
[image: image1.png]OASIS)

Web Services Business Activity

(WS-BusinessActivity) Version 1.1
OASIS Standard incorporating Approved Errata
12 July 2007
Specification URIs:

This Version:

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-os/wstx-wsba-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-os.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-os.pdf
Previous Version:

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
Latest Approved Version:

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec/wstx-wsba-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec.doc
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec.pdf
Technical Committee:

OASIS Web Services Transaction (WS-TX) TC
Chair(s):

Eric Newcomer, Iona

Ian Robinson, IBM
Editor(s):

Tom Freund, IBM <tjfreund@us.ibm.com>
Mark Little, JBoss Inc. <mark.little@jboss.com>

Declared XML Namespaces:

http://docs.oasis-open.org/ws-tx/wsba/2006/06
Abstract:

The WS-BusinessActivity specification provides the definition of two Business Activity coordination types: AtomicOutcome or MixedOutcome, that are to be used with the extensible coordination framework described in the WS-Coordination specification. This specification also defines two specific Business Activity agreement coordination protocols for the Business Activity coordination types: BusinessAgreementWithParticipantCompletion, and BusinessAgreementWithCoordinatorCompletion. Developers can use these protocols when building applications that require consistent agreement on the outcome of long-running distributed activities.
Status:

This document was last revised or approved by the WS-TX TC on the above date. The level of approval is also listed above. Check the “Latest Approved Version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at www.oasis-open.org/committees/ws-tx .
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (www.oasis-open.org/committees/ws-tx/ipr.php).

The non-normative errata page for this specification is located at www.oasis-open.org/committees/ws-tx .

Notices
Copyright © OASIS Open 2007. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
Table of Contents
51
Introduction

51.1 Model

61.2 Composable Architecture

61.3 Terminology

71.4 Namespace

71.4.1 Prefix Namespace

71.5 XSD and WSDL Files

71.6 Protocol Elements

71.7 Normative References

92
Business Activity Context

103
Coordination Types and Protocols

103.1 Preconditions

103.2 BusinessAgreementWithParticipantCompletion Protocol

133.3 BusinessAgreementWithCoordinatorCompletion Protocol

164
Policy Assertions

164.1 Assertion Models

164.2 Normative Outlines

174.3 Assertion Attachment

174.4 Assertion Example

195
Security Considerations

216
Use of WS-Addressing Headers

22A.
Acknowledgements

23B.
State Tables for the Agreement Protocols

24B.1 Participant view of BusinessAgreementWithParticipantCompletion

26B.2 Coordinator view of BusinessAgreementWithParticipantCompletion

28B.3 Participant view of BusinessAgreementWithCoordinatorCompletion

30B.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion

1 Introduction
The current set of Web service specifications [WSDL] [SOAP 1.1] [SOAP 1.2] define protocols for Web service interoperability. Web services increasingly tie together a number of participants forming large distributed applications. The resulting activities may have complex structure and relationships.

The WS-Coordination [WSCOOR] specification defines an extensible framework for defining coordination types.
This specification provides the definition of two Business Activity coordination types used to coordinate activities that apply business logic to handle exceptions that occur during the execution of activities of a business process. Actions are applied immediately and are permanent. Compensating actions may be invoked in the event of an error. WS-BusinessActivity defines protocols that enable existing business process and work flow systems to wrap their proprietary mechanisms and interoperate across trust boundaries and different vendor implementations.

To understand the protocols described in this specification, the following assumptions are made:

· The reader is familiar with the WS-Coordination [WSCOOR] specification which defines the framework for the Business Activity coordination protocols.
· The reader is familiar with WS-Addressing [WSADDR] and WS-Policy [WSPOLICY].
Business activities have the following characteristics:
· A business activity may consume many resources over a long duration.
· There may be a significant number of atomic transactions involved.

· Individual tasks within a business activity can be seen prior to the completion of the business activity, their results may have an impact outside of the computer system.

· Responding to a request may take a very long time. Human approval, assembly, manufacturing, or delivery may have to take place before a response can be sent.

· In the case where a business exception requires an activity to be logically undone, abort is typically not sufficient. Exception handling mechanisms may require business logic, for example in the form of a compensation task, to reverse the effects of a previously completed task.

· Participants in a business activity may be in different domains of trust where all trust relationships are established explicitly.

The Business Activity protocols defined in this specification have the following design points:
· All state transitions are reliably recorded, including application state and coordination metadata.

· All non-terminal notifications are acknowledged in the protocol to ensure a consistent view of state between the coordinator and participant. A coordinator or participant may solicit the status of its partner or retry sending notifications in order to achieve this.

· Each notification is defined as an individual message. Transport level request/response retry and time out are not sufficient mechanisms to achieve end-to-end agreement coordination for long-running activities.

1.1 Model
Business Activity coordination protocols provide the following flexibility:
· A business application may be partitioned into business activity scopes. A business activity scope is a business task consisting of a general-purpose computation carried out as a bounded set of operations on a collection of Web services that require a mutually agreed outcome. There may be any number of hierarchical nesting levels. Nested scopes:
· Allow a business application to select which child tasks are included in the overall outcome processing. For example, a business application might solicit an estimate from a number of suppliers and choose a quote or bid based on lowest-cost.

· Allow a business application to catch an exception thrown by a child task, apply an exception handler, and continue processing even if something goes wrong. When a child completes its work, it may be associated with a compensation that is registered with the parent activity.

· A participant task within a business activity may specify that it is leaving a business activity. This provides the ability to exit a business activity and allows business programs to delegate processing to other scopes. The participant list is dynamic and a participant may exit the protocol at any time without waiting for the outcome of the protocol.

· The Business Activity coordination protocols allow a participant task within a business activity to specify its outcome directly without waiting for solicitation. Such a feature is generally useful when
· A task fails so that the notification can be used by a business activity exception handler to modify the goals and drive processing in a timely manner.

· The Business Activity coordination protocols allow participants in a coordinated business activity to perform "tentative" operations as a normal part of the activity. The result of such "tentative" operations may become visible before the activity is complete and may require business logic to run in the event that the operation needs to be compensated. Such a feature is critical when the joint work of a business activity requires many operations performed by independent services over a long period of time.

1.2 Composable Architecture

By using the XML [XML],SOAP [SOAP 1.1] [SOAP 1.2] and WSDL [WSDL] extensibility model, SOAP-based and WSDL-based specifications are designed to work together to define a rich Web services environment. As such, WS-BusinessActivity by itself does not define all features required for a complete solution. WS-BusinessActivity is a building block used with other specifications of Web services (e.g., WS-Coordination [WSCOOR], WS-Security [WSSec]) and application-specific protocols that are able to accommodate a wide variety of coordination protocols related to the coordination actions of distributed applications.

1.3 Terminology
The uppercase key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119 [RFC2119].
This specification uses an informal syntax to describe the XML grammar of the XML fragments below:

· The syntax appears as an XML instance, but the values indicate the data types instead of values.

· Element names ending in "..." (such as <element.../> or <element...>) indicate that elements/attributes irrelevant to the context are being omitted.

· Attributed names ending in "..." (such as name=...) indicate that the values are specified below.

· Grammar in bold has not been introduced earlier in the document, or is of particular interest in an example.

· <!-- description --> is a placeholder for elements from some "other" namespace (like ##other in XSD).

· Characters are appended to elements, attributes, and <!-- descriptions --> as follows: "?" (0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are used to indicate that contained items are to be treated as a group with respect to the "?", "*", or "+" characters.

· The XML namespace prefixes (defined below) are used to indicate the namespace of the element being defined.

· Examples starting with <?xml contain enough information to conform to this specification; others examples are fragments and require additional information to be specified in order to conform.

1.4 Namespace

The XML namespace [XML-ns] URI that MUST be used by implementations of this specification is:

 http://docs.oasis-open.org/ws-tx/wsba/2006/06

1.4.1 Prefix Namespace

The following namespaces are used in this document:
	Prefix
	Namespace

	wscoor
	http://docs.oasis-open.org/ws-tx/wscoor/2006/06

	wsba
	http://docs.oasis-open.org/ws-tx/wsba/2006/06

1.5 XSD and WSDL Files

Dereferencing the XML namespace defined in section 1.4 will produce the Resource Directory Description Language (RDDL) [RDDL] document that describes this namespace, including the XML schema [XML-Schema1] [XML-Schema2] and WSDL [WSDL] declarations associated with this specification.

SOAP bindings for the WSDL [WSDL], referenced in the RDDL [RDDL] document, MUST use "document" for the style attribute.
1.6 Protocol Elements

The protocol elements define various extensibility points that allow other child or attribute content. Additional children and/or attributes MAY be added at the indicated extension points but MUST NOT contradict the semantics of the parent and/or owner, respectively. If a receiver does not recognize an extension, the receiver SHOULD ignore the extension.

1.7 Normative References

[RDDL]
Jonathan Borden, Tim Bray, eds. “Resource Directory Description Language (RDDL) 2.0”, http://www.openhealth.org/RDDL/20040118/rddl-20040118.html, January 2004.
[RFC2119]
S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels”, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[SOAP 1.1]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 08 May 2000.
[SOAP 1.2]
W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework", http://www.w3.org/TR/soap12-part1/, June 2003.
[XML]
W3C Recommendation, "Extensible Markup Language (XML) 1.0 (Fourth Edition),"http://www.w3.org/TR/2006/REC-xml-20060816, 16 August 2006.

[XML-ns]
W3C Recommendation, "Namespaces in XML 1.0 (Second Edition)," http://www.w3.org/TR/2006/REC-xml-names-20060816, 16 August 2006.
[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures Second Edition," http://www.w3.org/TR/2004/REC-xmlschema-1-20041028, 28 October 2004.
[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition," http://www.w3.org/TR/2004/REC-xmlschema-2-20041028, 28 October 2004.
[WSCOOR]
Web Services Coordination (WS-Coordination), "http:/docs.oasis-open.org/ws-tx/wscoor/2006/06"
[WSDL]
Web Services Description Language (WSDL) 1.1 "http://www.w3.org/TR/2001/NOTE-wsdl-20010315"
[WSADDR]
Web Services Addressing (WS-Addressing) 1.0, W3C Recommendation, http://www.w3.org/2005/08/addressing
[WSPOLICY]
Web Services Policy 1.2 – Framework (WS-Policy), http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/, W3C Member Submission, 25 April 2006.
[WSPOLICYATTACH]
Web Services Policy 1.2 – Attachment (WS-PolicyAttachment), http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/, W3C Member Submission, 25 April 2006.

 [WSSec]
OASIS Standard 200401, March 2004, "Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
[WSSecPolicy]
Web Services Security Policy Language (WS-SecurityPolicy), http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/, Microsoft, VeriSign, IBM, RSA Security, December 2002
[WSSecConv]
Web Services Secure Conversation Language (WS-SecureConversation), http://schemas.xmlsoap.org/ws/2005/02/sc/, OpenNetwork, Layer7, Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA Systems, Oblix, RSA Security, Ping Identity, Westbridge, Computer Associates, February 2005
[WSTrust]
Web Services Trust Language (WS-Trust), http://schemas.xmlsoap.org/ws/2005/02/trust/, OpenNetwork, Layer7, Netegrity, Microsoft, Reactivity, VeriSign, IBM, BEA Systems, Oblix, RSA Security, Ping Identity, Westbridge, Computer Associates, February 2005
2 Business Activity Context
This section describes the Business Activity usage of WS-Coordination protocols.
WS-BusinessActivity builds on WS-Coordination [WSCOOR], which defines an Activation service, a Registration service, and a CoordinationContext type. Example message flows and a complete description of creating and registering for coordinated activities is found in WS-Coordination [WSCOOR].
The Business Activity coordination context is a CoordinationContext type with a coordination type defined in this specification. Business Activity application messages that propagate a coordination context MUST use a Business Activity coordination context. If these application messages use a SOAP binding, the Business Activity coordination context MUST flow as a SOAP header in the message.
WS-BusinessActivity adds the following semantics to the CreateCoordinationContext operation on the Activation service:

· If the request includes the CurrentContext element, the target coordinator is interposed as a subordinate to the coordinator stipulated inside the CurrentContext element.

· If the request does not include a CurrentContext element, the target coordinator creates a new activity and acts as the root.

A coordination context MAY have an Expires element. This element specifies the period, measured from the point in time at which the context was first created or received, after which a business activity MAY be terminated solely due to its length of operation. From that point forward, the coordinator MAY elect to unilaterally cancel or compensate the activity, as appropriate, so long as it has not made a close decision. Similarly, a participant MAY elect to exit the activity so long as it has not already decided to complete.

A coordination context MAY have additional elements for extensibility.

3 Coordination Types and Protocols

Business Activities support two coordination types and two protocol types. Either protocol type MAY be used with either coordination type.

One of the following two URIs MUST be used to specify a Business Activity CoordinationContext type:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/AtomicOutcome

http://docs.oasis-open.org/ws-tx/wsba/2006/06/MixedOutcome

A coordinator for an AtomicOutcome coordination type MUST direct all participants either to close or to compensate. A coordinator for a MixedOutcome coordination type MUST direct all participants to an outcome but MAY direct each individual participant to close or compensate. All Business Activity coordinators MUST implement the AtomicOutcome coordination type. A Business Activity coordinator MAY implement the MixedOutcome coordination type.

The Coordination protocols for business activities are summarized below with names relative to the wsba base name:

· BusinessAgreementWithParticipantCompletion: A participant registers for this protocol with its coordinator, so that its coordinator can manage it. A participant knows when it has completed all work for a business activity.

· BusinessAgreementWithCoordinatorCompletion: A participant registers for this protocol with its coordinator, so that its coordinator can manage it. A participant relies on its coordinator to tell it when it has received all requests to perform work within the business activity.

3.1 Preconditions
The correct operation of the protocols requires that a number of preconditions must be established prior to the processing:

1. The source SHOULD have knowledge of the destination's policies, if any, and the source SHOULD be capable of formulating messages that adhere to this policy.

2. If a secure exchange of messages is required, then the source and destination MUST have appropriate security credentials (such as transport-level security credentials or security tokens) in order to protect messages.
3.2 BusinessAgreementWithParticipantCompletion Protocol
The state diagram in REF Figure1 \h
Figure 1 REF Figure1 \h

 REF Figure1 \h
illustrates the abstract behavior of the protocol between a coordinator and a participant. The states in the Figure 1 reflect the view an individual participant or coordinator has of its state in the protocol at a given point in time. As messages take time to be delivered, the views of the coordinator and a participant may temporarily differ. Omitted are details such as resending of messages or the exchange of error messages due to protocol error. Refer to Appendix B: State Tables for the Agreement Protocols for a detailed description of this protocol.
Participants that register for this protocol MUST use the following protocol identifier:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/ParticipantCompletion

[image: image2]
Figure 1: BusinessAgreementWithParticipantCompletion abstract state diagram

The coordinator accepts:
Completed
Upon receipt of this notification, the coordinator knows that the participant has completed all processing related to the protocol instance. For the next protocol message the coordinator MUST send a Close or Compensate notification to indicate the final outcome of the protocol instance. After sending the Completed notification, a participant MUST NOT participate in any further work under that activity.
Fail
Upon receipt of this notification, the coordinator knows that the participant has failed during the Active, Canceling or Compensating states; the state of the work performed by the participant is undetermined. For the next protocol message the coordinator MUST send a Failed notification. This notification carries a QName defined in schema indicating the cause of the failure.

Compensated

After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt of this notification, the coordinator knows that the participant has successfully compensated all processing related to the protocol instance; the coordinator SHOULD forget its state about that participant.

Closed

After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt of this notification, the coordinator knows that the participant has finalized the protocol instance successfully; the coordinator SHOULD forget its state about that participant.

Canceled

After transmitting this notification, the participant SHOULD forget about the activity. Upon receipt of this notification, the coordinator knows that the participant has successfully canceled all processing related to the protocol instance; the coordinator SHOULD forget its state about that participant.
Exit

Upon receipt of this notification, the coordinator knows that the participant will no longer participate in the business activity, and any pending work was discarded by the participant and any work performed by the participant related to the protocol instance was successfully canceled. For the next protocol message the coordinator MUST send an Exited notification. The Exit message MAY be sent by a participant only from the Active or Completing states.
CannotComplete

Upon receipt of this notification, the coordinator knows that the participant has determined that it cannot successfully complete all processing related to the protocol instance. Any pending work was discarded by the participant and any work performed by the participant related to the protocol instance was successfully canceled. For the next protocol message the coordinator MUST send a NotCompleted notification. After sending the CannotComplete notification, a participant MUST NOT participate in any further work under that activity. The CannotComplete message MAY be sent by a participant only from the Active state.
The participant accepts:
Close

Upon receipt of this notification, the participant knows the protocol instance is to be ended successfully. For the next protocol message the participant MUST send a Closed notification to end the protocol instance.

Cancel

Upon receipt of this notification, the participant knows that the work being done has to be canceled. For the next protocol message, the participant MUST send either a Canceled or Fail message. A Canceled message SHOULD be sent by the participant if the work is successfully canceled; this also ends the protocol instance. A Fail message SHOULD be sent by the participant if the work was not successfully canceled.
Compensate

Upon receipt of this notification, the participant knows that the work being done should be compensated. For the next protocol message the participant MUST send a Compensated or Fail notification. A Compensated message SHOULD be sent by the participant if the work is successfully compensated; this also ends the protocol instance. A Fail message SHOULD be sent by the participant if the work was not successfully compensated.
Failed

After transmitting this notification, the coordinator SHOULD forget about the participant. Upon receipt of this notification, the participant knows that the coordinator is aware of a failure and no further actions are required of the participant; the participant SHOULD forget the activity.

Exited

After transmitting this notification, the coordinator SHOULD forget about the participant. Upon receipt of this notification, the participant knows that the coordinator is aware the participant will no longer participate in the activity; the participant SHOULD forget the activity.

NotCompleted

After transmitting this notification, the coordinator SHOULD forget about the participant. Upon receipt of this notification, the participant knows that the coordinator is aware that the participant cannot complete all processing related to the protocol instance and that the participant will no longer participate in the activity; the participant SHOULD forget the activity.
Both the coordinator and participant accept:

GetStatus

This message requests the current state of a coordinator or participant. In response the coordinator or participant returns a Status message containing a QName indicating which column of the state table [Appendix B: State Tables for the Agreement Protocols] the coordinator or participant is currently in. GetStatus never provokes a state change.

For example, a coordinator that is waiting for a participant to initiate the BusinessAgreementWithParticipantCompletion may use this message to confirm that the participant is in one of the expected states: wsba:Active or wsba:Completed. If the participant has forgotten the activity the Status response MUST be wsba:Ended.

Status

This message is received in response to a GetStatus request. The message includes a QName indicating the state of the coordinator or participant to which the request was sent. For example, if a participant is in the closing state as indicated by the state table, it would return wsba:Closing.

The coordinator may enter a condition in which it has sent a protocol message and it receives a protocol message from the participant that is consistent with the former state, not the current state. In this case, the coordinator MUST revert to the prior state, accept the notification from the participant, and continue the protocol from that point. If the participant detects this condition, it MUST discard the inconsistent protocol message from the coordinator.

A party MUST be prepared to receive duplicate notifications. If a duplicate message is received it MUST be treated as specified in the state tables [Appendix B: State Tables for the Agreement Protocols].

3.3 BusinessAgreementWithCoordinatorCompletion Protocol
The BusinessAgreementWithCoordinatorCompletion protocol is the same as the BusinessAgreementWithParticipantCompletion protocol, except that a participant relies on its coordinator to tell it when it has received all requests to do work within the business activity.

Participants that register for this protocol MUST use the following protocol identifier:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/CoordinatorCompletion

[image: image3]
Figure 2: BusinessAgreementWithCoordinatorCompletion abstract state diagram
The BusinessAgreementWithCoordinatorCompletion protocol redefines the following notifications in Section 3.2 above:

The coordinator accepts:

Fail

Upon receipt of this notification, the coordinator knows that the participant has failed during the Active, Canceling, Completing or Compensating states; the state of the work performed by the participant is undetermined. For the next protocol message the coordinator MUST send a Failed notification. This notification carries a QName defined in schema indicating the cause of the failure.

CannotComplete

Upon receipt of this notification, the coordinator knows that the participant has determined that it cannot successfully complete all processing related to the protocol instance. Any pending work was discarded by the participant and any work performed by the participant related to the protocol instance was successfully canceled. For the next protocol message the coordinator MUST send a NotCompleted notification. After sending the CannotComplete notification, a participant MUST NOT participate in any further work under that activity. The CannotComplete message MAY be sent by a participant only from the Active or Completing states.
In addition to the notifications in Section 3.2 above, the BusinessAgreementWithCoordinatorCompletion protocol adds the following notification:

The participant accepts:

Complete

Upon receipt of this notification the participant knows that it will receive no new requests for work within the business activity. The participant completes application processing and if successful MUST transmit a Completed notification. If unsuccessful the participant MUST transmit an Exit, Fail, or CannotComplete notification.

4 Policy Assertions
WS-Policy Framework [WSPOLICY] and WS-Policy Attachment [WSPOLICYATTACH] collectively define a framework, model and grammar for expressing the capabilities, requirements, and general characteristics of entities in an XML Web services-based system. To enable a Web service to describe Business Activity related capabilities and requirements of a service and its operations, this specification defines a pair of Business Agreement policy assertions that leverage the WS-Policy framework [WSPOLICY].
4.1 Assertion Models
The Business Activity policy assertions are provided by a Web service to qualify the Business Activity related processing of messages associated with the particular operation to which the assertions are scoped. The Business Activity policy assertions indicate:
· Whether the sender of an input message MAY or MUST include an AtomicOutcome coordination context flowed with the message. The coordination type of such a context MUST be the following:

http://docs.oasis-open.org/ws-tx/wsba/2006/06/AtomicOutcome

· Whether the sender of an input message MAY or MUST include a MixedOutcome coordination context flowed with the message. The coordination type of such a context MUST be the following:
http://docs.oasis-open.org/ws-tx/wsba/2006/06/MixedOutcome
4.2 Normative Outlines
The normative outlines for the Business Activity policy assertions are:
<wsba:BAAtomicOutcomeAssertion [wsp:Optional="true"]? ... >

 ...

</wsba:BAAtomicOutcomeAssertion>

The following describes additional, normative constraints on the outline listed above:

/wsba:BAAtomicOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a coordination context for a Business Activity with AtomicOutcome coordination type flowed with the message. From the perspective of the requester, the target service that processes the activity MUST behave as if it had participated in the activity. For application messages that use a SOAP binding, the Business Activity coordination context MUST flow as a SOAP header in the message.
/wsba: BAAtomicOutcomeAssertion/@wsp:Optional="true"

Per WS-Policy [WSPOLICY], this is compact notation for two policy alternatives, one with and one without the assertion.

<wsba:BAMixedOutcomeAssertion [wsp:Optional="true"]? ... >

 ...

</wsba:BAMixedOutcomeAssertion>

The following describes additional, normative constraints on the outline listed above:

/wsba:BAMixedOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a coordination context for a Business Activity with MixedOutcome coordination type flowed with the message. From the perspective of the requester, the target service that processes the activity MUST behave as if it had participated in the activity. For application messages that use a SOAP binding, the Business Activity coordination context MUST flow as a SOAP header in the message.
/wsba: BAMixedOutcomeAssertion/@wsp:Optional="true"

Per WS-Policy [WSPOLICY], this is compact notation for two policy alternatives, one with and one without the assertion.

4.3 Assertion Attachment
Because the Business Activity policy assertions indicate Business Activity related behavior for a single operation, the assertions have an Operation Policy Subject [WSPOLICYATTACH].

WS-PolicyAttachment [WSPOLICYATTACH] defines two WSDL [WSDL] policy attachment points with an Operation Policy Subject:

· wsdl:portType/wsdl:operation – A policy expression containing a Business Activity policy assertion MUST NOT be attached to a wsdl:portType; the Business Activity policy assertions specify a concrete behavior whereas the wsdl:portType is an abstract construct.

· wsdl:binding/wsdl:operation – A policy expression containing a Business Activity policy assertion SHOULD be attached to a wsdl:binding.
4.4 Assertion Example
An example use of the Business Activity policy assertion follows:
(01) <wsdl:definitions

(02) targetNamespace="hotel.example.com"

(03) xmlns:tns="hotel.example.com"

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

(05) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

(06) xmlns:wsba="http://docs.oasis-open.org/ws-tx/wsba/2006/06"

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss- wssecurity-utility-1.0.xsd" >

(08) <wsp:Policy wsu:Id="BAAtomicPolicy" >

(09) <wsba:BAAtomicOutcomeAssertion/>

(010) <!-- omitted assertions -->

(011) </wsp:Policy>

(012) <!-- omitted elements -->

(013) <wsdl:binding name="HotelBinding" type="tns:HotelPortType" >

(014) <!-- omitted elements -->

(015) <wsdl:operation name="ReserveRoom" >

(016) <wsp:PolicyReference URI="#BAAtomicPolicy" wsdl:required="true"/>

(017) <!-- omitted elements -->

(018) </wsdl:operation>

(019) </wsdl:binding>

(020) </wsdl:definitions>
Lines (8-11) are a policy expression that includes a Business Activity policy assertion (Line 9) to indicate that a coordination context for a Business Activity with an AtomicOutcome, expressed in WS-Coordination [WS-COOR] format, MUST be used.

Lines (13-19) are a WSDL [WSDL] binding. Line (16) indicates that the policy in Lines (8-11) applies to this binding, specifically indicating that a coordination context for a Business Activity with an AtomicOutcome MUST flow inside “ReserveRoom” messages.
5 Security Considerations
It is strongly RECOMMENDED that the communication between services be secured using the mechanisms described in WS-Security [WSSec]. In order to properly secure messages, the body and all relevant headers need to be included in the signature. Specifically, the <wscoor:CoordinationContext> header needs to be signed with the body and other key message headers in order to "bind" the two together.

In the event that a participant communicates frequently with a coordinator, it is RECOMMENDED that a security context be established using the mechanisms described in WS-Trust [WSTrust] and WS-SecureConversation [WSSecConv] allowing for potentially more efficient means of authentication.

It is common for communication with coordinators to exchange multiple messages. As a result, the usage profile is such that it is susceptible to key attacks. For this reason it is strongly RECOMMENDED that the keys be changed frequently. This "re-keying" can be effected a number of ways. The following list outlines four common techniques:

· Attaching a nonce to each message and using it in a derived key function with the shared secret

· Using a derived key sequence and switch "generations"

· Closing and re-establishing a security context (not possible for delegated keys)

· Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the Security Context Token (SCT) and secret returned when the coordination context is created. That is, the keys used to secure the channel may be independent of the key used to prove the right to register with the activity.

The security context MAY be re-established using the mechanisms described in WS-Trust [WSTrust] and WS-SecureConversation [WSSecConv]. Similarly, secrets MAY be exchanged using the mechanisms described in WS-Trust [WSTrust]. Note, however, that the current shared secret SHOULD NOT be used to encrypt the new shared secret. Derived keys, the preferred solution from this list, MAY be specified using the mechanisms described in WS-SecureConversation [WSSecConv].

The following list summarizes common classes of attacks that apply to this protocol and identifies the mechanism to prevent/mitigate the attacks:

· Message alteration – Alteration is prevented by including signatures of the message information using WS-Security [WSSec].

· Message disclosure – Confidentiality is preserved by encrypting sensitive data using WS-Security [WSSec].

· Key integrity – Key integrity is maintained by using the strongest algorithms possible (by comparing secured policies – see WS-Policy [WSPOLICY] and WS-SecurityPolicy [WSSecPolicy]).

· Authentication – Authentication is established using the mechanisms described in WS-Security [WSSec] and WS-Trust [WSTrust]. Each message is authenticated using the mechanisms described in WS-Security [WSSec].

· Accountability – Accountability is a function of the type of and string of the key and algorithms being used. In many cases, a strong symmetric key provides sufficient accountability. However, in some environments, strong PKI signatures are required.

· Availability – Many services are subject to a variety of availability attacks. Replay is a common attack and it is RECOMMENDED that this be addressed as described in the next bullet. Other attacks, such as network-level denial of service attacks are harder to avoid and are outside the scope of this specification. That said, care should be taken to ensure that minimal processing be performed prior to any authenticating sequences.

· Replay – Messages may be replayed for a variety of reasons. To detect and eliminate this attack, mechanisms should be used to identify replayed messages such as the timestamp/nonce outlined in WS-Security [WSSec]. Alternatively, and optionally, other technologies, such as sequencing, can also be used to prevent replay of application messages.
6 Use of WS-Addressing Headers

The protocols defined in WS-BusinessActivity use a "one way" message exchange pattern consisting of a sequence of notification messages between a coordinator and a participant. There are two types of notification messages used in these protocols:

· A notification message is a terminal message when it indicates the end of a coordinator/participant relationship. Closed, Compensated, Canceled, Exited, NotCompleted and Failed are terminal messages as are the protocol faults defined in WS-Coordination [WSCOOR].

· A notification message is a non-terminal message when it does not indicate the end of a coordinator/participant relationship. Complete, Completed, Close, Compensate, Cancel, Exit, CannotComplete and Fail are non-terminal messages.

The following statements define addressing interoperability requirements for the respective Business Activity message types:

Non-terminal notification messages
· MUST include a [source endpoint] property whose [address] property is not set to ‘http://www.w3.org/2005/08/addressing/anonymous’ or 'http://www.w3.org/2005/08/addressing/none’
Both terminal and non-terminal notification messages
· MUST include a [reply endpoint] property whose [address] property is set to 'http://www.w3.org/2005/08/addressing/none’
Notification messages used in WS-BusinessActivity protocols MUST include as the [action] property an action URI that consists of the wsba namespace URI concatenated with the "/" character and the element name of the message. For example:
http://docs.oasis-open.org/ws-tx/wsba/2006/06/Complete
Notification messages are normally addressed according to section 3.3 of WS-Addressing 1.0 – Core [WSADDR] by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange. If a [source endpoint] property is present in a notification message, it MAY be used by the recipient. Cases exist where a coordinator or participant has forgotten an activity that is completed and needs to respond to a resent protocol message. In such cases, the [source endpoint] property SHOULD be used as described in section 3.3 of WS-Addressing 1.0 -– Core [WSADDR]. Permanent loss of connectivity between a coordinator and a participant in an in-doubt state can result in data corruption.

Protocol faults raised by a coordinator or participant during the processing of a notification message are terminal notifications and MUST be composed using the same mechanisms as other terminal notification messages.
All messages are delivered using connections initiated by the sender.
A. Acknowledgements

This document is based on initial contribution to OASIS WS-TX Technical Committee by the following authors: Luis Felipe Cabrera (Microsoft), George Copeland (Microsoft), Max Feingold (Microsoft), Robert W Freund (Hitachi), Tom Freund (IBM), Sean Joyce (IONA), Johannes Klein (Microsoft), David Langworthy (Microsoft), Mark Little (JBoss Inc.), Frank Leymann (IBM), Eric Newcomer (IONA), David Orchard (BEA Systems), Ian Robinson (IBM), Tony Storey (IBM), Satish Thatte (Microsoft).
The following individuals have provided invaluable input into the initial contribution: Francisco Curbera (IBM), Doug Davis (IBM), Gert Drapers (Microsoft), Don Ferguson (IBM), Kirill Gavrylyuk (Microsoft), Dan House (IBM), Oisin Hurley (IONA), Thomas Mikalsen (IBM), Jagan Peri (Microsoft), John Shewchuk (Microsoft), Stefan Tai (IBM).
The following individuals were members of the committee during the development of this specification:

Participants: MACROBUTTON
Charlton Barreto, Adobe Systems, Inc.

Martin Chapman, Oracle

Kevin Conner, JBoss Inc.

Paul Cotton, Microsoft Corporation

Doug Davis, IBM

Colleen Evans, Microsoft Corporation

Max Feingold, Microsoft Corporation

Thomas Freund, IBM

Robert Freund, Hitachi, Ltd.

Peter Furniss, Choreology Ltd.
Marc Goodner, Microsoft Corporation

Alastair Green, Choreology Ltd.

Daniel House, IBM

Ram Jeyaraman, Microsoft Corporation

Paul Knight, Nortel Networks Limited

Mark Little, JBoss Inc.

Jonathan Marsh, Microsoft Corporation

Monica Martin, Sun Microsystems

Joseph Fialli, Sun Microsystems

Eric Newcomer, IONA Technologies

Eisaku Nishiyama, Hitachi, Ltd.

Alain Regnier, Ricoh Company, Ltd.

Ian Robinson, IBM

Tom Rutt, Fujitsu Limited

Andrew Wilkinson, IBM
B. State Tables for the Agreement Protocols
The following state tables show state transitions that occur in the receiver when a protocol message is received or in the sender when a protocol message is sent.
Each cell in the tables uses the following convention:
	Legend

	Action to take

Next state

Each state supports a number of possible events. Expected events are processed by taking the prescribed action and transitioning of the next state. Unexpected protocol messages MUST result in a fault message as defined in the state tables. These faults MUST use a standard fault code defined in WS‑Coordination [WS-COOR].

The following rules need to be applied when reading the state tables in this document:

· For the period of time that a protocol message is in transit the sender and recipient states will be different.

The sender of a protocol message transitions to the "next state" when the message is first sent.

The recipient of a protocol message transitions to the "next state" when the message is first received.
· As described earlier in this document, if the coordinator receives a protocol message from the participant that is consistent with the former state of the coordinator then the coordinator reverts to its prior state, accepts the notification from the participant, and continues the protocol from that point.

The GetStatus and Status protocol messages are not included in the tables as these never result in a change of state.

These tables present the view of a coordinator or participant with respect to a single partner. A coordinator with multiple participants can be understood as a collection of independent coordinator state machines, each with its own state.

B.1 Participant view of BusinessAgreementWithParticipantCompletion

	BusinessAgreementWithParticipantCompletion protocol

(Participant View)

	Inbound

Events
	States

	
	Active
	Canceling
	Completed
	Closing
	Compensating
	Failing

(Active,

Canceling)
	Failing

(Compensat-ing)

	NotCompleting
	Exiting
	Ended

	Cancel
	Canceling
	Ignore

Canceling
	Resend Completed

Completed
	Ignore

Closing
	Ignore

Compensating
	Resend

 Fail

Failing-*
	Ignore

Failing-Compensating
	Resend

CannotComplete

NotCompleting
	Resend Exit

Exiting
	Send

Canceled

Ended

	Close
	Invalid
State

Active
	Invalid

State

Canceling
	Closing
	Ignore

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Send

Closed

Ended

	Compensate
	Invalid
State

Active
	Invalid

State

Canceling
	Compensating
	Invalid State

Closing
	Ignore

Compensating
	Invalid

State

Failing-*
	Resend

Fail

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Send Compensated

Ended

	Failed
	Invalid
State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Forget
Ended
	Forget
Ended
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Exited
	Invalid
State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Forget
Ended
	Ignore

Ended

	NotCompleted
	Invalid
State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Forget
Ended
	Invalid

State

Exiting
	Ignore

Ended

	BusinessAgreementWithParticipantCompletion protocol

(Participant View)

	Outbound

Events
	States

	
	Active
	Canceling
	Completed
	Closing
	Compensating
	Failing

(Active,

Canceling,

Compensating)

	NotCompleting
	Exiting
	Ended

	Exit
	Exiting
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Exiting
	Invalid

State

Ended

	Completed
	Completed
	Invalid

State

Canceling
	Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Fail
	Failing-
Active
	Failing-
Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Failing-
Compensating
	Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	CannotComplete
	NotCompleting
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Canceled
	Invalid

State

Active
	Forget
Ended
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Ended

	Closed
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Forget
Ended
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Ended

	Compensated
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Forget
Ended
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Ended

B.2 Coordinator view of BusinessAgreementWithParticipantCompletion
	BusinessAgreementWithParticipantCompletion protocol

(Coordinator View)

	Inbound

Events
	States

	
	Active
	Canceling
	Completed
	Closing
	Compensating
	Failing

(Active,

Canceling)
	Failing

(Compensat-ing)

	NotCompleting
	Exiting
	Ended

	Exit
	Exiting
	Exiting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	 Invalid

State

Failing-Compensating
	Invalid

 State

NotCompleting
	Ignore

Exiting
	Resend

Exited
Ended

	Completed
	Completed
	Completed
	Ignore

Completed
	Resend

Close

Closing
	Resend Compensate

Compensating
	Invalid

State

Failing-*
	Ignore

Failing-Compensating
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Fail
	Failing-
Active
	Failing-Canceling
	Invalid

State

Completed
	Invalid State

Closing
	Failing-Compensating
	Ignore

Failing-*
	Ignore

Failing-Compensating
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Resend

Failed

Ended

	CannotComplete
	NotCompleting
	NotCompleting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Ignore

NotCompletng
	Invalid State

Exiting
	Resend

NotCompleted
Ended

	Canceled
	Invalid
State

Active
	Forget
Ended
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Closed
	Invalid
State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Forget
Ended
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Compensated
	Invalid
State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid State

Closing
	Forget
Ended
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	BusinessAgreementWithParticipantCompletion protocol

(Coordinator View)

	Outbound

Events
	States

	
	Active
	Canceling
	Completed
	Closing
	Compensating
	Failing

(Active, Canceling,
Compensating)

	NotCompleting
	Exiting
	Ended

	Cancel
	Canceling
	Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Close
	Invalid

State

Active
	Invalid

State

Canceling
	Closing
	Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Compensate
	Invalid

State

Active
	Invalid

State

Canceling
	Compensating
	Invalid

State

Closing
	Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Failed
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Forget
Ended
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Ended

	Exited
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Forget
Ended
	Ended

	NotCompleted
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Forget
Ended
	Invalid

State

Exiting
	Ended

B.3 Participant view of BusinessAgreementWithCoordinatorCompletion
	BusinessAgreementWithCoordinatorCompletion protocol

(Participant View)

	Inbound

Events
	States

	
	Active
	Canceling
	Completing
	Completed
	Closing
	Compensating
	Failing

(Active, Canceling,

Completing)
	Failing

(Compensat-ing)

	NotCompleting
	Exiting
	Ended

	Cancel
	Canceling
	Ignore

Canceling
	Canceling
	Resend Completed

Completed
	Ignore

Closing
	Ignore

Compensating
	Resend

Fail

Failing-*
	Ignore

Failing-Compensating
	Resend

CannotComplete

NotCompleting
	Resend Exit

Exiting
	Send Canceled

Ended

	Complete
	Completing
	Ignore

Canceling
	Ignore

Completing
	Resend Completed

Completed
	Ignore

Closing
	Ignore

Compensating
	Resend

Fail

Failing-*
	Ignore

Failing-Compensating
	Resend

CannotComplete

NotCompleting
	Resend Exit

Exiting
	Send

 Fail

Ended

	Close
	Invalid State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Closing
	Ignore

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Send

Closed

Ended

	Compensate
	Invalid State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Compensating
	Invalid State

Closing
	Ignore

Compensating
	Invalid

State

Failing-*
	Resend

Fail

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Send Compensated

Ended

	Failed
	Invalid State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Forget
Ended
	Forget
Ended
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Exited
	Invalid State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Forget
Ended
	Ignore

Ended

	NotCompleted
	Invalid State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Forget
Ended
	Invalid State

Exiting
	Ignore

Ended

	BusinessAgreementWithCoordinatorCompletion protocol

(Participant View)

	Outbound

Events
	States

	
	Active
	Canceling
	Completing
	Completed
	Closing
	Compensating
	Failing

(Active,
Canceling,

Completing,

Compensating)

	NotCompleting
	Exiting
	Ended

	Exit
	Exiting
	Invalid

State

Canceling
	Exiting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid
State

Failing-*
	Invalid

 State

NotCompleting
	Exiting
	Invalid

State

Ended

	Completed
	Invalid

State

Active
	Invalid

State

Canceling
	Completed
	Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid
State

Failing-*
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Invalid

State

Ended

	Fail
	Failing-
Active
	Failing-Canceling
	Failing-Completing
	Invalid

State

Completed
	Invalid State

Closing
	Failing-Compensating
	Failing-*
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Invalid State

Ended

	CannotComplete
	NotCompleting
	Invalid

State

Canceling
	NotCompleting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid
State

Failing-*
	NotCompleting
	Invalid State

Exiting
	Invalid

State

Ended

	Canceled
	Invalid

State

Active
	Forget
Ended
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid
State

Failing-*
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ended

	Closed
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Invalid

State

Completed
	Forget
Ended
	Invalid

State

Compensating
	Invalid
State

Failing-*
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ended

	Compensated
	Invalid

State

Active
	Invalid

State

Canceling
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Forget
Ended
	Invalid
State

Failing-*
	Invalid

 State

NotCompleting
	Invalid State

Exiting
	Ended

B.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion
	BusinessAgreementWithCoordinatorCompletion protocol

(Coordinator View)

	Inbound

Events
	States

	
	Active
	Canceling (Active)
	Canceling (Completing)
	Completing
	Completed
	Closing
	Compensating
	Failing

(Active,

Canceling, Completing)
	Failing

(Compensat-ing)

	NotCompleting
	Exiting
	Ended

	Exit
	Exiting
	Exiting
	Exiting
	Exiting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	 Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Ignore

Exiting
	Resend Exited
Ended

	Completed
	Invalid

State

Active
	Invalid

State

Canceling-Active
	Completed
	Completed
	Ignore

Completed
	Resend

Close

Closing
	Resend Compensate

Compensating
	Invalid

State

Failing-*
	Ignore

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Fail
	Failing-
Active
	Failing-Canceling
	Failing-Canceling
	Failing-Completing
	Invalid

State

Completed
	Invalid State

Closing
	Failing-Compensating
	Ignore

Failing-*
	Ignore

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Resend Failed

Ended

	CannotComplete
	NotCompleting
	NotCompleting
	NotCompleting
	NotCompleting
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Ignore

NotCompleting
	Invalid State

Exiting
	Resend NotCompleted
Ended

	Canceled
	Invalid
State

Active
	Forget
Ended
	Forget
Ended
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Closed
	Invalid
State

Active
	Invalid
State

Canceling-Active
	Invalid

State

Canceling-Completing
	Invalid

State

Completing
	Invalid

State

Completed
	Forget
Ended
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	Compensated
	Invalid
State

Active
	Invalid

 State

Canceling-Active
	Invalid

State

Canceling-Completing
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid State

Closing
	Forget
Ended
	Invalid

State

Failing-*
	Invalid

State

Failing-Compensating
	Invalid

State

NotCompleting
	Invalid State

Exiting
	Ignore

Ended

	BusinessAgreementWithCoordinatorCompletion protocol

(Coordinator View)

	Outbound

Events
	States

	
	Active
	Canceling (Active,
Completing)
	Completing
	Completed
	Closing
	Compensating
	Failing

(Active,

Canceling,

Completing,

Compensating)

	NotCompleting
	Exiting
	Ended

	Cancel
	Canceling-

Active
	Canceling-*
	Canceling-Completing
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Complete
	Completing
	Invalid

State

Canceling-*
	Completing
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Close
	Invalid

State

Active
	Invalid

State

Canceling-*
	Invalid

State

Completing
	Closing
	Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Compensate
	Invalid

State

Active
	Invalid

State

Canceling-*
	Invalid

State

Completing
	Compensating
	Invalid

State

Closing
	Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Invalid

State

Ended

	Failed
	Invalid

State

Active
	Invalid

State

Canceling-*
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Forget
Ended
	Invalid

State

NotCompleting
	Invalid

State

Exiting
	Ended

	Exited
	Invalid

State

Active
	Invalid

State

Canceling-*
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Invalid

State

NotCompleting
	Forget
Ended
	Ended

	NotCompleted
	Invalid

State

Active
	Invalid

State

Canceling-*
	Invalid

State

Completing
	Invalid

State

Completed
	Invalid

State

Closing
	Invalid

State

Compensating
	Invalid

State

Failing-*
	Forget
Ended
	Invalid

State

Exiting
	Ended

NotCompleted

CannotComplete

NotCompleting

Participant generated

Coordinator generated

Cancel

Complete

Completing

Exited

Exit

Canceled

Compensated

Failed

Fail

Compensate

Closed

Close

Completed

Failing

Canceling

Exiting

Compensating

Ended

Closing

Completed

Active

NotCompleted

Cannot Complete

NotCompleting

Coordinator generated

Participant generated

Exited

Exit

Canceled

Compensated

Failed

Fail

Compensate

Cancel

Closed

Close

Completed

Failing

Canceling

Exiting

Compensating

Ended

Closing

Completed

Active

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 31
wstx-wsba-1.1-spec-errata-os

12 July 2007

Copyright © OASIS Open 2007. All Rights Reserved.

Page 1 of 31

