haskell, taking advantage of the “all_of” function defined in Haskell above, the semantics
of the “any_of_all” function are as follows:

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 121 of 141

any of all::(a->b->Bool) ->[a]->[b]-> Bool
any_of all f [] yS = False
any_of_all f (x:xs)ys = (all_of f x ys) || (any_of_all f xs ys)

In the above notation, “f” is the function name to be applied and “(x:xs)” represents the first
element of the list as “x” and the rest of the list as “xs”.

For example, the following expression SHALL evaluate to "True":
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:any-of-all”’>
<Function Functionld="urn:oasis:names:tc:xacml:2_0:function:integer-greater”/>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:integer-bag”>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>3</AttributeValue>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>5</AttributeVvValue>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:integer-bag”’>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”>1</Attributevalue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”>2</Attributevalue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”>3</AttributeVvalue>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>4</Attributevalue>
</Apply>
</Apply>
This expression is “True” because, for all of the values in the second bag, there is a value
in the first bag that is greater.

e urn:oasis:names:tc:xacml:1.0:function:all-of-all

This function applies a Boolean function between the elements of two bags. The
expression SHALL be "True" if and only if the supplied predicate is "True" between each
and every element of the first bag collectively against all the elements of the second bag.

This function SHALL take three arguments. The first argument SHALL be an

<xacml : Function> element that names a Boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-type. The third
argument SHALL be a bag of a primitive data-type. The expression is evaluated as if the
function named in the <xacml : Function> element were applied between every element
of the second argument and every element of the third argument and the results were
combined using “urn:oasis:names:tc:xacml:1.0:function:and”. The semantics are that the
result of the expression is "True" if and only if the applied predicate is "True" for all
elements of the first bag compared to all the elements of the second bag.

In Haskell, taking advantage of the “all_of” function defined in Haskell above, the semantics
of the “all_of_all” function is as follows:

all_of all:: (a->b->Bool) ->[a] ->[b] -> Bool
all_of all f[] yS =True
all_of all f (x:xs) ys = (all_of f x ys) && (all_of_all f xs ys)

In the above notation, “f" is the function to be applied and “(x:xs)” represents the first
element of the list as “X” and the rest of the list as “xs”.

For example, the following expression SHALL evaluate to "True":

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 122 of 141

<Apply Functionld="urn:oasis:names:tc:xacml:1._.0:function:all-of-all”>
<Function Functionld="urn:oasis:names:tc:xacml:2.0:function:integer-greater”/>
<Apply Functionld="urn:oasis:names:tc:xacml:1._0:function:integer-bag”>
<AttributeValue
DataType="http://www._w3_.0rg/2001/XMLSchema#integer”’>6</AttributeVvValue>
<AttributeValue
DataType="http://www._w3_.0rg/2001/XMLSchema#integer”’>5</AttributeVvValue>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:integer-bag”’>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#integer”’>1</AttributeVvValue>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>2</AttributeValue>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>3</AttributeValue>
<AttributeValue
DataType="http://www._w3.0rg/2001/XMLSchema#integer”’>4</AttributeValue>
</Apply>
</Apply>

This expression is "True" because all elements of the first bag, “5” and “6”, are each
greater than all of the integer values “1”, 2", "3", "4” of the second bag.

e urn:oasis:names:tc:xacml:1.0:function:map
This function converts a bag of values to another bag of values.

This function SHALL take two arguments. The first function SHALL be an

<xacml :Function> element naming a function that takes a single argument of a primitive
data-type and returns a value of a primitive data-type. The second argument SHALL be a
bag of a primitive data-type. The expression SHALL be evaluated as if the function named
in the <xacml : Function> element were applied to each element in the bag resulting in a
bag of the converted value. The result SHALL be a bag of the primitive data-type that is
returned by the function named in the <xacml : Function> element.

In Haskell, this function is defined as follows:
map:: (a->b) ->[a] ->[b]
map f [] =1
map f (xxs) = (fx):(map f xs)

In the above notation, “f" is the function to be applied and “(x:xs)” represents the first
element of the list as “X” and the rest of the list as “xs”.

For example, the following expression,

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:map”>
<Function Functionld="urn:oasis:names:tc:xacml:1.0:function:string-normalize-
to-lower-case”>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:Ffunction:string-bag”>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>Hel lo</AttributeValue>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string”’>World!</AttributeValue>
</Apply>
</Apply>

evaluates to a bag containing “hello” and “world!”.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 123 of 141

4818

4819
4820

4821

4822
4823
4824
4825
4826
4827

4828

4829
4830
4831
4832
4833
4834
4835

4836

4837
4838
4839
4840
4841
4842
4843

4844

4845
4846
4847
4848
4849
4850
4851

4852

4853
4854
4855
4856
4857
4858
4859

4860

4861
4862

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

A.3.13 Regular-expression-based functions

These functions operate on various types using regular expressions and evaluate to
“http://www.w3.0rg/2001/XMLSchema#boolean”.

urn:oasis:names:tc:xacml:1.0:function:string-regexp-match

This function decides a regular expression match. It SHALL take two arguments of
“http://www.w3.0rg/2001/XMLSchema#string” and SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be a general string. The function
specification SHALL be that of the “xf:matches” function with the arguments reversed [XF
Section 6.3.15].

urn:oasis:names:tc:xacml:2.0:function:anyURI-regexp-match

This function decides a regular expression match. It SHALL take two arguments; the first is

of type “http://www.w3.0rg/2001/XMLSchemat#string” and the second is of type
“http://www.w3.0rg/2001/XMLSchema#anyURI”. It SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be a URI. The function SHALL convert the
second argument to type “http://www.w3.0rg/2001/XMLSchema##string”, then apply
“urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”.

urn:oasis:names:tc:xacml:2.0:function:ipAddress-regexp-match

This function decides a regular expression match. It SHALL take two arguments; the first is

of type “http://www.w3.0rg/2001/XMLSchema#string” and the second is of type
“urn:oasis:names:tc:xacml:2.0:data-type:ipAddress”. It SHALL return an
“http:/mww.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be an IPv4 or IPv6 address. The function
SHALL convert the second argument to type “http://www.w3.0rg/2001/XMLSchema#string”,
then apply “urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”.

urn:oasis:names:tc:xacml:2.0:function:dnsName-regexp-match

This function decides a regular expression match. It SHALL take two arguments; the first is

of type “http://www.w3.0rg/2001/XMLSchema#string” and the second is of type
“urn:oasis:names:tc:xacml:2.0:data-type:dnsName”. It SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be a DNS name. The function SHALL
convert the second argument to type “http://www.w3.0rg/2001/XMLSchemat#string”, then
apply “urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”.

urn:oasis:names:tc:xacml:2.0:function:rfc822Name-regexp-match

This function decides a regular expression match. It SHALL take two arguments; the first is

of type “http://www.w3.0rg/2001/XMLSchemat#string” and the second is of type
“urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name”. It SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be an RFC 822 name. The function SHALL
convert the second argument to type “http://www.w3.0rg/2001/XMLSchemat#string”, then
apply “urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”.

urn:oasis:names:tc:xacml:2.0:function:x500Name-regexp-match

This function decides a regular expression match. It SHALL take two arguments; the first is

of type “http://www.w3.0rg/2001/XMLSchemat#string” and the second is of type

1 February 2005
Page 124 of 141

4863
4864
4865
4866
4867

4868

4869
4870
4871

4872

4873
4874
4875
4876

4877

4878
4879
4880
4881
4882

4883
4884
4885

4886
4887

4888
4889
4890
4891
4892

4893
4894
4895
4896

4897
4898
4899
4900
4901

“urn:oasis:names:tc:xacml:1.0:data-type:x500Name”. It SHALL return an
“http://www.w3.0rg/2001/XMLSchema#boolean”. The first argument SHALL be a regular
expression and the second argument SHALL be an X.500 directory name. The function
SHALL convert the second argument to type “http://www.w3.0rg/2001/XMLSchema#string”,
then apply “urn:oasis:names:tc:xacml:1.0:function:string-regexp-match”.

A.3.14 Special match functions

These functions operate on various types and evaluate to
“http://www.w3.0rg/2001/XMLSchema#boolean” based on the specified standard matching
algorithm.

e urn:oasis:names:tc:xacml:1.0:function:x500Name-match

This function shall take two arguments of "urn:oasis:names:tc:xacml:2.0:data-
type:x500Name" and shall return an "http://www.w3.0rg/2001/XMLSchemat#boolean". It
shall return “True” if and only if the first argument matches some terminal sequence of
RDNs from the second argument when compared using x500Name-equal.

e urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match

This function SHALL take two arguments, the first is of data-type
“http://www.w3.0rg/2001/XMLSchema#tstring” and the second is of data-type
“urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name” and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. This function SHALL evaluate to "True" if
the first argument matches the second argument according to the following specification.

An RFC822 name consists of a local-part followed by "@" followed by a domain-part. The
local-part is case-sensitive, while the domain-part (which is usually a DNS name) is not
case-sensitive.”

The second argument contains a complete rfc822Name. The first argument is a complete
or partial ric822Name used to select appropriate values in the second argument as follows.

In order to match a particular address in the second argument, the first argument must
specify the complete mail address to be matched. For example, if the first argument is
“Anderson@sun.com”, this matches a value in the second argument of
“Anderson@sun.com” and “Anderson@SUN.COM?”, but not “Anne.Anderson@sun.com”,
“anderson@sun.com” or “Anderson@east.sun.com”.

In order to match any address at a particular domain in the second argument, the first
argument must specify only a domain name (usually a DNS name). For example, if the first
argument is “sun.com”, this matches a value in the first argument of “Anderson@sun.com”
or “Baxter@SUN.COM”, but not “Anderson@east.sun.com”.

In order to match any address in a particular domain in the second argument, the first
argument must specify the desired domain-part with a leading ".". For example, if the first
argument is “.east.sun.com”, this matches a value in the second argument of
"Anderson@east.sun.com" and "anne.anderson@ISRG.EAST.SUN.COM" but not

"Anderson@sun.com".

4 According to IETF RFC822 and its successor specifications [RFC2821], case is significant in the
local-part. Many mail systems, as well as the IETF PKIX specification, treat the local-part as case-
insensitive. This anomaly is considered an error by mail-system designers and is not encouraged.
For this reason, rfc822Name-match treats local-part as case sensitive.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 125 of 141

4902

4903
4904
4905
4906
4907
4908

4909

4910
4911
4912
4913
4914

4915

4916
4917
4918
4919
4920
4921

4922

4923
4924
4925
4926
4927
4928
4929
4930
4931

4932
4933

4934

4935
4936
4937

4938
4939
4940
4941

A.3.15 XPath-based functions

This section specifies functions that take XPath expressions for arguments. An XPath expression
evaluates to a node-set, which is a set of XML nodes that match the expression. A node or node-
set is not in the formal data-type system of XACML. All comparison or other operations on node-
sets are performed in isolation of the particular function specified. That is, the XPath expressions in
these functions are restricted to the XACML request context. The <xacml-context:Request>
element is the context node for every XPath expression. The following functions are defined:

e urn;oasis:names:tc:xacml:1.0:function:xpath-node-count

This function SHALL take an “http://www.w3.0rg/2001/XMLSchema#string” as an
argument, which SHALL be interpreted as an XPath expression, and evaluates to an
“http://www.w3.0rg/2001/XMLSchema#integer”. The value returned from the function
SHALL be the count of the nodes within the node-set that match the given XPath
expression.

e urn;oasis:names:tc:xacml:1.0:function:xpath-node-equal

This function SHALL take two “http://www.w3.0rg/2001/XMLSchema#string” arguments,
which SHALL be interpreted as XPath expressions, and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. The function SHALL return "True" if any
of the XML nodes in the node-set matched by the first argument equals, according to the
“op:node-equal” function [XF Section 13.1.6], any of the XML nodes in the node-set
matched by the second argument.

e urn:oasis:names:tc:xacml:1.0:function:xpath-node-match

This function SHALL take two “http://www.w3.0rg/2001/XMLSchema#string” arguments,
which SHALL be interpreted as XPath expressions and SHALL return an
“http://mvww.w3.0rg/2001/XMLSchema#boolean”. This function SHALL evaluate to "True" if
one of the following two conditions is satisfied: (1) Any of the XML nodes in the node-set
matched by the first argument is equal, according to "op:node-equal" [XF Section 13.1.6],
to any of the XML nodes in the node-set matched by the second argument; (2) any attribute
and element node below any of the XML nodes in the node-set matched by the first
argument is equal, according to "op:node-equal” [XF Section 13.1.6], to any of the XML
nodes in the node-set matched by the second argument.

NOTE: The first condition is equivalent to "xpath-node-equal”, and guarantees that "xpath-node-
equal" is a special case of "xpath-node-match".

A.3.16 Extension functions and primitive types

Functions and primitive types are specified by string identifiers allowing for the introduction of
functions in addition to those specified by XACML. This approach allows one to extend the XACML
module with special functions and special primitive data-types.

In order to preserve the integrity of the XACML evaluation strategy, the result of an extension
function SHALL depend only on the values of its arguments. Global and hidden parameters SHALL
NOT affect the evaluation of an expression. Functions SHALL NOT have side effects, as
evaluation order cannot be guaranteed in a standard way.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 126 of 141

4942

4943

4944

4945

4946
4947
4948
4949

4950

4951
4952

4953

4954
4955

4956

4957
4958

4959

4960
4961
4962
4963

4964

4965
4966

4967

4968

4969

4970
4971
4972
4973

4974

4975
4976

Appendix B. XACML identifiers (normative)

This section defines standard identifiers for commonly used entities.

B.1. XACML namespaces

There are currently two defined XACML namespaces.

Policies are defined using this identifier.
urn:oasis:names:tc:xacml:2.0:policy:schema:os
Request and response contexts are defined using this identifier.
urn:oasis:names:tc:xacml:2._.0:context:schema:os

B.2. Access subject categories

This identifier indicates the system entity that initiated the access request. That is, the initial entity
in a request chain. If subject category is not specified, this is the default value.

urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

This identifier indicates the system entity that will receive the results of the request (used when it is
distinct from the access-subject).

urn:oasis:names:tc:xacml:1.0:subject-category:recipient-subject

This identifier indicates a system entity through which the access request was passed. There may
be more than one. No means is provided to specify the order in which they passed the message.

urn:oasis:names:tc:xacml:1.0:subject-category:intermediary-subject

This identifier indicates a system entity associated with a local or remote codebase that generated
the request. Corresponding subject attributes might include the URL from which it was loaded
and/or the identity of the code-signer. There may be more than one. No means is provided to
specify the order in which they processed the request.

urn:oasis:names:tc:xacml:1.0:subject-category:codebase

This identifier indicates a system entity associated with the computer that initiated the access
request. An example would be an IPsec identity.

urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine

B.3. Data-types

The following identifiers indicate data-types that are defined in Section A.2.

urn:oasis:names:tc:xacml:1.0:data-type:x500Name.

urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name
urn:oasis:names:tc:xacml:2.0:data-type: ipAddress

urn:oasis:names:tc:xacml:2._.0:data-type:dnsName

The following data-type identifiers are defined by XML Schema [XS].

http://www.w3.0rg/2001/XMLSchema#string
http://www.w3.0rg/2001/XMLSchema#boolean

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 127 of 141

4977
4978
4979
4980
4981
4982
4983
4984

4985
4986

4987
4988

4989

4990
4991
4992
4993

4994
4995
4996

4997
4998
4999

5000
5001
5002

5003
5004

5005
5006
5007
5008
5009
5010
5011

5012
5013

5014

5015
5016

5017

5018
5019
5020

http://www.w3.0rg/2001/XMLSchema#integer
http://www.w3.0rg/2001/XMLSchema#double
http://www.w3.0rg/2001/XMLSchema#time
http://www.w3.0rg/2001/XMLSchema#date
http://www.w3.0rg/2001/XMLSchema#dateTime
http://www.w3.0rg/2001/XMLSchema#anyURI
http://www.w3.0rg/2001/XMLSchema#hexBinary
http://www.w3.0rg/2001/XMLSchema#base64Binary

The following data-type identifiers correspond to the dayTimeDuration and yearMonthDuration
data-types defined in [XF Sections 8.2.2 and 8.2.1, respectively].

http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#dayTimeDuration
http://www.w3.0rg/TR/2002/WD-xquery-operators-20020816#yearMonthDuration

B.4. Subject attributes

These identifiers indicate attributes of a subject. When used, they SHALL appear within a
<Subject> element of the request context. They SHALL be accessed by means of a
<SubjectAttributeDesignator> element, or an <AttributeSelector> element that points
into a <Subject> element of the request context.

At most one of each of these attributes is associated with each subject. Each attribute associated
with authentication included within a single <Subject> element relates to the same authentication
event.

This identifier indicates the name of the subject. The default format is
“http://mww.w3.0rg/2001/XMLSchema#string”. To indicate other formats, use the DataType
attributes listed in B.3

urn:oasis:names:tc:xacml:1.0:subject:subject-id
This identifier indicates the subject category. “access-subject” is the default value.
urn:oasis:names:tc:xacml:1.0:subject-category

This identifier indicates the security domain of the subject. It identifies the administrator and policy
that manages the name-space in which the subject id is administered.

urn:oasis:names:tc:xacml:1.0:subject:subject-id-qualifier

This identifier indicates a public key used to confirm the subject’s identity.
urn:oasis:names:tc:xacml:1.0:subject:key-info

This identifier indicates the time at which the subject was authenticated.
urn:oasis:names:tc:xacml:1.0:subject:authentication-time

This identifier indicates the method used to authenticate the subject.
urn:oasis:names:tc:xacml:1.0:subject:authn-locality:authentication-method

This identifier indicates the time at which the subject initiated the access request, according to the
PEP.

urn:oasis:names:tc:xacml:1.0:subject:request-time

This identifier indicates the time at which the subject’s current session began, according to the
PEP.

urn:oasis:names:tc:xacml:1.0:subject:session-start-time

The following identifiers indicate the location where authentication credentials were activated. They
are intended to support the corresponding entities from the SAML authentication statement
[SAML].

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 128 of 141

5021
5022

5023

5024
5025
5026
5027

5028
5029

5030

5031

5032
5033
5034
5035

5036
5037
5038
5039

5040

5041
5042
5043
5044
5045

5046

5047

5048
5049
5050
5051

5052
5053
5054
5055

5056
5057

This identifier indicates that the location is expressed as an IP address.
urn:oasis:names:tc:xacml:1.0:subject:authn-locality:ip-address
The corresponding attribute SHALL be of data-type "http://www.w3.0rg/2001/XMLSchema#string".

This identifier indicates that the location is expressed as a DNS name.
urn:oasis:names:tc:xacml:1.0:subject:authn-locality:dns-name

The corresponding attribute SHALL be of data-type "http://www.w3.0rg/2001/XMLSchema#string".
Where a suitable attribute is already defined in LDAP [LDAP-1, LDAP-2], the XACML identifier

SHALL be formed by adding the attribute name to the URI of the LDAP specification. For
example, the attribute name for the userPassword defined in the RFC 2256 SHALL be:

http://www. ietf.org/rfc/rfc2256. txt#userPassword

B.6. Resource attributes

These identifiers indicate attributes of the resource. The corresponding attributes MAY appear in
the <Resource> element of the request context and be accessed by means of a
<ResourceAttributeDesignator> element, or by an <AttributeSelector> element that
points into the <Resource> element of the request context.

This attribute identifies the resource to which access is requested. If an <xacml-
context:ResourceContent> element is provided, then the resource to which access is
requested SHALL be all or a portion of the resource supplied in the <xacml -
context:ResourceContent> element.

urn:oasis:names:tc:xacml:1.0:resource:resource-id

This attribute identifies the namespace of the top element of the contents of the <xacml-
context:ResourceContent> element. In the case where the resource content is supplied in the
request context and the resource namespace is defined in the resource, the PDP SHALL confirm
that the namespace defined by this attribute is the same as that defined in the resource. The type
of the corresponding attribute SHALL be “http://www.w3.0rg/2001/XMLSchema#anyURI".

urn:oasis:names:tc:xacml:2.0:resource:target-namespace

B.7. Action attributes

These identifiers indicate attributes of the action being requested. When used, they SHALL
appear within the <Action> element of the request context. They SHALL be accessed by means
of an <ActionAttributeDesignator> element, or an <AttributeSelector> element that
points into the <Action> element of the request context.

This attribute identifies the action for which access is requested.
urn:oasis:names:tc:xacml:1.0:action:action-id

Where the action is implicit, the value of the action-id attribute SHALL be
urn:oasis:names:tc:xacml:1.0:action:implied-action

This attribute identifies the namespace in which the action-1id attribute is defined.
urn:oasis:names:tc:xacml:1.0:action:action-namespace

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 129 of 141

5058

5059
5060
5061
5062
5063

5064
5065
5066
5067
5068

5069

5070
5071

5072

5073
5074

5075

5076
5077

5078

5079

5080
5081

5082
5083

5084

5085
5086

5087

5088
5089

5090

5091

5092
5093

5094

B.8. Environment attributes

These identifiers indicate attributes of the environment within which the decision request is to be
evaluated. When used in the decision request, they SHALL appear in the <Environment>
element of the request context. They SHALL be accessed by means of an
<EnvironmentAttributeDesignator> element, or an <AttributeSelector> element that
points into the <Environment> element of the request context.

This identifier indicates the current time at the context handler. In practice it is the time at which
the request context was created. For this reason, if these identifiers appear in multiple places
within a <Policy> or <Pol icySet>, then the same value SHALL be assigned to each occurrence
in the evaluation procedure, regardless of how much time elapses between the processing of the
occurrences.

urn:oasis:names:tc:xacml:1.0:environment:current-time

The corresponding attribute SHALL be of data-type
“http://www.w3.0rg/2001/XMLSchema#time™.

urn:oasis:names:tc:xacml:1.0:environment:current-date

The corresponding attribute SHALL be of data-type
“http://www.w3.0rg/2001/XMLSchema#date™.

urn:oasis:names:tc:xacml:1.0:environment:current-dateTime

The corresponding attribute SHALL be of data-type
“http://www.w3.0rg/2001/XMLSchema#dateTime”.

B.9. Status codes

The following status code values are defined.

This identifier indicates success.
urn:oasis:names:tc:xacml:1.0:status:ok

This identifier indicates that all the attributes necessary to make a policy decision were not available
(see Section 6.16).

urn:oasis:names:tc:xacml:1.0:status:missing-attribute

This identifier indicates that some attribute value contained a syntax error, such as a letter in a
numeric field.

urn:oasis:names:tc:xacml:1.0:status:syntax-error

This identifier indicates that an error occurred during policy evaluation. An example would be
division by zero.

urn:oasis:names:tc:xacml:1.0:status:processing-error

B.10.Combining algorithms

The deny-overrides rule-combining algorithm has the following value for the
ruleCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 130 of 141

5095
5096

5097

5098
5099

5100

5101
5102

5103

5104
5105

5106

5107
5108

5109

5110
5111

5112
5113

5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

The deny-overrides policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides

The permit-overrides rule-combining algorithm has the following value for the
ruleCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides

The permit-overrides policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides

The first-applicable rule-combining algorithm has the following value for the
ruleCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm: first-applicable

The first-applicable policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable

The only-one-applicable-policy policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one-
applicable

The ordered-deny-overrides rule-combining algorithm has the following value for the
ruleCombiningAlgld attribute:
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny-
overrides

The ordered-deny-overrides policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:
urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-deny-
overrides

The ordered-permit-overrides rule-combining algorithm has the following value for the
ruleCombiningAlgld attribute:
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-permit-
overrides

The ordered-permit-overrides policy-combining algorithm has the following value for the
policyCombiningAlgld attribute:
urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-permit-
overrides

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 131 of 141

5130

5131
5132

Appendix C. Combining algorithms (normative)

This section contains a description of the rule- and policy-combining algorithms specified by
XACML.

C.1.Deny-overrides

The following specification defines the “Deny-overrides” rule-combining algorithm of a policy.

In the entire set of rules in the policy, if any rule evaluates to "Deny", then the result of the
rule combination SHALL be "Deny". If any rule evaluates to "Permit" and all other rules
evaluate to "NotApplicable", then the result of the rule combination SHALL be "Permit". In
other words, "Deny" takes precedence, regardless of the result of evaluating any of the

other rules in the combination. If al
request, then the rule combination

I rules are found to be "NotApplicable" to the decision
SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target or condition of a rule that contains an effect

value of "Deny" then the evaluation
for a result of "Deny". If no other ru

SHALL continue to evaluate subsequent rules, looking
le evaluates to "Deny", then the combination SHALL

evaluate to "Indeterminate”, with the appropriate error status.

If at least one rule evaluates to "Permit", all other rules that do not have evaluation errors
evaluate to "Permit" or "NotApplicable" and all rules that do have evaluation errors contain
effects of "Permit”, then the result of the combination SHALL be "Permit".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.
Decision denyOverridesRuleCombiningAlgorithm(Rule rule[])

{

Boolean atlLeastOneError
Boolean potentialDeny

Talse;
false;

Boolean atLeastOnePermit = false;
for(i=0 ; 1 < lengthOf(rules) ;

{

i++)

Decision decision = evaluate(rule[i]);

it (decision == Deny)

{
return Deny;

by

if (decision == Permit)
atLeastOnePermit = true;
continue;

b

if (decision == NotApplicable)
{

continue;
if (decision == Indeterminate)
{ atLeastOneError = true;

it (effect(rule[i]) == Deny)

potentialDeny = true;

}

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

1 February 2005
Page 132 of 141

continue;

}

}
if (potentialDeny)

{
return Indeterminate;

by

if (atLeastOnePermit)

{
return Permit;

}

if (atLeastOneError)

{
return Indeterminate;

}

return NotApplicable;

}

The following specification defines the “Deny-overrides” policy-combining algorithm of a policy
set.

In the entire set of policies in the policy set, if any policy evaluates to "Deny", then the
result of the policy combination SHALL be "Deny". In other words, "Deny" takes
precedence, regardless of the result of evaluating any of the other policies in the policy
set. If all policies are found to be "NotApplicable" to the decision request, then the
policy set SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target of a policy, or a reference to a policy is
considered invalid or the policy evaluation results in "Indeterminate”, then the policy set
SHALL evaluate to "Deny".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.
Decision denyOverridesPolicyCombiningAlgorithm(Policy policy[])

Boolean atlLeastOnePermit = false;

for(i=0 ; i < lengthOf(policy) ; i++)

{
Decision decision = evaluate(policy[i]):
if (decision == Deny)

{

return Deny;
if (decision == Permit)
{

atLeastOnePermit = true;
continue;

}
if (decision == NotApplicable)

P

continue;

-

if (decision == Indeterminate)

s

return Deny;
}
iT (atLeastOnePermit)
{

return Permit;

return NotApplicable;

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 133 of 141

5235
5236

5237

5238
5239

5240
5241
5242

5243
5244

5245
5246
5247

}
Obligations of the individual policies shall be combined as described in Section 7.14.

C.2.Ordered-deny-overrides

The following specification defines the "Ordered-deny-overrides” rule-combining algorithm of a
policy.

The behavior of this algorithm is identical to that of the Deny-overrides rule-combining
algorithm with one exception. The order in which the collection of rules is evaluated SHALL
match the order as listed in the policy.

The following specification defines the "Ordered-deny-overrides" policy-combining algorithm of a
policy set.

The behavior of this algorithm is identical to that of the Deny-overrides policy-combining
algorithm with one exception. The order in which the collection of policies is evaluated
SHALL match the order as listed in the policy set.

C.3. Permit-overrides

The following specification defines the “Permit-overrides” rule-combining algorithm of a policy.

In the entire set of rules in the policy, if any rule evaluates to "Permit”, then the result of
the rule combination SHALL be "Permit". If any rule evaluates to "Deny" and all other
rules evaluate to "NotApplicable”, then the policy SHALL evaluate to "Deny". In other
words, "Permit" takes precedence, regardless of the result of evaluating any of the other
rules in the policy. If all rules are found to be "NotApplicable" to the decision request,
then the policy SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target or condition of a rule that contains an effect
of "Permit" then the evaluation SHALL continue looking for a result of "Permit". If no other
rule evaluates to "Permit", then the policy SHALL evaluate to "Indeterminate”, with the
appropriate error status.

If at least one rule evaluates to "Deny", all other rules that do not have evaluation errors
evaluate to "Deny" or "NotApplicable" and all rules that do have evaluation errors contain
an effect value of "Deny", then the policy SHALL evaluate to "Deny".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.
Decision permitOverridesRuleCombiningAlgorithm(Rule rule[])

{
Boolean atLeastOneError = false;
Boolean potentialPermit = false;
Boolean atlLeastOneDeny = false;
for(i=0 ; 1 < lengthOf(rule) ; i++)
{
Decision decision = evaluate(rule[i]);
if (decision == Deny)
{
atLeastOneDeny = true;
continue;
if (decision == Permit)
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 134 of 141

}

{

return Permit;

}
if (decision == NotApplicable)

P

continue;

-

if (decision == Indeterminate)

{

atLeastOneError = true;
if (effect(rule[i]) == Permit)

potentialPermit = true;

}

continue;

}

}
it (potentialPermit)

¥
1
{
¥
1
{
}
r

return Indeterminate;

T (atLeastOneDeny)

return Deny;

f (atLeastOneError)

return Indeterminate;

eturn NotApplicable;

The following specification defines the “Permit-overrides” policy-combining algorithm of a policy
set.

In the entire set of policies in the policy set, if any policy evaluates to "Permit", then the
result of the policy combination SHALL be "Permit". In other words, "Permit" takes
precedence, regardless of the result of evaluating any of the other policies in the policy
set. If all policies are found to be "NotApplicable" to the decision request, then the
policy set SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target of a policy, a reference to a policy is
considered invalid or the policy evaluation results in "Indeterminate”, then the policy set
SHALL evaluate to "Indeterminate”, with the appropriate error status, provided no other
policies evaluate to "Permit" or "Deny".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.
Decision permitOverridesPolicyCombiningAlgorithm(Policy policy[])

{

Boolean atLeastOneError = false;
Boolean atLeastOneDeny = false;
for(i=0 ; i < lengthOf(policy) ; i++)

{

Decision decision = evaluate(policy[i]);
if (decision == Deny)

atLeastOneDeny = true;
continue;

}

if (decision == Permit)

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 135 of 141

5359

5360
5361

5362
5363
5364

5365
5366

5367
5368
5369

5370

5371

5372
5373
5374
5375
5376
5377
5378

{

return Permit;

}
if (decision == NotApplicable)

P

continue;

-

if (decision == Indeterminate)

s

atLeastOneError = true;
continue;

}

T (atLeastOneDeny)
return Deny;

T (atLeastOneError)
return Indeterminate;

eturn NotApplicable;
}

Obligations of the individual policies shall be combined as described in Section 7.14.

C.4.Ordered-permit-overrides

The following specification defines the "Ordered-permit-overrides" rule-combining algorithm of a
policy.

The behavior of this algorithm is identical to that of the Permit-overrides rule-combining
algorithm with one exception. The order in which the collection of rules is evaluated SHALL
match the order as listed in the policy.

The following specification defines the "Ordered-permit-overrides" policy-combining algorithm of
a policy set.

The behavior of this algorithm is identical to that of the Permit-overrides policy-combining
algorithm with one exception. The order in which the collection of policies is evaluated
SHALL match the order as listed in the policy set.

C.5. First-applicable

The following specification defines the "First-Applicable " rule-combining algorithm of a policy.

Each rule SHALL be evaluated in the order in which it is listed in the policy. For a
particular rule, if the target matches and the condition evaluates to "True", then the
evaluation of the policy SHALL halt and the corresponding effect of the rule SHALL be the
result of the evaluation of the policy (i.e. "Permit" or "Deny"). For a particular rule selected
in the evaluation, if the target evaluates to "False" or the condition evaluates to "False",
then the next rule in the order SHALL be evaluated. If no further rule in the order exists,
then the policy SHALL evaluate to "NotApplicable".

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 136 of 141

If an error occurs while evaluating the target or condition of a rule, then the evaluation
SHALL halt, and the policy shall evaluate to "Indeterminate”, with the appropriate error
status.

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision firstApplicableEffectRuleCombiningAlgorithm(Rule rule[])

for(i =0 ; i < lengthOf(rule) ; i++)
{

Decision decision = evaluate(rule[i]);
if (decision == Deny)

{ return Deny;

ifT (decision == Permit)

{ return Permit;

%f (decision == NotApplicable)

{
continue;
T

ifT (decision == Indeterminate)

{

}

}
return NotApplicable;

return Indeterminate;

}

The following specification defines the “First-applicable” policy-combining algorithm of a policy
set.

Each policy is evaluated in the order that it appears in the policy set. For a particular
policy, if the target evaluates to "True" and the policy evaluates to a determinate value of
"Permit" or "Deny", then the evaluation SHALL halt and the policy set SHALL evaluate to
the effect value of that policy. For a particular policy, if the target evaluate to "False", or
the policy evaluates to "NotApplicable”, then the next policy in the order SHALL be
evaluated. If no further policy exists in the order, then the policy set SHALL evaluate to
"NotApplicable".

If an error were to occur when evaluating the target, or when evaluating a specific policy,
the reference to the policy is considered invalid, or the policy itself evaluates to
"Indeterminate”, then the evaluation of the policy-combining algorithm shall halt, and the
policy set shall evaluate to "Indeterminate” with an appropriate error status.

The following pseudo-code represents the evaluation strategy of this policy-combination
algorithm.

Decision FTirstApplicableEffectPolicyCombiningAlgorithm(Policy policy[])

{
for(i = 0 ; i < lengthOf(policy) ; i++)

{
Decision decision = evaluate(policy[i]):
if(decision == Deny)
{
return Deny;
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 137 of 141

}
if(decision == Permit)
{
return Permit;
}
if (decision == NotApplicable)
{
continue;
3 . i
if (decision == Indeterminate)
{
return Indeterminate;
}

return NotApplicable;
}

Obligations of the individual policies shall be combined as described in Section 7.14.

C.6.0Only-one-applicable

The following specification defines the “Only-one-applicable" policy-combining algorithm of a
policy set.

In the entire set of policies in the policy set, if no policy is considered applicable by virtue
of its target, then the result of the policy combination algorithm SHALL be "NotApplicable".
If more than one policy is considered applicable by virtue of its target, then the result of
the policy combination algorithm SHALL be "Indeterminate".

If only one policy is considered applicable by evaluation of its target, then the result of the
policy-combining algorithm SHALL be the result of evaluating the policy.

If an error occurs while evaluating the target of a policy, or a reference to a policy is
considered invalid or the policy evaluation results in "Indeterminate, then the policy set
SHALL evaluate to "Indeterminate”, with the appropriate error status.

The following pseudo-code represents the evaluation strategy of this policy combining algorithm.
Decision onlyOneApplicablePolicyPolicyCombiningAlogrithm(Policy policy[])

Boolean atlLeastOne = fTalse;
Policy selectedPolicy = null;
ApplicableResult appResult;

for (i = 0; i < lengthOf(policy) ; i++)

appResult = isApplicable(policy[l]);

if (appResult == Indeterminate)
return Indeterminate;

}
if(appResult == Applicable)
{

if (atLeastOne)

{
return Indeterminate;
}
else
access_control-xacml-2.0-core-spec-0s 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 138 of 141

{
atLeastOne = true;
selectedPolicy = policy[i];
¥
}
if (appResult == NotApplicable)
{
continue;
}
}
it (atLeastOne)
{
return evaluate(selectedPolicy);
}
else
{
return NotApplicable;
}
}

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

1 February 2005
Page 139 of 141

5503

5504

5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535

Appendix D. Acknowledgments

The following individuals contributed to the development of the specification:

Anne Anderson
Anthony Nadalin
Bill Parducci

Daniel Engovatov
Don Flinn

Ed Coyne

Ernesto Damiani
Frank Siebenlist
Gerald Brose

Hal Lockhart
Haruyuki Kawabe
James MaclLean
John Merrells

Ken Yagen
Konstantin Beznosov
Michiharu Kudo
Michael Mclntosh
Pierangela Samarati
Pirasenna Velandai Thiyagarajan
Polar Humenn
Rebekah Metz

Ron Jacobson
Satoshi Hada
Sekhar Vajjhala
Seth Proctor
Simon Godik

Steve Anderson
Steve Crocker
Suresh Damodaran
Tim Moses

Von Welch

access_control-xacml-2.0-core-spec-0s
Copyright © OASIS Open 2004. All Rights Reserved.

1 February 2005
Page 140 of 141

5536

5537
5538
5539
5540
5541
5542
5543
5544
5545

5546
5547
5548

5549

5550
5551
5552
5553
5554
5555
5556
5557

5558
5559
5560
5561
5562
5563

Appendix E. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementors or users of this specification, can be obtained
from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004-2005. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself does not be modified in any way, such as by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing OASIS specifications, in
which case the procedures for copyrights defined in the OASIS Intellectual Property Rights
document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns. This document and the information contained herein is provided on an “AS
IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

access_control-xacml-2.0-core-spec-0s 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 141 of 141

