QOASISOPEN

Virtual I/0 Device (VIRTIO) Version 1.2

Committee Specification Draft 01
09 May 2022

This stage:

https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/tex/ (Authoritative)
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.pdf
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html

Previous stage:

N/A

Latest stage:
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.pdf
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
Technical Committee:

OASIS Virtual 1/0O Device (VIRTIO) TC

Chairs:

Michael S. Tsirkin (mst@redhat.com), Red Hat
Cornelia Huck (cohuck@redhat.com), Red Hat

Editors:
Michael S. Tsirkin (mst@redhat.com), Red Hat
Cornelia Huck (cohuck@redhat.com), Red Hat

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

» Example Driver Listing:
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/listings/
Related work:
This specification replaces or supersedes:

+ Virtual I/O Device (VIRTIO) Version 1.1. Edited by Michael S. Tsirkin and Cornelia Huck.

Latest version:
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html

* Virtual 1/O Device (VIRTIO) Version 1.0. Edited by Rusty Russell, Michael S. Tsirkin, Cor-

nelia Huck, and Pawel Moll. Latest version:

https://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
+ Virtio PCI Card Specification Version 0.9.5:

http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 1 of 284

https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/tex/
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.pdf
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.pdf
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://www.oasis-open.org/committees/virtio/
mailto:mst@redhat.com
https://www.redhat.com/
mailto:cohuck@redhat.com
https://www.redhat.com/
mailto:mst@redhat.com
https://www.redhat.com/
mailto:cohuck@redhat.com
https://www.redhat.com/
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/listings/
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
https://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf

Abstract:

This document describes the specifications of the “virtio” family of devices. These devices are
found in virtual environments, yet by design they look like physical devices to the guest within
the virtual machine - and this document treats them as such. This similarity allows the guest to
use standard drivers and discovery mechanisms.

The purpose of virtio and this specification is that virtual environments and guests should have
a straightforward, efficient, standard and extensible mechanism for virtual devices, rather than
boutique per-environment or per-OS mechanisms.

Status:

This document was last revised or approved by the Virtual /O Device (VIRTIO) TC on the above
date. The level of approval is also listed above. Check the “Latest versienstage” location noted
above for possible later revisions of this document. Any other numbered Versions and other
technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=virtio#technical.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at https://www.oasis-open.
org/committees/virtio/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents
have been disclosed that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights sectien-ef-page in the TC’s
web-page-GitHub repository (https://github.com/oasis-tcs/virtio-admin/blob/master/IPR.md).

Note that any machine-readable content (Computer Language Definitions) declared Normative
for this Work Product is provided in separate plain text files. In the event of a discrepancy
between any such plain text file and display content in the Work Product’s prose narrative doc-
ument(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[VIRTIO-v1.2]

Virtual I/O Device (VIRTIO) Version 1.2. Edited by Michael S. Tsirkin and Cornelia Huck. 09
May 2022. OASIS Committee Specification Draft 01. https://docs.oasis-open.org/virtio/virtio/v1.
2/csd01/virtio-v1.2-csd01.html. Latest versienstage: https://docs.oasis-open.org/virtio/virtio/v1.2/
virtio-v1.2.html.

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 2 of 284

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=virtio#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=virtio#technical
https://www.oasis-open.org/committees/comments/form.php?wg_abbrev=virtio
https://www.oasis-open.org/committees/virtio/
https://www.oasis-open.org/committees/virtio/
https://www.oasis-open.org/policies-guidelines/ipr/#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://github.com/oasis-tcs/virtio-admin/blob/master/IPR.md
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html

Notices

Copyright © OASIS Open 2048-2022. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy”). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that com-
ment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to OASIS, except as needed
for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS” basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OASIS
AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THIS DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final
Deliverable documents (Committee Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to
notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such
patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this specification.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any
patent claims that would necessarily be infringed by implementations of this specification by a patent holder
that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of
the OASIS Technical Committee that produced this specification. OASIS may include such claims on its
website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Information on OASIS’ procedures with respect to rights
in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard,
can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information
or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact,
Essential Claims.]

The name "OASIS” is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and imple-
mentation and use of, specifications, while reserving the right to enforce its marks against misleading uses.
Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 3 of 284

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 4 of 284

Table of Contents

1 Introduction e 17
1.1 Normative References 17
1.2 Non-Normative References 18
1.3 Terminology e e 18

1.3.1 Legacy Interface: Terminology e 18
1.3.2 Transition from earlier specificationdrafts 19
1.4 Structure Specifications 19
1.5 Constant Specifications L e e 20

2 Basic Facilities of a VirtioDevice 21

2.1 Device Status Field 21
2.1.1 Driver Requirements: Device Status Field 21
2.1.2 Device Requirements: Device Status Field 22

22 Feature Bits e 22
2.2.1 Driver Requirements: Feature Bits 22
2.2.2 Device Requirements: FeatureBits 22
2.2.3 Legacy Interface: ANote on FeatureBits, 22

2.3 Notifications e 23

24 Device Reset e e e e 23
241 Device Requirements: Device Reset 23
2.4.2 Driver Requirements: Device Reset 23

2.5 Device Configuration Space 24
2.5.1 Driver Requirements: Device Configuration Space 24
2.5.2 Device Requirements: Device ConfigurationSpace 24
2.5.3 Legacy Interface: A Note on Device Configuration Space endian-ness 24
2.5.4 Legacy Interface: Device Configuration Space 24

2.6 Virtqueues e 24
2.6.1 Virtqueue Reset e 25

2.6.1.1 Virtqueue Reset e e 25
2.6.1.1.1 Device Requirements: VirtqueueReset 25
2.6.1.1.2 Driver Requirements: Virtqueue Reset 25
2.6.1.2 Virtqueue Re-enable 25
2.6.1.2.1 Device Requirements: Virtqueue Re-enable 26
2.6.1.2.2 Driver Requirements: Virtqueue Re-enable 26

2.7 SplitVirtqueues e e 26
2.7.1 Driver Requirements: Virtqueues 26
2.7.2 Legacy Interfaces: A Note on Virtqueue Layout 26
2.7.3 Legacy Interfaces: A Note on Virtqueue Endianness 27
274 Message Framing e 27

2.7.4.1 Device Requirements: Message Framing 27

2.7.4.2 Driver Requirements: Message Framing 27

2.7.4.3 Legacy Interface: Message Framing 28

2.7.5 The Virtqueue DescriptorTable 28

2.7.5.1 Device Requirements: The Virtqueue Descriptor Table 28

2.7.5.2 Driver Requirements: The Virtqueue Descriptor Table 28

2.7.5.3 IndirectDescriptors 29

2.7.5.3.1 Driver Requirements: Indirect Descriptors 29

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 4 of 284

2.7.5.3.2 Device Requirements: Indirect Descriptors 29

2.7.6 TheVirtqueue AvailableRing 29
2.7.6.1 Driver Requirements: The Virtqueue AvailableRing 30

2.7.7 Used Buffer Notification Suppression. 30
2.7.7.1 Driver Requirements: Used Buffer Notification Suppression 30
2.7.7.2 Device Requirements: Used Buffer Notification Suppression 30

27.8 TheVirtqueueUsedRing 31
2.7.8.1 Legacy Interface: The Virtqueue UsedRing 31
2.7.8.2 Device Requirements: The Virtqueue UsedRing 31
2.7.8.3 Driver Requirements: The Virtqueue UsedRing 32

2.7.9 In-orderuse ofdescriptors 32
2.7.10 Available Buffer Notification Suppression 32
2.7.10.1 Driver Requirements: Available Buffer Notification Suppression 32
2.7.10.2 Device Requirements: Available Buffer Notification Suppression 32

2.7.11 Helpers for Operating Virtqueues 33
2.7.12 Virtqueue Operation e 33
2.7.13 Supplying Buffersto The Device i 33
2.7.13.1 Placing Buffers Into The Descriptor Table 33
2.7.13.2 Updating The AvailableRing 34
2.713.3 Updatingidx e 34
2.7.13.3.1 Driver Requirements: Updatingidx 34

2.7.13.4 Notifying The Device it 34
2.7.13.4.1 Driver Requirements: Notifying The Device 34

2.7.14 Receiving Used Buffers From The Device 34
2.8 Packed Virtqueues L 35
2.8.1 Driver and Device RingWrap Counters 36
2.8.2 Polling of available and used descriptors, 36
283 WriteFlag 37
28.4 ElementAddressandlength 37
2.8.5 Scatter-Gather Support 37
2.8.6 Next Flag: Descriptor Chaining 37
2.8.7 Indirect Flag: Scatter-Gather Support 38
2.8.8 In-orderuse ofdescriptors e 38
2.8.9 Multi-bufferrequests L 38
2.8.10 Driver and Device Event Suppression 0. 38
2.8.10.1 Structure Size and Alignment 39

2.8.11 Driver Requirements: Virtqueues 39
2.8.12 Device Requirements: Virtqueues o o 39
2.8.13 The Virtqueue Descriptor Format 40
2.8.14 Event Suppression Structure Format 40
2.8.15 Device Requirements: The Virtqueue Descriptor Table 40
2.8.16 Driver Requirements: The Virtqueue Descriptor Table 40
2.8.17 Driver Requirements: Scatter-Gather Support 40
2.8.18 Device Requirements: Scatter-Gather Support, 41
2.8.19 Driver Requirements: Indirect Descriptors 41
2.8.20 Virtqueue Operation L 41
2.8.21 Supplying Buffersto The Device o 41
2.8.21.1 Placing Available Buffers Into The DescriptorRing 41
2.8.21.1.1 Driver Requirements: Updatingflags 42

2.8.21.2 Sending Available Buffer Notifications 42
2.8.21.3 Implementation Example 42
2.8.21.3.1 Driver Requirements: Sending Available Buffer Notifications 43

2.8.22 Receiving Used Buffers From The Device 43
2.8.23 Srmmmsiiasaions L L L L e e e 44
2.9 Driver Notifications o e e e e e e 44
2.10 Shared Memory Regions L L e e 44
2.10.1 Addressing within regions L Lo 45
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 5 of 284

2.10.2 Device Requirements: Shared Memory Regions 45

211 Exporting Objects o e e e e 45
3 General Initialization And Device Operation 46
3.1 Device Initialization e 46
3.1.1 Driver Requirements: Device Initialization 46
3.1.2 Legacy Interface: Device Initialization 46

3.2 Device Operation e e 47
3.2.1 Notification of Device Configuration Changes 47

3.3 DeviceCleanup o e e e 47
3.3.1 Driver Requirements: Device Cleanup 47

4 Virtio TransportOptions e 48
4.1 VirtioOver PCIBUS e 48
4.1.1 Device Requirements: Virtio Over PCIBus 48
4.1.2 PClDevice DiSCOVEIY o o e 48
4.1.2.1 Device Requirements: PCl Device Discovery 48

4.1.2.2 Driver Requirements: PCI Device Discovery 49

4.1.2.3 Legacy Interfaces: A Note on PCI Device Discovery 49

413 PClDevice Layout e 49
4.1.3.1 Driver Requirements: PCl Device Layout 49

4.1.3.2 Device Requirements: PCl Device Layout 49

4.1.4 Virtio Structure PCl Capabilities 49
4.1.4.1 Driver Requirements: Virtio Structure PCI Capabilities 51

4.1.4.2 Device Requirements: Virtio Structure PCI Capabilities 51

4.1.4.3 Common configuration structure layout 51

4.1.4.3.1 Device Requirements: Common configuration structure layout . . . 52

4.1.4.3.2 Driver Requirements: Common configuration structure layout. . . . 53

4.1.4.4 Notification structurelayout 54

4.1.44.1 Device Requirements: Notification capability 54

4145 ISRstatuscapability 54

41451 Device Requirements: ISR status capability 55

4.1.4.5.2 Driver Requirements: ISR status capability 55

4.1.4.6 Device-specific configuration 55

4.1.4.6.1 Device Requirements: Device-specific configuration 55

4.1.4.7 Shared memory capability 55

41471 Device Requirements: Shared memory capability 55

4.1.4.8 Vendordatacapability 55

4.1.4.8.1 Device Requirements: Vendor data capability 56

4.1.4.8.2 Driver Requirements: Vendor data capability 56

4.1.4.9 PCI configuration access capability 56

4.1.49.1 Device Requirements: PCI configuration access capability 57

4.1.4.9.2 Driver Requirements: PCI configuration access capability 57

4.1.4.10 Legacy Interfaces: A Note on PCl Device Layout. 57

4.1.4.11 Non-transitional Device With Legacy Driver: A Note on PCI Device Layout . 58

4.1.5 PCl-specific Initialization And Device Operation 58
4.1.5.1 Device Initialization o 58

4.1.5.1.1 Virtio Device Configuration Layout Detection 58

4.1.51.2 MSI-X Vector Configuration 59

4.1.5.1.3 Virtqueue Configuration 59

4.1.5.2 Available Buffer Notifications 60

4.1.5.21 Driver Requirements: Available Buffer Notifications 60

4.1.5.3 Used Buffer Notifications, 60

4.1.5.3.1 Device Requirements: Used Buffer Notifications 61

4.1.5.4 Notification of Device ConfigurationChanges 61

4.1.5.4.1 Device Requirements: Notification of Device Configuration Changes 61
4.1.5.4.2 Driver Requirements: Notification of Device Configuration Changes 61

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 6 of 284

4.1.5.5 Driver Handling Interrupts 61

4.2 VirtioOver MMIO e 61
421 MMIO Device Discovery e 62
4.2.2 MMIO Device Register Layout L 62

4.2.2.1 Device Requirements: MMIO Device Register Layout 65
4.2.2.2 Driver Requirements: MMIO Device Register Layout 65

4.2.3 MMIO-specific Initialization And Device Operation 66
4.2.3.1 Device Initialization 66
4.2.3.1.1 Driver Requirements: Device Initialization 66

4.2.3.2 Virtqueue Configuration L 66
4.2.3.3 Available Buffer Notifications 66
4.2.3.4 Notifications From The Device 67
4.2.3.4.1 Driver Requirements: Notifications From The Device 67

424 Legacyinterface 67

4.3 VirtioOver Channel /O e 69

431 BasicConcepts. e 69
4.3.1.1 Channel Commands forVirtio 70
4.3.1.2 Notifications 70
4.3.1.3 Device Requirements: BasicConcepts 70
4.3.1.4 Driver Requirements: BasicConcepts 70

4.3.2 Device Initialization 70
4.3.21 Settingthe VirtioRevision., 71

4.3.2.1.1 Device Requirements: Setting the Virtio Revision 71
4.3.2.1.2 Driver Requirements: Setting the Virtio Revision 71
4.3.2.1.3 Legacy Interfaces: A Note on Setting the Virtio Revision 71
4.3.2.2 ConfiguringaVirtqueue 72
4.3.2.2.1 Device Requirements: Configuring a Virtqueue 72
4.3.2.2.2 Legacy Interface: A Note on Configuring a Virtqueue 72
4.3.2.3 Communicating Status Information. 72
4.3.2.3.1 Driver Requirements: Communicating Status Information 72
4.3.2.3.2 Device Requirements: Communicating Status Information 73
4.3.2.4 Handling Device Features, 73
4.3.2.5 Device Configuration 73
4.3.2.6 SettingUplindicators 73
4.3.2.6.1 Setting Up Classic Queue Indicators 73
4.3.2.6.2 Setting Up Configuration Change Indicators 74
4.3.2.6.3 Setting Up Two-Stage Queue Indicators 74
4.3.2.6.4 Legacy Interfaces: A Note on Setting Up Indicators 74

4.3.3 Device Operation. e 74

4.3.3.1 Host->Guest Notification 74
4.3.3.1.1 Notification via Classic I/O Interrupts 75
4.3.3.1.2 Notification via Adapter I/O Interrupts 75
4.3.3.1.3 Legacy Interfaces: A Note on Host->Guest Notification 75
4.3.3.2 Guest->Host Notification 75
4.3.3.2.1 Device Requirements: Guest->Host Notification 76
4.3.3.2.2 Driver Requirements: Guest->Host Notification 76
4.3.3.3 ResettingDevices 76
4.3.3.3.1 Device Requirements: Resetting Devices 76
4.3.3.3.2 Driver Requirements: Resetting Devices 76

5 Device Types e 77

51 Network Device o e 79
511 Device ID e 79
5.1.2 Virtqueues e 79
513 Featurebits 79

5.1.3.1 Featurebitrequirements 80
5.1.3.2 Legacy Interface: Featurebits, 81
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 7 of 284

5.1.4 Device configuration layout 81

5.1.4.1 Device Requirements: Device configurationlayout 82
5.1.4.2 Driver Requirements: Device configuration layout 82
5.1.4.3 Legacy Interface: Device configuration layout 82

5.1.5 Device Initialization 83
5.1.6 Device Operation e 83
5.1.6.1 Legacy Interface: Device Operation 84
5.1.6.2 Packet Transmission 84
5.1.6.2.1 Driver Requirements: Packet Transmission 85

5.1.6.2.2 Device Requirements: Packet Transmission 86

5.1.6.2.3 Packet Transmission Interrupt 86

5.1.6.3 SettingUp ReceiveBuffers, 86
5.1.6.3.1 Driver Requirements: Setting Up Receive Buffers 86

5.1.6.3.2 Device Requirements: Setting Up Receive Buffers 86

5.1.6.4 Processing of Incoming Packets 87
5.1.6.4.1 Device Requirements: Processing of Incoming Packets 87

5.1.6.4.2 Driver Requirements: Processing of Incoming Packets 88

5.1.6.4.3 Hash calculation for incoming packets 88

5.1.6.4.4 Hash reporting for incoming packets 91

5.1.6.5 ControlVirtqueue e 91
5.1.6.5.1 PacketReceive Filtering 92

5.1.6.5.2 Setting MAC Address Filtering 93

5.1.6.5.3 VLANFiltering 94

5.1.6.5.4 Gratuitous PacketSending L. 94

5.1.6.5.5 Device operation in multiqueue mode L. 94

5.1.6.5.6 Automatic receive steering in multiqueue mode 95

5.1.6.5.7 Receive-side scaling (RSS) L 96

5.1.6.5.8 Offloads State Configuration 97

5.1.6.6 Legacy Interface: Framing Requirements 98

5.2 Block Device e 98
521 DevicelD e 98
522 VirtQueues e e 98
523 Featurebits 99
5.2.3.1 Legacy Interface: Featurebits 99

5.2.4 Device configuration layout 99
5.2.4.1 Legacy Interface: Device configuration layout 100

5.2.5 Device Initialization L 100
5.2.5.1 Driver Requirements: Device Initialization 101
5.2.5.2 Device Requirements: Device Initialization 101
5.2.5.3 Legacy Interface: Device Initialization 101

5.2.6 Device Operation e e 101
5.2.6.1 Driver Requirements: Device Operation 103
5.2.6.2 Device Requirements: Device Operation 103
5.2.6.3 Legacy Interface: Device Operation 104
5.2.6.4 Legacy Interface: Framing Requirements 105

53 ConsoleDevice e 106
531 Device D e 106
5.3.2 Virtqueues e 106
53.3 Featurebits 106
5.3.4 Device configuration layout 106
5.3.4.1 Legacy Interface: Device configuration layout 107

5.3.5 Device Initialization 107
5.3.5.1 Device Requirements: Device Initialization 107

5.3.6 Device Operation e e 107
5.3.6.1 Driver Requirements: Device Operation 107
5.3.6.2 Multiport Device Operation 107
5.3.6.2.1 Device Requirements: Multiport Device Operation 108

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 8 of 284

5.3.6.2.2 Driver Requirements: Multiport Device Operation 108

5.3.6.3 Legacy Interface: Device Operation 108
5.3.6.4 Legacy Interface: Framing Requirements 109

54 Entropy Device e 109
541 DevicelD e 109
542 Virtqueues e e 109
543 Featurebits L e 109
5.4.4 Device configuration layout 109
5.4.5 Device Initialization L 109
5.4.6 Device Operation. e 109
5.4.6.1 Driver Requirements: Device Operation 109
5.4.6.2 Device Requirements: Device Operation 109

5.5 Traditional Memory Balloon Device 109
551 DevicelD 110
552 Virtqueues e 110
55.3 Featurebits L 110
5.56.3.1 Driver Requirements: Featurebits 110
5.5.3.2 Device Requirements: Feature bits 110

5.5.4 Device configuration layout 111
5.5.5 Device Initialization 111
5.5.6 Device Operation. e 111
5.5.6.1 Driver Requirements: Device Operation 112
5.5.6.2 Device Requirements: Device Operation 112
5.5.6.2.1 Legacy Interface: Device Operation 113

5.5.6.3 Memory Statistics 113
5.5.6.3.1 Driver Requirements: Memory Statistics 113

5.5.6.3.2 Device Requirements: Memory Statistics 114

5.5.6.3.3 Legacy Interface: Memory Statistics 114

5.5.6.4 Memory Statistics Tags 114
55.6.5 Free Page Hinting 114
5.5.6.5.1 Driver Requirements: Free Page Hinting 115

5.56.6.56.2 Device Requirements: Free Page Hinting 116

5.56.6.5.3 Legacy Interface: Free Page Hinting 116

5.5.6.6 Page Poison 116
5.5.6.6.1 Driver Requirements: Page Poison 116

5.5.6.6.2 Device Requirements: Page Poison 116

55.6.7 Free Page Reporting e 117
5.56.6.7.1 Driver Requirements: Free Page Reporting 117

5.5.6.7.2 Device Requirements: Free Page Reporting 117

56 SCSlIHostDevice e 117
56.1 DevicelD e 118
5.6.2 VirtQueues e e 118
5.6.3 Featurebits 118
5.6.4 Device configurationlayout 118
5.6.4.1 Driver Requirements: Device configuration layout 119
5.6.4.2 Device Requirements: Device configurationlayout 119
5.6.4.3 Legacy Interface: Device configuration layout 119

5.6.5 Device Requirements: Device Initialization 119
5.6.6 Device Operation. e e 119
5.6.6.0.1 Legacy Interface: Device Operation 119

5.6.6.1 Device Operation: RequestQueues 119
5.6.6.1.1 Device Requirements: Device Operation: Request Queues 121

5.6.6.1.2 Driver Requirements: Device Operation: Request Queues 121

5.6.6.1.3 Legacy Interface: Device Operation: Request Queues 122

5.6.6.2 Device Operation: controlg 122
5.6.6.2.1 Legacy Interface: Device Operation: controlg 124

5.6.6.3 Device Operation: eventq 124
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 9 of 284

5.6.6.3.1 Driver Requirements: Device Operation: eventq 125

5.6.6.3.2 Device Requirements: Device Operation: eventq 126

5.6.6.3.3 Legacy Interface: Device Operation: eventq 126

5.6.6.4 Legacy Interface: Framing Requirements 126

5.7 GPUDeVICE e 126
571 Device ID e 126
5.7.2 Virtqueues L 126
573 Featurebits 126
5.7.4 Device configuration layout 127
5.7.4.1 Device configurationfields 127
5742 Events 127

5.7.5 Device Requirements: Device Initialization 127
5.7.6 Device Operation. 127
5.7.6.1 Device Operation: Create a framebuffer and configure scanout 128
5.7.6.2 Device Operation: Update a framebufferand scanout 128
5.7.6.3 Device Operation: Usingpageflip 128
5.7.6.4 Device Operation: Multiheadsetup 128
5.7.6.5 Device Requirements: Device Operation: Command lifecycle and fencing . 128
5.7.6.6 Device Operation: Configure mousecursor 128
5.7.6.7 Device Operation: Requestheader 128
5.7.6.8 Device Operation: controlg, 130
5.7.6.9 Device Operation: controlq (3d) 135
5.7.6.10 Device Operation: cursorq v ittt 136

5.7.7 VGA Compatibility e 136
5.8 InputDevice e 136
581 DevicelD e 137
5.8.2 Virtqueues e 137
583 Featurebits 137
5.8.4 Device configuration layout o 137
5.8.5 Device Initialization 138
5.8.5.1 Driver Requirements: Device Initialization 138
5.8.5.2 Device Requirements: Device Initialization 138

5.8.6 Device Operation e e 138
5.8.6.1 Driver Requirements: Device Operation 139
5.8.6.2 Device Requirements: Device Operation 139

59 CryptoDevice. e 139
591 DevicelD e 139
5.9.2 Virtqueues e e 139
5.9.3 Featurebits e 139
5.9.3.1 Feature bitrequirements Lo 140

5.9.4 Supportedcryptoservices 140
5941 CIPHER services e 140
5942 HASHservices e 140
5943 MACSEIVICES i i e 141
5944 AEADSErvices e 141

5.9.5 Device configuration layout o 141
5.9.5.1 Device Requirements: Device configuration layout 142
5.9.5.2 Driver Requirements: Device configurationlayout 142

5.9.6 Device Initialization 143
5.9.6.1 Driver Requirements: Device Initialization 143

5.9.7 Device Operation e e 143
59.71 OperationStatus.o 143
5.9.7.2 Control Virtqueue 143
5.9.7.2.1 Sessionoperation 145

5.9.7.3 DataVirtqueue L 149
5.9.7.4 HASH Service Operation 150
5.9.7.4.1 Driver Requirements: HASH Service Operation 151

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 10 of 284

5.9.7.4.2 Device Requirements: HASH Service Operation 151

5.9.7.5 MAC Service Operation 151
5.9.7.5.1 Driver Requirements: MAC Service Operation 152

5.9.7.5.2 Device Requirements: MAC Service Operation. 152

5.9.7.6 Symmetric algorithms Operation 152
5.9.7.6.1 Driver Requirements: Symmetric algorithms Operation 156

5.9.7.6.2 Device Requirements: Symmetric algorithms Operation 156

5.9.7.7 AEAD Service Operation 157
5.9.7.7.1 Driver Requirements: AEAD Service Operation 158

5.9.7.7.2 Device Requirements: AEAD Service Operation 158

5.10 Socket Device e 159
510.1 Device ID e e e 159
5.10.2 Virtqueues L 159
510.3 Feature bits L 159
5.10.4 Device configuration layout L 159
5.10.5 Device Initialization L 160
5.10.6 Device Operation e e 160
5.10.6.1 Virtqueue Flow Control 160

5.10.6.1.1 Driver Requirements: Device Operation: Virtqueue Flow Control . . 161
5.10.6.1.2 Device Requirements: Device Operation: Virtqueue Flow Control . 161
5.10.6.2 Addressing e e 161
5.10.6.3 Buffer Space Management 161
5.10.6.3.1 Driver Requirements: Device Operation: Buffer Space Management 161
5.10.6.3.2 Device Requirements: Device Operation: Buffer Space Management161

5.10.6.4 Receiveand Transmit 162
5.10.6.4.1 Driver Requirements: Device Operation: Receive and Transmit . . 162

5.10.6.4.2 Device Requirements: Device Operation: Receive and Transmit . . 162

5.10.6.5 Stream Sockets 162
5.10.6.6 Seqpacket Sockets e 162
5.10.6.6.1 Message and record boundaries 162

5.10.6.7 Device Events L 163
5.10.6.7.1 Driver Requirements: Device Operation: Device Events 163

5.11 File System Device e e e e e e e 163
511.1 Device ID e e e e e 163
5141.2 Virtqueues o o o e e e e e e 163
511.3 Feature bits L e e e e 164
5.11.4 Device configuration layout e e 164
5.11.4.1 Driver Requirements: Device configurationlayout 164
5.11.4.2 Device Requirements: Device configurationlayout 164

5.11.5 Device Initialization L e 164
5.11.6 Device Operation o o e e e e e 164
5.11.6.1 Device Operation: Request Queues 165
5.11.6.2 Device Operation: High Priority Queue 165
5.11.6.2.1 Device Requirements: Device Operation: High Priority Queue . . . 166

5.11.6.2.2 Driver Requirements: Device Operation: High Priority Queue 166

5.11.6.3 Device Operation: Notification Queue 166
5.11.6.3.1 Driver Requirements: Device Operation: Notification Queue 166

5.11.6.4 Device Operation: DAX Window i it 166
5.11.6.4.1 Device Requirements: Device Operation;: DAX Window 167

5.11.6.4.2 Driver Requirements: Device Operation: DAX Window 167

5.11.6.5 Security Considerations 167
5.11.6.6 Live migration considerations e 168

512 RPMB Device o o e e e e e e 168
5121 Device ID e e e 168
5.12.2 VIrtQUEUES .+ . v v v o i e e e e e e e e e e e e e e e e 168
5.12.3 Feature bits L e e e 168
5.12.4 Device configuration layout L. 168
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 11 of 284

5.12.5 Device Requirements: Device Initialization 168

5.12.6 Device Operation i e e e e e e e e e e 169
5.12.6.1 Device Operation: Request Queue 169
5.12.6.1.1 Device Requirements: Device Operation: ProgramKey 170

5.12.6.1.2 Device Requirements: Device Operation: Get Write Counter 170

5.12.6.1.3 Device Requirements: Device Operation: Data Write 170

5.12.6.1.4 Device Requirements: Device Operation: DataRead 171

5.12.6.1.5 Device Requirements: Device Operation: ResultRead 171

5.12.6.2 Driver Requirements: Device Operation 171
5.12.6.3 Device Requirements: Device Operation 171

513 IOMMU device o e e e e e e e e e 172
513.1 Device ID e e e e e 172
5.13.2 VIrtqQUEUES .+ . o v o o e e e e e e e e e e e e e e e 172
5.13.3 Feature bits L e e e 172
5.13.3.1 Driver Requirements: Featurebits 173
5.13.3.2 Device Requirements: Featurebits 173

5.13.4 Device configuration layout e 173
5.13.4.1 Driver Requirements: Device configuration layout 173
5.13.4.2 Device Requirements: Device configurationlayout 173

5.13.5 Device initialization L L e e e e 173
5.13.5.1 Driver Requirements: Device Initialization 174

5.13.6 Device operations e e e e e e e 174
5.13.6.1 Driver Requirements: Device operations 175
5.13.6.2 Device Requirements: Device operations 175
5.13.6.3 ATTACH request o v o i i e e e e e e e e e e 175
5.13.6.3.1 Driver Requirements: ATTACHrequest 176

5.13.6.3.2 Device Requirements: ATTACHrequest 176

5.13.6.4 DETACH request v o i i e e e e e e e e 177
5.13.6.4.1 Driver Requirements: DETACHrequest 177

5.13.6.4.2 Device Requirements: DETACHrequest 177

5.13.6.5 MAP request o e e e 177
5.13.6.5.1 Driver Requirements: MAPrequest 178

5.13.6.5.2 Device Requirements: MAPrequest 178

5.13.6.6 UNMAP request o i i e e e 178
5.13.6.6.1 Driver Requirements: UNMAP request 179

5.13.6.6.2 Device Requirements: UNMAPrequest 179

5.13.6.7 PROBE request e 180
5.13.6.7.1 Driver Requirements: PROBE request 180

5.13.6.7.2 Device Requirements: PROBE request 180

5.13.6.8 PROBE properties i i e e 181
5.13.6.8.1 Property RESV_MEM 181

5.13.6.9 Fault reporting e e 182
5.13.6.9.1 Driver Requirements: Faultreporting 182

5.13.6.9.2 Device Requirements: Faultreporting 183

5,14 Sound Device L e e e e 183
5141 Device ID e e e e 183
5.14.2 VIrtqUEUES o o i o e e e e e e e e e 183
5.14.3 Feature Bits e e 183
5.14.4 Device Configuration Layout i e e 184
5.14.5 Device Initialization e e e 184
5.14.5.1 Driver Requirements: Device Initialization 184

5.14.6 Device Operation o 0 i e e e 184
5.14.6.1 Item Information Request e 185
5.14.6.2 Driver Requirements: Item Information Request 186
5.14.6.3 Relationships with the High Definition Audio Specification 186
5.14.6.4 Jack Control Messages v v i i it 186
514.6.4.1 VIRTIO_SND_R_JACK_INFO 186
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 12 of 284

5.14.6.4.2 VIRTIO_SND_R_JACK_REMAP 187

5.14.6.5 Jack Notifications e e 187
5.14.6.6 PCM Control Messages v o i vt i i e 187
5.14.6.6.1 PCM Command Lifecycle. 188

5.14.6.6.2 VIRTIO_SND_R_PCM_INFO 188

5.14.6.6.3 VIRTIO_SND_R_PCM_SET_PARAMS 190

5.14.6.6.4 VIRTIO_SND_R_PCM_PREPARE 191

5.14.6.6.5 VIRTIO_SND_R_PCM_RELEASE 191

5.14.6.6.6 VIRTIO_SND_R_PCM_START 191

514.6.6.7 VIRTIO_SND_R_PCM_STOP 191

5.14.6.7 PCM Notifications o 0 v v i e e e e e e e 191
514.6.8 PCM I/O Messageso it i 192
5.14.6.8.1 Output Stream e 192

514.6.8.2 Input Stream 192

5.14.6.9 Channel Map Control Messages o . i i i i i i i i i i 193
5.14.6.9.1 VIRTIO_SND_R_CHMAP_INFO 193

515 Memory Device e e e e e e e e e e e e 194
5151 Device ID L e e e 194
515.2 Virtqueues L e e e e 194
5.15.3 Feature bits L e e e 194
5.15.4 Device configuration layout L e e 195
5.15.4.1 Driver Requirements: Device configurationlayout 195
5.15.4.2 Device Requirements: Device configurationlayout 195

5.15.5 Device Initialization e 196
5.15.5.1 Driver Requirements: Device Initialization 196
5.15.5.2 Device Requirements: Device Initialization 196

5.15.6 Device Operation o i i e e e e e e e e 196
5.15.6.1 Driver Requirements: Device Operation 197
5.15.6.2 Device Requirements: Device Operation 197
515.6.3 PLUG request o o e 197
5.15.6.3.1 Driver Requirements: PLUGrequest 198

5.15.6.3.2 Device Requirements: PLUGrequest 198

5.15.6.4 UNPLUG request o o i i i e e e e e 198
5.15.6.4.1 Driver Requirements: UNPLUGrequest 198

5.15.6.4.2 Device Requirements: UNPLUG request 198

5.15.6.5 UNPLUG ALL request o o i i i it e e 199
5.15.6.5.1 Driver Requirements: UNPLUGrequest. 199

5.15.6.5.2 Device Requirements: UNPLUGrequest 199

5.15.6.6 STATE request v o v v i e e e e e e e e e e e e e 199
5.15.6.6.1 Driver Requirements: STATErequest 200

5.15.6.6.2 Device Requirements: STATE request 200

5,16 12C Adapter Device L e e e e e e e 200
5.16.1 Device ID L e e e e 200
516.2 Virtqueues o o e e e e e e e e 200
5.16.3 Feature bits e e e e e 200
5.16.4 Device configuration layout L 200
5.16.5 Device Initialization e e e e 201
5.16.6 Device Operation o i i i e e e e e e e e e e 201
5.16.6.1 Device Operation: Request Queue i v i i i v 201
5.16.6.2 Device Operation: Operation Status v v i 202
5.16.6.3 Driver Requirements: Device Operation 202
5.16.6.4 Device Requirements: Device Operation 202

547 SCMI Device o o e e e e e e e e e e e 203
5.17.1 Device ID L e e 203
5AT.2 VIrtQUEUES .+ . v v o o e e e e e e e e e e e e e e e e e 203
5.17.3 Feature bits L e e e 203
5.17.3.1 Device Requirements: Feature bits 203
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 13 of 284

5.17.4 Device configuration layouto 203

5.17.5 Device Initialization e 203
5.17.6 Device Operation e e e e 204
5.17.6.1 cmdq Operation. L e 204

5.17.6.1.1 Device Requirements: cmdq Operation 204

5.17.6.1.2 Driver Requirements: cmdq Operation 205

5.17.6.2 Setting Up eventq Buffers 205

5.17.6.2.1 Driver Requirements: Setting Up eventq Buffers 205

5.17.6.3 eventq Operation e 205

5.17.6.3.1 Device Requirements: eventq Operation 205

5.17.6.4 Shared Memory Operation o i i i it e i e 205

5.17.6.4.1 Device Requirements: Shared Memory Operation 206

BA8 GPIO Device v o i e e e e e 206
518.1 Device ID L e e e e e 206
5.18.2 VIrtqUeUEs o o e e e e e 206
5.18.3 Feature bits e e e e 206
5.18.4 Device configuration layout 206
5.18.5 Device Initialization 207
5.18.6 Device Operation: requestq « « o v v i v i e e e e e e 207
5.18.6.1 requestq Operation: Get Line Names 208

5.18.6.2 requestq Operation: Get Direction 208

5.18.6.3 requestq Operation: Set Direction 209

5.18.6.4 requestq Operation: Get Value 209

5.18.6.5 requestq Operation: Set Value 209

5.18.6.6 requestq Operation: Set IRQ Type 209

5.18.6.7 requestq Operation: Message Flow 210

5.18.6.8 Driver Requirements: requestq Operation 210

5.18.6.9 Device Requirements: requestq Operation 21

5.18.7 Device Operation: eventq« o v v v i i e e e e e e e e e e 211
5.18.7.1 eventq Operation: Message Flow 212

5.18.7.2 Driver Requirements: eventq Operation 212

5.18.7.3 Device Requirements: eventq Operation 212

519 PMEM Device o o e e 213
519.1 Device ID e e e e 213
519.2 Virtqueues L e e e e e e 213
5.19.3 Feature bits L e e e 213
5.19.4 Device configuration layout L e e 213
5.19.5 Device Initialization e e e e 213
5.19.5.1 Device Requirements: Device Initialization 213

5.19.5.2 Driver Requirements: Device Initialization 214

5.19.6 Driver Operations o i i i e e e e 214
5.19.7 Device Operations o i i e e e e 214
5.19.7.1 Device Requirements: Device Operation: Virtqueue flush 214

5.19.7.2 Device Operations« o v v v i i e e e e e e e 214

5.19.7.3 Device Requirements: Device Operation: Virtqueue return 214

5.19.8 Possible security implications Lo 214
5.19.9 Countermeasures v v v v i i e e e e e e e e e e e 214
5.19.9.1 With SHARED mapping o i e e 214

5.19.9.2 With PRIVATE mapping o e e e e e e e e 215

5.19.9.3 Workload specific mapping 215

5.19.9.4 Prevent cache eviction e 215

6 Reserved FeatureBits 216
6.1 Driver Requirements: Reserved Feature Bits 217
6.2 Device Requirements: Reserved FeatureBits 217
6.3 Legacy Interface: Reserved Feature Bits L. 218
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 14 of 284

7 Conformance e 219

7.1 Conformance Targets e 219
7.2 DrverCOonformante v v v ot e e e e e e e e e e e 219
7.2 Clause 1: Driver Conformance i i i e 219
T7.2.1 PCIDHvErCORformante . . v . v v v v v e e e e e e e e e e e e e e 220
7.2.1 Clause 2: PCI Driver Conformance, 220
7.2.2 MMIOBAVEFCORIOIMERASE . . « « « v v v e e e e e e e e e e e e e e e 220
7.2.2 Clause 3: MMIO Driver Conformance 220
7.2.3 ChanneHfODrverConformante v .« v v v e e e e e e e e e e e e e e 220
7.2.3 Clause 4: Channel I/O Driver Conformance 220
T7.2.4 NetworkDrverCoRformante v v v v v v e e e e e e e e e e e e e 221
7.2.4 Clause 5: Network Driver Conformance 221
7.2.5 BlockDrverConformante o v v i e e e e e e e e 221
7.2.5 Clause 6: Block Driver Conformance 221
7.2.6 ConsoleDrverConformante v v v v v e e e e e e e e e e e e e 221
7.2.6 Clause 7: Console Driver Conformance 221
T7.2.7 EntropyDrverConformante v v v v e e e e e e e e e e e e e 221
7.2.7 Clause 8: Entropy Driver Conformance 221
7.2.8 Fedbearbiomenollee s BE mSERE AT L L L L s e e e e e e e e e e 221
7.2.8 Clause 9: Traditional Memory Balloon Driver Conformance 221
7.2.9 SCSHHostDHvErCOoRformante . . . v v v v v v e e e e e e e e e e e e e 222
7.2.9 Clause 10: SCSI Host Driver Conformance 222
7.2.10 inputDriverConformance v . v . b e e e e e e e e e e e e e e e e 222
7.2.10 Clause 11: Input Driver Conformance 222
7.2.11 CryptoDriverConformance v v v v v i e e e e e e e e 222
7.2.11 Clause 12: Crypto Driver Conformance 222
7.2.12 SocketDriverConformante . .« . .« v v v e e e e e e e e e e e e e 222
7.2.12 Clause 13: Socket Driver Conformance 222

7.3 BeviceConformante v v v e e e e e e e 222
7.2.1 Clause 14: File System Driver Conformance 222
7.2.2 Clause 15: RPMB Driver Conformance 223
7.2.3 Clause 16: IOMMU Driver Conformance 223
7.2.4 Clause 17: Sound Driver Conformance 223
7.2.5 Clause 18: Memory Driver Conformance 223
7.2.6 Clause 19: I12C Adapter Driver Conformance 224
7.2.7 Clause 20: SCMI Driver Conformance 224
7.2.8 Clause 21: GPIO Driver Conformance 224
7.2.9 Clause 22: PMEM Driver Conformance 224

7.3 Clause 23: Device Conformance i i i e 224
7.3.1 PCHPevice-Conformante v v v v e e e e e e e e 225
7.3.1 Clause 24: PCl Device Conformance 225
7.3.2 MMIODevice CORforMante v . v v v i e e e e e e e e e e e e 225
7.3.2 Clause 25: MMIO Device Conformance, 225
7.3.3 ChanneH/ODeviceCOoRformante « v v v v v v b e e e e e e e e e e 225
7.3.3 Clause 26: Channel I/O Device Conformance 225
7.3.4 NetworkDeviceConformante v . v v v v e e e e e e e e e e e 225
7.3.4 Clause 27: Network Device Conformance 225
7.3.5 BlockDeviceConformante v v vt e e e e e e e e e e e e e 226
7.3.5 Clause 28: Block Device Conformance 226
7.3.6 ConsoleDeviceConformantet i e e e e 226
7.3.6 Clause 29: Console Device Conformance 226
7.3.7 EntropyDevice Conformance i e e e e e 226
7.3.7 Clause 30: Entropy Device Conformance 226
7.3.8 Traditional-Memory BalloonDevice-Conformance v v ot e e e e e e e e e 226
7.3.8 Clause 31: Traditional Memory Balloon Device Conformance 226
7.3.9 SCShHHoestDevice CORformante o v v v e e e e e e 226
7.3.9 Clause 32: SCSI Host Device Conformance 226
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 15 of 284

7.3.10 InputDevice Conformance v v v v v v e e e e e e e e e e e e e e 227

7.3.10 Clause 33: GPU Device Conformance 227

7.3.11 Clause 34: Input Device Conformance 227

7.3.12 CryptoDevice Conformance v v v v it e e e e e e e 227

7.3.12 Clause 35: Crypto Device Conformance 227

7.3.13 SocketDevice Conformance v . v v i e e e e e e e 227

7.3.13 Clause 36: Socket Device Conformance 227

7.4 Legacyinterface: Transitional-Device and-Transitional Driver Conformance 227
7.3.1 Clause 37: File System Device Conformance 227

7.3.2 Clause 38: RPMB Device Conformance 228

7.3.3 Clause 39: IOMMU Device Conformance 228

7.3.4 Clause 40: Sound Device Conformance 228

7.3.5 Clause 41: Memory Device Conformance 228

7.3.6 Clause 42: 12C Adapter Device Conformance 229

7.3.7 Clause 43: SCMI Device Conformance 229

7.3.8 Clause 44: GPIO Device Conformance 229

7.3.9 Clause 45: PMEM Device Conformance 229

7.4 Clause 46: Legacy Interface: Transitional Device and Transitional Driver Conformance . . . 229

A virtio_queue.h e e 231
B Creating New Device Types e 233
B.1 How Many Virtqueues? e 233
B.2 What Device Configuration Space Layout? 233
B.3 What Device Number? e 233
B.4 How many MSI-X vectors? (for PCI) 233
B.5 Device Improvements 233

C Acknowledgements L 234
D Revision History e 239
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 16 of 284

1 Introduction

This document describes the specifications of the “virtio” family of devices. These devices are found in
virtual environments, yet by design they look like physical devices to the guest within the virtual machine -
and this document treats them as such. This similarity allows the guest to use standard drivers and discovery
mechanisms.

The purpose of virtio and this specification is that virtual environments and guests should have a straightfor-
ward, efficient, standard and extensible mechanism for virtual devices, rather than boutique per-environment
or per-OS mechanisms.

Straightforward: Virtio devices use normal bus mechanisms of interrupts and DMA which should be familiar
to any device driver author. There is no exotic page-flipping or COW mechanism: it’s just a normal
device."

Efficient: Virtio devices consist of rings of descriptors for both input and output, which are neatly laid out
to avoid cache effects from both driver and device writing to the same cache lines.

Standard: Virtio makes no assumptions about the environment in which it operates, beyond supporting the
bus to which device is attached. In this specification, virtio devices are implemented over MMIO, Chan-
nel I/0O and PCI bus transports 2, earlier drafts have been implemented on other buses not included
here.

Extensible: Virtio devices contain feature bits which are acknowledged by the guest operating system dur-
ing device setup. This allows forwards and backwards compatibility: the device offers all the features
it knows about, and the driver acknowledges those it understands and wishes to use.

1.1 Normative References

[RFC2119] Bradner S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,
RFC 2119, March 1997.
http://lwww.ietf.org/rfc/rfc2119.xt

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace”, RFC 4122, DOI 10.17487/RFC4122, July 2005.
http://www.ietf.org/rfc/rfc4122.txt

[S390 PoP] z/Architecture Principles of Operation, IBM Publication SA22-7832,
http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf, and any future revisions

[S390 Common I/0] ESA/390 Common I/O-Device and Self-Description, IBM Publication SA22-7204,
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dz9ar501/CCONTENTS,
and any future revisions

[PCI] Conventional PCI Specifications,
http://www.pcisig.com/specifications/conventional/, PCI-SIG

[PCle] PCI Express Specifications
http://www.pcisig.com/specifications/pciexpress/, PCI-SIG

This lack of page-sharing implies that the implementation of the device (e.g. the hypervisor or host) needs full access to the guest
memory. Communication with untrusted parties (i.e. inter-guest communication) requires copying.

2The Linux implementation further separates the virtio transport code from the specific virtio drivers: these drivers are shared
between different transports.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 17 of 284

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc4122.txt
http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dz9ar501/CCONTENTS
http://www.pcisig.com/specifications/conventional/
http://www.pcisig.com/specifications/pciexpress/

[IEEE 802] IEEE Standard for Local and Metropolitan Area Networks: Overview and Architec-
ture,
http://www.ieee802.org/, IEEE

[SAM] SCSI Architectural Model,
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sam4r05.pdf

[SCSI MMC] SCSI Multimedia Commands,
http://www.t10.org/cgi-bin/ac.pl?t=f&f=mmc6r00.pdf

[FUSE] Linux FUSE interface,
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/
linux/fuse.h

[eMMC(] eMMC Electrical Standard (5.1), JESD84-B51,
http://www.jedec.org/sites/default/files/docs/JESD84-B51.pdf

[HDA] High Definition Audio Specification,
https://www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/high-definition-audio-specification.pdf

[12C] [2C-bus specification and user manual,
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
[SCMI] Arm System Control and Management Interface, DEN0056,

https://developer.arm.com/docs/den0056/c, version C and any future revisions

1.2 Non-Normative References

[Virtio PCI Draft] Virtio PCI Draft Specification
http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf

1.3 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED?”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
‘RECOMMENDED?”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.3.1 Legacy Interface: Terminology

Earlierdrafts-Specification drafts preceding version 1.0 of this specification (i.e—revisions-before-t-6,see-€.g. see
[Virtio PCI Draft]) defined a similar, but different interface between the driver and the device. Since these
are widely deployed, this specification accommodates OPTIONAL features to simplify transition from these
earlier draft interfaces.

Specifically devices and drivers MAY support:
Legacy Interface is an interface specified by an earlier draft of this specification (before 1.0)

Legacy Device is a device implemented before this specification was released, and implementing a legacy
interface on the host side

Legacy Driver is a driver implemented before this specification was released, and implementing a legacy
interface on the guest side

Legacy devices and legacy drivers are not compliant with this specification.
To simplify transition from these earlier draft interfaces, a device MAY implement:

Transitional Device a device supporting both drivers conforming to this specification, and allowing legacy
drivers.

Similarly, a driver MAY implement:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 18 of 284

http://www.ieee802.org/
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sam4r05.pdf
http://www.t10.org/cgi-bin/ac.pl?t=f&f=mmc6r00.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fuse.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fuse.h
http://www.jedec.org/sites/default/files/docs/JESD84-B51.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://developer.arm.com/docs/den0056/c
http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf

Transitional Driver a driver supporting both devices conforming to this specification, and legacy devices.

Note: Legacy interfaces are not required; ie. don’t implement them unless you have a need for backwards
compatibility!

Devices or drivers with no legacy compatibility are referred to as non-transitional devices and drivers, re-
spectively.

1.3.2 Transition from earlier specification drafts

For devices and drivers already implementing the legacy interface, some changes will have to be made to
support this specification.

In this case, it might be beneficial for the reader to focus on sections tagged "Legacy Interface” in the section
titte. These highlight the changes made since the earlier drafts.

1.4 Structure Specifications

Many device and driver in-memory structure layouts are documented using the C struct syntax. All structures
are assumed to be without additional padding. To stress this, cases where common C compilers are known
to insert extra padding within structures are tagged using the GNU C __ attribute__ ((packed)) syntax.

For the integer data types used in the structure definitions, the following conventions are used:
u8, u16, u32, u64 An unsigned integer of the specified length in bits.

le16, le32, le64 An unsigned integer of the specified length in bits, in little-endian byte order.
be16, be32, be64 An unsigned integer of the specified length in bits, in big-endian byte order.

Some of the fields to be defined in this specification don’t start or don’t end on a byte boundary. Such fields
are called bit-fields. A set of bit-fields is always a sub-division of an integer typed field.

Bit-fields within integer fields are always listed in order, from the least significant to the most significant bit.
The bit-fields are considered unsigned integers of the specified width with the next in significance relationship
of the bits preserved.

For example:
struct S {
bel6 {
A : 15;
B ig
}ox;
bel6 y;

documents the value A stored in the low 15 bit of x and the value B stored in the high bit of x, the 16-bit
integer x in turn stored using the big-endian byte order at the beginning of the structure S, and being followed
immediately by an unsigned integer y stored in big-endian byte order at an offset of 2 bytes (16 bits) from
the beginning of the structure.

Note that this notation somewhat resembles the C bitfield syntax but should not be naively converted to a
bitfield notation for portable code: it matches the way bitfields are packed by C compilers on little-endian
architectures but not the way bitfields are packed by C compilers on big-endian architectures.

Assuming that CPU_TO_BE16 converts a 16-bit integer from a native CPU to the big-endian byte order, the
following is the equivalent portable C code to generate a value to be stored into x:

CPU_TO BE16(B << 15 | A)

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 19 of 284

1.5 Constant Specifications

In many cases, numeric values used in the interface between the device and the driver are documented using the
C #define and /* */ comment syntax. Multiple related values are grouped together with a common name as a
prefix, using _ as a separator. Using _XXX as a suffix refers to all values in a group. For example:

/* Field F1d value A description */
SERSE N T SR L S

/* Field F1d value B description */
e IR0 WD B eaaaad B S

documents two numeric values for a field Fld, with Fld having value 1 referring to A and Fld having value 2
referring to B. Note that << refers to the shift-left operation.

Further, in this case VIRTIO_FLD_A and VIRTIO_FLD_B refer to values 1 and 2 of FId respectively. Further,
VIRTIO_FLD_XXX refers to either VIRTIO_FLD_A or VIRTIO_FLD_B.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 20 of 284

2 Basic Facilities of a Virtio Device

A virtio device is discovered and identified by a bus-specific method (see the bus specific sections: 4.1 Virtio
Over PCI Bus, 4.2 Virtio Over MMIO and 4.3 Virtio Over Channel I/O). Each device consists of the following
parts:

» Device status field

Feature bits

Notifications
» Device Configuration space

* One or more virtqueues

2.1 Device Status Field

During device initialization by a driver, the driver follows the sequence of steps specified in 3.1.

The device status field provides a simple low-level indication of the completed steps of this sequence. It's
most useful to imagine it hooked up to traffic lights on the console indicating the status of each device. The
following bits are defined (listed below in the order in which they would be typically set):

ACKNOWLEDGE (1) Indicates that the guest OS has found the device and recognized it as a valid virtio
device.

DRIVER (2) Indicates that the guest OS knows how to drive the device.

Note: There could be a significant (or infinite) delay before setting this bit. For example, under Linux,
drivers can be loadable modules.

FAILED (128) Indicates that something went wrong in the guest, and it has given up on the device. This
could be an internal error, or the driver didn’t like the device for some reason, or even a fatal error
during device operation.

FEATURES_OK (8) Indicates that the driver has acknowledged all the features it understands, and feature
negotiation is complete.

DRIVER_OK (4) Indicates that the driver is set up and ready to drive the device.

DEVICE_NEEDS_RESET (64) Indicates that the device has experienced an error from which it can’t re-
cover.

The device status field starts out as 0, and is reinitialized to 0 by the device during reset.

211 Driver Requirements: Device Status Field

The driver MUST update device status, setting bits to indicate the completed steps of the driver initialization
sequence specified in 3.1. The driver MUST NOT clear a device status bit. If the driver sets the FAILED bit,
the driver MUST later reset the device before attempting to re-initialize.

The driver SHOULD NOT rely on completion of operations of a device if DEVICE_NEEDS_RESET is set.

Note: For example, the driver can’t assume requests in flight will be completed if DEVICE_NEEDS_RESET
is set, nor can it assume that they have not been completed. A good implementation will try to recover
by issuing a reset.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 21 of 284

2.1.2 Device Requirements: Device Status Field

The device MUST NOT consume buffers or send any used buffer notifications to the driver before DRIVER_-
OK.

The device SHOULD set DEVICE_NEEDS_RESET when it enters an error state that a reset is needed. If
DRIVER_OK is set, after it sets DEVICE_NEEDS_RESET, the device MUST send a device configuration
change notification to the driver.

2.2 Feature Bits
Each virtio device offers all the features it understands. During device initialization, the driver reads this and
tells the device the subset that it accepts. The only way to renegotiate is to reset the device.

This allows for forwards and backwards compatibility: if the device is enhanced with a new feature bit, older
drivers will not write that feature bit back to the device. Similarly, if a driver is enhanced with a feature that
the device doesn’t support, it see the new feature is not offered.

Feature bits are allocated as follows:

enn

0 to 23, and 50 to 127 Feature bits for the specific device type

e

24 to 40 Feature bits reserved for extensions to the queue and feature negotiation mechanisms
Soamiabaus

41 to 49, and 128 and above Feature bits reserved for future extensions.

Note: For example, feature bit O for a network device (i.e. Device ID 1) indicates that the device supports
checksumming of packets.

In particular, new fields in the device configuration space are indicated by offering a new feature bit.

2.2.1 Driver Requirements: Feature Bits

The driver MUST NOT accept a feature which the device did not offer, and MUST NOT accept a feature
which requires another feature which was not accepted.

The driver SHOULD go into backwards compatibility mode if the device does not offer a feature it under-
stands, otherwise MUST set the FAILED device status bit and cease initialization.

2.2.2 Device Requirements: Feature Bits

The device MUST NOT offer a feature which requires another feature which was not offered. The device
SHOULD accept any valid subset of features the driver accepts, otherwise it MUST fail to set the FEA-
TURES_OK device status bit when the driver writes it.

If a device has successfully negotiated a set of features at least once (by accepting the FEATURES OK
device status bit during device initialization), then it SHOULD NOT fail re-negotiation of the same set of
features after a device or system reset. Failure to do so would interfere with resuming from suspend and
error recovery.

2.2.3 Legacy Interface: A Note on Feature Bits

Transitional Drivers MUST detect Legacy Devices by detecting that the feature bit VIRTIO_F_VERSION_1
is not offered. Transitional devices MUST detect Legacy drivers by detecting that VIRTIO_F_VERSION 1
has not been acknowledged by the driver.

In this case device is used through the legacy interface.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 22 of 284

Legacy interface support is OPTIONAL. Thus, both transitional and non-transitional devices and drivers are
compliant with this specification.

Requirements pertaining to transitional devices and drivers is contained in sections named ’Legacy Interface’
like this one.

When device is used through the legacy interface, transitional devices and transitional drivers MUST operate
according to the requirements documented within these legacy interface sections. Specification text within
these sections generally does not apply to non-transitional devices.

2.3 Notifications
The notion of sending a notification (driver to device or device to driver) plays an important role in this
specification. The modus operandi of the notifications is transport specific.
There are three types of notifications:
+ configuration change notification
+ available buffer notification
+ used buffer notification.

Configuration change notifications and used buffer notifications are sent by the device, the recipient is the
driver. A configuration change notification indicates that the device configuration space has changed; a
used buffer notification indicates that a buffer may have been made used on the virtqueue designated by
the notification.

Available buffer notifications are sent by the driver, the recipient is the device. This type of notification
indicates that a buffer may have been made available on the virtqueue designated by the notification.

The semantics, the transport-specific implementations, and other important aspects of the different notifica-
tions are specified in detail in the following chapters.

Most transports implement notifications sent by the device to the driver using interrupts. Therefore, in pre-
vious versions of this specification, these notifications were often called interrupts. Some names defined
in this specification still retain this interrupt terminology. Occasionally, the term event is used to refer to a
notification or a receipt of a notification.

2.4 Device Reset

The driver may want to initiate a device reset at various times; notably, it is required to do so during device
initialization and device cleanup.

The mechanism used by the driver to initiate the reset is transport specific.

241 Device Requirements: Device Reset

A device MUST reinitialize device status to 0 after receiving a reset.

A device MUST NOT send notifications or interact with the queues after indicating completion of the reset by
reinitializing device status to 0, until the driver re-initializes the device.

2.4.2 Driver Requirements: Device Reset

The driver SHOULD consider a driver-initiated reset complete when it reads device status as 0.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 23 of 284

2.5 Device Configuration Space

Device configuration space is generally used for rarely-changing or initialization-time parameters. Where
configuration fields are optional, their existence is indicated by feature bits: Future versions of this specifi-
cation will likely extend the device configuration space by adding extra fields at the tail.

Note: The device configuration space uses the little-endian format for multi-byte fields.

Each transport also provides a generation count for the device configuration space, which will change when-
ever there is a possibility that two accesses to the device configuration space can see different versions of
that space.

2.5.1 Driver Requirements: Device Configuration Space

Drivers MUST NOT assume reads from fields greater than 32 bits wide are atomic, nor are reads from
multiple fields: drivers SHOULD read device configuration space fields like so:

u32 before, after;
do {
before = get config generation(device);
// read config entry/entries.
after = get config generation(device);
} while (after != before);

For optional configuration space fields, the driver MUST check that the corresponding feature is offered
before accessing that part of the configuration space.

Note: See section 3.1 for details on feature negotiation.

Drivers MUST NOT limit structure size and device configuration space size. Instead, drivers SHOULD only
check that device configuration space is large enough to contain the fields necessary for device operation.

Note: For example, if the specification states that device configuration space ’includes a single 8-bit field’
drivers should understand this to mean that the device configuration space might also include an
arbitrary amount of tail padding, and accept any device configuration space size equal to or greater
than the specified 8-bit size.

2.5.2 Device Requirements: Device Configuration Space

The device MUST allow reading of any device-specific configuration field before FEATURES_OK is set by
the driver. This includes fields which are conditional on feature bits, as long as those feature bits are offered
by the device.

2.5.3 Legacy Interface: A Note on Device Configuration Space endian-ness

Note that for legacy interfaces, device configuration space is generally the guest’s native endian, rather than
PCTI’s little-endian. The correct endian-ness is documented for each device.

2.5.4 Legacy Interface: Device Configuration Space

Legacy devices did not have a configuration generation field, thus are susceptible to race conditions if
configuration is updated. This affects the block capacity (see 5.2.4) and network mac (see 5.1.4) fields;
when using the legacy interface, drivers SHOULD read these fields multiple times until two reads generate
a consistent result.

2.6 Virtqueues

The mechanism for bulk data transport on virtio devices is pretentiously called a virtqueue. Each device can
have zero or more virtqueues'.

"For example, the simplest network device has one virtqueue for transmit and one for receive.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 24 of 284

Driver makes requests available to device by adding an available buffer to the queue-, i.e., adding a buffer
describing the request to a virtqueue, and optionally triggering a driver event—, i.e., sending an available
buffer notification to the device.

Device executes the requests and - when complete - adds a used buffer to the queue—, i.e., lets the driver
know by marking the buffer as used. Device can then trigger a device event—, i.e., send a used buffer
notification to the driver.

Device reports the number of bytes it has written to memory for each buffer it uses. This is referred to as
“used length”.

Device is not generally required to use buffers in the same order in which they have been made available
by the driver.

Some devices always use descriptors in the same order in which they have been made available. These
devices can offer the VIRTIO_F_IN_ORDER feature. If negotiated, this knowledge might allow optimizations
or simplify driver and/or device code.

Each virtqueue can consist of up to 3 parts:
* Descriptor Area - used for describing buffers
 Driver Area - extra data supplied by driver to the device
» Device Area - extra data supplied by device to driver
Note: Note that previous versions of this spec used different names for these parts (following 2.7):
 Descriptor Table - for the Descriptor Area
+ Available Ring - for the Driver Area
» Used Ring - for the Device Area

Two formats are supported: Split Virtqueues (see 2.7 Split Virtqueues) and Packed Virtqueues (see 2.8 Packed
Virtqueues).

Every driver and device supports either the Packed or the Split Virtqueue format, or both.

2.6.1 Virtqueue Reset

When VIRTIO_F_RING_RESET is negotiated, the driver can reset a virtqueue individually. The way to reset
the virtqueue is transport specific.

Virtqueue reset is divided into two parts. The driver first resets a queue and can afterwards optionally re-enable
it.
2.6.1.1 Virtqueue Reset

2.6.1.1.1 Device Requirements: Virtqueue Reset

After a queue has been reset by the driver, the device MUST NOT execute any requests from that virtqueue, or
notify the driver for it.

The device MUST reset any state of a virtqueue to the default state, including the available state and the used
state.

2.6.1.1.2 Driver Requirements: Virtqueue Reset

After the driver tells the device to reset a queue, the driver MUST verify that the queue has actually been reset.

After the queue has been successfully reset, the driver MAY release any resource associated with that virtqueue.

2.6.1.2 Virtqueue Re-enable

This process is the same as the initialization process of a single queue during the initialization of the entire device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 25 of 284

2.6.1.2.1 Device Requirements: Virtqueue Re-enable

The device MUST observe any queue configuration that may have been changed by the driver, like the maximum
queue size.

2.6.1.2.2 Driver Requirements: Virtqueue Re-enable

When re-enabling a queue, the driver MUST configure the queue resources as during initial virtqueue discovery,
but optionally with different parameters.

2.7 Split Virtqueues

The split virtqueue format was the only format supported by the version 1.0 (and earlier) of this standard.

The split virtqueue format separates the virtqueue into several parts, where each part is write-able by either
the driver or the device, but not both. Multiple parts and/or locations within a part need to be updated when
making a buffer available and when marking it as used.

Each queue has a 16-bit queue size parameter, which sets the number of entries and implies the total size
of the queue.

Each virtqueue consists of three parts:
 Descriptor Table - occupies the Descriptor Area
* Available Ring - occupies the Driver Area
» Used Ring - occupies the Device Area
where each part is physically-contiguous in guest memory, and has different alignment requirements.

The memory alignment and size requirements, in bytes, of each part of the virtqueue are summarized in the
following table:

Virtqueue Part Alignment ‘ Size ‘

Descriptor Table | 16 16x(Queue Size)
Available Ring 2 6 + 2+(Queue Size)
Used Ring 4 6 + 8+(Queue Size)

The Alignment column gives the minimum alignment for each part of the virtqueue.
The Size column gives the total number of bytes for each part of the virtqueue.

Queue Size corresponds to the maximum number of buffers in the virtqueue?. Queue Size value is always
a power of 2. The maximum Queue Size value is 32768. This value is specified in a bus-specific way.

When the driver wants to send a buffer to the device, it fills in a slot in the descriptor table (or chains several
together), and writes the descriptor index into the available ring. It then notifies the device. When the device
has finished a buffer, it writes the descriptor index into the used ring, and sends a used buffer notification.

2.7.1 Driver Requirements: Virtqueues

The driver MUST ensure that the physical address of the first byte of each virtqueue part is a multiple of the
specified alignment value in the above table.

2.7.2 Legacy Interfaces: A Note on Virtqueue Layout
For Legacy Interfaces, several additional restrictions are placed on the virtqueue layout:

Each virtqueue occupies two or more physically-contiguous pages (usually defined as 4096 bytes, but de-
pending on the transport; henceforth referred to as Queue Align) and consists of three parts:

2For example, if Queue Size is 4 then at most 4 buffers can be queued at any given time.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 26 of 284

Descriptor Table ‘ Available Ring (...padding...) ‘ Used Ring ‘

The bus-specific Queue Size field controls the total number of bytes for the virtqueue. When using the legacy
interface, the transitional driver MUST retrieve the Queue Size field from the device and MUST allocate the
total number of bytes for the virtqueue according to the following formula (Queue Align given in galign and
Queue Size given in gsz):

#define ALIGN(x) (((x) + galign) & ~galign)
static inline unsigned virtq size (unsigned int gsz)
{
return ALIGN (sizeof (struct virtq desc)*gsz + sizeof (ul6)* (3 + gsz))
+ ALIGN (sizeof (ul6)*3 + sizeof (struct virtg used elem)*gsz);

This wastes some space with padding. When using the legacy interface, both transitional devices and
drivers MUST use the following virtqueue layout structure to locate elements of the virtqueue:

struct virtqg {
// The actual descriptors (16 bytes each)
struct virtqg desc desc[Queue Size];

// A ring of available descriptor heads with free-running index.
struct virtqg avail avail;

// Padding to the next Queue Align boundary.
u8 pad[Padding 1;

// A ring of used descriptor heads with free-running index.
struct virtqg used used;

2.7.3 Legacy Interfaces: A Note on Virtqueue Endianness

Note that when using the legacy interface, transitional devices and drivers MUST use the native endian of
the guest as the endian of fields and in the virtqueue. This is opposed to little-endian for non-legacy interface
as specified by this standard. It is assumed that the host is already aware of the guest endian.

2.7.4 Message Framing

The framing of messages with descriptors is independent of the contents of the buffers. For example, a
network transmit buffer consists of a 12 byte header followed by the network packet. This could be most
simply placed in the descriptor table as a 12 byte output descriptor followed by a 1514 byte output descriptor,
but it could also consist of a single 1526 byte output descriptor in the case where the header and packet are
adjacent, or even three or more descriptors (possibly with loss of efficiency in that case).

Note that, some device implementations have large-but-reasonable restrictions on total descriptor size (such
as based on IOV_MAX in the host OS). This has not been a problem in practice: little sympathy will be given
to drivers which create unreasonably-sized descriptors such as by dividing a network packet into 1500 single-
byte descriptors!

2.7.41 Device Requirements: Message Framing
The device MUST NOT make assumptions about the particular arrangement of descriptors. The device
MAY have a reasonable limit of descriptors it will allow in a chain.

2.7.4.2 Driver Requirements: Message Framing

The driver MUST place any device-writable descriptor elements after any device-readable descriptor ele-
ments.

The driver SHOULD NOT use an excessive number of descriptors to describe a buffer.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 27 of 284

2.7.4.3 Legacy Interface: Message Framing

Regrettably, initial driver implementations used simple layouts, and devices came to rely on it, despite this
specification wording. In addition, the specification for virtio_blk SCSI commands required intuiting field
lengths from frame boundaries (see 5.2.6.3 Legacy Interface: Device Operation)

Thus when using the legacy interface, the VIRTIO_F_ANY_LAYOUT feature indicates to both the device
and the driver that no assumptions were made about framing. Requirements for transitional drivers when
this is not negotiated are included in each device section.

2.7.5 The Virtqueue Descriptor Table

The descriptor table refers to the buffers the driver is using for the device. addr is a physical address, and
the buffers can be chained via next. Each descriptor describes a buffer which is read-only for the device
(“device-readable”) or write-only for the device (“device-writable”), but a chain of descriptors can contain
both device-readable and device-writable buffers.

The actual contents of the memory offered to the device depends on the device type. Most common is to
begin the data with a header (containing little-endian fields) for the device to read, and postfix it with a status
tailer for the device to write.

struct virtqg desc {
/* Address (guest-physical). */
le64 addr;
/* Length. */
le32 len;

/* This marks a buffer as continuing via the next field. */
#define VIRTQ DESC_F NEXT 1
/* This marks a buffer as device write-only (otherwise device read-only). */
#define VIRTQ DESC F WRITE 2
/* This means the buffer contains a list of buffer descriptors. */
#define VIRTQ DESC_F INDIRECT 4

/* The flags as indicated above. */

leleo flags;

/* Next field if flags & NEXT */

lel6 next;
bi

The number of descriptors in the table is defined by the queue size for this virtqueue: this is the maximum
possible descriptor chain length.

If VIRTIO_F_IN_ORDER has been negotiated, driver uses descriptors in ring order: starting from offset 0 in
the table, and wrapping around at the end of the table.

Note: The legacy [Virtio PCI Draft] referred to this structure as vring_desc, and the constants as VRING_-
DESC_F_NEXT, etc, but the layout and values were identical.

2.7.5.1 Device Requirements: The Virtqueue Descriptor Table

A device MUST NOT write to a device-readable buffer, and a device SHOULD NOT read a device-writable
buffer (it MAY do so for debugging or diagnostic purposes). A device MUST NOT write to any descriptor table
entry.

2.7.5.2 Driver Requirements: The Virtqueue Descriptor Table

Drivers MUST NOT add a descriptor chain longer than 232 bytes in total; this implies that loops in the
descriptor chain are forbidden!

If VIRTIO_F_IN_ORDER has been negotiated, and when making a descriptor with VRING_DESC_F_NEXT
set in flags at offset z in the table available to the device, driver MUST set next to 0 for the last descriptor in
the table (where x = queue_size — 1) and to = + 1 for the rest of the descriptors.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 28 of 284

2.7.5.3 Indirect Descriptors

Some devices benefit by concurrently dispatching a large number of large requests. The VIRTIO_F_INDI-
RECT_DESC feature allows this (see A virtio_queue.h). To increase ring capacity the driver can store a table
of indirect descriptors anywhere in memory, and insert a descriptor in main virtqueue (with flags&VIRTQ_ -
DESC_F_INDIRECT on) that refers to memory buffer containing this indirect descriptor table; addr and len
refer to the indirect table address and length in bytes, respectively.

The indirect table layout structure looks like this (len is the length of the descriptor that refers to this table,
which is a variable, so this code won’t compile):

struct indirect descriptor_table {
/* The actual descriptors (16 bytes each) */
struct virtg desc desc[len / 16];

b

The first indirect descriptor is located at start of the indirect descriptor table (index 0), additional indirect
descriptors are chained by next. An indirect descriptor without a valid next (with flags&VIRTQ_DESC -
F_NEXT off) signals the end of the descriptor. A single indirect descriptor table can include both device-
readable and device-writable descriptors.

If VIRTIO_F_IN_ORDER has been negotiated, indirect descriptors use sequential indices, in-order: index
0 followed by index 1 followed by index 2, etc.

2.7.5.3.1 Driver Requirements: Indirect Descriptors

The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT flag unless the VIRTIO_F_INDIRECT_DESC
feature was negotiated. The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT flag within an indirect
descriptor (ie. only one table per descriptor).

A driver MUST NOT create a descriptor chain longer than the Queue Size of the device.

A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT and VIRTQ_DESC_F_NEXT in flags.

If VIRTIO_F_IN_ORDER has been negotiated, indirect descriptors MUST appear sequentially, with next
taking the value of 1 for the 1st descriptor, 2 for the 2nd one, etc.

2.7.5.3.2 Device Requirements: Indirect Descriptors

The device MUST ignore the write-only flag (flags&VIRTQ_DESC_F_WRITE) in the descriptor that refers
to an indirect table.

The device MUST handle the case of zero or more normal chained descriptors followed by a single descriptor
with flags&VIRTQ_DESC_F_INDIRECT.

Note: While unusual (most implementations either create a chain solely using non-indirect descriptors, or
use a single indirect element), such a layout is valid.

2.7.6 The Virtqueue Available Ring

The available ring has the following layout structure:

struct virtqg avail {
#define VIRTQ AVAIL F NO INTERRUPT 1

lel6 flags;

lel6 idx;

lel6 ring[/* Queue Size */];

lel6 used event; /* Only if VIRTIO F EVENT IDX */
bi

The driver uses the available ring to offer buffers to the device: each ring entry refers to the head of a
descriptor chain. It is only written by the driver and read by the device.

idx field indicates where the driver would put the next descriptor entry in the ring (modulo the queue size).
This starts at 0, and increases.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 29 of 284

Note: The legacy [Virtio PCI Draft] referred to this structure as vring_avail, and the constant as VRING_-
AVAIL_F_NO_INTERRUPT, but the layout and value were identical.

2.7.6.1 Driver Requirements: The Virtqueue Available Ring

A driver MUST NOT decrement the available idx on a virtqueue (ie. there is no way to “unexpose” buffers).

2.7.7 Used Buffer Notification Suppression

If the VIRTIO_F_EVENT_IDX feature bit is not negotiated, the flags field in the available ring offers a crude
mechanism for the driver to inform the device that it doesn’t want notifications when buffers are used. Other-
wise used_event is a more performant alternative where the driver specifies how far the device can progress
before a notification is required.

Neither of these notification suppression methods are reliable, as they are not synchronized with the device,
but they serve as useful optimizations.

2.7.7.1 Driver Requirements: Used Buffer Notification Suppression
If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:

» The driver MUST set flags to 0 or 1.

» The driver MAY set flags to 1 to advise the device that notifications are not needed.
Otherwise, if the VIRTIO_F_EVENT _IDX feature bit is negotiated:

* The driver MUST set flags to 0.

» The driver MAY use used_event to advise the device that notifications are unnecessary until the device
writes an entry with an index specified by used_event into the used ring (equivalently, until idx in the
used ring will reach the value used_event + 1).

The driver MUST handle spurious notifications from the device.

2.7.7.2 Device Requirements: Used Buffer Notification Suppression
If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
» The device MUST ignore the used_event value.
« After the device writes a descriptor index into the used ring:
— If flags is 1, the device SHOULD NOT send a notification.
— If flags is 0, the device MUST send a natification.
Otherwise, if the VIRTIO_F_EVENT _IDX feature bit is negotiated:
» The device MUST ignore the lower bit of flags.
+ After the device writes a descriptor index into the used ring:

— If the idx field in the used ring (which determined where that descriptor index was placed) was
equal to used_event, the device MUST send a natification.

— Otherwise the device SHOULD NOT send a notification.
Note: For example, if used_event is 0, then a device using

VIRTIO_F_EVENT _IDX would send a used buffer notification to the driver after the first buffer is used
(and again after the 65536th buffer, etc).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 30 of 284

2.7.8 The Virtqueue Used Ring

The used ring has the following layout structure:

struct virtqg used {
#define VIRTQ USED F NO NOTIFY 1
lel6 flags;
lel6 idx;
struct virtg used elem ring[/* Queue Size */];
lel6 avail event; /* Only if VIRTIO F EVENT IDX */
bi

/* le32 is used here for ids for padding reasons. */
struct virtq used elem ({
/* Index of start of used descriptor chain. */
le32 1id;

* Mo+l] £h £ +h & ot had ek &
ISR as an g S5t =3 €
/*

* The number of bytes written into the device writable portion of
* the buffer described by the descriptor chain.
=/

1le32 len;

e £ *
tWELrteeh—toy

bi

The used ring is where the device returns buffers once it is done with them: it is only written to by the device,
and read by the driver.

Each entry in the ring is a pair: id indicates the head entry of the descriptor chain describing the buffer (this
matches an entry placed in the available ring by the guest earlier), and /en the total of bytes written into the
buffer.

Note: /en is particularly useful for drivers using untrusted buffers: if a driver does not know exactly how
much has been written by the device, the driver would have to zero the buffer in advance to ensure
no data leakage occurs.

For example, a network driver may hand a received buffer directly to an unprivileged userspace
application. If the network device has not overwritten the bytes which were in that buffer, this could
leak the contents of freed memory from other processes to the application.

idx field indicates where the device would put the next descriptor entry in the ring (modulo the queue size).
This starts at 0, and increases.

Note: The legacy [Virtio PCI Draft] referred to these structures as vring_used and vring_used_elem, and
the constant as VRING_USED_F_NO_NOTIFY, but the layout and value were identical.
2.7.8.1 Legacy Interface: The Virtqueue Used Ring

Historically, many drivers ignored the len value, as a result, many devices set len incorrectly. Thus, when
using the legacy interface, it is generally a good idea to ignore the len value in used ring entries if possible.
Specific known issues are listed per device type.

2.7.8.2 Device Requirements: The Virtqueue Used Ring

The device MUST set len prior to updating the used idx.

The device MUST write at least len bytes to descriptor, beginning at the first device-writable buffer, prior to
updating the used idx.

The device MAY write more than len bytes to descriptor.

Note: There are potential error cases where a device might not know what parts of the buffers have been
written. This is why len is permitted to be an underestimate: that’s preferable to the driver believing
that uninitialized memory has been overwritten when it has not.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 284

2.7.8.3 Driver Requirements: The Virtqueue Used Ring

The driver MUST NOT make assumptions about data in device-writable buffers beyond the first len bytes,
and SHOULD ignore this data.

2.7.9 In-order use of descriptors

Some devices always use descriptors in the same order in which they have been made available. These
devices can offer the VIRTIO_F_IN_ORDER feature. If negotiated, this knowledge allows devices to notify
the use of a batch of buffers to the driver by only writing out a single used ring entry with the id corresponding
to the head entry of the descriptor chain describing the last buffer in the batch.

The device then skips forward in the ring according to the size of the batch. Accordingly, it increments the
used idx by the size of the batch.

The driver needs to look up the used id and calculate the batch size to be able to advance to where the next
used ring entry will be written by the device.

This will result in the used ring entry at an offset matching the first available ring entry in the batch, the used
ring entry for the next batch at an offset matching the first available ring entry in the next batch, etc.

The skipped buffers (for which no used ring entry was written) are assumed to have been used (read or
written) by the device completely.

2.7.10 Available Buffer Notification Suppression

The device can suppress available buffer notifications in a manner analogous to the way drivers can sup-
press used buffer notifications as detailed in section 2.7.7. The device manipulates flags or avail _event in
the used ring the same way the driver manipulates flags or used _event in the available ring.

2.7.10.1 Driver Requirements: Available Buffer Notification Suppression
The driver MUST initialize flags in the used ring to 0 when allocating the used ring.
If the VIRTIO_F_EVENT _IDX feature bit is not negotiated:
» The driver MUST ignore the avail_event value.
+ After the driver writes a descriptor index into the available ring:
— If flags is 1, the driver SHOULD NOT send a notification.
— If flags is 0, the driver MUST send a notification.
Otherwise, if the VIRTIO_F_EVENT _IDX feature bit is negotiated:
» The driver MUST ignore the lower bit of flags.
« After the driver writes a descriptor index into the available ring:

— If the idx field in the available ring (which determined where that descriptor index was placed)
was equal to avail_event, the driver MUST send a notification.

— Otherwise the driver SHOULD NOT send a naotification.

2.7.10.2 Device Requirements: Available Buffer Notification Suppression
If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:

» The device MUST set flags to 0 or 1.

» The device MAY set flags to 1 to advise the driver that notifications are not needed.
Otherwise, if the VIRTIO_F_EVENT _IDX feature bit is negotiated:

* The device MUST set flags to 0.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 32 of 284

» The device MAY use avail_event to advise the driver that notifications are unnecessary until the driver
writes entry with an index specified by avail_event into the available ring (equivalently, until idx in the
available ring will reach the value avail_event + 1).

The device MUST handle spurious notifications from the driver.

2.7.11 Helpers for Operating Virtqueues

The Linux Kernel Source code contains the definitions above and helper routines in a more usable form,
in include/uapi/linux/virtio_ring.h. This was explicitly licensed by IBM and Red Hat under the (3-clause)
BSD license so that it can be freely used by all other projects, and is reproduced (with slight variation) in
A virtio_queue.h.

2.7.12 Virtqueue Operation

There are two parts to virtqueue operation: supplying new available buffers to the device, and processing
used buffers from the device.

Note: As an example, the simplest virtio network device has two virtqueues: the transmit virtqueue and the
receive virtqueue. The driver adds outgoing (device-readable) packets to the transmit virtqueue, and
then frees them after they are used. Similarly, incoming (device-writable) buffers are added to the
receive virtqueue, and processed after they are used.

What follows is the requirements of each of these two parts when using the split virtqueue format in more
detail.

2.7.13 Supplying Buffers to The Device
The driver offers buffers to one of the device’s virtqueues as follows:

1. The driver places the buffer into free descriptor(s) in the descriptor table, chaining as necessary (see
2.7.5 The Virtqueue Descriptor Table).

2. The driver places the index of the head of the descriptor chain into the next ring entry of the available
ring.

3. Steps 1 and 2 MAY be performed repeatedly if batching is possible.

4. The driver performs a suitable memory barrier to ensure the device sees the updated descriptor table
and available ring before the next step.

5. The available idx is increased by the number of descriptor chain heads added to the available ring.

6. The driver performs a suitable memory barrier to ensure that it updates the idx field before checking
for notification suppression.

7. The driver sends an available buffer notification to the device if such notifications are not suppressed.

Note that the above code does not take precautions against the available ring buffer wrapping around: this
is not possible since the ring buffer is the same size as the descriptor table, so step (1) will prevent such a
condition.

In addition, the maximum queue size is 32768 (the highest power of 2 which fits in 16 bits), so the 16-bit idx
value can always distinguish between a full and empty buffer.

What follows is the requirements of each stage in more detail.

2.7.13.1 Placing Buffers Into The Descriptor Table

A buffer consists of zero or more device-readable physically-contiguous elements followed by zero or more
physically-contiguous device-writable elements (each has at least one element). This algorithm maps it into
the descriptor table to form a descriptor chain:

for each buffer element, b:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 33 of 284

N

. Get the next free descriptor table entry, d

Set d.addr to the physical address of the start of b

Set d.len to the length of b.

If b is device-writable, set d.flags to VIRTQ_DESC_F_WRITE, otherwise O.

o DN

If there is a buffer element after this:
(a) Set d.next to the index of the next free descriptor element.
(b) Setthe VIRTQ_DESC_F_NEXT bit in d.flags.

In practice, d.next is usually used to chain free descriptors, and a separate count kept to check there are
enough free descriptors before beginning the mappings.

2.7.13.2 Updating The Available Ring

The descriptor chain head is the first d in the algorithm above, ie. the index of the descriptor table entry re-
ferring to the first part of the buffer. A naive driver implementation MAY do the following (with the appropriate
conversion to-and-from little-endian assumed):

‘avail—>ring[avail—>idx

However, in general the driver MAY add many descriptor chains before it updates idx (at which point they
become visible to the device), so it is common to keep a counter of how many the driver has added:

‘avail—>ring[(avail—>idx + added++)

2.7.13.3 Updating idx

idx always increments, and wraps naturally at 65536:

avail->idx += added;

Once available idx is updated by the driver, this exposes the descriptor and its contents. The device MAY
access the descriptor chains the driver created and the memory they refer to immediately.

2.7.13.3.1 Driver Requirements: Updating idx

The driver MUST perform a suitable memory barrier before the idx update, to ensure the device sees the
most up-to-date copy.
2.7.13.4 Notifying The Device

The actual method of device notification is bus-specific, but generally it can be expensive. So the device
MAY suppress such notifications if it doesn’t need them, as detailed in section 2.7.10.

The driver has to be careful to expose the new idx value before checking if notifications are suppressed.

2.7.13.41 Driver Requirements: Notifying The Device

The driver MUST perform a suitable memory barrier before reading flags or avail_event, to avoid missing a
notification.

2.7.14 Receiving Used Buffers From The Device

Once the device has used buffers referred to by a descriptor (read from or written to them, or parts of both,
depending on the nature of the virtqueue and the device), it sends a used buffer notification to the driver as
detailed in section 2.7.7.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 34 of 284

Note: For optimal performance, a driver MAY disable used buffer notifications while processing the used
ring, but beware the problem of missing notifications between emptying the ring and reenabling no-
tifications. This is usually handled by re-checking for more used buffers after notifications are re-
enabled:

virtg disable used buffer notifications(vq);

for (;7) |
if (vg->last seen used != lel6 to cpu(virtg->used.idx)) {
virtq enable used buffer notifications(vq);
mb () ;

if (vg->last_seen used != lel6 to cpu(virtg->used.idx))
break;

virtg disable used buffer notifications(vq);

}

struct virtg used elem *e = virtqg.used->ring[vg->last seen usedprocess buffer (e);
vg->last seen used++;

2.8 Packed Virtqueues

Packed virtqueues is an alternative compact virtqueue layout using read-write memory, that is memory that
is both read and written by both host and guest.

Use of packed virtqueues is negotiated by the VIRTIO_F_RING_PACKED feature bit.

Packed virtqueues support up to 2'° entries each.

With current transports, virtqueues are located in guest memory allocated by the driver. Each packed
virtqueue consists of three parts:

» Descriptor Ring - occupies the Descriptor Area
* Driver Event Suppression - occupies the Driver Area
» Device Event Suppression - occupies the Device Area

Where the Descriptor Ring in turn consists of descriptors, and where each descriptor can contain the fol-
lowing parts:

+ Buffer ID

* Element Address
» Element Length
» Flags

A buffer consists of zero or more device-readable physically-contiguous elements followed by zero or more
physically-contiguous device-writable elements (each buffer has at least one element).

When the driver wants to send such a buffer to the device, it writes at least one available descriptor describing
elements of the buffer into the Descriptor Ring. The descriptor(s) are associated with a buffer by means of
a Buffer ID stored within the descriptor.

The driver then notifies the device. When the device has finished processing the buffer, it writes a used
device descriptor including the Buffer ID into the Descriptor Ring (overwriting a driver descriptor previously
made available), and sends a used event notification.

The Descriptor Ring is used in a circular manner: the driver writes descriptors into the ring in order. After
reaching the end of the ring, the next descriptor is placed at the head of the ring. Once the ring is full of driver
descriptors, the driver stops sending new requests and waits for the device to start processing descriptors
and to write out some used descriptors before making new driver descriptors available.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 35 of 284

Similarly, the device reads descriptors from the ring in order and detects that a driver descriptor has been
made available. As processing of descriptors is completed, used descriptors are written by the device back
into the ring.

Note: after reading driver descriptors and starting their processing in order, the device might complete
their processing out of order. Used device descriptors are written in the order in which their processing is
complete.

The Device Event Suppression data structure is write-only by the device. It includes information for reducing
the number of device events-, i.e., sending fewer available buffer notifications to the device.

The Driver Event Suppression data structure is read-only by the device. It includes information for reducing
the number of driver events-, i.e., sending fewer used buffer notifications to the driver.

2.8.1 Driver and Device Ring Wrap Counters

Each of the driver and the device are expected to maintain, internally, a single-bit ring wrap counter initialized
to 1.

The counter maintained by the driver is called the Driver Ring Wrap Counter. The driver changes the value
of this counter each time it makes available the last descriptor in the ring (after making the last descriptor
available).

The counter maintained by the device is called the Device Ring Wrap Counter. The device changes the
value of this counter each time it uses the last descriptor in the ring (after marking the last descriptor used).

It is easy to see that the Driver Ring Wrap Counter in the driver matches the Device Ring Wrap Counter in
the device when both are processing the same descriptor, or when all available descriptors have been used.

To mark a descriptor as available and used, both the driver and the device use the following two flags:

#define VIRTQ DESC_F_AVAIL (1 << 7)
#define VIRTQ DESC_F USED (1 << 15)

To mark a descriptor as available, the driver sets the VIRTQ_DESC_F_AVAIL bit in Flags to match the
internal Driver Ring Wrap Counter. It also sets the VIRTQ_DESC_F_USED bit to match the inverse value
(i.e. to not match the internal Driver Ring Wrap Counter).

To mark a descriptor as used, the device sets the VIRTQ_DESC_F_USED bit in Flags to match the internal
Device Ring Wrap Counter. It also sets the VIRTQ_DESC_F_AVAIL bit to match the same value.

Thus VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED bits are different for an available descriptor and
equal for a used descriptor.

Note that this observation is mostly useful for sanity-checking as these are necessary but not sufficient
conditions - for example, all descriptors are zero-initialized. To detect used and available descriptors it is
possible for drivers and devices to keep track of the last observed value of VIRTQ_DESC_F_USED/VIRTQ_-
DESC_F_AVAIL. Other techniques to detect VIRTQ_DESC_F_AVAIL/VIRTQ_DESC_F_USED bit changes
might also be possible.

2.8.2 Polling of available and used descriptors

Writes of device and driver descriptors can generally be reordered, but each side (driver and device) are only
required to poll (or test) a single location in memory: the next device descriptor after the one they processed
previously, in circular order.

Sometimes the device needs to only write out a single used descriptor after processing a batch of multiple
available descriptors. As described in more detail below, this can happen when using descriptor chaining or
with in-order use of descriptors. In this case, the device writes out a used descriptor with the buffer id of the
last descriptor in the group. After processing the used descriptor, both device and driver then skip forward
in the ring the number of the remaining descriptors in the group until processing (reading for the driver and
writing for the device) the next used descriptor.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 36 of 284

2.8.3 Write Flag

In an available descriptor, the VIRTQ_DESC_F_WRITE bit within Flags is used to mark a descriptor as
corresponding to a write-only or read-only element of a buffer.

/* This marks a descriptor as device write-only (otherwise device read-only). */
#define VIRTQ_DESC_F_WRITE 2

In a used descriptor, this bit is used to specify whether any data has been written by the device into any
parts of the buffer.

2.8.4 Element Address and Length

In an available descriptor, Element Address corresponds to the physical address of the buffer element. The
length of the element assumed to be physically contiguous is stored in Element Length.

In a used descriptor, Element Address is unused. Element Length specifies the length of the buffer that has
been initialized (written to) by the device.

Element Length is reserved for used descriptors without the VIRTQ_DESC_F_WRITE flag, and is ignored
by drivers.

2.8.5 Scatter-Gather Support

Some drivers need an ability to supply a list of multiple buffer elements (also known as a scatter/gather list)
with a request. Two features support this: descriptor chaining and indirect descriptors.

If neither feature is in use by the driver, each buffer is physically-contiguous, either read-only or write-only
and is described completely by a single descriptor.

While unusual (most implementations either create all lists solely using non-indirect descriptors, or always
use a single indirect element), if both features have been negotiated, mixing indirect and non-indirect de-
scriptors in a ring is valid, as long as each list only contains descriptors of a given type.

Scatter/gather lists only apply to available descriptors. A single used descriptor corresponds to the whole
list.

The device limits the number of descriptors in a list through a transport-specific and/or device-specific value.
If not limited, the maximum number of descriptors in a list is the virt queue size.

2.8.6 Next Flag: Descriptor Chaining

The packed ring format allows the driver to supply a scatter/gather list to the device by using multiple de-
scriptors, and setting the VIRTQ_DESC_F_NEXT bit in Flags for all but the last available descriptor.

/* This marks a buffer as continuing. */
#define VIRTQ DESC F NEXT 1

Buffer ID is included in the last descriptor in the list.

The driver always makes the first descriptor in the list available after the rest of the list has been written out
into the ring. This guarantees that the device will never observe a partial scatter/gather list in the ring.

Note: all flags, including VIRTQ_DESC_F_AVAIL, VIRTQ_DESC_F_USED, VIRTQ_DESC_F_WRITE must
be set/cleared correctly in all descriptors in the list, not just the first one.

The device only writes out a single used descriptor for the whole list. It then skips forward according to the
number of descriptors in the list. The driver needs to keep track of the size of the list corresponding to each
buffer ID, to be able to skip to where the next used descriptor is written by the device.

For example, if descriptors are used in the same order in which they are made available, this will result in
the used descriptor overwriting the first available descriptor in the list, the used descriptor for the next list
overwriting the first available descriptor in the next list, etc.

VIRTQ_DESC_F_NEXT is reserved in used descriptors, and should be ignored by drivers.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 37 of 284

2.8.7 Indirect Flag: Scatter-Gather Support

Some devices benefit by concurrently dispatching a large number of large requests. The VIRTIO_F_INDI-
RECT_DESC feature allows this. To increase ring capacity the driver can store a (read-only by the device)
table of indirect descriptors anywhere in memory, and insert a descriptor in the main virtqueue (with Flags
bit VIRTQ_DESC_F_INDIRECT on) that refers to a buffer element containing this indirect descriptor table;
addr and len refer to the indirect table address and length in bytes, respectively.

/* This means the element contains a table of descriptors. */
#define VIRTQ DESC_F INDIRECT 4

The indirect table layout structure looks like this (/en is the Buffer Length of the descriptor that refers to this
table, which is a variable):

struct pvirtqg indirect descriptor table {
/* The actual descriptor structures (struct pvirtg desc each) */
struct pvirtg desc desc[len / sizeof (struct pvirtqg desc)];

The first descriptor is located at the start of the indirect descriptor table, additional indirect descriptors come
immediately afterwards. The VIRTQ_DESC_F_WRITE flags bit is the only valid flag for descriptors in the
indirect table. Others are reserved and are ignored by the device. Buffer ID is also reserved and is ignored
by the device.

In descriptors with VIRTQ_DESC_F_INDIRECT set VIRTQ_DESC_F_WRITE is reserved and is ignored by
the device.

2.8.8 In-order use of descriptors

Some devices always use descriptors in the same order in which they have been made available. These
devices can offer the VIRTIO_F_IN_ORDER feature. If negotiated, this knowledge allows devices to notify
the use of a batch of buffers to the driver by only writing out a single used descriptor with the Buffer ID
corresponding to the last descriptor in the batch.

The device then skips forward in the ring according to the size of the batch. The driver needs to look up the
used Buffer ID and calculate the batch size to be able to advance to where the next used descriptor will be
written by the device.

This will result in the used descriptor overwriting the first available descriptor in the batch, the used descriptor
for the next batch overwriting the first available descriptor in the next batch, etc.

The skipped buffers (for which no used descriptor was written) are assumed to have been used (read or
written) by the device completely.

2.8.9 Multi-buffer requests

Some devices combine multiple buffers as part of processing of a single request. These devices always
mark the descriptor corresponding to the first buffer in the request used after the rest of the descriptors
(corresponding to rest of the buffers) in the request - which follow the first descriptor in ring order - has been
marked used and written out into the ring. This guarantees that the driver will never observe a partial request
in the ring.

2.8.10 Driver and Device Event Suppression

In many systems used and available buffer notifications involve significant overhead. To mitigate this over-
head, each virtqueue includes two identical structures used for controlling notifications between the device
and the driver.

The Driver Event Suppression structure is read-only by the device and controls the used buffer notifications
sent by the device to the driver.

The Device Event Suppression structure is read-only by the driver and controls the available buffer notifica-
tions sent by the driver to the device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 38 of 284

Each of these Event Suppression structures includes the following fields:

Descriptor Ring Change Event Flags Takes values:

/* Enable events */
#define RING_EVENT FLAGS_ENABLE 0x0
/* Disable events */
#define RING EVENT FLAGS DISABLE 0x1
/*
* Enable events for a specific descriptor
* (as specified by Descriptor Ring Change Event Offset/Wrap Counter).
—*—Onty—vatid 3+ VIRTIO—F RING EVENT IbX—has—beenr—negotiated—
* Only valid if VIRTIO F EVENT IDX has been negotiated.
=/
#define RING EVENT FLAGS DESC 0x2
/* The value 0x3 is reserved */

Descriptor Ring Change Event Offset If Event Flags set to descriptor specific event: offset within the
ring (in units of descriptor size). Event will only trigger when this descriptor is made available/used
respectively.

Descriptor Ring Change Event Wrap Counter If Event Flags set to descriptor specific event: offset within
the ring (in units of descriptor size). Event will only trigger when Ring Wrap Counter matches this value
and a descriptor is made available/used respectively.

After writing out some descriptors, both the device and the driver are expected to consult the relevant struc-
ture to find out whether a used respectively an available buffer notification should be sent.

2.8.10.1 Structure Size and Alignment

Each part of the virtqueue is physically-contiguous in guest memory, and has different alignment require-
ments.

The memory alignment and size requirements, in bytes, of each part of the virtqueue are summarized in the
following table:

Virtqueue Part Alignment ‘ Size ‘
Descriptor Ring 16 16x(Queue Size)
Device Event Suppression | 4 4

Driver Event Suppression | 4 4

The Alignment column gives the minimum alignment for each part of the virtqueue.
The Size column gives the total number of bytes for each part of the virtqueue.

Queue Size corresponds to the maximum number of descriptors in the virtqueue®. The Queue Size value
does not have to be a power of 2.

2.8.11 Driver Requirements: Virtqueues

The driver MUST ensure that the physical address of the first byte of each virtqueue part is a multiple of the
specified alignment value in the above table.

2.8.12 Device Requirements: Virtqueues

The device MUST start processing driver descriptors in the order in which they appear in the ring. The
device MUST start writing device descriptors into the ring in the order in which they complete. The device
MAY reorder descriptor writes once they are started.

3For example, if Queue Size is 4 then at most 4 buffers can be queued at any given time.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 39 of 284

2.8.13 The Virtqueue Descriptor Format

The available descriptor refers to the buffers the driver is sending to the device. addr is a physical address,
and the descriptor is identified with a buffer using the id field.

struct pvirtqg desc {
/* Buffer Address. */
le64 addr;
/* Buffer Length. */
le32 len;
/* Buffer ID. */
lele id;
/* The flags depending on descriptor type. */
lel6 flags;

The descriptor ring is zero-initialized.

2.8.14 Event Suppression Structure Format

The following structure is used to reduce the number of notifications sent between driver and device.

struct pvirtg event suppress {

lel6 {
desc_event off : 15; /* Descriptor Ring Change Event Offset */
desc_event wrap : 1; /* Descriptor Ring Change Event Wrap Counter */

} desc; /* If desc event flags set to RING EVENT FLAGS DESC */

lel6 {
desc_event flags : 2, /* Descriptor Ring Change Event Flags */
reserved : 14; /* Reserved, set to 0 */

} flags;

2.8.15 Device Requirements: The Virtqueue Descriptor Table

A device MUST NOT write to a device-readable buffer, and a device SHOULD NOT read a device-writable
buffer. A device MUST NOT use a descriptor unless it observes the VIRTQ_DESC_F_AVAIL bit in its flags
being changed (e.g. as compared to the initial zero value). A device MUST NOT change a descriptor after
changing it's the VIRTQ_DESC_F_USED bit in its flags.

2.8.16 Driver Requirements: The Virtqueue Descriptor Table

A driver MUST NOT change a descriptor unless it observes the VIRTQ_DESC_F_USED bit in its flags being
changed. A driver MUST NOT change a descriptor after changing the VIRTQ_DESC_F_AVAIL bitinits flags.
When notifying the device, driver MUST set next_off and next_wrap to match the next descriptor not yet
made available to the device. A driver MAY send multiple available buffer notifications without making any
new descriptors available to the device.

2.8.17 Driver Requirements: Scatter-Gather Support

A driver MUST NOT create a descriptor list longer than allowed by the device.
A driver MUST NOT create a descriptor list longer than the Queue Size.

This implies that loops in the descriptor list are forbidden!

The driver MUST place any device-writable descriptor elements after any device-readable descriptor ele-
ments.

A driver MUST NOT depend on the device to use more descriptors to be able to write out all descriptors in
a list. A driver MUST make sure there’s enough space in the ring for the whole list before making the first
descriptor in the list available to the device.

A driver MUST NOT make the first descriptor in the list available before all subsequent descriptors compris-
ing the list are made available.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 40 of 284

2.8.18 Device Requirements: Scatter-Gather Support

The device MUST use descriptors in a list chained by the VIRTQ_DESC_F_NEXT flag in the same order
that they were made available by the driver.

The device MAY limit the number of buffers it will allow in a list.

2.8.19 Driver Requirements: Indirect Descriptors

The driver MUST NOT set the BEseVIRTQ_DESC_F_INDIRECT flag unless the VIRTIO_F_INDIRECT _-
DESC feature was negotiated. The driver MUST NOT set any flags except DESC_F_WRITE within an
indirect descriptor.

A driver MUST NOT create a descriptor chain longer than allowed by the device.

A driver MUST NOT write direct descriptors with BEscVIRTQ_DESC_F_INDIRECT set in a scatter-gather
list linked by VIRTQ_DESC_F_NEXT. flags.

2.8.20 Virtqueue Operation

There are two parts to virtqueue operation: supplying new available buffers to the device, and processing
used buffers from the device.

What follows is the requirements of each of these two parts when using the packed virtqueue format in more
detail.

2.8.21 Supplying Buffers to The Device
The driver offers buffers to one of the device’s virtqueues as follows:
1. The driver places the buffer into free descriptor(s) in the Descriptor Ring.

2. The driver performs a suitable memory barrier to ensure that it updates the descriptor(s) before check-
ing for notification suppression.

3. If notifications are not suppressed, the driver notifies the device of the new available buffers.

What follows are the requirements of each stage in more detail.

2.8.21.1 Placing Available Buffers Into The Descriptor Ring
For each buffer element, b:
1. Get the next descriptor table entry, d
Get the next free buffer id value
Set d.addr to the physical address of the start of b
Set d.len to the length of b.
Set d.id to the buffer id

o g & 0w DN

Calculate the flags as follows:
(a) If b is device-writable, set the VIRTQ_DESC_F_WRITE bit to 1, otherwise 0
(b) Setthe VIRTQ_DESC_F_AVAIL bit to the current value of the Driver Ring Wrap Counter
(c) Setthe VIRTQ_DESC_F_USED bit to inverse value

7. Perform a memory barrier to ensure that the descriptor has been initialized

8. Set d.flags to the calculated flags value

9. If d is the last descriptor in the ring, toggle the Driver Ring Wrap Counter

10. Otherwise, increment d to point at the next descriptor

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 41 of 284

This makes a single descriptor buffer available. However, in general the driver MAY make use of a batch
of descriptors as part of a single request. In that case, it defers updating the descriptor flags for the first
descriptor (and the previous memory barrier) until after the rest of the descriptors have been initialized.

Once the descriptor flags field is updated by the driver, this exposes the descriptor and its contents. The
device MAY access the descriptor and any following descriptors the driver created and the memory they
refer to immediately.

2.8.21.1.1 Driver Requirements: Updating flags

The driver MUST perform a suitable memory barrier before the flags update, to ensure the device sees the
most up-to-date copy.
2.8.21.2 Sending Available Buffer Notifications

The actual method of device notification is bus-specific, but generally it can be expensive. So the device
MAY suppress such notifications if it doesn’t need them, using the Event Suppression structure comprising
the Device Area as detailed in section 2.8.14.

The driver has to be careful to expose the new flags value before checking if notifications are suppressed.

2.8.21.3 Implementation Example

Below is a driver code example. It does not attempt to reduce the number of available buffer notifications,
neither does it support the VIRTIO_F-Rine_ EVENT _IDX feature.

/* Note: vg->avail wrap count is initialized to 1 */
/* Note: vg->sgs is an array same size as the ring */

id = alloc_id(vq);

first = vg->next avail;

sgs = 0;
for (each buffer element b) {
sgs++;
vg->ids[vg->next avail] = -1;

vg->desc[vg->next avail].address = get addr(b);
vg->desc[vg->next _avail].len = get len(b);

avail = vg->avail wrap count ? VIRTQ DESC F AVAIL : 0;

used = !vg->avail wrap_count ? VIRTQ DESC F USED : 0;
f = get flags(b) | avail | used;
if (b is not the last buffer element) {

f |= VIRTQ DESC_F NEXT;

}

/* Don't mark the 1lst descriptor available until all of them are ready. */
if (vg->next avail == first) {

flags = £;
} else {

vg->desc[vg->next avail].flags = f;

}
last = vg->next avail;
vg->next_avail++;

if (vg->next avail >= vg->size) {
vg->next avail = 0;

1 £ Ao .
Sf—>avatT—wWraPp trE e

vg->avail wrap count *= 1;
}

}

vg->sgs[id] = sgs;

/* ID included in the last descriptor in the list */
vg->descllast].id = id;

write memory barrier();

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 42 of 284

vg->desc[first].flags = flags;
memory barrier();

if (vg->device event.flags != RING EVENT FLAGS DISABLE) {
notify device (vq);

2.8.21.3.1 Driver Requirements: Sending Available Buffer Notifications

The driver MUST perform a suitable memory barrier before reading the Event Suppression structure occu-
pying the Device Area. Failing to do so could result in mandatory available buffer notifications not being

sent.

2.8.22 Receiving Used Buffers From The Device

Once the device has used buffers referred to by a descriptor (read from or written to them, or parts of both,
depending on the nature of the virtqueue and the device), it sends a used buffer notification to the driver as

detailed in section 2.8.14.

Note: For optimal performance, a driver MAY disable used buffer notifications while processing the used
buffers, but beware the problem of missing notifications between emptying the ring and reenabling
used buffer notifications. This is usually handled by re-checking for more used buffers after notifica-

tions are re-enabled:

/* Note: vg->used wrap count is initialized to 1 */
vg->driver event.flags = RING EVENT FLAGS DISABLE;

for (;:) {
struct pvirtg desc *d = vg->desc[vg->next used];

/*
* Check that

* 1. Descriptor has been made available. This check is necessary

L3 if the driver is making new descriptors available in parallel

& with this processing of used descriptors (e.g. from another thread).
& Note: there are many other ways to check this, e.g.

* track the number of outstanding available descriptors or buffers

* and check that it's not 0.

* 2. Descriptor has been used by the device.

=/

flags = d->flags;

bool avail = flags & VIRTQ DESC F AVAIL;

bool used = flags & VIRTQ DESC F USED;

if (avail != vg->used wrap_count || used != vg->used wrap_count) {
vg->driver event.flags = RING EVENT FLAGS ENABLE;
memory barrier();

/*
* Re-test in case the driver made more descriptors available in
* parallel with the used descriptor processing (e.g. from another
* thread) and/or the device used more descriptors before the driver
* enabled events.
=/

flags = d->flags;

bool avail = flags & VIRTQ DESC F AVAIL;

bool used = flags & VIRTQ DESC F USED;

if (avail != vg->used wrap count || used != vg->used wrap count) {

break;

}

vg->driver event.flags = RING EVENT FLAGS DISABLE;
}

read memory barrier();
/* skip descriptors until the next buffer */

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 43 of 284

id = d->id;

assert (id < vg->size);

sgs = vg->sgs[id];

vg->next used += sgs;

if (vg->next used >= vg->size) {
vg->next used -= vg->size;

& £ \A_ 1
SF—>uSea—wWrap trE e

e ¥gTZUSEd Wrap count = 1;
)

free id(vg, id);

process_buffer (d);

2.8.23 priverneotifications
2.9 Driver Notifications

The driver is sometimes required to send an available buffer notification to the device.

When VIRTIO_F_NOTIFICATION_DATA has not been negotiated, this notification involves sending the
virtqueue number to the device (method depending on the transport).

However, some devices benefit from the ability to find out the amount of available data in the queue without
accessing the virtqueue in memory: for efficiency or as a debugging aid.

To help with these optimizations, when VIRTIO_F_NOTIFICATION_DATA has been negotiated, driver noti-
fications to the device include the following information:

vgn VQ number to be notified.

next_off Offset within the ring where the next available ring entry will be written. When VIRTIO_F_RING_-
PACKED has not been negotiated this refers to the 15 least significant bits of the available index.
When VIRTIO_F_RING_PACKED has been negotiated this refers to the offset (in units of descriptor
entries) within the descriptor ring where the next available descriptor will be written.

next_wrap Wrap Counter. With VIRTIO_F_RING_PACKED this is the wrap counter referring to the next
available descriptor. Without VIRTIO_F_RING_PACKED this is the most significant bit (bit 15) of the
available index.

Note that the driver can send multiple notifications even without making any more buffers available. When
VIRTIO_F_NOTIFICATION_DATA has been negotiated, these notifications would then have identical next_-
off and next_wrap values.

2.10 Shared Memory Regions

Shared memory regions are an additional facility available to devices that need a region of memory that's contin-
uously shared between the device and the driver, rather than passed between them in the way virtqueue elements
are.

Example uses include shared caches and version pools for versioned data structures.

The memory region is allocated by the device and presented to the driver. Where the device is implemented in
software on a host, this arrangement allows the memory region to be allocated by a library on the host, which the
device may not have full control over.

A device may have multiple shared memory regions associated with it. Each region has a shmid to identify it, the
meaning of which is device-specific.

Enumeration and location of shared memory regions is performed in a transport-specific way.

Memory consistency rules vary depending on the region and the device and they will be specified as required by
each device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 44 of 284

2.10.1 Addressing within regions

References into shared memory regions are represented as offsets from the beginning of the region instead of
absolute memory addresses. Offsets are used both for references between structures stored within shared memory
and for requests placed in virtqueues that refer to shared memory. The shmid may be explicit or may be inferred
from the context of the reference.

2.10.2 Device Requirements: Shared Memory Regions

Shared memory regions MUST NOT expose shared memory regions which are used to control the operation of
the device, nor to stream data.

2.11 Exporting Objects

When an object created by one virtio device needs to be shared with a seperate virtio device, the first device can
export the object by generating a UUID which can then be passed to the second device to identify the object.

What constitutes an object, how to export objects, and how to import objects are defined by the individual device
types. It is RECOMMENDED that devices generate version 4 UUIDs as specified by [RFC4122].

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 45 of 284

3 General Initialization And Device Operation

We start with an overview of device initialization, then expand on the details of the device and how each
step is preformed. This section is best read along with the bus-specific section which describes how to
communicate with the specific device.

3.1 Device Initialization

3.1.1 Driver Requirements: Device Initialization
The driver MUST follow this sequence to initialize a device:

1. Reset the device.

2. Set the ACKNOWLEDGE status bit: the guest OS has noticed the device.
3. Set the DRIVER status bit: the guest OS knows how to drive the device.
4

. Read device feature bits, and write the subset of feature bits understood by the OS and driver to the
device. During this step the driver MAY read (but MUST NOT write) the device-specific configuration
fields to check that it can support the device before accepting it.

Set the FEATURES_OK status bit. The driver MUST NOT accept new feature bits after this step.

6. Re-read device status to ensure the FEATURES_OK bit is still set: otherwise, the device does not
support our subset of features and the device is unusable.

o

7. Perform device-specific setup, including discovery of virtqueues for the device, optional per-bus setup,
reading and possibly writing the device’s virtio configuration space, and population of virtqueues.

8. Set the DRIVER_OK status bit. At this point the device is “live”.

If any of these steps go irrecoverably wrong, the driver SHOULD set the FAILED status bit to indicate that it
has given up on the device (it can reset the device later to restart if desired). The driver MUST NOT continue
initialization in that case.

The driver MUST NOT send any buffer available notifications to the device before setting DRIVER _OK.

3.1.2 Legacy Interface: Device Initialization

Legacy devices did not support the FEATURES_OK status bit, and thus did not have a graceful way for
the device to indicate unsupported feature combinations. They also did not provide a clear mechanism to
end feature negotiation, which meant that devices finalized features on first-use, and no features could be
introduced which radically changed the initial operation of the device.

Legacy driver implementations often used the device before setting the DRIVER_OK bit, and sometimes
even before writing the feature bits to the device.

The result was the steps 5 and 6 were omitted, and steps 4, 7 and 8 were conflated.
Therefore, when using the legacy interface:

» The transitional driver MUST execute the initialization sequence as described in 3.1 but omitting the
steps 5 and 6.

» The transitional device MUST support the driver writing device configuration fields before the step 4.

» The transitional device MUST support the driver using the device before the step 8.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 46 of 284

3.2 Device Operation
When operating the device, each field in the device configuration space can be changed by either the driver
or the device.

Whenever such a configuration change is triggered by the device, driver is notified. This makes it possible
for drivers to cache device configuration, avoiding expensive configuration reads unless notified.

3.2.1 Notification of Device Configuration Changes

For devices where the device-specific configuration information can be changed, a configuration change
notification is sent when a device-specific configuration change occurs.

In addition, this notification is triggered by the device setting DEVICE_NEEDS RESET (see 2.1.2).

3.3 Device Cleanup

Once the driver has set the DRIVER_OK status bit, all the configured virtqueue of the device are considered
live. None of the virtqueues of a device are live once the device has been reset.

3.3.1 Driver Requirements: Device Cleanup

A driver MUST NOT alter virtqueue entries for exposed buffers—, i.e., buffers which have been made avail-
able to the device (and not been used by the device) of a live virtqueue.

Thus a driver MUST ensure a virtqueue isn'’t live (by device reset) before removing exposed buffers.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 47 of 284

4 Virtio Transport Options

Virtio can use various different buses, thus the standard is split into virtio general and bus-specific sections.

4.1 Virtio Over PCI Bus

Virtio devices are commonly implemented as PCI devices.

A Virtio device can be implemented as any kind of PCI device: a Conventional PCI device or a PCI Express
device. To assure designs meet the latest level requirements, see the PCI-SIG home page at http://www.
pcisig.com for any approved changes.

4.1.1 Device Requirements: Virtio Over PCl Bus

A Virtio device using Virtio Over PCI Bus MUST expose to guest an interface that meets the specification
requirements of the appropriate PCI specification: [PCI] and [PCle] respectively.

4.1.2 PCI Device Discovery

Any PCI device with PCI Vendor ID 0x1AF4, and PCI Device ID 0x1000 through 0x107F inclusive is a virtio
device. The actual value within this range indicates which virtio device is supported by the device. The PCI
Device ID is calculated by adding 0x1040 to the Virtio Device ID, as indicated in section 5. Additionally,
devices MAY utilize a Transitional PCI Device ID range, 0x1000 to 0x103F depending on the device type.

4.1.21 Device Requirements: PCI Device Discovery

Devices MUST have the PCI Vendor ID 0x1AF4. Devices MUST either have the PCI Device ID calculated
by adding 0x1040 to the Virtio Device ID, as indicated in section 5 or have the Transitional PCI Device 1D
depending on the device type, as follows:

Transitional PCI Device ID Virtio Device ‘
0x1000 network card

0x1001 block device

0x1002 memory ballooning (traditional)
0x1003 console

0x1004 SCSI host

0x1005 entropy source

0x1009 9P transport

For example, the network card device with the Virtio Device ID 1 has the PCI Device ID 0x1041 or the
Transitional PCI Device ID 0x1000.

The PCI Subsystem Vendor ID and the PCI Subsystem Device ID MAY reflect the PCI Vendor and Device
ID of the environment (for informational purposes by the driver).

Non-transitional devices SHOULD have a PCI Device ID in the range 0x1040 to 0x107f. Non-transitional
devices SHOULD have a PCI Revision ID of 1 or higher. Non-transitional devices SHOULD have a PCI
Subsystem Device ID of 0x40 or higher.

This is to reduce the chance of a legacy driver attempting to drive the device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 48 of 284

http://www.pcisig.com
http://www.pcisig.com

4.1.2.2 Driver Requirements: PCI Device Discovery

Drivers MUST match devices with the PCI Vendor ID 0x1AF4 and the PCI Device ID in the range 0x1040
to 0x107f, calculated by adding 0x1040 to the Virtio Device ID, as indicated in section 5. Drivers for device
types listed in section 4.1.2 MUST match devices with the PCI Vendor ID 0x1AF4 and the Transitional PCI
Device ID indicated in section 4.1.2.

Drivers MUST match any PCI Revision ID value. Drivers MAY match any PCI Subsystem Vendor ID and
any PCI Subsystem Device ID value.

4.1.2.3 Legacy Interfaces: A Note on PCI Device Discovery

Transitional devices MUST have a PCI Revision ID of 0. Transitional devices MUST have the PCI Subsystem
Device ID matching the Virtio Device ID, as indicated in section 5. Transitional devices MUST have the
Transitional PCI Device ID in the range 0x1000 to Ox103f.

This is to match legacy drivers.

4.1.3 PCI Device Layout

The device is configured via I/O and/or memory regions (though see 4.1.4.9 for access via the PCI config-
uration space), as specified by Virtio Structure PCI Capabilities.

Fields of different sizes are present in the device configuration regions. All 64-bit, 32-bit and 16-bit fields
are little-endian. 64-bit fields are to be treated as two 32-bit fields, with low 32 bit part followed by the high
32 bit part.

4.1.3.1 Driver Requirements: PCI Device Layout

For device configuration access, the driver MUST use 8-bit wide accesses for 8-bit wide fields, 16-bit wide
and aligned accesses for 16-bit wide fields and 32-bit wide and aligned accesses for 32-bit and 64-bit wide
fields. For 64-bit fields, the driver MAY access each of the high and low 32-bit parts of the field independently.

4.1.3.2 Device Requirements: PCI Device Layout

For 64-bit device configuration fields, the device MUST allow driver independent access to high and low
32-bit parts of the field.

4.1.4 Virtio Structure PCI Capabilities
The virtio device configuration layout includes several structures:
» Common configuration
* Notifications
* ISR Status
+ Device-specific configuration (optional)
» PCI configuration access

Each structure can be mapped by a Base Address register (BAR) belonging to the function, or accessed via
the special VIRTIO_PCI_CAP_PCI_CFG field in the PCI configuration space.

The location of each structure is specified using a vendor-specific PCI capability located on the capability
list in PCI configuration space of the device. This virtio structure capability uses little-endian format; all fields
are read-only for the driver unless stated otherwise:

struct virtio pci cap {

u8 cap_vndr; /* Generic PCI field: PCI_CAP_ID VNDR */
u8 cap next; /* Generic PCI field: next ptr. */
u8 cap len; /* Generic PCI field: capability length */
u8 cfg type; /* Identifies the structure. */
u8 bar; /* Where to find it. */
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 49 of 284

Q S ro1 *x Do 4+ £i211 = *
to—PpaaaIrng o7 oot THrT—C o

u8 id; /* Multiple capabilities of the same type */

we peccbume[2]y A2 28 fe Sl dyesc. A
le32 offset; /* Offset within bar. */
le32 length; /* Length of the structure, in bytes. */

This structure can be followed by extra data, depending on cfg_type, as documented below.
The fields are interpreted as follows:

cap_vndr 0x09; |ldentifies a vendor-specific capability.

cap_next Link to next capability in the capability list in the PCI configuration space.

cap_len Length of this capability structure, including the whole of struct virtio_pci_cap, and extra data if
any. This length MAY include padding, or fields unused by the driver.

cfg_type identifies the structure, according to the following table:

/* Common configuration */

#define VIRTIO PCI CAP COMMON CFG 1
/* Notifications */

#define VIRTIO PCI CAP NOTIFY CFG 2
/* ISR Status */

#define VIRTIO_PCI_CAP_ISR_CFG 3
/* Device specific configuration */
#define VIRTIO PCI_CAP_DEVICE CFG 4
/* PCI configuration access */

#define VIRTIO_PCI_CAP PCI_CFG 5

L% Nendor-specific data ¥/
#define VIRTIO BCI CAE VENDOR CFG 9

Any other value is reserved for future use.
Each structure is detailed individually below.

The device MAY offer more than one structure of any type - this makes it possible for the device to
expose multiple interfaces to drivers. The order of the capabilities in the capability list specifies the
order of preference suggested by the device. A device may specify that this ordering mechanism be
overridden by the use of the id field.

Note: For example, on some hypervisors, notifications using 10 accesses are faster than memory
accesses. In this case, the device would expose two capabilities with cfg_type set to VIRTIO_-
PCI_CAP_NOTIFY_CFG: the first one addressing an I/O BAR, the second one addressing a
memory BAR. In this example, the driver would use the I/0O BAR if I/O resources are available,
and fall back on memory BAR when /O resources are unavailable.

bar values 0x0 to 0x5 specify a Base Address register (BAR) belonging to the function located beginning
at 10h in PCI Configuration Space and used to map the structure into Memory or I/O Space. The BAR
is permitted to be either 32-bit or 64-bit, it can map Memory Space or I/O Space.

Any other value is reserved for future use.

id Used by some device types to uniquely identify multiple capabilities of a certain type. If the device type does
not specify the meaning of this field, its contents are undefined.

offset indicates where the structure begins relative to the base address associated with the BAR. The
alignment requirements of offset are indicated in each structure-specific section below.

length indicates the length of the structure.

length MAY include padding, or fields unused by the driver, or future extensions.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 50 of 284

Note: For example, a future device might present a large structure size of several MBytes. As current
devices never utilize structures larger than 4KBytes in size, driver MAY limit the mapped struc-
ture size to e.g. 4KBytes (thus ignoring parts of structure after the first 4KBytes) to allow forward
compatibility with such devices without loss of functionality and without wasting resources.

A variant of this type, struct virtio_pci_cap64, is defined for those capabilities that require offsets or lengths
larger than 4GiB:

struct virtio pci cap64 {

oo EEEUCE vEUEdO Pl xR0
u32 offset hi;

u32 length hi;

Given that the cap.length and cap.offset fields are only 32 bit, the additional offset_hi and length__hi fields provide
the most significant 32 bits of a total 64 bit offset and length within the BAR specified by cap.bar.

4.1.4.1 Driver Requirements: Virtio Structure PCI Capabilities

The driver MUST ignore any vendor-specific capability structure which has a reserved cfg_type value.
The driver SHOULD use the first instance of each virtio structure type they can support.

The driver MUST accept a cap_len value which is larger than specified here.

The driver MUST ignore any vendor-specific capability structure which has a reserved bar value.

The drivers SHOULD only map part of configuration structure large enough for device operation. The drivers
MUST handle an unexpectedly large length, but MAY check that length is large enough for device operation.

The driver MUST NOT write into any field of the capability structure, with the exception of those with cap_type
VIRTIO_PCI_CAP_PCI_CFG as detailed in 4.1.4.9.2.

4.1.4.2 Device Requirements: Virtio Structure PCI Capabilities

The device MUST include any extra data (from the beginning of the cap_vndr field through end of the extra
data fields if any) in cap_len. The device MAY append extra data or padding to any structure beyond that.

If the device presents multiple structures of the same type, it SHOULD order them from optimal (first) to
least-optimal (last).
4.1.4.3 Common configuration structure layout

The common configuration structure is found at the bar and offset within the VIRTIO_PCI_CAP_COMMON_-
CFG capability; its layout is below.

struct virtio_pci common_cfg {
/* About the whole device. */

le32 device feature select; /* read-write */
le32 device feature; /* read-only for driver */
le32 driver feature select; /* read-write */

le32 driver feature; /* read-write */

lealé
T

lol6_config msix vector; . /¥ readzurite */

£4 e & e *
ST AE+es reaa—wrtt

lel6 num_gueues; /* read-only for driver */
u8 device_ status; /* read-write */
u8 config generation; /* read-only for driver */

/* BAbout a specific virtqueue. */

lel6 queue_ select; /* read-write */
lel6 queue_size; /* read-write */
lel6 queue msix vector; /* read-write */
lel6 queue_enable; /* read-write */
lel6 queue notify off; /* read-only for driver */
le64 queue_desc; /* read-write */
le64 queue_driver; /* read-write */
le64 queue device; /* read-write */
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 51 of 284

‘ lel6 queue notify data; /* read-only for driver */
‘ lel6 queue reset; /* read-write */
‘};

device_feature_select The driver uses this to select which feature bits device feature shows. Value 0x0
selects Feature Bits 0 to 31, Ox1 selects Feature Bits 32 to 63, etc.

device_feature The device uses this to report which feature bits it is offering to the driver: the driver writes
to device feature_select to select which feature bits are presented.

driver_feature_select The driver uses this to select which feature bits driver _feature shows. Value 0x0
selects Feature Bits 0 to 31, Ox1 selects Feature Bits 32 to 63, etc.

driver_feature The driver writes this to accept feature bits offered by the device. Driver Feature Bits se-
lected by driver_feature select.

config_msix_vector The driver sets the Configuration Vector for MSI-X.
num_queues The device specifies the maximum number of virtqueues supported here.
device_status The driver writes the device status here (see 2.1). Writing 0 into this field resets the device.

config_generation Configuration atomicity value. The device changes this every time the configuration
noticeably changes.

queue_select Queue Select. The driver selects which virtqueue the following fields refer to.

queue_size Queue Size. On reset, specifies the maximum queue size supported by the device. This can
be modified by the driver to reduce memory requirements. A 0 means the queue is unavailable.

queue_msix_vector The driver uses this to specify the queue vector for MSI-X.

queue_enable The driver uses this to selectively prevent the device from executing requests from this
virtqueue. 1 - enabled; 0O - disabled.

queue_notify_off The driver reads this to calculate the offset from start of Notification structure at which
this virtqueue is located.

Note: this is not an offset in bytes. See 4.1.4.4 below.
queue_desc The driver writes the physical address of Descriptor Area here. See section 2.6.
queue_driver The driver writes the physical address of Driver Area here. See section 2.6.
queue_device The driver writes the physical address of Device Area here. See section 2.6.

queue_notify_data This field exists only if VIRTIO_F_NOTIF_CONFIG_DATA has been negotiated. The driver
will use this value to put it in the 'virtqueue number’ field in the available buffer notification structure. See
section 4.1.5.2.

Note: This field provides the device with flexibility to determine how virtqueues will be referred to in
available buffer notifications. In a trivial case the device can set queue_ notify_data=vqn. Some
devices may benefit from providing another value, for example an internal virtqueue identifier, or an
internal offset related to the virtqueue number.

queue_reset The driver uses this to selectively reset the queue. This field exists only if VIRTIO_F_RING_RESET
has been negotiated. (see 2.6.1).

4.1.4.3.1 Device Requirements: Common configuration structure layout

offset MUST be 4-byte aligned.
The device MUST present at least one common configuration capability.

The device MUST present the feature bits it is offering in device_feature, starting at bit device_feature_select
x 32 for any device feature _select written by the driver.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 52 of 284

Note: This means that it will present 0 for any device feature select other than 0 or 1, since no feature
defined here exceeds 63.

The device MUST present any valid feature bits the driver has written in driver_feature, starting at bit driver_-
feature_select x 32 for any driver_feature_select written by the driver. Valid feature bits are those which are
subset of the corresponding device feature bits. The device MAY present invalid bits written by the driver.

Note: This means that a device can ignore writes for feature bits it never offers, and simply present 0 on
reads. Or it can just mirror what the driver wrote (but it will still have to check them when the driver
sets FEATURES_OK).

Note: A driver shouldn’t write invalid bits anyway, as per 3.1.1, but this attempts to handle it.

The device MUST present a changed config_generation after the driver has read a device-specific configu-
ration value which has changed since any part of the device-specific configuration was last read.

Note: As config_generation is an 8-bit value, simply incrementing it on every configuration change could
violate this requirement due to wrap. Better would be to set an internal flag when it has changed,
and if that flag is set when the driver reads from the device-specific configuration, increment config_-
generation and clear the flag.

The device MUST reset when 0 is written to device_status, and present a 0 in device_status once that is
done.

The device MUST present a 0 in queue_enable on reset.
If VIRTIO_F_RING_RESET has been negotiated, the device MUST present a 0 in queue_reset on reset.

If VIRTIO_F_RING_RESET has been negotiated, the device MUST present a 0 in queue_reset after the virtqueue
is enabled with queue_enable.

The device MUST reset the queue when 1 is written to queue_reset. The device MUST continue to present
1 in queue_reset as long as the queue reset is ongoing. The device MUST present 0 in both queue_reset and
queue_enable when queue reset has completed. (see 2.6.1).

The device MUST present a 0 in queue_size if the virtqueue corresponding to the current queue_select is
unavailable.

If VIRTIO_F_RING_PACKED has not been negotiated, the device MUST present either a value of 0 or a
power of 2 in queue_size.

4.1.4.3.2 Driver Requirements: Common configuration structure layout

The driver MUST NOT write to device feature, num_queues, config_generationerquete—netify—off-, queue_ -
notify_off or queue_notify_data.

If VIRTIO_F_RING_PACKED has been negotiated, the driver MUST NOT write the value 0 to queue_size.
If VIRTIO_F_RING_PACKED has not been negotiated, the driver MUST NOT write a value which is not a
power of 2 to queue_size.

The driver MUST configure the other virtqueue fields before enabling the virtqueue with queue_enable.

After writing 0 to device_status, the driver MUST wait for a read of device_status to return 0 before reinitial-
izing the device.

The driver MUST NOT write a 0 to queue_enable.

If VIRTIO_F_RING_RESET has been negotiated, after the driver writes 1 to queue_reset to reset the queue,
the driver MUST NOT consider queue reset to be complete until it reads back 0 in queue_reset. The driver
MAY re-enable the queue by writing 1 to queue_enable after ensuring that other virtqueue fields have been set
up correctly. The driver MAY set driver-writeable queue configuration values to different values than those that
were used before the queue reset. (see 2.6.1).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 53 of 284

4.1.4.4 Notification structure layout

The notification location is found using the VIRTIO_PCI_CAP_NOTIFY_CFG capability. This capability is
immediately followed by an additional field, like so:

struct virtio pci notify cap {
struct virtio pci cap cap;
le32 notify off multiplier; /* Multiplier for queue notify off. */

notify_off_muiltiplier is combined with the queue _notify off to derive the Queue Notify address within a BAR
for a virtqueue:

cap.offset + queue notify off * notify off multiplier

The cap.offset and notify_off multiplier are taken from the notification capability structure above, and the
queue_notify off is taken from the common configuration structure.

Note: For example, if notifier_off_multiplier is 0, the device uses the same Queue Notify address for all
queues.

4.1.4.41 Device Requirements: Notification capability

The device MUST present at least one notification capability.
For devices not offering VIRTIO_F_NOTIFICATION_DATA:
The cap.offset MUST be 2-byte aligned.

The device MUST either present notify_off_multiplier as an even power of 2, or present notify_off_multiplier
as 0.

The value cap.length presented by the device MUST be at least 2 and MUST be large enough to support
queue notification offsets for all supported queues in all possible configurations.

For all queues, the value cap.length presented by the device MUST satisfy:

cap.length >= queue notify off * notify off multiplier + 2

For devices offering VIRTIO_F_NOTIFICATION_DATA:

The device MUST either present notify_off multiplier as a number that is a power of 2 that is also a multiple
4, or present notify_off_muiltiplier as 0.

The cap.offset MUST be 4-byte aligned.

The value cap.length presented by the device MUST be at least 4 and MUST be large enough to support
queue notification offsets for all supported queues in all possible configurations.

For all queues, the value cap.length presented by the device MUST satisfy:

cap.length >= queue notify off * notify off multiplier + 4

4.1.4.5 ISR status capability

The VIRTIO_PCI_CAP_ISR_CFG capability refers to at least a single byte, which contains the 8-bit ISR
status field to be used for INT#x interrupt handling.

The offset for the ISR status has no alignment requirements.

The ISR bits allow the device-driver to distinguish between device-specific configuration change interrupts
and normal virtqueue interrupts:

Bits 0 1 2 to 31
Purpose || Queue Interrupt | Device Configuration Interrupt | Reserved

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 54 of 284

To avoid an extra access, simply reading this register resets it to 0 and causes the device to de-assert the
interrupt.

In this way, driver read of ISR status causes the device to de-assert an interrupt.

See sections 4.1.5.3 and 4.1.5.4 for how this is used.

4.1.4.5.1 Device Requirements: ISR status capability

The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG capability.

The device MUST set the Device Configuration Interrupt bit in /ISR status before sending a device configu-
ration change notification to the driver.

If MSI-X capability is disabled, the device MUST set the Queue Interrupt bit in /ISR status before sending a
virtqueue notification to the driver.

If MSI-X capability is disabled, the device MUST set the Interrupt Status bit in the PCI Status register in the
PCI Configuration Header of the device to the logical OR of all bits in ISR status of the device. The device
then asserts/deasserts INT#x interrupts unless masked according to standard PCI rules [PCI].

The device MUST reset ISR status to 0 on driver read.

4.1.4.5.2 Driver Requirements: ISR status capability

If MSI-X capability is enabled, the driver SHOULD NOT access ISR status upon detecting a Queue Interrupt.

4.1.4.6 Device-specific configuration
The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG capability for any device type
which has a device-specific configuration.

4.1.4.6.1 Device Requirements: Device-specific configuration

The offset for the device-specific configuration MUST be 4-byte aligned.

4.1.4.7 Shared memory capability

Shared memory regions 2.10 are enumerated on the PCI transport as a sequence of VIRTIO_PCI_CAP_-
SHARED_MEMORY_CFG capabilities, one per region.

The capability is defined by a struct virtio_pci_cap64 and utilises the cap.id to allow multiple shared memory
regions per device. The identifier in cap.id does not denote a certain order of preference; it is only used to uniquely
identify a region.

4.1.4.7.1 Device Requirements: Shared memory capability

The region defined by the combination of the cap.offset, offset_hi, and cap.length, length_hi fields MUST be
contained within the BAR specified by cap.bar.

The cap.id MUST be unique for any one device instance.

4.1.4.8 Vendor data capability

The optional Vendor data capability allows the device to present vendor-specific data to the driver, without
conflicts, for debugging and/or reporting purposes, and without conflicting with standard functionality.

This capability augments but does not replace the standard subsystem ID and subsystem vendor ID fields (offsets
0x2C and 0x2E in the PCI configuration space header) as specified by [PCI].

Vendor data capability is enumerated on the PCl transport as a VIRTIO_PCI_CAP_VENDOR_CFG capability.

The capability has the following structure:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 55 of 284

ZECaet piitde ped vmer Clts |
we cew e 0 Senerde L Sheld FCT CRE XD JMCE)

ud cap mext; /(% Generic FCI field: mext ptr. X/
B8 cap leni LY Gemeric PCI field: capability length */
B8 CEg type; LY Identifies the structure. X/

ule vendor id; [* Identifies the vendor-specific format. */
~ L Fox Vendor Definition */

LA EEgE seaugiien o a nudlilpl e GF 8 Dvees T

SRR SRS BRIt Gy N T A Eec B S
}i

~ A

Where vendor_id identifies the PCI-SIG assigned Vendor ID as specified by [PCI].
Note that the capability size is required to be a multiple of 4.

To make it safe for a generic driver to access the capability, reads from this capability MUST NOT have any side
effects.

4.1.4.8.1 Device Requirements: Vendor data capability

Devices CAN present vendor_id that does not match either the PCl Vendor ID or the PCI Subsystem Vendor ID.

Devices CAN present multiple Vendor data capabilities with either different or identical vendor_id values.
The value vendor_id MUST NOT equal Ox1AF4.

The size of the Vendor data capability MUST be a multiple of 4 bytes.

Reads of the Vendor data capability by the driver MUST NOT have any side effects.

4.1.4.8.2 Driver Requirements: Vendor data capability

The driver SHOULD NOT use the Vendor data capability except for debugging and reporting purposes.
The driver MUST qualify the vendor_id before interpreting or writing into the Vendor data capability.

4.1.4.9 PCI configuration access capability

The VIRTIO_PCI_CAP_PCI_CFG capability creates an alternative (and likely suboptimal) access method
to the common configuration, notification, ISR and device-specific configuration regions.

The capability is immediately followed by an additional field like so:

struct virtio pci cfg cap {

struct virtio pci cap cap;

u8 pci cfg data([4]; /* Data for BAR access. */
i

The fields cap.bar, cap.length, cap.offset and pci_cfg_data are read-write (RW) for the driver.

To access a device region, the driver writes into the capability structure (ie. within the PCI configuration
space) as follows:

» The driver sets the BAR to access by writing to cap.bar.
 The driver sets the size of the access by writing 1, 2 or 4 to cap.length.
» The driver sets the offset within the BAR by writing to cap.offset.

At that point, pci_cfg_data will provide a window of size cap.length into the given cap.bar at offset cap.offset.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 56 of 284

4.1.4.91 Device Requirements: PCI configuration access capability

The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG capability.

Upon detecting driver write access to pci_cfg data, the device MUST execute a write access at offset
cap.offset at BAR selected by cap.bar using the first cap.length bytes from pci_cfg_data.

Upon detecting driver read access to pci_cfg data, the device MUST execute a read access of length
cap.length at offset cap.offset at BAR selected by cap.bar and store the first cap.length bytes in pci_cfg_-
data.

4.1.4.9.2 Driver Requirements: PCI configuration access capability

The driver MUST NOT write a cap.offset which is not a multiple of cap.length (ie. all accesses MUST be
aligned).

The driver MUST NOT read or write pci_cfg_data unless cap.bar, cap.length and cap.offset address cap.length
bytes within a BAR range specified by some other Virtio Structure PCI Capability of type other than VIR-
TIO_PCI|_CAP_PCI_CFG.

4.1.410 Legacy Interfaces: A Note on PCI Device Layout

Transitional devices MUST present part of configuration registers in a legacy configuration structure in BARO
in the first 1/0 region of the PCI device, as documented below. When using the legacy interface, transitional
drivers MUST use the legacy configuration structure in BARO in the first /0 region of the PCI device, as
documented below.

When using the legacy interface the driver MAY access the device-specific configuration region using any
width accesses, and a transitional device MUST present driver with the same results as when accessed
using the “natural” access method (i.e. 32-bit accesses for 32-bit fields, etc).

Note that this is possible because while the virtio common configuration structure is PCI (i.e. little) endian,
when using the legacy interface the device-specific configuration region is encoded in the native endian of
the guest (where such distinction is applicable).

When used through the legacy interface, the virtio common configuration structure looks as follows:

Bits 32 32 32 16 16 16 8 8

Read /| R R+W R+W R R+W R+W R+W R

Write

Purpose || Device Driver Queue queue_- | queue_- | Queue Device ISR
Features | Features | Address | size select Notify Status Status
bits 0:31 | bits 0:31

If MSI-X is enabled for the device, two additional fields immediately follow this header:

Bits 16 16
Read/Write R+W R+W
Purpose (MSI-X) || config_msix_vector | queue_msix_vector

Note: When MSI-X capability is enabled, device-specific configuration starts at byte offset 24 in virtio com-
mon configuration structure structure. When MSI-X capability is not enabled, device-specific configuration
starts at byte offset 20 in virtio header. ie. once you enable MSI-X on the device, the other fields move. If
you turn it off again, they move back!

Any device-specific configuration space immediately follows these general headers:

Bits Device Specific
Read / Write || Device Specific
Purpose Device Specific
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 57 of 284

When accessing the device-specific configuration space using the legacy interface, transitional drivers
MUST access the device-specific configuration space at an offset immediately following the general head-
ers.

When using the legacy interface, transitional devices MUST present the device-specific configuration space
if any at an offset immediately following the general headers.

Note that only Feature Bits 0 to 31 are accessible through the Legacy Interface. When used through the
Legacy Interface, Transitional Devices MUST assume that Feature Bits 32 to 63 are not acknowledged by
Driver.

As legacy devices had no config_generation field, see 2.5.4 Legacy Interface: Device Configuration Space
for workarounds.

4.1.4.11 Non-transitional Device With Legacy Driver: A Note on PCI Device Layout

All known legacy drivers check either the PCI Revision or the Device and Vendor IDs, and thus won’t attempt
to drive a non-transitional device.

A buggy legacy driver might mistakenly attempt to drive a non-transitional device. If support for such drivers
is required (as opposed to fixing the bug), the following would be the recommended way to detect and handle
them.

Note: Such buggy drivers are not currently known to be used in production.

4.1.4.11.0.1 Device Requirements: Non-transitional Device With Legacy Driver

Non-transitional devices, on a platform where a legacy driver for a legacy device with the same ID (including
PCI Revision, Device and Vendor IDs) is known to have previously existed, SHOULD take the following
steps to cause the legacy driver to fail gracefully when it attempts to drive them:

1. Present an I/O BAR in BARO, and

2. Respond to a single-byte zero write to offset 18 (corresponding to Device Status register in the legacy
layout) of BARO by presenting zeroes on every BAR and ignoring writes.

4.1.5 PCl-specific Initialization And Device Operation

4.1.5.1 Device Initialization

This documents PCl-specific steps executed during Device Initialization.

4.1.5.1.1 Virtio Device Configuration Layout Detection

As a prerequisite to device initialization, the driver scans the PCI capability list, detecting virtio configuration
layout using Virtio Structure PCI capabilities as detailed in 4.1.4

41.5.1.1.1 Legacy Interface: A Note on Device Layout Detection

Legacy drivers skipped the Device Layout Detection step, assuming legacy device configuration space in
BARQO in I/O space unconditionally.

Legacy devices did not have the Virtio PCI Capability in their capability list.
Therefore:
Transitional devices MUST expose the Legacy Interface in 1/0 space in BARO.

Transitional drivers MUST look for the Virtio PCI Capabilities on the capability list. If these are not present,
driver MUST assume a legacy device, and use it through the legacy interface.

Non-transitional drivers MUST look for the Virtio PCI Capabilities on the capability list. If these are not
present, driver MUST assume a legacy device, and fail gracefully.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 58 of 284

4.1.5.1.2 MSI-X Vector Configuration

When MSI-X capability is present and enabled in the device (through standard PCI configuration space)
config_msix_vector and queue_msix_vector are used to map configuration change and queue interrupts to
MSI-X vectors. In this case, the ISR Status is unused.

Writing a valid MSI-X Table entry number, 0 to 0x7FF, to config_msix_vector/queue_msix_vector maps
interrupts triggered by the configuration change/selected queue events respectively to the corresponding
MSI-X vector. To disable interrupts for an event type, the driver unmaps this event by writing a special
NO_VECTOR value:

/* Vector value used to disable MSI for queue */
#define VIRTIO_MSI_NO_VECTOR Oxffff

Note that mapping an event to vector might require device to allocate internal device resources, and thus
could fail.

4.1.5.1.2.1 Device Requirements: MSI-X Vector Configuration

A device that has an MSI-X capability SHOULD support at least 2 and at most 0x800 MSI-X vectors. De-
vice MUST report the number of vectors supported in Table Size in the MSI-X Capability as specified in
[PCI]. The device SHOULD restrict the reported MSI-X Table Size field to a value that might benefit system
performance.

Note: For example, a device which does not expect to send interrupts at a high rate might only specify 2
MSI-X vectors.

Device MUST support mapping any event type to any valid vector 0 to MSI-X Table Size. Device MUST
support unmapping any event type.

The device MUST return vector mapped to a given event, (NO_VECTOR if unmapped) on read of config_-
msix_vector/queue_msix_vector. The device MUST have all queue and configuration change events are
unmapped upon reset.

Devices SHOULD NOT cause mapping an event to vector to fail unless it is impossible for the device to
satisfy the mapping request. Devices MUST report mapping failures by returning the NO_VECTOR value
when the relevant config_msix_vector/queue_msix_vector field is read.

4.1.5.1.2.2 Driver Requirements: MSI-X Vector Configuration

Driver MUST support device with any MSI-X Table Size 0 to 0x7FF. Driver MAY fall back on using INT#x
interrupts for a device which only supports one MSI-X vector (MSI-X Table Size = 0).

Driver MAY intepret the Table Size as a hint from the device for the suggested number of MSI-X vectors to
use.

Driver MUST NOT attempt to map an event to a vector outside the MSI-X Table supported by the device,
as reported by Table Size in the MSI-X Capability.

After mapping an event to vector, the driver MUST verify success by reading the Vector field value: on
success, the previously written value is returned, and on failure, NO_VECTOR is returned. If a mapping
failure is detected, the driver MAY retry mapping with fewer vectors, disable MSI-X or report device failure.

4.1.5.1.3 Virtqueue Configuration

As a device can have zero or more virtqueues for bulk data transport’, the driver needs to configure them
as part of the device-specific configuration.

The driver typically does this as follows, for each virtqueue a device has:

1. Write the virtqueue index (first queue is 0) to queue_select.

"For example, the simplest network device has two virtqueues.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 59 of 284

2. Read the virtqueue size from queue_size. This controls how big the virtqueue is (see 2.6 Virtqueues).
If this field is 0, the virtqueue does not exist.

3. Optionally, select a smaller virtqueue size and write it to queue_size.

4. Allocate and zero Descriptor Table, Available and Used rings for the virtqueue in contiguous physical
memory.

5. Optionally, if MSI-X capability is present and enabled on the device, select a vector to use to request
interrupts triggered by virtqueue events. Write the MSI-X Table entry number corresponding to this
vector into queue_msix_vector. Read queue_msix_vector: on success, previously written value is
returned; on failure, NO_VECTOR value is returned.

4.1.5.1.3.1 Legacy Interface: A Note on Virtqueue Configuration

When using the legacy interface, the queue layout follows 2.7.2 Legacy Interfaces: A Note on Virtqueue
Layout with an alignment of 4096. Driver writes the physical address, divided by 4096 to the Queue Address
field?. There was no mechanism to negotiate the queue size.

4.1.5.2 Available Buffer Notifications

When VIRTIO_F_NOTIFICATION_DATA has not been negotiated, the driver sends an available buffer no-
tification to the device by writing the 16-bit virtqueue index of this virtqueue to the Queue Notify address.

When VIRTIO_F_NOTIFICATION_DATA has been negotiated, the driver sends an available buffer notifica-
tion to the device by writing the following 32-bit value to the Queue Notify address:

le32 {
van : 16;
next off : 15;
next wrap : 1;

bi

See 2.9 Driver Notifications for the definition of the components.

See 4.1.4.4 for how to calculate the Queue Notify address.

4.1.5.2.1 Driver Requirements: Available Buffer Notifications

If VIRTIO_F_NOTIF_CONFIG_DATA has been negotiated:

* If VIRTIO_F_NOTIFICATION_DATA has not been negotiated, the driver MUST use the queue_notify_-
data value instead of the virtqueue index.

* If VIRTIO_F_NOTIFICATION_DATA has been negotiated, the driver MUST set the vgn field to the
queue__notify_data value.
4.1.5.3 Used Buffer Notifications
If a used buffer notification is necessary for a virtqueue, the device would typically act as follows:
+ If MSI-X capability is disabled:
1. Set the lower bit of the ISR Status field for the device.
2. Send the appropriate PCI interrupt for the device.
+ If MSI-X capability is enabled:

1. If queue_msix_vector is not NO_VECTOR, request the appropriate MSI-X interrupt message for
the device, queue_msix_vector sets the MSI-X Table entry number.

2The 4096 is based on the x86 page size, but it’s also large enough to ensure that the separate parts of the virtqueue are on separate
cache lines.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 60 of 284

4.1.5.3.1 Device Requirements: Used Buffer Notifications

If MSI-X capability is enabled and queue_msix_vector is NO_VECTOR for a virtqueue, the device MUST
NOT deliver an interrupt for that virtqueue.

4.1.5.4 Notification of Device Configuration Changes

Some virtio PCI devices can change the device configuration state, as reflected in the device-specific con-
figuration region of the device. In this case:

* If MSI-X capability is disabled:
1. Set the second lower bit of the ISR Status field for the device.
2. Send the appropriate PCI interrupt for the device.

« If MSI-X capability is enabled:

1. If config_msix_vector is not NO_VECTOR, request the appropriate MSI-X interrupt message for
the device, config_msix_vector sets the MSI-X Table entry number.

A single interrupt MAY indicate both that one or more virtqueue has been used and that the configuration
space has changed.

4.1.5.41 Device Requirements: Notification of Device Configuration Changes

If MSI-X capability is enabled and config_msix_vector is NO_VECTOR, the device MUST NOT deliver an
interrupt for device configuration space changes.

4.1.5.4.2 Driver Requirements: Notification of Device Configuration Changes

A driver MUST handle the case where the same interrupt is used to indicate both device configuration space
change and one or more virtqueues being used.

4.1.5.5 Driver Handling Interrupts
The driver interrupt handler would typically:
« If MSI-X capability is disabled:
— Read the ISR Status field, which will reset it to zero.

— If the lower bit is set: look through all virtqueues for the device, to see if any progress has been
made by the device which requires servicing.

— If the second lower bit is set: re-examine the configuration space to see what changed.
« If MSI-X capability is enabled:

— Look through all virtqueues mapped to that MSI-X vector for the device, to see if any progress
has been made by the device which requires servicing.

— If the MSI-X vector is equal to config_msix_vector, re-examine the configuration space to see
what changed.

4.2 Virtio Over MMIO

Virtual environments without PCI support (a common situation in embedded devices models) might use
simple memory mapped device (“virtio-mmio”) instead of the PCI device.

The memory mapped virtio device behaviour is based on the PCI device specification. Therefore most oper-
ations including device initialization, queues configuration and buffer transfers are nearly identical. Existing
differences are described in the following sections.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 61 of 284

421

Unlike PCI, MMIO provides no generic device discovery mechanism. For each device, the guest OS will
need to know the location of the registers and interrupt(s) used. The suggested binding for systems using
flattened device trees is shown in this example:

MMIO Device Discovery

// EXAMPLE: virtio block device taking 512 bytes at 0x1e000, interrupt 42.
virtio block@1e000 ({

compatible = "virtio,mmio";

reg = <0x1e000 0x200>;

interrupts = <42>;

4.2.2 MMIO Device Register Layout

MMIQ virtio devices provide a set of memory mapped control registers followed by a device-specific config-
uration space, described in the table 4.1.

All register values are organized as Little Endian.

Table 4.1: MMIO Device Register Layout

Name Function

Offset from base Description

Direction

MagicValue Magic value

0x000 0x74726976 (a Little Endian equivalent of the “virt” string).

R

Version Device version number

0x004 0x2.

R Note: Legacy devices (see 4.2.4 Legacy interface) used 0x1.

DevicelD Virtio Subsystem Device ID

0x008 See 5 Device Types for possible values. Value zero (0x0) is used to de-

R fine a system memory map with placeholder devices at static, well known
addresses, assigning functions to them depending on user’s needs.

VendorID Virtio Subsystem Vendor ID

0x00c

R

DeviceFeatures Flags representing features the device supports

0x010 Reading from this register returns 32 consecutive flag bits, the least signifi-

R cant bit depending on the last value written to DeviceFeaturesSel. Access
to this register returns bits DeviceFeaturesSel « 32 to (DeviceFeaturesSel «
32)+31, eg. feature bits 0 to 31 if DeviceFeaturesSel is set to 0 and features
bits 32 to 63 if DeviceFeaturesSel is set to 1. Also see 2.2 Feature Bits.

DeviceFeaturesSel Device (host) features word selection.

0x014 Writing to this register selects a set of 32 device feature bits accessible by

W reading from DeviceFeatures.

DriverFeatures Flags representing device features understood and activated by the

0x020 driver

W Writing to this register sets 32 consecutive flag bits, the least significant bit

depending on the last value written to DriverFeaturesSel. Access to this
register sets bits DriverFeaturesSel 32 to (DriverFeaturesSel x 32) + 31,
eg. feature bits 0 to 31 if DriverFeaturesSel is set to 0 and features bits 32
to 63 if DriverFeaturesSel is set to 1. Also see 2.2 Feature Bits.

virtio-v1.2-csd01
Standards Track Work Product

09 May 2022
Page 62 of 284

Copyright © OASIS Open 2022. All Rights Reserved.

Name
Offset from the base
Direction

Function
Description

DriverFeaturesSel Activated (guest) features word selection
0x024 Writing to this register selects a set of 32 activated feature bits accessible
w by writing to DriverFeatures.
QueueSel Virtual queue index
0x030 Writing to this register selects the virtual queue that the follow-
w ing operations on QueueNumMax, QueueNum, QueueReady,
QueueDesclLow, QueueDescHigh, QueueAvaittow QueueDriverlLow,
QueteAvaitHighQueueDriverHigh, Quetetseditow-QueueDeviceL ow, QueueDevice-
High and QuetetsedHigh-QueueReset apply to. The index number of the first
queue is zero (0x0).
QueueNumMax Maximum virtual queue size
0x034 Reading from the register returns the maximum size (number of elements)
R of the queue the device is ready to process or zero (0x0) if the queue is not
available. This applies to the queue selected by writing to QueueSel.
QueueNum Virtual queue size
0x038 Queue size is the number of elements in the queue. Writing to this register
W notifies the device what size of the queue the driver will use. This applies
to the queue selected by writing to QueueSel.
QueueReady Virtual queue ready bit
0x044 Writing one (0x1) to this register notifies the device that it can execute re-
RwW quests from this virtual queue. Reading from this register returns the last
value written to it. Both read and write accesses apply to the queue selected
by writing to QueueSel.
QueueNotify Queue notifier
0x050 Writing a value to this register notifies the device that there are new buffers
w to process in a queue.
When VIRTIO_F_NOTIFICATION_DATA has not been negotiated, the
value written is the queue index.
When VIRTIO_F_NOTIFICATION_DATA has been negotiated, the Notifi-
cation data value has the following format:
1le32 {
van : 16;
next off : 15;
next wrap : 1;
}i
See 2.9 Driver Notifications for the definition of the components.
InterruptStatus Interrupt status
0x60 Reading from this register returns a bit mask of events that caused the de-
R vice interrupt to be asserted. The following events are possible:
Used Buffer Notification - bit 0 - the interrupt was asserted because the
device has used a buffer in at least one of the active virtual queues.
Configuration Change Notification - bit 1 - the interrupt was asserted be-
cause the configuration of the device has changed.
InterruptACK Interrupt acknowledge
0x064 Writing a value with bits set as defined in InterruptStatus to this register
w notifies the device that events causing the interrupt have been handled.

virtio-v1.2-csd01
Standards Track Work Product

09 May 2022
Page 63 of 284

Copyright © OASIS Open 2022. All Rights Reserved.

Name
Offset from the base
Direction

Function
Description

Status Device status

0x070 Reading from this register returns the current device status flags. Writing

RW non-zero values to this register sets the status flags, indicating the driver
progress. Writing zero (0x0) to this register triggers a device reset. See
also p. 4.2.3.1 Device Initialization.

QueueDescLow Virtual queue’s Descriptor Area 64 bit long physical address

0x080 Writing to these two registers (lower 32 bits of the address to

QueueDescHigh QueueDesclLow, higher 32 bits to QueueDescHigh) notifies the device

0x084 about location of the Descriptor Area of the queue selected by writing to

w QueueSel register.

QueueDriverLow Virtual queue’s Driver Area 64 bit long physical address

0x090 Writing to these two registers (lower 32 bits of the ad-

QueueDriverHigh dress to -QueweAvaittowQueueDriverLow, higher 32 bits to

0x094 QueueAvailHighQueueDriverHigh) notifies the device about location of the

w Driver Area of the queue selected by writing to QueueSel.

QueueDevicelLow Virtual queue’s Device Area 64 bit long physical address

0x0a0 Writing to these two registers (lower 32 bits of the ad-

QueueDeviceHigh dress to -QuewebsedtewQueueDevicelow, higher 32 bits to

0x0a4 QueueUsedHighQueueDeviceHigh) notifies the device about location of

w the Device Area of the queue selected by writing to QueueSel.

SHMSel Shared memory id

0x0ac Writing to this register selects the shared memory region 2.10 following opera-

w tions on SHMLenLow, SHMLenHigh, SHMBaseLow and SHMBaseHigh apply
to.

SHMLenLow Shared memory region 64 bit long length

0x0b0 These registers return the length of the shared memory region in bytes, as

SHMLenHigh defined by the device for the region selected by the SHMSel register. The lower

0x0b4 32 bits of the length are read from SHMLenLow and the higher 32 bits from

R SHMLenHigh. Reading from a non-existent region (i.e. where the ID written
to SHMSel is unused) results in a length of -1.

SHMBaselLow Shared memory region 64 bit long physical address

0x0b8 The driver reads these registers to discover the base address of the region in

SHMBaseHigh physical address space. This address is chosen by the device (or other part of

0x0bc the VMM). The lower 32 bits of the address are read from SHMBaseLow with

R the higher 32 bits from SHMBaseHigh. Reading from a non-existent region
(i.e. where the ID written to SHMSel is unused) results in a base address of
OxfFfFFFFFFFFAE,

QueueReset Virtual queue reset bit

0x0c0 If VIRTIO_F_RING_RESET has been negotiated, writing one (0x1) to this

RwW register selectively resets the queue. Both read and write accesses apply to the
queue selected by writing to QueueSel.

ConfigGeneration Configuration atomicity value

0x0fc Reading from this register returns a value describing a version of the device-

R specific configuration space (see Config). The driver can then access the

configuration space and, when finished, read ConfigGeneration again. If no
part of the configuration space has changed between these two ConfigGen-
eration reads, the returned values are identical. If the values are different,
the configuration space accesses were not atomic and the driver has to
perform the operations again. See also 2.5.

virtio-v1.2-csd01
Standards Track Work Product

09 May 2022
Page 64 of 284

Copyright © OASIS Open 2022. All Rights Reserved.

Name Function
Offset from the base Description

Direction

Config Configuration space

0x100+ Device-specific configuration space starts at the offset 0x100 and is ac-
RW cessed with byte alignment. Its meaning and size depend on the device

and the driver.

4.2.21 Device Requirements: MMIO Device Register Layout
The device MUST return 0x74726976 in MagicValue.
The device MUST return value 0x2 in Version.

The device MUST present each event by setting the corresponding bit in InterruptStatus from the moment
it takes place, until the driver acknowledges the interrupt by writing a corresponding bit mask to the Inter-
ruptACK register. Bits which do not represent events which took place MUST be zero.

Upon reset, the device MUST clear all bits in InterruptStatus and ready bits in the QueueReady register for
all queues in the device.

The device MUST change value returned in ConfigGeneration if there is any risk of a driver seeing an
inconsistent configuration state.

The device MUST NOT access virtual queue contents when QueueReady is zero (0x0).
If VIRTIO_F_RING_RESET has been negotiated, the device MUST present a 0 in QueueReset on reset.

If VIRTIO_F_RING_RESET has been negotiated, The device MUST present a 0 in QueueReset after the virtqueue
is enabled with QueueReady.

The device MUST reset the queue when 1 is written to QueueReset. The device MUST continue to present
1 in QueueReset as long as the queue reset is ongoing. The device MUST present 0 in both QueueReset and
QueueReady when queue reset has completed. (see 2.6.1).

4.2.2.2 Driver Requirements: MMIO Device Register Layout

The driver MUST NOT access memory locations not described in the table 4.1 (or, in case of the configuration
space, described in the device specification), MUST NOT write to the read-only registers (direction R) and
MUST NOT read from the write-only registers (direction W).

The driver MUST only use 32 bit wide and aligned reads and writes to access the control registers described
in table 4.1. For the device-specific configuration space, the driver MUST use 8 bit wide accesses for 8 bit
wide fields, 16 bit wide and aligned accesses for 16 bit wide fields and 32 bit wide and aligned accesses for
32 and 64 bit wide fields.

The driver MUST ignore a device with MagicValue which is not 0x74726976, although it MAY report an error.
The driver MUST ignore a device with Version which is not 0x2, although it MAY report an error.

The driver MUST ignore a device with DevicelD 0x0, but MUST NOT report any error.

Before reading from DeviceFeatures, the driver MUST write a value to DeviceFeaturesSel.

Before writing to the DriverFeatures register, the driver MUST write a value to the DriverFeaturesSel register.

The driver MUST write a value to QueueNum which is less than or equal to the value presented by the
device in QueueNumMax.

When QueueReady is not zero, the driver MUST NOT access QueueNum, QueueDescLow, QueueDescHigh,
ighQueueDriverLow, QueueDriverHigh, QueueDevicelLow,

QueueDewceHzgh

To stop using the queue the driver MUST write zero (0x0) to this QueueReady and MUST read the value
back to ensure synchronization.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 65 of 284

The driver MUST ignore undefined bits in InterruptStatus.

The driver MUST write a value with a bit mask describing events it handled into InterruptACK when it finishes
handling an interrupt and MUST NOT set any of the undefined bits in the value.

If VIRTIO_F_RING_RESET has been negotiated, after the driver writes 1 to QueueReset to reset the queue,
the driver MUST NOT consider queue reset to be complete until it reads back 0 in QueueReset. The driver
MAY re-enable the queue by writing 1 to QueueReady after ensuring that other virtqueue fields have been set
up correctly. The driver MAY set driver-writeable queue configuration values to different values than those that
were used before the queue reset. (see 2.6.1).

4.2.3 MMIO-specific Initialization And Device Operation

4.2.3.1 Device Initialization

4.2.3.1.1 Driver Requirements: Device Initialization

The driver MUST start the device initialization by reading and checking values from MagicValue and Version.
If both values are valid, it MUST read DevicelD and if its value is zero (0x0) MUST abort initialization and
MUST NOT access any other register.

Drivers not expecting shared memory MUST NOT use the shared memory registers.

Further initialization MUST follow the procedure described in 3.1 Device Initialization.

4.2.3.2 Virtqueue Configuration
The driver will typically initialize the virtual queue in the following way:
1. Select the queue writing its index (first queue is 0) to QueueSel.
2. Check if the queue is not already in use: read QueueReady, and expect a returned value of zero (0x0).

3. Read maximum queue size (number of elements) from QueueNumMax. If the returned value is zero
(0x0) the queue is not available.

4. Allocate and zero the queue memory, making sure the memory is physically contiguous.
5. Notify the device about the queue size by writing the size to QueueNum.

6. Write physical addresses of the queue’s Descriptor Area, Driver Area and Device Area to (respectively)
the QueueDescLow/QueueDescHigh, QueueDriverLow/QueueDriverHigh and QueueDeviceLow/QueueDeviceHigh
register pairs.

7. Write 0x1 to QueueReady.

4.2.3.3 Available Buffer Notifications

When VIRTIO_F_NOTIFICATION_DATA has not been negotiated, the driver sends an available buffer no-
tification to the device by writing the 16-bit virtqueue index of the queue to be notified to QueueNotify.

When VIRTIO_F_NOTIFICATION_DATA has been negotiated, the driver sends an available buffer notifica-
tion to the device by writing the following 32-bit value to QueueNotify:

le32 {
vagn : 16;
next off : 15;
next wrap : 1;
}i

See 2.9 Driver Notifications for the definition of the components.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 66 of 284

4.2.3.4 Notifications From The Device

The memory mapped virtio device is using a single, dedicated interrupt signal, which is asserted when at
least one of the bits described in the description of InterruptStatus is set. This is how the device sends a
used buffer notification or a configuration change notification to the device.

4.2.3.4.1 Driver Requirements: Notifications From The Device

After receiving an interrupt, the driver MUST read InterruptStatus to check what caused the interrupt (see
the register description). The used buffer notification bit being set SHOULD be interpreted as a used buffer
notification for each active virtqueue. After the interrupt is handled, the driver MUST acknowledge it by
writing a bit mask corresponding to the handled events to the InterruptACK register.

4.2.4 Legacy interface

The legacy MMIO transport used page-based addressing, resulting in a slightly different control register
layout, the device initialization and the virtual queue configuration procedure.

Table 4.2 presents control registers layout, omitting descriptions of registers which did not change their
function nor behaviour:

Table 4.2: MMIO Device Legacy Register Layout

Name Function

Offset from base Description

Direction

MagicValue Magic value

0x000

R

Version Device version nhumber

0x004 Legacy device returns value 0x1.

R

DevicelD Virtio Subsystem Device ID

0x008

R

VendorlD Virtio Subsystem Vendor ID

0x00c

R

HostFeatures Flags representing features the device supports

0x010

R

HostFeaturesSel Device (host) features word selection.

0x014

w

GuestFeatures Flags representing device features understood and activated by the
0x020 driver

w

GuestFeaturesSel Activated (guest) features word selection

0x024

w

GuestPageSize Guest page size

0x028 The driver writes the guest page size in bytes to the register during initial-
W ization, before any queues are used. This value should be a power of 2 and

is used by the device to calculate the Guest address of the first queue page
(see QueuePFN).

virtio-v1.2-csd01
Standards Track Work Product

09 May 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 67 of 284

Name Function

Offset from the base Description

Direction

QueueSel Virtual queue index

0x030 Writing to this register selects the virtual queue that the following operations

w on the QueueNumMax, QueueNum, QueueAlign and QueuePFN registers
apply to. The index number of the first queue is zero (0x0). .

QueueNumMax Maximum virtual queue size

0x034 Reading from the register returns the maximum size of the queue the device

R is ready to process or zero (0x0) if the queue is not available. This applies
to the queue selected by writing to QueueSel and is allowed only when
QueuePFN is set to zero (0x0), so when the queue is not actively used.

QueueNum Virtual queue size

0x038 Queue size is the number of elements in the queue. Writing to this register

W notifies the device what size of the queue the driver will use. This applies
to the queue selected by writing to QueueSel.

QueueAlign Used Ring alignment in the virtual queue

0x03c Writing to this register notifies the device about alignment boundary of the

W Used Ring in bytes. This value should be a power of 2 and applies to the
queue selected by writing to QueueSel.

QueuePFN Guest physical page number of the virtual queue

0x040 Writing to this register notifies the device about location of the virtual queue

RwW in the Guest’s physical address space. This value is the index number of
a page starting with the queue Descriptor Table. Value zero (0x0) means
physical address zero (0x00000000) and is illegal. When the driver stops
using the queue it writes zero (0x0) to this register. Reading from this regis-
ter returns the currently used page number of the queue, therefore a value
other than zero (0x0) means that the queue is in use. Both read and write
accesses apply to the queue selected by writing to QueueSel.

QueueNotify Queue notifier

0x050

w

InterruptStatus Interrupt status

0x60

R

InterruptACK Interrupt acknowledge

0x064

w

Status Device status

0x070 Reading from this register returns the current device status flags. Writing

RwW non-zero values to this register sets the status flags, indicating the OS/driver
progress. Writing zero (0x0) to this register triggers a device reset. The
device sets QueuePFN to zero (0x0) for all queues in the device. Also see
3.1 Device Initialization.

Config Configuration space

0x100+

RW

The virtual queue page size is defined by writing to GuestPageSize, as written by the guest. The driver does

this before the virtual queues are configured.

The virtual queue layout follows p. 2.7.2 Legacy Interfaces: A Note on Virtqueue Layout, with the alignment

defined in QueueAlign.

virtio-v1.2-csd01

Standards Track Work Product

09 May 2022
Copyright © OASIS Open 2022. All Rights Reserved. Page 68 of 284

The virtual queue is configured as follows:
1. Select the queue writing its index (first queue is 0) to QueueSel.
2. Check if the queue is not already in use: read QueuePFN, expecting a returned value of zero (0x0).

3. Read maximum queue size (number of elements) from QueueNumMax. If the returned value is zero
(0Ox0) the queue is not available.

4. Allocate and zero the queue pages in contiguous virtual memory, aligning the Used Ring to an opti-
mal boundary (usually page size). The driver should choose a queue size smaller than or equal to
QueueNumMax.

5. Notify the device about the queue size by writing the size to QueueNum.
6. Notify the device about the used alignment by writing its value in bytes to QueueAlign.
7. Write the physical number of the first page of the queue to the QueuePFN register.

Notification mechanisms did not change.

4.3 Virtio Over Channel I/O

S/390 based virtual machines support neither PCI nor MMIO, so a different transport is needed there.

virtio-ccw uses the standard channel 1/0 based mechanism used for the majority of devices on S/390. A
virtual channel device with a special control unit type acts as proxy to the virtio device (similar to the way
virtio-pci uses a PCI device) and configuration and operation of the virtio device is accomplished (mostly) via
channel commands. This means virtio devices are discoverable via standard operating system algorithms,
and adding virtio support is mainly a question of supporting a new control unit type.

As the S/390 is a big endian machine, the data structures transmitted via channel commands are big-endian:
this is made clear by use of the types be16, be32 and be64.

4.3.1 Basic Concepts

As a proxy device, virtio-ccw uses a channel-attached I/O control unit with a special control unit type (0x3832)
and a control unit model corresponding to the attached virtio device’s subsystem device ID, accessed via
a virtual 1/0 subchannel and a virtual channel path of type 0x32. This proxy device is discoverable via
normal channel subsystem device discovery (usually a STORE SUBCHANNEL loop) and answers to the
basic channel commands:

- NO-OPERATION (0x03)
- BASIC SENSE (0x04)

- TRANSFER IN CHANNEL (0x08)
- SENSE ID (Oxe4)

For a virtio-ccw proxy device, SENSE ID will return the following information:

’ Bytes ‘ Description ‘ Contents
0 reserved Oxff
1-2 control unit type 0x3832
3 control unit model <virtio device id>
4-5 device type zeroes (unset)
6 device model zeroes (unset)
7-255 | extended Senseld data | zeroes (unset)

A virtio-ccw proxy device facilitates:

» Discovery and attachment of virtio devices (as described above).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 69 of 284

« Initialization of virtqueues and transport-specific facilities (using virtio-specific channel commands).

* Notifications (via hypercall and a combination of I/O interrupts and indicator bits).

4.3.1.1 Channel Commands for Virtio

In addition to the basic channel commands, virtio-ccw defines a set of channel commands related to con-
figuration and operation of virtio:

#define CCW_CMD_SET VQ 0x13

#define CCW_CMD_VDEV_RESET 0x33
#define CCW_CMD SET IND 0x43
#define CCW_CMD_SET CONF_IND 0x53
#define CCW_CMD SET IND ADAPTER 0x73
#define CCW CMD READ FEAT 0x12
#define CCW_CMD_WRITE_ FEAT Ox11
#define CCW _CMD READ CONF 0x22
#define CCW_CMD_WRITE_ CONF 0x21
#define CCW_CMD WRITE STATUS 0x31
#define CCW_CMD_READ_VQ CONF 0x32
#define CCW_CMD SET VIRTIO REV 0x83
#define CCW _CMD READ STATUS 0x72

4.3.1.2 Notifications

Available buffer notifications are realized as a hypercall. No additional setup by the driver is needed. The
operation of available buffer notifications is described in section 4.3.3.2.

Used buffer notifications are realized either as so-called classic or adapter I/O interrupts depending on a
transport level negotiation. The initialization is described in sections 4.3.2.6.1 and 4.3.2.6.3 respectively.
The operation of each flavor is described in sections 4.3.3.1.1 and 4.3.3.1.2 respectively.

Configuration change notifications are done using so-called classic I/O interrupts. The initialization is de-
scribed in section 4.3.2.6.2 and the operation in section 4.3.3.1.1.

4.3.1.3 Device Requirements: Basic Concepts

The virtio-ccw device acts like a normal channel device, as specified in [S390 PoP] and [S390 Common
I/Q]. In particular:

» A device MUST post a unit check with command reject for any command it does not support.

« If a driver did not suppress length checks for a channel command, the device MUST present a sub-
channel status as detailed in the architecture when the actual length did not match the expected length.

+ If a driver did suppress length checks for a channel command, the device MUST present a check
condition if the transmitted data does not contain enough data to process the command. If the driver
submitted a buffer that was too long, the device SHOULD accept the command.

4.3.1.4 Driver Requirements: Basic Concepts

A driver for virtio-ccw devices MUST check for a control unit type of 0x3832 and MUST ignore the device
type and model.

A driver SHOULD attempt to provide the correct length in a channel command even if it suppresses length
checks for that command.

4.3.2 Device Initialization

virtio-ccw uses several channel commands to set up a device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 70 of 284

4.3.2.1 Setting the Virtio Revision

CCW_CMD_SET_VIRTIO_REV is issued by the driver to set the revision of the virtio-ccw transport it intends
to drive the device with. It uses the following communication structure:

struct virtio rev info {
bel6 revision;
bel6 length;
u8 datall;

}i

revision contains the desired revision id, length the length of the data portion and data revision-dependent
additional desired options.

The following values are supported:

’ revision ‘ length ‘ data remarks
0 0 <empty> | legacy interface; transitional devices only
1 0 <empty> | Virtio 4+-6-1
2 0 <empty> | CCW_CMD_READ_STATUS support
3-n reserved for later revisions

Note that a change in the virtio standard does not necessarily correspond to a change in the virtio-ccw
revision.

4.3.2.1.1 Device Requirements: Setting the Virtio Revision

A device MUST post a unit check with command reject for any revision it does not support. For any invalid
combination of revision, length and data, it MUST post a unit check with command reject as well. A non-
transitional device MUST reject revision id 0.

A device MusTSHOULD answer with command reject to any virtio-ccw specific channel command that is
not contained in the revision selected by the driver.

A device MUST answer with command reject to any attempt to select a different revision after a revision has
been successfully selected by the driver.

A device MUST treat the revision as unset from the time the associated subchannel has been enabled until
a revision has been successfully set by the driver. This implies that revisions are not persistent across
disabling and enabling of the associated subchannel.

4.3.2.1.2 Driver Requirements: Setting the Virtio Revision

A driver SHOULD start with trying to set the highest revision it supports and continue with lower revisions if
it gets a command reject.

A driver MUST NOT issue any other virtio-ccw specific channel commands prior to setting the revision.

After a revision has been successfully selected by the driver, it MUST NOT attempt to select a different
revision.

4.3.2.1.3 Legacy Interfaces: A Note on Setting the Virtio Revision

A legacy device will not support the CCW_CMD_SET_VIRTIO_REV and answer with a command reject.
A non-transitional driver MUST stop trying to operate this device in that case. A transitional driver MUST
operate the device as if it had been able to set revision 0.

A legacy driver will not issue the CCW_CMD_SET_VIRTIO_REV prior to issuing other virtio-ccw specific
channel commands. A non-transitional device therefore MUST answer any such attempts with a command
reject. A transitional device MUST assume in this case that the driver is a legacy driver and continue as if
the driver selected revision 0. This implies that the device MUST reject any command not valid for revision
0, including a subsequent CCW_CMD_SET_VIRTIO_REV.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 71 of 284

4.3.2.2 Configuring a Virtqueue

CCW_CMD_READ_VQ_CONF is issued by the driver to obtain information about a queue. It uses the
following structure for communicating:

struct vg_config block {
bel6 index;
bel6 max_num;

The requested number of buffers for queue index is returned in max_num.

Afterwards, CCW_CMD_SET_VQ is issued by the driver to inform the device about the location used for its
queue. The transmitted structure is

struct vg_info block {
beb64 desc;
be32 res0;
bel6 index;
bel6 num;
be64 driver;
beb64 device;

desc, driver and device contain the guest addresses for the descriptor area, available area and used area
for queue index, respectively. The actual virtqueue size (number of allocated buffers) is transmitted in num.

4.3.2.2.1 Device Requirements: Configuring a Virtqueue

res0 is reserved and MUST be ignored by the device.

4.3.2.2.2 Legacy Interface: A Note on Configuring a Virtqueue

For a legacy driver or for a driver that selected revision 0, CCW_CMD_SET_VQ uses the following commu-
nication block:

struct vg_info block legacy {
beb64 queue;
be32 align;
bel6 index;
bel6 num;

queue contains the guest address for queue index, num the number of buffers and align the alignment. The
queue layout follows 2.7.2 Legacy Interfaces: A Note on Virtqueue Layout.

4.3.2.3 Communicating Status Information

The driver changes the status of a device via the CCW_CMD_WRITE_STATUS command, which transmits
an 8 bit status value.

As described in 2.2.2, a device sometimes fails to set the device status field: For example, it might fail to
accept the FEATURES_OK status bit during device initialization.

With revision 2, CCW_CMD_READ_STATUS is defined: It reads an 8 bit status value from the device and
acts as a reverse operation to CCW_CMD_WRITE_STATUS.

4.3.2.3.1 Driver Requirements: Communicating Status Information

If the device posts a unit check with command reject in response to the CCW_CMD_WRITE_STATUS com-
mand, the driver MUST assume that the device failed to set the status and the device status field retained
its previous value.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 72 of 284

If at least revision 2 has been negotiated, the driver SHOULD use the CCW_CMD_READ_STATUS com-
mand to retrieve the device status field after a configuration change has been detected.

If not at least revision 2 has been negotiated, the driver MUST NOT attempt to issue the CCW_CMD_-
READ_STATUS command.

4.3.2.3.2 Device Requirements: Communicating Status Information

If the device fails to set the device status field to the value written by the driver, the device MUST assure
that the device status field is left unchanged and MUST post a unit check with command reject.

If at least revision 2 has been negotiated, the device MUST return the current device status field if the
CCW_CMD_READ_STATUS command is issued.

4.3.2.4 Handling Device Features

Feature bits are arranged in an array of 32 bit values, making for a total of 8192 feature bits. Feature bits
are in little-endian byte order.

The CCW commands dealing with features use the following communication block:

struct virtio feature desc {
le32 features;
u8 index;

bi

features are the 32 bits of features currently accessed, while index describes which of the feature bit values
is to be accessed. No padding is added at the end of the structure, it is exactly 5 bytes in length.

The guest obtains the device’s device feature set via the CCW_CMD_READ_FEAT command. The device
stores the features at index to features.

For communicating its supported features to the device, the driver uses the CCW_CMD_WRITE_FEAT
command, denoting a features/index combination.

4.3.2.5 Device Configuration
The device’s configuration space is located in host memory.

To obtain information from the configuration space, the driver uses CCW_CMD_READ_CONF, specifying
the guest memory for the device to write to.

For changing configuration information, the driver uses CCW_CMD_WRITE_CONF, specifying the guest
memory for the device to read from.

In both cases, the complete configuration space is transmitted. This allows the driver to compare the new
configuration space with the old version, and keep a generation count internally whenever it changes.

4.3.2.6 Setting Up Indicators

In order to set up the indicator bits for host->guest notification, the driver uses different channel commands
depending on whether it wishes to use traditional I/O interrupts tied to a subchannel or adapter I/O interrupts
for virtqueue notifications. For any given device, the two mechanisms are mutually exclusive.

For the configuration change indicators, only a mechanism using traditional 1/O interrupts is provided, re-
gardless of whether traditional or adapter 1/O interrupts are used for virtqueue notifications.

4.3.2.6.1 Setting Up Classic Queue Indicators

Indicators for notification via classic I/O interrupts are contained in a 64 bit value per virtio-ccw proxy device.

To communicate the location of the indicator bits for host->guest notification, the driver uses the CCW_-
CMD_SET_IND command, pointing to a location containing the guest address of the indicators in a 64 bit
value.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 73 of 284

If the driver has already set up two-staged queue indicators via the CCW_CMD_SET_IND_ADAPTER com-
mand, the device MUST post a unit check with command reject to any subsequent CCW_CMD_SET_IND
command.

4.3.2.6.2 Setting Up Configuration Change Indicators

Indicators for configuration change host->guest notification are contained in a 64 bit value per virtio-ccw
proxy device.

To communicate the location of the indicator bits used in the configuration change host->guest notification,
the driver issues the CCW_CMD_SET_CONF_IND command, pointing to a location containing the guest
address of the indicators in a 64 bit value.

4.3.2.6.3 Setting Up Two-Stage Queue Indicators

Indicators for notification via adapter I/O interrupts consist of two stages:
* a summary indicator byte covering the virtqueues for one or more virtio-ccw proxy devices
+ a set of contigous indicator bits for the virtqueues for a virtio-ccw proxy device

To communicate the location of the summary and queue indicator bits, the driver uses the CCW_CMD _-
SET_IND_ADAPTER command with the following payload:

struct virtio_thinint area {
be64 summary indicator;
be64 indicator;
be64 bit nr;
u8 isc;

} attribute ((packed));

summary_indicator contains the guest address of the 8 bit summary indicator. indicator contains the guest
address of an area wherein the indicators for the devices are contained, starting at bit_nr, one bit per
virtqueue of the device. Bit numbers start at the left, i.e. the most significant bit in the first byte is as-
signed the bit number 0. jsc contains the 1/O interruption subclass to be used for the adapter 1/O interrupt.
It MAY be different from the isc used by the proxy virtio-ccw device’s subchannel. No padding is added at
the end of the structure, it is exactly 25 bytes in length.

4.3.2.6.3.1 Device Requirements: Setting Up Two-Stage Queue Indicators

If the driver has already set up classic queue indicators via the CCW_CMD_SET_IND command, the de-
vice MUST post a unit check with command reject to any subsequent CCW_CMD_SET _IND_ADAPTER
command.

4.3.2.6.4 Legacy Interfaces: A Note on Setting Up Indicators

In some cases, legacy devices will only support classic queue indicators; in that case, they will reject CCW_-
CMD_SET_IND_ADAPTER as they don’t know that command. Some legacy devices will support two-stage
queue indicators, though, and a driver will be able to successfully use CCW_CMD_SET_IND_ADAPTER to
set them up.

4.3.3 Device Operation

4.3.3.1 Host->Guest Notification

There are two modes of operation regarding host->guest notification, classic I/O interrupts and adapter 1/0O
interrupts. The mode to be used is determined by the driver by using CCW_CMD_SET _IND respectively
CCW_CMD_SET_IND_ADAPTER to set up queue indicators.

For configuration changes, the driver always uses classic /O interrupts.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 74 of 284

4.3.3.1.1 Notification via Classic I/O Interrupts

If the driver used the CCW_CMD_SET_IND command to set up queue indicators, the device will use classic
I/O interrupts for host->guest notification about virtqueue activity.

For notifying the driver of virtqueue buffers, the device sets the corresponding bit in the guest-provided
indicators. If an interrupt is not already pending for the subchannel, the device generates an unsolicited I/O
interrupt.

If the device wants to notify the driver about configuration changes, it sets bit 0 in the configuration indicators
and generates an unsolicited 1/O interrupt, if needed. This also applies if adapter 1/O interrupts are used for
queue notifications.

4.3.3.1.2 Notification via Adapter I/O Interrupts

If the driver used the CCW_CMD_SET IND_ADAPTER command to set up queue indicators, the device
will use adapter I/O interrupts for host->guest notification about virtqueue activity.

For notifying the driver of virtqueue buffers, the device sets the bit in the guest-provided indicator area at
the corresponding offset. The guest-provided summary indicator is set to 0x01. An adapter I/O interrupt for
the corresponding interruption subclass is generated.

The recommended way to process an adapter I/O interrupt by the driver is as follows:
* Process all queue indicator bits associated with the summary indicator.
* Clear the summary indicator, performing a synchronization (memory barrier) afterwards.

» Process all queue indicator bits associated with the summary indicator again.

4.3.3.1.2.1 Device Requirements: Notification via Adapter I/O Interrupts

The device SHOULD only generate an adapter I/O interrupt if the summary indicator had not been set prior
to notification.

4.3.3.1.2.2 Driver Requirements: Notification via Adapter I/O Interrupts

The driver MUST clear the summary indicator after receiving an adapter 1/O interrupt before it processes
the queue indicators.

4.3.3.1.3 Legacy Interfaces: A Note on Host->Guest Notification

As legacy devices and drivers support only classic queue indicators, host->guest notification will always be
done via classic I/O interrupts.

4.3.3.2 Guest->Host Notification

For notifying the device of virtqueue buffers, the driver unfortunately can’t use a channel command (the
asynchronous characteristics of channel I/O interact badly with the host block I/O backend). Instead, it uses
a diagnose 0x500 call with subcode 3 specifying the queue, as follows:

’ GPR ‘ Input Value Output Value
1 0x3
2 Subchannel ID Host Cookie
3 Notification data
4 Host Cookie

When VIRTIO_F_NOTIFICATION_DATA has not been negotiated, the Notification data contains the Virtqueue
number.

When VIRTIO_F_NOTIFICATION_DATA has been negotiated, the value has the following format:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 75 of 284

be32 {

vagn : 16;
next_off : 15;
next wrap : 1;

}i

See 2.9 Driver Notifications for the definition of the components.

4.3.3.2.1 Device Requirements: Guest->Host Notification

The device MUST ignore bits 0-31 (counting from the left) of GPR2. This aligns passing the subchannel ID
with the way it is passed for the existing I/O instructions.

The device MAY return a 64-bit host cookie in GPR2 to speed up the notification execution.

4.3.3.2.2 Driver Requirements: Guest->Host Notification

For each natification, the driver SHOULD use GPR4 to pass the host cookie received in GPR2 from the
previous notication.

Note: For example:

info->cookie = do notify(schid,
virtqueue get queue index(vq),
info->cookie) ;

4.3.3.3 Resetting Devices

In order to reset a device, a driver sends the CCW_CMD_VDEV_RESET command. This command does
not carry any payload.

The device signals completion of the virtio reset operation through successful conclusion of the CCW_CMD_-
VDEV_RESET channel command. In particular, the command not only triggers the reset operation, but the reset
operation is already completed when the operation concludes successfully.

4.3.3.3.1 Device Requirements: Resetting Devices

The device MUST finish the virtio reset operation and reinitialize device status to zero before it concludes the
CCW_CMD_VDEV_RESET command successfully.

The device MUST NOT send notifications or interact with the queues after it signaled successful conclusion of
the CCW_CMD_VDEV_RESET command.

4.3.3.3.2 Driver Requirements: Resetting Devices

The driver MAY consider the virtio reset operation to be complete already after successful conclusion of the
CCW_CMD_VDEV_RESET channel command, although it MAY also choose to verify reset completion by
reading device status via CCW_CMD_READ_STATUS and checking whether it is 0 afterwards.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 76 of 284

5 Device Types

On top of the queues, config space and feature negotiation facilities built into virtio, several devices are
defined.

The following device IDs are used to identify different types of virtio devices. Some device IDs are reserved
for devices which are not currently defined in this standard.

Discovering what devices are available and their type is bus-dependent.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 284

Device ID Virtio Device

0 reserved (invalid)
1 network card

2 block device

3 console

4 entropy source

5 memory ballooning (traditional)
6 ioMemory

7 rpmsg

8 SCSI host

9 9P transport

10 mac80211 wlan
11 rproc serial

12 virtio CAIF

13 memory balloon
16 GPU device

17 Timer/Clock device
18 Input device

19 Socket device
20 Crypto device
21 Signal Distribution Module
22 pstore device
23 IOMMU device
24 Memory device
25 Audio device

26 file system device
27 PMEM device

28 RPMB device

29 mac80211 hwsim wireless simulation device
30 Video encoder device
31 Video decoder device
32 SCMI device

33 NitroSecureModule
34 [2C adapter

35 Watchdog

36 CAN device

38 Parameter Server
39 Audio policy device
40 Bluetooth device
41 GPIO device

42 RDMA device

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 78 of 284

Some of the devices above are unspecified by this document, because they are seen as immature or espe-
cially niche. Be warned that some are only specified by the sole existing implementation; they could become
part of a future specification, be abandoned entirely, or live on outside this standard. We shall speak of them
no further.

5.1 Network Device

The virtio network device is a virtual ethernet card, and is the most complex of the devices supported so far
by virtio. It has enhanced rapidly and demonstrates clearly how support for new features are added to an
existing device. Empty buffers are placed in one virtqueue for receiving packets, and outgoing packets are
enqueued into another for transmission in that order. A third command queue is used to control advanced
filtering features.

5.1.1 Device ID
1

5.1.2 Virtqueues
0 receiveq1

1 transmitq1

2(N-1) receivegN
2(N-1)+1 transmitgN
2N controlqg

N=1 if neither VIRTIO_NET_F_MQ isnet-nor VIRTIO_NET_F_RSS are negotiated, otherwise N is set by
max_virtqueue_pairs.

controlqg only exists if VIRTIO_NET_F_CTRL_VQ set.

5.1.3 Feature bits

VIRTIO_NET_F_CSUM (0) Device handles packets with partial checksum. This “checksum offload” is a
common feature on modern network cards.

VIRTIO_NET_F_GUEST_CSUM (1) Driver handles packets with partial checksum.
VIRTIO_NET_F_CTRL_GUEST_OFFLOADS (2) Control channel offloads reconfiguration support.

VIRTIO_NET_F_MTU(3) Device maximum MTU reporting is supported. If offered by the device, device
advises driver about the value of its maximum MTU. If negotiated, the driver uses mtu as the maximum
MTU value.

VIRTIO_NET_F_MAC (5) Device has given MAC address.
VIRTIO_NET_F_GUEST_TSO04 (7) Driver can receive TSOv4.
VIRTIO_NET_F_GUEST_TSO6 (8) Driver can receive TSOV6.
VIRTIO_NET_F_GUEST_ECN (9) Driver can receive TSO with ECN.
VIRTIO_NET_F_GUEST_UFO (10) Driver can receive UFO.
VIRTIO_NET_F_HOST_TSO04 (11) Device can receive TSOv4.
VIRTIO_NET_F_HOST_TSO06 (12) Device can receive TSOV6.
VIRTIO_NET_F_HOST_ECN (13) Device can receive TSO with ECN.
VIRTIO_NET_F_HOST_UFO (14) Device can receive UFO.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 79 of 284

VIRTIO_NET_F_MRG_RXBUF (15) Driver can merge receive buffers.
VIRTIO_NET_F_STATUS (16) Configuration status field is available.
VIRTIO_NET_F_CTRL_VQ (17) Control channel is available.
VIRTIO_NET_F_CTRL_RX (18) Control channel RX mode support.
VIRTIO_NET_F_CTRL_VLAN (19) Control channel VLAN filtering.
VIRTIO_NET_F_GUEST_ANNOUNCE(21) Driver can send gratuitous packets.
VIRTIO_NET_F_MQ(22) Device supports multiqueue with automatic receive steering.
VIRTIO_NET_F_CTRL_MAC_ADDR(23) Set MAC address through control channel.

VIRTIO_NET_F_HOST_USO (56) Device can receive USO packets. Unlike UFO (fragmenting the packet) the
USO splits large UDP packet to several segments when each of these smaller packets has UDP header.

VIRTIO_NET_F_HASH_REPORT(57) Device can report per-packet hash value and a type of calculated hash.

VIRTIO_NET_F_GUEST_HDRLEN(59) Driver can provide the exact hdr_len value. Device benefits from know-
ing the exact header length.

VIRTIO_NET_F_RSS(60) Device supports RSS (receive-side scaling) with Toeplitz hash calculation and con-
figurable hash parameters for receive steering.

VIRTIO_NET_F_RSC_EXT(61) Device can process duplicated ACKs and report number of coalesced seg-
ments and duplicated ACKs.

VIRTIO_NET_F_STANDBY(62) Device may act as a standby for a primary device with the same MAC
address.

VIRTIO_NET_F_SPEED_DUPLEX(63) Device reports speed and duplex.

5.1.3.1 Feature bit requirements

Some networking feature bits require other networking feature bits (see 2.2.1):
VIRTIO_NET_F_GUEST_TS04 Requires VIRTIO_NET_F_GUEST_CSUM.
VIRTIO_NET_F_GUEST_TS06 Requires VIRTIO_NET_F_GUEST_CSUM.
VIRTIO_NET_F_GUEST_ECN Requires VIRTIO_NET_F_GUEST_TSO4 or VIRTIO_NET_F_GUEST_TSO®6.
VIRTIO_NET_F_GUEST_UFO Requires VIRTIO_NET_F_GUEST_CSUM.
VIRTIO_NET_F_HOST_TSO4 Requires VIRTIO_NET_F_CSUM.

VIRTIO_NET_F_HOST_TSO6 Requires VIRTIO_NET_F_CSUM.

VIRTIO_NET_F_HOST_ECN Requires VIRTIO_NET_F_HOST_TSO4 or VIRTIO_NET_F_HOST_TSO6.
VIRTIO_NET_F_HOST_UFO Requires VIRTIO_NET_F_CSUM.

VIRTIO_NET_F_HOST_USO Requires VIRTIO_NET_F_CSUM.

VIRTIO_NET_F_CTRL_RX Requires VIRTIO_NET_F_CTRL_VQ.

VIRTIO_NET_F_CTRL_VLAN Requires VIRTIO_NET_F_CTRL_VQ.
VIRTIO_NET_F_GUEST_ANNOUNCE Requires VIRTIO_NET_F_CTRL_VQ.

VIRTIO_NET_F_MQ Requires VIRTIO_NET_F_CTRL_VQ.

VIRTIO_NET_F_CTRL_MAC_ADDR Requires VIRTIO_NET_F_CTRL_VQ.

VIRTIO_NET_F_RSC_EXT Requires VIRTIO_NET_F_HOST_TSO04 or VIRTIO_NET_F_HOST_TSO6.
VIRTIO_NET_F_RSS Requires VIRTIO_NET_F_CTRL_VQ.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 80 of 284

5.1.3.2 Legacy Interface: Feature bits

VIRTIO_NET_F_GSO (6) Device handles packets with any GSO type. This was supposed to indicate seg-
mentation offload support, but upon further investigation it became clear that multiple bits were needed.

VIRTIO_NET_F_GUEST_RSC4 (41) Device coalesces TCPIP v4 packets. This was implemented by hy-
pervisor patch for certification purposes and current Windows driver depends on it. It will not function
if virtio-net device reports this feature.

VIRTIO_NET_F_GUEST_RSC6 (42) Device coalesces TCPIP v6 packets. Similar to VIRTIO_NET_F_-
GUEST_RSC4.

5.1.4 Device configuration layout

Three-driver-read-enty-Device configuration fields are eurrently-definedlisted below, they are read-only for a driver. The
mac address field always exists (though is only valid if VIRTIO_NET_F_MAC is set), and status only exists if
VIRTIO_NET_F_STATUS is set. Two read-only bits (for the driver) are currently defined for the status field:
VIRTIO_NET_S_LINK_UP and VIRTIO_NET_S_ANNOUNCE.

#define VIRTIO NET S LINK UP 1
#define VIRTIO NET S ANNOUNCE 2

The following driver-read-only field, max_virtqueue pairs only exists if VIRTIO_NET _F_MQ or VIRTIO_-
NET_F_RSS is set. This field specifies the maximum number of each of transmit and receive virtqueues (re-
ceiveq1...receiveqN and transmitq1. . .transmitqN respectively) that can be configured once VRFIO-NET-F-MQ
at least one of these features is negotiated.

The following driver-read-only field, mtu only exists if VIRTIO_NET _F_MTU is set. This field specifies the
maximum MTU for the driver to use.

The following two fields, speed and duplex, only exist if VIRTIO_NET_F_SPEED_DUPLEX is set.
speed contains the device speed, in units of 1 MBit per second, 0 to Ox7fffffff, or Oxffffffff for unknown speed.
duplex has the values of 0x01 for full duplex, 0x00 for half duplex and Oxff for unknown duplex state.

Both speed and duplex can change, thus the driver is expected to re-read these values after receiving a configu-
ration change notification.

struct virtio_net_ config {
u8 macl[6];
lel6 status;
lel6 max virtqueue pairs;
lel6 mtu;
le32 speed;
u8 duplex;

lel6 rss max indirection table length;

le32 supported hash types;
bi

The following field, rss_max_key_size only exists if VIRTIO_NET_F_RSS or VIRTIO_NET_F_HASH_RE-
PORT s set. It specifies the maximum supported length of RSS key in bytes.

The following field, rss_max_indirection_table_length only exists if VIRTIO_NET_F_RSS is set. It specifies the
maximum number of 16-bit entries in RSS indirection table.

The next field, supported_hash__types only exists if the device supports hash calculation, i.e. if VIRTIO_NET_-
F_RSS or VIRTIO_NET_F_HASH_REPORT is set.

Field supported_hash__types contains the bitmask of supported hash types. See 5.1.6.4.3.1 for details of supported
hash types.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 81 of 284

5.1.4.1 Device Requirements: Device configuration layout

The device MUST set max_virtqueue_pairs to between 1 and 0x8000 inclusive, if it offers VIRTIO_NET -
F_MQ.

The device MUST set mtu to between 68 and 65535 inclusive, if it offers VIRTIO_NET_F_MTU.
The device SHOULD set mtu to at least 1280, if it offers VIRTIO_NET_F_MTU.
The device MUST NOT modify mtu once it has been set.

The device MUST NOT pass received packets that exceed mtu (plus low level ethernet header length) size
with gso_type NONE or ECN after VIRTIO_NET_F_MTU has been successfully negotiated.

The device MUST forward transmitted packets of up to mtu (plus low level ethernet header length) size with
gso_type NONE or ECN, and do so without fragmentation, after VIRTIO_NET_F_MTU has been success-
fully negotiated.

The device MUST set rss_max_key_size to at least 40, if it offers VIRTIO_NET_F_RSS or VIRTIO_NET_F_-
HASH_REPORT.

The device MUST set rss_max_indirection_table_length to at least 128, if it offers VIRTIO_NET_F_RSS.

If the driver negotiates the VIRTIO_NET_F_STANDBY feature, the device MAY act as a standby device for
a primary device with the same MAC address.

If VIRTIO_NET_F_SPEED_DUPLEX has been negotiated, speed MUST contain the device speed, in units of
1 MBIt per second, 0 to Ox7ffffffff, or OxfFffffff for unknown.

If VIRTIO_NET_F_SPEED_DUPLEX has been negotiated, duplex MUST have the values of 0x00 for full duplex,
0x01 for half duplex, or Oxff for unknown.

If VIRTIO_NET_F_SPEED_DUPLEX and VIRTIO_NET_F_STATUS have both been negotiated, the device
SHOULD NOT change the speed and duplex fields as long as VIRTIO_NET_S_LINK_UP is set in the status.

5.1.4.2 Driver Requirements: Device configuration layout

Adriver SHOULD negotiate VIRTIO_NET_F_MAC if the device offers it. If the driver negotiates the VIRTIO_-
NET_F_MAC feature, the driver MUST set the physical address of the NIC to mac. Otherwise, it SHOULD
use a locally-administered MAC address (see IEEE 802, “9.2 48-bit universal LAN MAC addresses”).

If the driver does not negotiate the VIRTIO_NET_F_STATUS feature, it SHOULD assume the link is active,
otherwise it SHOULD read the link status from the bottom bit of status.

A driver SHOULD negotiate VIRTIO_NET_F_MTU if the device offers it.

If the driver negotiates VIRTIO_NET_F_MTU, it MUST supply enough receive buffers to receive at least one
receive packet of size mtu (plus low level ethernet header length) with gso _type NONE or ECN.

If the driver negotiates VIRTIO_NET_F_MTU, it MUST NOT transmit packets of size exceeding the value
of mtu (plus low level ethernet header length) with gso_type NONE or ECN.

A driver SHOULD negotiate the VIRTIO_NET_F_STANDBY feature if the device offers it.

If VIRTIO_NET_F_SPEED_DUPLEX has been negotiated, the driver MUST treat any value of speed above
OxTfffffff as well as any value of duplex not matching 0x00 or 0x01 as an unknown value.

If VIRTIO_NET_F_SPEED_DUPLEX has been negotiated, the driver SHOULD re-read speed and duplex after
a configuration change notification.

5.1.4.3 Legacy Interface: Device configuration layout

When using the legacy interface, transitional devices and drivers MUST format status and max_virtqueue_-
pairs in struct virtio_net_config according to the native endian of the guest rather than (necessarily when
not using the legacy interface) little-endian.

When using the legacy interface, mac is driver-writable which provided a way for drivers to update the MAC
without negotiating VIRTIO_NET_F_CTRL_MAC_ADDR.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 82 of 284

5.1.5 Device Initialization

A driver would perform a typical initialization routine like so:

1.

Identify and initialize the receive and transmission virtqueues, up to N of each kind. If VIRTIO_NET_-
F_MQ feature bit is negotiated, N=max_virtqueue_pairs, otherwise identify N=1.

If the VIRTIO_NET_F_CTRL_VQ feature bit is negotiated, identify the control virtqueue.

3. Fill the receive queues with buffers: see 5.1.6.3.

4. Even with VIRTIO_NET_F_MQ, only receiveq1, transmitq1 and controlq are used by default. The

driver would send the VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command specifying the number of
the transmit and receive queues to use.

If the VIRTIO_NET_F_MAC feature bit is set, the configuration space mac entry indicates the “phys-
ical” address of the network card, otherwise the driver would typically generate a random local MAC
address.

If the VIRTIO_NET_F_STATUS feature bit is negotiated, the link status comes from the bottom bit of
status. Otherwise, the driver assumes it’s active.

A performant driver would indicate that it will generate checksumless packets by negotating the VIR-
TIO_NET_F_CSUM feature.

. If that feature is negotiated, a driver can use TCP segmentation or UDP segmentation /fragmentation

offload by negotiating the VIRTIO_NET_F_HOST_TSO4 (IPv4 TCP), VIRTIO_NET_F_HOST_TSO6
(IPv6 TCP)ane-, VIRTIO_NET_F_HOST_UFO (UDP fragmentation) and VIRTIO_NET_F_HOST_USO
(UDP segmentation) features.

The converse features are also available: a driver can save the virtual device some work by negotiating
these features.

Note: For example, a network packet transported between two guests on the same system might
not need checksumming at all, nor segmentation, if both guests are amenable. The VIRTIO_-
NET_F_GUEST_CSUM feature indicates that partially checksummed packets can be received,
and if it can do that then the VIRTIO_NET_F_GUEST_TSO04, VIRTIO_NET_F_GUEST_TSO®6,
VIRTIO_NET_F_GUEST_UFO and VIRTIO_NET_F_GUEST_ECN are the input equivalents of
the features described above. See 5.1.6.3 Setting Up Receive Buffers and 5.1.6.4 Processing
of Incoming Packets below.

A truly minimal driver would only accept VIRTIO_NET_F_MAC and ignore everything else.

5.1.6 Device Operation

Packets are transmitted by placing them in the transmitq1. . .transmitgN, and buffers for incoming packets
are placed in the receiveq1...receivegN. In each case, the packet itself is preceded by a header:

struct virtio_net_hdr {
#define VIRTIO NET HDR F NEEDS CSUM 1

#define VIRTIO NET HDR _F DATA VALID 2
#define VIRTIO NET_ HDR _F_RSC_INFO 4
u8 flags;

#define VIRTIO NET HDR GSO NONE
#define VIRTIO NET HDR GSO TCPV4

#define VIRTIO NET HDR GSO TCPV6
#define VIRTIO NET HDR GSO UDP L4

0
1
#define VIRTIO NET HDR GSO UDP 3
4
5
0

#define VIRTIO NET HDR GSO ECN 0x8

u8 gso_type;

lel6 hdr_len;
lel6 gso_size;
lel6 csum start;
lel6 csum offset;
lel6 num buffers;

1le32 hash value; (Only if VIRTIO NET F HASH REPORT negotiated)
lel6 hash report; (Only if VIRTIO NET F HASH REPORT negotiated)

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 83 of 284

| oo Xel6 padding reserved; (Only if VIRTIO NET F HASH REPORT negotiated)
‘ bi

The controlq is used to control device features such as filtering.

5.1.6.1 Legacy Interface: Device Operation

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_net_-
hdr according to the native endian of the guest rather than (necessarily when not using the legacy interface)
little-endian.

The legacy driver only presented num_buffers in the struct virtio_net_hdr when VIRTIO_NET_F_MRG_-
RXBUF was negotiated; without that feature the structure was 2 bytes shorter.

When using the legacy interface, the driver SHOULD ignore the used length for the transmit queues and
the controlg queue.

Note: Historically, some devices put the total descriptor length there, even though no data was actually
written.

5.1.6.2 Packet Transmission
Transmitting a single packet is simple, but varies depending on the different features the driver negotiated.

1. The driver can send a completely checksummed packet. In this case, flags will be zero, and gso_type
will be VIRTIO_NET_HDR_GSO_NONE.

2. If the driver negotiated VIRTIO_NET_F_CSUM, it can skip checksumming the packet:
+ flags has the VIRTIO_NET_HDR_F_NEEDS_CSUM set,
» csum_start is set to the offset within the packet to begin checksumming, and

» csum_offset indicates how many bytes after the csum_start the new (16 bit ones’ complement)
checksum is placed by the device.

+ The TCP checksum field in the packet is set to the sum of the TCP pseudo header, so that replacing
it by the ones’ complement checksum of the TCP header and body will give the correct result.

Note: For example, consider a partially checksummed TCP (IPv4) packet. It will have a 14 byte ether-
net header and 20 byte IP header followed by the TCP header (with the TCP checksum field 16
bytes into that header). csum_start will be 14+20 = 34 (the TCP checksum includes the header),
and csum_offset will be 16.

3. If the driver negotiated VIRTIO_NET_F_HOST_TSO04, TSO6, USO or UFO, and the packet requires
TCP segmentationerdbP-, UDP segmentation or fragmentation, then gso_type is set to VIRTIO_NET -
HDR_GSO_TCPV4, TCPV6, UDP_L4 or UDP. (Otherwise, it is set to VIRTIO_NET_HDR_GSO_-
NONE). In this case, packets larger than 1514 bytes can be transmitted: the metadata indicates how
to replicate the packet header to cut it into smaller packets. The other gso fields are set:

* If the VIRTIO_NET_F_GUEST_HDRLEN feature has been negotiated, hdr_Jlen indicates the header
length that needs to be replicated for each packet. It's the number of bytes from the beginning of the
packet to the beginning of the transport payload. Otherwise, if the VIRTIO_NET_F_GUEST_HDRLEN
feature has not been negotiated, hdr_len is a hint to the device as to how much of the header needs
to be kept to copy into each packet, usually set to the length of the headers, including the transport
header’.

Note: Some devices benefit from knowledge of the exact header length.
» gso_size is the maximum size of each packet beyond that header (ie. MSS).

« If the driver negotiated the VIRTIO_NET_F_HOST_ECN feature, the VIRTIO_NET_HDR_GSO_-
ECN bit in gso_type indicates that the TCP packet has the ECN bit set?.

"Due to various bugs in implementations, this field is not useful as a guarantee of the transport header size.
2This case is not handled by some older hardware, so is called out specifically in the protocol.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 84 of 284

4. num_buffers is set to zero. This field is unused on transmitted packets.

5. The header and packet are added as one output descriptor to the transmitg, and the device is notified
of the new entry (see 5.1.5 Device Initialization).

5.1.6.2.1 Driver Requirements: Packet Transmission

The driver MUST set num_buffers to zero.

If VIRTIO_NET_F_CSUM is not negotiated, the driver MUST set flags to zero and SHOULD supply a fully
checksummed packet to the device.

If VIRTIO_NET_F_HOST_TSO04 is negotiated, the driver MAY set gso_type to VIRTIO_NET_HDR_GSO -
TCPV4 to request TCPv4 segmentation, otherwise the driver MUST NOT set gso_type to VIRTIO_NET_-
HDR_GSO_TCPV4.

If VIRTIO_NET_F_HOST_TSO6 is negotiated, the driver MAY set gso_type to VIRTIO_NET_HDR_GSO -
TCPV6 to request TCPv6 segmentation, otherwise the driver MUST NOT set gso_type to VIRTIO_NET -
HDR_GSO_TCPVe.

If VIRTIO_NET_F_HOST_UFO is negotiated, the driver MAY set gso_type to VIRTIO_NET_HDR_GSO_-
UDP to request UDP segmentatienfragmentation, otherwise the driver MUST NOT set gso_type to VIRTIO_-
NET_HDR_GSO_UDP.

If VIRTIO_NET_F_HOST_USO is negotiated, the driver MAY set gso_type to VIRTIO_NET_HDR_GSO_-
UDP_L4 to request UDP segmentation, otherwise the driver MUST NOT set gso_ type to VIRTIO_NET_HDR_-
GSO_UDP_L4.

The driver SHOULD NOT send to the device TCP packets requiring segmentation offload which have the
Explicit Congestion Notification bit set, unless the VIRTIO_NET_F_HOST_ECN feature is negotiated, in
which case the driver MUST set the VIRTIO_NET_HDR_GSO_ECN bitin gso_type.

If the VIRTIO_NET_F_CSUM feature has been negotiated, the driver MAY set the VIRTIO_NET_HDR_F_-
NEEDS_CSUM bit in flags, if so:

1. the driver MUST validate the packet checksum at offset csum_offset from csum_start as well as all
preceding offsets;

2. the driver MUST set the packet checksum stored in the buffer to the TCP/UDP pseudo header;

3. the driver MUST set csum_start and csum_offset such that calculating a ones’ complement checksum
from csum_start up until the end of the packet and storing the result at offset csum_offset from csum_-
start will result in a fully checksummed packet;

If none of the VIRTIO_NET_F_HOST_TSO04, TSO6, USO or UFO options have been negotiated, the driver
MUST set gso_type to VIRTIO_NET_HDR_GSO_NONE.

If gso_type differs from VIRTIO_NET_HDR_GSO_NONE, then the driver MUST also set the VIRTIO_NET_-
HDR_F_NEEDS_CSUM bit in flags and MUST set gso_size to indicate the desired MSS.

If one of the VIRTIO_NET_F_HOST_TS04, TSO6, USO or UFO options have been negotiated:

* If the VIRTIO_NET_F_GUEST_HDRLEN feature has been negotiated, and gso_type differs from VIR-
TIO_NET_HDR_GSO_NONE, the driver MUST set hdr_len to a value equal to the length of the headers,
including the transport header.

* If the VIRTIO_NET_F_GUEST_HDRLEN feature has not been negotiated, or gso_ type is VIRTIO_NET_-
HDR_GSO_NONE, the driver SHOULD set hdr_len to a value not less than the length of the headers,
including the transport header.

The driver SHOULD accept the VIRTIO_NET_F_GUEST_HDRLEN feature if it has been offered, and if it's
able to provide the exact header length.

The driver MUST NOT set the VIRTIO_NET_HDR_F_DATA_VALID and VIRTIO_NET_HDR_F_RSC_INFO
bits in flags.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 85 of 284

5.1.6.2.2 Device Requirements: Packet Transmission

The device MUST ignore flag bits that it does not recognize.

If VIRTIO_NET_HDR_F_NEEDS_CSUM bit in flags is not set, the device MUST NOT use the csum_start
and csum_offset.

If one of the VIRTIO_NET_F_HOST_TS04, TSO6, USO or UFO options have been negotiated:

* If the VIRTIO_NET_F_GUEST_HDRLEN feature has been negotiated, and gso_type differs from VIR-
TIO_NET_HDR_GSO_NONE, the device MAY use hdr_len as the transport header size.

Note: Caution should be taken by the implementation so as to prevent a malicious driver from attacking
the device by setting an incorrect hdr_len.

* If the VIRTIO_NET_F_GUEST_HDRLEN feature has not been negotiated, or gso_ type is VIRTIO_NET_-
HDR_GSO_NONE, the device MAY use hdr_len only as a hint about the transport header size. The
device MUST NOT rely on hdr_len to be correct.

Note: This is due to various bugs in implementations.

If VIRTIO_NET_HDR_F_NEEDS_CSUM is not set, the device MUST NOT rely on the packet checksum
being correct.

5.1.6.2.3 Packet Transmission Interrupt

Often a driver will suppress transmission virtqueue interrupts and check for used packets in the transmit
path of following packets.

The normal behavior in this interrupt handler is to retrieve used buffers from the virtqueue and free the
corresponding headers and packets.

5.1.6.3 Setting Up Receive Buffers

Itis generally a good idea to keep the receive virtqueue as fully populated as possible: if it runs out, network
performance will suffer.

If the VIRTIO_NET_F_GUEST_TSO04, VIRTIO_NET_F_GUEST_TSO06 or VIRTIO_NET_F_GUEST_UFO
features are used, the maximum incoming packet will be to 65550 bytes long (the maximum size of a TCP
or UDP packet, plus the 14 byte ethernet header), otherwise 1514 bytes. The 12-byte struct virtio_net_hdr
is prepended to this, making for 65562 or 1526 bytes.

5.1.6.3.1 Driver Requirements: Setting Up Receive Buffers

* If VIRTIO_NET_F_MRG_RXBUF is not negotiated:

— IfVIRTIO_NET _F_GUEST TSO04, VIRTIO_NET F _GUEST _TSO6 or VIRTIO_NET F GUEST -
UFO are negotiated, the driver SHOULD populate the receive queue(s) with buffers of at least
65562 bytes.

— Otherwise, the driver SHOULD populate the receive queue(s) with buffers of at least 1526 bytes.

* If VIRTIO_NET_F_MRG_RXBUF is negotiated, each buffer MUST be at least the size of the struct
virtio_net_hdr.

Note: Obviously each buffer can be split across multiple descriptor elements.
If VIRTIO_NET_F_MQ is negotiated, each of receiveq1. . .receivegN that will be used SHOULD be populated
with receive buffers.

5.1.6.3.2 Device Requirements: Setting Up Receive Buffers

The device MUST set num_buffers to the number of descriptors used to hold the incoming packet.
The device MUST use only a single descriptor if VIRTIO_NET_F_MRG_RXBUF was not negotiated.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 284

Note: This means that num_buffers will always be 1 if VIRTIO_NET_F_MRG_RXBUF is not negotiated.

5.1.6.4 Processing of Incoming Packets

When a packet is copied into a buffer in the receiveq, the optimal path is to disable further used buffer
notifications for the receiveq and process packets until no more are found, then re-enable them.

Processing incoming packets involves:

1. num_buffers indicates how many descriptors this packet is spread over (including this one): this will
always be 1 if VIRTIO_NET_F_MRG_RXBUF was not negotiated. This allows receipt of large packets
without having to allocate large buffers: a packet that does not fit in a single buffer can flow over to the
next buffer, and so on. In this case, there will be at least num_buffers used buffers in the virtqueue, and
the device chains them together to form a single packet in a way similar to how it would store itin a single
buffer spread over multiple descriptors. The other buffers will not begin with a struct virtio_net_hdr.

2. If num_buffers is one, then the entire packet will be contained within this buffer, immediately following
the struct virtio_net_hdr.

3. Ifthe VIRTIO_NET_F_GUEST_CSUM feature was negotiated, the VIRTIO_NET _HDR_F_DATA VALID
bitin flags can be set: if so, device has validated the packet checksum. In case of multiple encapsulated
protocols, one level of checksums has been validated.

Additionally, VIRTIO_NET_F_GUEST_CSUM, TSO4, TSO6, UDP and ECN features enable receive check-
sum, large receive offload and ECN support which are the input equivalents of the transmit checksum,
transmit segmentation offloading and ECN features, as described in 5.1.6.2:

1. Ifthe VIRTIO_NET_F_GUEST_TSO04, TSO6 or UFO options were negotiated, then gso_type MAY be
something other than VIRTIO_NET_HDR_GSO_NONE, and gso_size field indicates the desired MSS
(see Packet Transmission point 2).

2. Ifthe VIRTIO_NET_F_RSC_EXT option was negotiated (this implies one of VIRTIO_NET _F_GUEST _-
TSO04, TSOB6), the device processes also duplicated ACK segments, reports number of coalesced TCP
segments in csum_start field and number of duplicated ACK segments in csum_offset field and sets
bit VIRTIO_NET_HDR_F_RSC_INFO in flags.

3. If the VIRTIO_NET_F_GUEST_CSUM feature was negotiated, the VIRTIO_NET_HDR_F_NEEDS -
CSUM bit in flags can be set: if so, the packet checksum at offset csum_offset from csum_start and
any preceding checksums have been validated. The checksum on the packet is incomplete and if bit
VIRTIO_NET_HDR_F_RSC_INFO is not set in flags, then csum_start and csum_offset indicate how
to calculate it (see Packet Transmission point 1).

If applicable, the device calculates per-packet hash for incoming packets as defined in 5.1.6.4.3.

If applicable, the device reports hash information for incoming packets as defined in 5.1.6.4.4.

5.1.6.4.1 Device Requirements: Processing of Incoming Packets

If VIRTIO_NET_F_MRG_RXBUF has not been negotiated, the device MUST set num_buffers to 1.

If VIRTIO_NET_F_MRG_RXBUF has been negotiated, the device MUST set num_buffers to indicate the
number of buffers the packet (including the header) is spread over.

If a receive packet is spread over multiple buffers, the device MUST use all buffers but the last (i.e. the first
nuwmprffers—i-num__buffers - 1 buffers) completely up to the full length of each buffer supplied by the driver.

The device MUST use all buffers used by a single receive packet together, such that at least num_buffers
are observed by driver as used.

If VIRTIO_NET_F_GUEST_CSUM is not negotiated, the device MUST set flags to zero and SHOULD supply
a fully checksummed packet to the driver.

If VIRTIO_NET_F_GUEST_TSO4 is not negotiated, the device MUST NOT set gso_type to VIRTIO_NET _-
HDR_GSO_TCPV4.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 87 of 284

If VIRTIO_NET_F_GUEST_UDP is not negotiated, the device MUST NOT set gso_type to VIRTIO_NET -
HDR_GSO_UDP.

If VIRTIO_NET_F_GUEST_TSOE6 is not negotiated, the device MUST NOT set gso_type to VIRTIO_NET _-
HDR_GSO_TCPVe.

The device SHOULD NOT send to the driver TCP packets requiring segmentation offload which have the
Explicit Congestion Notification bit set, unless the VIRTIO_NET_F_GUEST_ECN feature is negotiated, in
which case the device MUST set the VIRTIO_NET_HDR_GSO_ECN bit in gso_type.

Ifthe VIRTIO_NET_F_GUEST_CSUM feature has been negotiated, the device MAY set the VIRTIO_NET _-
HDR_F_NEEDS_CSUM bit in flags, if so:

1. the device MUST validate the packet checksum at offset csum_offset from csum_start as well as all
preceding offsets;

2. the device MUST set the packet checksum stored in the receive buffer to the TCP/UDP pseudo header;

3. the device MUST set csum_start and csum_offset such that calculating a ones’ complement checksum
from csum_start up until the end of the packet and storing the result at offset csum_offset from csum_-
start will result in a fully checksummed packet;

If none of the VIRTIO_NET_F_GUEST_TSO4, TSO6 or UFO options have been negotiated, the device
MUST set gso_type to VIRTIO_NET_HDR_GSO_NONE.

If gso_type differs from VIRTIO_NET_HDR_GSO_NONE, then the device MUST also set the VIRTIO_-
NET_HDR_F_NEEDS_CSUM bitin flags MUST set gso_size to indicate the desired MSS. If VIRTIO_NET _-
F_RSC_EXT was negotiated, the device MUST also set VIRTIO_NET_HDR_F_RSC_INFO bit in flags, set
csum_start to number of coalesced TCP segments and set csum_offset to number of received duplicated
ACK segments.

If VIRTIO_NET_F_RSC_EXT was not negotiated, the device MUST not set VIRTIO_NET _HDR F_RSC -
INFO bit in flags.

If one of the VIRTIO_NET_F_GUEST_TSO04, TSO6 or UFO options have been negotiated, the device
SHOULD set hdr_len to a value not less than the length of the headers, including the transport header.

If the VIRTIO_NET_F_GUEST_CSUM feature has been negotiated, the device MAY set the VIRTIO_NET -
HDR_F_DATA_VALID bit in flags, if so, the device MUST validate the packet checksum (in case of multiple
encapsulated protocols, one level of checksums is validated).

5.1.6.4.2 Driver Requirements: Processing of Incoming Packets

The driver MUST ignore flag bits that it does not recognize.

If VIRTIO_NET_HDR_F_NEEDS_CSUM bit in flags is not set or if VIRTIO_NET_HDR_F_RSC_INFO bit
flags is set, the driver MUST NOT use the csum_start and csum_offset.

If one of the VIRTIO_NET_F_GUEST_TS04, TSO6 or UFO options have been negotiated, the driver MAY
use hdr_len only as a hint about the transport header size. The driver MUST NOT rely on hdr_len to be
correct.

Note: This is due to various bugs in implementations.

If neither VIRTIO_NET_HDR_F_NEEDS_CSUM nor VIRTIO_NET_HDR_F_DATA_VALID is set, the driver
MUST NOT rely on the packet checksum being correct.

5.1.6.4.3 Hash calculation for incoming packets

A device attempts to calculate a per-packet hash in the following cases:

* The feature VIRTIO_NET_F_RSS was negotiated. The device uses the hash to determine the receive
virtqueue to place incoming packets.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 88 of 284

* The feature VIRTIO_NET_F_HASH_REPORT was negotiated. The device reports the hash value and the
hash type with the packet.

If the feature VIRTIO_NET_F_RSS was negotiated:
* The device uses hash_types of the virtio_net_rss_config structure as 'Enabled hash types’ bitmask.

* The device uses a key as defined in hash_key data and hash_key length of the virtio_net_rss_config
structure (see 5.1.6.5.7.1).

If the feature VIRTIO_NET_F_RSS was not negotiated:
* The device uses hash_types of the virtio_net_hash_config structure as 'Enabled hash types’ bitmask.

* The device uses a key as defined in hash_key_data and hash_key_length of the virtio_net_hash_config
structure (see 5.1.6.5.6.4).

Note that if the device offers VIRTIO_NET_F_HASH_REPORT, even if it supports only one pair of virtqueues,
it MUST support at least one of commands of VIRTIO_NET_CTRL_MQ class to configure reported hash
parameters:

* If the device offers VIRTIO_NET_F_RSS, it MUST support VIRTIO_NET_CTRL_MQ_RSS_CONFIG
command per 5.1.6.5.7.1.

* Otherwise the device MUST support VIRTIO_NET_CTRL_MQ_HASH_CONFIG command per 5.1.6.5.6.4.

5.1.6.4.3.1 Supported/enabled hash types

Hash types applicable for IPv4 packets:

Hash types applicable for IPv6 packets without extension headers

#define VIRTIQ NET HASH TYPE UDPVE .. L S5

Hash types applicable for IPv6 packets with extension headers

#define VIRIIO NET HASH TYPE IR EX (L << 6)
#define VIRTIO NET HASH TYPE TCR EX (I << 1)

5.1.6.4.3.2 IPv4 packets

The device calculates the hash on IPv4 packets according to 'Enabled hash types’ bitmask as follows:

* If VIRTIO_NET_HASH_TYPE_TCPv4 is set and the packet has a TCP header, the hash is calculated over
the following fields:

Source IP address

Destination IP address

Source TCP port

Destination TCP port

* Else if VIRTIO_NET_HASH_TYPE_UDPv4 is set and the packet has a UDP header, the hash is calculated
over the following fields:

— Source IP address

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 89 of 284

— Destination IP address
— Source UDP port
— Destination UDP port
* Else if VIRTIO_NET_HASH_TYPE_IPv4 is set, the hash is calculated over the following fields:
— Source IP address
— Destination IP address

¢ Else the device does not calculate the hash

5.1.6.4.3.3 IPv6 packets without extension header

The device calculates the hash on IPv6 packets without extension headers according to 'Enabled hash types’
bitmask as follows:

* If VIRTIO_NET_HASH_TYPE_TCPv6 is set and the packet has a TCPv6 header, the hash is calculated
over the following fields:

Source IPv6 address

Destination IPv6 address

Source TCP port

Destination TCP port

* Else if VIRTIO_NET_HASH_TYPE_UDPVG6 is set and the packet has a UDPv6 header, the hash is calcu-
lated over the following fields:

Source IPv6 address

Destination IPv6 address

Source UDP port

Destination UDP port

* Else if VIRTIO_NET_HASH_TYPE_IPv6 is set, the hash is calculated over the following fields:
— Source IPv6 address
— Destination IPv6 address

* Else the device does not calculate the hash

5.1.6.4.3.4 IPv6 packets with extension header
The device calculates the hash on IPv6 packets with extension headers according to 'Enabled hash types’ bitmask
as follows:

* If VIRTIO_NET_HASH_TYPE_TCP_EX is set and the packet has a TCPv6 header, the hash is calculated
over the following fields:

Home address from the home address option in the IPv6 destination options header. If the extension
header is not present, use the Source IPv6 address.

IPv6 address that is contained in the Routing-Header-Type-2 from the associated extension header. If
the extension header is not present, use the Destination IPv6 address.

Source TCP port

Destination TCP port

* Else if VIRTIO_NET_HASH_TYPE_UDP_EX is set and the packet has a UDPv6 header, the hash is
calculated over the following fields:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 90 of 284

Home address from the home address option in the IPv6 destination options header. If the extension
header is not present, use the Source IPv6 address.

IPv6 address that is contained in the Routing-Header-Type-2 from the associated extension header. If
the extension header is not present, use the Destination IPv6 address.

Source UDP port

Destination UDP port
* Else if VIRTIO_NET_HASH_TYPE_IP_EX is set, the hash is calculated over the following fields:

— Home address from the home address option in the IPv6 destination options header. If the extension
header is not present, use the Source IPv6 address.

— IPv6 address that is contained in the Routing-Header-Type-2 from the associated extension header. If
the extension header is not present, use the Destination IPv6 address.

* Else skip IPv6 extension headers and calculate the hash as defined for an IPv6 packet without extension
headers (see 5.1.6.4.3.3).

5.1.6.4.4 Hash reporting for incoming packets

If VIRTIO_NET_F_HASH_REPORT was negotiated and the device has calculated the hash for the packet, the
device fills hash__report with the report type of calculated hash and hash_value with the value of calculated hash.

If VIRTIO_NET_F_HASH_REPORT was negotiated but due to any reason the hash was not calculated, the
device sets hash_report to VIRTIO_NET_HASH_REPORT_NONE.

Possible values that the device can report in hash_report are defined below. They correspond to supported hash
types defined in 5.1.6.4.3.1 as follows:

VIRTIO_NET_HASH_TYPE_XXX = 1 « (VIRTIO_NET_HASH_REPORT_XXX - 1)

#define VIRTIO NET HASH REPORT NONE
#define VIRTIO NET HASH REPORT IPv4
#define VIRTIO NET HASH REPORT TCPv4
#define VIRTIO NET HASH REPORT UDPv4
#define VIRTIO NET HASH REPORT IPv6
#define VIRTIO NET HASH REPORT TCPv6
#define VIRTIO NET HASH REPORT UDPv6

i {I{ntid{WINIF IO

5.1.6.5 Control Virtqueue

The driver uses the control virtqueue (if VIRTIO_NET_F_CTRL_VQ is negotiated) to send commands to
manipulate various features of the device which would not easily map into the configuration space.

All commands are of the following form:

struct virtio _net ctrl {
u8 class;
u8 command;
u8 command-specific-datall;
u8 ack;
}i

/* ack values */
#define VIRTIO_NET OK 0
#define VIRTIO NET ERR 1

The class, command and command-specific-data are set by the driver, and the device sets the ack byte.
There is little it can do except issue a diagnostic if ack is not VIRTIO_NET_OK.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 91 of 284

5.1.6.5.1 Packet Receive Filtering

Ifthe VIRTIO_NET_F_CTRL_RXand VIRTIO_NET_F_CTRL_RX_EXTRA features are negotiated, the driver
can send control commands for promiscuous mode, multicast, unicast and broadcast receiving.

Note: In general, these commands are best-effort: unwanted packets could still arrive.

#define VIRTIO NET CTRL RX 0
#define VIRTIO NET CTRL RX PROMISC
#define VIRTIO NET CTRL RX ALLMULTI
#define VIRTIO NET CTRL_RX ALLUNI
#define VIRTIO NET CTRL RX NOMULTI
#define VIRTIO NET CTRL RX NOUNI
#define VIRTIO NET CTRL RX NOBCAST

g W N e O

5.1.6.5.1.1 Device Requirements: Packet Receive Filtering

If the VIRTIO_NET_F_CTRL_RX feature has been negotiated, the device MUST support the following VIR-
TIO_NET_CTRL_RX class commands:

* VIRTIO_NET_CTRL_RX_PROMISC turns promiscuous mode on and off. The command-specific-data
is one byte containing 0 (off) or 1 (on). If promiscous mode is on, the device SHOULD receive all
incoming packets. This SHOULD take effect even if one of the other modes set by a VIRTIO_NET -
CTRL_RX class command is on.

* VIRTIO_NET_CTRL_RX_ALLMULTI turns all-multicast receive on and off. The command-specific-
data is one byte containing 0 (off) or 1 (on). When all-multicast receive is on the device SHOULD allow
all incoming multicast packets.

If the VIRTIO_NET_F_CTRL_RX_EXTRA feature has been negotiated, the device MUST support the fol-
lowing VIRTIO_NET_CTRL_RX class commands:

* VIRTIO_NET_CTRL_RX_ALLUNI turns all-unicast receive on and off. The command-specific-data is
one byte containing 0 (off) or 1 (on). When all-unicast receive is on the device SHOULD allow all
incoming unicast packets.

* VIRTIO_NET_CTRL_RX_NOMULTI suppresses multicast receive. The command-specific-data is one
byte containing 0 (multicast receive allowed) or 1 (multicast receive suppressed). When multicast re-
ceive is suppressed, the device SHOULD NOT send multicast packets to the driver. This SHOULD take
effect even if VIRTIO_NET_CTRL_RX_ALLMULTI is on. This filter SHOULD NOT apply to broadcast
packets.

* VIRTIO_NET_CTRL_RX_NOUNI suppresses unicast receive. The command-specific-data is one byte
containing 0 (unicast receive allowed) or 1 (unicast receive suppressed). When unicast receive is
suppressed, the device SHOULD NOT send unicast packets to the driver. This SHOULD take effect
even if VIRTIO_NET_CTRL_RX_ALLUNI is on.

* VIRTIO_NET_CTRL_RX_NOBCAST suppresses broadcast receive. The command-specific-data is
one byte containing 0 (broadcast receive allowed) or 1 (broadcast receive suppressed). When broad-
cast receive is suppressed, the device SHOULD NOT send broadcast packets to the driver. This
SHOULD take effect even if VIRTIO_NET_CTRL_RX_ALLMULTI is on.

5.1.6.5.1.2 Driver Requirements: Packet Receive Filtering

If the VIRTIO_NET_F_CTRL_RX feature has not been negotiated, the driver MUST NOT issue commands
VIRTIO_NET_CTRL_RX_PROMISC or VIRTIO_NET_CTRL_RX_ALLMULTI.

If the VIRTIO_NET_F_CTRL_RX_EXTRA feature has not been negotiated, the driver MUST NOT issue
commands VIRTIO_NET_CTRL_RX_ALLUNI, VIRTIO_NET_CTRL_RX_NOMULTI, VIRTIO_NET_CTRL_-
RX_NOUNI or VIRTIO_NET_CTRL_RX NOBCAST.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 92 of 284

5.1.6.5.2 Setting MAC Address Filtering

If the VIRTIO_NET_F_CTRL_RX feature is negotiated, the driver can send control commands for MAC
address filtering.

struct virtio net ctrl mac {
le32 entries;
u8 macs[entries] [6];

bi

#define VIRTIO NET CTRL MAC 1
#define VIRTIO NET CTRL MAC TABLE SET 0
#define VIRTIO NET CTRL MAC ADDR_SET 1

The device can filter incoming packets by any number of destination MAC addresses®. This table is set
using the class VIRTIO_NET_CTRL_MAC and the command VIRTIO_NET_CTRL_MAC_TABLE_SET. The
command-specific-data is two variable length tables of 6-byte MAC addresses (as described in struct virtio_-
net_ctrl_mac). The first table contains unicast addresses, and the second contains multicast addresses.

The VIRTIO_NET_CTRL_MAC_ADDR_SET command is used to set the default MAC address which rx
filtering accepts (and if VIRTIO_NET_F_MAC -AbbBR-has been negotiated, this will be reflected in mac in
config space).

The command-specific-data for VIRTIO_NET_CTRL_MAC_ADDR_SET is the 6-byte MAC address.

5.1.6.5.2.1 Device Requirements: Setting MAC Address Filtering

The device MUST have an empty MAC filtering table on reset.

The device MUST update the MAC filtering table before it consumes the VIRTIO_NET_CTRL_MAC_TA-
BLE_SET command.

The device MUST update mac in config space before it consumes the VIRTIO_NET_CTRL_MAC_ADDR _-
SET command, if VIRTIO_NET_F_MAC -AbbR-has been negotiated.

The device SHOULD drop incoming packets which have a destination MAC which matches neither the mac
(or that set with VIRTIO_NET_CTRL_MAC_ADDR_SET) nor the MAC filtering table.

5.1.6.5.2.2 Driver Requirements: Setting MAC Address Filtering

If VIRTIO_NET_F_CTRL_RX has not been negotiated, the driver MUST NOT issue VIRTIO_NET _CTRL_-
MAC class commands.

If VIRTIO_NET_F_CTRL_RX has been negotiated, the driver SHOULD issue VIRTIO_NET_CTRL_MAC -
ADDR_SET to set the default mac if it is different from mac.

The driver MUST follow the VIRTIO_NET_CTRL_MAC_TABLE_SET command by a le32 number, followed
by that number of non-multicast MAC addresses, followed by another le32 number, followed by that number
of multicast addresses. Either number MAY be 0.

5.1.6.5.2.3 Legacy Interface: Setting MAC Address Filtering

When using the legacy interface, transitional devices and drivers MUST format entries in struct virtio_net_-
ctrl_mac according to the native endian of the guest rather than (necessarily when not using the legacy
interface) little-endian.

Legacy drivers that didn’t negotiate VIRTIO_NET_F_CTRL_MAC_ADDR changed mac in config space
when NIC is accepting incoming packets. These drivers always wrote the mac value from first to last byte,
therefore after detecting such drivers, a transitional device MAY defer MAC update, or MAY defer processing
incoming packets until driver writes the last byte of mac in the config space.

3Since there are no guarantees, it can use a hash filter or silently switch to allmulti or promiscuous mode if it is given too many
addresses.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 93 of 284

5.1.6.5.3 VLAN Filtering

If the driver negotiates the wRTONVIRTIO_NET_F_CTRL_VLAN feature, it can control a VLAN filter table
in the device.

Note: Similar to the MAC address based filtering, the VLAN filtering is also best-effort: unwanted packets could

still arrive.
#define VIRTIO NET CTRL_VLAN 2
#define VIRTIO NET CTRI_VLAN ADD 0
#define VIRTIO NET CTRL VLAN DEL 1

Both the VIRTIO_NET_CTRL_VLAN_ADD and VIRTIO NET_CTRL_VLAN_DEL command take a little-
endian 16-bit VLAN id as the command-specific-data.

5.1.6.5.3.1 Legacy Interface: VLAN Filtering

When using the legacy interface, transitional devices and drivers MUST format the VLAN id according to
the native endian of the guest rather than (necessarily when not using the legacy interface) little-endian.

5.1.6.5.4 Gratuitous Packet Sending

If the driver negotiates the VIRTIO_NET_F_GUEST_ANNOUNCE (depends on VIRTIO_NET_F _CTRL_-
VQ), the device can ask the driver to send gratuitous packets; this is usually done after the guest has been
physically migrated, and needs to announce its presence on the new network links. (As hypervisor does not
have the knowledge of guest network configuration (eg. tagged vlan) it is simplest to prod the guest in this
way).

#define VIRTIO NET CTRL ANNOUNCE 3
#define VIRTIO NET CTRL ANNOUNCE ACK 0

The driver checks VIRTIO_NET_S_ANNOUNCE bit in the device configuration status field when it notices
the changes of device configuration. The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to
indicate that driver has received the notification and device clears the VIRTIO_NET_S ANNOUNCE bit in
status.

Processing this notification involves:

1. Sending the gratuitous packets (eg. ARP) or marking there are pending gratuitous packets to be sent
and letting deferred routine to send them.

2. Sending VIRTIO_NET_CTRL_ANNOUNCE_ACK command through control vq.

5.1.6.5.4.1 Driver Requirements: Gratuitous Packet Sending

If the driver negotiates VIRTIO_NET_F_GUEST_ANNOUNCE, it SHOULD notify network peers of its new
location after it sees the VIRTIO_NET_S ANNOUNCE bit in status. The driver MUST send a command on
the command queue with class VIRTIO_NET _CTRL_ANNOUNCE and command VIRTIO NET_CTRL_-
ANNOUNCE_ACK.

5.1.6.5.4.2 Device Requirements: Gratuitous Packet Sending

If VIRTIO_NET_F_GUEST_ANNOUNCE is negotiated, the device MUST clear the VIRTIO_NET_S_AN-
NOUNCE bit in status upon receipt of a command buffer with class VIRTIO_NET _CTRL_ANNOUNCE and
command VIRTIO_NET_CTRL_ANNOUNCE_ACK before marking the buffer as used.

5.1.6.5.5 Device operation in multiqueue mode

This specification defines the following modes that a device MAY implement for operation with multiple trans-
mit/receive virtqueues:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 94 of 284

* Automatic receive steering as defined in 5.1.6.5.6. If a device supports this mode, it offers the VIRTIO_-
NET_F_MQ feature bit.

* Receive-side scaling as defined in 5.1.6.5.7.3. If a device supports this mode, it offers the VIRTIO_NET_-
F_RSS feature bit.

A device MAY support one of these features or both. The driver MAY negotiate any set of these features that
the device supports.

Multiqueue is disabled by default.

The driver enables multiqueue by sending a command using class VIRTIO_NET_CTRL_MQ. The command
selects the mode of multiqueue operation, as follows:

#define VIRTIO NET CIRL MO 4

Adefine VIRTIO NET CTRL MO VQ PAIRS SET 0 _(for automatic_receive steerin
_Adefine VIRTIO NET CTRL MO RSS CONEIG L _(for configurable receive steerin
_#define VIRTIO NET CTRL MQ HASH CONEIG 2 _{for configurable hash calculation)

If more than one multiqueue mode is negotiated, the resulting device configuration is defined by the last command
sent by the driver.

5.1.6.5.6 Automatic receive steering in multiqueue mode

If the driver negotiates the VIRTIO_NET_F_MQ feature bit (depends on VIRTIO _NET_F_CTRL_VQ), it
MAY transmit outgoing packets on one of the multiple transmitq1. . .transmitgN and ask the device to queue
incoming packets into one of the multiple receiveq1...receiveqN depending on the packet flow.

£ 43 + £ e
= TFEET et trTr—mag—
+
S

16
T

+
=Sk

W -

Grevepair

Muttiqueue-is-disabled-by-default—The driver enables multiqueue by exeeuting-sending the VIRTIO_NET_CTRL -
MQ_VQ_PAIRS_SET command, specifying the number of the transmit and receive queues to be used up to
max_virtqueue_pairs; subsequently, transmitg1. . .transmitgn and receiveq1.. .receiveqn where n=virtqueue_-
pairs MAY be used.

struct virtio net ctrl mg pairs set {

lel6 virtgqueue pairs;
}i

#define VIRTIO NET CTRL MO VQ PAIRS MIN 1
#define VIRTIO NET CIRL Mo VQ PAIRS MAX __ __ 0x8000

When multiqueue is enabled by VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command, the device MUST
use automatic receive steering based on packet flow. Programming of the receive steering classificator is
implicit. After the driver transmitted a packet of a flow on transmitgX, the device SHOULD cause incoming
packets for that flow to be steered to receivegX. For uni-directional protocols, or where no packets have been
transmitted yet, the device MAY steer a packet to arandom queue out of the specified receiveq1. . .receiveqn.

Multiqueue is disabled by setting-VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET with virtqueue_pairs to 1 (this
is the default) and waiting for the device to use the command buffer.

5.1.6.5.6.1 Driver Requirements: Automatic receive steering in multiqueue mode

The driver MUST configure the virtqueues before enabling them with the VIRTIO_NET_CTRL_MQ_VQ_-
PAIRS_SET command.

The driver MUST NOT request a virtqueue_pairs of 0 or greater than max_virtqueue_pairs in the device
configuration space.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 95 of 284

The driver MUST queue packets only on any transmitq1 before the VIRTIO_NET_CTRL_MQ_VQ_PAIRS -
SET command.

The driver MUST NOT queue packets on transmit queues greater than virtqueue_pairs once it has placed
the VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command in the available ring.

5.1.6.5.6.2 Device Requirements: Automatic receive steering in multiqueue mode

Fhe-After initialization of reset, the device MUST queue packets only on aryreceiveq1before the HRFHO-NET-EFRE-MA-VQ—PAIRS-S!
command.

The device MUST NOT queue packets on receive queues greater than virtqueue_pairs once it has placed
the VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET command in a used buffer.

5.1.6.5.6.3 Legacy Interface: Automatic receive steering in multiqueue mode

When using the legacy interface, transitional devices and drivers MUST format virfqueue_pairs according
to the native endian of the guest rather than (necessarily when not using the legacy interface) little-endian.

5.1.6.5.6.4 Hash calculation

If VIRTIO_NET_F_HASH_REPORT was negotiated and the device uses automatic receive steering, the device
MUST support a command to configure hash calculation parameters.

The driver provides parameters for hash calculation as follows:
class VIRTIO_NET_CTRL_MQ, command VIRTIO_NET_CTRL_MQ_HASH_CONFIG.

The command-specific-data has following format:

e L2H0 EE EVIDSEs
lel6 reserved[4];
e S ST e JEnGiEln

u8 hash key datalhash key length];
}i

Field hash_types contains a bitmask of allowed hash types as defined in 5.1.6.4.3.1. Initially the device has all
hash types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.

Field reserved MUST contain zeroes. It is defined to make the structure to match the layout of virtio_net_rss_-
config structure, defined in 5.1.6.5.7.

Fields hash_key_length and hash_key_data define the key to be used in hash calculation.
5.1.6.5.7 Receive-side scaling (RSS)

A device offers the feature VIRTIO_NET_F_RSS if it supports RSS receive steering with Toeplitz hash calculation
and configurable parameters.

A driver queries RSS capabilities of the device by reading device configuration as defined in 5.1.4

5.1.6.5.7.1 Setting RSS parameters

Driver sends a VIRTIO_NET_CTRL_MQ_RSS_CONFIG command using the following format for command-
specific-data:

e L 20 PEE EViDsE
lel6 indirection table mask;
oo de s weelecs Bhod quces
e BelE dpgdiegeaen Gelle s foon Gelble lensil

lel6 max tx vg;
L el S SouEa]

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 96 of 284

| u8 hash key datalhash key length];
| Li
L

Field hash_types contains a bitmask of allowed hash types as defined in 5.1.6.4.3.1.

Field indirection_table_mask is a mask to be applied to the calculated hash to produce an index in the indirec-
tion_table array. Number of entries in indirection_table is (indirection_table_mask + 1).

Field unclassified_queue contains the 0-based index of the receive virtqueue to place unclassified packets in. Index
0 corresponds to receiveql.

Field indirection_table contains an array of 0-based indices of receive virtqueus. Index O corresponds to receiveql.

A driver sets max_tx_vq to inform a device how many transmit virtqueues it may use (transmitql.. .transmitq
max_tx_vq).

Fields hash_key_length and hash_key_data define the key to be used in hash calculation.

5.1.6.5.7.2 Driver Requirements: Setting RSS parameters

A driver MUST NOT send the VIRTIO_NET_CTRL_MQ_RSS_CONFIG command if the feature VIRTIO_-
NET_F_RSS has not been negotiated.

A driver MUST fill the indirection_table array only with indices of enabled queues. Index 0 corresponds to
receiveql.

The number of entries in indirection_table (indirection_table_mask + 1) MUST be a power of two.

A driver MUST use indirection__table _mask values that are less than rss_max_indirection_table_length reported
by a device.

A driver MUST NOT set any VIRTIO_NET_HASH_TYPE__ flags that are not supported by a device.

5.1.6.5.7.3 Device Requirements: RSS processing

The device MUST determine the destination queue for a network packet as follows:
* Calculate the hash of the packet as defined in 5.1.6.4.3.

* If the device did not calculate the hash for the specific packet, the device directs the packet to the receiveq
specified by unclassified_queue of virtio_net_rss_config structure (value of 0 corresponds to receiveql).

* Apply indirection_table _mask to the calculated hash and use the result as the index in the indirection table
to get 0-based number of destination receiveq (value of O corresponds to receiveql).

5.1.6.5.8 Offloads State Configuration

If the VIRTIO_NET_F_CTRL_GUEST_OFFLOADS feature is negotiated, the driver can send control com-
mands for dynamic offloads state configuration.

5.1.6.5.8.1 Setting Offloads State

To configure the offloads, the following layout structure and definitions are used:

le64 offloads;

#define VIRTIO NET F GUEST CSUM
#define VIRTIO NET F GUEST TSO4
#define VIRTIO NET F GUEST TSO6
#define VIRTIO NET F GUEST ECN
#define VIRTIO NET F GUEST UFO

P o 0 J-

#define VIRTIO NET CTRL GUEST OFFLOADS 5
#define VIRTIO NET CTRL GUEST OFFLOADS SET 0

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 97 of 284

The class VIRTIO_NET_CTRL_GUEST_OFFLOADS has one command: VIRTIO_NET_CTRL_GUEST -
OFFLOADS_SET applies the new offloads configuration.

le64 value passed as command data is a bitmask, bits set define offloads to be enabled, bits cleared -
offloads to be disabled.

There is a corresponding device feature for each offload. Upon feature negotiation corresponding offload
gets enabled to preserve backward eempartibititrcompatibility.

5.1.6.5.8.2 Driver Requirements: Setting Offloads State

A driver MUST NOT enable an offload for which the appropriate feature has not been negotiated.

5.1.6.5.8.3 Legacy Interface: Setting Offloads State

When using the legacy interface, transitional devices and drivers MUST format offloads according to the
native endian of the guest rather than (necessarily when not using the legacy interface) little-endian.

5.1.6.6 Legacy Interface: Framing Requirements

When using legacy interfaces, transitional drivers which have not negotiated VIRTIO_F_ANY_LAYOUT
MUST use a single descriptor for the struct virtio_net_hdr on both transmit and receive, with the network
data in the following descriptors.

Additionally, when using the control virtqueue (see 5.1.6.5) , transitional drivers which have not negotiated
VIRTIO_F_ANY_LAYOUT MUST:

« for all commands, use a single 2-byte descriptor including the first two fields: class and command

« for all commands except VIRTIO_NET_CTRL_MAC_TABLE_SET use a single descriptor including
command-specific-data with no padding.

» forthe VIRTIO_NET_CTRL_MAC_TABLE_SET command use exactly two descriptors including command-
specific-data with no padding: the first of these descriptors MUST include the virtio_net_ctrl_mac table
structure for the unicast addresses with no padding, the second of these descriptors MUST include the
virtio_net_ctrl_mac table structure for the multicast addresses with no padding.

« for all commands, use a single 1-byte descriptor for the ack field
See 2.7 .4.

5.2 Block Device

The virtio block device is a simple virtual block device (ie. disk). Read and write requests (and other exotic
requests) are placed in the-gueueone of its queues, and serviced (probably out of order) by the device except
where noted.

5.2.1 Device ID
2

5.2.2 \Virtqueues
0 requesterequestql

N-1 requestgN
N=1 if VIRTIO_BLK_F_MQ is not negotiated, otherwise N is set by num_ queues.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 98 of 284

5.2.3 Feature bits

VIRTIO_BLK_F_SIZE_MAX (1) Maximum size of any single segment is in size_max.
VIRTIO_BLK_F_SEG_MAX (2) Maximum number of segments in a request is in seg_max.
VIRTIO_BLK_F_GEOMETRY (4) Disk-style geometry specified in geometry.

VIRTIO_BLK_F_RO (5) Device is read-only.

VIRTIO_BLK_F_BLK_SIZE (6) Block size of disk is in blk_size.

VIRTIO_BLK_F_FLUSH (9) Cache flush command support.

VIRTIO_BLK_F_TOPOLOGY (10) Device exports information on optimal 1/O alignment.
VIRTIO_BLK_F_CONFIG_WCE (11) Device cantoggle its cache between writeback and writethrough modes.
VIRTIO_BLK_F_MQ (12) Device supports multiqueue.

VIRTIO_BLK_F_DISCARD (13) Device can support discard command, maximum discard sectors size in
max_discard_sectors and maximum discard segment number in max_discard_seg.

VIRTIO_BLK_F_WRITE_ZEROES (14) Device can support write zeroes command, maximum write zeroes
sectors size in max_write_zeroes_sectors and maximum write zeroes segment number in max_write_-
zeroes_seg.

VIRTIO_BLK_F_LIFETIME (15) Device supports providing storage lifetime information.

VIRTIO_BLK_F_SECURE_ERASE (16) Device supports secure erase command, maximum erase sectors count
in max_secure_erase_sectors and maximum erase segment number in max_secure_ erase_seg.

5.2.3.1 Legacy Interface: Feature bits

VIRTIO_BLK_F_BARRIER (0) Device supports request barriers.

VIRTIO_BLK_F_SCSI (7) Device supports scsi packet commands.

Note: In the legacy interface, VIRTIO BLK F_FLUSH was also called VIRTIO BLK_F_WCE.

5.2.4 Device configuration layout

The capacity of the device (expressed in 512-byte sectors) is always present. The availability of the others
all depend on various feature bits as indicated above.

The field num_queues only exists if VIRTIO_BLK_F_MQ is set. This field specifies the number of queues.

The parameters in the configuration space of the device max_discard_sectors discard_sector_alignment
are expressed in 512-byte units if the VIRTIO_BLK_F_DISCARD feature bit is negotiated. The max_write_-
zeroes_sectors is expressed in 512-byte units if the VIRTIO_BLK_F_WRITE_ZEROES feature bit is negoti-
ated. The parameters in the configuration space of the device max_secure erase_sectors secure_erase_sector_-
alignment are expressed in 512-byte units if the VIRTIO_BLK_F_SECURE_ERASE feature bit is negotiated.

struct virtio blk config {

le64 capacity;

le32 size max;

le32 seg max;

struct virtio blk geometry {
lel6 cylinders;
u8 heads;
u8 sectors;

} geometry;

le32 blk size;

struct virtio blk topology {
// # of logical blocks per physical block (log2)
u8 physical block exp;
// offset of first aligned logical block
u8 alignment offset;
// suggested minimum I/O size in blocks

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 99 of 284

lel6é min_io size;
// optimal (suggested maximum) I/O size in blocks
le32 opt io size;

} topology;

u8 writeback;

Q. a0 .«
tr Bt ST T

e U TRESEES
e TS T ORI,
le32 max discard sectors;
le32 max discard seg;
le32 discard sector alignment;
le32 max write zeroes sectors;
le32 max write zeroes seg;
u8 write zeroes may unmap;
u8 unusedl[3];
1e32 max _secure erase sectors;

A A AAARZGANAGE LSO R RARR R AR R R ARAR!,
le32 max secure erase seg;

le32 secure erase sector alignment;
bi

5.2.41 Legacy Interface: Device configuration layout

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
blk_config according to the native endian of the guest rather than (necessarily when not using the legacy
interface) little-endian.

5.2.5 Device Initialization
1. The device size can be read from capacity.

2. Ifthe VIRTIO_BLK_F_BLK_SIZE feature is negotiated, blk_size can be read to determine the optimal
sector size for the driver to use. This does not affect the units used in the protocol (always 512 bytes),
but awareness of the correct value can affect performance.

3. If the VIRTIO_BLK_F_RO feature is set by the device, any write requests will fail.

4. If the VIRTIO_BLK_F_TOPOLOGY feature is negotiated, the fields in the topology struct can be read
to determine the physical block size and optimal 1/O lengths for the driver to use. This also does not
affect the units in the protocol, only performance.

5. Ifthe VIRTIO_BLK_F_CONFIG_WCE feature is negotiated, the cache mode can be read or set through
the writeback field. 0 corresponds to a writethrough cache, 1 to a writeback cache*. The cache mode
after reset can be either writeback or writethrough. The actual mode can be determined by reading
writeback after feature negotiation.

6. If the VIRTIO_BLK F_DISCARD feature is negotiated, max_discard_sectors and max_discard_seg
can be read to determine the maximum discard sectors and maximum number of discard segments for
the block driver to use. discard_sector_alignment can be used by OS when splitting a request based
on alignment.

7. iflf the VIRTIO_BLK F_WRITE_ZEROES feature is negotiated, max_write_zeroes_sectors and max_-
write_zeroes_seg can be read to determine the maximum write zeroes sectors and maximum number
of write zeroes segments for the block driver to use.

8. If the VIRTIO_BLK_F_MQ feature is negotiated, num_queues field can be read to determine the number
of queues.

9. If the VIRTIO_BLK_F_SECURE_ERASE feature is negotiated, max_secure erase_sectors and max_-
secure_erase_seg can be read to determine the maximum secure erase sectors and maximum number of
secure erase segments for the block driver to use. secure_erase_sector_alignment can be used by OS when
splitting a request based on alignment.

4Consistent with 5.2.6.2, a writethrough cache can be defined broadly as a cache that commits writes to persistent device backend
storage before reporting their completion. For example, a battery-backed writeback cache actually counts as writethrough according
to this definition.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 100 of 284

5.2.5.1 Driver Requirements: Device Initialization

Drivers SHOULD NOT negotiate VIRTIO_BLK_F_FLUSH if they are incapable of sending VIRTIO_BLK_ -
T _FLUSH commands.

If neither VIRTIO_BLK _F_CONFIG_WCE nor VIRTIO_BLK_F_FLUSH are negotiated, the driver MAY de-
duce the presence of a writethrough cache. If VIRTIO_BLK_F_CONFIG_WCE was not negotiated but VIR-
TIO_BLK_F_FLUSH was, the driver SHOULD assume presence of a writeback cache.

The driver MUST NOT read writeback before setting the FEATURES_OK device status bit.

5.2.5.2 Device Requirements: Device Initialization

Devices SHOULD always offer VIRTIO_BLK_F_FLUSH, and MUST offer it if they offer VIRTIO_BLK_F_-
CONFIG_WCE.

If VIRTIO_BLK_F_CONFIG_WCE is negotiated but VIRTIO_BLK_F_FLUSH is not, the device MUST ini-
tialize writeback to 0.

The device MUST initialize padding bytes unused0 and unused? to 0.

5.2.5.3 Legacy Interface: Device Initialization

Because legacy devices do not have FEATURES_OK, transitional devices MUST implement slightly different
behavior around feature negotiation when used through the legacy interface. In particular, when using the
legacy interface:

+ the driver MAY read or write writeback before setting the DRIVER or DRIVER_OK device status bit

« the device MUST NOT modify the cache mode (and writeback) as a result of a driver setting a status bit,
unless the DRIVER_OK bit is being set and the driver has not set the VIRTIO_BLK_F_CONFIG_WCE
driver feature bit.

+ the device MUST NOT modify the cache mode (and writeback) as a result of a driver modifying the
driver feature bits, for example if the driver sets the VIRTIO_BLK_F_CONFIG_WCE driver feature bit
but does not set the VIRTIO_BLK _F_FLUSH bit.

5.2.6 Device Operation

The driver queues requests to the virtqueuevirtqueues, and they are used by the device (not necessarily in
order). Each request is of form:

struct virtio blk req {
le32 type;
le32 reserved;
le6d sector;

Q Ao+~ r1rcio1.
tr \S 1o 251 s e e o 2

u8 datall;
u8 status;

il
a
H
¢
H
H
q
H

The type of the request is either a read (VIRTIO_BLK_T _IN), a write (VIRTIO_BLK_T_OUT), a discard
(VIRTIO_BLK_T_DISCARD), a write zeroes (VIRTIO_BLK_T_WRITE_ZEROES)er, a flush (VIRTIO_BLK_-
T_FLUSH), a get device ID string command (VIRTIO_BLK_T_GET_ID), a secure erase (VIRTIO_BLK_T_-
SECURE_ERASE), or a get device lifetime command (VIRTIO_BLK_T_GET_LIFETIME).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 101 of 284

#define VIRTIO BLK T IN 0
#define VIRTIO_BLK T_OUT 1
#define VIRTIO BLK T FLUSH 4
#define VIRTIO BLK T GET ID 8
#define VIRTIO BLK_T_DISCARD 11

#define VIRTIO BLK T WRITE ZEROES 13

The sector number indicates the offset (multiplied by 512) where the read or write is to occur. This field is
unused and set to 0 for commands other than read or write.

VIRTIO_BLK_T_IN requests populate data with the contents of sectors read from the block device (in multiples
of 512 bytes). VIRTIO_BLK_T_OUT requests write the contents of data to the block device (in multiples of
512 bytes).

The data used for discard, secure erase or write zeroes eommand-is-deseribed-by-commands consists of one or
more virtio—btk—discard—write—zeroesstructs—segments. The maximum number of segments is max_discard_seg for
discard commands, max_secure_erase_seg for secure erase commands and max_write_zeroes_seg for write
zeroes commands. Each segment is of form:

le64 sector;
le32 num sectors;
le32 reserved:31;

}i

sector indicates the starting offset (in 512-byte units) of the segment, while num_sectors indicates the num-
ber of sectors in each discarded range. unmap is only used ferwrite zeroes-commandin write zeroes commands
and allows the device to discard the specified range, provided that following reads return zeroes.

VIRTIO_BLK_T_GET_ID requests fetch the device ID string from the device into data. The device ID string is
a NUL-padded ASCII string up to 20 bytes long. If the string is 20 bytes long then there is no NUL terminator.

The data used for VIRTIO_BLK_T_GET_LIFETIME requests is populated by the device, and is of the form

Sieweit pdeipio bLE Lifotdue |

lel6 pre eol info;
lel6 device lifetime est t a;

lel6 device lifetime est t b;
}i

The pre_eol_info specifies the percentage of reserved blocks that are consumed and will have one of these values:

L Nalue not available */
[90#define VIRTIO BLK PRE EOL INFO URGENT 3
L ALY others values are reserved X/

The device_lifetime_est_typ_a refers to wear of SLC cells and is provided in increments of 10used, and so on,
thru to 11 meaning estimated lifetime exceeded. All values above 11 are reserved.

The device_lifetime_est_typ_ b refers to wear of MLC cells and is provided with the same semantics as device_-
lifetime__est_typ_ a.

The final status byte is written by the device: either VIRTIO_BLK_S_OK for success, VIRTIO_BLK_S_-
IOERR for device or driver error or VIRTIO_BLK_S_UNSUPP for a request unsupported by device:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 102 of 284

#define VIRTIO BLK S OK 0
#define VIRTIO BLK S IOERR 1
#define VIRTIO BLK S UNSUPP 2

The status of individual segments is indeterminate when a discard or write zero command produces VIRTIO_-
BLK_S_IOERR. A segment may have completed successfully, failed, or not been processed by the device.

5.2.6.1 Driver Requirements: Device Operation
A driver MUST NOT submit a request which would cause a read or write beyond capacity.
A driver SHOULD accept the VIRTIO_BLK_F RO feature if offered.

A driver MUST set sector to 0 for a VIRTIO_BLK_T_FLUSH request. A driver SHOULD NOT include any
datain a VIRTIO_BLK T _FLUSH request.

The length of data MUST be a multiple of 512 bytes for VIRTIO_BLK_T_IN and VIRTIO_BLK_T_OUT
requests.

The length of data MUST be a multiple of the size of struct virtio_blk_discard_write_zeroes for VIRTIO_BLK_-
T_DISCARD, VIRTIO_BLK_T_SECURE_ERASE and VIRTIO_BLK_T_WRITE_ZEROES requests.

The length of data MUST be 20 bytes for VIRTIO_BLK_T_GET_ID requests.

VIRTIO_BLK_T_DISCARD requests MUST NOT contain more than max_discard_seg struct virtio_blk_dis-
card_ write_zeroes segments in data.

VIRTIO_BLK_T_SECURE_ERASE requests MUST NOT contain more than max_secure_erase_seg struct vir-
tio__blk_discard_write_zeroes segments in data.

VIRTIO_BLK_T_WRITE_ZEROES requests MUST NOT contain more than max_write_zeroes_seg struct vir-
tio__blk_discard_write_zeroes segments in data.

If the VIRTIO_BLK_F_CONFIG_WCE feature is negotiated, the driver MAY switch to writethrough or write-
back mode by writing respectively 0 and 1 to the writeback field. After writing a 0 to writeback, the driver
MUST NOT assume that any volatile writes have been committed to persistent device backend storage.

The unmap bit MUST be zero for discard commands. The driver MUST NOT assume anything about the
data returned by read requests after a range of sectors has been discarded.

A driver MUST NOT assume that individual segments in a multi-segment VIRTIO_BLK_T_DISCARD or VIR-
TIO_BLK_T_WRITE_ZEROES request completed successfully, failed, or were processed by the device at all if
the request failed with VIRTIO_BLK_S_IOERR.

5.2.6.2 Device Requirements: Device Operation

A device MUST set the status byte to VIRTIO_BLK_S |OERR for a write request if the VIRTIO_BLK_F_RO
feature if offered, and MUST NOT write any data.

The device MUST set the status byte to VIRTIO_BLK_S_UNSUPP for discard, secure erase and write zeroes
commands if any unknown flag is set. Furthermore, the device MUST set the status byte to VIRTIO_BLK_-
S_UNSUPRP for discard commands if the unmap flag is set.

For discard commands, the device MAY deallocate the specified range of sectors in the device backend
storage.

For write zeroes commands, if the unmap is set, the device MAY deallocate the specified range of sectors
in the device backend storage, as if the Bis€ARB-discard command had been sent. After a write zeroes com-
mand is completed, reads of the specified ranges of sectors MUST return zeroes. This is true independent
of whether unmap was set or clear.

The device SHOULD clear the write_zeroes _may unmap field of the virtio configuration space if and only if a
write zeroes request cannot result in deallocating one or more sectors. The device MAY change the content
of the field during operation of the device; when this happens, the device SHOULD trigger a configuration
change notification.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 284

A write is considered volatile when it is submitted; the contents of sectors covered by a volatile write are
undefined in persistent device backend storage until the write becomes stable. A write becomes stable once
it is completed and one or more of the following conditions is true:

1. neither VIRTIO_BLK_F_CONFIG_WCE nor VIRTIO_BLK_F_FLUSH feature were negotiated, but VIR-
TIO_BLK_F_FLUSH was offered by the device;

2. the VIRTIO_BLK_F_CONFIG_WCE feature was negotiated and the writeback field in configuration
space was 0 all the time between the submission of the write and its completion;

3. aVIRTIO_BLK_T_FLUSH request is sent after the write is completed and is completed itself.

If the device is backed by persistent storage, the device MUST ensure that stable writes are committed to
it, before reporting completion of the write (cases 1 and 2) or the flush (case 3). Failure to do so can cause
data loss in case of a crash.

If the driver changes writeback between the submission of the write and its completion, the write could be
either volatile or stable when its completion is reported; in other words, the exact behavior is undefined.

If VIRTIO_BLK_F_FLUSH was not offered by the device®, the device MAY also commit writes to persistent
device backend storage before reporting their completion. Unlike case 1, however, this is not an absolute
requirement of the specification.

Note: Animplementation that does not offer VIRTIO_BLK F_FLUSH and does not commit completed writes
will not be resilient to data loss in case of crashes. Not offering VIRTIO_BLK _F_FLUSH is an absolute
requirement for implementations that do not wish to be safe against such data losses.

If the device is backed by storage providing lifetime metrics (such as eMMC or UFS persistent storage), the device
SHOULD offer the VIRTIO_BLK_F_LIFETIME flag. The flag MUST NOT be offered if the device is backed by
storage for which the lifetime metrics described in this document cannot be obtained or for which such metrics
have no useful meaning. If the metrics are offered, the device MUST NOT send any reserved values, as defined
in this specification.

Note: The device lifetime metrics pre_eol_info, device_lifetime_est_a and device_lifetime_est_b are discussed
in the JESD84-B50 specification.

The complete JESD84-B50 is available at the JEDEC website (https://www.jedec.org) pursuant to JEDEC's
licensing terms and conditions. This information is provided to simplfy passthrough implementations from
eMMC devices.

5.2.6.3 Legacy Interface: Device Operation

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_blk_-
req according to the native endian of the guest rather than (necessarily when not using the legacy interface)
little-endian.

When using the legacy interface, transitional drivers SHOULD ignore the used length values.

Note: Historically, some devices put the total descriptor length, or the total length of device-writable buffers
there, even when only the status byte was actually written.

The reserved field was previously called ioprio. ioprio is a hint about the relative priorities of requests to the
device: higher numbers indicate more important requests.

‘#define VIRTIO BLK T FLUSH OUT 5

The command VIRTIO_BLK_T_FLUSH_OUT was a synonym for VIRTIO_BLK_T_FLUSH; a driver MUST
treatitas a VIRTIO_BLK _T_FLUSH command.

‘#define VIRTIO BLK T BARRIER 0x80000000

If the device has VIRTIO_BLK_F_BARRIER feature the high bit (VIRTIO_BLK_T_BARRIER) indicates that
this request acts as a barrier and that all preceding requests SHOULD be complete before this one, and all
following requests SHOULD NOT be started until this is complete.

5Note that in this case, according to 5.2.5.2, the device will not have offered VIRTIO_BLK_F_CONFIG_WCE either.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 104 of 284

Note: A barrier does not flush caches in the underlying backend device in host, and thus does not serve as
data consistency guarantee. Only a VIRTIO_BLK_ T_FLUSH request does that.

Some older legacy devices did not commit completed writes to persistent device backend storage when
VIRTIO_BLK_F_FLUSH was offered but not negotiated. In order to work around this, the driver MAY set
the writeback to 0 (if available) or it MAY send an explicit flush request after every completed write.

If the device has VIRTIO_BLK_F_SCSI feature, it can also support scsi packet command requests, each of
these requests is of form:

/* All fields are in guest's native endian. */
struct virtio_scsi pc_req {
u32 type;
u32 ioprio;
u64 sector;
u8 cmd[];
u8 datal][512];
#define SCSI_SENSE BUFFERSIZE 96
u8 sense[SCSI_SENSE BUFFERSIZE];
u32 errors;
u32 data len;
u32 sense_len;
u32 residual;
u8 status;

Arequest type can also be a scsi packet command (VIRTIO_BLK _T_SCSI_CMD or VIRTIO_BLK T_SCSI_-
CMD_OUT). The two types are equivalent, the device does not distinguish between them:

#define VIRTIO BLK T SCSI CMD 2
#define VIRTIO BLK T SCSI CMD OUT 3

The cmd field is only present for scsi packet command requests, and indicates the command to perform.
This field MUST reside in a single, separate device-readable buffer; command length can be derived from
the length of this buffer.

Note that these first three (four for scsi packet commands) fields are always device-readable: data is either
device-readable or device-writable, depending on the request. The size of the read or write can be derived
from the total size of the request buffers.

sense is only present for scsi packet command requests, and indicates the buffer for scsi sense data.

data_lenis only present for scsi packet command requests, this field is deprecated, and SHOULD be ignored
by the driver. Historically, devices copied data length there.

sense_len is only present for scsi packet command requests and indicates the number of bytes actually
written to the sense buffer.

residual field is only present for scsi packet command requests and indicates the residual size, calculated
as data length - number of bytes actually transferred.

5.2.6.4 Legacy Interface: Framing Requirements
When using legacy interfaces, transitional drivers which have not negotiated VIRTIO_F_ANY_LAYOUT:

* MUST use a single 8-byte descriptor containing type, reserved and sector, followed by descriptors for
data, then finally a separate 1-byte descriptor for status.

* For SCSI commands there are additional constraints. errors;-data—tensense—ten-andresidual-MUSTreside-in-a
singleseparate-deviee-writable-deseriptor-sense MUST reside in a single separate device-writable descriptor
of size 96 bytes, and errors, data_len, sense_len and residual MUST reside a single separate device-
writable descriptor.

See 2.7 4.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 105 of 284

5.3 Console Device

The virtio console device is a simple device for data input and output. A device MAY have one or more
ports. Each port has a pair of input and output virtqueues. Moreover, a device has a pair of control 10
virtqueues. The control virtqueues are used to communicate information between the device and the driver
about ports being opened and closed on either side of the connection, indication from the device about
whether a particular port is a console port, adding new ports, port hot-plug/unplug, etc., and indication from
the driver about whether a port or a device was successfully added, port open/close, etc. For data 10, one
or more empty buffers are placed in the receive queue for incoming data and outgoing characters are placed
in the transmit queue.

5.3.1 DeviceID
3

5.3.2 Virtqueues
receiveq(port0)
transmitq(port0)
control receiveq

0

1

2

3 control transmitq
4 receiveq(port1)
5

transmitg(port1)

The port 0 receive and transmit queues always exist: other queues only exist if VIRTIO_CONSOLE_F_-
MULTIPORT is set.

5.3.3 Feature bits
VIRTIO_CONSOLE_F_SIZE (0) Configuration cols and rows are valid.

VIRTIO_CONSOLE_F_MULTIPORT (1) Device has support for multiple ports; max_nr_ports is valid and
control virtqueues will be used.

VIRTIO_CONSOLE_F_EMERG_WRITE (2) Device has support for emergency write. Configuration field
emerg_wr is valid.

5.3.4 Device configuration layout

The size of the console is supplied in the configuration space if the VIRTIO_CONSOLE_F_SIZE feature is
set. Furthermore, if the VIRTIO_CONSOLE_F_MULTIPORT feature is set, the maximum number of ports
supported by the device can be fetched.

If VIRTIO_CONSOLE_F _EMERG_WRITE is set then the driver can use emergency write to output a single
character without initializing virtio queues, or even acknowledging the feature.

struct virtio console config {
lel6 cols;
lel6 rows;
le32 max nr ports;
le32 emerg wr;

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 106 of 284

5.3.4.1 Legacy Interface: Device configuration layout

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
console_config according to the native endian of the guest rather than (necessarily when not using the
legacy interface) little-endian.

5.3.5 Device Initialization

1. If the VIRTIO_CONSOLE_F_EMERG_WRITE feature is offered, emerg_wr field of the configuration
can be written at any time. Thus it works for very early boot debugging output as well as catastophic
OS failures (eg. virtio ring corruption).

2. If the VIRTIO_CONSOLE_F_SIZE feature is negotiated, the driver can read the console dimensions
from cols and rows.

3. If the VIRTIO_CONSOLE_F_MULTIPORT feature is negotiated, the driver can spawn multiple ports,
not all of which are necessarily attached to a console. Some could be generic ports. In this case, the
control virtqueues are enabled and according to max_nr_ports, the appropriate number of virtqueues
are created. A control message indicating the driver is ready is sent to the device. The device can then
send control messages for adding new ports to the device. After creating and initializing each port, a
VIRTIO_CONSOLE_PORT_READY control message is sent to the device for that port so the device
can let the driver know of any additional configuration options set for that port.

4. The receiveq for each port is populated with one or more receive buffers.

5.3.5.1 Device Requirements: Device Initialization
The device MUST allow a write to emerg_wr, even on an unconfigured device.

The device SHOULD transmit the lower byte written to emerg_wr to an appropriate log or output method.

5.3.6 Device Operation

1. For output, a buffer containing the characters is placed in the port’s transmitq®.

2. When a buffer is used in the receiveq (signalled by a used buffer notification), the contents is the input
to the port associated with the virtqueue for which the notification was received.

3. If the driver negotiated the VIRTIO_CONSOLE_F_SIZE feature, a configuration change notification
indicates that the updated size can be read from the configuration fields. This size applies to port 0
only.

4. If the driver negotiated the VIRTIO_CONSOLE_F_MULTIPORT feature, active ports are announced by
the device using the VIRTIO_CONSOLE_PORT_ADD control message. The same message is used
for port hot-plug as well.

5.3.6.1 Driver Requirements: Device Operation

The driver MUST NOT put a device-readable buffer in a receiveq. The driver MUST NOT put a device-
writable buffer in a transmitq.

5.3.6.2 Multiport Device Operation

If the driver negotiated the VIRTIO_CONSOLE_F_MULTIPORT, the two control queues are used to manip-
ulate the different console ports: the control receiveq for messages from the device to the driver, and the
control sendq for driver-to-device messages. The layout of the control messages is:

6Because this is high importance and low bandwidth, the current Linux implementation polls for the buffer to become used, rather
than waiting for a used buffer notification, simplifying the implementation significantly. However, for generic serial ports with the O_-
NONBLOCK flag set, the polling limitation is relaxed and the consumed buffers are freed upon the next write or poll call or when a port
is closed or hot-unplugged.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 284

struct virtio_console_control {
le32 id; /* Port number */
lel6 event; /* The kind of control event */
lel6 value; /* Extra information for the event */

The values for event are:

VIRTIO_CONSOLE_DEVICE_READY (0) Sent by the driver at initialization to indicate that it is ready to
receive control messages. A value of 1 indicates success, and 0 indicates failure. The port number id
is unused.

VIRTIO_CONSOLE_DEVICE_ADD (1) Sent by the device, to create a new port. value is unused.

VIRTIO_CONSOLE_DEVICE_REMOVE (2) Sent by the device, to remove an existing port. value is un-
used.

VIRTIO_CONSOLE_PORT_READY (3) Sentby the driverin response to the device’s VIRTIO_CONSOLE_-
PORT_ADD message, to indicate that the port is ready to be used. A value of 1 indicates success, and
0 indicates failure.

VIRTIO_CONSOLE_CONSOLE_PORT (4) Sent by the device to nominate a port as a console port. There
MAY be more than one console port.

VIRTIO_CONSOLE_RESIZE (5) Sent by the device to indicate a console size change. value is unused.
The buffer is followed by the number of columns and rows:

struct virtio console resize {
lel6 cols;
lel6 rows;

bi

VIRTIO_CONSOLE_PORT_OPEN (6) This message is sent by both the device and the driver. value indi-
cates the state: 0 (port closed) or 1 (port open). This allows for ports to be used directly by guest and
host processes to communicate in an application-defined manner.

VIRTIO_CONSOLE_PORT_NAME (7) Sent by the device to give a tag to the port. This control command
is immediately followed by the UTF-8 name of the port for identification within the guest (without a NUL
terminator).

5.3.6.2.1 Device Requirements: Multiport Device Operation
The device MUST NOT specify a port which exists in a VIRTIO_CONSOLE_DEVICE_ADD message, nor a
port which is equal or greater than max_nr_ports.

The device MUST NOT specify a port in VIRTIO_CONSOLE_DEVICE_REMOVE which has not been cre-
ated with a previous VIRTIO_CONSOLE_DEVICE_ADD.

5.3.6.2.2 Driver Requirements: Multiport Device Operation

The driver MUST send a VIRTIO_CONSOLE_DEVICE_READY message if VIRTIO_CONSOLE_F_MUL-
TIPORT is negotiated.

Upon receipt of a VIRTIO_CONSOLE_CONSOLE_PORT message, the driver SHOULD treat the port in
a manner suitable for text console access and MUST respond with a VIRTIO_CONSOLE_PORT_OPEN
message, which MUST have value set to 1.

5.3.6.3 Legacy Interface: Device Operation

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
console_control according to the native endian of the guest rather than (necessarily when not using the
legacy interface) little-endian.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 108 of 284

When using the legacy interface, the driver SHOULD ignore the used length values for the transmit queues
and the control transmitq.

Note: Historically, some devices put the total descriptor length there, even though no data was actually
written.
5.3.6.4 Legacy Interface: Framing Requirements

When using legacy interfaces, transitional drivers which have not negotiated VIRTIO_F_ANY_LAYOUT
MUST use only a single descriptor for all buffers in the control receiveq and control transmitq.

5.4 Entropy Device

The virtio entropy device supplies high-quality randomness for guest use.

5.4.1 Device ID
4

5.4.2 Virtqueues
0 requestq

5.4.3 Feature bits

None currently defined

5.4.4 Device configuration layout

None currently defined.

5.4.5 Device Initialization

1. The virtqueue is initialized

5.4.6 Device Operation

When the driver requires random bytes, it places the descriptor of one or more buffers in the queue. It will
be completely filled by random data by the device.

5.4.6.1 Driver Requirements: Device Operation

The driver MUST NOT place eriver-readable-device-readable buffers into the queue.

The driver MUST examine the length written by the device to determine how many random bytes were
received.

5.4.6.2 Device Requirements: Device Operation

The device MUST place one or more random bytes into the buffer, but it MAY use less than the entire buffer
length.

5.5 Traditional Memory Balloon Device
This is the traditional balloon device. The device number 13 is reserved for a new memory balloon interface,
with different semantics, which is expected in a future version of the standard.

The traditional virtio memory balloon device is a primitive device for managing guest memory: the device
asks for a certain amount of memory, and the driver supplies it (or withdraws it, if the device has more than

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 109 of 284

it asks for). This allows the guest to adapt to changes in allowance of underlying physical memory. If the
feature is negotiated, the device can also be used to communicate guest memory statistics to the host.

5.5.1 Device ID
5

5.5.2 Virtqueues

0 inflateq

1 deflateq

2 statsq -

3 free_page_vq

4 reporting_vq

Virtgueue2-statsq only exists if VIRTIO_BAtLoNALLOON_F_STATS_VQ is set.
free_page_vq only exists if VIRTIO_BALLOON_F_FREE_PAGE_HINT is set.
reporting_vq only exists if VIRTIO_BALLOON_F_PAGE_REPORTING is set.

5.5.3 Feature bits

VIRTIO_BALLOON_F_MUST_TELL_HOST (0) Host has to be told before pages from the balloon are
used.

VIRTIO_BALLOON_F_STATS_VQ (1) A virtqueue for reporting guest memory statistics is present.
VIRTIO_BALLOON_F_DEFLATE_ON_OOM (2) Deflate balloon on guest out of memory condition.

VIRTIO_BALLOON_F_FREE_PAGE_HINT(3) The device has support for free page hinting. A virtqueue for
providing hints as to what memory is currently free is present. Configuration field free_page hint_cmd_id
is valid.

VIRTIO_BALLOON_F_PAGE_POISON(4) A hint to the device, that the driver will immediately write poison_-
val to pages after deflating them. Configuration field poison_val is valid.

VIRTIO_BALLOON_F_PAGE_REPORTING(5) The device has support for free page reporting. A virtqueue
for reporting free guest memory is present.

5.5.3.1 Driver Requirements: Feature bits
The driver SHOULD accept the VIRTIO_BALLOON_F_MUST_TELL_HOST feature if offered by the device.

The driver SHOULD clear the VIRTIO_BALLOON_F_PAGE_POISON flag if it will not immediately write poi-
son__val to deflated pages (e.g., to initialize them, or fill them with a poison value).

If the driver is expecting the pages to retain some initialized value, it MUST NOT accept VIRTIO_BALLOON_-
F_PAGE_REPORTING unless it also negotiates VIRTIO_BALLOON_F_PAGE_POISON.

5.5.3.2 Device Requirements: Feature bits

If the device offers the VIRTIO_BALLOON_F_MUST_TELL_HOST feature bit, and if the driver did not accept
this feature bit, the device MAY signal failure by failing to set FEATURES_OK device status bit when the
driver writes it.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 110 of 284

5.5.3.2.0.1 Legacy Interface: Feature bits

As the legacy interface does not have a way to gracefully report feature negotiation failure, when using the
legacy interface, transitional devices MUST support guests which do not negotiate VIRTIO_BALLOON_-
F_MUST_TELL HOST feature, and SHOULD allow guest to use memory before notifying host if VIRTIO_-
BALLOON_F_MUST_TELL_HOST is not negotiated.

5.5.4 Device configuration layout

Beth-fields-ef this-configuration-num__pages and actual are always available.

free_page_hint_cmd_id is available if VIRTIO_BALLOON_F_FREE_PAGE_HINT has been negotiated. The
field is read-only by the driver. poison_val is available if VIRTIO_BALLOON_F_PAGE_POISON has been
negotiated.

struct virtio balloon config {
le32 num_pages;
le32 actual;

oo Jee Free wege Bowt ong Aol
le32 poison val;

bi

5.5.4.0.0.1 Legacy Interface: Device configuration layout

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
balloon_config according to the little-endian format.

Note: This is unlike the usual convention that legacy device fields are guest endian.

5.5.5 Device Initialization
The device initialization process is outlined below:
1. The inflate and deflate virtqueues are identified.
2. If the VIRTIO_BALLOON_F_STATS_VQ feature bit is negotiated:
(a) ldentify the stats virtqueue.
(b) Add one empty buffer to the stats virtqueue.
3. If the VIRTIO_BALLOON_F_FREE_PAGE_HINT feature bit is negotiated, identify the free_page_vq.

4. If the VIRTIO_BALLOON_F_PAGE_POISON feature bit is negotiated, update the poison_val configura-
tion field.

5. If the VIRTIO_BALLOON_F_PAGE_REPORTING feature bit is negotiated, identify the reporting_vq.
6. DRIVER_OK is set: device operation begins.

7. Netify-If the VIRTIO_BALLOON_F_STATS_VQ feature bit is negotiated, then notify the device about the
stats virtqueue buffer.

8. If the VIRTIO_BALLOON_F_PAGE_REPORTING feature bit is negotiated, then begin reporting free pages
to the device.

5.5.6 Device Operation

The device is driven either by the receipt of a configuration change notification, or by changing guest memory
needs, such as performing memory compaction or responding to out of memory conditions.

1. num_pages configuration field is examined. If this is greater than the actual number of pages, the
balloon wants more memory from the guest. If it is less than actual, the balloon doesn’t need it all.

2. To supply memory to the balloon (aka. inflate):

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 111 of 284

(a) The driver constructs an array of addresses of unused memory pages. These addresses are
divided by 40967 and the descriptor describing the resulting 32-bit array is added to the inflateq.

3. To remove memory from the balloon (aka. deflate):

(a) The driver constructs an array of addresses of memory pages it has previously given to the balloon,
as described above. This descriptor is added to the deflateq.

(b) If the VIRTIO_BALLOON_F_MUST_TELL_HOST feature is negotiated, the guest informs the de-
vice of pages before it uses them.

(c) Otherwise, the guest is allowed to re-use pages previously given to the balloon before the device
has acknowledged their withdrawal®.

4. In either case, the device acknowledges inflate and deflate requests by using the descriptor.

5. Once the device has acknowledged the inflation or deflation, the driver updates actual to reflect the
new number of pages in the balloon.

5.5.6.1 Driver Requirements: Device Operation

The driver SHOULD supply pages to the balloon when num_pages is greater than the actual number of
pages in the balloon.

The driver MAY use pages from the balloon when num_pages is less than the actual number of pages in
the balloon.

The driver MAY supply pages to the balloon when num_pages is greater than or equal to the actual number
of pages in the balloon.

If VIRTIO_BALLOON_F_DEFLATE_ON_OOM has not been negotiated, the driver MUST NOT use pages
from the balloon when num_pages is less than or equal to the actual number of pages in the balloon.

If VIRTIO_BALLOON_F_DEFLATE_ON_OOM has been negotiated, the driver MAY use pages from the
balloon when num_pages is less than or equal to the actual number of pages in the balloon if this is required
for system stability (e.g. if memory is required by applications running within the guest).

The driver MUST use the deflateq to inform the device of pages that it wants to use from the balloon.

If the VIRTIO_BALLOON_F_MUST_TELL_HOST feature is negotiated, the driver MUST NOT use pages
from the balloon until the device has acknowledged the deflate request.

Otherwise, ifthe VIRTIO_BALLOON_F_MUST_TELL_HOST feature is not negotiated, the driver MAY begin
to re-use pages previously given to the balloon before the device has acknowledged the deflate request.

In any case, the driver MUST NOT use pages from the balloon after adding the pages to the balloon, but
before the device has acknowledged the inflate request.

The driver MUST NOT request deflation of pages in the balloon before the device has acknowledged the
inflate request.

The driver MUST update actual after changing the number of pages in the balloon.

The driver MAY update actual once after multiple inflate and deflate operations.

5.5.6.2 Device Requirements: Device Operation

The device MAY modify the contents of a page in the balloon after detecting its physical number in an inflate
request and before acknowledging the inflate request by using the inflateq descriptor.

If the VIRTIO_BALLOON_F_MUST_TELL_HOST feature is negotiated, the device MAY modify the contents
of a page in the balloon after detecting its physical number in an inflate request and before detecting its
physical number in a deflate request and acknowledging the deflate request.

"This is historical, and independent of the guest page size.
8n this case, deflation advice is merely a courtesy.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 112 of 284

5.5.6.2.1 Legacy Interface: Device Operation

When using the legacy interface, the driver SHOULD ignore the used length values.

Note: Historically, some devices put the total descriptor length there, even though no data was actually
written.

When using the legacy interface, the driver MUST write out all 4 bytes each time it updates the actual value
in the configuration space, using a single atomic operation.

When using the legacy interface, the device SHOULD NOT use the actual value written by the driver in the
configuration space, until the last, most-significant byte of the value has been written.

Note: Historically, devices used the actual value, even though when using Virtio Over PCI Bus the device-
specific configuration space was not guaranteed to be atomic. Using intermediate values during
update by driver is best avoided, except for debugging.

Historically, drivers using Virtio Over PCI Bus wrote the actual value by using multiple single-byte
writes in order, from the least-significant to the most-significant value.

5.5.6.3 Memory Statistics

The stats virtqueue is atypical because communication is driven by the device (not the driver). The channel
becomes active at driver initialization time when the driver adds an empty buffer and notifies the device. A
request for memory statistics proceeds as follows:

1. The device uses the buffer and sends a used buffer notification.

2. The driver pops the used buffer and discards it.

3. The driver collects memory statistics and writes them into a new buffer.

4. The driver adds the buffer to the virtqueue and notifies the device.

5. The device pops the buffer (retaining it to initiate a subsequent request) and consumes the statistics.

Within the buffer, statistics are an array of 6-byte-10-byte entries. Each statistic consists of a 16 bit tag and a
64 bit value. All statistics are optional and the driver chooses which ones to supply. To guarantee backwards
compatibility, devices omit unsupported statistics.

struct virtio balloon stat {
#define VIRTIO BALLOON_ S_SWAP IN
#define VIRTIO BALLOON_ S SWAP OUT
#define VIRTIO BALLOON S MAJFLT
#define VIRTIO BALLOON_ S MINFLT
#define VIRTIO BALLOON S MEMFREE
#define VIRTIO BALLOON_S_MEMTOT
#define VIRTIO BALLOON_ S AVAIL
#define VIRTIO BALLOON_ S CACHES 7
#define VIRTIO BALLOON_ S HTLB_PGALLOC 8
#define VIRTIO BALLOON S HTLB_ PGFAIL 9

lel6 tag;

le6d val;
} _ attribute ((packed));

oUW N O

5.5.6.3.1 Driver Requirements: Memory Statistics

Normative statements in this section apply if and only if the VIRTIO_BALLOON_F_STATS_VAQ feature has
been negotiated.

The driver MUST make at most one buffer available to the device in the statsq, at all times.
After initializing the device, the driver MUST make an output buffer available in the statsq.

Upon detecting that device has used a buffer in the statsq, the driver MUST make an output buffer available
in the statsq.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 113 of 284

Before making an output buffer available in the statsq, the driver MUST initialize it, including one struct
virtio_balloon_stat entry for each statistic that it supports.

Driver MUST use an output buffer size which is a multiple of 6 bytes for all buffers submitted to the statsq.

Driver MAY supply struct virtio_balloon_stat entries in the output buffer submitted to the statsq in any order,
without regard to tag values.

Driver MAY supply a subset of all statistics in the output buffer submitted to the statsq.

Driver MUST supply the same subset of statistics in all buffers submitted to the statsq.

5.5.6.3.2 Device Requirements: Memory Statistics

Normative statements in this section apply if and only if the VIRTIO_BALLOON_F_STATS_VAQ feature has
been negotiated.

Within an output buffer submitted to the statsq, the device MUST ignore entries with tag values that it does
not recognize.

Within an output buffer submitted to the statsq, the device MUST accept struct virtio_balloon_stat entries in
any order without regard to fag values.

5.5.6.3.3 Legacy Interface: Memory Statistics

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
balloon_stat according to the native endian of the guest rather than (necessarily when not using the legacy
interface) little-endian.

When using the legacy interface, the device SHOULD ignore all values in the first buffer in the statsq supplied
by the driver after device initialization.

Note: Historically, drivers supplied an uninitialized buffer in the first buffer.

5.5.6.4 Memory Statistics Tags
VIRTIO_BALLOON_S_SWAP_IN (0) The amount of memory that has been swapped in (in bytes).

VIRTIO_BALLOON_S_SWAP_OUT (1) The amount of memory that has been swapped out to disk (in
bytes).

VIRTIO_BALLOON_S_MAJFLT (2) The number of major page faults that have occurred.
VIRTIO_BALLOON_S_MINFLT (3) The number of minor page faults that have occurred.
VIRTIO_BALLOON_S_MEMFREE (4) The amount of memory not being used for any purpose (in bytes).
VIRTIO_BALLOON_S_MEMTOT (5) The total amount of memory available (in bytes).

VIRTIO_BALLOON_S_AVAIL (6) An estimate of how much memory is available (in bytes) for starting new
applications, without pushing the system to swap.

VIRTIO_BALLOON_S_CACHES (7) The amount of memory, in bytes, that can be quickly reclaimed with-
out additional 1/0. Typically these pages are used for caching files from disk.

VIRTIO_BALLOON_S _HTLB_PGALLOC (8) The number of successful hugetlb page allocations in the
guest.

VIRTIO_BALLOON_S_HTLB_PGFAIL (9) The number of failed hugetlb page allocations in the guest.

5.5.6.5 Free Page Hinting

Free page hinting is designed to be used during migration to determine what pages within the guest are currently
unused so that they can be skipped over while migrating the guest. The device will indicate that it is ready to
start performing hinting by setting the free_page hint_cmd_id to one of the non-reserved values that can be
used as a command ID. The following values are reserved:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 114 of 284

VIRTIO_BALLOON_CMD_ID_STOP (0) Any command ID previously supplied by the device is invalid. The
driver should stop hinting free pages until a new command ID is supplied, but should not release any hinted
pages for use by the guest.

VIRTIO_BALLOON_CMD_ID_DONE (1) Any command ID previously supplied by the device is invalid. The
driver should stop hinting free pages, and should release all hinted pages for use by the guest.

When a hint is provided by the driver it indicates that the data contained in the given page is no longer needed
and can be discarded. If the driver writes to the page this overrides the hint and the data will be retained. The
contents of any stale pages that have not been written to since the page was hinted may be lost, and if read the
contents of such pages will be uninitialized memory.

A request for free page hinting proceeds as follows:

1. The driver examines the free_page_hint_cmd_id configuration field. If it contains a non-reserved value
then free page hinting will begin.

2. To supply free page hints:

(a) The driver constructs an output buffer containing the new value from the free_page_hint_cmd_id
configuration field and adds it to the free_page_vq.

(b) The driver maps a series of pages and adds them to the free_page_vq as individual scatter-gather input
buffer entries.

(c) When the driver is no longer able to fetch additional pages to add to the free_page_vq, it will construct
an output buffer containing the command ID VIRTIO_BALLOON_CMD_ID_STOP.

3. A round of hinting ends either when the driver is no longer able to supply more pages for hinting as described
above, or when the device updates free_page hint_cmd_id configuration field to contain either VIRTIO_-
BALLOON_CMD_ID_STOP or VIRTIO_BALLOON_CMD_ID_DONE.

4. The device may follow VIRTIO_BALLOON_CMD_ID_STOP with a new non-reserved value for the free_-
page_hint_cmd_id configuration field in which case it will resume supplying free page hints.

5. Otherwise, if the device provides VIRTIO_BALLOON_CMD_ID_DONE then hinting is complete and the
driver may release all previously hinted pages for use by the guest.

5.5.6.5.1 Driver Requirements: Free Page Hinting

Normative statements in this section apply if the VIRTIO_BALLOON_F_FREE_PAGE_HINT feature has been
negotiated.

The driver MUST use an output buffer size of 4 bytes for all output buffers submitted to the free_page_vq.

The driver MUST start hinting by providing an output buffer containing the current command ID for the given
block of pages.

The driver MUST NOT provide more than one output buffer containing the current command ID.

The driver SHOULD supply pages to the free_page_vq as input buffers when free_page hint_cmd_id specifies
a value of 2 or greater.

The driver SHOULD stop supplying pages for hinting when free_page _hint_cmd_id specifies a value of VIRTIO_-
BALLOON_CMD_ID_STOP or VIRTIO_BALLOON_CMD_ID_DONE.

If the driver is unable to supply pages, it MUST complete hinting by adding an output buffer containing the
command ID VIRTIO_BALLOON_CMD_ID_STOP.

The driver MAY release hinted pages for use by the guest including when the device has not yet used the descriptor
containing the hinting request.

The driver MUST treat the content of all hinted pages as uninitialized memory.

The driver MUST initialize the contents of any previously hinted page released before free page hint_cmd_id
specifies a value of VIRTIO_BALLOON_CMD_ID_DONE.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 115 of 284

The driver SHOULD release all previously hinted pages once free_page hint_cmd_id specifies a value of VIR-
TIO_BALLOON_CMD_ID_DONE.

5.5.6.5.2 Device Requirements: Free Page Hinting
Normative statements in this section apply if the VIRTIO_BALLOON_F_FREE_PAGE_HINT feature has been
negotiated.

The device SHOULD set free_page_hint_cmd_id to VIRTIO_BALLOON_CMD_ID_STOP any time that it will
not be able to make use of the hints provided by the driver.

The device MUST NOT reuse a command ID until it has received an output buffer containing VIRTIO_BAL-
LOON_CMD_ID_STOP from the driver.

The device MUST ignore pages that are provided with a command ID that does not match the current value in
free_page_hint_cmd_id.

If the content of a previously hinted page has not been modified by the guest since the device issued the free -
page_hint_cmd_id associated with the hint, the device MAY modify the contents of the page.

The device MUST NOT modify the content of a previously hinted page after free_page_hint_cmd_id is set to
VIRTIO_BALLOON_CMD_ID_DONE.

The device MUST report a value of VIRTIO_BALLOON_CMD_ID_DONE in free_page_hint_cmd_id when it
no longer has need for the previously hinted pages.

5.5.6.5.3 Legacy Interface: Free Page Hinting

When using the legacy interface, transitional devices and drivers MUST format the command ID field in output
buffers according to the native endian of the guest rather than (necessarily when not using the legacy interface)
little-endian.

5.5.6.6 Page Poison

Page Poison provides a way to notify the host that the guest is initializing free pages with poison_val. When the
feature is enabled, pages will be immediately written to by the driver after deflating, and pages reported by free
page reporting will retain the value indicated by poison_val.

If the guest is not initializing freed pages, the driver should reject the VIRTIO_BALLOON_F_PAGE_POISON
feature.

If VIRTIO_BALLOON_F_PAGE_POISON feature has been negotiated, the driver will place the initialization
value into the poison__val configuration field data.

5.5.6.6.1 Driver Requirements: Page Poison

Normative statements in this section apply if the VIRTIO_BALLOON_F_PAGE_POISON feature has been
negotiated.

The driver MUST initialize the deflated pages with poison_val when they are reused by the driver.
The driver MUST populate the poison_val configuration data before setting the DRIVER_OK bit.
The driver MUST NOT modify poison_val while the DRIVER_OK bit is set.

5.5.6.6.2 Device Requirements: Page Poison

Normative statements in this section apply if the VIRTIO_BALLOON_F_PAGE_POISON feature has been
negotiated.

The device MAY use the content of poison_val as a hint to guest behavior.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 116 of 284

5.5.6.7 Free Page Reporting

Free Page Reporting provides a mechanism similar to balloon inflation, however it does not provide a deflation
queue. Reported free pages can be reused by the driver after the reporting request has been acknowledged without
notifying the device.

The driver will begin reporting free pages. When exactly and which free pages are reported is up to the driver.
1. The driver determines it has enough pages available to begin reporting free pages.
2. The driver gathers free pages into a scatter-gather list and adds them to the reporting_vq.
3. The device acknowledges the reporting request by using the reporting_vq descriptor.
4

. Once the device has acknowledged the report, the driver can reuse the reported free pages when needed
(e.g., by putting them back to free page lists in the guest operating system).

5. The driver can then continue to gather and report free pages until it has determined it has reported a
sufficient quantity of pages.

5.5.6.7.1 Driver Requirements: Free Page Reporting
Normative statements in this section apply if the VIRTIO_BALLOON_F_PAGE_REPORTING feature has been
negotiated.

If the VIRTIO_BALLOON_F_PAGE_POISON feature has not been negotiated, then the driver MUST treat all
reported pages as uninitialized memory.

If the VIRTIO_BALLOON_F_PAGE_POISON feature has been negotiated, the driver MUST initialize all free
pages with poison_val before reporting them.

The driver MUST NOT use the reported pages until the device has acknowledged the reporting request.
The driver MAY report free pages any time after DRIVER_OK is set.
The driver SHOULD attempt to report large pages rather than smaller ones.

The driver SHOULD avoid reading/writing reported pages if not strictly necessary.

5.5.6.7.2 Device Requirements: Free Page Reporting
Normative statements in this section apply if the VIRTIO_BALLOON_F_PAGE_REPORTING feature has been
negotiated.

If the VIRTIO_BALLOON_F_PAGE_POISON feature has not been negotiated, the device MAY modify the
contents of any page supplied in a report request before acknowledging that request by using the reporting_vq
descriptor.

If the VIRTIO_BALLOON_F_PAGE_POISON feature has been negotiated, the device MUST NOT modify the
the content of a reported page to a value other than poison__val.

5.6 SCSI Host Device

The virtio SCSI host device groups together one or more virtual logical units (such as disks), and allows
communicating to them using the SCSI protocol. An instance of the device represents a SCSI host to which
many targets and LUNs are attached.

The virtio SCSI device services two kinds of requests:
» command requests for a logical unit;
» task management functions related to a logical unit, target or command.

The device is also able to send out notifications about added and removed logical units. Together, these
capabilities provide a SCSI transport protocol that uses virtqueues as the transfer medium. In the transport

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 117 of 284

protocol, the virtio driver acts as the initiator, while the virtio SCSI host provides one or more targets that
receive and process the requests.

This section relies on definitions from SAM.

5.6.1 Device ID
8

5.6.2 Virtqueues
0 controlq
1 eventq

2...n request queues

5.6.3 Feature bits

VIRTIO_SCSI_F_INOUT (0) A single request can include both device-readable and device-writable data
buffers.

VIRTIO_SCSI_F_HOTPLUG (1) The host SHOULD enable reporting of hot-plug and hot-unplug events for
LUNs and targets on the SCSI bus. The guest SHOULD handle hot-plug and hot-unplug events.

VIRTIO_SCSI_F_CHANGE (2) The host will report changes to LUN parameters via a VIRTIO_SCSI_T -
PARAM_CHANGE event; the guest SHOULD handle them.

VIRTIO_SCSI_F_T10_PI (3) The extended fields for T10 protection information (DIF/DIX) are included in
the SCSI request header.

5.6.4 Device configuration layout

All fields of this configuration are always available.

struct virtio_scsi_config {
le32 num queues;
le32 seg max;
le32 max sectors;
le32 cmd per lun;
le32 event info size;
le32 sense size;
le32 cdb_size;
lel6 max_channel;
lel6 max_target;
le32 max lun;

}i

num_queues is the total number of request virtqueues exposed by the device. The driver MAY use only
one request queue, or it can use more to achieve better performance.

seg_max is the maximum number of segments that can be in a command. A bidirectional command can
include seg_max input segments and seg_max output segments.

max_sectors is a hint to the driver about the maximum transfer size to use.
cmd_per_lun tells the driver the maximum number of linked commands it can send to one LUN.

event_info_size is the maximum size that the device will fill for buffers that the driver places in the eventq.
It is written by the device depending on the set of negotiated features.

sense_size is the maximum size of the sense data that the device will write. The default value is written by
the device and MUST be 96, but the driver can modify it. It is restored to the default when the device
is reset.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 118 of 284

cdb_size is the maximum size of the CDB that the driver will write. The default value is written by the device
and MUST be 32, but the driver can likewise modify it. It is restored to the default when the device is
reset.

max_channel, max_target and max_Ilun can be used by the driver as hints to constrain scanning the
logical units on the host to channel/target/logical unit numbers that are less than or equal to the value
of the fields. max_channel SHOULD be zero. max_target SHOULD be less than or equal to 255.
max_lun SHOULD be less than or equal to 16383.

5.6.4.1 Driver Requirements: Device configuration layout

The driver MUST NOT write to device configuration fields other than sense_size and cdb_size.

The driver MUST NOT send more than cmd_per_lun linked commands to one LUN, and MUST NOT send

more than the virtqueue size number of linked commands to one LUN.

5.6.4.2 Device Requirements: Device configuration layout

On reset, the device MUST set sense_size to 96 and cdb_size to 32.

5.6.4.3 Legacy Interface: Device configuration layout

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
scsi_config according to the native endian of the guest rather than (necessarily when not using the legacy
interface) little-endian.

5.6.5 Device Requirements: Device Initialization
On initialization the driver SHOULD first discover the device’s virtqueues.
If the driver uses the eventq, the driver SHOULD place at least one buffer in the eventq.

The driver MAY immediately issue requests® or task management functions®.

5.6.6 Device Operation

Device operation consists of operating request queues, the control queue and the event queue.

5.6.6.0.1 Legacy Interface: Device Operation

When using the legacy interface, the driver SHOULD ignore the used length values.

Note: Historically, devices put the total descriptor length, or the total length of device-writable buffers there,
even when only part of the buffers were actually written.

5.6.6.1 Device Operation: Request Queues

The driver queues requests to an arbitrary request queue, and they are used by the device on that same
queue. ltis the responsibility of the driver to ensure strict request ordering for commands placed on different
queues, because they will be consumed with no order constraints.

Requests have the following format:

struct virtio_scsi req cmd {
// Device-readable part
u8 lun([8];
le64 id;
u8 task_attr;
u8 prio;
u8 crn;
u8 cdblcdb size];

9For example, INQUIRY or REPORT LUNS.
OFor example, |_T RESET.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 119 of 284

// The next three fields are only present if VIRTIO SCSI_F T10 PI
// is negotiated.

le32 pi bytesout;

le32 pi bytesin;

u8 pi out[pi bytesout];

u8 dataout([];

// Device-writable part
le32 sense len;

le32 residual;

lel6 status qualifier;
u8 status;

u8 response;

u8 sense[sense size];
// The next field is only present if VIRTIO SCSI_F T10_PI
// 1is negotiated

u8 pi in[pi bytesin];
u8 datainl];

bi

/* command-specific response values */
#define VIRTIO_SCSI_S OK

#define VIRTIO_SCSI_S_OVERRUN

#define VIRTIO_SCSI_S ABORTED

#define VIRTIO SCSI S BAD TARGET
#define VIRTIO_SCSI_S_ RESET

#define VIRTIO SCSI S BUSY

#define VIRTIO_SCSI_S_TRANSPORT_ FAILURE
#define VIRTIO SCSI S TARGET FAILURE
#define VIRTIO_SCSI_S_ NEXUS_FAILURE
#define VIRTIO_SCSI_S FAILURE

O O J o Ui W N KFE O

/* task_attr */

#define VIRTIO SCSI S SIMPLE
#define VIRTIO_SCSI_S_ ORDERED
#define VIRTIO SCSI S HEAD
#define VIRTIO_SCSI_S_ACA

w N P O

lun addresses the REPORT LUNS well-known logical unit, or a target and logical unit in the virtio-scsi
device’s SCSI domain. When used to address the REPORT LUNS logical unit, lun is 0xC1, 0x01 and six
zero bytes. The virtio-scsi device SHOULD implement the REPORT LUNS well-known logical unit.

When used to address a target and logical unit, the only supported format for lun is: first byte set to 1,
second byte set to target, third and fourth byte representing a single level LUN structure, followed by four
zero bytes. With this representation, a virtio-scsi device can serve up to 256 targets and 16384 LUNs per
target. The device MAY also support having a well-known logical units in the third and fourth byte.

id is the command identifier (“tag”).

task_attr defines the task attribute as in the table above, but all task attributes MAY be mapped to SIMPLE
by the device. Some commands are defined by SCSI standards as "implicit head of queue”; for such com-
mands, all task attributes MAY also be mapped to HEAD OF QUEUE. Drivers and applications SHOULD
NOT send a command with the ORDERED task attribute if the command has an implicit HEAD OF QUEUE
attribute, because whether the ORDERED task attribute is honored is vendor-specific.

crn may also be provided by clients, but is generally expected to be 0. The maximum CRN value defined
by the protocol is 255, since CRN is stored in an 8-bit integer.

The CDB is included in cdb and its size, cdb_size, is taken from the configuration space.
All of these fields are defined in SAM and are always device-readable.

pi_bytesout determines the size of the pi_out field in bytes. Ifitis nonzero, the pi_out field contains outgoing
protection information for write operations. pi_bytesin determines the size of the pi_in field in the device-
writable section, in bytes. All three fields are only present if VIRTIO_SCSI_F_T10_PI has been negotiated.

The remainder of the device-readable part is the data output buffer, dataout.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 120 of 284

sense and subsequent fields are always device-writable. sense_len indicates the number of bytes actually
written to the sense buffer.

residual indicates the residual size, calculated as “data_length - number_of_transferred_bytes”, for read
or write operations. For bidirectional commands, the number_of_transferred_bytes includes both read and
written bytes. A residual that is less than the size of datain means that dataout was processed entirely.
A residual that exceeds the size of datain means that dataout was processed partially and datain was not
processed at all.

If the pi_bytesin is nonzero, the pi_in field contains incoming protection information for read operations. pi_in
is only present if VIRTIO_SCSI_F_T10_PI has been negotiated".

The remainder of the device-writable part is the data input buffer, datain.

5.6.6.1.1 Device Requirements: Device Operation: Request Queues

The device MUST write the status byte as the status code as defined in SAM.
The device MUST write the response byte as one of the following:

VIRTIO_SCSI_S_OK when the request was completed and the status byte is filled with a SCSI status code
(not necessarily “GOOD”).

VIRTIO_SCSI_S_OVERRUN if the content of the CDB (such as the allocation length, parameter length or
transfer size) requires more data than is available in the datain and dataout buffers.

VIRTIO_SCSI_S_ABORTED if the request was cancelled due to an ABORT TASK or ABORT TASK SET
task management function.

VIRTIO_SCSI_S_BAD_TARGET if the request was never processed because the target indicated by /un
does not exist.

VIRTIO_SCSI_S_RESET if the request was cancelled due to a bus or device reset (including a task man-
agement function).

VIRTIO_SCSI_S_TRANSPORT_FAILURE if the request failed due to a problem in the connection between
the host and the target (severed link).

VIRTIO_SCSI_S_TARGET_FAILURE if the target is suffering a failure and to tell the driver not to retry on
other paths.

VIRTIO_SCSI_S_NEXUS_FAILURE if the nexus is suffering a failure but retrying on other paths might yield
a different result.

VIRTIO_SCSI_S_BUSY if the request failed but retrying on the same path is likely to work.

VIRTIO_SCSI_S_FAILURE for other host or driver error. In particular, if neither dataout nor datain is empty,
and the VIRTIO_SCSI_F_INOUT feature has not been negotiated, the request will be immediately
returned with a response equal to VIRTIO_SCSI_S_FAILURE.

All commands must be completed before the virtio-scsi device is reset or unplugged. The device MAY
choose to abort them, or if it does not do so MUST pick the VIRTIO_SCSI_S_FAILURE response.

5.6.6.1.2 Driver Requirements: Device Operation: Request Queues

task_attr, prio and crn SHOULD be zero.

Upon receiving a VIRTIO_SCSI_S TARGET_FAILURE response, the driver SHOULD NOT retry the re-
quest on other paths.

"There is no separate residual size for pi_bytesout and pi_bytesin. It can be computed from the residual field, the size of the data
integrity information per sector, and the sizes of pi_out, pi_in, dataout and datain.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 121 of 284

5.6.6.1.3 Legacy Interface: Device Operation: Request Queues

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
scsi_req_cmd according to the native endian of the guest rather than (necessarily when not using the legacy

interface) little-endian.

5.6.6.2 Device Operation: controlq

The controlq is used for other SCSI transport operations. Requests have the following format:

struct virtio scsi ctrl {
le32 type;

u8 response;

bi

/* response values valid for all commands */
#define VIRTIO_SCSI_S OK

#define VIRTIO SCSI S BAD TARGET

#define VIRTIO SCSI S BUSY

#define VIRTIO SCSI S TRANSPORT FAILURE
#define VIRTIO SCSI S TARGET FAILURE

#define VIRTIO SCSI S NEXUS FAILURE

#define VIRTIO SCSI S FAILURE

#define VIRTIO SCSI S INCORRECT LUN

O oo Jo Ul wOo

The type identifies the remaining fields.
The following commands are defined:

» Task management function.

#define VIRTIO SCSI T TMF

#define VIRTIO SCSI T TMF ABORT TASK
#define VIRTIO SCSI T TMF ABORT TASK SET
#define VIRTIO SCSI T TMF CLEAR ACA
#define VIRTIO SCSI T TMF CLEAR TASK SET
#define VIRTIO SCSI T TMF I T NEXUS RESET
#define VIRTIO SCSI T TMF QUERY TASK
#define VIRTIO SCSI T TMF QUERY TASK SET
TrueT viztd Genet

+

P
=iz

sy

// Device-readable part

le32 type;

le32 subtype;

u8 lun([8];

le6d id;

// Device-writable part

u8 response;
+
Yi
/* command-specific response values */
#define VIRTIO SCSI_S_FUNCTION COMPLETE
#define VIRTIO SCSI_S FUNCTION SUCCEEDED
#define VIRTIO SCSI_S FUNCTION REJECTED

#define VIRTIO SCSI T TMF LOGICAL UNIT RESET

o

~N oUW N O

0
10
11

The type is VIRTIO_SCSI_T_TMF; subtype defines which task management function. All fields except

response are filled by the driver.

Other fields which are irrelevant for the requested TMF are ignored but they are still present. lunisin the
same format specified for request queues; the single level LUN is ignored when the task management
function addresses a whole |_T nexus. When relevant, the value of id is matched against the id values

passed on the requestq.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 122 of 284

The outcome of the task management function is written by the device in response. The command-
specific response values map 1-to-1 with those defined in SAM.

Task management function can affect the response value for commands that are in the request queue
and have not been completed yet. For example, the device MUST complete all active commands on a
logical unit or target (possibly with a VIRTIO_SCSI_S RESET response code) upon receiving a "logical
unit reset” or ”I_T nexus reset” TMF. Similarly, the device MUST complete the selected commands
(possibly with a VIRTIO_SCSI_S ABORTED response code) upon receiving an "abort task” or "abort
task set” TMF. Such effects MUST take place before the TMF itself is successfully completed, and the
device MUST use memory barriers appropriately in order to ensure that the driver sees these writes in
the correct order.

» Asynchronous notification query.

#define VIRTIO SCSI T AN QUERY 1

struct virtio scsi ctrl an {
// Device-readable part
le32 type;
u8 lun(8];
le32 event requested;
// Device-writable part
1le32 event actual;
u8 response;
+
1z
#define VIRTIO SCSI EVT ASYNC OPERATIONAL CHANGE 2
#define VIRTIO SCSI_EVT ASYNC POWER MGMT 4

#define VIRTIO SCSI EVT ASYNC EXTERNAL REQUEST 8

#define VIRTIO SCSI EVT ASYNC MEDIA CHANGE 16
#define VIRTIO SCSI_EVT ASYNC MULTI HOST 32
#define VIRTIO SCSI EVT ASYNC DEVICE BUSY 64

By sending this command, the driver asks the device which events the given LUN can report, as de-
scribed in paragraphs 6.6 and A.6 of SCSI MMC. The driver writes the events it is interested in into
event_requested; the device responds by writing the events that it supports into event_actual.

The type is VIRTIO_SCSI_T_AN_QUERY. lun and event_requested are written by the driver. event -
actual and response fields are written by the device.

No command-specific values are defined for the response byte.

» Asynchronous notification subscription.

#define VIRTIO SCSI T AN SUBSCRIBE 2

struct virtio scsi ctrl an {
// Device-readable part
le32 type;
u8 lun[8];
le32 event requested;
// Device-writable part
le32 event actual;
u8 response;

+

1z

By sending this command, the driver asks the specified LUN to report events for its physical interface,
again as described in SCSI MMC. The driver writes the events it is interested in into event_requested,;
the device responds by writing the events that it supports into event_actual.

Event types are the same as for the asynchronous notification query message.

The type is VIRTIO_SCSI_T_AN_SUBSCRIBE. /lun and event requested are written by the driver.
event_actual and response are written by the device.

No command-specific values are defined for the response byte.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 123 of 284

5.6.6.2.1 Legacy Interface: Device Operation: controlq

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
scsi_ctrl, struct virtio_scsi_ctrl_tmf, struct virtio_scsi_ctrl_an and struct virtio_scsi_ctrl_an according to the
native endian of the guest rather than (necessarily when not using the legacy interface) little-endian.

5.6.6.3 Device Operation: eventq

The eventq is populated by the driver for the device to report information on logical units that are attached
to it. In general, the device will not queue events to cope with an empty eventq, and will end up dropping
events if it finds no buffer ready. However, when reporting events for many LUNs (e.g. when a whole target
disappears), the device can throttle events to avoid dropping them. For this reason, placing 10-15 buffers
on the event queue is sufficient.

Buffers returned by the device on the eventq will be referred to as “events” in the rest of this section. Events
have the following format:

#define VIRTIO SCSI T EVENTS MISSED 0x80000000

struct virtio_scsi event {
// Device-writable part
le32 event;
u8 lun(8];
le32 reason;

The devices sets bit 31 in event to report lost events due to missing buffers.
The meaning of reason depends on the contents of event. The following events are defined:

* No event.

#define VIRTIO SCSI T NO EVENT 0

This event is fired in the following cases:

— When the device detects in the eventq a buffer that is shorter than what is indicated in the configu-
ration field, it MAY use it immediately and put this dummy value in event. A well-written driver will
never observe this situation.

— When events are dropped, the device MAY signal this event as soon as the drivers makes a buffer
available, in order to request action from the driver. In this case, of course, this event will be
reported with the VIRTIO_SCSI_T_EVENTS_MISSED flag.

* Transport reset

#define VIRTIO SCSI T TRANSPORT RESET 1

#define VIRTIO SCSI EVT RESET HARD 0
#define VIRTIO SCSI EVT RESET RESCAN 1
#define VIRTIO SCSI EVT RESET REMOVED 2

By sending this event, the device signals that a logical unit on a target has been reset, including the
case of a new device appearing or disappearing on the bus. The device fills in all fields. event is set
to VIRTIO_SCSI_T_TRANSPORT_RESET. lun addresses a logical unit in the SCSI host.

The reason value is one of the three #define values appearing above:

VIRTIO_SCSI_EVT_RESET_REMOVED (“LUN/target removed”) is used if the target or logical unit is
no longer able to receive commands.

VIRTIO_SCSI_EVT_RESET_HARD (“LUN hard reset”) is used if the logical unit has been reset, but
is still present.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 124 of 284

VIRTIO_SCSI_EVT_RESET_RESCAN (“rescan LUN/target”) is used if a target or logical unit has just
appeared on the device.

The “removed” and “rescan” events can happen when VIRTIO_SCSI_F_HOTPLUG feature was nego-
tiated; when sent for LUN 0, they MAY apply to the entire target so the driver can ask the initiator to
rescan the target to detect this.

Events will also be reported via sense codes (this obviously does not apply to newly appeared buses
or targets, since the application has never discovered them):

— “LUN/target removed” maps to sense key ILLEGAL REQUEST, asc 0x25, ascq 0x00 (LOGICAL
UNIT NOT SUPPORTED)

— “LUN hard reset” maps to sense key UNIT ATTENTION, asc 0x29 (POWER ON, RESET OR BUS
DEVICE RESET OCCURRED)

— “rescan LUN/target” maps to sense key UNIT ATTENTION, asc 0x3f, ascq 0x0Oe (REPORTED
LUNS DATA HAS CHANGED)

The preferred way to detect transport reset is always to use events, because sense codes are only seen
by the driver when it sends a SCSI command to the logical unit or target. However, in case events are
dropped, the initiator will still be able to synchronize with the actual state of the controller if the driver
asks the initiator to rescan of the SCSI bus. During the rescan, the initiator will be able to observe the
above sense codes, and it will process them as if it the driver had received the equivalent event.

» Asynchronous notification

#define VIRTIO SCSI T ASYNC NOTIFY 2

By sending this event, the device signals that an asynchronous event was fired from a physical inter-
face.

All fields are written by the device. event is set to VIRTIO_SCSI_T_ASYNC_NOTIFY. lun addresses a
logical unit in the SCSI host. reason is a subset of the events that the driver has subscribed to via the
“Asynchronous notification subscription” command.

* LUN parameter change

#define VIRTIO SCSI T PARAM CHANGE 3

By sending this event, the device signals a change in the configuration parameters of a logical unit,
for example the capacity or cache mode. event is set to VIRTIO_SCSI_T_PARAM_CHANGE. lun
addresses a logical unit in the SCSI host.

The same event SHOULD also be reported as a unit attention condition. reason contains the additional
sense code and additional sense code qualifier, respectively in bits 0...7 and 8...15.

Note: For example, a change in capacity will be reported as asc 0x2a, ascq 0x09 (CAPACITY DATA
HAS CHANGED).

For MMC devices (inquiry type 5) there would be some overlap between this event and the asyn-
chronous notification event, so for simplicity the host never reports this event for MMC devices.

5.6.6.3.1 Driver Requirements: Device Operation: eventq

The driver SHOULD keep the eventq populated with buffers. These buffers MUST be device-writable, and
SHOULD be at least event_info_size bytes long, and MUST be at least the size of struct virtio_scsi_event.

If event has bit 31 set, the driver SHOULD poll the logical units for unit attention conditions, and/or do
whatever form of bus scan is appropriate for the guest operating system and SHOULD poll for asynchronous
events manually using SCSI commands.

When receiving a VIRTIO_SCSI_T_TRANSPORT_RESET message with reason set to VIRTIO_SCSI_-
EVT_RESET_REMOVED or VIRTIO_SCSI_EVT_RESET_RESCAN for LUN 0, the driver SHOULD ask the
initiator to rescan the target, in order to detect the case when an entire target has appeared or disappeared.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 125 of 284

5.6.6.3.2 Device Requirements: Device Operation: eventq

The device MUST set bit 31 in event if events were lost due to missing buffers, and it MAY use a VIRTIO_-
SCSI_T_NO_EVENT event to report this.

The device MUST NOT send VIRTIO_SCSI_T_TRANSPORT_RESET messages with reason set to VIR-
TIO_SCSI_EVT_RESET_REMOVED or VIRTIO_SCSI_EVT_RESET_RESCAN unless VIRTIO_SCSI_F_-
HOTPLUG was negotiated.

The device MUST NOT report VIRTIO_SCSI_T_PARAM_CHANGE for MMC devices.

5.6.6.3.3 Legacy Interface: Device Operation: eventq

When using the legacy interface, transitional devices and drivers MUST format the fields in struct virtio_-
scsi_event according to the native endian of the guest rather than (necessarily when not using the legacy
interface) little-endian.

5.6.6.4 Legacy Interface: Framing Requirements

When using legacy interfaces, transitional drivers which have not negotiated VIRTIO_F_ANY_LAYOUT
MUST use a single descriptor for the lun, id, task_attr, prio, crn and cdb fields, and MUST only use a
single descriptor for the sense_len, residual, status_qualifier, status, response and sense fields.

5.7 GPU Device

virtio-gpu is a virtio based graphics adapter. It can operate in 2D mode and in 3D tvirgh-mode. 3D mode will
offload rendering ops to the host gpu and therefore requires a gpu with 3D support on the host machine.

In 2D mode the virtio-gpu device provides support for ARGB Hardware cursors and multiple scanouts (aka
heads).

5.7.1 DeviceIlD
16

5.7.2 \Virtqueues
0 controlqg - queue for sending control commands
1 cursorq - queue for sending cursor updates

Both queues have the same format. Each request and each response have a fixed header, followed
by command specific data fields. The separate cursor queue is the "fast track” for cursor commands
(VIRTIO_GPU_CMD_UPDATE_CURSOR and VIRTIO_GPU_CMD_MOVE_CURSOR), so they go theugh
through without being delayed by time-consuming commands in the control queue.

5.7.3 Feature bits
VIRTIO_GPU_F_VIRGL (0) virgl 3D mode is supported.
VIRTIO_GPU_F_EDID (1) EDID is supported.

VIRTIO_GPU_F_RESOURCE_UUID (2) assigning resources UUIDs for export to other virtio devices is sup-
ported.

VIRTIO_GPU_F_RESOURCE_BLOB (3) creating and using size-based blob resources is supported.

VIRTIO_GPU_F_CONTEXT_INIT (4) multiple context types and synchronization timelines supported. Re-
quires VIRTIO_GPU_F_VIRGL.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 126 of 284

5.7.4 Device configuration layout

GPU device configuration uses the following layout structure and definitions:

#define VIRTIO GPU EVENT DISPLAY (1 << 0)

struct virtio gpu config {
le32 events read;
le32 events clear;
le32 num scanouts;

1 =
RS re ¥ €7

+

le32 num capsets;
i

~ AL

5.7.4.1 Device configuration fields
events_read signals pending events to the driver. The driver MUST NOT write to this field.

events_clear clears pending events in the device. Writing a ’1’ into a bit will clear the corresponding bit in
events_read, mimicking write-to-clear behavior.

num_scanouts specifies the maximum number of scanouts supported by the device. Minimum value is 1,
maximum value is 16.

num__capsets specifies the maximum number of capability sets supported by the device. The minimum value is
zero.

5.7.4.2 Events

VIRTIO_GPU_EVENT_DISPLAY Display configuration has changed. The driver SHOULD use the VIR-
TIO_GPU_CMD_GET_DISPLAY_INFO command to fetch the information from the device. In case
EDID support is negotiated (VIRTIO_GPU_F_EDID feature flag) the device SHOULD also fetch the up-
dated EDID blobs using the VIRTIO_GPU_CMD_GET_EDID command.

5.7.5 Device Requirements: Device Initialization

The driver SHOULD query the display information from the device using the VIRTIO_GPU_CMD_GET _-
DISPLAY_INFO command and use that information for the initial scanout setup. In case EDID support is
negotiated (VIRTIO_GPU_F_EDID feature flag) the device SHOULD also fetch the EDID information using the
VIRTIO_GPU_CMD_GET_EDID command. If no information is available or all displays are disabled the
driver MAY choose to use a fallback, such as 1024x768 at display 0.

The driver SHOULD query all shared memory regions supported by the device. If the device supports shared
memory, the shmid of a region MUST (see 2.10 Shared Memory Regions) be one of the following:

enum virtio gpu shm id {
VIRTIO GPU SHM ID UNDEFINED = O,

VIRTIO GPU SHM ID HOST VISIBLE = 1,

The shared memory region with VIRTIO_GPU_SHM_ID_HOST_VISIBLE is referred as the "host visible memory
region”. The device MUST support the VIRTIO_GPU_CMD_RESOURCE_MAP_BLOB and VIRTIO_GPU_-
CMD_RESOURCE_UNMAP_BLOB if the host visible memory region is available.

5.7.6 Device Operation

The virtio-gpu is based around the concept of resources private to the host—the-. The guest must DMA
transfer into these resources, unless shared memory regions are supported. This is a design requirement in
order to interface with future 3D rendering. In the unaccelerated 2D mode there is no support for DMA
transfers from resources, just to them.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 127 of 284

Resources are initially simple 2D resources, consisting of a width, height and format along with an identifier.
The guest must then attach backing store to the resources in order for DMA transfers to work. This is like a
GART in a real GPU.

5.7.6.1 Device Operation: Create a framebuffer and configure scanout

» Create a host resource using VIRTIO_GPU_CMD_RESOURCE_CREATE_2D.

+ Allocate a framebuffer from guest ram, and attach it as backing storage to the resource just created, us-
ing VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING. Scatter lists are supported, so the frame-
buffer doesn’t need to be contignous in guest physical memory.

* Use VIRTIO_GPU_CMD_SET_SCANOUT to link the framebuffer to a display scanout.

5.7.6.2 Device Operation: Update a framebuffer and scanout

* Render to your framebuffer memory.
* Use VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D to update the host resource from guest memory.
* Use VIRTIO_GPU_CMD_RESOURCE_FLUSH to flush the updated resource to the display.

5.7.6.3 Device Operation: Using pageflip

It is possible to create multiple framebuffers, flip between them using VIRTIO_GPU_CMD_SET_SCANOUT
and VIRTIO_GPU_CMD_RESOURCE_FLUSH, and update the invisible framebuffer using VIRTIO_GPU_-
CMD_TRANSFER _TO_HOST_2D.

5.7.6.4 Device Operation: Multihead setup
In case two or more displays are present there are different ways to configure things:

» Create a single framebuffer, link it to all displays (mirroring).
 Create an framebuffer for each display.
» Create one big framebuffer, configure scanouts to display a different rectangle of that framebuffer each.

5.7.6.5 Device Requirements: Device Operation: Command lifecycle and fencing

The device MAY process controlg commands asyncronously and return them to the driver before the pro-
cessing is complete. If the driver needs to know when the processing is finished it can set the VIRTIO_GPU_-
FLAG_FENCE flag in the request. The device MUST finish the processing before returning the command
then.

Note: current gemu implementation does asyncrounous processing only in 3d mode, when offloading the
processing to the host gpu.

5.7.6.6 Device Operation: Configure mouse cursor

The mouse cursor image is a normal resource, except that it must be 64x64 in size. The driver MUST
create and populate the resource (using the usual VIRTIO_GPU_CMD_RESOURCE_CREATE_2D, VIR-
TIO_GPU_CMD_RESOURCE_ATTACH_BACKING and VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D
controlg commands) and make sure they are completed (using VIRTIO_GPU_FLAG_FENCE).

Then VIRTIO_GPU_CMD_UPDATE_CURSOR can be sent to the cursorq to set the pointer shape and po-
sition. To move the pointer without updating the shape use VIRTIO_GPU_CMD_MOVE_CURSOR instead.
5.7.6.7 Device Operation: Request header

All requests and responses on the virt queues have a fixed header using the following layout structure and
definitions:

enum virtio gpu ctrl type {

/* 2d commands */
VIRTIO GPU CMD GET DISPLAY INFO = 0x0100,
VIRTIO GPU CMD RESOURCE_CREATE 2D,

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 128 of 284

VIRTIO GPU CMD RESOURCE UNREF,
VIRTIO GPU CMD SET SCANOUT,
VIRTIO GPU CMD RESOURCE FLUSH,
VIRTIO GPU CMD TRANSFER TO HOST 2D,
VIRTTIO GPU_CMD_RESOURCE ATTACH BACKING,
VIRTIO GPU CMD RESOURCE DETACH BACKING,
VIRTIO GPU_CMD_GET CAPSET INFO,
VIRTIO GPU CMD GET CAPSET,
VIRTIO GPU CMD GET EDID,
VIRTIO GPU CMD RESOURCE ASSIGN UUID,
VIRTIO GPU CMD RESOURCE CREATE BLOB,
VIRTIO GPU CMD SET SCANOUT BLOB,

SDIF >
/* 3d commands */
VIRTIO GPU CMD CTX CREATE = 0x0200,
VIRTIO GPU CMD CTX DESTROY,
VIRTIO GPU CMD CTX ATTACH RESOURCE,
VIRTIO GPU CMD CTX DETACH RESOURCE,
VIRTIO GPU CMD RESOURCE CREATE 3D,
VIRTIO GPU CMD TRANSFER TO HOST 3D,
VIRTIO GPU CMD TRANSFER FROM HOST 3D,
VIRTIO GPU CMD SUBMIT 3D,
VIRTIO GPU CMD RESOURCE MAP BLOB,
VIRTIO GPU CMD RESOURCE UNMAP BLOB,

/* cursor commands */
VIRTIO GPU CMD UPDATE CURSOR = 0x0300,
VIRTIO GPU CMD MOVE CURSOR,

/* success responses */

VIRTIO GPU RESP _OK NODATA = 0x1100,
VIRTIO GPU RESP OK DISPLAY INFO,
VIRTIO GPU RESP OK CAPSET INFO,
VIRTIO GPU RESP OK CAPSET,
VIRTIO GPU RESP OK EDID,

VIRTIO GPU RESP OK RESOQURCE UUID,
VIRTIO GPU RESP OK MAP INFO,

/* error responses */
VIRTIO GPU RESP ERR UNSPEC = 0x1200,
VIRTIO GPU RESP ERR OUT OF MEMORY,
VIRTIO GPU RESP ERR INVALID SCANOUT ID,
VIRTIO GPU RESP ERR INVALID RESOURCE ID,
VIRTIO GPU RESP_ERR INVALID CONTEXT ID,
VIRTIO GPU RESP_ERR INVALID PARAMETER,
}i

#define VIRTIO GPU FLAG FENCE (1 << 0)

struct virtio_gpu_ctrl hdr {
le32 type;
le32 flags;
le64 fence_id;
le32 ctx id;
te32paddingy
s e ACRZ
u8 padding[3];

}i

All-requests-and-responses-on-the-virtqueues-have-the- | he fixed header struct virtio_gpu_ctrl_hdr —in each request
includes the following fields:

type specifies the type of the driver request (VIRTIO_GPU_CMD_*) or device response (VIRTIO_GPU_-
RESP_*).

flags request / response flags.
fence_id If the driver sets the VIRTIO_GPU_FLAG_FENCE bit in the request flags field the device MUST:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 129 of 284

» set VIRTIO_GPU_FLAG_FENCE bit in the response,
+ copy the content of the fence_id field from the request to the response, and
+ send the response only after command processing is complete.

ctx_id Rendering context (used in 3D mode only).

ring_idx If VIRTIO_GPU_F_CONTEXT_INIT is supported, then the driver MAY set VIRTIO_GPU_FLAG_-
INFO_RING_IDX bit in the request flags. In that case:

* ring_idx indicates the value of a context-specific ring index. The minimum value is 0 and maximum
value is 63 (inclusive).

* If VIRTIO_GPU_FLAG_FENCE is set, fence_id acts as a sequence number on the synchronization
timeline defined by ctx_idx and the ring index.

* If VIRTIO_GPU_FLAG_FENCE is set and when the command associated with fence_id is complete,
the device MUST send a response for all outstanding commands with a sequence number less than or
equal to fence_id on the same synchronization timeline.

On success the device will return VIRTIO_GPU_RESP_OK_NODATA in case there is no payload. Otherwise
the type field will indicate the kind of payload.

On error the device will return one of the VIRTIO_GPU_RESP_ERR_* error codes.

5.7.6.8 Device Operation: controlq
For any coordinates given 0,0 is top left, larger x moves right, larger y moves down.

VIRTIO_GPU_CMD_GET_DISPLAY_INFO Retrieve the current output configuration. No request data (just
bare struct virtio_gpu_ctrl_hdr). Response type is VIRTIO_GPU_RESP_OK_DISPLAY_INFO, response
data is struct virtio_gpu_resp_display _info.

#define VIRTIO GPU MAX SCANOUTS 16

struct virtio gpu rect ({
le32 x;
le32 y;
le32 width;
1e32 height;
i

struct virtio gpu resp display info {
struct virtio_gpu_ctrl hdr hdr;
struct virtio gpu display one {
struct virtio_gpu_ rect r;
1le32 enabled;
le32 flags;
} pmodes [VIRTIO GPU MAX SCANOUTS] ;

The response contains a list of per-scanout information. The info contains whether the scanout is
enabled and what its preferred position and size is.

The size (fields width and height) is similar to the native panel resolution in EDID display information,
except that in the virtual machine case the size can change when the host window representing the
guest display is gets resized.

The position (fields x and y) describe how the displays are arranged (i.e. which is — for example — the
left display).

The enabled field is set when the user enabled the display. It is roughly the same as the connected
state of a phyiscal display connector.

VIRTIO_GPU_CMD_GET_EDID Retrieve the EDID data for a given scanout. Request data is struct virtio_-
gpu_get _edid). Response type is VIRTIO_GPU_RESP_OK_EDID, response data is struct virtio_gpu_-
resp_edid. Support is optional and negotiated using the VIRTIO_GPU_F_EDID feature flag.

struct virtio gpu get edid {
struct virtio gpu ctrl hdr hdr;

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 130 of 284

le32 scanout;
le32 padding;
}i

struct virtio gpu resp edid {
struct virtio gpu ctrl hdr hdr;
le32 size;
1e32 padding;
u8 edid[1024];
bi

The response contains the EDID display data blob (as specified by VESA) for the scanout.

VIRTIO_GPU_CMD_RESOURCE_CREATE_2D Create a 2D resource on the host. Request data is struct
virtio_gpu_resource _create_2d. Response type is VIRTIO_GPU_RESP_OK_NODATA.

enum virtio gpu formats {

VIRTIO GPU FORMAT B8G8RSA8 UNORM = 1,
VIRTIO GPU FORMAT B8G8R8X8 UNORM = 2,
VIRTIO GPU FORMAT A8R8G8B8 UNORM = 3,
VIRTIO GPU FORMAT X8R8GSB8 UNORM = 4,
VIRTIO GPU FORMAT R8G8BSAS UNORM = 67,
VIRTIO GPU FORMAT X8B8GS8R8 UNORM = 68,
VIRTIO GPU FORMAT A8B8GS8R8 UNORM = 121,

VIRTIO GPU FORMAT R8G8B8X8 UNORM = 134,
bi

struct virtio gpu resource create 2d {
struct virtio _gpu ctrl hdr hdr;
le32 resource_id;
le32 format;
le32 width;
le32 height;

i

This creates a 2D resource on the host with the specified width, height and format. The resource ids
are generated by the guest.

VIRTIO_GPU_CMD_RESOURCE_UNREF Destroy aresource. Requestdatais struct virtio_gpu_resource_-
unref. Response type is VIRTIO_GPU_RESP_OK_NODATA.

struct virtio gpu resource unref {
struct virtio gpu ctrl hdr hdr;
le32 resource_ id;
le32 padding;

i

This informs the host that a resource is no longer required by the guest.

VIRTIO_GPU_CMD_SET_SCANOUT Set the scanout parameters for a single output. Request data is
struct virtio_gpu_set_scanout. Response type is VIRTIO_GPU_RESP_OK_ NODATA.

struct virtio gpu set scanout {
struct virtio gpu ctrl hdr hdr;
struct virtio gpu rect r;
le32 scanout id;
le32 resource id;

}i

This sets the scanout parameters for a single scanout. The resource_id is the resource to be scanned
out from, along with a rectangle.

Scanout rectangles must be completely covered by the underlying resource. Overlapping (or identical)
scanouts are allowed, typical use case is screen mirroring.

The driver can use resource_id = 0 to disable a scanout.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 131 of 284

VIRTIO_GPU_CMD_RESOURCE_FLUSH Flush a scanout resource Request data is struct virtio_gpu_-
resource_flush. Response type is VIRTIO_GPU_RESP_OK_NODATA.

struct virtio gpu resource flush {
struct virtio gpu ctrl hdr hdr;
struct virtio gpu rect r;
le32 resource id;
le32 padding;

i

This flushes a resource to screen. It takes a rectangle and a resource id, and flushes any scanouts the
resource is being used on.

VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D Transfer from guest memory to host resource. Request
data is struct virtio_gpu_transfer_to_host _2d. Response type is VIRTIO_GPU_RESP_OK_NODATA.

struct virtio gpu transfer to host 2d {
struct virtio _gpu ctrl hdr hdr;
struct virtio gpu rect r;
le6d offset;
le32 resource_id;
le32 padding;

i

This takes a resource id along with an destination offset into the resource, and a box to transfer to the
host backing for the resource.

VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING Assign backing pages to aresource. Request data
is struct virtio_gpu_resource_attach_backing, followed by struct virtio_gpu_mem_entry entries. Re-
sponse type is VIRTIO_GPU_RESP_OK_NODATA.

struct virtio gpu resource attach backing {
struct virtio _gpu ctrl hdr hdr;
le32 resource_id;
le32 nr_entries;

}i

struct virtio gpu mem entry {
le64 addr;
le32 length;
le32 padding;

}i

This assign an array of guest pages as the backing store for a resource. These pages are then used
for the transfer operations for that resource from that point on.

VIRTIO_GPU_CMD_RESOURCE_DETACH_BACKING Detach backing pages from a resource. Request

data is struct virtio_gpu_resource_detach_backing. Response type is VIRTIO_GPU_RESP_OK_NO-
DATA.

struct virtio gpu resource detach backing {
struct virtio_gpu ctrl hdr hdr;
le32 resource_id;
le32 padding;

}i

This detaches any backing pages from a resource, to be used in case of guest swapping or object
destruction.

VIRTIO_GPU_CMD_GET_CAPSET_INFO Gets the information associated with a particular capset_index,
which MUST less than num__capsets defined in the device configuration. Request data is struct virtio_-
gpu__get_capset_info. Response type is VIRTIO_GPU_RESP_OK_CAPSET_INFO.

On success, struct virtio_gpu__resp_capset_info contains the capset_id, capset_max_version, capset_-
max__size associated with capset at the specified capset_idex. fieldcapset_id MUST be one of the following
(see listing for values):

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 132 of 284

* VIRTIO_GPU_CAPSET_VIRGL — the first edition of Virgl (Gallium OpenGL) protocol.

* VIRTIO_GPU_CAPSET_VIRGL2 — the second edition of Virgl (Gallium OpenGL) protocol after the
capset fix.

* VIRTIO_GPU_CAPSET_GFXSTREAM — gfxtream's (mostly) autogenerated GLES and Vulkan stream-
ing protocols.

* VIRTIO_GPU_CAPSET_VENUS — Mesa's (mostly) autogenerated Vulkan protocol.

* VIRTIO_GPU_CAPSET_CROSS_DOMAIN - protocol for display virtualization via Wayland proxying.

struct virtio u get capset info {
struct virtio u ctrl hdr hdr;

le32 capset index;
1e32 padding;

Yi
$DIF >

e SEECCE THLEEAS gron citicl gk acl
e LB CEEEE TEN

1le32 capset max size;
1le32 padding;

}i

AL

VIRTIO_GPU_CMD_GET_CAPSET Gets the capset associated with a particular capset_id and capset_version.
Request data is struct virtio_gpu_get_capset. Response type is VIRTIO_GPU_RESP_OK_CAPSET.

SN YERE0) Cot OSSR
e SEEUCE TS g citicl gk acle
e L2 CEIREEE RN

Li

$DIF >

FlEug s Uit 0 G toe aesel

struct virtio u ctrl hdr hdr;
u8 capset datal];
i

VIRTIO_GPU_CMD_RESOURCE_ASSIGN_UUID Creates an exported object from a resource. Request data
is struct virtio_gpu__resource_assign_uuid. Response type is VIRTIO_GPU_RESP_OK_RESOURCE_-
UUID, response data is struct virtio_gpu__resp_resource_uuid. Support is optional and negotiated using the
VIRTIO_GPU_F_RESOURCE_UUID feature flag.

struct virtio u resource assign uuid {
struct virtio u ctrl hdr hdr;

1le32 resource id;
1e32 padding;

1i

%DIF >

struct virtio u resp resource uuid {

struct virtio u ctrl hdr hdr;
u8 uuid[16];

}i

AL

The response contains a UUID which identifies the exported object created from the host private resource.
Note that if the resource has an attached backing, modifications made to the host private resource through
the exported object by other devices are not visible in the attached backing until they are transferred into
the backing.

VIRTIO_GPU_CMD_RESOURCE_CREATE_BLOB Creates a virtio-gpu blob resource. Request data is struct
virtio_gpu__resource_create_blob, followed by struct virtio_gpu_mem_entry entries. Response type is

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 133 of 284

https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/virgl_hw.h#L526
https://gitlab.freedesktop.org/virgl/virglrenderer/-/blob/master/src/virgl_hw.h#L550
https://android.googlesource.com/device/generic/vulkan-cereal/+/refs/heads/master/protocols/
https://gitlab.freedesktop.org/olv/venus-protocol
https://chromium.googlesource.com/chromiumos/platform/crosvm/+/refs/heads/main/rutabaga_gfx/src/cross_domain/cross_domain_protocol.rs

VIRTIO_GPU_RESP_OK_NODATA. Support is optional and negotiated using the VIRTIO_GPU_F_-
RESOURCE_BLOB feature flag.

#define VIRTIO GPU BLOB MEM GUEST __ _ _ _ __ 0x0001
%$DIF >

#define VIRTIO GPU BLOB FLAG USE SHAREABLE __0x0002
$DIF >
struct virtio gpu resource create blob {

le32 resource id;

e JECZ 2LED wEn
le32 nr entries;
le64 blob id;
le6d size;

A blob resource is a container for:

* a guest memory allocation (referred to as a "guest-only blob resource”).
* a host memory allocation (referred to as a "host-only blob resource”).
* a guest memory and host memory allocation (referred to as a "default blob resource™).

The memory properties of the blob resource MUST be described by blob_mem, which MUST be non-zero.

For default and guest-only blob resources, nr_entries guest memory entries may be assigned to the resource.
For default blob resources (i.e, when blob_mem is VIRTIO_GPU_BLOB_MEM_HOST3D_GUEST), these
memory entries are used as a shadow buffer for the host memory. To facilitate drivers that support swap-in
and swap-out, nr_entries may be zero and VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING may
be subsequently used. VIRTIO_GPU_CMD_RESOURCE_DETACH_BACKING may be used to unassign
memory entries.

blob_mem can only be VIRTIO_GPU_BLOB_MEM_HOST3D and VIRTIO_GPU_BLOB_MEM_HOST3D_-
GUEST if VIRTIO_GPU_F_VIRGL is supported. VIRTIO_GPU_BLOB_MEM_GUEST is valid regardless
whether VIRTIO_GPU_F_VIRGL is supported or not.

For VIRTIO_GPU_BLOB_MEM_HOST3D and VIRTIO_GPU_BLOB_MEM_HOST3D_GUEST, the virtio-
gpu resource MUST be created from the rendering context local object identified by the blob_id. The actual
allocation is done via VIRTIO_GPU_CMD_SUBMIT_3D.

The driver MUST inform the device if the blob resource is used for memory access, sharing between driver
instances and/or sharing with other devices. This is done via the blob_flags field.

If VIRTIO_GPU_F_VIRGL is set, both VIRTIO_GPU_CMD_TRANSFER_TO_HOST_3D and VIRTIO_-
GPU_CMD_TRANSFER_FROM_HOST_3D may be used to update the resource. There is no restriction
on the image/buffer view the driver has on the blob resource.

VIRTIO_GPU_CMD_SET_SCANOUT_BLOB sets scanout parameters for a blob resource. Request data is
struct virtio_gpu__set_scanout_blob. Response type is VIRTIO_GPU_RESP_OK_NODATA. Support is
optional and negotiated using the VIRTIO_GPU_F_RESOURCE_BLOB feature flag.

struct virtio u set scanout blob
struct virtio u ctrl hdr hdr;
struct virtio u rect r;

le32 scanout id;
le32 resource id;
le32 format;
1le32 padding;
le32 strides[4];
le32 offsets[4];

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 134 of 284

|1

The rectangle r represents the portion of the blob resource being displayed. The rest is the metadata
associated with the blob resource. The format MUST be one of enum virtio_gpu_formats. The format
MAY be compressed with header and data planes.

5.7.6.9 Device Operation: controlg (3d)
These commands are supported by the device if the VIRTIO_GPU_F_VIRGL feature flag is set.

VIRTIO_GPU_CMD_CTX_CREATE creates a context for submitting an opaque command stream. Request
data is struct virtio_gpu_ctx_create. Response type is VIRTIO_GPU_RESP_OK_NODATA.

struct virtio u ctx create {

struct virtio u ctrl hdr hdr;
1e32 nlen;

1le32 context init;

char debug name[64];
}i

The implementation MUST create a context for the given ctx_id in the hdr. For debugging purposes,
a debug_name and it's length nlen is provided by the driver. If VIRTIO_GPU_F_CONTEXT_INIT is
supported, then lower 8 bits of context_init MAY contain the capset_id associated with context. In that
case, then the device MUST create a context that can handle the specified command stream.

If the lower 8-bits of the context_init are zero, then the type of the context is determined by the device.
VIRTIO_GPU_CMD_CTX_DESTROY
VIRTIO_GPU_CMD_CTX_ATTACH_RESOURCE
VIRTIO_GPU_CMD_CTX_DETACH_RESOURCE Manage virtio-gpu 3d contexts.
VIRTIO_GPU_CMD_RESOURCE_CREATE_3D Create virtio-gpu 3d resources.
VIRTIO_GPU_CMD_TRANSFER_TO_HOST_3D
VIRTIO_GPU_CMD_TRANSFER_FROM_HOST_3D Transfer data from and to virtio-gpu 3d resources.

VIRTIO_GPU_CMD_SUBMIT_3D Submit an opaque command stream. The type of the command stream is
determined when creating a context.

VIRTIO_GPU_CMD_RESOURCE_MAP_BLOB maps a host-only blob resource into an offset in the host visible
memory region. Request data is struct virtio_gpu_resource_map_blob. The driver MUST not map a blob
resource that is already mapped. Response type is VIRTIO_GPU_RESP_OK_MAP_INFO. Support is
optional and negotiated using the VIRTIO_GPU_F_RESOURCE_BLOB feature flag and checking for the
presence of the host visible memory region.

struct virtio u resource map blob
le32 resource id;
le32 padding;
le6d offset;

1
%$DIF >
#define VIRTIO GRU MAP CACHE NONE ___ _ 0x00

struct virtio u resp map_ info
struct virtio u ctrl hdr hdr;

u32 padding;

} 2

~A

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 135 of 284

VIRTIO_GPU_CMD_RESOURCE_UNMAP_BLOB unmaps a host-only blob resource from the host visible
memory region. Request data is struct virtio_gpu_ resource_unmap__blob. Response type is VIRTIO_GPU_-
RESP_OK_NODATA. Support is optional and negotiated using the VIRTIO_GPU_F_RESOURCE_BLOB
feature flag and checking for the presence of the host visible memory region.

struct virtio u resource unmap blob {
struct virtio u ctrl hdr hdr;

le32 resource id;
le32 padding;

5.7.6.10 Device Operation: cursorq

Both cursorqg commands use the same command struct.

struct virtio gpu cursor pos {
le32 scanout id;
le32 x;
1le32 y;
1le32 padding;
b

struct virtio gpu update cursor {
struct virtio gpu ctrl hdr hdr;
struct virtio gpu cursor pos pos;
le32 resource id;
1le32 hot_ x;
le32 hot y;
1le32 padding;

VIRTIO_GPU_CMD_UPDATE_CURSOR Update cursor. Request data is struct virtio_gpu_update _cursor.
Response type is VIRTIO_GPU_RESP_OK_NODATA.

Full cursor update. Cursor will be loaded from the specified resource id and will be moved to pos.
The driver must transfer the cursor into the resource beforehand (using control queue commands) and
make sure the commands to fill the resource are actually processed (using fencing).

VIRTIO_GPU_CMD_MOVE_CURSOR Move cursor. Request data is struct virtio_gpu_update _cursor. Re-
sponse type is VIRTIO_GPU_RESP_OK_NODATA.

Move cursor to the place specified in pos. The other fields are not used and will be ignored by the
device.

5.7.7 VGA Compatibility

Applies to Virtio Over PCI only. The GPU device can come with and without VGA compatibility. The PCI
class should be DISPLAY_VGA if VGA compatibility is present and DISPLAY_OTHER otherwise.

VGA compatibility: PCI region 0 has the linear framebuffer, standard vga registers are present. Configuring
a scanout (VIRTIO_GPU_CMD_SET_SCANOUT) switches the device from vga compatibility mode into
native virtio mode. A reset switches it back into vga compatibility mode.

Note: gemu implementation also provides bochs dispi interface io ports and mmio bar at pci region 1 and is
therefore fully compatible with the gemu stdvga (see docs/specs/standard-vga.txt in the gemu source tree).

5.8 Input Device

The virtio input device can be used to create virtual human interface devices such as keyboards, mice and
tablets. An instance of the virtio device represents one such input device. Device behavior mirrors that of
the evdev layer in Linux, making pass-through implementations on top of evdev easy.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 136 of 284

https://git.qemu-project.org/?p=qemu.git;a=blob;f=docs/specs/standard-vga.txt;hb=HEAD

This specification defines how evdev events are transported over virtio and how the set of supported events
is discovered by a driver. It does not, however, define the semantics of input events as this is depen-
dent on the particular evdev implementation. For the list of events used by Linux input devices, see
include/uapi/linux/input-event-codes.h in the Linux source tree.

5.8.1 Device ID
18

5.8.2 Virtqueues
0 eventq

1 statusq

5.8.3 Feature bits

None.

5.8.4 Device configuration layout

Device configuration holds all information the guest needs to handle the device, most importantly the events
which are supported.

enum virtio input config select {

VIRTIO INPUT CFG UNSET = 0x00,
VIRTIO INPUT CFG ID NAME = 0x01,
VIRTIO INPUT CFG_ID SERIAL = 0x02,
VIRTIO INPUT CFG ID DEVIDS = 0x03,
VIRTIO INPUT CFG PROP BITS = 0x10,
VIRTIO INPUT CFG EV BITS = 0x11,
VIRTIO INPUT CFG ABS INFO = 0x12,

bi

struct virtio_input absinfo {
le32 min;
le32 max;
le32 fuzz;
le32 flat;
le32 res;
}i

struct virtio input devids {
lel6 Dbustype;
lel6 vendor;
lel6 product;
lel6 version;
}i

struct virtio_input config {

u8 select;

u8 subsel;

u8 size;

u8 reserved[5];
union {

char string[128];

u8 bitmap[128];

struct virtio_ input absinfo abs;

struct virtio input devids ids;
}ou;

bi

To query a specific piece of information the driver sets select and subsel accordingly, then checks size to
see how much information is available. size can be zero if no information is available. Strings do not include
a NUL terminator. Related evdev ioctl names are provided for reference.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 137 of 284

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/input-event-codes.h

VIRTIO_INPUT_CFG_ID_NAME subsel is zero. Returns the name of the device, in u.string.
Similar to EVIOCGNAME ioctl for Linux evdev devices.
VIRTIO_INPUT_CFG_ID_SERIAL subsel is zero. Returns the serial number of the device, in u.string.
VIRTIO_INPUT_CFG_ID_DEVIDS subsel is zero. Returns ID information of the device, in u.ids.
Similar to EVIOCGID ioctl for Linux evdev devices.

VIRTIO_INPUT_CFG_PROP_BITS subsel is zero. Returns input properties of the device, in u.bitmap.
Individual bits in the bitmap correspond to INPUT_PROP_* constants used by the underlying evdev
implementation.

Similar to EVIOCGPROP ioctl for Linux evdev devices.

VIRTIO_INPUT_CFG_EV_BITS subsel specifies the event type using EV_* constants in the underlying
evdev implementation. If size is non-zero the event type is supported and a bitmap of supported event
codes is returned in u.bitmap. Individual bits in the bitmap correspond to implementation-defined input
event codes, for example keys or pointing device axes.

Similar to EVIOCGBIT ioctl for Linux evdev devices.

VIRTIO_INPUT_CFG_ABS_INFO subsel specifies the absolute axis using ABS_* constants in the under-
lying evdev implementation. Information about the axis will be returned in u.abs.

Similar to EVIOCGABS ioctl for Linux evdev devices.

5.8.5 Device Initialization
1. The device is queried for supported event types and codes.

2. The eventq is populated with receive buffers.

5.8.5.1 Driver Requirements: Device Initialization
A driver MUST set both select and subsel when querying device configuration, in any order.
A driver MUST NOT write to configuration fields other than select and subsel.

A driver SHOULD check the size field before accessing the configuration information.

5.8.5.2 Device Requirements: Device Initialization

A device MUST set the size field to zero if it doesn’t support a given select and subsel combination.

5.8.6 Device Operation

1. Input events such as press and release events for keys and buttons, and motion events for pointing
devices are sent from the device to the driver using the eventq.

2. Status feedback such as keyboard LED updates are sent from the driver to the device using the statusq.

3. Both queues use the same virtio_input_event struct. type, code and value are filled according to the
Linux input layer (evdev) interface, except that the fields are in little endian byte order whereas the
evdev ioctl interface uses native endian-ness.

struct virtio_input event ({
lel6 type;
lel6 code;
le32 value;

bi

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 138 of 284

5.8.6.1 Driver Requirements: Device Operation

A driver SHOULD keep the eventq populated with buffers. These buffers MUST be device-writable and
MUST be at least the size of struct virtio_input_event.

Buffers placed into the statusq by a driver MUST be at least the size of struct virtio_input_event.

A driver SHOULD ignore eventq input events it does not recognize. Note that evdev devices generally
maintain backward compatibility by sending redundant events and relying on the consuming side using only
the events it understands and ignoring the rest.

5.8.6.2 Device Requirements: Device Operation

A device MAY drop input events if the eventq does not have enough available buffers. It SHOULD NOT
drop individual input events if they are part of a sequence forming one input device update. For example,
a pointing device update typically consists of several input events, one for each axis, and a terminating
EV_SYN event. A device SHOULD either buffer or drop the entire sequence.

5.9 Crypto Device

The virtio crypto device is a virtual cryptography device as well as a virtual cryptographic accelerator. The
virtio crypto device provides the following crypto services: CIPHER, MAC, HASH, and AEAD. Virtio crypto
devices have a single control queue and at least one data queue. Crypto operation requests are placed into
a data queue, and serviced by the device. Some crypto operation requests are only valid in the context of
a session. The role of the control queue is facilitating control operation requests. Sessions management is
realized with control operation requests.

5.9.1 Device ID
20

5.9.2 Virtqueues
0 dataq1

N-1 datagN
N controlq

N is set by max_dataqueues.

5.9.3 Feature bits

VIRTIO_CRYPTO_F_REVISION_1 (0) revision 1. Revision 1 has a specific request format and other
enhancements (which result in some additional requirements).

VIRTIO_CRYPTO_F_CIPHER_STATELESS MODE (1) stateless mode requests are supported by the CI-

PHER service.
VIRTIO_CRYPTO_F_HASH_STATELESS_MODE (2) stateless mode requests are supported by the HASH
service.
VIRTIO_CRYPTO_F_MAC_STATELESS_MODE (3) stateless mode requests are supported by the MAC
service.
VIRTIO_CRYPTO_F_AEAD_STATELESS MODE (4) stateless mode requests are supported by the AEAD
service.
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 139 of 284

5.9.3.1 Feature bit requirements

Some crypto feature bits require other crypto feature bits (see 2.2.1):
VIRTIO_CRYPTO_F_CIPHER_STATELESS_MODE Requires VIRTIO_CRYPTO_F_REVISION_1.
VIRTIO_CRYPTO_F_HASH_STATELESS_MODE Requires VIRTIO_CRYPTO_F_REVISION_1.
VIRTIO_CRYPTO_F_MAC_STATELESS_MODE Requires VIRTIO_CRYPTO_F_REVISION_1.
VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE Requires VIRTIO_CRYPTO_F_REVISION_1.

5.9.4 Supported crypto services

The following crypto services are defined:

/* CIPHER service */

#define VIRTIO CRYPTO SERVICE CIPHER 0

/* HASH service */

#define VIRTIO CRYPTO SERVICE HASH 1

/* MAC (Message Authentication Codes) service */

#define VIRTIO CRYPTO SERVICE MAC 2

/* AEAD (Authenticated Encryption with Associated Data) service */
#define VIRTIO_CRYPTO_SERVICE_AEAD 3

The above constants designate bits used to indicate the which of crypto services are offered by the device
as described in, see 5.9.5.

5.9.4.1 CIPHER services
The following CIPHER algorithms are defined:

#define VIRTIO CRYPTO NO CIPHER 0
#define VIRTIO CRYPTO CIPHER ARC4 1
#define VIRTIO CRYPTO CIPHER AES ECB 2
#define VIRTIO CRYPTO CIPHER AES CBC 3
#define VIRTIO CRYPTO CIPHER AES CTR 4
#define VIRTIO CRYPTO CIPHER DES ECB 5
#define VIRTIO CRYPTO CIPHER DES CBC 6
#define VIRTIO CRYPTO CIPHER 3DES ECB 7
#define VIRTIO CRYPTO CIPHER 3DES_CBC 8
#define VIRTIO CRYPTO CIPHER 3DES CTR 9
#define VIRTIO CRYPTO CIPHER KASUMI F8 10
#define VIRTIO CRYPTO CIPHER SNOW3G UEA2 11
#define VIRTIO CRYPTO CIPHER AES F8 12
#define VIRTIO CRYPTO CIPHER AES XTS 13
#define VIRTIO CRYPTO CIPHER ZUC EEA3 14

The above constants have two usages:
1. As bit numbers, used to tell the driver which CIPHER algorithms are supported by the device, see 5.9.5.
2. As values, used to designate the algorithm in (CIPHER type) crypto operation requests, see 5.9.7.2.1.

5.9.4.2 HASH services
The following HASH algorithms are defined:

#define VIRTIO CRYPTO NO HASH 0
#define VIRTIO CRYPTO HASH MD5 1
#define VIRTIO CRYPTO HASH SHAL 2
#define VIRTIO CRYPTO HASH SHA 224 3
#define VIRTIO CRYPTO HASH SHA 256 4
#define VIRTIO CRYPTO HASH SHA 384 5
#define VIRTIO CRYPTO HASH SHA 512 6
#define VIRTIO CRYPTO HASH SHA3 224 7
#define VIRTIO CRYPTO HASH SHA3 256 8
#define VIRTIO CRYPTO HASH SHA3 384 9
#define VIRTIO CRYPTO HASH SHA3 512 10
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 140 of 284

#define
#define

VIRTIO CRYPTO HASH SHA3 SHAKE128 11
VIRTIO CRYPTO HASH SHA3_ SHAKE256 12

The above constants have two usages:

1. As bit numbers, used to tell the driver which HASH algorithms are supported by the device, see 5.9.5.

2. As values, used to designate the algorithm in (HASH type) crypto operation requires, see 5.9.7.2.1.

5.9.4.3

MAC services

The following MAC algorithms are defined:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

VIRTIO CRYPTO NO MAC

VIRTIO CRYPTO MAC HMAC MD5
VIRTIO CRYPTO MAC HMAC SHAL
VIRTIO CRYPTO MAC HMAC SHA 224
VIRTIO CRYPTO MAC HMAC SHA 256
VIRTIO CRYPTO MAC HMAC SHA 384
VIRTIO CRYPTO MAC HMAC SHA 512
VIRTIO CRYPTO MAC CMAC 3DES
VIRTIO CRYPTO MAC CMAC AES
VIRTIO CRYPTO MAC KASUMI F9
VIRTIO CRYPTO MAC SNOW3G UIA2
VIRTIO CRYPTO MAC GMAC AES
VIRTIO CRYPTO MAC GMAC TWOFISH
VIRTIO CRYPTO MAC CBCMAC AES
VIRTIO CRYPTO MAC CBCMAC KASUMI F9
VIRTIO CRYPTO MAC XCBC AES
VIRTIO CRYPTO MAC ZUC EIA3

g W NP o

26
27
28
41
42
49
50
53
54

The above constants have two usages:

1. As bit numbers, used to tell the driver which MAC algorithms are supported by the device, see 5.9.5.

2. As values, used to designate the algorithm in (MAC type) crypto operation requests, see 5.9.7.2.1.

5.9.4.4

AEAD services

The following AEAD algorithms are defined:

#define
#define
#define
#define

VIRTIO CRYPTO NO AEAD 0
VIRTIO CRYPTO AEAD GCM 1
VIRTIO CRYPTO AEAD CCM 2
VIRTIO CRYPTO AEAD CHACHA20 POLY1305 3

The above constants have two usages:

1. As bit numbers, used to tell the driver which AEAD algorithms are supported by the device, see 5.9.5.

2. As values, used to designate the algorithm in (DEAD type) crypto operation requests, see 5.9.7.2.1.

5.9.5

Device configuration layout

Crypto device configuration uses the following layout structure:

struct virtio crypto config {

le32
le32
le32

status;
max_ dataqueues;
crypto_services;

/* Detailed algorithms mask */

le32
le32
le32
le32
le32
le32

cipher algo 1;
cipher algo h;
hash_algo;
mac_algo 1;
mac_algo_h;
aead algo;

/* Maximum length of cipher key in bytes */

le32

max_cipher_ key_ len;

virtio-v1.2-csd01

Standards

Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 141 of 284

/* Maximum length of authenticated key in bytes */

le32 max auth key len;

1le32 reserved;

/* Maximum size of each crypto request's content in bytes */
le64 max size;

Currently, only one status bit is defined: VIRTIO_CRYPTO_S_HW_READY set indicates that the device

is ready to process requests, this bit is read-only for the driver

#define VIRTIO CRYPTO S HW READY (1 << 0)

max_dataqueues is the maximum number of data virtqueues that can be configured by the device. The

driver MAY use only one data queue, or it can use more to achieve better performance.

crypto_services crypto service offered, see 5.9.4.
cipher_algo_I CIPHER algorithms bits 0-31, see 5.9.4.1.
cipher_algo_h CIPHER algorithms bits 32-63, see 5.9.4.1.
hash_algo HASH algorithms bits, see 5.9.4.2.
mac_algo_I MAC algorithms bits 0-31, see 5.9.4.3.
mac_algo_h MAC algorithms bits 32-63, see 5.9.4.3.
aead_algo AEAD algorithms bits, see 5.9.4.4.

max_cipher_key_len is the maximum length of cipher key supported by the device.

max_auth_key_len is the maximum length of authenticated key supported by the device.

reserved is reserved for future use.

max_size is the maximum size of the variable-length parameters of data operation of each crypto request’s

content supported by the device.

Note: Unless explicitly stated otherwise all lengths and sizes are in bytes.

5.9.5.1 Device Requirements: Device configuration layout

The device MUST set max_dataqueues to between 1 and 65535 inclusive.

The device MUST set the status with valid flags, undefined flags MUST NOT be set.

The device MUST accept and handle requests after status is set to VIRTIO_CRYPTO_S_HW_READY.
The device MUST set crypto_services based on the crypto services the device offers.

The device MUST set detailed algorithms masks for each service advertised by crypto_services. The
device MUST NOT set the not defined algorithms bits.

The device MUST set max_size to show the maximum size of crypto request the device supports.
The device MUST set max_cipher_key len to show the maximum length of cipher key if the device
supports CIPHER service.

The device MUST set max_auth_key len to show the maximum length of authenticated key if the
device supports MAC service.

5.9.5.2 Driver Requirements: Device configuration layout

The driver MUST read the status from the bottom bit of status to check whether the VIRTIO_CRYPTO_-
S HW_READY is set, and the driver MUST reread it after device reset.

The driver MUST NOT transmit any requests to the device if the VIRTIO_CRYPTO_S_HW_READY is
not set.

The driver MUST read max_dataqueues field to discover the number of data queues the device sup-
ports.

The driver MUST read crypto_services field to discover which services the device is able to offer.

The driver SHOULD ignore the not defined algorithms bits.

The driver MUST read the detailed algorithms fields based on crypto_services field.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 142 of 284

» The driver SHOULD read max_size to discover the maximum size of the variable-length parameters of
data operation of the crypto request’s content the device supports and MUST guarantee that the size
of each crypto request’s content is within the max_size, otherwise the request will fail and the driver
MUST reset the device.

» The driver SHOULD read max_cipher_key len to discover the maximum length of cipher key the device
supports and MUST guarantee that the key len (CIPHER service or AEAD service) is within the max_-
cipher_key len of the device configuration, otherwise the request will fail.

» The driver SHOULD read max_auth_key len to discover the maximum length of authenticated key the
device supports and MUST guarantee that the auth_key len (MAC service) is within the max_auth_-
key_len of the device configuration, otherwise the request will fail.

5.9.6 Device Initialization

5.9.6.1 Driver Requirements: Device Initialization

» The driver MUST configure and initialize all virtqueues.
» The driver MUST read the supported crypto services from bits of crypto_services.
» The driver MUST read the supported algorithms based on crypto_services field.

5.9.7 Device Operation

The operation of a virtio crypto device is driven by requests placed on the virtqueues. Requests consist of
a queue-type specific header (specifying among others the operation) and an operation specific payload.

If VIRTIO_CRYPTO_F_REVISION 1 is negotiated the device may support both session mode (See 5.9.7.2.1)
and stateless mode operation requests. In stateless mode all operation parameters are supplied as a part
of each request, while in session mode, some or all operation parameters are managed within the session.
Stateless mode is guarded by feature bits 0-4 on a service level. If stateless mode is negotiated for a ser-
vice, the service accepts both session mode and stateless requests; otherwise stateless mode requests are
rejected (via operation status).

5.9.7.1 Operation Status

The device MUST return a status code as part of the operation (both session operation and service operation)
result. The valid operation status as follows:

enum VIRTIO CRYPTO STATUS ({

VIRTIO CRYPTO OK = O,
VIRTIO CRYPTO ERR = 1,
VIRTIO CRYPTO BADMSG = 2
VIRTIO CRYPTO NOTSUPP =
VIRTIO CRYPTO INVSESS =
VIRTIO CRYPTO NOSPC = 5,
VIRTIO CRYPTO MAX

’
3,
4,

VIRTIO_CRYPTO_OK: success.

VIRTIO_CRYPTO_BADMSG: authentication failed (only when AEAD decryption).
VIRTIO_CRYPTO_NOTSUPP: operation or algorithm is unsupported.

VIRTIO_CRYPTO_INVSESS: invalid session ID when executing crypto operations.
VIRTIO_CRYPTO_NOSPC: no free session ID (only when the VIRTIO_CRYPTO_F_REVISION_1 fea-
ture bit is negotiated).

VIRTIO_CRYPTO_ERR: any failure not mentioned above occurs.

3

5.9.7.2 Control Virtqueue

The driver uses the control virtqueue to send control commands to the device, such as session operations
(See 5.9.7.2.1).

The header for controlq is of the following form:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 143 of 284

#define VIRTIO CRYPTO OPCODE (service, op) (((service) << 8) |

struct virtio crypto ctrl header {
#define VIRTIO CRYPTO_ CIPHER CREATE SESSION \
VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE CIPHER, 0x02)
#define VIRTIO CRYPTO CIPHER DESTROY SESSION \
VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE CIPHER, 0x03)
#define VIRTIO CRYPTO HASH CREATE SESSION \
VIRTIO_CRYPTO_OPCODE (VIRTIO CRYPTO SERVICE_HASH, 0x02)
#define VIRTIO CRYPTO HASH DESTROY SESSION \
VIRTIO_CRYPTO_OPCODE (VIRTIO_ CRYPTO_SERVICE_ HASH, 0x03)
#define VIRTIO CRYPTO MAC CREATE SESSION \
VIRTIO CRYPTO_ OPCODE (VIRTIO CRYPTO SERVICE MAC, 0x02)
#define VIRTIO_CRYPTO MAC_DESTROY_ SESSION \
VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE MAC, 0x03)
#define VIRTIO_CRYPTO AEAD_CREATE_SESSION \
VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE AEAD, 0x02)
#define VIRTIO_CRYPTO_ AEAD DESTROY_ SESSION \
VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE AEAD, 0x03)
1le32 opcode;
/* algo should be service-specific algorithms */
le32 algo;
le32 flag;
le32 reserved;
b

The controlq request is composed of four parts:

struct virtio crypto op ctrl req {
/* Device read only portion */

struct virtio crypto ctrl header header;
#define VIRTIO CRYPTO CTRLQ OP SPEC HDR LEGACY 56

/* fixed length fields, opcode specific */

u8 op flf[flf len];

/* variable length fields, opcode specific */
u8 op vlf[vlf len];

/* Device write only portion */
/* op result or completion status */

u8 op outcome[outcome len];

bi

header is a general header (see above).

op_fIf is the opcode (in header) specific fixed-length paramenters.

fif _len depends on the VIRTIO_CRYPTO_F_REVISION 1 feature bit (see below).

op_Vif is the opcode (in header) specific variable-length paramenters.

vif_len is the size of the specific structure used.

Note: The vif_len of session-destroy operation and the hash-session-create operation is ZERO.

« If the opcode (in header) is VIRTIO_CRYPTO_CIPHER_CREATE_SESSION then op_fif is struct vir-
tio_crypto_sym_create_session_flf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct vir-
tio_crypto_sym_create_session_flf is padded to 56 bytes if NOT negotiated, and op_Vif is struct vir-

tio_crypto_sym_create_session_Vif.

* If the opcode (in header) is VIRTIO_CRYPTO_HASH_CREATE_SESSION then op_fif is struct virtio_-
crypto_hash_create_session_flf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_-

crypto_hash_create_session_flf is padded to 56 bytes if NOT negotiated.

« If the opcode (in header) is VIRTIO_CRYPTO_MAC_CREATE_SESSION then op_fif is struct virtio_-
crypto_mac_create_session_flf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_-

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 144 of 284

crypto_mac_create_session_flf is padded to 56 bytes if NOT negotiated, and op_vif is struct virtio_-
crypto_mac_create_session_vilf.

« If the opcode (in header) is VIRTIO_CRYPTO_AEAD_CREATE_SESSION then op_fif is struct virtio_-
crypto_aead_create_session_flf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_-
crypto_aead_create_session_flf is padded to 56 bytes if NOT negotiated, and op_Vif is struct virtio_-
crypto_aead_create_session_Vif.

+ Ifthe opcode (in header) is VIRTIO_CRYPTO_CIPHER_DESTROY_SESSION or VIRTIO_CRYPTO _-
HASH_DESTROY_SESSION or VIRTIO_CRYPTO_MAC_DESTROY_SESSIONor VIRTIO_CRYPTO_-
AEAD_DESTROY_SESSION then op_fif is struct virtio_crypto_destroy_session_flfif VIRTIO_CRYPTO_-
F_REVISION_1 is negotiated and struct virtio_crypto_destroy_session_flf is padded to 56 bytes if NOT
negotiated.

op_outcome stores the result of operation and must be struct virtio_crypto_destroy session_input for de-
stroy session or struct virtio_crypto_create_session_input for create session.

outcome_len is the size of the structure used.
5.9.7.2.1 Session operation

The session is a handle which describes the cryptographic parameters to be applied to a number of buffers.

The following structure stores the result of session creation set by the device:

struct virtio crypto create session input ({
le64 session_id;
le32 status;
le32 padding;

ti

A request to destroy a session includes the following information:

struct virtio crypto destroy session flf ({
/* Device read only portion */
le64 session_id;

bi

struct virtio crypto destroy session input {
/* Device write only portion */
u8 status;

5.9.7.2.1.1 Session operation: HASH session

The fixed-length paramenters of HASH session requests is as follows:

struct virtio crypto hash create session flf {
/* Device read only portion */

/* See VIRTIO_ CRYPTO HASH * above */
1e32 algo;

/* hash result length */

le32 hash result len;

5.9.7.2.1.2 Session operation: MAC session

The fixed-length and the variable-length parameters of MAC session requests are as follows:

struct virtio crypto mac create session flf {
/* Device read only portion */

/* See VIRTIO CRYPTO MAC * above */
le32 algo;
/* hash result length */

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 145 of 284

1le32 hash_result len;
/* length of authenticated key */
le32 auth _key len;
le32 padding;
bi

struct virtio crypto mac create session v1f {
/* Device read only portion */

/* The authenticated key */
u8 auth keylauth key len];
bi

The length of auth_key is specified in auth_key len in the struct virtio_crypto_mac_create_session_flf.

5.9.7.2.1.3 Session operation: Symmetric algorithms session

The request of symmetric session could be the CIPHER algorithms request or the chain algorithms (chaining
CIPHER and HASH/MAC) request.

The fixed-length and the variable-length parameters of CIPHER session requests are as follows:

struct virtio crypto cipher session flf {
/* Device read only portion */

/* See VIRTIO CRYPTO CIPHER* above */
le32 algo;
/* length of key */
le32 key_ len;
#define VIRTIO CRYPTO OP ENCRYPT 1
#define VIRTIO CRYPTO OP DECRYPT 2
/* encryption or decryption */
le32 op;
le32 padding;
bi

struct virtio crypto cipher session v1f {
/* Device read only portion */

/* The cipher key */
u8 cipher keylkey len];
bi

The length of cipher_key is specified in key_len in the struct virtio_crypto_cipher_session_flf.

The fixed-length and the variable-length parameters of Chain session requests are as follows:

struct virtio crypto_alg chain session flf {
/* Device read only portion */

#define VIRTIO CRYPTO SYM ALG CHAIN ORDER HASH THEN CIPHER 1

#define VIRTIO CRYPTO SYM ALG CHAIN ORDER CIPHER THEN HASH 2
le32 alg chain order;

/* Plain hash */

#define VIRTIO CRYPTO SYM HASH MODE PLAIN 1
/* Authenticated hash (mac) */
#define VIRTIO CRYPTO SYM HASH MODE_AUTH 2

/* Nested hash */
#define VIRTIO CRYPTO SYM HASH MODE NESTED 3
1le32 hash _mode;
struct virtio_crypto_cipher_ session fl1f cipher_ hdr;

#define VIRTIO CRYPTO ALG CHAIN SESS OP SPEC HDR SIZE 16
/* fixed length fields, algo specific */
u8 algo f1f[VIRTIO CRYPTO ALG CHAIN SESS OP SPEC_HDR SIZE];

/* length of the additional authenticated data (AAD) in bytes */
le32 aad len;
1e32 padding;

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 146 of 284

struct virtio crypto alg chain session vlf ({
/* Device read only portion */

/* The cipher key */

u8 cipher keyl[key len];

/* The authenticated key */

u8 auth key[auth key len];
bi

hash_mode decides the type used by algo_fif.
algo_fif is fixed to 16 bytes and MUST contains or be one of the following types:

« struct virtio_crypto_hash_create_session_flf
« struct virtio_crypto_mac_create_session_flf

The data of unused part (if has) in algo_fif will be ignored.
The length of cipher_key is specified in key len in cipher_hdr.
The length of auth_key is specified in auth_key_len in struct virtio_crypto_mac_create_session_flf.

The fixed-length parameters of Symmetric session requests are as follows:

struct virtio crypto sym create session flf {
/* Device read only portion */

#define VIRTIO CRYPTO SYM SESS OP SPEC_HDR SIZE 48
/* fixed length fields, opcode specific */
u8 op f1f[VIRTIO CRYPTO SYM SESS OP SPEC HDR SIZE];

/* No operation */
#define VIRTIO CRYPTO SYM OP_NONE 0
/* Cipher only operation on the data */
#define VIRTIO CRYPTO SYM OP_CIPHER 1
/* Chain any cipher with any hash or mac operation. The order
depends on the value of alg chain order param */
#define VIRTIO CRYPTO SYM OP ALGORITHM CHAINING 2
le32 op_type;
le32 padding;
bi

op_fif is fixed to 48 bytes, MUST contains or be one of the following types:

« struct virtio_crypto_cipher_session_flf
« struct virtio_crypto_alg_chain_session_flf

The data of unused part (if has) in op_fIf will be ignored.
op_type decides the type used by op_fif.

The variable-length parameters of Symmetric session requests are as follows:

struct virtio crypto sym create session v1f {
/* Device read only portion */
/* variable length fields, opcode specific */
u8 op vlf[vlf len];

bi

op_vif MUST contains or be one of the following types:

« struct virtio_crypto_cipher_session_vif
« struct virtio_crypto_alg_chain_session_vlf

op_type in struct virtio_crypto_sym_create_session_flf decides the type used by op_Vif.

vif_len is the size of the specific structure used.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 147 of 284

5.9.7.2.1.4 Session operation: AEAD session

The fixed-length and the variable-length parameters of AEAD session requests are as follows:

struct virtio crypto_aead create session flf {
/* Device read only portion */

/* See VIRTIO CRYPTO AEAD * above */
le32 algo;
/* length of key */
le32 key len;
/* Authentication tag length */
le32 tag len;
/* The length of the additional authenticated data (AAD) in bytes */
le32 aad len;
/* encryption or decryption, See above VIRTIO CRYPTO OP * */
le32 op;
le32 padding;
bi

struct virtio crypto_aead create session v1f {
/* Device read only portion */
u8 keylkey len];

The length of key is specified in key_len in struct virtio_crypto_aead_create_session_flf.

5.9.7.2.1.5 Driver Requirements: Session operation: create session

» The driver MUST set the opcode field based on service type: CIPHER, HASH, MAC, or AEAD.

» The driver MUST set the control general header, the opcode specific header, the opcode specific extra
parameters and the opcode specific outcome buffer in turn. See 5.9.7.2.

» The driver MUST set the reversed field to zero.

5.9.7.2.1.6 Device Requirements: Session operation: create session

* The device MUST use the corresponding opcode specific structure according to the opcode in the
control general header.
» The device MUST extract extra parameters according to the structures used.
» The device MUST set the status field to one of the following values of enum VIRTIO_CRYPTO_STATUS
after finish a session creation:
— VIRTIO_CRYPTO_OK if a session is created successfully.
— VIRTIO_CRYPTO_NOTSUPP if the requested algorithm or operation is unsupported.
— VIRTIO_CRYPTO_NOSPC if no free session ID (only when the VIRTIO_CRYPTO_F_REVISION_-
1 feature bit is negotiated).
— VIRTIO_CRYPTO_ERR if failure not mentioned above occurs.
* The device MUST set the session _id field to a unique session identifier only if the status is set to
VIRTIO_CRYPTO_OK.

5.9.7.2.1.7 Driver Requirements: Session operation: destroy session

» The driver MUST set the opcode field based on service type: CIPHER, HASH, MAC, or AEAD.
* The driver MUST set the session_id to a valid value assigned by the device when the session was
created.

5.9.7.2.1.8 Device Requirements: Session operation: destroy session

* The device MUST set the status field to one of the following values of enum VIRTIO_CRYPTO_STA-
TUS.
— VIRTIO_CRYPTO_OK if a session is created successfully.
— VIRTIO_CRYPTO_ERR if any failure occurs.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 148 of 284

5.9.7.3 Data Virtqueue

The driver uses the data virtqueues to transmit crypto operation requests to the device, and completes the
crypto operations.

The header for dataq is as follows:

struct virtio_crypto op header {
#define VIRTIO CRYPTO CIPHER ENCRYPT \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE CIPHER, 0x00)
#define VIRTIO_CRYPTO_CIPHER DECRYPT \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE CIPHER, 0x01)
#define VIRTIO_ CRYPTO HASH \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE HASH, 0x00)
#define VIRTIO CRYPTO MAC \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE MAC, 0x00)
#define VIRTIO CRYPTO AEAD ENCRYPT \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE AEAD, 0x00)
#define VIRTIO CRYPTO AEAD DECRYPT \

VIRTIO CRYPTO OPCODE (VIRTIO CRYPTO SERVICE AEAD, 0x01)

le32 opcode;

/* algo should be service-specific algorithms */

le32 algo;

le64 session id;
#define VIRTIO CRYPTO FLAG SESSION MODE 1

/* control flag to control the request */

le32 flag;

le32 padding;
b

Note: If VIRTIO_CRYPTO_F_REVISION_1 is not negotiated the flag is ignored.

If VIRTIO_CRYPTO_F_REVISION_1 is negotiated but VIRTIO_CRYPTO_F_<SERVICE>_STATE-
LESS_MODE is not negotiated, then the device SHOULD reject <SERVICE> requests if VIRTIO_-
CRYPTO_FLAG_SESSION_MODE is not set (in flag).

The dataq request is composed of four parts:

struct virtio crypto op data req {
/* Device read only portion */

struct virtio crypto op header header;

#define VIRTIO CRYPTO DATAQ OP SPEC HDR LEGACY 48
/* fixed length fields, opcode specific */
u8 op flf[flf len];

/* Device read && write portion */
/* variable length fields, opcode specific */
u8 op vlf[vlf len];

/* Device write only portion */
struct virtio crypto inhdr inhdr;

bi

header is a general header (see above).

op_fif is the opcode (in header) specific header.

fIif _len depends on the VIRTIO_CRYPTO_F_REVISION_1 feature bit (see below).
op_Vif is the opcode (in header) specific parameters.

vif len is the size of the specific structure used.

« Ifthe the opcode (in header) is VIRTIO_CRYPTO_CIPHER_ENCRYPT or VIRTIO_CRYPTO_CIPHER -
DECRYPT then:
- IfVIRTIO_CRYPTO_F_CIPHER_STATELESS MODE is negotiated, op_fif is struct virtio_crypto_-
sym_data_fIf_stateless, and op_vif is struct virtio_crypto_sym_data_vif stateless.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 149 of 284

— If VIRTIO_CRYPTO_F_CIPHER_STATELESS MODE is NOT negotiated, op_fif is struct virtio_-
crypto_sym_data_flf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_crypto_-
sym_data_fIf is padded to 48 bytes if NOT negotiated, and op_vif is struct virtio_crypto_sym_-
data_vilf.

« If the the opcode (in header) is VIRTIO_CRYPTO_HASH:

— If VIRTIO_CRYPTO_F_HASH_STATELESS MODE is negotiated, op_fif is struct virtio_crypto_-
hash_data_flf stateless, and op_vi/f is struct virtio_crypto_hash_data_vlif stateless.

— If VIRTIO_CRYPTO_F_HASH_STATELESS_MODE is NOT negotiated, op fif is struct virtio_-
crypto_hash_data_fIf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_crypto_-
hash_data_flf is padded to 48 bytes if NOT negotiated, and op_vif is struct virtio_crypto_hash_-
data_vilf.

« If the the opcode (in header) is VIRTIO_CRYPTO_MAC:

— If VIRTIO_CRYPTO_F_MAC_STATELESS_ MODE is negotiated, op_fif is struct virtio_crypto_-
mac_data_fIf _stateless, and op_vif is struct virtio_crypto_mac_data_vlf stateless.

— IfVIRTIO_CRYPTO_F_MAC_STATELESS_MODE is NOT negotiated, op_fif is struct virtio_crypto_-
mac_data_fIf if VIRTIO_CRYPTO_F_REVISION 1 is negotiated and struct virtio_crypto_mac_-
data_flf is padded to 48 bytes if NOT negotiated, and op_Vif is struct virtio_crypto_mac_data_vlf.

+ If the the opcode (in header) is VIRTIO_CRYPTO_AEAD_ENCRYPT or VIRTIO_CRYPTO_AEAD -
DECRYPT then:

— If VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE is negotiated, op_fif is struct virtio_crypto_-
aead_data_flf_stateless, and op_Vif is struct virtio_crypto_aead data_vif_stateless.

— If VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE is NOT negotiated, op_fif is struct virtio_-
crypto_aead_data_flIf if VIRTIO_CRYPTO_F_REVISION_1 is negotiated and struct virtio_crypto_-
aead_data_flf is padded to 48 bytes if NOT negotiated, and op_vif is struct virtio_crypto_aead_-
data_vilf.

inhdr is a unified input header that used to return the status of the operations, is defined as follows:

struct virtio crypto_inhdr {
u8 status;

bi

5.9.7.4 HASH Service Operation

Session mode HASH service requests are as follows:

struct virtio_crypto_hash data_ flf {
/* length of source data */
le32 src_data_len;
/* hash result length */
le32 hash result len;
ti

struct virtio_crypto_hash data v1f {
/* Device read only portion */
/* Source data */
u8 src_data[src_data_len];

/* Device write only portion */
/* Hash result data */
u8 hash result[hash result len];

Each data request uses the virtio_crypto_hash_data_flf structure and the virtio_crypto_hash_data_vIf struc-
ture to store information used to run the HASH operations.

src_data is the source data that will be processed. src_data_len is the length of source data. hash_result
is the result data and hash_result len is the length of it.

Stateless mode HASH service requests are as follows:

struct virtio crypto hash data flf stateless {
struct {
/* See VIRTIO CRYPTO HASH * above */

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 150 of 284

le32 algo;
} sess para;

/* length of source data */
le32 src data len;
/* hash result length */
le32 hash_result_len;
le32 reserved;
bi
struct virtio_crypto_hash data vlf stateless {
/* Device read only portion */
/* Source data */
u8 src _data[src_data len];

/* Device write only portion */
/* Hash result data */
u8 hash_result[hash result len];

5.9.7.4.1 Driver Requirements: HASH Service Operation

« If the driver uses the session mode, then the driver MUST set session_id in struct virtio_crypto_op_-
header to a valid value assigned by the device when the session was created.

+ If the VIRTIO_CRYPTO_F_HASH_STATELESS_MODE feature bit is negotiated, 1) if the driver uses
the stateless mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to ZERO
and MUST set the fields in struct virtio_crypto_hash_data_flf stateless.sess_para, 2) if the driver uses
the session mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to VIRTIO_-
CRYPTO_FLAG_SESSION_MODE.

» The driver MUST set opcode in struct virtio_crypto_op_header to VIRTIO_CRYPTO_HASH.

5.9.7.4.2 Device Requirements: HASH Service Operation

» The device MUST use the corresponding structure according to the opcode in the data general header.
+ If the VIRTIO_CRYPTO_F_HASH_STATELESS_MODE feature bit is negotiated, the device MUST
parse flag field in struct virtio_crypto_op_header in order to decide which mode the driver uses.
» The device MUST copy the results of HASH operations in the hash_result[] if HASH operations success.
* The device MUST set status in struct virtio_crypto_inhdr to one of the following values of enum VIR-
TIO_CRYPTO_STATUS:
— VIRTIO_CRYPTO_OK if the operation success.
— VIRTIO_CRYPTO_NOTSUPP if the requested algorithm or operation is unsupported.
— VIRTIO_CRYPTO_INVSESS if the session ID invalid when in session mode.
— VIRTIO_CRYPTO_ERR if any failure not mentioned above occurs.

5.9.7.5 MAC Service Operation

Session mode MAC service requests are as follows:

struct virtio_crypto _mac_data_ flf {
struct virtio crypto hash data flf hdr;
b

struct virtio crypto mac data v1f {
/* Device read only portion */
/* Source data */
u8 src data[src data len];

/* Device write only portion */
/* Hash result data */
u8 hash result[hash result len];

bi

Each request uses the virtio_crypto_mac_data_flf structure and the virtio_crypto_mac_data_vif structure to
store information used to run the MAC operations.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 151 of 284

src_data is the source data that will be processed. src_data_len is the length of source data. hash_result
is the result data and hash_result len is the length of it.

Stateless mode MAC service requests are as follows:

struct virtio crypto mac data flf stateless {
struct {
/* See VIRTIO CRYPTO MAC * above */
le32 algo;
/* length of authenticated key */
le32 auth_key_len;
} sess_para;

/* length of source data */
le32 src _data_len;
/* hash result length */
le32 hash_result len;

b

struct virtio crypto mac data vl1f stateless {
/* Device read only portion */
/* The authenticated key */
u8 auth keylauth key len];
/* Source data */
u8 src data[src data len];

/* Device write only portion */

/* Hash result data */

u8 hash result[hash result len];
bi

auth_key is the authenticated key that will be used during the process. auth_key len is the length of the
key.

5.9.7.5.1 Driver Requirements: MAC Service Operation

« If the driver uses the session mode, then the driver MUST set session_id in struct virtio_crypto_op_-
header to a valid value assigned by the device when the session was created.

* If the VIRTIO_CRYPTO_F_MAC_STATELESS_MODE feature bit is negotiated, 1) if the driver uses
the stateless mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to ZERO
and MUST set the fields in struct virtio_crypto_mac_data_flf _stateless.sess_para, 2) if the driver uses
the session mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to VIRTIO_-
CRYPTO_FLAG_SESSION_MODE.

» The driver MUST set opcode in struct virtio_crypto_op_header to VIRTIO_CRYPTO_MAC.

5.9.7.5.2 Device Requirements: MAC Service Operation

 Ifthe VIRTIO_CRYPTO_F_MAC_STATELESS_MODE feature bitis negotiated, the device MUST parse
flag field in struct virtio_crypto_op_header in order to decide which mode the driver uses.
» The device MUST copy the results of MAC operations in the hash_result[] if HASH operations success.
» The device MUST set status in struct virtio_crypto_inhdr to one of the following values of enum VIR-
TIO_CRYPTO_STATUS:
— VIRTIO_CRYPTOQO_OK if the operation success.
— VIRTIO_CRYPTO_NOTSUPP if the requested algorithm or operation is unsupported.
— VIRTIO_CRYPTO_INVSESS if the session ID invalid when in session mode.
— VIRTIO_CRYPTO_ERR if any failure not mentioned above occurs.

5.9.7.6 Symmetric algorithms Operation

Session mode CIPHER service requests are as follows:

struct virtio_crypto_cipher data flf {
/*
* Byte Length of valid IV/Counter data pointed to by the below iv data.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 152 of 284

For block ciphers in CBC or F8 mode, or for Kasumi in F8 mode, or for
SNOW3G in UEA2 mode, this is the length of the IV (which
must be the same as the block length of the cipher).

For block ciphers in CTR mode, this is the length of the counter
(which must be the same as the block length of the cipher).

ok k% A Ak

/

le32 iv_len;

/* length of source data */

le32 src_data_len;

/* length of destination data */
le32 dst_data_len;

le32 padding;

struct virtio_crypto_cipher data vl1f {
/* Device read only portion */

/*
* Initialization Vector or Counter data.
*
* For block ciphers in CBC or F8 mode, or for Kasumi in F8 mode, or for
£y SNOW3G in UEA2 mode, this is the Initialization Vector (IV)
B3 value.
* For block ciphers in CTR mode, this is the counter.
* For AES-XTS, this is the 128bit tweak, i, from IEEE Std 1619-2007.
*
* The IV/Counter will be updated after every partial cryptographic
* operation.
=/

u8 iv[iv_len];
/* Source data */
u8 src _data[src_data len];

/* Device write only portion */
/* Destination data */
u8 dst data[dst data len];

i

Session mode requests of algorithm chaining are as follows:

struct virtio crypto alg chain data flf {
le32 iv len;
/* Length of source data */
le32 src data len;
/* Length of destination data */
le32 dst_data_len;
/* Starting point for cipher processing in source data */
le32 cipher start src offset;
/* Length of the source data that the cipher will be computed on */
le32 len to_cipher;
/* Starting point for hash processing in source data */
le32 hash_start src_offset;
/* Length of the source data that the hash will be computed on */
1e32 len_to_hash;
/* Length of the additional auth data */
le32 aad len;
/* Length of the hash result */
le32 hash result len;
le32 reserved;
bi

struct virtio_crypto_alg chain _data v1f {
/* Device read only portion */

/* Initialization Vector or Counter data */
u8 iv[iv_len];

/* Source data */

u8 src_data[src_data_ len];

/* Additional authenticated data if exists */
u8 aad[aad len];

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 153 of 284

/* Device write only portion */

/* Destination data */

u8 dst data[dst data len];

/* Hash result data */

u8 hash result[hash result len];
i

Session mode requests of symmetric algorithm are as follows:

struct virtio_crypto_sym data flf {
/* Device read only portion */

#define VIRTIO CRYPTO SYM DATA REQ HDR SIZE 40
u8 op type flf[VIRTIO CRYPTO SYM DATA REQ HDR SIZE];

/* See above VIRTIO CRYPTO SYM OP * */
le32 op type;
le32 padding;

bi

struct virtio_crypto_sym data vlf {
u8 op_type vlf[sym para len];
bi

Each request uses the virtio_crypto_sym_data_flf structure and the virtio_crypto_sym_data_flf structure to
store information used to run the CIPHER operations.

op_type_fif is the op_type specific header, it MUST starts with or be one of the following structures:

« struct virtio_crypto_cipher_data_flf
» struct virtio_crypto_alg_chain_data_flf

The length of op_type_fif is fixed to 40 bytes, the data of unused part (if has) will be ingored.
op_type vif is the op_type specific parameters, it MUST starts with or be one of the following structures:

» struct virtio_crypto_cipher_data_vlf
« struct virtio_crypto_alg_chain_data_vif

sym_para_len is the size of the specific structure used.

Stateless mode CIPHER service requests are as follows:

struct virtio crypto cipher data flf stateless ({
struct {
/* See VIRTIO CRYPTO CIPHER* above 2/
1le32 algo;
/* length of key */
le32 key len;

/* See VIRTIO CRYPTO OP_* above */
le32 op;
} sess para;

/*
* Byte Length of valid IV/Counter data pointed to by the below iv data.
o/
le32 iv len;
/* length of source data */
le32 src data len;
/* length of destination data */
le32 dst data len;
i

struct virtio crypto cipher data vl1f stateless {
/* Device read only portion */

/* The cipher key */

u8 cipher keylkey len];

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 154 of 284

/* Initialization Vector or Counter data. */
u8 iv([iv_len];

/* Source data */

u8 src data[src data len];

/* Device write only portion */
/* Destination data */
u8 dst data[dst data len];

bi

Stateless mode requests of algorithm chaining are as follows:

struct virtio crypto alg chain data flf stateless {
struct {
/* See VIRTIO CRYPTO SYM ALG CHAIN ORDER * above */
le32 alg chain order;
/* length of the additional authenticated data in bytes */
le32 aad len;

struct {
/* See VIRTIO CRYPTO CIPHER* above */
le32 algo;
/* length of key */
le32 key len;
/* See VIRTIO CRYPTO OP * above */
1le32 op;

} cipher;

struct {
/* See VIRTIO CRYPTO HASH * or VIRTIO CRYPTO MAC * above */
le32 algo;
/* length of authenticated key */
le32 auth key len;
/* See VIRTIO CRYPTO SYM HASH MODE * above */
le32 hash mode;

} hash;

} sess para;

le32 iv _len;

/* Length of source data */

le32 src data len;

/* Length of destination data */

le32 dst data_len;

/* Starting point for cipher processing in source data */

le32 cipher start src_offset;

/* Length of the source data that the cipher will be computed on */
le32 len_to cipher;

/* Starting point for hash processing in source data */

le32 hash start src offset;

/* Length of the source data that the hash will be computed on */
le32 len to hash;

/* Length of the additional auth data */

le32 aad len;

/* Length of the hash result */

le32 hash result len;

le32 reserved;

bi

struct virtio crypto alg chain data vlf stateless ({
/* Device read only portion */

/* The cipher key */

u8 cipher keylkey len];

/* The auth key */

u8 auth keylauth key len];

/* Initialization Vector or Counter data */
u8 iv([iv_len];

/* Additional authenticated data if exists */
u8 aad[aad len];

/* Source data */

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 155 of 284

u8 src_data[src_data_len];
/* Device write only portion */

/* Destination data */

u8 dst data[dst data len];

/* Hash result data */

u8 hash result[hash result len];

Stateless mode requests of symmetric algorithm are as follows:

struct virtio crypto sym data flf stateless {
/* Device read only portion */
#define VIRTIO CRYPTO SYM DATE REQ HDR STATELESS SIZE 72
u8 op type f1f[VIRTIO CRYPTO SYM DATE REQ HDR STATELESS SIZE];

/* Device write only portion */
/* See above VIRTIO CRYPTO SYM OP_* */
le32 op type;

bi

struct virtio crypto sym data vlf stateless {
u8 op type vlf[sym para len];
}i

op_type_fif is the op_type specific header, it MUST starts with or be one of the following structures:

« struct virtio_crypto_cipher_data_flf _stateless
« struct virtio_crypto_alg_chain_data_flf stateless

The length of op_type fif is fixed to 72 bytes, the data of unused part (if has) will be ingored.
op_type_vif is the op_type specific parameters, it MUST starts with or be one of the following structures:

« struct virtio_crypto_cipher_data_vlif stateless
« struct virtio_crypto_alg_chain_data_viIf stateless

sym_para_len is the size of the specific structure used.

5.9.7.6.1 Driver Requirements: Symmetric algorithms Operation

« If the driver uses the session mode, then the driver MUST set session_id in struct virtio_crypto_op_-
header to a valid value assigned by the device when the session was created.

 Ifthe VIRTIO_CRYPTO_F_CIPHER_STATELESS_MODE feature bit is negotiated, 1) if the driver uses
the stateless mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to ZERO
and MUST set the fields in struct virtio_crypto_cipher_data_flf stateless.sess_para or struct virtio_-
crypto_alg_chain_data_flf stateless.sess_para, 2) if the driver uses the session mode, then the driver
MUST set the flag field in struct virtio_crypto_op_header to VIRTIO_CRYPTO_FLAG_SESSION_-
MODE.

» The driver MUST set the opcode field in struct virtio_crypto_op_headerto VIRTIO_CRYPTO_CIPHER -
ENCRYPT or VIRTIO_CRYPTO_CIPHER_DECRYPT.

» The driver MUST specify the fields of struct virtio_crypto_cipher_data_flf in struct virtio_crypto_sym_-
data_flf and struct virtio_crypto_cipher_data_vif in struct virtio_crypto_sym_data_vif if the request is
based on VIRTIO_CRYPTO_SYM_OP_CIPHER.

» The driver MUST specify the fields of struct virtio_crypto_alg_chain_data_flIf in struct virtio_crypto_-
sym_data_fIf and struct virtio_crypto_alg chain_data_vif in struct virtio_crypto_sym_data_vif if the re-
quest is of the VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING type.

5.9.7.6.2 Device Requirements: Symmetric algorithms Operation

* If the VIRTIO_CRYPTO_F_CIPHER_STATELESS_MODE feature bit is negotiated, the device MUST
parse flag field in struct virtio_crypto_op_header in order to decide which mode the driver uses.
» The device MUST parse the virtio_crypto_sym_data_req based on the opcode field in general header.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 156 of 284

The device MUST parse the fields of struct virtio_crypto_cipher_data_flf in struct virtio_crypto_sym_-
data_flf and struct virtio_crypto_cipher_data_vif in struct virtio_crypto_sym_data_vif if the request is
based on VIRTIO_CRYPTO_SYM_OP_CIPHER.
The device MUST parse the fields of struct virtio_crypto_alg_chain_data_flf in struct virtio_crypto_-
sym_data_flf and struct virtio_crypto_alg chain_data_vif in struct virtio_crypto_sym_data_vif if the re-
quest is of the VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING type.
The device MUST copy the result of cryptographic operation in the dst_data[] in both plain CIPHER
mode and algorithms chain mode.
The device MUST check the para.add_len is bigger than 0 before parse the additional authenticated
data in plain algorithms chain mode.
The device MUST copy the result of HASH/MAC operation in the hash_result[] is of the VIRTIO_-
CRYPTO_SYM_OP_ALGORITHM_CHAINING type.
The device MUST set the status field in struct virtio_crypto_inhdr to one of the following values of enum
VIRTIO_CRYPTO_STATUS:

— VIRTIO_CRYPTO_OK if the operation success.

— VIRTIO_CRYPTO_NOTSUPP if the requested algorithm or operation is unsupported.

— VIRTIO_CRYPTO_INVSESS if the session ID is invalid in session mode.

— VIRTIO_CRYPTO_ERR if failure not mentioned above occurs.

5.9.7.7 AEAD Service Operation

Session mode requests of symmetric algorithm are as follows:

struct virtio crypto_aead data flf {

/*
* Byte Length of valid IV data.
*

* For GCM mode, this is either 12 (for 96-bit IVs) or 16, in which

o case iv points to JO.

* For CCM mode, this is the length of the nonce, which can be in the
* range 7 to 13 inclusive.

Y

le32 iv_len;

/* length of additional auth data */

le32 aad len;

/* length of source data */

le32 src data len;

/* length of dst data, this should be at least src_data len + tag_len */
le32 dst_data_len;

/* Authentication tag length */

le32 tag len;

1le32 reserved;

struct virtio crypto aead data v1f {

/* Device read only portion */

/*

* Initialization Vector data.

*

* For GCM mode, this is either the IV (if the length is 96 bits) or JO
& (for other sizes), where J0 is as defined by NIST SP800-38D.

E3 Regardless of the IV length, a full 16 bytes needs to be allocated.
* For CCM mode, the first byte is reserved, and the nonce should be

e written starting at &iv[1l] (to allow space for the implementation

* to write in the flags in the first byte). Note that a full 16 bytes
* should be allocated, even though the iv len field will have

& a value less than this.

*

* The IV will be updated after every partial cryptographic operation.
=/

u8 iv([iv_ len];

/* Source data */

u8 src data[src data len];

/* Additional authenticated data if exists */
u8 aad[aad len];

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 157 of 284

/* Device write only portion */
/* Pointer to output data */
u8 dst data[dst data len];

Each request uses the virtio_crypto_aead_data_flf structure and the virtio_crypto_aead_data_flf structure

to store information used to run the AEAD operations.

Stateless mode AEAD service requests are as follows:

struct virtio crypto aead data flf stateless {

struct {
/* See VIRTIO CRYPTO AEAD * above */
le32 algo;
/* length of key */
le32 key len;
/* encrypt or decrypt, See above VIRTIO CRYPTO OP_ * */
le32 op;

} sess_para;

/* Byte Length of valid IV data. */
le32 iv_len;

/* Authentication tag length */

le32 tag_len;

/* length of additional auth data */
1e32 aad_len;

/* length of source data */

le32 src _data len;

/* length of dst data, this should be at least src_data len + tag_len */

le32 dst_data_len;

struct virtio crypto_aead data vlf stateless {
/* Device read only portion */

/* The cipher key */

u8 keylkey len];

/* Initialization Vector data. */

u8 iv([iv_len];

/* Source data */

u8 src data[src data len];

/* Additional authenticated data if exists */
u8 aad[aad len];

/* Device write only portion */
/* Pointer to output data */
u8 dst data[dst data len];

5.9.7.7.1 Driver Requirements: AEAD Service Operation

« If the driver uses the session mode, then the driver MUST set session _id in struct virtio_crypto_op_-

header to a valid value assigned by the device when the session was created.

+ If the VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE feature bit is negotiated, 1) if the driver uses
the stateless mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to ZERO
and MUST set the fields in struct virtio_crypto_aead_data_flf stateless.sess_para, 2) if the driver uses
the session mode, then the driver MUST set the flag field in struct virtio_crypto_op_header to VIRTIO_-

CRYPTO_FLAG_SESSION_MODE.

» The driver MUST set the opcode field in struct virtio_crypto_op_header to VIRTIO_CRYPTO_AEAD_-

ENCRYPT or VIRTIO_CRYPTO_AEAD_DECRYPT.

5.9.7.7.2 Device Requirements: AEAD Service Operation

+ If the VIRTIO_CRYPTO_F_AEAD_STATELESS_MODE feature bit is negotiated, the device MUST
parse the virtio_crypto_aead_data_vlf_stateless based on the opcode field in general header.

* The device MUST copy the result of cryptographic operation in the dst_data(].

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 158 of 284

» The device MUST copy the authentication tag in the dst_data[] offset the cipher result.
» The device MUST set the status field in struct virtio_crypto_inhdr to one of the following values of enum
VIRTIO_CRYPTO_STATUS:
* When the opcode field is VIRTIO_CRYPTO_AEAD_DECRYPT, the device MUST verify and return the
verification result to the driver.
— VIRTIO_CRYPTOQO_OK if the operation success.
— VIRTIO_CRYPTO_NOTSUPP if the requested algorithm or operation is unsupported.
— VIRTIO_CRYPTO_BADMSG if the verification result is incorrect.
— VIRTIO_CRYPTO_INVSESS if the session ID invalid when in session mode.
— VIRTIO_CRYPTO_ERR if any failure not mentioned above occurs.

5.10 Socket Device

The virtio socket device is a zero-configuration socket communications device. It facilitates data transfer
between the guest and device without using the Ethernet or IP protocols.

5.10.1 Device ID
19

5.10.2 Virtqueues
0 rx
1 tx

2 event

5.10.3 Feature bits

TFhere-are-currently-no-feature-bits-definedforthis-deviee-If no feature bit is set, only stream socket type is supported. If
VIRTIO_VSOCK_F_SEQPACKET has been negotiated, the device MAY act as if VIRTIO_VSOCK_F_STREAM

has also been negotiated.
VIRTIO_VSOCK_F_STREAM (0) stream socket type is supported.
VIRTIO_VSOCK_F_SEQPACKET (1) seqpacket socket type is supported.

5.10.4 Device configuration layout

Socket device configuration uses the following layout structure:

struct virtio vsock config {
le64 guest cid;
}i

The guest_cid field contains the guest’s context ID, which uniquely identifies the device for its lifetime. The
upper 32 bits of the CID are reserved and zeroed.

The following CIDs are reserved and cannot be used as the guest’s context ID:

CID Notes

0 Reserved

1 Reserved

2 Well-known CID for the host
Oxffffffff Reserved

Oxffffffffffffff | Reserved

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 159 of 284

5.10.5 Device Initialization
1. The guest’s cid is read from guest_cid.
2. Buffers are added to the event virtqueue to receive events from the device.

3. Buffers are added to the rx virtqueue to start receiving packets.

5.10.6 Device Operation

Packets transmitted or received contain a header before the payload:

struct virtio_vsock hdr {
le64 src_cid;
le64 dst cid;
le32 src_port;
le32 dst port;
le32 len;
lel6 type;
lel6 op;
le32 flags;
le32 buf alloc;
le32 fwd cnt;
}i

The upper 32 bits of src_cid and dst_cid are reserved and zeroed.

Most packets simply transfer data but control packets are also used for connection and buffer space man-
agement. op is one of the following operation constants:

ITRTT 7 © D TAIIA
TR T i IV

I T =0
T

7

/* Connect operations */

D

o
H

7 P REOIIRCM 1
4 T—IXTs Tro T T

DONCR = 2
TONOTS

R
T

g

7

kn}
T
@&

=
o
T

HA HHHH
oo
H
HA HHHAH
D
N
P

D
BN
o)
o

7

{

#define VIRTIO VSOCK OF REQUEST 1
#define VIRTIO VSOCK OF RESPONSE 2
#define VIRTIO VSOCK OP RST 3
#define VIRTIO VSOCK OF _SHUTDOWN 4
/* To send payload */

IRTIO K OP RW—=5,
#define VIRTIO VSOCK OB RW __ ______ 5

/* Tell the peer our credit info */

ITRTT © D REPDFFP HUPPATRE——
TR T s T RITDT T Or DAt o7

#define VIRTIO VSOCK OP CREDIT UPDATE _6
/* Request the peer to send the credit info to us */

IRTT —
I

7

5.10.6.1 Virtqueue Flow Control

The tx virtqueue carries packets initiated by applications and replies to received packets. The rx virtqueue
carries packets initiated by the device and replies to previously transmitted packets.

If both rx and tx virtqueues are filled by the driver and device at the same time then it appears that a deadlock
is reached. The driver has no free tx descriptors to send replies. The device has no free rx descriptors to
send replies either. Therefore neither device nor driver can process virtqueues since that may involve
sending new replies.

This is solved using additional resources outside the virtqueue to hold packets. With additional resources,
it becomes possible to process incoming packets even when outgoing packets cannot be sent.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 160 of 284

Eventually even the additional resources will be exhausted and further processing is not possible until the
other side processes the virtqueue that it has neglected. This stop to processing prevents one side from
causing unbounded resource consumption in the other side.

5.10.6.1.1 Driver Requirements: Device Operation: Virtqueue Flow Control

The rx virtqueue MUST be processed even when the tx virtqueue is full so long as there are additional
resources available to hold packets outside the tx virtqueue.

5.10.6.1.2 Device Requirements: Device Operation: Virtqueue Flow Control

The tx virtqueue MUST be processed even when the rx virtqueue is full so long as there are additional
resources available to hold packets outside the rx virtqueue.
5.10.6.2 Addressing

Flows are identified by a (source, destination) address tuple. An address consists of a (cid, port number)
tuple. The header fields used for this are src_cid, src_port, dst _cid, and dst_port.

Currently enlystreamstream and seqpacket sockets are supported. typeis 1 (VIRTIO_VSOCK_TYPE_STREAM)
for stream socket types, and 2 (VIRTIO_VSOCK_TYPE_SEQPACKET) for seqpacket socket types.

#define VIRTIO VSOCK TYPE STREAM 1

Stream sockets provide in-order, guaranteed, connection-oriented delivery without message boundaries.
Seqpacket sockets provide in-order, guaranteed, connection-oriented delivery with message and record boundaries.

5.10.6.3 Buffer Space Management

buf_alloc and fwd_cnt are used for buffer space management of stream sockets. The guest and the device
publish how much buffer space is available per socket. Only payload bytes are counted and header bytes
are not included. This facilitates flow control so data is never dropped.

buf_alloc is the total receive buffer space, in bytes, for this socket. This includes both free and in-use buffers.
fwd_cnt is the free-running bytes received counter. The sender calculates the amount of free receive buffer
space as follows:

/* tx_cnt 1s the sender's free-running bytes transmitted counter */
u32 peer free = peer buf alloc - (tx_cnt - peer fwd cnt);

If there is insufficient buffer space, the sender waits until virtqueue buffers are returned and checks buf -
alloc and fwd_cnt again. Sending the VIRTIO_VSOCK_OP_CREDIT_REQUEST packet queries how much
buffer space is available. The reply to this query is a VIRTIO_VSOCK_OP_CREDIT_UPDATE packet.
It is also valid to send a VIRTIO_VSOCK_ OP_CREDIT_UPDATE packet without previously receiving a
VIRTIO_VSOCK_OP_CREDIT_REQUEST packet. This allows communicating updates any time a change
in buffer space occurs.

5.10.6.3.1 Driver Requirements: Device Operation: Buffer Space Management

VIRTIO_VSOCK_OP_RW data packets MUST only be transmitted when the peer has sufficient free buffer
space for the payload.

All packets associated with a stream flow MUST contain valid information in buf_alloc and fwd_cnt fields.

5.10.6.3.2 Device Requirements: Device Operation: Buffer Space Management

VIRTIO_VSOCK_OP_RW data packets MUST only be transmitted when the peer has sufficient free buffer
space for the payload.

All packets associated with a stream flow MUST contain valid information in buf_alloc and fwd_cnt fields.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 161 of 284

5.10.6.4 Receive and Transmit

The driver queues outgoing packets on the tx virtqueue and incoming packet receive buffers on the rx
virtqueue. Packets are of the following form:

struct virtio vsock packet ({
struct virtio vsock hdr hdr;
u8 datal];

bi

Virtqueue buffers for outgoing packets are read-only. Virtqueue buffers for incoming packets are write-only.

5.10.6.4.1 Driver Requirements: Device Operation: Receive and Transmit

The guest_cid configuration field MUST be used as the source CID when sending outgoing packets.
A VIRTIO_VSOCK_OP_RST reply MUST be sent if a packet is received with an unknown type value.

5.10.6.4.2 Device Requirements: Device Operation: Receive and Transmit

The guest_cid configuration field MUST NOT contain a reserved CID as listed in 5.10.4.
A VIRTIO_VSOCK_OP_RST reply MUST be sent if a packet is received with an unknown type value.

5.10.6.5 Stream Sockets

Connections are established by sending a VIRTIO_VSOCK_OP_REQUEST packet. If a listening socket
exists on the destination a VIRTIO_VSOCK_OP_RESPONSE reply is sent and the connection is estab-
lished. A VIRTIO_VSOCK_OP_RST reply is sent if a listening socket does not exist on the destination or
the destination has insufficient resources to establish the connection.

When a connected socket receives VIRTIO_VSOCK_OP_SHUTDOWN the header flags field bit VIRTIO_-
VSOCK_SHUTDOWN_F_RECEIVE (bit 0) set indicates that the peer will not receive any more data and
bit VIRTIO_VSOCK_SHUTDOWN_F_SEND (bit 1) set indicates that the peer will not send any more data.
These hints are permanent once sent and successive packets with bits clear do not reset them.

The VIRTIO_VSOCK_OP_RST packet aborts the connection process or forcibly disconnects a connected
socket.

Clean disconnect is achieved by one or more VIRTIO_VSOCK_OP_SHUTDOWN packets that indicate no
more data will be sent and received, followed by a VIRTIO_VSOCK_OP_RST response from the peer. If
no VIRTIO_VSOCK_OP_RST response is received within an implementation-specific amount of time, a
VIRTIO_VSOCK_OP_RST packet is sent to forcibly disconnect the socket.

The clean disconnect process ensures that neither peer reuses the (source, destination) address tuple for
a new connection while the other peer is still processing the old connection.

5.10.6.6 Segpacket Sockets

5.10.6.6.1 Message and record boundaries

Two types of boundaries are supported: message and record boundaries.

A message contains data sent in a single operation. A single message can be split into multiple RW packets. To
provide message boundaries, last RW packet of each message has VIRTIO_VSOCK_SEQ_EOM bit (bit 0) set
in the flags of packet’s header.

Record is any number of subsequent messages, where last message is sent with POSIX MSG_EOR flag set.
Record boundary means that receiver gets MSG_EOR flag set in the corresponding message where sender set it.
To provide record boundaries, last RW packet of each record has VIRTIO_VSOCK_SEQ_EOR bit (bit 1) set in
the flags of packet's header.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 162 of 284

5.10.6.7 Device Events
Certain events are communicated by the device to the driver using the event virtqueue.

The event buffer is as follows:

ar

= -
€

I

struct virtio vsock event ({
le32 id;
}i

The VIRTIO_VSOCK_EVENT_TRANSPORT_RESET event indicates that communication has been inter-
rupted. This usually occurs if the guest has been physically migrated. The driver shuts down established
connections and the guest _cid configuration field is fetched again. Existing listen sockets remain but their
CID is updated to reflect the current guest _cid.

5.10.6.7.1 Driver Requirements: Device Operation: Device Events

Event virtqueue buffers SHOULD be replenished quickly so that no events are missed.

The guest_cid configuration field MUST be fetched to determine the current CID when a VIRTIO_VSOCK _-
EVENT_TRANSPORT_RESET event is received.

Existing connections MUST be shut down when a VIRTIO_VSOCK_EVENT_TRANSPORT_RESET event
is received.

Listen connections MUST remain operational with the current CID when a VIRTIO_VSOCK_EVENT_TRANS-
PORT_RESET event is received.

5.11 File System Device

The virtio file system device provides file system access. The device either directly manages a file system or it
acts as a gateway to a remote file system. The details of how the device implementation accesses files are hidden
by the device interface, allowing for a range of use cases.

Unlike block-level storage devices such as virtio block and SCSI, the virtio file system device provides file-level
access to data. The device interface is based on the Linux Filesystem in Userspace (FUSE) protocol. This consists

of requests for file system traversal and access the files and directories within it. The protocol details are defined
by FUSE.

The device acts as the FUSE file system daemon and the driver acts as the FUSE client mounting the file system.
The virtio file system device provides the mechanism for transporting FUSE requests, much like /dev/fuse in a
traditional FUSE application.

This section relies on definitions from FUSE.

5.11.1 Device ID
26

5.11.2 Virtqueues
0 hiprio
1 notification queue

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 163 of 284

2...n request queues

The notification queue only exists if VIRTIO_FS_F_NOTIFICATION is set.

5.11.3 Feature bits

VIRTIO_FS_F_NOTIFICATION (0) Device has support for FUSE notify messages. The notification queue is
virtqueue 1.

5.11.4 Device configuration layout

struct virtio fs config {
char tag[36];
le32 num request queues;

le32 notify buf size;
}i

<~

The tag and num_request_queues fields are always available. The notify_buf_size field is only available when
VIRTIO_FS_F_NOTIFICATION is set.

tag is the name associated with this file system. The tag is encoded in UTF-8 and padded with NUL bytes if
shorter than the available space. This field is not NUL-terminated if the encoded bytes take up the entire
field.

num__request_queues is the total number of request virtqueues exposed by the device. Each virtqueue offers
identical functionality and there are no ordering guarantees between requests made available on different
queues. Use of multiple queues is intended to increase performance.

notify_buf_size is the minimum number of bytes required for each buffer in the notification queue.

5.11.4.1 Driver Requirements: Device configuration layout
The driver MUST NOT write to device configuration fields.

The driver MAY use from one up to num__request_queues request virtqueues.

5.11.4.2 Device Requirements: Device configuration layout
The device MUST set num__request_queues to 1 or greater.

The device MUST set notify_buf_size to be large enough to hold any of the FUSE notify messages that this
device emits.

5.11.5 Device Initialization
On initialization the driver first discovers the device's virtqueues.

The driver populates the notification queue with buffers for receiving FUSE notify messages if VIRTIO_FS_F_-
NOTIFICATION is set.

The FUSE session is started by sending a FUSE_INIT request as defined by the FUSE protocol on one request
virtqueue. All virtqueues provide access to the same FUSE session and therefore only one FUSE_INIT request is
required regardless of the number of available virtqueues.

5.11.6 Device Operation
Device operation consists of operating the virtqueues to facilitate file system access.

The FUSE request types are as follows:

* Normal requests are made available by the driver on request queues and are used by the device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 164 of 284

* High priority requests (FUSE_INTERRUPT, FUSE_FORGET, and FUSE_BATCH_FORGET) are made
available by the driver on the hiprio queue so the device is able to process them even if the request queues
are full.

FUSE notify messages are received on the notification queue if VIRTIO_FS_F_NOTIFICATION is set.

5.11.6.1 Device Operation: Request Queues

The driver enqueues normal requests on an arbitrary request queue. High priority requests are not placed on
request queues. The device processes requests in any order. The driver is responsible for ensuring that ordering
constraints are met by making available a dependent request only after its prerequisite request has been used.

Requests have the following format with endianness chosen by the driver in the FUSE_INIT request used to
initiate the session as detailed below:

struct virtio fs req {
// Device-readable part

struct fuse in header in;
u8 datainl];
$DIF >
U N S S b
struct fuse out header out;
u8 dataout[];

YL

Note that the words "in" and "out” follow the FUSE meaning and do not indicate the direction of data transfer
under VIRTIO. "In" means input to a request and "out” means output from processing a request.

in is the common header for all types of FUSE requests.

datain consists of request-specific data, if any. This is identical to the data read from the /dev/fuse device by a
FUSE daemon.

out is the completion header common to all types of FUSE requests.

dataout consists of request-specific data, if any. This is identical to the data written to the /dev/fuse device by
a FUSE daemon.

For example, the full layout of a FUSE_READ request is as follows:

SEpgl pruitde fo oo wee
Ll DeVicecreadable part
struct fuse in header in;
union {
struct fuse read in readin;
u8 datain[sizeof (struct fuse read in)];
1
%$DIF >
e U RS L el
struct fuse out header out;
u8 dataout[out.len - sizeof (struct fuse out header)];
i

The FUSE protocol documented in FUSE specifies the set of request types and their contents.

The endianness of the FUSE protocol session is detectable by inspecting the uint32_t in.opcode field of the
FUSE_INIT request sent by the driver to the device. This allows the device to determine whether the session is
little-endian or big-endian. The next FUSE_INIT message terminates the current session and starts a new session
with the possibility of changing endianness.

5.11.6.2 Device Operation: High Priority Queue

The hiprio queue follows the same request format as the request queues. This queue only contains FUSE_-
INTERRUPT, FUSE_FORGET, and FUSE_BATCH_FORGET requests.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 165 of 284

Interrupt and forget requests have a higher priority than normal requests. The separate hiprio queue is used for
these requests to ensure they can be delivered even when all request queues are full.

5.11.6.2.1 Device Requirements: Device Operation: High Priority Queue

The device MUST NOT pause processing of the hiprio queue due to activity on a normal request queue.

The device MAY process request queues concurrently with the hiprio queue.

5.11.6.2.2 Driver Requirements: Device Operation: High Priority Queue

The driver MUST submit FUSE_INTERRUPT, FUSE_FORGET, and FUSE_BATCH_FORGET requests solely
on the hiprio queue.

The driver MUST not submit normal requests on the hiprio queue.

The driver MUST anticipate that request queues are processed concurrently with the hiprio queue.

5.11.6.3 Device Operation: Notification Queue

The notification queue is populated with buffers by the driver and these buffers are used by the device to emit
FUSE notify messages. Notification queue buffer layout is as follows:

struct virtio f£s notify {
// Device-writable part

struct fuse out header out hdr;

char outarg[notify buf size - sizeof (struct fuse out header)];
}i

~ AL

outarg contains the FUSE notify message payload that depends on the type of notification being emitted.

If the driver provides notification queue buffers at a slower rate than the device emits FUSE notify messages then
the virtqueue will eventually become empty. The behavior in response to an empty virtqueue depends on the
FUSE notify message type. The following FUSE notify message types are supported:

* FUSE_NOTIFY_LOCK messages are delivered when buffers become available again. The device has re-
sources for a certain number of lock requests. If the device runs out of resources new lock requests fail with
ENOLCK.

5.11.6.3.1 Driver Requirements: Device Operation: Notification Queue

The driver MUST provide buffers of at least notify_buf_size bytes.

The driver SHOULD replenish notification queue buffers sufficiently quickly so that there is always at least one
available buffer.

5.11.6.4 Device Operation: DAX Window

FUSE_READ and FUSE_WRITE requests transfer file contents between the driver-provided buffer and the device.
In cases where data transfer is undesirable, the device can map file contents into the DAX window shared memory
region. The driver then accesses file contents directly in device-owned memory without a data transfer.

The DAX Window is an alternative mechanism for accessing file contents. FUSE_READ/FUSE_WRITE requests
and DAX Window accesses are possible at the same time. Providing the DAX Window is optional for devices.
Using the DAX Window is optional for drivers.

Shared memory region ID 0 is called the DAX window. Drivers map this shared memory region with writeback
caching as if it were regular RAM. The contents of the DAX window are undefined unless a mapping exists for
that range.

The driver maps a file range into the DAX window using the FUSE_SETUPMAPPING request. Alignment con-
straints for FUSE_SETUPMAPPING and FUSE_ REMOVEMAPPING requests are communicated during FUSE_ -
INIT negotiation.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 166 of 284

When a FUSE_SETUPMAPPING request perfectly overlaps a previous mapping, the previous mapping is replaced.
When a mapping partially overlaps a previous mapping, the previous mapping is split into one or two smaller
mappings. When a mapping is partially unmapped it is also split into one or two smaller mappings.

Establishing new mappings or splitting existing mappings consumes resources. If the device runs out of resources
the FUSE_SETUPMAPPING request fails until resources are available again following FUSE_REMOVEMAP-
PING.

After FUSE_SETUPMAPPING has completed successfully the file range is accessible from the DAX window at
the offset provided by the driver in the request. A mapping is removed using the FUSE_ REMOVEMAPPING
request.

Data is only guaranteed to be persistent when a FUSE_FSYNC request is used by the device after having been
made available by the driver following the write.

5.11.6.4.1 Device Requirements: Device Operation: DAX Window

The device MAY provide the DAX Window to memory-mapped access to file contents. If present, the DAX
Window MUST be shared memory region ID 0.

The device MUST support FUSE_READ and FUSE_WRITE requests regardless of whether the DAX Window is
being used or not.

The device MUST allow mappings that completely or partially overlap existing mappings within the DAX window.

The device MUST reject mappings that would go beyond the end of the DAX window.

5.11.6.4.2 Driver Requirements: Device Operation: DAX Window

The driver SHOULD be prepared to find shared memory region ID 0 absent and fall back to FUSE_READ and
FUSE_WRITE requests.

The driver MAY use both FUSE_READ/FUSE_WRITE requests and the DAX Window to access file contents.
The driver MUST NOT access DAX window areas that have not been mapped.

5.11.6.5 Security Considerations

The device provides access to a file system containing files owned by one or more POSIX user ids and group ids.
The device has no secure way of differentiating between users originating requests via the driver. Therefore the
device accepts the POSIX user ids and group ids provided by the driver and security is enforced by the driver
rather than the device. It is nevertheless possible for devices to implement POSIX user id and group id mapping
or whitelisting to control the ownership and access available to the driver.

File systems containing special files including device nodes and setuid executable files pose a security concern.
These properties are defined by the file type and mode, which are set by the driver when creating new files or
by changes at a later time. These special files present a security risk when the file system is shared with another
machine. A setuid executable or a device node placed by a malicious machine make it possible for unprivileged
users on other machines to elevate their privileges through the shared file system. This issue can be solved on
some operating systems using mount options that ignore special files. It is also possible for devices to implement
restrictions on special files by refusing their creation.

When the device provides shared access to a file system between multiple machines, symlink race conditions,
exhausting file system capacity, and overwriting or deleting files used by others are factors to consider. These
issues have a long history in multi-user operating systems and also apply to virtio-fs. They are typically managed
at the file system administration level by providing shared access only to mutually trusted users.

Multiple machines sharing access to a file system are susceptible to timing side-channel attacks. By measuring
the latency of accesses to file contents or file system metadata it is possible to infer whether other machines also
accessed the same information. Short latencies indicate that the information was cached due to a previous access.
This can reveal sensitive information, such as whether certain code paths were taken. The DAX Window provides

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 167 of 284

direct access to file contents and is therefore a likely target of such attacks. These attacks are also possible with
traditional FUSE requests. The safest approach is to avoid sharing file systems between untrusted machines.
5.11.6.6 Live migration considerations

When a driver is migrated to a new device it is necessary to consider the FUSE session and its state. The
continuity of FUSE inode numbers (also known as nodeids) and fh values is necessary so the driver can continue
operation without disruption.

It is possible to maintain the FUSE session across live migration either by transferring the state or by redirecting
requests from the new device to the old device where the state resides. The details of how to achieve this are
implementation-dependent and are not visible at the device interface level.

Maintaining version and feature information negotiated by FUSE_INIT is necessary so that no FUSE protocol
feature changes are visible to the driver across live migration. The FUSE_INIT information forms part of the
FUSE session state that needs to be transferred during live migration.

5.12 RPMB Device

virtio-rpmb is a virtio based RPMB (Replay Protected Memory Block) device. It is used as a tamper-resistant
and anti-replay storage. The device is driven via requests including read, write, get write counter and program
key, which are submitted via a request queue. This section relies on definitions from paragraph 6.6.22 of eMMC.

5.12.1 Device ID
28

5.12.2 Virtqueues

0 requestq

5.12.3 Feature bits

None.

5.12.4 Device configuration layout

All fields of this configuration are always available and read-only for the driver.

PR CERECE R
u8 max wr cnt;
u8 max rd cnt;

i)

capacity is the capacity of the device (expressed in 128KB units). The values MUST range between 0x00 and
0x80 inclusive.

max_wr_cnt and max_rd_cnt are the maximum numbers of RPMB block count (256B) that can be performed
to device in one request. 0 implies no limitation.
5.12.5 Device Requirements: Device Initialization
1. The virtqueue is initialized.

2. The device capacity MUST be initialized to a multiple of 128Kbytes and up to 16Mbytes.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 168 of 284

5.12.6 Device Operation

The operation of a virtio RPMB device is driven by the requests placed on the virtqueue. The type of request
can be program key (VIRTIO_RPMB_REQ_PROGRAM_KEY), get write counter (VIRTIO_RPMB_REQ_-
GET_WRITE_COUNTER), write (VIRTIO_RPMB_REQ_DATA_WRITE), and read (VIRTIO_RPMB_REQ_-
DATA_READ). A program key or write request can also combine with a result read (VIRTIO_RPMB_REQ_-
RESULT_READ) for a returned result.

/* RPMB Request Types */

#define VIRTIO REMB REQ DATA READ ____ __ 0x0004
#define VIRTIO REMB REQ RESULT READ ____ 0x0005
$DIF >

L REMB Response Types Y[

#define VIRTIO REMB RESP GET COUNTER ____ 0x0200
#define VIRTIO REMB RESP DATA WRITE ______ 0x0300

VIRTIO_RPMB_REQ_PROGRAM_KEY requests for authentication key programming. If VIRTIO_RPMB_-
REQ_RESULT_READ is requested, the device returns the RPMB frame with the response (VIRTIO_-
RPMB_RESP_PROGRAM_KEY), the calculated MAC and the result.

VIRTIO_RPMB_REQ_GET_WRITE_COUNTER requests for reading the write counter. The device returns
the RPMB frame with the response (VIRTIO_RPMB_RESP_GET_COUNTER), the writer counter, a copy
of the nonce received in the request, the calculated MAC and the result.

VIRTIO_RPMB_REQ_DATA_WRITE requests for authenticated data write. If VIRTIO_RPMB_REQ_RE-
SULT_READ is requested, the device returns the RPMB data frame with the response (VIRTIO_RPMB_-
RESP_DATA_WRITE), the incremented counter value, the data address, the calculated MAC and the result.

VIRTIO_RPMB_REQ_DATA_READ requests for authenticated data read. The device returns the RPMB frame
with the response (VIRTIO_RPMB_RESP_DATA_READ), the block count, a copy of the nonce received
in the request, the address, the data, the calculated MAC and the result.

VIRTIO_RPMB_REQ_RESULT_READ requests for a returned result. It is used following with VIRTIO_-
RPMB_REQ_PROGRAM_KEY or VIRTIO_RPMB_REQ_DATA_WRITE request types for a returned
result in one or multiple RPMB frames. If it's not requested, the device will not return result frame to
the driver.

5.12.6.1 Device Operation: Request Queue

The request information is delivered in RPMB frame. The frame is in size of 512B.

struct virtio rpmb frame (
u8 stuff[196];

u8 datal[256];

u8 noncel[l6];

be32 write counter;
bel6 address;

bel6 block count;
bel6 result;

e FELE EEGL TEED)
}i

~ AL

$DIF >
#define VIRTIO RPMB RES GENERAL FAILURE _____ 0x0001
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 169 of 284

| #define VIRTIO REMB RES WRITE FAILURE _ . 0x0005
| #define VIRTIO REMB RES READ FAILURE ____ _ 0x0006
| #define VIRTIO REMB RES NO AUTH KEY _________0x0007
| #define VIRTIO REMB RES WRITE CQUNTER EXPIRED _0x0080
L

stuff Padding for the frame.

key_mac is the authentication key or the message authentication code (MAC) depending on the request/response
type. If the request is VIRTIO_RPMB_REQ_PROGRAM_KEY, it's used as an authentication key. Other-
wise, it's used as MAC. The MAC is calculated using HMAC SHA-256. It takes as input a key and a message.
The key used for the MAC calculation is always the 256-bit RPMB authentication key. The message used
as input to the MAC calculation is the concatenation of the fields in the RPMB frames excluding stuff bytes
and the MAC itself.

data is used to be written or read via authenticated read/write access. It's fixed 256B.

nonce is a random number generated by the user for the read or get write counter requests and copied to the
response by the device. It's used for anti-replay protection.

writer_counter is the counter value for the total amount of the successful authenticated data write requests.

address is the address of the data to be written to or read from the RPMB virtio device. It is the number of the
accessed half sector (256B).

block_count is the number of blocks (256B) requested to be read/written. It's limited by max_wr_cnt or
max_rd_cnt. For RPMB read request, one virtio buffer including request command and the subsequent
[block_count] virtio buffers for response data are placed in the queue. For RPMB write request, [block_-
count] virtio buffers including request command and data are placed in the queue.

result includes information about the status of access made to the device. It is written by the device.

req_resp is the type of request or response, to/from the device.

5.12.6.1.1 Device Requirements: Device Operation: Program Key

If VIRTIO_RPMB_REQ_RESULT_READ is requested, the device SHOULD return the RPMB frame with the
response, the calculated MAC and the result:

1. If the block_count is not set to 1 then VIRTIO_RPMB_RES_GENERAL_FAILURE SHOULD be responded
as result.

2. If the programming of authentication key fails, then VIRTIO_RPMB_RES_WRITE_FAILURE SHOULD be
responded as result.

3. If some other error occurs then returned result VIRTIO_RPMB_RES_GENERAL_FAILURE SHOULD be
responded as result.

4. The req_resp value VIRTIO_RPMB_RESP_PROGRAM_KEY SHOULD be responded.

5.12.6.1.2 Device Requirements: Device Operation: Get Write Counter
If the authentication key is not yet programmed then VIRTIO_RPMB_RES_NO_AUTH_KEY SHOULD be

returned in result.

If block count has not been set to 1 then VIRTIO_RPMB_RES_GENERAL_FAILURE SHOULD be responded
as result.

The req_resp value VIRTIO_RPMB_RESP_GET_COUNTER SHOULD be responded.

5.12.6.1.3 Device Requirements: Device Operation: Data Write

If VIRTIO_RPMB_REQ_RESULT_READ is requested, the device SHOULD return the RPMB data frame with
the response VIRTIO_RPMB_RESP_DATA_WRITE, the incremented counter value, the data address, the cal-
culated MAC and the result:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 170 of 284

1. If the authentication key is not yet programmed, then VIRTIO_RPMB_RES_NO_AUTH_KEY SHOULD
be returned in result.

2. If block count is zero or greater than max_wr_cnt then VIRTIO_RPMB_RES_GENERAL_FAILURE SHOULD
be responded.

3. The device MUST check whether the write counter has expired. If the write counter is expired then the
result SHOULD be set to VIRTIO_RPMB_RES_WRITE_COUNTER_EXPIRED.

4. If there is an error in the address (out of range) then the resu/t SHOULD be set to VIRTIO_RPMB_RES_-
ADDR_FAILURE.

5. The device MUST calculate the MAC taking authentication key and frame as input, and compare this
with the MAC in the request. If the two MAC's are different then VIRTIO_RPMB_RES_AUTH_FAILURE
SHOULD be returned in result.

6. If the writer counter in the request is different from the one maintained by the device then VIRTIO_RPMB_-
RES_COUNT_FAILURE SHOULD be returned in result.

7. If the MAC and write counter comparisons are matched then the write request is considered to be authenti-
cated. The data from the request SHOULD be written to the address indicated in the request and the write
counter SHOULD be incremented by 1.

8. If the write fails then the resul/t SHOULD be VIRTIO_RPMB_RES_WRITE_FAILURE.

9. If some other error occurs during the writing procedure then the result SHOULD be VIRTIO_RPMB_RES_ -
GENERAL_FAILURE.

10. The req_resp value VIRTIO_RPMB_RESP_DATA_WRITE SHOULD be responded.

5.12.6.1.4 Device Requirements: Device Operation: Data Read

1. If the authentication key is not yet programmed then VIRTIO_RPMB_RES_NO_AUTH_KEY SHOULD
be returned in result.

2. If block count is zero or greater than max_rd_cnt then VIRTIO_RPMB_RES_GENERAL_FAILURE SHOULD
be responded as result.

3. If there is an error in the address (out of range) then the resu/t SHOULD be set to VIRTIO_RPMB_RES_-
ADDR_FAILURE.

4. If data fetch from addressed location inside the device fails then the result SHOULD be VIRTIO_RPMB_-
RES_READ_FAILURE.

5. If some other error occurs during the read procedure then the resu/t SHOULD be VIRTIO_RPMB_RES_-
GENERAL_FAILURE.

6. The device SHOULD respond with block_count frames containing the data and req_resp value set to
VIRTIO_RPMB_RESP_DATA_READ.

5.12.6.1.5 Device Requirements: Device Operation: Result Read

If the block_count has not been set to 1 of VIRTIO_RPMB_REQ_RESULT_READ request then VIRTIO_-
RPMB_RES_GENERAL_FAILURE SHOULD be responded as result.

5.12.6.2 Driver Requirements: Device Operation

The RPMB frames MUST not be packed by the driver. The driver MUST configure, initialize and format virtqueue
for the RPMB requests received from its caller then send it to the device.

5.12.6.3 Device Requirements: Device Operation

The virtio-rpmb device could be backed in a number of ways. It SHOULD keep consistent behaviors with hardware
as described in paragraph 6.6.22 of eMMC. Some elements are maintained by the device:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 171 of 284

1. The device MUST maintain a one-time programmable authentication key. It cannot be overwritten, erased
or read. The key is used to authenticate the accesses when MAC is calculated. This key MUST be kept
regardless of device reset or reboot.

2. The device MUST maintain a read-only monotonic write counter. It MUST be initialized to zero and added
by one automatically along with successful write operation. The value cannot be reset. After the counter
has reached its maximum value OxFFFF FFFF, it will not be incremented anymore. This counter MUST be
kept regardless of device reset or reboot.

3. The device MUST maintain the data for read/write via authenticated access.

5.13 |IOMMU device

The virtio-iommu device manages Direct Memory Access (DMA) from one or more endpoints. It may act both as
a proxy for physical IOMMUs managing devices assigned to the guest, and as virtual IOMMU managing emulated
and paravirtualized devices.

The driver first discovers endpoints managed by the virtio-iommu device using platform specific mechanisms. It
then sends requests to create virtual address spaces and virtual-to-physical mappings for these endpoints. In its
simplest form, the virtio-iommu supports four request types:

1. Create a domain and attach an endpoint to it.
attach(endpoint = 0x8, domain = 1)

2. Create a mapping between a range of guest-virtual and guest-physical address.
map(domain = 1, virt_start = 0x1000, virt_end = Ox1fff, phys = 0xa000, flags = READ)

Endpoint 0x8, for example a hardware PCl endpoint with BDF 00:01.0, can now read at addresses 0x1000-
Ox1fff. These accesses are translated into system-physical addresses by the IOMMU.

3. Remove the mapping.
unmap(domain = 1, virt_start = 0x1000, virt_end = Ox1fff)

Any access to addresses 0x1000-0x1fff by endpoint 0x8 would now be rejected.

4. Detach the device and remove the domain.
detach(endpoint = 0x8, domain = 1)

5.13.1 Device ID
23

5.13.2 Virtqueues

0 requestq

1 eventq

5.13.3 Feature bits

VIRTIO_IOMMU_F_INPUT_RANGE (0) Available range of virtual addresses is described in input_range.
VIRTIO_IOMMU_F_DOMAIN_RANGE (1) The number of domains supported is described in domain_range.
VIRTIO_IOMMU_F_MAP_UNMAP (2) Map and unmap requests are available.'?
VIRTIO_IOMMU_F_BYPASS (3) Endpoints that are not attached to a domain are in bypass mode.
VIRTIO_IOMMU_F_PROBE (4) The PROBE request is available.

VIRTIO_IOMMU_F_MMIO (5) The VIRTIO_IOMMU_MAP_F_MMIO flag is available.

12Fyuture extensions may add different modes of operations. At the moment, only VIRTIO_IOMMU_F_MAP_UNMAP is supported.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 172 of 284

VIRTIO_IOMMU_F_BYPASS_CONFIG (6) Field bypass of struct virtio_iommu_config determines whether
endpoints that are not attached to a domain are in bypass mode. Flag VIRTIO_IOMMU_ATTACH_-
F_BYPASS determines whether endpoints that are attached to a domain are in bypass mode.

5.13.3.1 Driver Requirements: Feature bits

The driver SHOULD accept any of the VIRTIO_IOMMU_F_INPUT_RANGE, VIRTIO_IOMMU_F_DOMAIN_-
RANGE and VIRTIO_IOMMU_F_PROBE feature bits if offered by the device.

5.13.3.2 Device Requirements: Feature bits
The device SHOULD offer feature bit VIRTIO_IOMMU_F_MAP_UNMAP.

The VIRTIO_IOMMU_F_BYPASS_CONFIG feature supersedes VIRTIO_IOMMU_F_BYPASS. New devices
SHOULD NOT offer VIRTIO_IOMMU_F_BYPASS. Devices SHOULD NOT offer both VIRTIO_IOMMU_F_ -
BYPASS and VIRTIO_IOMMU_F_BYPASS_CONFIG.

5.13.4 Device configuration layout

The page_size_mask field is always present. Availability of the others all depend on feature bits described in
5.13.3.

struct virtio iommu config {
le64 page size mask;
struct virtio iommu range 64

o AL SECUECE
e RGBT

struct virtio iommu range 32 {
o SR R e

L denede veceey
le32 probe size;
N RS EestUN

- et R
i

AL

5.13.4.1 Driver Requirements: Device configuration layout

When the VIRTIO_IOMMU_F_BYPASS_CONFIG feature is negotiated, the driver MAY write to bypass. The
driver MUST NOT write to any other device configuration field.

The driver MUST NOT write a value different than 0 or 1 to bypass. The driver SHOULD ignore bits 1-7 of
bypass.

5.13.4.2 Device Requirements: Device configuration layout

The device MUST set at least one bit in page_size_mask, describing the page granularity. The device MAY set
more than one bit in page_size _mask.

If the device offers the VIRTIO_IOMMU_F_BYPASS_CONFIG feature, it MAY initialize the bypass field to 1.
Field bypass SHOULD NOT change on device reset, but SHOULD be restored to its initial value on system reset.

The device MUST NOT present a value different than 0 or 1 in bypass.

5.13.5 Device initialization
When the device is reset, endpoints are not attached to any domain.

Future devices might support more modes of operation besides MAP/UNMAP. Drivers verify that devices set
VIRTIO_IOMMU_F_MAP_UNMAP and fail gracefully if they don't.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 173 of 284

5.13.5.1 Driver Requirements: Device Initialization

The driver MUST NOT negotiate VIRTIO_IOMMU_F_MAP_UNMAP if it is incapable of sending VIRTIO_-
IOMMU_T_MAP and VIRTIO_IOMMU_T_UNMAP requests.

If the VIRTIO_IOMMU_F_PROBE feature is negotiated, the driver SHOULD send a VIRTIO_IOMMU_T_-
PROBE request for each endpoint before attaching the endpoint to a domain.

5.13.6 Device operations

Driver send requests on the request virtqueue, notifies the device and waits for the device to return the request
with a status in the used ring. All requests are split in two parts: one device-readable, one device- writable.

struct virtio iommu reg head {

=N
BN T
Li

%DIF >

L ME L sEetre)
E Eeeemvedoly

i

<AL

Type may be one of:

#define VIRTIO IOMMU T ATTACH oL
#define VIRTIO IOMMU T DETACH 2.
#define VIRTIO IOMMU T MAP 3
#define VIRTIO IOMMU T UNMAP 4
#define VIRTIO IOMMU T PROBE ;

A few general-purpose status codes are defined here.

/* All good! Carry on. */

#define VIRTIO IOMMU S IOERR 1.

/* Unsupported request */
#define VIRTIO TOMMU S UNSURE ___2

L3 Internal device error ¥/

#define VIRTIO IOMMU S DEVERR 3
L2 Invalid parameters */[

#define VIRTIO IOMMU S INVAL 4
L7 O B EANCE pRtanEters
#define VIRTIO IOMMU S RANGE 5

/* Entry not found */

#define VIRTIO IOMMU S NOENT Q
L% Bad address */

#define VIRTIO IOMMU S FAULT 1
#define VIRTIO IOMMU S NOMEM _ __ §

When the device fails to parse a request, for instance if a request is too small for its type and the device cannot
find the tail, then it is unable to set status. In that case, it returns the buffers without writing to them.

Range limits of some request fields are described in the device configuration:

* page_size_mask contains the bitmask of all page sizes that can be mapped. The least significant bit set
defines the page granularity of IOMMU mappings.

The smallest page granularity supported by the IOMMU is one byte. It is legal for the driver to map one
byte at a time if bit 0 of page_size__mask is set.

Other bits in page_size_mask are hints and describe larger page sizes that the IOMMU device handles
efficiently. For example, when the device stores mappings using a page table tree, it may be able to describe
large mappings using a few leaf entries in intermediate tables, rather than using lots of entries in the last

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 174 of 284

level of the tree. Creating mappings aligned on large page sizes can improve performance since they require
fewer page table and TLB entries.

¢ If the VIRTIO_IOMMU_F_DOMAIN_RANGE feature is offered, domain_range describes the values sup-
ported in a domain field. If the feature is not offered, any domain value is valid.

* If the VIRTIO_IOMMU_F_INPUT_RANGE feature is offered, input_range contains the virtual address
range that the IOMMU is able to translate. Any mapping request to virtual addresses outside of this range
fails.

If the feature is not offered, virtual mappings span over the whole 64-bit address space (start = 0, end =
OxFFFFFFFF FFFFFFFF)

An endpoint is in bypass mode if:
* the VIRTIO_IOMMU_F_BYPASS_CONFIG feature is offered and:

— config field bypass is 1 and the endpoint is not attached to a domain. This applies even if the driver does
not accept the VIRTIO_IOMMU_F_BYPASS_CONFIG feature and the device initializes field bypass
to 1.

or
— the endpoint is attached to a domain with VIRTIO_IOMMU_ATTACH_F_BYPASS.
or
* the VIRTIO_IOMMU_F_BYPASS feature is negotiated and the endpoint is not attached to a domain.

All accesses from an endpoint in bypass mode are allowed and translated by the IOMMU using the identity
function.

5.13.6.1 Driver Requirements: Device operations

The driver SHOULD set field reserved of struct virtio_iommu_req_head to zero and MUST ignore field reserved
of struct virtio_iommu_req__tail.

When a device uses a buffer without having written to it (i.e. used length is zero), the driver SHOULD interpret
it as a request failure.

If the VIRTIO_IOMMU_F_INPUT_RANGE feature is negotiated, the driver MUST NOT send requests with
virt_start less than input_range.start or virt_end greater than input_range.end.

If the VIRTIO_IOMMU_F_DOMAIN_RANGE feature is negotiated, the driver MUST NOT send requests with
domain less than domain_range.start or greater than domain_range.end.

5.13.6.2 Device Requirements: Device operations

The device SHOULD set status to VIRTIO_IOMMU_S_OK if a request succeeds.

If a request type is not recognized, the device SHOULD NOT write the buffer and SHOULD set the used length
to zero.

The device MUST ignore field reserved of struct virtio_iommu_req_head and SHOULD set field reserved of
struct virtio_iommu_req__tail to zero.

The device SHOULD NOT let unattached endpoints that are not in bypass mode access the guest-physical address
space.

5.13.6.3 ATTACH request

struct virtio iommu req attach {

L cfemet pluide Sownn cog loed nomd)

1e32 endpoint;
le32 flags;

|
| Le32 domain;
|
I
| _u8 _ reservedldl:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 175 of 284

o SEEICE warede semny geg fadl Fedl g
}i

%DIF >

Attach an endpoint to a domain. domain uniquely identifies a domain within the virtio-iommu device. If the
domain doesn’t exist in the device, it is created. Semantics of the endpoint identifier are platform specific, but
the following rules apply:

* The endpoint ID uniquely identifies an endpoint from the virtio-iommu point of view. Multiple endpoints
whose DMA transactions are not translated by the same virtio-iommu device can have the same endpoint
ID. Endpoints whose DMA transactions may be translated by the same virtio-iommu device have different
endpoint IDs.

* On some platforms, it might not be possible to completely isolate two endpoints from each other. For
example on a conventional PCl bus, endpoints can snoop DMA transactions from other endpoints on the
same bus. Such limitations need to be communicated in a platform specific way.

Multiple endpoints can be attached to the same domain. An endpoint can be attached to a single domain at a
time. Endpoints attached to different domains are isolated from each other.

When the VIRTIO_IOMMU_F_BYPASS_CONFIG is negotiated, the driver can set the VIRTIO_IOMMU_-
ATTACH_F_BYPASS flag to create a bypass domain. Endpoints attached to this domain are in bypass mode.

5.13.6.3.1 Driver Requirements: ATTACH request

The driver SHOULD set reserved to zero.

The driver SHOULD ensure that endpoints that cannot be isolated from each other are attached to the same
domain.

If the domain already exists and is a bypass domain, the driver SHOULD set the VIRTIO_IOMMU_ATTACH_-
F_BYPASS flag. If the domain exists and is not a bypass domain, the driver SHOULD NOT set the VIRTIO_-
IOMMU_ATTACH_F_BYPASS flag.

5.13.6.3.2 Device Requirements: ATTACH request

If the reserved field of an ATTACH request is not zero, the device MUST reject the request and set status to
VIRTIO_IOMMU_S_INVAL.

If the device does not recognize a flags bit, it MUST reject the request and set status to VIRTIO_IOMMU_S_-
INVAL.

If the endpoint identified by endpoint doesn't exist, the device MUST reject the request and set status to
VIRTIO_IOMMU_S_NOENT.

If another endpoint is already attached to the domain identified by domain, then the device MAY attach the
endpoint identified by endpoint to the domain. If it cannot do so, the device MUST reject the request and set
status to VIRTIO_IOMMU_S_UNSUPP.

If the domain already exists and the VIRTIO_IOMMU_ATTACH_F_BYPASS flag is not consistent with that
domain, the device SHOULD reject the request and set status to VIRTIO_IOMMU_S_INVAL.

If the endpoint identified by endpoint is already attached to another domain, then the device SHOULD first detach
it from that domain and attach it to the one identified by domain. In that case the device SHOULD behave as if
the driver issued a DETACH request with this endpoint, followed by the ATTACH request. If the device cannot
do so, it MUST reject the request and set status to VIRTIO_IOMMU_S_UNSUPP.

If properties of the endpoint (obtained with a PROBE request) are compatible with properties of other endpoints
already attached to the requested domain, then the device SHOULD attach the endpoint. Otherwise the device
SHOULD reject the request and set status to VIRTIO_IOMMU_S_UNSUPP.

A device that does not reject the request MUST attach the endpoint.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 176 of 284

5.13.6.4 DETACH request

struct virtio iommu req detach {

L cfEEmet wluide Somnn cog leed noad)
L Aenl deneiy

L AenZ cedpeint,

N Rt eI

}i

~A

Detach an endpoint from a domain. When this request completes, the endpoint cannot access any mapping from
that domain anymore. However the endpoint may then be in bypass mode and access the guest-physical address
space.

After all endpoints have been successfully detached from a domain, it ceases to exist and its ID can be reused by
the driver for another domain.

5.13.6.4.1 Driver Requirements: DETACH request

The driver SHOULD set reserved to zero.

5.13.6.4.2 Device Requirements: DETACH request

The device MUST ignore reserved.

If the endpoint identified by endpoint doesn't exist, then the device MUST reject the request and set status to
VIRTIO_IOMMU_S_NOENT.

If the domain identified by domain doesn't exist, or if the endpoint identified by endpoint isn't attached to this
domain, then the device MAY set the request status to VIRTIO_IOMMU_S_INVAL.

The device MUST ensure that after being detached from a domain, the endpoint cannot access any mapping
from that domain.

5.13.6.5 MAP request

struct virtio iommu req map {

L2 desny

i el seeite

LR TR GRES

LA b gEsnEl

L Aenn Eleee

L otemet wluide Sowny cog Badl ol L)

e

%DIF >

£ Read acoess is allowed ¥/

jpleiine IR XOwiL e 1§ nean IL g O
L3 Mrite access dis allowed Y/

#define VIRTIO IOMMU MAP F WRITE (1 << 1)

/* Accesses are to memory-mapped I/0 device */
#define VIRTIO TOMMU MER E MMIO (1 <5 2)

Map a range of virtually-contiguous addresses to a range of physically-contiguous addresses of the same size. After
the request succeeds, all endpoints attached to this domain can access memory in the range [virt_start; virt_end)]
(inclusive). For example, if an endpoint accesses address V A € [virt_start; virt_end), the device (or the physical
IOMMU) translates the address: PA = V A —virt_start 4+ phys_start. If the access parameters are compatible
with flags (for instance, the access is write and flags are VIRTIO_IOMMU_MAP_F_READ | VIRTIO_IOMMU_-
MAP_F_WRITE) then the IOMMU allows the access to reach PA.

The range defined by virt_start and virt_end should be within the limits specified by input_range. Given
phys_end = phys_start + virt_end — virt_start, the range defined by phys start and phys_end should

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 177 of 284

be within the guest-physical address space. This includes upper and lower limits, as well as any carving of guest-
physical addresses for use by the host. Guest physical boundaries are set by the host in a platform specific way.

Availability and allowed combinations of flags depend on the underlying IOMMU architectures. VIRTIO_-
IOMMU_MAP_F_READ and VIRTIO_IOMMU_MAP_F_WRITE are usually implemented, although READ is
sometimes implied by WRITE. In addition combinations such as "WRITE and not READ" might not be supported.

The VIRTIO_IOMMU_MAP_F_MMIO flag is a memory type rather than a protection flag. It is only available
when the VIRTIO_IOMMU_F_MMIOQ feature has been negotiated. Accesses to the mapping are not speculated,
buffered, cached, split into multiple accesses or combined with other accesses. It may be used, for example, to
map Message Signaled Interrupt doorbells when a VIRTIO_IOMMU_RESV_MEM_T_MSI region isn't available.
To trigger interrupts the endpoint performs a direct memory write to another peripheral, the IRQ chip.

This request is only available when VIRTIO_IOMMU_F_MAP_UNMAP has been negotiated.

5.13.6.5.1 Driver Requirements: MAP request

The driver SHOULD set undefined flags bits to zero.
The driver SHOULD NOT send MAP requests on a bypass domain.
virt_end MUST be strictly greater than virt_start.

The driver SHOULD set the VIRTIO_IOMMU_MAP_F_MMIO flag when the physical range corresponds to
memory-mapped device registers. The physical range SHOULD have a single memory type: either normal memory
or memory-mapped 1/0.

If it intends to allow read accesses from endpoints attached to the domain, the driver MUST set the VIRTIO_-
IOMMU_MAP_F_READ flag.

If the VIRTIO_IOMMU_F_MMIO feature isn't negotiated, the driver MUST NOT use the VIRTIO_IOMMU_-
MAP_F_MMIO flag.

5.13.6.5.2 Device Requirements: MAP request

If virt_start, phys_start or (virt_end + 1) is not aligned on the page granularity, the device SHOULD reject the
request and set status to VIRTIO_IOMMU_S_RANGE.

If a mapping already exists in the requested range, the device SHOULD reject the request and set status to
VIRTIO_IOMMU_S_INVAL.

If the device doesn't recognize a flags bit, it MUST reject the request and set status to VIRTIO_IOMMU_S_-
INVAL.

If domain does not exist, the device SHOULD reject the request and set status to VIRTIO_IOMMU_S_NOENT.

If the domain is a bypass domain, the device SHOULD reject the request and set status to VIRTIO_IOMMU_-
S_INVAL.

The device MUST NOT allow writes to a range mapped without the VIRTIO_IOMMU_MAP_F_WRITE flag.
However, if the underlying architecture does not support write-only mappings, the device MAY allow reads to a
range mapped with VIRTIO_IOMMU_MAP_F_WRITE but not VIRTIO_IOMMU_MAP_F_READ.

5.13.6.6 UNMAP request

struct virtio iommu req unmap {

L SEENEE wilictde Somny ceg nepdl Nese)
I =

LM AR ZEecEl

NSC LS

B sessrved Al

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 178 of 284

m

Unmap a range of addresses mapped with VIRTIO_IOMMU_T_MAP. We define here a mapping as a virtual
region created with a single MAP request. All mappings covered by the range [virt_start; virt_end)] (inclusive)
are removed.

The semantics of unmapping are specified in 5.13.6.6.1 and 5.13.6.6.2, and illustrated with the following re-
quests, assuming each example sequence starts with a blank address space. We define two pseudocode functions
map(virt_start, virt_end) -> mapping and unmap(virt_start, virt_end).

(1) unmap(virt start=0
virt end=4) -> succeeds, doesn't unmap anything
$DIF >

A2) g 2 pepl(TieE sitenit),
virt end=9);

LU N = T
%DIF >

(3 a = map(0, 4);
e B 2 B0, G

LN = e T I
SDIF >
(4)_a = map(0, 9);

unmap (0, 4) e =2 fails, doesn't unmap anything
$DIF >

(5) a = map(0, 4);
b = map (5, 9);

anmap (05 4) . T2SUCCEEDS, UDMARS 3
$DIF >

(6) a = map(0, 4);

om0 S0 T B ECEEEE) et
$DIF >

L a =z map(0, 4);

L 2 2 el LG

unmap (0, _14) oo 72 Succeeds, unmaps a and b

As illustrated by example (4), partially removing a mapping isn't supported.
This request is only available when VIRTIO_IOMMU_F_MAP_UNMAP has been negotiated.

5.13.6.6.1 Driver Requirements: UNMAP request

The driver SHOULD set the reserved field to zero.

The range, defined by virt_start and virt_end, SHOULD cover one or more contiguous mappings created with
MAP requests. The range MAY spill over unmapped virtual addresses.

The first address of a range MUST either be the first address of a mapping or be outside any mapping. The last
address of a range MUST either be the last address of a mapping or be outside any mapping.

The driver SHOULD NOT send UNMAP requests on a bypass domain.

5.13.6.6.2 Device Requirements: UNMAP request

If the reserved field of an UNMAP request is not zero, the device MAY set the request status to VIRTIO_-
IOMMU_S_INVAL, in which case the device MAY perform the UNMAP operation.

If domain does not exist, the device SHOULD set the request status to VIRTIO_IOMMU_S_NOENT.

If the domain is a bypass domain, the device SHOULD reject the request and set status to VIRTIO_IOMMU_-
S_INVAL.

If a mapping affected by the range is not covered in its entirety by the range (the UNMAP request would split
the mapping), then the device SHOULD set the request status to VIRTIO_IOMMU_S_RANGE, and SHOULD
NOT remove any mapping.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 179 of 284

If part of the range or the full range is not covered by an existing mapping, then the device SHOULD remove all
mappings affected by the range and set the request status to VIRTIO_IOMMU_S_OK.

5.13.6.7 PROBE request

If the VIRTIO_IOMMU_F_PROBE feature bit is present, the driver sends a VIRTIO_IOMMU_T_PROBE
request for each endpoint that the virtio-iommu device manages. This probe is performed before attaching the
endpoint to a domain.

struct virtio iommu re robe {

L cEmet wiuide Sownn cog leed nomd)
~AX Device-readable ¥/(
Aesl cecpedet

N8 reservedl[64l:
$DIF >

NN ERDeydcemnr iEebECHTL
nggAmmm‘roperties[robe size];
L obemet widvide Sowin cog Bl ol L)

i

AL

endpoint has the same meaning as in ATTACH and DETACH requests.
reserved is used as padding, so that future extensions can add fields to the device-readable part.

properties contains a list of properties of the endpoint, filled by the device. The length of the properties field
is probe_size bytes. Each property is described with a struct virtio_iommu__probe_ property header, which
may be followed by a value of size length.

struct virtio iommu probe propert

eI

1
~AELR JS0eiEas
i

The driver allocates a buffer for the PROBE request, large enough to accommodate probe_ size bytes of properties.
It writes endpoint and adds the buffer to the request queue. The device fills the properties field with a list of
properties for this endpoint.

The driver parses the first property by reading type, then length. If the driver recognizes type, it reads and handles
the rest of the property. The driver then reads the next property, that is located (length + 4) bytes after the
beginning of the first one, and so on. The driver parses all properties until it reaches an empty property (type is
0) or the end of properties.

Available property types are described in section 5.13.6.8.

5.13.6.7.1 Driver Requirements: PROBE request

The size of properties MUST be probe_size bytes.

The driver SHOULD set field reserved of the PROBE request to zero.

If the driver doesn’t recognize the type of a property, it SHOULD ignore the property.
The driver SHOULD NOT deduce the property length from type.

The driver MUST ignore a property whose reserved field is not zero.

If the driver ignores a property, it SHOULD continue parsing the list.

5.13.6.7.2 Device Requirements: PROBE request

The device MUST ignore field reserved of a PROBE request.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 180 of 284

If the endpoint identified by endpoint doesn’t exist, then the device SHOULD reject the request and set status
to VIRTIO_IOMMU_S_NOENT.

If the device does not offer the VIRTIO_IOMMU_F_PROBE feature, and if the driver sends a VIRTIO_IOMMU_-
T_PROBE request, then the device SHOULD NOT write the buffer and SHOULD set the used length to zero.

The device SHOULD set field reserved of a property to zero.

The device MUST write the size of a property without the struct virtio_iommu_probe_ property header, in bytes,
into length.

When two properties follow each other, the device MUST put the second property exactly (length+4) bytes after
the beginning of the first one.

If the properties list is smaller than probe_size, the device SHOULD NOT write any property. It SHOULD reject
the request and set status to VIRTIO_IOMMU_S_INVAL.

If the device doesn't fill all probe_size bytes with properties, it SHOULD fill the remaining bytes of properties
with zeroes.

5.13.6.8 PROBE properties

| #define VIRTIO TOMMU PROBE T RESY MEM 1
L

5.13.6.8.1 Property RESV_MEM

The RESV_MEM property describes a chunk of reserved virtual memory. It may be used by the device to describe
virtual address ranges that cannot be used by the driver, or that are special.

SECIEE T AERO SEG] B0 g e e L

L EEEmet pluide Sowni pLele PEOPEEEy Acedl
e subEEe

B seserved]y

Lzl SEEEEy

NECTAN-- N

}i

~A

Fields start and end describe the range of reserved virtual addresses. subtype may be one of:

VIRTIO_IOMMU_RESV_MEM_T_RESERVED (0) These virtual addresses cannot be used in a MAP requests.
The region is be reserved by the device, for example, if the platform needs to setup DMA mappings of its
own.

VIRTIO_IOMMU_RESV_MEM_T_MSI (1) This region is a doorbell for Message Signaled Interrupts (MSls).
It is similar to VIRTIO_IOMMU_RESV_MEM_T_RESERVED, in that the driver cannot map virtual ad-
dresses described by the property.

In addition it provides information about MSI doorbells. If the endpoint doesn't have a VIRTIO_IOMMU_-
RESV_MEM_T_MSI property, then the driver creates an MMIO mapping to the doorbell of the MSI
controller.

5.13.6.8.1.1 Driver Requirements: Property RESV_MEM

The driver SHOULD NOT map any virtual address described by a VIRTIO_IOMMU_RESV_MEM_T_RE-
SERVED or VIRTIO_IOMMU_RESV_MEM_T_MSI property.

The driver MUST ignore reserved.

The driver SHOULD treat any subtype it doesn't recognize as if it was VIRTIO_IOMMU_RESV_MEM_T_-
RESERVED.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 181 of 284

5.13.6.8.1.2 Device Requirements: Property RESV_MEM

The device SHOULD set reserved to zero.

The device SHOULD NOT present more than one VIRTIO_IOMMU_RESV_MEM_T_MSI property per end-
point.

The device SHOULD NOT present multiple RESV_MEM properties that overlap each other for the same endpoint.

The device SHOULD reject a MAP request that overlaps a RESV_MEM region.

The device SHOULD NOT allow accesses from the endpoint to RESV_MEM regions to affect any other component
than the endpoint and the driver.

5.13.6.9 Fault reporting

The device can report translation faults and other significant asynchronous events on the event virtqueue. The
driver initially populates the queue with device-writeable buffers. When the device needs to report an event, it
fills a buffer and notifies the driver. The driver consumes the report and adds a new buffer to the virtqueue.

If no buffer is available, the device can either wait for one to be consumed, or drop the event.

u8 reason;
u8 reserved[3];
AARRANAAARARAAIIE L

- AN
LB SICIEOUTIES
L Aes mesewvecy
Lo l2id adeneess

}i

AL

$DIF >

#define VIRTIO IOMMU FAULT F ADDRESS 1 << 8)

reason The reason for this report. It may have the following values:

VIRTIO_IOMMU_FAULT_R_UNKNOWN (0) An internal error happened, or an error that cannot be de-
scribed with the following reasons.

VIRTIO_IOMMU_FAULT_R_DOMAIN (1) The endpoint attempted to access address without being at-
tached to a domain.

VIRTIO_IOMMU_FAULT_R_MAPPING (2) The endpoint attempted to access address, which wasn't
mapped in the domain or didn’t have the correct protection flags.

flags Information about the fault context.

endpoint The endpoint causing the fault.

reserved and reservedl Should be zero.

address If VIRTIO_IOMMU_FAULT_F_ADDRESS s set, the address causing the fault.

When the fault is reported by a physical IOMMU, the fault reasons may not match exactly the reason of the
original fault report. The device does its best to find the closest match.

If the device encounters an internal error that wasn't caused by a specific endpoint, it is unlikely that the driver
would be able to do anything else than print the fault and stop using the device, so reporting the fault on the
event queue isn't useful. In that case, we recommend using the DEVICE_NEEDS_RESET status bit.

5.13.6.9.1 Driver Requirements: Fault reporting

If the reserved field is not zero, the driver MUST ignore the fault report.
The driver MUST ignore reserved].

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 182 of 284

The driver MUST ignore undefined flags.
If the driver doesn't recognize reason, it SHOULD treat the fault as if it was VIRTIO_IOMMU_FAULT_R_-
UNKNOWN.

5.13.6.9.2 Device Requirements: Fault reporting

The device SHOULD set reserved and reservedl to zero.
The device SHOULD set undefined flags to zero.
The device SHOULD write a valid endpoint ID in endpoint.

The device MAY omit setting VIRTIO_IOMMU_FAULT_F_ADDRESS and writing address in any fault report,
regardless of the reason.

If a buffer is too small to contain the fault report'®, the device SHOULD NOT use multiple buffers to describe
it. The device MAY fall back to using an older fault report format that fits in the buffer.

5.14 Sound Device

The virtio sound card is a virtual audio device supporting input and output PCM streams.

A device is managed by control requests and can send various notifications through dedicated queues. A driver
can transmit PCM frames using message-based transport or shared memory.

A small part of the specification reuses existing layouts and values from the High Definition Audio specification
(HDA). It allows to provide the same functionality and assist in two possible cases:

1. implementation of a universal sound driver,

2. implementation of a sound driver as part of the High Definition Audio subsystem.

5.14.1 Device ID
25

5.14.2 Virtqueues

0 controlq

1 eventq

2 txq

3 rxq

The control queue is used for sending control messages from the driver to the device.
The event queue is used for sending notifications from the device to the driver.

The tx queue is used to send PCM frames for output streams.

The rx queue is used to receive PCM frames from input streams.

5.14.3 Feature Bits

None currently defined.

13This would happen for example if the device implements a more recent version of this specification, whose fault report contains
additional fields.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 183 of 284

5.14.4 Device Configuration Layout

struct virtio snd config {
le32 jacks;

le32 streams;
- Ae32 chmaps;
}i

AL

A configuration space contains the following fields:

Jjacks (driver-read-only) indicates a total number of all available jacks.

streams (driver-read-only) indicates a total number of all available PCM streams.

chmaps (driver-read-only) indicates a total number of all available channel maps.

5.14.5 Device Initialization

1. Configure the control, event, tx and rx queues.

. Read the jacks field and send a control request to query information about the available jacks.

. Read the streams field and send a control request to query information about the available PCM streams.

2
3
4. Read the chmaps field and send a control request to query information about the available channel maps.
5

. Populate the event queue with empty buffers.

5.14.5.1 Driver Requirements: Device Initialization

* The driver MUST populate the event queue with empty buffers of at least the struct virtio_snd_event size.

* The driver MUST NOT put a device-readable buffers in the event queue.

5.14.6 Device Operation

All control messages are placed into the control queue and all notifications are placed into the event queue. They

use the following layout structure and definitions:

enum {
A

/* jack control request types */
~~JIRTIO_SND R_JACK INFO = 1,

. VIRTIQ SND_R_JACK REMAP,
$DIF >

/* PCM control request types */
__NIRTIO_SND_R_ECM_INFQ = 0x0100,
___VIRTIQ_SND_B_BCH_SET PARANS,

. YIRTIO SND_R_ECM_PREPARE,
. YIRTIO SND_R_ECM RELEASE,
. YIRTIO SND R _ECM _START,

 YIRTIO_SND_R_ECM_STOE,
$DIF >

NS Sl INSPNCOIEE O - us iy e SR
JYIRTIQ SND R CHMAP INFO = 0x0200,
$DIF >
 JIRTIO SND_BVT JACK CONNECTED = 0x1000,
VIRTIO SND EVT JACK DISCONNECTED,
SDIF >
L ESM event types ¥/
 YARTIO SND_EVT PCM PERIOD ELAPSED = 0x1100,
VIRTIO SND_EVT ECM XRUN,
$DIF >
/* common status codes */

~JIRTIO_SND_S_OK = 0x8000,

JIRTIO_SND_S_BAD MSG,

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 184 of 284

o RN BND S MO0 SUIES,

~~JYARTIO SND_S_IO ERR

e

%DIF >

L2 2 common header ¥/

siEcpet warste el agk (

S B

53

%DIF >

SEcaet wertlo sacl syont
struct virtio snd hdr hdr;

B FEET

}i

~A

A generic control message consists of a request part and a response part.

A request part has, or consists of, a common header containing the following device-readable field:
code specifies a device request type (VIRTIO_SND_R_*).

A response part has, or consists of, a common header containing the following device-writable field:
code indicates a device request status (VIRTIO_SND_S_*).

The status field can take one of the following values:

VIRTIO_SND_S_OK - success.

VIRTIO_SND_S_BAD_MSG - a control message is malformed or contains invalid parameters.

VIRTIO_SND_S_NOT_SUPP - requested operation or parameters are not supported.
VIRTIO_SND_S_IO_ERR - an 1/O error occurred.

The request part may be followed by an additional device-readable payload, and the response part may be followed
by an additional device-writable payload.

An event notification contains the following device-writable fields:
hdr indicates an event type (VIRTIO_SND_EVT_*).
data indicates an optional event data.

For all entities involved in the exchange of audio data, the device uses one of the following data flow directions:

enum _{

~ YIRTIO_SND D _OUTBUT = 0,
VIRTIO SND_D_INEUT

e

5.14.6.1 Item Information Request

A special control message is used to request information about any kind of configuration item. The request part
uses the following structure definition:

struct virtio snd query info {

struct virtio snd hdr hdr;
1832 count;
1le32 size;

e

The request contains the following device-readable fields:
hdr specifies a particular item request type (VIRTIO_SND_R_*_INFO).

start_id specifies the starting identifier for the item (the range of available identifiers is limited by the total
number of particular items that is indicated in the device configuration space).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 185 of 284

count specifies the number of items for which information is requested (the total number of particular items is
indicated in the device configuration space).

size specifies the size of the structure containing information for one item (used for backward compatibility).

The response consists of the virtio_snd_hdr structure (contains the request status code), followed by the device-
writable information structures of the item. Each information structure begins with the following common header:

SECHEE TR0 S Seite |
| AP0 NG 0 IC

i

The header contains the following field:

hda_fn_nid indicates a function group node identifier (see HDA, section 7.1.2). This field can be used to link
together different types of resources (e.g. jacks with streams and channel maps with streams).

5.14.6.2 Driver Requirements: Item Information Request

* The driver MUST NOT set start_id and count such that start_id + count is greater than the total number
of particular items that is indicated in the device configuration space.

* The driver MUST provide a buffer of sizeof(struct virtio_snd_hdr) + count * size bytes for the response.

5.14.6.3 Relationships with the High Definition Audio Specification

The High Definition Audio specification introduces the codec as part of the hardware that implements some of
the functionality. The codec architecture and capabilities are described by tree structure of special nodes each of
which is either a function module or a function group (see HDA for details).

The virtio sound specification assumes that a single codec is implemented in the device. Function module nodes
are simulated by item information structures, and function group nodes are simulated by the hda_fn_nid field in
each such structure.

5.14.6.4 Jack Control Messages

A jack control request has, or consists of, a common header with the following layout structure:

struct virtio snd jack hdr {

struct virtio snd hdr hdr;

le32 jack id;
}i

The header consists of the following device-readable fields:
hdr specifies a request type (VIRTIO_SND_R_JACK_*).

jack_id specifies a jack identifier from 0 to jacks - 1.

5.14.6.41 VIRTIO_SND_R_JACK_INFO

Query information about the available jacks.

The request consists of the virtio_snd_query_info structure (see ltem Information Request). The response consists
of the virtio_snd_hdr structure, followed by the following jack information structures:

/* supported jack features */

enun{
~VIRTIO SND_JACK F REMAP = 0
i

$DIF >

struct virtio snd jack info {

struct virtio snd info hdr;

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 186 of 284

| 1le32 hda reqg defconf;
| le32 hda reg caps;

u8 connected;

$DIF >
u8 padding[7];
| Li

The structure contains the following device-writable fields:
features indicates a supported feature bit map:
* VIRTIO_SND_JACK_F_REMAP - jack remapping support.
hda_reg_defconf indicates a pin default configuration value (see HDA, section 7.3.3.31).
hda_reg_caps indicates a pin capabilities value (see HDA, section 7.3.4.9).

connected indicates the current jack connection status (1 - connected, 0 - disconnected).
5.14.6.4.1.1 Device Requirements: Jack Information

* The device MUST NOT set undefined feature values.

* The device MUST initialize the padding bytes to 0.
5.14.6.4.2 VIRTIO_SND_R_JACK_REMAP

If the VIRTIO_SND_JACK_F_REMAP feature bit is set in the jack information, then the driver can send a
control request to change the association and/or sequence number for the specified jack ID.

The request uses the following structure and layout definitions:

struct virtio snd jack remap {
struct virtio snd jack hdr hdr; /* .code = VIRTIO SND R JACK REMAP */

le32 association;

. Ae32 seguence;

i

The request contains the following device-readable fields:
association specifies the selected association number.

sequence specifies the selected sequence number.

5.14.6.5 Jack Notifications
Jack notifications consist of a virtio_snd_event structure, which has the following device-writable fields:
hdr indicates a jack event type:

* VIRTIO_SND_EVT_JACK_CONNECTED - an external device has been connected to the jack.

* VIRTIO_SND_EVT_JACK_DISCONNECTED - an external device has been disconnected from the
jack.

data indicates a jack identifier from 0 to jacks - 1.

5.14.6.6 PCM Control Messages

A PCM control request has, or consists of, a common header with the following layout structure:

struct virtio snd pcm hdr {

struct virtio snd hdr hdr;
le32 stream id;

Nz

The header consists of the following device-readable fields:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 187 of 284

hdr specifies request type (VIRTIO_SND_R_PCM_*).

stream__id specifies a PCM stream identifier from 0 to streams - 1.

5.14.6.6.1 PCM Command Lifecycle

A PCM stream has the following command lifecycle:

1. SET PARAMETERS
The driver negotiates the stream parameters (format, transport, etc) with the device.
Possible valid transitions: set parameters, prepare.

2. PREPARE
The device prepares the stream (allocates resources, etc).
Possible valid transitions: set parameters, prepare, start, release.

3. Output only: the driver transfers data for pre-buffing.

4. START
The device starts the stream (unmute, putting into running state, etc).
Possible valid transitions: stop.

5. The driver transfers data to/from the stream.

6. STOP
The device stops the stream (mute, putting into non-running state, etc).
Possible valid transitions: start, release.

7. RELEASE
The device releases the stream (frees resources, etc).

Possible valid transitions: set parameters, prepare.

5.14.6.6.2 VIRTIO_SND_R_PCM_INFO

Query information about the available streams.

The request consists of the virtio_snd_query_info structure (see ltem Information Request). The response consists
of the virtio_snd_hdr structure, followed by the following stream information structures:

/* supported PCM stream features */

enum {
AL

VIRTIO SND PCM F SHMEM HOST = O,

VIRTIO SND PCM F SHMEM GUEST,

VIRTIO SND PCM F MSG POLLING,

VIRTIO SND PCM F EVT SHMEM PERIODS,

VIRTIO SND PCM F EVT XRUNS
12
$DIF >
L% zupported PCM sample formats */
S
el Rl Sodudiy sl [eissicadl esldlen)) T
~ YARTIO SND_PCM EMT IMA ADPCM = 0, /* 4 [4 bits */
_VIRTIO_SND BCM_EMT MU LAW, /% 8 [8 bits */
~JIRTIO SND_BCM EMT A LAW, _ /* 8./ 8 bits */
~JYIRTIO SND BCM EMT S8, /X 8./ 8 kits */
o JYIRTIQ SND BCM EMT U8, /X 8./ 8 Rits */
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 188 of 284

/* digital formats (width / physical width) */
~VIRTIO SND_ECM EMT DSD U8, ___ /* 8./ 8 hbits */
- YIRTIO_ SND_ECM_EMT DSD Ul /216 [16 bits */

~JYIRTIO_SND_BCM_EMT DSD U32, /x 32 [32 bits */
}i

%DIF >

/* supported PCM frame rates */
enun _{

~~JYIRTIO_SND_EBCM RATE 5512 = 0,

. JIRTIO_SND_ECM RATE 8000,
~~YIRTIO_SND_PCM RATE 11025,
- JIRTIO_SND_PCM _RATE 16000,
- JIRTIO_SND_PCM _RATE 22050,
- JIRTIO_SND_PCM _RATE 32000,
- JIRTIO_SND_ECM RATE 44100,
. YIRTIQ_SND_ECM _RATE 48000,
. YIRIIO_SND_ECM RATE 64000,
-~ YIRIIO_SND_ECM RATE 88200,
- YIRTIO_SND_PCM RATE 96000,
VIRTIO SND PCM RATE 176400,
VIRTIO SND PCM RATE 192000,
VIRTIO SND PCM RATE 384000
L
$DIF >
SEOIEE e S0 NS Pon ute
struct virtio snd info hdr;
u8 direction;
u8 channels min;
u8 channels max;
$DIF >
Lo pE padcdne o0y
}i

AL

The structure contains the following device-writable fields:

features indicates a bit map of the supported features, which can be negotiated by setting the stream parameters:

VIRTIO_SND_PCM_F_SHMEM_HOST - supports sharing a host memory with a guest,
VIRTIO_SND_PCM_F_SHMEM_GUEST - supports sharing a guest memory with a host,
VIRTIO_SND_PCM_F_MSG_POLLING - supports polling mode for message-based transport,

VIRTIO_SND_PCM_F_EVT_SHMEM_PERIODS - supports elapsed period notifications for shared
memory transport,

VIRTIO_SND_PCM_F_EVT_XRUNS - supports underrun/overrun notifications.

formats indicates a supported sample format bit map.

rates indicates a supported frame rate bit map.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 189 of 284

direction indicates the direction of data flow (VIRTIO_SND_D_*).
channels_min indicates a minimum number of supported channels.
channels_max indicates a maximum number of supported channels.

Only interleaved samples are supported.

5.14.6.6.2.1 Device Requirements: Stream Information
¢ The device MUST NOT set undefined feature, format, rate and direction values.
* The device MUST initialize the padding bytes to 0.

5.14.6.6.3 VIRTIO_SND_R_PCM_SET_PARAMS

Set selected stream parameters for the specified stream ID.

The request uses the following structure and layout definitions:

struct virtio snd pcm set params {
struct virtio snd pcm hdr hdr; /* .code = VIRTIO SND R PCM SET PARAMS */
1le32 buffer bytes;

1e32 period bytes;

u8 channels;

u8 format;

u8 rate;
$DIF >

.48 padding;
}i

The request contains the following device-readable fields:

buffer_bytes specifies the size of the hardware buffer used by the driver.
period__bytes specifies the size of the hardware period used by the driver.
features specifies a selected feature bit map:

* VIRTIO_SND_PCM_F_SHMEM_HOST - use shared memory allocated by the host (is a placeholder
and MUST NOT be selected at the moment),

* VIRTIO_SND_PCM_F_SHMEM_GUEST - use shared memory allocated by the guest (is a placeholder
and MUST NOT be selected at the moment),

* VIRTIO_SND_PCM_F_MSG_POLLING - suppress available buffer notifications for tx and rx queues
(device should poll virtqueue),

* VIRTIO_SND_PCM_F_EVT_SHMEM_PERIODS - enable elapsed period notifications for shared
memory transport,

* VIRTIO_SND_PCM_F_EVT_XRUNS - enable underrun/overrun notifications.
channels specifies a selected number of channels.
format specifies a selected sample format (VIRTIO_SND_PCM_FMT_*).
rate specifies a selected frame rate (VIRTIO_SND_PCM_RATE_*).

5.14.6.6.3.1 Device Requirements: Stream Parameters

* If the device has an intermediate buffer, its size MUST be no less than the specified buffer_bytes value.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 190 of 284

5.14.6.6.3.2 Driver Requirements: Stream Parameters

* period_bytes MUST be a divider buffer_bytes, i.e. buffer_bytes % period_bytes == 0.
e The driver MUST NOT set undefined feature, format and rate values.
* The driver MUST NOT set the feature, format, and rate that are not specified in the stream configuration.

* The driver MUST NOT set the channels value as less than the channels_min or greater than the channels_-
max values specified in the stream configuration.

e The driver MUST NOT set the VIRTIO_SND_PCM_F_SHMEM_HOST and VIRTIO_SND_PCM_F_-
SHMEM_GUEST bits at the same time.

* The driver MUST initialize the padding byte to 0.
* If the bits associated with the shared memory are not selected, the driver MUST use the tx and rx queues

for data transfer (see PCM 1/O Messages).

5.14.6.6.4 VIRTIO_SND_R_PCM_PREPARE

Prepare a stream with specified stream ID.

5.14.6.6.5 VIRTIO_SND_R_PCM_RELEASE

Release a stream with specified stream ID.

5.14.6.6.5.1 Device Requirements: Stream Release

* The device MUST complete all pending |/O messages for the specified stream ID.

* The device MUST NOT complete the control request while there are pending /O messages for the specified
stream ID.

5.14.6.6.6 VIRTIO_SND_R_PCM_START

Start a stream with specified stream ID.

5.14.6.6.7 VIRTIO_SND_R_PCM_STOP

Stop a stream with specified stream ID.

5.14.6.7 PCM Notifications

The device can announce support for different PCM events using feature bits in the stream information structure.
To enable notifications, the driver must negotiate these features using the set stream parameters request (see
5.14.6.6.3).

PCM stream notifications consist of a virtio_snd_event structure, which has the following device-writable fields:
hdr indicates a PCM stream event type:

* VIRTIO_SND_EVT_PCM_PERIOD_ELAPSED - a hardware buffer period has elapsed, the period size
is controlled using the period_bytes field.

* VIRTIO_SND_EVT_PCM_XRUN - an underflow for the output stream or an overflow for the input
stream has occurred.

data indicates a PCM stream identifier from 0 to streams - 1.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 191 of 284

5.14.6.8 PCM I/O Messages

An /O message consists of the header part, followed by the buffer, and then the status part.

e 0 eades U

SOOIt R0 Bue 900 e |
e

$DIF >

LA 1/Q status Bl

SOGUTE Pl g 980 SRSl
o N SIREELE]

o JERE LEter ey ovEes)

i

The header part consists of the following device-readable field:

stream__id specifies a PCM stream identifier from 0 to streams - 1.

The status part consists of the following device-writable fields:

status contains VIRTIO_SND_S_OK if an operation is successful, and VIRTIO_SND_S_IO_ERR otherwise.
latency_bytes indicates the current device latency.

Since all buffers in the queue (with one exception) should be of the size period_bytes, the completion of such an
[/O request can be considered an elapsed period notification.

5.14.6.8.1 Output Stream

In case of an output stream, the header is followed by a device-readable buffer containing PCM frames for writing
to the device. All messages are placed into the tx queue.

5.14.6.8.1.1 Device Requirements: Output Stream

* The device MUST NOT complete the 1/0 request until the buffer is totally consumed.

5.14.6.8.1.2 Driver Requirements: Output Stream

* The driver SHOULD populate the tx queue with period_bytes sized buffers. The only exception is the end
of the stream.

* The driver MUST NOT place device-writable buffers into the tx queue.
5.14.6.8.2 Input Stream

In case of an input stream, the header is followed by a device-writable buffer being populated with PCM frames
from the device. All messages are placed into the rx queue.

A used descriptor specifies the length of the buffer that was written by the device. It should be noted that the
length value contains the size of the virtio__snd_pcm__status structure plus the size of the recorded frames.

5.14.6.8.2.1 Device Requirements: Input Stream

* The device MUST NOT complete the I/O request until the buffer is full. The only exception is the end of
the stream.

5.14.6.8.2.2 Driver Requirements: Input Stream

* The driver SHOULD populate the rx queue with period_bytes sized empty buffers before starting the stream.

* The driver MUST NOT place device-readable buffers into the rx queue.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 192 of 284

5.14.6.9 Channel Map Control Messages

A device can provide one or more channel maps assigned to all streams with the same data flow direction in the

same function group.

5.14.6.9.1 VIRTIO_SND_R_CHMAP_INFO

Query information about the available channel maps.

The request consists of the virtio_snd_query_info structure (see Item Information Request). The response consists

of the virtio_snd_hdr structure, followed by the following channel map information structures:

/* standard channel position definition */
enum_{

~JIRTIO_SND_CHMAE NONE = 0, /* undefined */

e JEBUAE D G WONG) 089 o seR T

~~~YIRTLIO SND CHMAB EC, . /> front cemter */

o~ JIRTIO SND CHMAP LEE, . /% Jow frequency (LFE) */
o SN BND CEbe RMC, 0 EEEE LEEE coniter 1)
o JIRTIO SND_CHMAPE BRC, .. . /X Zear right center X/

o JEBUAE SO G WG DS Slo Gunitee T

o SR BN R W R el ST

oo JERUID B0 CRIRE URC, o [0 O TeRE SRnibe

o JEELIO BUD CRBE LTRC, )0 ESD CECUE ELOEE SEmizr

- YIRTIQ_SND CHMAR LLFE, ___ /* left LEE */

e JERUNE BVID GBS ELC, 00 BOEEG LETE CemiEsr B
o JEEINE BND B BRC 0 BOEEen EIGNC Ceier )

JA.

$DIF >

SDIF >
struct virtio snd info hdr;
u8 direction;
u8 channels;

u8 positions[VIRTIO SND CHMAP MAX SIZE];
Li

The structure contains the following device-writable fields:

direction indicates the direction of data flow (VIRTIO_SND_D_*).

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 193 of 284




channels indicates the number of valid channel position values.

positions indicates channel position values (VIRTIO_SND_CHMAP_*).

5.14.6.9.1.1 Device Requirements: Channel Map Information

e The device MUST NOT set undefined direction values.
* The device MUST NOT set the channels value to more than VIRTIO_SND_CHMAP_MAX_SIZE.

5.15 Memory Device

The virtio memory device provides and manages a memory region in guest physical address space. This memory
region is partitioned into memory blocks of fixed size that can either be in the state plugged or unplugged. Once
plugged, a memory block can be used like ordinary RAM. The driver selects memory blocks to (un)plug and
requests the device to perform the (un)plug.

The device requests the driver to plug a certain amount of memory, by setting the requested_size in the device
configuration, which can change at runtime. It is up to the device driver to fulfill this request by (un)plugging
memory blocks. Once the plugged_size is greater or equal to the requested_size, requests to plug memory blocks
will be rejected by the device.

The device-managed memory region is split into two parts, the usable region and the unusable region. All memory
blocks in the unusable region are unplugged and requests to plug them will be rejected. The device will grow the
usable region to fit the requested_size. Usually, the usable region is bigger than the requested_size of the device,
to give the driver some flexibility when selecting memory blocks to plug.

On initial start, and after a system reset, all memory blocks are unplugged. In corner cases, memory blocks might
still be plugged after a system reset, and the driver usually requests to unplug all memory while initializing, before
starting to select memory blocks to plug.

The device-managed memory region is not exposed as RAM via other firmware / hw interfaces (e.g., €820 on
x86). The driver is responsible for deciding how plugged memory blocks will be used. A common use case is to
expose plugged memory blocks to the operating system as system RAM, available for the page allocator.

Some platforms provide memory properties for system RAM that are usually queried and modified using special
CPU instructions. Memory properties might be implicitly queried or modified on memory access. Memory
properties can include advanced memory protection, access and change indication, or memory usage indication
relevant in virtualized environments. '* The device provides the exact same properties with the exact same
semantics for plugged device memory as available for comparable RAM in the same configuration.

5.15.1 Device ID
24

5.15.2 Virtqueues

0 guest-request

5.15.3 Feature bits

VIRTIO_MEM_F_ACPI_PXM (0) The field node_id in the device configuration is valid and corresponds to an
ACPI PXM.

VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE (1) The driver is not allowed to access unplugged memory.
15

14For example, s390x provides storage keys for each 4 KiB page and may, depending on the configuration, provide storage attributes
for each 4 KiB page.

150n platforms with memory properties that might get modified implicitly on memory access, this feature is expected to be offered
by the device.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 194 of 284



5.15.4 Device configuration layout

All fields of this configuration are always available and read-only for the driver.

struct virtio mem config {
A 100 CEey

le8 padding[6];
L deee medl)

le64 plugged size;

le64 requested size;
}i

~ L

block_size is the size and the alignment in bytes of a memory block. Cannot change.

node_id has no meaning without VIRTIO_MEM_F_ACPI_PXM. With VIRTIO_MEM_F_ACPI_PXM, this
field is valid and corresponds to an ACPI PXM. Cannot change.

padding has no meaning and is reserved for future use.
addr is the guest physical address of the start of the device-managed memory region in bytes. Cannot change.
region_size is the size of device-managed memory region in bytes. Cannot change.

usable_region__size is the size of the usable device-managed memory region. Can grow up to region_size. Can
only shrink due to VIRTIO_MEM_REQ_UNPLUG_ALL requests.

plugged_size is the amount of plugged memory in bytes within the usable device-managed memory region.

requested__size is the requested amount of plugged memory within the usable device-managed memory region.

5.15.4.1 Driver Requirements: Device configuration layout

The driver MUST NOT write to device configuration fields.

The driver MUST ignore the value of padding.

The driver MUST ignore the value of node_id without VIRTIO_MEM_F_ACPI_PXM.

5.15.4.2 Device Requirements: Device configuration layout

The device MAY change usable _region__size and requested_size.

The device MUST NOT change block_size, node_id, addr, and region_size, except during a system reset.
The device MUST change plugged_size to reflect the size of plugged memory blocks.

The device MUST set usable_region_size to requested_size or greater.

The device MUST set block_size to a power of two.

The device MUST set addr, region__size, usable_region__size, plugged_size, requested_size to multiples of block_ -
size.

The device MUST set region_size to 0 or greater.

The device MUST NOT shrink usable_region__size, except when processing an UNPLUG ALL request, or during
a system reset.

The device MUST send a configuration update notification when changing usable_ region__size or requested_size,
except when processing an UNPLUG ALL request.

The device SHOULD NOT send a configuration update notification when changing plugged_size.

The device MAY send a configuration update notification even if nothing changed.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 195 of 284




5.15.5 Device Initialization
On initialization, the driver first discovers the device's virtqueues. It then reads the device configuration.

In case the driver detects that the device still has memory plugged (plugged_size in the device configuration is
greater than 0), the driver will either try to re-initialize by issuing STATE requests, or try to unplug all memory
before continuing. Special handling might be necessary in case some plugged memory might still be relevant (e.g.,
system dump, memory still in use after unloading the driver).

5.15.5.1 Driver Requirements: Device Initialization

The driver SHOULD accept VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE if it is offered and the driver
supports it.

The driver SHOULD issue UNPLUG ALL requests until successful if the device still has memory plugged and the
plugged memory is not in use.

5.15.5.2 Device Requirements: Device Initialization
A device MAY fail to operate further if VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE is not accepted.
The device MUST NOT change the state of memory blocks during device reset.

The device MUST NOT modify memory or memory properties of plugged memory blocks during device reset.

5.15.6 Device Operation

The device notifies the driver about the amount of memory the device wants the driver to consume via the device.
These resize requests from the device are communciated via the requested_size in the device configuration.
The driver will react by requesting to (un)plug specific memory blocks, to make the plugged_size match the
requested_size as close as possible.

The driver sends requests to the device on the guest-request virtqueue, notifies the device, and waits for the device
to respond. Requests have a common header, defining the request type, followed by request-specific data. All
requests are 24 bytes long and have the layout:

SiEwet cdiipio wen goer
S e

%DIF >

Lo

Lo o wdven o wian coe pllie BLaEy

-Skruct virtio mem req state state;
}u;

Possible request types are:

#define VIRTIO MEM REQ PLUG
#define VIRTIO MEM REQ UNPLUG
#define VIRTIO MEM REQ UNPLUG ALL
#define VIRTIO MEM REQ STATE

wint— o

Responses have a common header, defining the response type, followed by request-specific data. All responses
are 10 bytes long and have the layout:

struct virtio mem resp {

MRS B
lel6 padding[3];
%DIF >

snion

struct virtio mem resp state state;
NSNS
I3

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 196 of 284




Possible response types, in general, are:

#define VIRTIO MEM RESP ACK

#define VIRTIO MEM RESP NACK
#define VIRTIO MEM RESP BUSY
#define VIRTIO MEM RESP ERROR

wint—to

5.15.6.1 Driver Requirements: Device Operation
The driver MUST NOT write memory or modify memory properties of unplugged memory blocks.

The driver MUST NOT read memory or query memory properties of unplugged memory blocks outside usable_ -
region__size.

The driver MUST NOT read memory or query memory properties of unplugged memory blocks inside usable_-
region_size via DMA.

If VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE has not been negotiated, the driver SHOULD NOT read
memory or query memory properties of unplugged memory blocks inside usable region__size via the CPU.

If VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE has been negotiated, the driver MUST NOT read memory
or query memory properties of unplugged memory blocks.

The driver MUST NOT request unplug of memory blocks while corresponding memory or memory properties are
still in use.

The driver SHOULD initialize memory blocks after plugging them, the content is undefined.

The driver SHOULD react to resize requests from the device (requested_size in the device configuration changed)
by (un)plugging memory blocks.

The driver SHOULD only plug memory blocks it can actually use.

The driver MAY not reach the requested size (requested_size in the device configuration), for example, because
it cannot free up any plugged memory blocks to unplug them, or it would not be able to make use of unplugged
memory blocks after plugging them (e.g., alignment).

5.15.6.2 Device Requirements: Device Operation

The device MUST provide the exact same memory properties with the exact same semantics for device memory
the platform provides in the same configuration for comparable RAM.

The device MAY modify memory of unplugged memory blocks or reset memory properties of such memory blocks
to platform defaults at any time.

The device MUST NOT modify memory or memory properties of plugged memory blocks.

The device MUST allow the driver to read and write memory and to query and modify memory attributes of
plugged memory blocks.

If VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE has not been negotiated, the device MUST allow the driver
to read memory and to query memory properties of unplugged memory blocks inside usable_region_size via the
CPU. 16

The device MAY change the state of memory blocks during system resets.

The device SHOULD unplug all memory blocks during system resets.

5.15.6.3 PLUG request
Request to plug consecutive memory blocks that are currently unplugged.

The request-specific data in a PLUG request has the format:

1675 allow for simplified dumping of memory. The CPU is expected to copy such memory to another location before starting DMA.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 197 of 284




struct virtio mem re lug {
M medl)

L Aele mp Blocie

lel6 padding[3];
X

addr is the guest physical address of the first memory block. nb_blocks is the number of consecutive memory
blocks

Responses don't have request-specific data defined.

5.15.6.3.1 Driver Requirements: PLUG request

The driver MUST ignore anything except the response type in a response.

5.15.6.3.2 Device Requirements: PLUG request

The device MUST ignore anything except the request type and the request-specific data in a request.
The device MUST ignore the padding in the request-specific data in a request.

The device MUST reject requests with VIRTIO_MEM_RESP_ERROR if addr is not aligned to the block_size
in the device configuration, if nb_blocks is not greater than 0, or if any memory block outside of the usable
device-managed memory region is covered by the request.

The device MUST reject requests with VIRTIO_MEM_RESP_ERROR if any memory block covered by the
request is already plugged.

The device MAY reject requests with VIRTIO_MEM_RESP_BUSY if the request can currently not be processed.

The device MUST acknowledge requests with VIRTIO_MEM_RESP_ACK in case all memory blocks were suc-
cessfully plugged. The device MUST reflect the change in the device configuration plugged._size.

5.15.6.4 UNPLUG request
Request to unplug consecutive memory blocks that are currently plugged.

The request-specific data in an UNPLUG request has the format:

struct virtio mem req unplug {
LAt s

lel6 padding[3];
X

addr is the guest physical address of the first memory block. nb_blocks is the number of consecutive memory
blocks

Responses don't have request-specific data defined.

5.15.6.4.1 Driver Requirements: UNPLUG request

The driver MUST ignore anything except the response type in a response.

5.15.6.4.2 Device Requirements: UNPLUG request

The device MUST ignore anything except the request type and the request-specific data in a request.

The device MUST ignore the padding in the request-specific data in a request.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 198 of 284




The device MUST reject requests with VIRTIO_MEM_RESP_ERROR if addr is not aligned to the block_size
in the device configuration, if nb_blocks is not greater than 0, or if any memory block outside of the usable
device-managed memory region is covered by the request.

The device MUST reject requests with VIRTIO_MEM_RESP_ERROR if any memory block covered by the
request is already unplugged.

The device MAY reject requests with VIRTIO_MEM_RESP_BUSY if the request can currently not be processed.

The device MUST acknowledge requests with VIRTIO_MEM_RESP_ACK in case all memory blocks were suc-
cessfully unplugged. The device MUST reflect the change in the device configuration plugged_size.

5.15.6.5 UNPLUG ALL request

Request to unplug all memory blocks the device has currently plugged. If successful, the plugged_size in the
device configuration will be 0 and usable _region__size might have changed.

Requests don't have request-specific data defined, only the request type is relevant. Responses don’t have request-

specific data defined, only the response type is relevant.

5.15.6.5.1 Driver Requirements: UNPLUG request

The driver MUST ignore any data in a response except the response type.

5.15.6.5.2 Device Requirements: UNPLUG request

The device MUST ignore any data in a request except the request type.
The device MUST ignore the padding in the request-specific data in a request.
The device MAY reject requests with VIRTIO_MEM_RESP_BUSY if the request can currently not be processed.

The device MUST acknowledge requests with VIRTIO_MEM_RESP_ACK in case all memory blocks were suc-
cessfully unplugged.

The device MUST set plugged_size to 0 in case the request is acknowledged with VIRTIO_MEM_RESP_ACK.
The device MAY modify usable_region_size before responding with VIRTIO_MEM_RESP_ACK.

5.15.6.6 STATE request
Request the state (plugged, unplugged, mixed) of consecutive memory blocks.

The request-specific data in a STATE request has the format:

struct virtio mem req state {
le64 addr;

lel6 padding[3];
L

addr is the guest physical address of the first memory block. nb_blocks is the number of consecutive memory
blocks.

The request-specific data in a STATE response has the format:

struct virtio mem resp state {

=N
}i

~ AL

Whereby type defines one of three different state types:

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 199 of 284




#define VIRTIO MEM STATE PLUGGED 0

5.15.6.6.1 Driver Requirements: STATE request

The driver MUST ignore anything except the response type and the request-specific data in a response.

The driver MUST ignore the request-specific data in a response in case the response type is not VIRTIO_MEM_-
RESP_ACK.

5.15.6.6.2 Device Requirements: STATE request

The device MUST ignore anything except the request type and the request-specific data in a request.
The device MUST ignore the padding in the request-specific data in a request.

The device MUST reject requests with VIRTIO_MEM_RESP_ERROR if addr is not aligned to the block_size
in the device configuration, if nb_blocks is not greater than 0, or if any memory block outside of the usable
device-managed memory region is covered by the request.

The device MUST acknowledge requests with VIRTIO_MEM_RESP_ACK, supplying the state of the memory
blocks.

The device MUST set the state type in the response to VIRTIO_MEM_STATE_PLUGGED if all requested
memory blocks are plugged. The device MUST set the state type in the response to VIRTIO_MEM_STATE_-
UNPLUGGED if all requested memory blocks are unplugged. Otherwise, the device MUST set state type in the
response to VIRTIO_MEM_STATE_MIXED.

5.16 12C Adapter Device

virtio-i2c is a virtual 12C adapter device. It provides a way to flexibly organize and use the host 12C controlled
devices from the guest. By attaching the host ACPI 12C controlled nodes to the virtual I12C adapter device, the
guest can communicate with them without changing or adding extra drivers for these controlled 12C devices.

5.16.1 Device ID
34

5.16.2 Virtqueues

0 requestq

5.16.3 Feature bits

VIRTIO_I2C_F_ZERO_LENGTH_REQUEST (0) The device supports zero-length 12C request and VIRTIO_-
12C_FLAGS_M_RD flag. It is mandatory to implement this feature.

Note: The VIRTIO_I2C_FLAGS_M_RD flag was not present in the initial implementation of the specification
and the direction of the transfer (read or write) was inferred from the permissions (read-only or write-only)
of the buffer itself. There is no need of having backwards compatibility for the older specification and so
the VIRTIO_I2C_FLAGS_FAIL_NEXT feature is made mandatory. The driver should abort negotiation
with the device, if the device doesn’t offer this feature.

5.16.4 Device configuration layout

None currently defined.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 200 of 284




5.16.5 Device Initialization

1. The virtqueue is initialized.

5.16.6 Device Operation

5.16.6.1 Device Operation: Request Queue

The driver queues requests to the virtqueue, and they are used by the device. The request is the representation
of segments of an I2C transaction. Each request is of the form:

Sitneit cpeitde ¢ ot e
lel6 addr;
lel6 padding;
le32 flags;

SETet FLole dae dn el
u8 status;

i

AL

struct virtio i2c req {

struct virtio i2c out hdr out hdr;
u8 buf[];
struct virtio i2c in hdr in hdr;

L

The addr of the request is the address of the 12C controlled device. For 7-bit address mode (AO ... A6) and
10-bit address mode (A0 ... A9), the format of addr is defined as follows:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

7-bit address 0 0 0 0 0 0 0 0 A6 | A5 | A4 | A3 | A2 | A1 | AO

10-bit address A7 | A6 | A5 | A4 | A3 | A2 | Al | A0 |1 1 1 1 0 A9 | A8

The padding is used to pad to full dword.
The flags of the request is defined as follows:

VIRTIO_I2C_FLAGS_FAIL_NEXT(0) is used to group the requests. For a group requests, a driver clears this
bit on the final request and sets it on the other requests. If this bit is set and a device fails to process the
current request, it needs to fail the next request instead of attempting to execute it.

VIRTIO_I2C_FLAGS_M_RD(1) is used to mark the request as READ or WRITE. If VIRTIO_I2C_FLAGS_-
M_RD bit is set in the flags, then the request is called a read request. If VIRTIO_I2C_FLAGS_M_RD bit
is unset in the flags, then the request is called a write request.

Other bits of flags are currently reserved as zero for future feature extensibility.

The buf is optional and will not be present for a zero-length request, like the SMBus "Quick” command. The
buf contains one segment of an [2C transaction being read from or written to the device, based on the value of
the VIRTIO_I2C_FLAGS_M_RD bit in the flags field.

The final status byte of the request is written by the device: either VIRTIO_I12C_MSG_OK for success or
VIRTIO_I2C_MSG_ERR for error.

#define VIRTIO I2C MSG ERR 1

The virtio 12C protocol supports write-read requests, i.e. an [2C write segment followed by a read segment
(usually, the write segment provides the number of an 12C controlled device register to be read), by grouping a
list of requests together using the VIRTIO_I2C_FLAGS_FAIL_NEXT flag.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 201 of 284




5.16.6.2 Device Operation: Operation Status

addr, flags, and “length of buf" are determined by the driver, while status is determined by the processing of the
device. A driver, for a write request, puts the data to be written to the device into the buf, while a device, for a
read request, puts the data read from device into the buf according to the request from the driver.

A driver may send one request or multiple requests to the device at a time. The requests in the virtqueue are
both queued and processed in order.

If a driver sends multiple requests at a time and a device fails to process some of them, then a device needs to
set the status of the first failed request to be VIRTIO_I2C_MSG_ERR. For the remaining requests in the same
group with the first failed one, a driver needs to treat them as VIRTIO_[2C_MSG_ERR, no matter what status
of them, a device needs to fail them instead of attempting to execute them according to the VIRTIO_I2C_-
FLAGS_FAIL_NEXT bit.

5.16.6.3 Driver Requirements: Device Operation

A driver MUST accept the VIRTIO_I2C_F_ZERO_LENGTH_REQUEST feature and MUST abort negotiation
with the device, if the device doesn't offer this feature.

A driver MUST set addr and flags before sending the request.
A driver MUST set the reserved bits of flags to be zero.
A driver MUST NOT send the buf, for a zero-length request.

A driver MUST NOT use buf, for a read request, if the final status returned from the device is VIRTIO_I2C_-
MSG_ERR.

A driver MUST set the VIRTIO_I2C_FLAGS_M_RD flag for a read operation, where the buffer is write-only for
the device.

A driver MUST NOT set the VIRTIO_I2C_FLAGS_M_RD flag for a write operation, where the buffer is read-only
for the device.

A driver MUST queue the requests in order if multiple requests are going to be sent at a time.

If multiple requests are sent at a time and some of them returned from the device have the status being VIRTIO_-
[2C_MSG_ERR, a driver MUST treat the first failed request and the remaining requests in the same group with
the first failed one as VIRTIO_I2C_MSG_ERR.

5.16.6.4 Device Requirements: Device Operation

A device MUST offer the VIRTIO_I2C_F_ZERO_LENGTH_REQUEST feature and MUST reject any driver
that doesn't negotiate this feature.

A device SHOULD keep consistent behaviors with the hardware as described in 12C.
A device MUST NOT change the value of addr, and reserved bits of flags.
A device MUST not change the value of the buf for a write request.

A device MUST place one 12C segment of the “length of buf", for the read request, into the buf according the
driver’'s request.

A device MUST guarantee the requests in the virtqueue being processed in order if multiple requests are received
at a time.

If multiple requests are received at a time and processing of some of the requests fails, a device MUST set the
status of the first failed request to be VIRTIO_I2C_MSG_ERR and MAY set the status of the remaining requests
in the same group with the first failed one to be VIRTIO_I2C_MSG_ERR.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 202 of 284



5.17 SCMI Device

An SCMI device implements the Arm System Control and Management Interface (SCMI). SCMI can be used for
sensors, power state management, clock management and performance management among other things.

This section relies on definitions from the SCMI specification.

Virtio SCMI device and driver are mapped to SCMI platform and agent respectively. The device is visible to
a particular SCMI agent. The device allows a guest to communicate as an SCMI agent using one or more
SCMI protocols. The default SCMI protocols are defined in the SCMI specification. Virtio provides a transport
medium for exchanging SCMI messages between the SCMI agent and platform. The virtio SCMI transport allows
the queueing of multiple messages and responses.

SCMI FastChannels are not supported.

5.17.1 Device ID
32

5.17.2 Virtqueues
0 cmdq

1 eventq

The cmdq is used by the driver to send commands to the device. The device replies with responses (not delayed
responses) over the cmdg.

The eventq is used by the device to send notifications and delayed responses. The eventq only exists if VIRTIO_-
SCMI_F_P2A_CHANNELS was negotiated.

5.17.3 Feature bits
VIRTIO_SCMI_F_P2A_CHANNELS (0) Device implements some SCMI notifications, or delayed responses.
VIRTIO_SCMI_F_SHARED_MEMORY (1) Device implements any SCMI statistics shared memory region.

VIRTIO_SCMI_F_P2A_CHANNELS is used to determine the existence of the eventq. The eventq is required
for SCMI notifications and delayed responses.

VIRTIO_SCMI_F_SHARED_MEMORY is used to determine whether the device provides any SCMI statistics
shared memory region. SCMI statistics shared memory regions are defined by some SCMI protocols.

The SCMI protocols provide the PROTOCOL_MESSAGE_ATTRIBUTES commands to inquire about the partic-
ular SCMI notifications and delayed responses implemented by the device. The SCMI protocols provide additional
commands to detect other features implemented by the device.

5.17.3.1 Device Requirements: Feature bits

The device MUST offer VIRTIO_SCMI_F_P2A_CHANNELS if the device can implement at least one SCMI
notification, or delayed response.

The device MUST offer VIRTIO_SCMI_F_SHARED_MEMORY if the device can implement at least one SCMI
statistics shared memory region.

5.17.4 Device configuration layout

There is no configuration data for the device.

5.17.5 Device Initialization

The general requirements on device initialization apply.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 203 of 284



5.17.6 Device Operation

The SCMI transport used for the device puts each SCMI message into a dedicated virtio buffer. The driver uses
the cmdq for transmitting SCMI commands and receiving the corresponding SCMI responses. The device uses
the eventq for transmitting SCMI notifications and delayed responses. Each message includes an SCMI protocol
header and payload, as defined by the SCMI specification.

5.17.6.1 cmdq Operation

Each buffer in the cmdq holds a single SCMI command once the buffer has been made available. When the buffer
has been marked as used, it contains the SCMI response. An arbitrary number of such SCMI messages can be
in transit at the same time. Conceptually, each SCMI message in the cmdq uses its own SCMI A2P (agent to
platform) channel.

The SCMI response is in the same virtio buffer as the corresponding SCMI command. The response contains the
return values which SCMI specifies for each command, whether synchronous or asynchronous. Delayed responses
are distinct SCMI messages transmitted over the eventq.

Buffers in the cmdq contain both the request and the response. A request has the following layout:

struct virtio scmi request {
1le32 hdr;

u8 params[<actual parameters size>];
i

AL

The virtio_scmi_request fields are interpreted as follows:
hdr (device-readable) contains the SCMI message header
params (device-readable) comprises the SCMI message parameters

A cmdq response has the following layout:

struct virtio scmi response {
le32 hdr;

u8 ret values[<actual return values size>];

The virtio_scmi_response fields are interpreted as follows:
hdr (device-writable) contains the SCMI message header
ret_values (device-writable) comprises the SCMI message return values

If VIRTIO_SCMI_F_P2A_CHANNELS was not negotiated, the device responds to SCMI commands as if no
SCMI notifications or delayed responses were implemented.

5.17.6.1.1 Device Requirements: cmdq Operation

The device MAY process available commands out of order and in parallel.

The device MUST process all available commands eventually, even in the case of bursts of multiple command
messages.

If the status field in the virtio_scmi_response ret_values has a value other than SUCCESS, the device MUST
set the size of ret_values to the size of the status field.

If the driver requests an SCMI notification or a delayed response and there are currently NOT enough available
buffers in the eventq, the device SHOULD still return SCMI status code SUCCESS.

If VIRTIO_SCMI_F_P2A_CHANNELS was not negotiated, the device MUST deny any request for an SCMI
notification or a delayed response by returning SCMI status code NOT_SUPPORTED.

If VIRTIO_SCMI_F_P2A_CHANNELS was not negotiated, the device MUST NOT indicate in the PROTO-
COL_MESSAGE_ATTRIBUTES return values that any SCMI notification, or delayed response, is implemented.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 204 of 284




5.17.6.1.2 Driver Requirements: cmdq Operation

Before sending a command, the driver MUST wait for responses to all commands whose completion the driver
considers prerequisites to executing the command.

With every command message, the driver MUST provide enough device-writable memory to enable the device to
return corresponding return values.

If VIRTIO_SCMI_F_P2A_CHANNELS was not negotiated, the driver MUST NOT request any SCMI notifica-
tion, nor any delayed response.
5.17.6.2 Setting Up eventq Buffers

The driver has to populate the eventq before the device can use it.

5.17.6.2.1 Driver Requirements: Setting Up eventq Buffers

If VIRTIO_SCMI_F_P2A_CHANNELS was negotiated, the driver SHOULD populate the eventq with buffers.
The driver MUST NOT put device-readable descriptors into the eventq.

The driver MUST NOT put into the eventq any buffer which is smaller than the largest SCMI P2A (platform to
agent) message which the driver will request.

5.17.6.3 eventq Operation

Each buffer in the eventq holds (once the buffer is marked as used) either a single SCMI notification, or a
single SCMI delayed response. An arbitrary number of such SCMI messages can be in transit at the same time.
Conceptually, each SCMI message transmitted over the eventq uses its own SCMI P2A (platform to agent)
channel. Buffers in the eventq have the following layout:

struct virtio scmi event msg {

/* start of device-writable data */
le32 hdr;

u8 payload[<actual payload size>];
}i

AL

hdr (device-writable) contains the SCMI message header

payload (device-writable) comprises the SCMI message payload

5.17.6.3.1 Device Requirements: eventq Operation

If the device intends to send a notification and there are no available buffers in the eventq, the device MAY drop
the notification, or send a corresponding notification later, once enough buffers become available.

The device MAY send the notification later if the events which cause the notification take place in quick succession.

If the device sends the notification later, the device MAY send the notification with updated data, unless the
specific SCMI protocol disallows this.

If the device intends to send a notification and there are available buffers, but one of the buffers is too small to
fit the notification, the device MAY omit the notification.

If the device intends to send a delayed response and there are no available buffers in the eventq, the device MUST
send the corresponding delayed response once enough buffers become available.

If the status field in a delayed response payload has a value other than SUCCESS, the device MUST set the size
of payload to the size of the status field.

5.17.6.4 Shared Memory Operation

Various SCMI protocols define statistics shared memory regions (for statistics and sensor values).

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 205 of 284




5.17.6.4.1 Device Requirements: Shared Memory Operation

If VIRTIO_SCMI_F_SHARED_MEMORY was negotiated, the device MAY implement an SCMI statistics shared
memory region using a virtio shared memory region.

If the device implements a shared memory region, the device MUST assign the corresponding shmid as per the
following table:

SCMI statistics shared memory region Virtio shmid
Reserved (invalid) 0
Power state statistics shared memory region 1

Performance domain statistics shared memory region | 2

Sensor Values Shared Memory 3

Reserved for future use 4 to Ox7F
Vendor-specific statistics shared memory regions 0x80 to OxFF
Reserved for future use 0x100 and greater

5.18 GPIO Device

The Virtio GPIO device is a virtual General Purpose Input/Output device that supports a variable number of
named |/O lines, which can be configured in input mode or in output mode with logical level low (0) or high (1).

5.18.1 Device ID
41

5.18.2 Virtqueues

0 requestq
1 eventq

The eventq virtqueue is available only if the VIRTIO_GPIO_F_IRQ feature has been negotiated.

5.18.3 Feature bits
VIRTIO_GPIO_F_IRQ (0) The device supports interrupts on GPIO lines.

5.18.4 Device configuration layout

GPIO device uses the following configuration structure layout:

i

~ L

ngpio is the total number of GPIO lines supported by the device.
padding has no meaning and is reserved for future use. This is set to zero by the device.

gpio_names_size is the size of the gpio-names memory block in bytes, which can be fetched by the driver using
the VIRTIO_GPIO_MSG_GET_LINE_NAMES message. The device sets this to 0 if it doesn't support
names for the GPIO lines.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 206 of 284




5.18.5 Device Initialization
* The driver configures and initializes the requestq virtqueue.

* The driver configures and initializes the eventq virtqueue, if the VIRTIO_GPIO_F_IRQ feature has been
negotiated.

5.18.6 Device Operation: requestq

The driver uses the requestq virtqueue to send messages to the device. The driver sends a pair of buffers, request
(filled by driver) and response (to be filled by device later), to the device. The device in turn fills the response
buffer and sends it back to the driver.

o Le32 value;
}i

~ AL

All the fields of this structure are set by the driver and read by the device.
type is the GPIO message type, i.e. one of VIRTIO_GPIO_MSG_ * values.
gpio is the GPIO line number, i.e. 0 <= gpio < ngpio.

value is a message specific value.

u8 status;
u8 value;
i
%DIF >
£ Rossible yalues of the status field ¥/
wEEE e TIIRIIG R0 SITdlls O e

All the fields of this structure are set by the device and read by the driver.

status of the GPIO message, VIRTIO_GPIO_STATUS_OK on success and VIRTIO_GPIO_STATUS_ERR on
failure.

value is a message specific value.

Following is the list of messages supported by the virtio gpio specification.

/* GPIO message types */
#define VIRTIO GBIO_MSG GET LINE NAMES _______0x0001

#define VIRTIO GPIO MSG GET VALUE __ _ 0%0004
%DIF >

#define VIRTIO GPIO DIRECTION NONE __ _ _ 0%00
#define VIRTIO GPIO DIRECTION QUT __ _  __ 0x01
$DIF >

#define VIRTIO GPIO_IRQ TYPE EDGE RISING _ __  0x01

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 207 of 284




5.18.6.1 requestq Operation: Get Line Names

The driver sends this message to receive a stream of zero-terminated strings, where each string represents the
name of a GPIO line, present in increasing order of the GPIO line numbers. The names of the GPIO lines are
optional and may be present only for a subset of GPIO lines. If missing, then a zero-byte must be present for
the GPIO line. If present, the name string must be zero-terminated and the name must be unique within a GPIO
Device. The names of the GPIO lines are encoded in 7-bit ASCII.

These names of the GPIO lines should be most meaningful producer names for the system, such as name indicating
the usage. For example "MMC-CD", "Red LED Vdd"” and "ethernet reset” are reasonable line names as they
describe what the line is used for, while "GPIO0" is not a good name to give to a GPIO line.

Here is an example of how the gpio names memory block may look like for a GPIO device with 10 GPIO lines,
where line names are provided only for lines 0 ("MMC-CD"), 5 ("Red LED Vdd") and 7 ("ethernet reset").

u8 io names[] = {
IMII 'M', 'C', T el 'D! 0

NS N SN S NN W NN SN N SO N S
OI

N

SIS
0,
IR', |e 7 ldl’ Al Al ILI lEl, 'D', | l’ lV' |d| ldl’ 0,

SRS

ISR TSNSV SN SO ST SUS ST SNV SO S SN -SSR -SU NS T N 'S
OI

IOUNN

i

The device sets the gpio__names_size to a non-zero value if this message is supported by the device, else it must
be set to zero.

This message type uses different layout for the response structure, as the device needs to return the gpio _names
array.

struct virtio io response N {

u8 status;
oo W8 pE e TG

The driver must allocate the value[N] buffer in the struct virtio_gpio_response_N for N bytes, where N =
gpio_names__size.

Request || type gpio value
VIRTIO_GPIO_MSG_GET_- | 0 0
LINE_NAMES
Response || status value[N] Where N is
VIRTIO_GPIO_STATUS_* gpio-names gpio_names__size

5.18.6.2 requestq Operation: Get Direction

The driver sends this message to request the device to return a line's configured direction.

Request || type gpio value
VIRTIO_GPIO_MSG_GET_- | line number 0
DIRECTION
Response || status value
VIRTIO_GPIO_STATUS_* 0 = none, 1 = output, 2 = input
virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 208 of 284




5.18.6.3

requestq Operation: Set Direction

The driver sends this message to request the device to configure a line's direction. The driver can either set the
direction to VIRTIO_GPIO_DIRECTION_IN or VIRTIO_GPIO_DIRECTION_OUT, which also activates the
line, or to VIRTIO_GPIO_DIRECTION_NONE, which deactivates the line.

The driver should set the value of the GPIO line, using the VIRTIO_GPIO_MSG_SET_VALUE message, before
setting the direction of the line to output to avoid any undesired behavior.

Request || type gpio value
VIRTIO_GPIO_MSG_SET_- | line number 0 = none, 1 = output, 2 = in-
DIRECTION put

Response || status value

VIRTIO_GPIO_STATUS_* 0
5.18.6.4 requestq Operation: Get Value
The driver sends this message to request the device to return current value sensed on a line.

Request || type gpio value
VIRTIO_GPIO_MSG_GET_- | line number 0
VALUE

Response || status value

VIRTIO_GPIO_STATUS_* 0 = low, 1 = high
5.18.6.5 requestq Operation: Set Value

The driver sends this message to request the device to set the value of a line. The line may already be configured
for output or may get configured to output later, at which point this output value must be used by the device for
the line.

Request || type gpio value
VIRTIO_GPIO_MSG_SET_- | line number 0 = low, 1 = high
VALUE
Response || status value
VIRTIO_GPIO_STATUS_* 0
5.18.6.6 requestq Operation: Set IRQ Type

This request is allowed only if the VIRTIO_GPIO_F_IRQ feature has been negotiated.

The interrupt configuration is divided into two steps, enabling or disabling of the interrupt at the device and
masking or unmasking of the interrupt for delivery at the driver. This request only pertains to enabling or
disabling of the interrupt at the device, the masking and unmasking of the interrupt is handled by a separate
request that takes place over the eventq virtqueue.

The driver sends the VIRTIO_GPIO_MSG_SET_IRQ_TYPE message over the requestq virtqueue to enable or
disable interrupt for a GPIO line at the device.

The driver sends this message with trigger type set to any valid value other than VIRTIO_GPIO_IRQ_TYPE_-
NONE, to enable the interrupt for a GPIO line, this doesn’t unmask the interrupt for delivery at the driver though.
For edge trigger type, the device should latch the interrupt events from this point onward and notify it to the
driver once the interrupt is unmasked. For level trigger type, the device should notify the driver once the interrupt
signal on a line is sensed and the interrupt is unmasked for the line.

virtio-v1.2-csd01
Standards Track Work Product

09 May 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 209 of 284



The driver sends this message with trigger type set to VIRTIO_GPIO_IRQ_TYPE_NONE, to disable the interrupt
for a GPIO line. The device should discard any latched interrupt event associated with it. In order to change the
trigger type of an already enabled interrupt, the driver should first disable the interrupt and then re-enable it with
appropriate trigger type.

The interrupts are masked at initialization and the driver unmasks them by queuing a pair of buffers, of type
virtio_gpio_irq_request and virtio_gpio_irq_response, over the eventq virtqueue for a GPIO line. A separate
pair of buffers must be queued for each GPIO line, the driver wants to configure for interrupts. Once an already
enabled interrupt is unmasked by the driver, the device can notify the driver of an active interrupt signal on the
GPIO line. This is done by updating the struct virtio_gpio_irq_response buffer’'s status with VIRTIO_GPIO_-
IRQ_STATUS_VALID and returning the updated buffers to the driver. The interrupt is masked automatically at
this point until the buffers are available again at the device.

The interrupt for a GPIO line should not be unmasked before being enabled by the driver.

If the interrupt is disabled by the driver, by setting the trigger type to VIRTIO_GPIO_IRQ_TYPE_NONE, or
the interrupt is unmasked without being enabled first, the device should return any unused pair of buffers for the
GPIO line, over the eventq virtqueue, after setting the status field to VIRTIO_GPIO_IRQ_STATUS_INVALID.
This also masks the interrupt.

Request || type gpio value
VIRTIO_GPIO_MSG_SET_- | line number one of VIRTIO_GPIO_IRQ_-
IRQ_TYPE TYPE_*

Response || status value

VIRTIO_GPIO_STATUS_* 0

5.18.6.7 requestq Operation: Message Flow

» The driver queues struct virtio_gpio_request and virtio_gpio_response buffers to the requestq virtqueue,
after filling all fields of the struct virtio_gpio_request buffer as defined by the specific message type.

* The driver notifies the device of the presence of buffers on the requestq virtqueue.

* The device, after receiving the message from the driver, processes it and fills all the fields of the struct virtio_-
gpio_response buffer (received from the driver). The status must be set to VIRTIO_GPIO_STATUS_OK
on success and VIRTIO_GPIO_STATUS_ERR on failure.

* The device puts the buffers back on the requestq virtqueue and notifies the driver of the same.
* The driver fetches the buffers and processes the response received in the virtio_gpio_response buffer.

* The driver can send multiple messages in parallel for same or different GPIO line.

5.18.6.8 Driver Requirements: requestq Operation
* The driver MUST send messages on the requestq virtqueue.

* The driver MUST queue both struct virtio_gpio_request and virtio_gpio__response for every message sent
to the device.

* The struct virtio_gpio_request buffer MUST be filled by the driver and MUST be read-only for the device.
* The struct virtio_gpio_response buffer MUST be filled by the device and MUST be writable by the device.
* The driver MAY send multiple messages for same or different GPIO lines in parallel.

* The driver MUST NOT send IRQ messages if the VIRTIO_GPIO_F_IRQ feature has not been negotiated.

* The driver MUST NOT send IRQ messages for a GPIO line configured for output.

* The driver MUST set the IRQ trigger type to VIRTIO_GPIO_IRQ_TYPE_NONE once it is done using the
GPIO line configured for interrupts.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 210 of 284



* In order to change the trigger type of an already enabled interrupt, the driver MUST first disable the interrupt
and then re-enable it with appropriate trigger type.

5.18.6.9 Device Requirements: requestq Operation
* The device MUST set all the fields of the struct virtio_gpio_response before sending it back to the driver.

* The device MUST set all the fields of the struct virtio_gpio_config on receiving a configuration request
from the driver.

* The device MUST set the gpio_names_size field as zero in the struct virtio_gpio_config, if it doesn't
implement names for individual GPIO lines.

* The device MUST set the gpio__names_size field, in the struct virtio_gpio_config, with the size of gpio-
names memory block in bytes, if the device implements names for individual GPIO lines. The strings MUST
be zero-terminated and an unique (if available) within the GPIO device.

* The device MUST process multiple messages, for the same GPIO line, sequentially and respond to them in
the order they were received on the virtqueue.

* The device MAY process messages, for different GPIO lines, out of order and in parallel, and MAY send
message's response to the driver out of order.

* The device MUST discard all state information corresponding to a GPIQ line, once the driver has requested
to set its direction to VIRTIO_GPIO_DIRECTION_NONE.

* The device MUST latch an edge interrupt if the interrupt is enabled but still masked.
* The device MUST NOT latch an level interrupt if the interrupt is enabled but still masked.

* The device MUST discard any latched interrupt for a GPIO line, once interrupt is disabled for the same.

5.18.7 Device Operation: eventq

The eventq virtqueue is used by the driver to unmask the interrupts and used by the device to notify the driver of
newly sensed interrupts. In order to unmask interrupt on a GPIO line, the driver queues a pair of buffers, struct
virtio_gpio_irq_request (filled by driver) and struct virtio_gpio_irq_response (to be filled by device later), to
the eventq virtqueue. A separate pair of buffers must be queued for each GPIO line, the driver wants to configure
for interrupts. The device, on sensing an interrupt, returns the pair of buffers for the respective GPIO line, which
also masks the interrupts. The driver can queue the buffers again to unmask the interrupt.

struct virtio io irg request
}i

AL

This structure is filled by the driver and read by the device.

gpio is the GPIO line number, i.e. 0 <= gpio < ngpio.

struct virtio io irg response

u8 status;
i

$DIF >
/* Possible values of the interrupt status field */

This structure is filled by the device and read by the driver.

status of the interrupt event, VIRTIO_GPIO_IRQ_STATUS_VALID on interrupt and VIRTIO_GPIO_IRQ_-
STATUS_INVALID to return the buffers back to the driver after interrupt is disabled.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 211 of 284




5.18.7.1 eventq Operation: Message Flow

The virtio-gpio driver is requested by a client driver to enable interrupt for a GPIO line and configure it to
a particular trigger type.

The driver sends the VIRTIO_GPIO_MSG_SET_IRQ_TYPE message, over the requestq virtqueue, and
the device configures the GPIO line for the requested trigger type and enables the interrupt. The interrupt
is still masked for delivery though. The device shall latch the interrupt from now onward for edge trigger

type.

The driver unmasks the interrupt by queuing a pair of buffers to the eventq virtqueue for the GPIO line.
The driver can do this before enabling the interrupt as well, though the interrupt must be both unmasked
and enabled to get delivered at the driver.

The driver notifies the device of the presence of new buffers on the eventq virtqueue. The interrupt is fully
configured at this point.

The device, on sensing an active interrupt on the GPIO line, finds the matching buffers (based on GPIO
line number) from the eventq virtqueue and update its struct virtio_gpio_irq_response buffer's status with
VIRTIO_GPIO_IRQ_STATUS_VALID and returns the pair of buffers to the device. This results in masking
the interrupt as well.

The device notifies the driver of the presence of returned buffers on the eventq virtqueue.

If the GPIO line is configured for level interrupts, the device ignores any further interrupt signals on this
GPIO line, until the interrupt is unmasked again by the driver by making the buffers available to the device.
Once the interrupt is unmasked again and the interrupt on the line is still active, the device shall notify the
driver again.

If the GPIO line is configured for edge interrupts, the device latches the interrupt received for this GPIO line,
until the interrupt is unmasked again by the driver by making the buffers available to the device. Once the
interrupt is unmasked again and an interrupt was latched earlier, the device shall notify the driver again.

The driver on receiving the notification from the device, processes the interrupt. The interrupt is masked at
the device until the buffers are queued again by the driver.

In a typical guest operating system kernel, the virtio-gpio driver notifies the client driver, that is associated
with this GPIO line, to process the event. In the case of a level triggered interrupt, the client driver shall fully
process and acknowledge the event at its source to return the line to its inactive state before the interrupt
is unmasked again to avoid a spurious interrupt.

Once the interrupt is handled, the driver may queue a pair of buffers for the GPIO line to unmask the
interrupt again.

The driver can also disable the interrupt by sending the VIRTIO_GPIO_MSG_SET_IRQ_TYPE message,
with VIRTIO_GPIO_IRQ_TYPE_NONE trigger type. In that case, the device shall return the unused pair
of buffers for the GPIO line after setting the status field with VIRTIO_GPIO_IRQ_STATUS_INVALID.

5.18.7.2 Driver Requirements: eventq Operation

The driver MUST both enable and unmask the interrupt in order to get notified for the same.
The driver MUST enable the interrupt before unmasking it.

To unmask the interrupt, the driver MUST queue a separate pair of buffers to the eventq virtqueue for each
GPIO line.

The driver MUST NOT add multiple pairs of buffers for the same GPIO line on the eventq virtqueue.

5.18.7.3 Device Requirements: eventq Operation

The device MUST NOT send an interrupt event to the driver for a GPIO line unless the interrupt has been
both unmasked and enabled by the driver.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 212 of 284



* On receiving VIRTIO_GPIO_MSG_SET_IRQ_TYPE message, with VIRTIO_GPIO_IRQ_TYPE_NONE
trigger type, the device MUST return the buffers, if they were received earlier, after setting the status field
to VIRTIO_GPIO_IRQ_STATUS_INVALID.

5.19 PMEM Device

The virtio pmem device is a persistent memory (NVDIMM) device that provides a virtio based asynchronous flush
mechanism. This avoids the need for a separate page cache in the guest and keeps the page cache only in the
host. Under memory pressure, the host makes use of efficient memory reclaim decisions for page cache pages of
all the guests. This helps to reduce the memory footprint and fits more guests in the host system.

The virtio pmem device provides access to byte-addressable persistent memory. The persistent memory is a
directly accessible range of system memory. Data written to this memory is made persistent by separately sending
a flush command. Writes that have been flushed are preserved across device reset and power failure.

5.19.1 Device ID
27

5.19.2 Virtqueues
0 req_vq

5.19.3 Feature bits

VIRTIO_PMEM_F_SHMEM_REGION (0) The guest physical address range will be indicated as a shared mem-
ory region.

5.19.4 Device configuration layout

struct virtio pmem config {
. 1e64 start;

RIS

}i

~A

start contains the physical address of the first byte of the persistent memory region, if VIRTIO_PMEM_F_-
SHMEM_REGION has not been negotiated.

size contains the length of this address range, if VIRTIO_PMEM_F_SHMEM_REGION has not been negotiated.

5.19.5 Device Initialization

The device indicates the guest physical address to the driver in one of two ways:
1. As a physical address, using virtio_pmem_config.
2. As a shared memory region.

The driver determines the start address and size of the persistent memory region in preparation for reading or
writing data.

The driver initializes req_vq in preparation for making flush requests.

5.19.5.1 Device Requirements: Device Initialization

If VIRTIO_PMEM_F_SHMEM_REGION has been negotiated, the device MUST indicate the guest physical
address as a shared memory region. The device MUST use shared memory region ID 0. The device SHOULD set
start and size to zero.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 213 of 284




If VIRTIO_PMEM_F_SHMEM_REGION has not been negotiated, the device MUST indicate the guest physical
address as a physical address. The device MUST set start to the absolute address and size to the size of the
address range, in bytes.

5.19.5.2 Driver Requirements: Device Initialization

If VIRTIO_PMEM_F_SHMEM_REGION has been negotiated, the driver MUST query shared memory ID 0 for
the physical address ranges, and MUST NOT use start or stop.

If VIRTIO_PMEM_F_SHMEM_REGION has not been negotiated, the driver MUST read the physical address
ranges from start and stop.

5.19.6 Driver Operations

Requests have the following format:

struct virtio pmem req {

n e RS ETIESE
}i

~A

type is the request command type.

Possible request types are:

| #define VIRTIO PMEM REQ TYPE FLUSH .0
L

5.19.7 Device Operations
5.19.7.1 Device Requirements: Device Operation: Virtqueue flush

The device MUST ensure that all writes completed before a flush request persist across device reset and power
failure before completing the flush request.

5.19.7.2 Device Operations

struct virtio pmem resp {
le32 ret;

} i

~ A

ret is the value which the device returns after command completion.

5.19.7.3 Device Requirements: Device Operation: Virtqueue return

The device MUST return "0" for success and "-1" for failure.

5.19.8 Possible security implications

There could be potential security implications depending on how memory mapped backing device is used. By
default device emulation is done with SHARED memory mapping. There is a contract between driver and device
to access shared memory region for read or write operations.

If a malicious driver or device maps the same memory region, the attacker can make use of known side channel
attacks to predict the current state of data. If both attacker and victim somehow execute same shared code after
a flush or evict operation, with difference in execution timing attacker could infer another device's data.

5.19.9 Countermeasures

5.19.9.1 With SHARED mapping

If a device's backing region is shared between multiple devices, this may act as a metric for side channel attacks.
As a counter measure every device should have its own (not shared with another driver) SHARED backing memory.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 214 of 284



5.19.9.2 With PRIVATE mapping

There maybe be chances of side channels attack with PRIVATE memory mapping similar to SHARED with
read-only shared mappings. PRIVATE is not used for virtio pmem making this usecase irrelevant.

5.19.9.3 Workload specific mapping

When using SHARED mappings with a workload that is a single application inside the driver where the risk in
sharing data is very low or nonexisting, the device sharing the same backing region with a SHARED mapping can
be used as a valid configuration.

5.19.9.4 Prevent cache eviction

Don’t allow device shared region eviction from driver filesystem trim or discard like commands with virtio pmem.
This rules out any possibility of evict-reload cache side channel attacks if backing region is shared (SHARED)
between mutliple devices. Though if we use per device backing file with shared mapping this countermeasure is
not required.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 215 of 284



6 Reserved Feature Bits

Currently these device-independent feature bits are defined:

VIRHO_F_RING_INDIRECT_DESC{(28)

VIRTIO_F_INDIRECT_DESC (28) Negotiating this feature indicates that the driver can use descriptors with
the VIRTQ_DESC_F_INDIRECT flag set, as described in 2.7.5.3 Indirect Descriptors and 2.8.7 Indirect
Flag: Scatter-Gather Support.

VIRHO_F_RING_EVENTDX(29)

VIRTIO_F_EVENT_IDX(29) This feature enables the used_event and the avail_event fields as described
in2.7.7,2.7.8 and 2.8.10.

VIRTIO_F_VERSION_1(32) This indicates compliance with this specification, giving a simple way to detect
legacy devices or drivers.

VIRTIO_F_ACCESS_PLATFORM(33) This feature indicates that the device can be used on a platform
where device access to data in memory is limited and/or translated. E.g. this is the case if the device
can be located behind an IOMMU that translates bus addresses from the device into physical addresses
in memory, if the device can be limited to only access certain memory addresses or if special commands
such as a cache flush can be needed to synchronise data in memory with the device. Whether accesses
are actually limited or translated is described by platform-specific means. If this feature bit is set to 0,
then the device has same access to memory addresses supplied to it as the driver has. In particular, the
device will always use physical addresses matching addresses used by the driver (typically meaning
physical addresses used by the CPU) and not translated further, and can access any address supplied
to it by the driver. When clear, this overrides any platform-specific description of whether device access
is limited or translated in any way, e.g. whether an IOMMU may be present.

VIRTIO_F_RING_PACKED(34) This feature indicates support for the packed virtqueue layout as described
in 2.8 Packed Virtqueues.

VIRTIO_F_IN_ORDER(35) This feature indicates that all buffers are used by the device in the same order
in which they have been made available.

VIRTIO_F_ORDER_PLATFORM(36) This feature indicates that memory accesses by the driver and the
device are ordered in a way described by the platform.

If this feature bit is negotiated, the ordering in effect for any memory accesses by the driver that need
to be ordered in a specific way with respect to accesses by the device is the one suitable for devices
described by the platform. This implies that the driver needs to use memory barriers suitable for devices
described by the platform; e.g. for the PCI transport in the case of hardware PCI devices.

If this feature bit is not negotiated, then the device and driver are assumed to be implemented in
software, that is they can be assumed to run on identical CPUs in an SMP configuration. Thus a
weaker form of memory barriers is sufficient to yield better performance.

VIRTIO_F_SR_IOV(37) This feature indicates that the device supports Single Root I/O Virtualization. Cur-
rently only PCI devices support this feature.

VIRTIO_F_NOTIFICATION_DATA(38) This feature indicates that the driver passes extra data (besides
identifying the virtqueue) in its device notifications. See 2.9 Driver Notifications.

VIRTIO_F_NOTIF_CONFIG_DATA(39) This feature indicates that the driver uses the data provided by the
device as a virtqueue identifier in available buffer notifications. As mentioned in section 2.9, when the driver
is required to send an available buffer notification to the device, it sends the virtqueue number to be notified.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 216 of 284



The method of delivering notifications is transport specific. With the PCI transport, the device can optionally
provide a per-virtqueue value for the driver to use in driver notifications, instead of the virtqueue number.
Some devices may benefit from this flexibility by providing, for example, an internal virtqueue identifier, or
an internal offset related to the virtqueue number.

This feature indicates the availability of such value. The definition of the data to be provided in driver
notification and the delivery method is transport specific. For more details about driver notifications over
PCl see 4.1.5.2.

VIRTIO_F_RING_RESET(40) This feature indicates that the driver can reset a queue individually. See 2.6.1.

6.1 Driver Requirements: Reserved Feature Bits

A driver MUST accept VIRTIO_F_VERSION_1 ifitis offered. A driver MAY fail to operate further if VIRTIO_-
F_VERSION_1 is not offered.

A driver SHOULD accept VIRTIO_F_ACCESS_PLATFORM if it is offered, and it MUST then either dis-
able the IOMMU or configure the IOMMU to translate bus addresses passed to the device into physical
addresses in memory. If VIRTIO_F_ACCESS_ PLATFORM is not offered, then a driver MUST pass only
physical addresses to the device.

A driver SHOULD accept VIRTIO_F_RING_PACKED if it is offered.

A driver SHOULD accept VIRTIO_F_ORDER_PLATFORM if it is offered. If VIRTIO_F_ORDER_PLAT-
FORM has been negotiated, a driver MUST use the barriers suitable for hardware devices.

If VIRTIO_F_SR_IOV has been negotiated, a driver MAY enable virtual functions through the device’s PCI
SR-I0V capability structure. A driver MUST NOT negotiate VIRTIO_F_SR_IOV if the device does not have
a PCI SR-IOV capability structure or is not a PCI device. A driver MUST negotiate VIRTIO_F_SR_IOV and
complete the feature negotiation (including checking the FEATURES_OK device status bit) before enabling
virtual functions through the device’s PCI SR-IOV capability structure. After once successfully negotiating
VIRTIO_F_SR_IQV, the driver MAY enable virtual functions through the device’s PCI SR-IOV capability
structure even if the device or the system has been fully or partially reset, and even without re-negotiating
VIRTIO_F_SR_IQV after the reset.

A driver SHOULD accept VIRTIO_F_NOTIF_CONFIG_DATA if it is offered.

6.2 Device Requirements: Reserved Feature Bits

A device MUST offer VIRTIO_F_VERSION_1. A device MAY fail to operate furtherif VIRTIO_F_VERSION_-
1 is not accepted.

A device SHOULD offer VIRTIO_F_ACCESS_PLATFORM if its access to memory is through bus addresses
distinct from and translated by the platform to physical addresses used by the driver, and/or if it can only
access certain memory addresses with said access specified and/or granted by the platform. A device MAY
fail to operate further if VIRTIO_F_ACCESS_PLATFORM is not accepted.

If VIRTIO_F_IN_ORDER has been negotiated, a device MUST use buffers in the same order in which they
have been available.

A device MAY fail to operate further if VIRTIO_F_ORDER_PLATFORM is offered but not accepted. A device
MAY operate in a slower emulation mode if VIRTIO_F_ORDER_PLATFORM is offered but not accepted.

It is RECOMMENDED that an add-in card based PCI device offers both VIRTIO F_ACCESS PLATFORM
and VIRTIO_F_ORDER_PLATFORM for maximum portability.

A device SHOULD offer VIRTIO_F_SR_IQV if it is a PCI device and presents a PCI SR-IOV capability
structure, otherwise it MUST NOT offer VIRTIO_F_SR_IOV.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 217 of 284



6.3 Legacy Interface: Reserved Feature Bits

Transitional devices MAY offer the following:

VIRTIO_F_NOTIFY_ON_EMPTY (24) If this feature has been negotiated by driver, the device MUST issue
a used buffer notification if the device runs out of available descriptors on a virtqueue, even though
notifications are suppressed using the VIRTQ_AVAIL_F_NO_INTERRUPT flag or the used_event field.

Note: An example of a driver using this feature is the legacy networking driver: it doesn’t need to know
every time a packet is transmitted, but it does need to free the transmitted packets a finite time
after they are transmitted. It can avoid using a timer if the device notifies it when all the packets
are transmitted.

Transitional devices MUST offer, and if offered by the device transitional drivers MUST accept the following:

VIRTIO_F_ANY_LAYOUT (27) This feature indicates that the device accepts arbitrary descriptor layouts,
as described in Section 2.7.4.3 Legacy Interface: Message Framing.

UNUSED (30) Bit 30 is used by gemu’s implementation to check for experimental early versions of virtio
which did not perform correct feature negotiation, and SHOULD NOT be negotiated.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 218 of 284



7 Conformance

This chapter lists the conformance targets and clauses for each; this also forms a useful checklist which
authors are asked to consult for their implementations!

7.1 Conformance Targets

Conformance targets:

Driver A driver MUST conform to three-four conformance clauses:
» Clause 7.2+
* One of clauses 7.2.1,7.2.2 0or 7.2.3.

» One of clauses 7.2.4,7.2.5,7.2.6, 7.2.7, 7.2.8, 7.2.9, ~7.2.10, 7.2.11, 7.212, 7.2.1, 7.2.2, 7.2.3,
724,725, 726,727, 7.2.8 or 7.2.9.

* Clause 7.4.

Device A device MUST conform to three-four conformance clauses:
 Clause 7.3;.
* One of clauses 7.3.1, 7.3.2 or 7.3.3.

* One of clauses 7.3.4,7.3.5,7.3.6, 7.3.7, 7.3.8, 7.3.9, ~7.3.10, 7.3.11, 7.3.12, 7.3.13, 7.3.1, 7.3.2,
733,734,735, 736, 7.3.7,7.3.8 or 7.3.9.

e Clause 7.4.

7.2 Clause 1: Driver Conformance

A driver MUST conform to the following normative statements:

¢« 2.1.1

¢ 221

°© 242

« 251

¢ 2.71
2742
2752
2.7.5.31
2.7.71
2.7.6.1
2.78.3

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 219 of 284



2.7.10.1
2.7.13.3.1
2.7.13.4.1
2.8.11
2.8.16
2.8.17
2.8.19
2.8.21.11
2.8.21.3.1
« 3.1.1

» 3.3.1

* 6.1

7.2.1 PcibriverConformance

7.21 Clause 2: PCI Driver Conformance
A PCI driver MUST conform to the following normative statements:
* 4122
* 4.1.3.1
4141
* 41432
41452
41492
415122
41542

7.2.2 MMIODriverConformanee

7.2.2 Clause 3: MMIO Driver Conformance

An MMIO driver MUST conform to the following normative statements:
« 4222
42311
*+ 42341

7.2.3 channelHOBriverConformanee

7.2.3 Clause 4: Channel I/O Driver Conformance

A Channel I/O driver MUST conform to the following normative statements:

+ 4314

*+ 43212
+ 43.2.3.1

*+ 433122

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 220 of 284



+ 433.22
* 43332

7.2.4 NetworkDriver-Conformanece

7.2.4 Clause 5: Network Driver Conformance
A network driver MUST conform to the following normative statements:
+ 5142
* 5.1.6.2.1
* 5.1.6.3.1
51642
5.1.6.5.1.2
5.1.6.5.2.2
5.1.6.5.4.1
5.1.6.5.6.1
5.1.6.5.8.2
5.1.6.5.7.2

7.2.5 BioekDriverConformanee

7.2.5 Clause 6: Block Driver Conformance

A block driver MUST conform to the following normative statements:
« 5251
« 526.1

7.2.6 consoleDriverConformance

7.2.6 Clause 7: Console Driver Conformance

A console driver MUST conform to the following normative statements:
+ 5.3.6.1
*+ 53.6.2.2

7.2.7 EntrepyBriverConformanee
7.2.7 Clause 8: Entropy Driver Conformance

An entropy driver MUST conform to the following normative statements:
*+ 5461

7.2.8 Fraditional-Memory-Balloon-Briver-Conformanee
7.2.8 Clause 9: Traditional Memory Balloon Driver Conformance

A traditional memory balloon driver MUST conform to the following normative statements:

+ 55.3.1
» 5561
+ 55.6.3.1

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 221 of 284



* 55651
* 556.6.1
* 556.7.1

7.2.9 scstHestDriverConformanee
7.2.9 Clause 10: SCSI Host Driver Conformance

An SCSI host driver MUST conform to the following normative statements:

+ 5.6.41
+ 56.6.1.2
» 5.6.6.3.1

7.2.10 inputbriverConformance

7.2.10 Clause 11: Input Driver Conformance

An input driver MUST conform to the following normative statements:
+ 58.5.1
+ 5.8.6.1

7.2.11  cryptobriverConformanee

7.2.11 Clause 12: Crypto Driver Conformance

A Crypto driver MUST conform to the following normative statements:
+ 5952
*+ 59.6.1

59.7.215

59.7.21.7

59.7.41

5.9.7.5.1

5.9.7.6.1

59.7.7.1

7.2.12 socketbriverConformanee

7.2.12 Clause 13: Socket Driver Conformance

A socket driver MUST conform to the following normative statements:
* 5.10.6.3.1
*+ 510.6.4.1
*+ 5.10.6.7.1

7.3  Device Conformance

7.21 Clause 14: File System Driver Conformance

A file system driver MUST conform to the following normative statements:

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 222 of 284



5.11.4.1

* 511.6.2.2
*+ 511.6.3.1
5.11.6.4.2

7.2.2 Clause 15: RPMB Driver Conformance
A RPMB driver MUST conform to the following normative statements:
* 5.12.6.2

7.2.3 Clause 16: IOMMU Driver Conformance
An [OMMU driver MUST conform to the following normative statements:
* 51331
* 51341
* 51351
* 513.6.1
5.13.6.3.1
5.13.6.4.1
5.13.6.5.1
5.13.6.6.1
5.13.6.7.1
5.13.6.8.1.1
5.13.6.9.1

7.2.4 Clause 17: Sound Driver Conformance

A sound driver MUST conform to the following normative statements:
*+ 51451
* 5.146.2

5.14.6.6.3.2

5.14.6.8.1.2

5.14.6.8.2.2

7.2.5 Clause 18: Memory Driver Conformance
A memory driver MUST conform to the following normative statements:
* 51541
* 51551
* 515.6.1
* 515.6.3.1
5.15.6.4.1
5.15.6.5.1
5.15.6.6.1

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 223 of 284



7.2.6 Clause 19: 12C Adapter Driver Conformance
An 12C Adapter driver MUST conform to the following normative statements:
* 516.6.3

7.2.7 Clause 20: SCMI Driver Conformance

An SCMI driver MUST conform to the following normative statements:
+ 5.17.6.1.2
+ 517.6.2.1

7.2.8 Clause 21: GPIO Driver Conformance

A General Purpose Input/Output (GPIO) driver MUST conform to the following normative statements:
+ 5.18.6.8
+ 5.18.7.2

7.2.9 Clause 22: PMEM Driver Conformance
A PMEM driver MUST conform to the following normative statements:
* 519.5.2

7.3 Clause 23: Device Conformance

A device MUST conform to the following normative statements:
212
222
« 241
252

2.7.4.1

2.7.5.1

27532

2.7.7.2

2.7.8.2
2.7.10.2

2.8.12

* 2.8.15

» 2.8.18

2.10.2

* 6.2

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 224 of 284



7.3.1 Pcibevice Conformance

7.3.1 Clause 24: PCI Device Conformance
A PCI device MUST conform to the following normative statements:
411
4121
4132
* 4142
4.1.4.3.1
41441
41451
4.1.4.6.1
41471
4.1.4.9.1
4.1.4.11.0.1
41.5.1.21
4.1.5.3.1
41541

7.3.2 MMIODevice Conformance

7.3.2 Clause 25: MMIO Device Conformance
An MMIO device MUST conform to the following normative statements:
« 4221

7.3.3 channeHiODevice Conformance

7.3.3 Clause 26: Channel I/O Device Conformance
A Channel I/O device MUST conform to the following normative statements:
*+ 4313
* 43211
*+ 43221
43232
4.3.2.6.3.1
43.3.1.21
4.3.3.2.1
* 43331

7.3.4 Network Device Conformance

7.3.4 Clause 27: Network Device Conformance
A network device MUST conform to the following normative statements:
5141

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 225 of 284



5.1.6.2.2
5.1.6.3.2
5.1.6.4.1
5.1.6.5.1.1
5.1.6.5.2.1
5.1.6.54.2
5.1.6.5.6.2
5.1.6.5.7.3

7.3.5 Clause 28: Block Device Conformance

A block device MUST conform to the following normative statements:
+ 5252
+526.2

7.3.6 console Device Conformance

7.3.6 Clause 29: Console Device Conformance

A console device MUST conform to the following normative statements:
+ 53.5.1
» 5.3.6.2.1

7.3.7 Entropy-Device-Conformanee

7.3.7 Clause 30: Entropy Device Conformance

An entropy device MUST conform to the following normative statements:
*+546.2

7.3.8 TFraditional-Memeory Balloon-Device-Conformanee
7.3.8 Clause 31: Traditional Memory Balloon Device Conformance

A traditional memory balloon device MUST conform to the following normative statements:

+ 5532
+ 556.2
»+ 556.3.2
* 55.6.5.2
* 55.6.6.2
* 556.7.2

7.3.9 scstHostDeviee Conformance
7.3.9 Clause 32: SCSI Host Device Conformance

An SCSI host device MUST conform to the following normative statements:
+ 5642

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 226 of 284



*+ 565
+ 5.6.6.1.1
»+ 56.6.3.2

7.3.10 inputDeviee Conformance

7.3.10 Clause 33: GPU Device Conformance

A GPU device MUST conform to the following normative statements:
* 575
* 5765

7.3.11 Clause 34: Input Device Conformance

An input device MUST conform to the following normative statements:
+ 585.2
+ 5.8.6.2

7.3.12 crypto-Deviee-Conformanee

7.3.12 Clause 35: Crypto Device Conformance

A Crypto device MUST conform to the following normative statements:
*+ 5951

59.7.2.1.6

59.7.21.8

59.74.2

5.9.7.5.2

59.7.6.2

59.7.7.2

7.3.13 socketDevice Conformanee

7.3.13 Clause 36: Socket Device Conformance

A socket device MUST conform to the following normative statements:
+ 5.10.6.3.2
« 510.64.2

7.4

7.3.1 Clause 37: File System Device Conformance

A file system device MUST conform to the following normative statements:
* 51142
* 5.11.6.21
*+ 511641

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 227 of 284



7.3.2 Clause 38: RPMB Device Conformance
An RPMB device MUST conform to the following normative statements:
* 5125
*+ 5126.1.1
*+ 5126.1.2
*+ 512.6.1.3
5.12.6.1.4
*+ 5126.15
* 5.12.6.3

7.3.3 Clause 39: IOMMU Device Conformance
An [OMMU device MUST conform to the following normative statements:
* 5.13.3.2
* 51342
* 513.6.2
5.13.6.3.2
5.13.6.4.2
5.13.6.5.2
5.13.6.6.2
5.13.6.7.2
5.13.6.8.1.2
5.13.6.9.2

7.3.4 Clause 40: Sound Device Conformance

A sound device MUST conform to the following normative statements:
*+51464.1.1

5.14.6.6.2.1

5.14.6.6.3.1

5.14.6.6.5.1

5.14.6.8.1.1

5.14.6.8.2.1

5.14.6.9.1.1

7.3.5 Clause 41: Memory Device Conformance
A memory device MUST conform to the following normative statements:
* 51542
* 5.155.2
* 515.6.2
* 515.6.3.2

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 228 of 284



* 515.6.4.2
* 515.6.5.2
* 5.15.6.6.2

7.3.6 Clause 42: 12C Adapter Device Conformance
An [2C Adapter device MUST conform to the following normative statements:

* 516.6.4

7.3.7 Clause 43: SCMI Device Conformance
An SCMI device MUST conform to the following normative statements:
* 51731
* 5176.1.1
* 517631
*+ 517641

7.3.8 Clause 44: GPIO Device Conformance

A General Purpose Input/Output (GPIO) device MUST conform to the following normative statements:
+ 5.18.6.9
+ 5.18.7.3

7.3.9 Clause 45: PMEM Device Conformance

A PMEM device MUST conform to the following normative statements:
* 51951
* 519.7.1
*+ 519.7.3

7.4 Clause 46: Legacy Interface: Transitional Device and Transi-
tional Driver Conformance

A conformant implementation MUST be either transitional or non-transitional, see 1.3.1.

An implementation MAY choose to implement OPTIONAL support for the legacy interface, including support
for legacy drivers or devices, by additienatty-conforming to all of the MUST or REQUIRED level requirements
for the legacy interface for the transitional devices and drivers.

The requirements for the legacy interface for transitional implementations are located in sections named
“Legacy Interface” listed below:

+ Section 2.2.3
Section 2.5.3
+ Section 2.5.4
+ Section 2.7.2
+ Section 2.7.3

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 229 of 284



+ Section 2.7.4.3

+ Section 3.1.2

» Section 4.1.2.3

+ Section 4.1.4.10

» Section 4.1.5.1.1.1
+ Section 4.1.5.1.3.1
+ Section 4.2.4

+ Section 4.3.2.1.3
» Section 4.3.2.2.2
+ Section 4.3.3.1.3
+ Section 4.3.2.6.4
+ Section 5.1.3.2

+ Section 5.1.4.3

» Section 5.1.6.1

+ Section 5.1.6.5.2.3
+ Section 5.1.6.5.3.1
+ Section 5.1.6.5.6.3
+ Section 5.1.6.5.8.3
+ Section 5.2.3.1

+ Section 5.2.4.1

« Section 5.2.5.3

+ Section 5.2.6.3

+ Section 5.3.4.1

» Section 5.3.6.3

+ Section 5.5.3.2.0.1
+ Section 5.5.6.2.1

+ Section 5.5.6.3.3
» Section 5.6.4.3

+ Section 5.6.6.0.1

+ Section 5.6.6.1.3
+ Section 5.6.6.2.1

+ Section 5.6.6.3.3
+ Section 6.3

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 230 of 284



Appendix A. virtio_queue.h

This file is also available at the link https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/listings/virtio_queue.
h. All definitions in this section are for non-normative reference only.

#ifndef VIRTQUEUE H
#define VIRTQUEUE_H

/*

*

Lol S S T I S T e N ST T, S SN IS S SN T T S SN T T N

An interface for efficient virtio implementation.

This header is BSD licensed so anyone can use the definitions
to implement compatible drivers/servers.

Copyright 2007, 2009, IBM Corporation
Copyright 2011, Red Hat, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of IBM nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL IBM OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#include <stdint.h>

/*

This marks a buffer as continuing via the next field. */

#define VIRTQ DESC_F_NEXT 1

/*

This marks a buffer as write-only (otherwise read-only). */

#define VIRTQ DESC_F WRITE 2

/*

This means the buffer contains a list of buffer descriptors. */

#define VIRTQ DESC_F_INDIRECT 4

/*
*

*

The device uses this in used->flags to advise the driver: don't kick me
when you add a buffer. It's unreliable, so it's simply an
optimization. */

#define VIRTQ USED F NO NOTIFY 1

/* The driver uses this in avail->flags to advise the device: don't
* interrupt me when you consume a buffer. It's unreliable, so it's
* simply an optimization. */

#define VIRTQ AVAIL F NO INTERRUPT 1

/* Support for indirect descriptors */

#define VIRTIO F INDIRECT DESC 28

/* Support for avail event and used event fields */

#define VIRTIO F EVENT IDX 29

virtio-v1.2-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 231 of 284



https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/listings/virtio_queue.h
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/listings/virtio_queue.h

/* Arbitrary descriptor layouts. */
#define VIRTIO F ANY LAYOUT 27

/* Virtqueue descriptors: 16 bytes.

* These can chain together via "next". */

struct virtqg desc {
/* Address (guest-physical). */
le64 addr;
/* Length. */
le32 len;
/* The flags as indicated above. */
lel6 flags;
/* We chain unused descriptors via this, too */
lel6 next;

bi

struct virtqg avail {

lel6 flags;

lel6 idx;

lel6 ringl[]:;

/* Only if VIRTIO F EVENT IDX: lel6 used event; */
bi

/* le32 is used here for ids for padding reasons. */
struct virtg used elem ({
/* Index of start of used descriptor chain. */
le32 id;
/* Total length of the descriptor chain which was written to. */
le32 len;
bi

struct virtqg used {

lel6 flags;

lel6 idx;

struct virtg used elem ring[];

/* Only if VIRTIO F EVENT IDX: lel6 avail event; */
bi

struct virtqg {
unsigned int num;

struct virtqg desc *desc;
struct virtqg avail *avail;
struct virtqg used *used;

bi

static inline int virtg need event (uintlé t event idx, uintl6 t new_idx, uintlé_t old idx)
{
return (uintl6 t) (new idx - event idx - 1) < (uintl6 t) (new idx - old idx);

}

/* Get location of event indices (only with VIRTIO F _EVENT IDX) */

static inline lel6 *virtqg used event (struct virtqg *vq)

{
/* For backwards compat, used event index is at *end* of avail ring. */
return &vg->avail->ring[vg->num];

static inline lel6 *virtqg avail event (struct virtg *vq)

/* For backwards compat, avail event index is at *end* of used ring. */
return (lel6 *)s&vg->used->ring[vg->num];

}

#endif /* VIRTQUEUE_H */

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 232 of 284




Appendix B. Creating New Device Types

Various considerations are necessary when creating a new device type.

B.1 How Many Virtqueues?

It is possible that a very simple device will operate entirely through its device configuration space, but most
will need at least one virtqueue in which it will place requests. A device with both input and output (eg.
console and network devices described here) need two queues: one which the driver fills with buffers to
receive input, and one which the driver places buffers to transmit output.

B.2 What Device Configuration Space Layout?

Device configuration space should only be used for initialization-time parameters. It is a limited resource
with no synchronization between field written by the driver, so for most uses it is better to use a virtqueue to
update configuration information (the network device does this for filtering, otherwise the table in the config
space could potentially be very large).

Remember that configuration fields over 32 bits wide might not be atomically writable by the driver. There-
fore, no writeable field which triggers an action ought to be wider than 32 bits.

B.3 What Device Number?

Device numbers can be reserved by the OASIS committee: email virtio-dev@lists.oasis-open.org to secure
a unique one.

Meanwhile for experimental drivers, use 65535 and work backwards.

B.4 How many MSI-X vectors? (for PCI)

Using the optional MSI-X capability devices can speed up interrupt processing by removing the need to
read ISR Status register by guest driver (which might be an expensive operation), reducing interrupt sharing
between devices and queues within the device, and handling interrupts from multiple CPUs. However, some
systems impose a limit (which might be as low as 256) on the total number of MSI-X vectors that can be
allocated to all devices. Devices and/or drivers should take this into account, limiting the number of vectors
used unless the device is expected to cause a high volume of interrupts. Devices can control the number of
vectors used by limiting the MSI-X Table Size or not presenting MSI-X capability in PCI configuration space.
Drivers can control this by mapping events to as small number of vectors as possible, or disabling MSI-X
capability altogether.

B.5 Device Improvements
Any change to device configuration space, or new virtqueues, or behavioural changes, should be indicated
by negotiation of a new feature bit. This establishes clarity! and avoids future expansion problems.

Clusters of functionality which are always implemented together can use a single bit, but if one feature
makes sense without the others they should not be gratuitously grouped together to conserve feature bits.

"Even if it does mean documenting design or implementation mistakes!

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 233 of 284



Appendix C. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowl-

edged:

Participants

Alexander Duyck, Intel

Alex Bennée, Linaro

Anton Yakovlev, OpenSynergy
Arseny Krasnov, Kaspersky Lab
Cornelia Huck, Red Hat
David Hildenbrand, Red Hat
David Stevens, Chromium
Dr. David Alan Gilbert, Red Hat
Enrico Granata, Google
Eugenio Pérez, Red Hat
Felipe Franciosi, Nutanix
Gaetan Harter, OpenSynergy
Gerd Hoffmann, Red Hat
Gurchetan Singh, Chromium
Halil Pasic, IBM

Hao Chen, Google

Huang Yang, Intel

Jan Kiszka, Siemens
Jean-Philippe Brucker, Linaro
Jiang Wang, Bytedance

Jie Deng, Intel

Joel Nider, Individual
Johannes Berg, Intel

Junji Wei, Bytedance

Keiichi Watanabe, Chromium
Marcel Holtmann, Individual
Max Gurtovoy, Nvidia
Michael S. Tsirkin, Red Hat
Nikos Dragazis, Arrikto
Pankaj Gupta, Red Hat
Paolo Bonzini, Red Hat
Parav Pandit, Nvidia

Peter Hilber, OpenSynergy
Petre Eftime, Amazon
Philipp Hahn, Univention
Rob Bradford, Intel

Stefan Fritsch, Individual
Stefan Hajnoczi, Red Hat
Stefano Garzarella, Red Hat
Taylor Stark, Microsoft
Tiwei Bie, Intel

Viresh Kumar, Linaro

Vitaly Mireyno, Marvell

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 234 of 284



Xuan Zhuo, Alibaba

Yadong Qi, Intel

Yoni Bettan, Red Hat

Yuri Benditovich, Red Hat / Daynix

The following non-members have provided valuable feedback on this specification and are gratefully acknowledged:

Reviewers

Christophe de Dinechin, Red Hat
Gil Savir, Intel

Ruchika Gupta, Linaro
Arnd Bergmann, Individual
Bing Zhu, Intel

Eduardo Habkost, Red Hat
Eric Auger, Red Hat

Jason Wang, Red Hat
Jens Freimann, Red Hat
Kevin Tian, Intel

Linus Walleij, Linaro

Matti Méll, OpenSynergy
Tomas Winkler, Intel

Yang Huang, Intel

The following individuals have participated in the creation of previous versions of this specification and are
gratefully acknowledged:

Participants

Allen Chia, Oracle

Amit Shah, Red Hat

Amos Kong, Red Hat

Anthony Liguori, IBM

Bruce Rogers, Nevel-SUSE

Bryan Venteicher, NetApp

Chandra Thyamagondlu, Xilinx

Chet Ensign, OASIS

Cornelia Huck, Red Hat

Cunming, Liang, Intel

Damjan, Marion, Cisco

Daniel Kiper, Oracle

Fang Chen, Huawei

Fang You, Huawei

Geoff Brown, Machine-to-Machine-tntetigence-(M2Mb-Corporation-M2Mi
Gerd Hoffmann, Red Hat

Gershon Janssen, Individual Member
Grant Likely, ARM

Haggai Eran, Mellanox

Halil Pasic, IBM

James Bottomley, Parallels IP Holdings GmbH
Jani Kokkonen, Huawei

Jan Kiszka, Siemens AG

Jens Freimann, Red Hat

Jian Zhou, Huawei

Karen Xie, Xilinx

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 235 of 284



Kumar Sanghvi, Xilinx

Lei Gong, Huawei

Lior Narkis, Mellanox

Luiz Capitulino, Red Hat
Marc-André Lureau, Red Hat
Mark Gray, Intel

Michael S. Tsirkin, Red Hat
Mihai Carabas, Oracle
Nishank Trivedi, NetApp
Paolo Bonzini, Red Hat

Paul Mundt, Huawei

Pawel Moll, ARM

Peng Long, Huawei

Piotr Uminski, Intel

Qian Xum, Intel

Richard Sohn, Alcatel-Lucent
Rusty Russell, IBM

Sasha Levin, Oracle

Sergey Tverdyshev, Thales e-Security
Stefan Hajnoczi, Red Hat
Sundar Mohan, Xilinx

Tom Lyon, Samya Systems, Inc.
Victor Kaplansky, Red Hat
Vijay Balakrishna, Oracle

Wei Wang, Intel

Xin Zeng, Intel

The following non-members have provided valuable feedback on previous versions of this specification and
are gratefully acknowledged:

Reviewers

Aaron Conole, Red Hat

Adam Tao, Huawei

Alexander Duyck, Intel

Andreas Pape, ADITG/ESB

Andrew Thornton, Google

Arun Subbarao, LynuxWorks
Baptiste Reynal, Virtual Open Systems
Bharat Bhushan, NXP Semiconductors
Brian Foley, ARM

Chandra Thyamagondlu, Xilinx
Changpeng Liu, Intel

Christian Pinto, Virtual Open Systems
Christoffer Dall, ARM

Christoph Hellwig, Individual

Christian Borntraeger, IBM

Daniel Marcovitch, Mellanox

David Alan Gilbert, Red Hat

David Hildenbrand, Red Hat

David Riddoch, Solarflare

Denis V. Lunev, OpenVZ

Dmitry Fleytman, Red Hat

Don Wallwork, Broadcom

Emily Drea, ARM

Eric Auger, Red Hat

Fam Zheng, Red Hat

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 236 of 284



Gerd-HoffmannFrancesco Fusco, Red Hat
HalitPasieFrank Yang, Google

Gil Savir, Intel

Gonglei (Arei), Huawei

Greg Kurz, IBM

Hannes Reiencke, SUSE

lan Campbell, Docker

[lya Lesokhin, Mellanox

Jacques Durand, Fujutsu

Jakub Jermar, Kernkonzept

Jan Scheurich, Ericsson

Jason Baron, Akamai

Jason Wang, Red Hat
Jean-Philippe Brucker, ARM
Jianfeng Tan, intel

Jonathan Helman, Oracle
Karandeep Chahal, DDN

Kevin Lo, MSI

Kevin Tian, Intel

Kully Dhanoa, Intel

Laura Novich, Red Hat

Ladi Prosek, Red Hat

Lars Ganrot, Napatech

Longpeng (Mike), Huawei

Mario Torrecillas Rodriguez, ARM
Mark Rustad, Intel

Maxime Coquelin, Red Hat
Namhyung Kim, LG

Ola Liljedahl, ARM

Pankaj Gupta, Red Hat

Patrick Durusau, Fechnicat-Advisery-Board OASIS
Pierre Pfister, Cisco

Pranavkumar Sawargaonkar, Linaro
Rauchfuss Holm, Huawei

Rob Miller, Broadcom

Roman Kiryanov, Google

Robin Cover, OASIS

Roger S Chien, Intel

Sameeh Jubran, Red Hat / Daynix
Si-Wei Liu, Oracle

Sridhar Samudrala, Intel

Stefan Fritsch, Individual

Stefano Garzarella, Red Hat
Steven Luong, Cisco

Thomas Huth, Red Hat

Tiwei Bie, Intel

Tomas Golembiovsky, Red Hat
Venu Busireddy, Oracle

Victor Kaplansky, Red Hat
Vijayabhaskar Balakrishna, Oracle
Vlad Yasevich, Red Hat

Yan Vugenfirer, Red Hat / Daynix
Kevinto-MSHWei Xu, Red Hat

Will Deacon, ARM

Willem de Bruijn, Google
Yuanhan Liu, Intel

Yuri Benditovich, Red Hat / Daynix

virtio-v1.2-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 237 of 284



Zhi Yong Wu, IBM
Zhoujian, Huawei

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 238 of 284



Appendix D. Revision History

The following changes have been made since the previous version of this specification:

Revision

Date

Editor

Changes Made

d519¢224ba69 | 20 Jun 2019 Stefan Hajnoczi

content: reserve virtio device ID for file
system devices

Reserve device ID 26 for virtio-fs devices.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/31

Signed-off-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.

9454b568c29b | 20 Jun 2019 Pankaj Gupta

content: reserve device ID for virtio-pmem
devices

We need a device ID for virtio-pmem de-
vices. As 25 is requested by audio de-
vice and 26 is requested by virtio-fs, so re-
questing next available(27). Also, updated
the previously requested github issue[1] for
voting.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/38

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Pankaj Gupta
<pagupta@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.

efd4028b7aec | 25 Jul 2019 | Dr. David Alan Gilbert | shared memory: Define shared memory
regions

Define the requirements and idea behind
shared memory regions.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/40

Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 2.10.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 239 of 284



https://github.com/oasis-tcs/virtio-spec/issues/31
https://github.com/oasis-tcs/virtio-spec/issues/31
https://github.com/oasis-tcs/virtio-spec/issues/38
https://github.com/oasis-tcs/virtio-spec/issues/38
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40

Revision

Date

Editor

Changes Made

39dfc8afcOb9 25 Jul 2019

Dr. David Alan Gilbert

pci: Define id field

For the virtio-fs device we require multiple
large shared memory

regions. Differentiate these by an ’id’ field
in the base capability.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/40

Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 4.1.4.

8100dcfcd622 | 25 Jul 2019

Dr. David Alan Gilbert

pci: Define virtio_pci_cap64

Define ’virtio_pci_cap64’ to allow capabil-
ities to describe memory regions larger
than, or with an offset larger than 4GiB.
This will be used by the shared memory re-
gion capability.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/40

Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 4.1.4.

855ad7af2bd6 | 25 Jul 2019

Dr. David Alan Gilbert

shared memory: Define PCI capability
Define the PCI capability used for enumer-
ating shared memory regions.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/40

Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
See 4.14.7.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 240 of 284


https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40

Revision

Date

Editor

Changes Made

2dd2d468f69b | 25 Jul 2019

Dr. David Alan Gilbert

shared memory: Define mmio registers
Define an MMIO interface to discover and
map shared memory regions.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/40

Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 4.2.2.

4237d22cd5b1 | 08 Sep 2019 Nikos Dragazis content: fix typo
Signed-off-by: Nikos Dragazis
<ndragazis@arrikto.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
See 4.1.4.

1571d741f300 | 08 Sep 2019

Dr. David Alan Gilbert

shared memory: Typo fix

Fix double hex in SHM*High defs.
Signed-off-by: Dr. David Alan Gilbert <dg-
ilbert@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

See 4.2.2.

7a25d74962d3 | 08 Sep 2019 Tiwei Bie content: fix typo in feature bit name
Signed-off-by: Tiwei Bie <ti-
wei.bie@intel.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Fixes: https://github.com/oasis-tcs/

virtio-spec/issues/46

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

See 5.1.6.5.3.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 241 of 284



https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/40
https://github.com/oasis-tcs/virtio-spec/issues/46
https://github.com/oasis-tcs/virtio-spec/issues/46

Revision

Date

Editor

Changes Made

6aecd69eb90b | 08 Sep 2019

Tiwei Bie

content: explicitly document the VLAN fil-
tering as best-effort

Similar to the MAC address based filtering,
the VLAN filtering is also best-effort in im-
plementations, but it's not quite clear in the
spec. So document this behaviour explic-
itly to reflect the way implementations be-
have.

Signed-off-by: Tiwei Bie <ti-
wei.bie@intel.com>

Acked-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/47

See 5.1.6.5.3.

29540779e4fd | 25 Sep 2019

Stefan Hajnoczi

content: add virtio file system device

The virtio file system device transports
Linux FUSE requests between a FUSE
daemon running on the host and the FUSE
driver inside the guest.

The actual FUSE request definitions are
not duplicated in the virtio specification,
similar to how virtio-scsi does not doc-
ument SCSI command details. FUSE
request definitions are available here:
https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/tree/include/uapi/linux/
fuse.h

This patch documents the core virtio file
system device, which is functional but lacks
the DAX feature introduced in the next
patch.

Signed-off-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/49
See 5.11.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 242 of 284


https://github.com/oasis-tcs/virtio-spec/issues/47
https://github.com/oasis-tcs/virtio-spec/issues/47
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fuse.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fuse.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fuse.h
https://github.com/oasis-tcs/virtio-spec/issues/49
https://github.com/oasis-tcs/virtio-spec/issues/49

Revision Date Editor Changes Made

ef5a7f405b95 | 25 Sep 2019 Stefan Hajnoczi virtio-fs: add DAX window
Describe how shared memory region ID 0
is the DAX window and how FUSE_SE-
TUPMAPPING maps file ranges into the
window.
Signed-off-by: ~ Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/49
See 5.11.6.4, and 5.11.6.5.

1e30753d53d2 | 12 Oct 2019 Jan Kiszka Fix A= in example code
Trying to escaping * here only leaves the
backslash in the output.
Signed-off-by: Jan Kiszka
<jan.kiszka@siemens.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 2.8.21.3, and 2.8.22.

f9bed5bcbh25e | 12 Oct 2019 Jan Kiszka Lift "Driver Notifications” to section level
Currently, it slips under the Packed
Virtqueues section while it is not specific to
this format.
At this chance, capitalize "Notifications”.
Signed-off-by: Jan Kiszka
<jan.kiszka@siemens.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 2.9.

8f2c4e03eae8 | 27 Oct 2019 Eugenio Pérez block: Add multiqueue
The spec miss that field. Add the field,
some description around.
I've followed the network device’s multi-
queue mentions, and copied / adapted
when needed.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/50
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Eugenio Pérez
<eperezma@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.2, 5.2.2, 523, 524, 52,5, and
5.2.6.

f1f2f85c1482 27 Oct 2019 Jan Kiszka Console Device: Add a missing word
Signed-off-by: Jan Kiszka
<jan.kiszka@siemens.com>
See 5.3.6.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 243 of 284


https://github.com/oasis-tcs/virtio-spec/issues/49
https://github.com/oasis-tcs/virtio-spec/issues/49
https://github.com/oasis-tcs/virtio-spec/issues/50
https://github.com/oasis-tcs/virtio-spec/issues/50

Revision

Date

Editor

Changes Made

da17c7fc4e12 | 27 Oct 2019

Paolo Bonzini

virtio_pci_common_cfg: fix field name
The field is named config_msix_vector in
the rest of the document, use the same
name in the struct.

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Fixes: https://github.com/oasis-tcs/

virtio-spec/issues/41

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

See 4.1.4.3.

f459b9e0eab0 | 27 Oct 2019

Eugenio Pérez

virtio-blk: typo: Capitalization in Device Ini-
tialization item

Signed-off-by: Eugenio Pérez
<eperezma@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Fixes: https://github.com/oasis-tcs/

virtio-spec/issues/51

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

See 5.2.5.

30d8e1ad22f7 | 27 Oct 2019

Philipp Hahn

Balloon: Fix Memory Statistics structure
size
5.5.6.3 Memory Statistics: 6 -> 10 byte
> Within the buffer, statistics are an array of
6-byte entries.
A

> Each statistic consists of a 16 bit tag and
a 64 bit value.

> struct virtio_balloon_stat .

> le16 tag;

> |e64 val;

>} _ attribute__((packed));

If my calculation is right that is a (16 + 64) =
80 bits which is a 10-byte sized entry - not
6-byte.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/45

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.5.6.3.

acfe7bd5bcbe | 27 Oct 2019

Michael S. Tsirkin

README.md: document the minor
cleanups standing rule

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 244 of 284



https://github.com/oasis-tcs/virtio-spec/issues/41
https://github.com/oasis-tcs/virtio-spec/issues/41
https://github.com/oasis-tcs/virtio-spec/issues/51
https://github.com/oasis-tcs/virtio-spec/issues/51
https://github.com/oasis-tcs/virtio-spec/issues/45
https://github.com/oasis-tcs/virtio-spec/issues/45

Revision

Date

Editor

Changes Made

a610121f250b | 24 Nov 2019

Jan Kiszka

virtio-mmio: Rename remaining
QueueAvail/Used references
These have been changed in
ae98c6bc21bc. Convert the rest.

Signed-off-by: Jan Kiszka
<jan.kiszka@siemens.com>
Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/52
See 4.2.2.

4be5d38ad692 | 24 Nov 2019 Stefan Fritsch Fix typo

It's balloon, not ballon.

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Stefan Fritsch
<sf@sfritsch.de>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.5.2.

3109be870170 | 24 Nov 2019

Paolo Bonzini

Reserve id for virtio-audio device

Project ACRN has a virtio-audio device.
Unfortunately, the id they are using is al-
ready reserved in the virtio specification,
but it is nevertheless useful to have one.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/42

Signed-off-by: Paolo Bonzini
<pbonzini@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.

4f1981a1ff46 | 24 Nov 2019

Vitaly Mireyno

virtio-net: Add support for correct hdr_len
field.

Includes device implementation note for
using hdr_len

Signed-off-by: Vitaly Mireyno
<vmireyno@marvell.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/57

See 5.1.3, and 5.1.6.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 245 of 284



https://github.com/oasis-tcs/virtio-spec/issues/52
https://github.com/oasis-tcs/virtio-spec/issues/52
https://github.com/oasis-tcs/virtio-spec/issues/42
https://github.com/oasis-tcs/virtio-spec/issues/42
https://github.com/oasis-tcs/virtio-spec/issues/57
https://github.com/oasis-tcs/virtio-spec/issues/57

Revision Date Editor Changes Made

2c77526beb13 | 24 Nov 2019 Cornelia Huck virtio-net: add missing articles for new
hdr_len feature
And tweak a sentence slightly.
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>
See 5.1.6.2.

8cbacac22a99 | 27 Nov 2019 Huang Yang Add virtio rpmb device specification
Add virtio RPMB (Replay Protected Mem-
ory Block) device documentation to spec.
Signed-off-by: Yang Huang
<yang.huang@intel.com>
Reviewed-by: Bing Zhu
<bing.zhu@intel.com>
Reviewed-by: Tomas Winkler
<tomas.winkler@intel.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/53
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.12.

e8ba780bd7ab | 27 Nov 2019 Huang Yang Reserve device id 28 for virtio RPMB de-
vice
Signed-off-by: Huang Yang
<yang.huang@intel.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/58
See 5.

356aeeb40d7a | 20 Jan 2020 Michael S. Tsirkin content: add vendor specific cfg type
Vendors might want to add their own ca-
pability in the PCI capability list. However,
Virtio already uses the vendor specific ca-
pability ID (0x09) for its own purposes.
Provide a structure for vendor specific ex-
tensions.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/62
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 4.1.4,and 4.1.4.8.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 246 of 284


https://github.com/oasis-tcs/virtio-spec/issues/53
https://github.com/oasis-tcs/virtio-spec/issues/53
https://github.com/oasis-tcs/virtio-spec/issues/58
https://github.com/oasis-tcs/virtio-spec/issues/58
https://github.com/oasis-tcs/virtio-spec/issues/62
https://github.com/oasis-tcs/virtio-spec/issues/62

Revision Date Editor Changes Made

50049af040d4 | 20 Jan 2020 Michael S. Tsirkin virtio_pci_cap64: bar/BAR cleanups
When we mean PCI register we should say
BAR. When we mean a virtio config register
we should say \field{cap.bar}.
Finally, offset_hi/length_hi are not within
the cap structure.
Tweak wording slightly: "A,B,C” are fields,
there’s no need to say that.
Reported-by:  Christophe de Dinechin
<cdupontd@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
See 4.1.4,and 4.1.4.7.

b6e992c7af88 | 20 Jan 2020 Yuri Benditovich virtio-net: define support for receive-side
scaling
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/48  Added  support
for RSS receive steering mode.
Signed-off-by: Yuri Benditovich
<yuri.benditovich@daynix.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.1.2, 513, 5.1.31, 514, and
5.1.6.5.

8361dd6eb0f4 | 20 Jan 2020 Michael S. Tsirkin virtio-net: receive-side scaling
Typo/grammar fixes as suggested by Cor-
nelia (and a couple noticed by myself).
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.1.4, and 5.1.6.5.

1efcda892193 | 20 Jan 2020 Michael S. Tsirkin virtio-net: missing ”.” for feature descrip-
tions
At end of each sentence, for consistency.
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.1.3.

652237e€a2839 | 20 Jan 2020 | Jean-Philippe Brucker | Add virtio-iommu device specification
The IOMMU device allows a guest to man-
age DMA mappings for physical, emulated
and paravirtualized endpoints. Add device
description for the virtio-iommu device and
driver. Introduce PROBE, ATTACH, DE-
TACH, MAP and UNMAP requests, as well
as translation error reporting.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/37
Signed-off-by: Jean-Philippe Brucker
<jean-philippe.brucker@arm.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.13.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 247 of 284


https://github.com/oasis-tcs/virtio-spec/issues/48
https://github.com/oasis-tcs/virtio-spec/issues/48
https://github.com/oasis-tcs/virtio-spec/issues/37
https://github.com/oasis-tcs/virtio-spec/issues/37

Revision

Date

Editor

Changes Made

6914d2df75ec | 28 Jan 2020

Keiichi Watanabe

content: Reserve device ID for video en-
coder and decoder device

Reserve device ID 30 for video encoder de-
vice and 31 for video decoder device.
Signed-off-by:  Keiichi Watanabe <kei-
ichiw@chromium.org>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Acked-by: Gerd Hoffmann
<kraxel@redhat.com>

See 5.

d7e91b5469fb | 28 Jan 2020

Michael S. Tsirkin

virtio-rng: fix device/driver confusion

The point of rng is to give data to driver
so of course all buffers are driver readable.
What shouldn’t be there is device readable
buffers - this matches our terminology else-
where too (read/write-ability is from POV of

device).

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/55

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by: Pankaj Gupta
<pagupta@redhat.com>

See 5.4.6.

da60923ce164 | 28 Jan 2020

Michael S. Tsirkin

content: document speed, duplex
Document as used by Linux.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/59
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.1.3, and 5.1.4.

61124330bf1c | 27 Feb 2020

Gerd Hoffmann

virtio-gpu: add 3d command overview
Add 3d commands to the command enu-
meration. Add a section with a very short
overview.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/65
Signed-off-by: Gerd Hoffmann

<kraxel@redhat.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.7.6.7, and 5.7.6.8.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 248 of 284



https://github.com/oasis-tcs/virtio-spec/issues/55
https://github.com/oasis-tcs/virtio-spec/issues/55
https://github.com/oasis-tcs/virtio-spec/issues/59
https://github.com/oasis-tcs/virtio-spec/issues/59
https://github.com/oasis-tcs/virtio-spec/issues/65
https://github.com/oasis-tcs/virtio-spec/issues/65

Revision

Date

Editor

Changes Made

0c0dd715152c | 27 Feb 2020

Gerd Hoffmann

virtio-gpu: some edid clarifications
Add some notes about fetching the EDID
information.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/64

Signed-off-by: Gerd Hoffmann
<kraxel@redhat.com>

Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>
See 5.7.4,and 5.7.5.

f42cc75d0725 | 01 Mar 2020

Michael S. Tsirkin

virtio-net/rss: maximal -> maximum

Maximal can mean "local as opposed to a
global maximum”. Rest of the spec says
maximum everywhere. Let’s be consistent.

Cc: Yuri Benditovich
<yuri.benditovich@daynix.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.1.4.

089bc5911dea | 04 May 2020

Jean-Philippe Brucker

virtio-iommu: Remove invalid requirement
about padding

This reference to ’padding’ is a leftover
from a previous draft of the virtio-iommu de-
vice. The field doesn’t exist anymore, re-
move the requirement.

Signed-off-by: Jean-Philippe Brucker
<jean-philippe@linaro.org>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.13.4.

e73c8cdf3e82 | 01 Sep 2020

Anton Yakovlev

virtio-snd: add virtio sound device specifi-
cation

This patch proposes virtio specification for
a new virtio sound device, that may be use-
ful in case when having audio is required
but a device passthrough or emulation is
not an option.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/54

Signed-off-by: Anton Yakovlev <an-
ton.yakovlev@opensynergy.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.1.4.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 249 of 284


https://github.com/oasis-tcs/virtio-spec/issues/64
https://github.com/oasis-tcs/virtio-spec/issues/64
https://github.com/oasis-tcs/virtio-spec/issues/54
https://github.com/oasis-tcs/virtio-spec/issues/54

Revision

Date

Editor

Changes Made

3f27648d9c66

01 Sep 2020

Jan Kiszka

split-ring: Demand that a device must not
change descriptor entries

So far the spec only indirectly says that a
descriptor table entry is not modified by a
device when processing it. Make this ex-
plicit by adding it as normative requirement.
Existing drivers already depend on this.
See also https://lists.oasis-open.org/
archives/virtio-dev/201910/msg00057.
html.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/56

Signed-off-by: Jan Kiszka
<jan.kiszka@siemens.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 2.7.5.

3353ed1c255a

01 Sep 2020

Yuri Benditovich

virtio-net: Define per-packet hash report-
ing feature

Define respective feature bit for virtio-net.
Extend packet layout to populate hash
value and type. Move the definition of
IP/TCP/UDP header fields to calculate the
hash out of RSS section to common net-
work device section.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/66

Signed-off-by: Yuri Benditovich
<yuri.benditovich@daynix.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.1.3, 514, 516, 5164, and
5.1.6.5.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 250 of 284



https://lists.oasis-open.org/archives/virtio-dev/201910/msg00057.html.
https://lists.oasis-open.org/archives/virtio-dev/201910/msg00057.html.
https://lists.oasis-open.org/archives/virtio-dev/201910/msg00057.html.
https://github.com/oasis-tcs/virtio-spec/issues/56
https://github.com/oasis-tcs/virtio-spec/issues/56
https://github.com/oasis-tcs/virtio-spec/issues/66
https://github.com/oasis-tcs/virtio-spec/issues/66

Revision

Date

Editor

Changes Made

51cad55ea64d | 01 Sep 2020

Johannes Berg

reserve device ID for hwsim wireless sim-
ulation

The Linux mac80211-hwsim module cur-
rently allows simulation of multiple wire-
less radios on a shared medium, and has
an existing API for this to work through a
userspace implementation of the medium
simulation (e.g. implemented by wmedi-
umd).

In order to simplify working with virtual ma-
chines and to enable (time-compressed)
simulation use cases, allocate a virtio de-
vice ID to allow carrying this protocol over
virtio in addition to the current netlink sock-
ets.

Since device ID 28 was previously re-
quested, use 29.

Signed-off-by: Johannes Berg <jo-
hannes.berg@intel.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/68

See 5.

832099d5df8c | 01 Sep 2020

Vitaly Mireyno

virtio-net: Fix VIRTIO_NET_F_GUEST -
HDRLEN feature definition.

Fix driver and device requirements with
regards to the VIRTIO_NET_F_GUEST _-
HDRLEN feature - 'hdr_len’ must be accu-
rate only for TSO/UFO packets.

Signed-off-by: Vitaly Mireyno
<vmireyno@marvell.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/72
See 5.1.6.2.

5d9444d699e5 | 01 Sep 2020 Peter Hilber Reserve device ID 32 for SCMI device
Signed-off-by: Peter Hilber <pe-
ter.hilber@opensynergy.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Fixes: https://github.com/oasis-tcs/

virtio-spec/issues/74

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

See 5.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 251 of 284



https://github.com/oasis-tcs/virtio-spec/issues/68
https://github.com/oasis-tcs/virtio-spec/issues/68
https://github.com/oasis-tcs/virtio-spec/issues/72
https://github.com/oasis-tcs/virtio-spec/issues/72
https://github.com/oasis-tcs/virtio-spec/issues/74
https://github.com/oasis-tcs/virtio-spec/issues/74

Revision Date Editor Changes Made

68f66ff7ra3d9 | 01 Sep 2020 David Stevens content: define what an exported object is
Define a mechanism for sharing objects be-
tween different virtio devices.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/76
Signed-off-by: David Stevens
<stevensd@chromium.org>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 2.11.

162578b7e26¢c | 01 Sep 2020 David Stevens virtio-gpu: add the ability to export re-

sources

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/76

Signed-off-by: David Stevens
<stevensd@chromium.org>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

See 5.7.3,5.7.6.7, and 5.7.6.8.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 252 of 284



https://github.com/oasis-tcs/virtio-spec/issues/76
https://github.com/oasis-tcs/virtio-spec/issues/76
https://github.com/oasis-tcs/virtio-spec/issues/76
https://github.com/oasis-tcs/virtio-spec/issues/76

Revision

Date

Editor

Changes Made

12d74846a6ee | 01 Sep 2020

Petre Eftime

content: Reserve virtio-nsm device ID
The NitroSecureModule is a device with a
very stripped down Trusted Platform Mod-
ule functionality, which is used in the con-
text of a Nitro Enclave (see https://lkml.org/
IkmI/2020/4/21/1020) to provide boot time
measurement and attestation.

Since this device provides some critical
cryptographic operations, there are a se-
ries of operations which are required to
have guarantees of atomicity, ordering and
consistency: operations fully succeed or
fully fail, including when some external
events might interfere in the process: live
migration, crashes, etc; any failure in the
critical section requires termination of the
enclave it is attached to, so the device
needs to be as resilient as possible, sim-
plicity is strongly desired.

To account for that, the device and driver
are made to have very few error cases in
the critical path and the operations them-
selves can be rolled back and retried if
events happen outside the critical area,
while processing a request. The driver it-
self can be made very simple and thus is
easily portable.

Since the requests can be handled directly
in the virtio queue, serving most requests
requires no additional buffering or memory
allocations on the host side.

Signed-off-by: Petre Eftime <epe-
tre@amazon.com>

Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/81
See 5.

7a46ee550d70 | 01 Sep 2020

David Hildenbrand

conformance: make driver conformance
list easier to read and maintain

Let's define it just like the device confor-
mance list.

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: David  Hildenbrand
<david@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 7.1.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 253 of 284


https://lkml.org/lkml/2020/4/21/1020)
https://lkml.org/lkml/2020/4/21/1020)
https://github.com/oasis-tcs/virtio-spec/issues/81
https://github.com/oasis-tcs/virtio-spec/issues/81

Revision

Date

Editor

Changes Made

9abf00ff4654 | 01 Sep 2020

David Hildenbrand

conformance: Reference RPMB Driver
Conformance

We forgot to reference the driver confor-
mance.

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Cc: Yang Huang
<yang.huang@intel.com>

Signed-off-by: David  Hildenbrand

<david@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by: Alex Bennée
<alex.bennee@linaro.org>
See 7.1.

afob93bfd9a0 | 01 Sep 2020

David Hildenbrand

Add virtio-mem device specification

The virtio memory device provides and
manages a memory region in guest physi-
cal address space. This memory region is
partitioned into memory blocks of fixed size
that can either be in the state plugged or
unplugged.

Specify the device configuration, initializa-
tion, and operation. Introduce PLUG, UN-
PLUG, UNPLUG ALL and STATE requests.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/82
Cc: teawater <teawa-
terz@linux.alibaba.com>
Signed-off-by: David  Hildenbrand
<david@redhat.com>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
See 5.15.

28ea45d8d79f | 11 Nov 2020 Jie Deng content: Reserve device ID 34 for 12C
adapter
Request the ID 34 for I12C adapter.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/85
Signed-off-by: Jie Deng

<jie.deng@intel.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 254 of 284



https://github.com/oasis-tcs/virtio-spec/issues/82
https://github.com/oasis-tcs/virtio-spec/issues/82
https://github.com/oasis-tcs/virtio-spec/issues/85
https://github.com/oasis-tcs/virtio-spec/issues/85

Revision

Date

Editor

Changes Made

d44895cdadcO0 | 11 Nov 2020

Rob Bradford

content: Reserve virtio-watchog device ID
Reserve an ID for a watchdog device which
may be used to ensure that the guest is re-
sponsive. This is equivalent of a hardware
watchdog device and will trigger the reboot
of the guest if the the host does not periodic
ping from the the guest.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/87
Signed-off-by: Rob Bradford

<robert.bradford@intel.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.

38448268ebal | 11 Nov 2020

Alexander Duyck

content: Document balloon feature free
page hints

Free page hints allow the balloon driver to
provide information on what pages are not
currently in use so that we can avoid the
cost of copying them in migration scenar-
ios. Add a feature description for free page
hints describing basic functioning and re-
quirements.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/84
Acked-by: Cornelia  Huck  <co-
huck@redhat.com>
Reviewed-by: David  Hildenbrand

<david@redhat.com>

Signed-off-by: Alexander Duyck <alexan-
der.h.duyck@linux.intel.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.5.2,5.5.3,5.5.4,5.5.5, and 5.5.6.5.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 255 of 284



https://github.com/oasis-tcs/virtio-spec/issues/87
https://github.com/oasis-tcs/virtio-spec/issues/87
https://github.com/oasis-tcs/virtio-spec/issues/84
https://github.com/oasis-tcs/virtio-spec/issues/84

Revision

Date

Editor

Changes Made

4749f03e72f8 | 11 Nov 2020

Alexander Duyck

content: Document balloon feature page
poison

Page poison provides a way for the guest
to notify the host that it is initializing or poi-
soning freed pages with some specific poi-
son value. As a result of this we can infer
a couple traits about the guest:

1. Free pages will contain a specific pattern
within the guest. 2. Modifying free pages
from this value may cause an error in the
guest. 3. Pages will be immediately written
to by the driver when deflated.

There are currently no existing features that
make use of this data. In the upcoming
feature free page reporting we will need to
make use of this to identify if we can evict
pages from the guest without causing data
corruption.

Add documentation for the page poison
feature describing the basic functionality
and requirements.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/84

Reviewed-by: Cornelia Huck <co-
huck@redhat.com>

Reviewed-by: David  Hildenbrand
<david@redhat.com>

Signed-off-by: Alexander Duyck <alexan-
der.h.duyck@linux.intel.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.5.3,5.5.4,5.5.5, and 5.5.6.6.

d917d4a8d552 | 11 Nov 2020

Alexander Duyck

content: Document balloon feature free
page reporting
Free page reporting is a feature that al-
lows the guest to proactively report unused
pages to the host. By making use of this
feature is is possible to reduce the over-
all memory footprint of the guest in cases
where some significant portion of the mem-
ory is idle. Add documentation for the free
page reporting feature describing the func-
tionality and requirements.

Fixes: https://github.com/oasis-tcs/
virtio-specl/issues/84
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Reviewed-by: David  Hildenbrand

<david@redhat.com>

Signed-off-by: Alexander Duyck <alexan-
der.h.duyck@linux.intel.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 552, 553, 555, 556.6, and
5.5.6.7.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 256 of 284



https://github.com/oasis-tcs/virtio-spec/issues/84
https://github.com/oasis-tcs/virtio-spec/issues/84
https://github.com/oasis-tcs/virtio-spec/issues/84
https://github.com/oasis-tcs/virtio-spec/issues/84

Revision

Date

Editor

Changes Made

9164d35e4b2a | 13 Nov 2020

Alexander Duyck

content: Minor change to clarify free_-
page_hint_cmd_id
The original wording was a bit unclear
and could have been misinterpreted as in-
dicating that VIRTIO_BALLOON_FREE_-
PAGE_HINT was read-only instead of the
field free_page_ hint_cmd_id. To clarify
that break it up into two sentences making
it clear that the field is only available if the
feature is negotiated, and that the field is

read-only.
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Alexander Duyck <alexan-
der.h.duyck@linux.intel.com>

Acked-by: Michael S. Tsirkin
<mst@redhat.com>

[CH: included under the minor cleanup rule]
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.5.4.

b342d29aafof | 19 Nov 2020

Stefan Hajnoczi

virtio-blk:  document VIRTIO BLK T -
GET_ID
The VIRTIO_BLK _T_GET _ID request type
was implemented in Linux and QEMU in
2010. It does not have a feature bit but
devices respond with VIRTIO_BLK_S_UN-
SUPP if a request type is unimplemented.
This patch documents the VIRTIO BLK -
T_GET_ID request type as currently imple-
mented in Linux and QEMU.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/63
Suggested-by: Jan Kiszka

<jan.kiszka@siemens.com>
Signed-off-by: ~ Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.2.6.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 257 of 284



https://github.com/oasis-tcs/virtio-spec/issues/63
https://github.com/oasis-tcs/virtio-spec/issues/63

Revision

Date

Editor

Changes Made

89e7eb5b9a76

19 Nov 2020

Gurchetan Singh

virtio-gpu: add resource create blob

Blob resources are size-based containers
for host, guest, or host+guest allocations.
These resources are designed with mulit-
process 3D support in mind, but also us-
able in virtio-gpu 2d with guest memory.
Many hypercalls are reused, since a image
view into the blob resource is possible.
Blob resources are both forward and back-
ward looking.

v2: Add TRANSFER_BLOB, SET -
SCANOUT_BLOB, SCANOUT_FLUSH
v3: Remove SCANOUT_FLUSH and add
notes v4: Remove TRANSFER BLOB
for now. v5: clarify interactions with
ATTACH_BACKING / DETACH_BACK-
ING. This is to preserve the possibility of
guest swap-in and guest swap-out, while
acknowledging this feature may never be
implemented and may not be applicable
for all future planned values of ‘blob_mem’
or context types.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/86

Signed-off-by: Gurchetan Singh
<gurchetansingh@chromium.org>
Acked-by: Chia-I Wu
<olvaffe@gmail.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.7.3, and 5.7.6.8.

87fabb5d8155

19 Nov 2020

Gurchetan Singh

virtio-gpu: add support for mapping/un-
mapping blob resources
This defines a virtgpu shared memory re-
gion, with the possibilty of more in the fu-
ture. This is required to implement VK/GL
coherent memory semantics, among other
things.
v6: disallow mapping an already mapped
blob resource as a simplification

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/86

Signed-off-by: Gurchetan Singh
<gurchetansingh@chromium.org>
Acked-by: Gerd Hoffmann
<kraxel@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.7.4,and 5.7.6.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 258 of 284



https://github.com/oasis-tcs/virtio-spec/issues/86
https://github.com/oasis-tcs/virtio-spec/issues/86
https://github.com/oasis-tcs/virtio-spec/issues/86
https://github.com/oasis-tcs/virtio-spec/issues/86

Revision

Date

Editor

Changes Made

2ff0d5c68af2 | 03 Dec 2020

Vitaly Mireyno

virtio-net: Add support for the flexible
driver notification structure.
When the driver is required to send an
available buffer notification to the device, it
sends the virtqueue number to be notified.
With this new feature, the device can op-
tionally provide a per-virtqueue value for
the driver to use in driver notifications, in-
stead of the virtqueue number.
Some devices may benefit from this flexi-
bility by providing, for example, an internal
virtqueue identifier, or an internal offset re-
lated to the virtqueue number.
Changes from v8: * Incorporated com-
ments for v8: - moved the feature from a
network device to a global section - few mi-
nor changes

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/89
Signed-off-by: Vitaly Mireyno

<vmireyno@marvell.com>
[CH: wrapped overlong lines in commit

message]
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.1.4.3,4.1.5.2, and 6.

bccdda7fb41a | 15 Dec 2020

Michael S. Tsirkin

typo: VIRTIO_NET_F_MAC_ADDR ->
VIRTIO_NET_F_MAC
VIRTIO_NET_F_MAC_ADDR isn't de-
fined. It's clear from context that what
is meant is VIRTIO_NET_F_MAC which
controls whether mac in config space is
valid.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/90
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.1.6.5.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 259 of 284



https://github.com/oasis-tcs/virtio-spec/issues/89
https://github.com/oasis-tcs/virtio-spec/issues/89
https://github.com/oasis-tcs/virtio-spec/issues/90
https://github.com/oasis-tcs/virtio-spec/issues/90

Revision

Date

Editor

Changes Made

87de7136382e | 15 Dec 2020

David Hildenbrand

virtio-mem: minor clarification regarding
read-access to unplugged blocks

Let's clarify that we don’t expect all DMA
to work with unplugged blocks. We really
only give guarantees when reading from
unplugged memory blocks via the CPU,
e.g., as done by Linux when creating a sys-
tem dump via kdump: the new kernel will
copy the content of the old (crashed) ker-
nel via the CPU to user space, from where it
will find its final destination inside the dump
file. Note that dumping via makedumpfile
under Linux will avoid reading unplugged
blocks completely.

This is a preparation for device
passthrough to VMs, whereby such
dedicated devices might not be able to
read from unplugged memory blocks.
Let's document that this scenario is possi-
ble, and why this handling is in place at all.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/91

Cc: teawater <teawa-
terz@linux.alibaba.com>

Cc: Marek Kedzierski

<mkedzier@redhat.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Cornelia Huck <cohuck@redhat.com>

Acked-by: Cornelia  Huck  <co-
huck@redhat.com>
Signed-off-by: David  Hildenbrand

<david@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.15.6.

fr25281ebba7 | 25 Jan 2021

Jie Deng

virtio-i2c: add the device specification
virtio-i2c is a virtual 12C adapter device.
It provides a way to flexibly communicate
with the host 12C slave devices from the
guest.

This patch adds the specification for this
device.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/88
Signed-off-by: Jie Deng

<jie.deng@intel.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.15.6.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 260 of 284



https://github.com/oasis-tcs/virtio-spec/issues/91
https://github.com/oasis-tcs/virtio-spec/issues/91
https://github.com/oasis-tcs/virtio-spec/issues/88
https://github.com/oasis-tcs/virtio-spec/issues/88

Revision

Date

Editor

Changes Made

6ee5e4b54c8e | 26 Jan 2021

Felipe Franciosi

content: Fix driver/device wording on ISR
bits

Section "ISR status capability” incorrectly
worded that the bits part of the register al-
lows the device to distinguish between in-
terrupt types. It is the driver that needs ac-
cess to that distinction, not the device.
Signed-off-by: Felipe Franciosi <fe-
lipe@nutanix.com>

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.1.4.5.

a17c29e2201b | 26 Jan 2021

Alex Bennée

virtio-gpu.tex: fix some UTF-8 damage
While building | got a warning about:

I Package utf8x Error: MalformedUTF-
8sequence.

Fixes: 87fa6b5 ("virtio-gpu: add support for
mapping/unmapping blob resources”)
Signed-off-by: Alex Bennée
<alex.bennee@linaro.org>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.7.6.9.

a306bf467850 | 09 Feb 2021

Cornelia Huck

clarify device reset

Properly specify that the method for the
driver to request a device reset is transport
specific, and some action the device has to
take.

Reviewed-by: Jason Wang <ja-
sowang@redhat.com>
Reviewed-by: Halil Pasic <pa-
sic@linux.ibm.com>
Fixes: https://github.com/oasis-tcs/

virtio-spec/issues/93

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 2.1, and 2.4.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 261 of 284



https://github.com/oasis-tcs/virtio-spec/issues/93
https://github.com/oasis-tcs/virtio-spec/issues/93

Revision Date Editor Changes Made

f5fd3fca7e40 10 Feb 2021 Peter Hilber content: reserve device ID 36 for CAN de-
vice
The CAN device sends and receives CAN
(Controller Area Network) messages. CAN
is a communication protocol used in em-
bedded systems.
Signed-off-by: Peter Hilber <pe-
ter.hilber@opensynergy.com>
Reviewed-by: Matti Moll
<matti.moell@opensynergy.com>
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/95
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.

30e6526f4d8e | 25 Feb 2021 Cornelia Huck virtio-ccw: relax device requirement for

revision-specific command rejection

The device is currently required to reject
any command that is not contained in the
negotiated revision. Some implementa-
tions did not actively check for the revision
when processing a command; retroactively
changing these implementations can break
existing drivers.

Relaxing the rejection requirement to
SHOULD makes these existing device
implementations compliant, and will not
have any effect on drivers that did not send
any commands for wrong revisions.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/96
Reviewed-by: Halil Pasic <pa-

sic@linux.ibm.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.3.2.1.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 262 of 284



https://github.com/oasis-tcs/virtio-spec/issues/95
https://github.com/oasis-tcs/virtio-spec/issues/95
https://github.com/oasis-tcs/virtio-spec/issues/96
https://github.com/oasis-tcs/virtio-spec/issues/96

Revision

Date

Editor

Changes Made

5e9a37b9a559 | 30 Mar 2021

Enrico Granata

Add lifetime metrics to virtio-blk

In many embedded systems, virtio-blk im-
plementations are backed by eMMC or
UFS storage devices, which are subject to
predictable and measurable wear over time
due to repeated write cycles.

For such systems, it can be important to
be able to track accurately the amount of
wear imposed on the storage over time and
surface it to applications. In a native de-
ployments this is generally handled by the
physical block device driver but no such
provision is made in virtio-blk to expose
these metrics for devices where it makes
sense to do so.

This patch adds support to virtio-blk for life-
time and wear metrics to be exposed to
the guest when a deployment of virtio-blk is
done over compatible eMMC or UFS stor-

age.
Signed-off-by: Enrico Granata
<egranata@google.com>

Fixes: https://github.org/oasis-tcs/

virtio-spec/issues/97

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.2.3,and 5.2.6.

80b54cfd10a3 | 30 Mar 2021

Peter Hilber

Add virtio SCMI device specification

This patch proposes a new virtio device for
the Arm SCMI protocol.

The device provides a simple transport for
the Arm SCMI protocol[1]. The *S*ystem
*C*ontrol and *M*anagement *I*nterface
protocol allows speaking to system con-
trollers that allow orchestrating things like
power management, system state man-
agement and sensor access. The SCMI
protocol is used on SoCs where multiple
cores and co-processors need access to
these resources.

The virtio transport allows making use of
this protocol in virtualized systems.

[1] https://developer.arm.com/docs/
den0056/c

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/100

Signed-off-by: Peter Hilber <pe-
ter.hilber@opensynergy.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.2.6.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 263 of 284



https://github.org/oasis-tcs/virtio-spec/issues/97
https://github.org/oasis-tcs/virtio-spec/issues/97
https://developer.arm.com/docs/den0056/c
https://developer.arm.com/docs/den0056/c
https://github.com/oasis-tcs/virtio-spec/issues/100
https://github.com/oasis-tcs/virtio-spec/issues/100

Revision Date Editor Changes Made

f144e1847b95 | 06 Apr 2021 Cornelia Huck title: list myself as Chair

Reflect my position in the document as
well.

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See .

2d827b06874d | 14 Apr 2021 Michael S. Tsirkin introduction: document #define syntax
We use the C #define syntax to refer to nu-
meric values. Let’s document that.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/101
Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 1.5.

b19f28ed5076 | 14 Apr 2021 Hao Chen Reserve device id for parameter server
Use device ID 38

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/102

Signed-off-by: Hao Chen <chenhaosjtu-
acm@google.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.

22179bb0875c | 14 Apr 2021 Hao Chen Reserve device id for audio policy device
Use device ID 39

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/103

Signed-off-by: Hao Chen <chenhaosjtu-
acm@google.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.

0711d7f18fa7 | 14 Apr 2021 Cornelia Huck editorial: fix missing escape of '#
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 1.5.

3590a075a5fd | 03 May 2021 Marcel Holtmann Reserve device id for Bluetooth device
Use device ID 40

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/108

Signed-off-by:  Marcel Holtmann <mar-
cel@holtmann.org>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.

virtio-v1.2-csd01 09 May 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 264 of 284


https://github.com/oasis-tcs/virtio-spec/issues/101
https://github.com/oasis-tcs/virtio-spec/issues/101
https://github.com/oasis-tcs/virtio-spec/issues/102
https://github.com/oasis-tcs/virtio-spec/issues/102
https://github.com/oasis-tcs/virtio-spec/issues/103
https://github.com/oasis-tcs/virtio-spec/issues/103
https://github.com/oasis-tcs/virtio-spec/issues/108
https://github.com/oasis-tcs/virtio-spec/issues/108

Revision

Date

Editor

Changes Made

5749014a3d50 | 17 May 2021

Yuri Benditovich

virtio-net: fix mistake: segmentation ->
fragmentation

The VIRTIO_NET_F_HOST_UFO feature
fragments the packet. Only first fragment
has a UDP header.

Signed-off-by: Yuri Benditovich
<yuri.benditovich@daynix.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.1.6.2.

d1471fdf932b | 17 May 2021

Yuri Benditovich

virtio-net: define USO feature

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/104

Unlike UFO (fragmenting the packet) the
USO splits large UDP packet to several
segments when each of these smaller
packets has UDP header. In Linux see
SKB_GSO_UDP_LA4.

Signed-off-by: Yuri Benditovich
<yuri.benditovich@daynix.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.1.3,5.1.5, and 5.1.6.

c6f7149d08a1 | 10 Jun 2021

Joel Nider

Make global flag names consistent

The global flags VIRTIO_F_EVENT_IDX
and VIRTIO_F_INDIRECT_DESC have in-
consistent naming throughout the docu-
ment. This change removes the _RING
designation from the flag names to make
the usage consistent.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/36

Signed-off-by: Joel Nider <joel@nider.org>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 6, 2.8.10, and 2.8.21.3.

a57fb86cdb03 | 10 Jun 2021

Jiang Wang

virtio-net: fix a display for num_buffers
One of num_buffers does not display cor-
rectly in the html. The _b becomes a sub-
script b. This will prevent it from being
searched by using keyword num_buffers.
Fix it by adding a field keyword.
Signed-off-by: Jiang Wang
<jiang.wang@bytedance.com>
Message-ld: <20210601172139.3725854-
1-jiang.wang@bytedance.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.1.6.4.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 265 of 284



https://github.com/oasis-tcs/virtio-spec/issues/104
https://github.com/oasis-tcs/virtio-spec/issues/104
https://github.com/oasis-tcs/virtio-spec/issues/36
https://github.com/oasis-tcs/virtio-spec/issues/36

Revision

Date

Editor

Changes Made

eddd5558447d | 17 Jun 2021

Viresh Kumar

Reserve device id for GPIO device
Use device ID 41

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/109
Signed-off-by: Viresh Kumar

<viresh.kumar@linaro.org>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.

63236177602 | 08 Jul 2021

Stefan Hajnoczi

virtio-fs: add file system device to Confor-
mance chapter

The file system device is not listed in the
Conformance chapter. Fix this.
Signed-off-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 7.1.

3881c6b6fca9 | 08 Jul 2021

Stefan Hajnoczi

virtio-fs: add notification queue

The FUSE protocol allows the file server
(device) to initiate communication with the
client (driver) using FUSE notify messages.
Normally only the client can initiate com-
munication. This feature is used to report
asynchronous events that are not related
to an in-flight request.

This patch adds a notification queue that
works like an rx queue in other VIRTIO de-
vice types. The device can emit FUSE no-
tify messages by using a buffer from this
queue.

This mechanism was designed by Vivek
Goyal <vgoyal@redhat.com>.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/111

Signed-off-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.11.2,5.11.4,5.11.5, and 5.11.6.

eb6efd53afob | 26 Jul 2021

Cornelia Huck

Reserved feature bits: fix missing verb
Reviewed-by: David  Hildenbrand
<david@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 6.

74822ee60ea9 | 27 Jul 2021

Gaetan Harter

content: fix a typo

Signed-off-by: Gaetan Harter <gae-
tan.harter@opensynergy.com>
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.1.6.5.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 266 of 284



https://github.com/oasis-tcs/virtio-spec/issues/109
https://github.com/oasis-tcs/virtio-spec/issues/109
https://github.com/oasis-tcs/virtio-spec/issues/111
https://github.com/oasis-tcs/virtio-spec/issues/111

Revision Date Editor Changes Made

23d3f7a3a7c9 | 27 Jul 2021 Gaetan Harter virtio-gpu: fix a typo
Signed-off-by: Gaetan Harter <gae-
tan.harter@opensynergy.com>
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 5.7.2.

24770969260 | 29 Jul 2021 Gaetan Harter virtio-crypto: fix missing conjunction and
verb
The condition sentences were incomplete:
"guarantee THAT the size IS within the
max_len”.
Signed-off-by: Gaetan Harter <gae-
tan.harter@opensynergy.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.9.5.

1dc3ff82ab18 | 10 Aug 2021 Max Gurtovoy virtio-blk: fix virtqueues accounting
Virtqueue index is zero based, thus
virtqueue (N-1) refers to requestgN.
Signed-off-by:  Max Gurtovoy <mgur-
tovoy@nvidia.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.2.2.

b73b74aacal1 | 16 Aug 2021 Alex Bennée virtio-rpmb: fix the description for multi-

block reads

Previously the text said we fail if block count
is set to 1 despite language elsewhere in
the text referring to:

"For RPMB read request, one virtio buffer
including request command and the sub-
sequent [block count] virtio buffers for re-
sponse data are placed in the queue.”

and the existence of both max_wr_cnt and
max_rd_cnt configuration variables cer-
tainly implying devices should be able to
handle multi-block reads just like writes.
Fix the description as well as format the
steps as an enumerated list to match the
style of the previous section describing
write handling.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/113
Reported-by: Ruchika
<ruchika.gupta@linaro.org>
Signed-off-by: Alex
<alex.bennee@linaro.org>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.12.6.1.

Gupta

Bennée

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 267 of 284



https://github.com/oasis-tcs/virtio-spec/issues/113
https://github.com/oasis-tcs/virtio-spec/issues/113

Revision

Date

Editor

Changes Made

9547f52400c6 | 18 Aug 2021

Viresh Kumar

virtio-gpio: Add the device specification
virtio-gpio is a virtual GPIO controller. It
provides a way to flexibly communicate
with the host GPIO controllers from the
guest.

Note that the current implementation
doesn’t provide atomic APIs for GPIO con-
figurations. i.e. the driver (guest) would
need to implement sleep-able versions
of the APIs as the guest will respond
asynchronously over the virtqueue.

This patch adds the specification for it.
Based on the initial work posted by:
"Enrico  Weigelt, metux IT consult”
<lkml@metux.net>.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/110

Reviewed-by: Arnd Bergmann
<arnd@arndb.de>

Reviewed-by: Linus  Walleij <li-
nus.walleij@linaro.org>

Signed-off-by: Viresh Kumar

<viresh.kumar@linaro.org>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.18.

4b65fb2fr4fa | 17 Sep 2021

Viresh Kumar

virtio-gpio: Specify character encoding for
gpio names

Specify 7-bit ASCII character encoding for
GPIO names strings.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/115

Suggested-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Viresh Kumar
<viresh.kumar@linaro.org>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.18.6.1.

c8338338edaf | 17 Sep 2021

Michael S. Tsirkin

virtio-net: fix speed, duplex

Speed values have an extra "’ - they are
32 bit, not 36 bit. Duplex is implemented
in Linux and QEMU as 0x01 for full duplex
and 0x00 for half duplex.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/75
Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.1.4.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 268 of 284



https://github.com/oasis-tcs/virtio-spec/issues/110
https://github.com/oasis-tcs/virtio-spec/issues/110
https://github.com/oasis-tcs/virtio-spec/issues/115
https://github.com/oasis-tcs/virtio-spec/issues/115
https://github.com/oasis-tcs/virtio-spec/issues/75
https://github.com/oasis-tcs/virtio-spec/issues/75

Revision Date Editor Changes Made

a4bb00171010 | 24 Sep 2021 Gurchetan Singh virtio-gpu: clarify spec regarding capability
sets
Capability sets will be used as a proxy for
the context type, so add more detail regard-
ing their use.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/117
Reviewed-by: Gerd Hoffmann
<kraxel@redhat.com>
Signed-off-by: Gurchetan Singh
<gurchetansingh@chromium.org>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.7.4, and 5.7.6.8.

aad2b6f3620e | 24 Sep 2021 Gurchetan Singh virtio-gpu: add context init support

This brings explicit context initialization and
different types to virtio-gpu.

In the past, VIRTIO_GPU_F_VIRGL meant
the virglrenderer support. With VIRTIO_-
GPU_F _VIRGL + VIRTIO_GPU_F_CON-
TEXT_INIT, this means generic 3D virtu-
alization defined by the context type. It's
entirely possible the virglrenderer project
isn’'t available on the host in this scenario.
The VIRTIO_GPU_F_VIRGL naming con-
vention is kept since it's easier to redefine
the meaning rather than changing header
files.

The context type is associated an particular
capset id. Virgl has two capsets due a prior
bug, but for other cases the 1:1 mapping
between context type and capset id is valid.
In addition, fencing needs to be fixed to ac-
comodate multiple context types. In the
past, there was one global timeline asso-
ciated witht the OpenGL rendering. Now,
there are multiple timelines which can be
associated with GL, VK or even display
contexts.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/117

Reviewed-by: Gerd Hoffmann
<kraxel@redhat.com>

Signed-off-by: Gurchetan Singh
<gurchetansingh@chromium.org>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.7, 57.3, 57.6.7, 57.6.8, and
5.7.6.9.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 269 of 284



https://github.com/oasis-tcs/virtio-spec/issues/117
https://github.com/oasis-tcs/virtio-spec/issues/117
https://github.com/oasis-tcs/virtio-spec/issues/117
https://github.com/oasis-tcs/virtio-spec/issues/117

Revision Date Editor Changes Made

e0e8f9ac37c5 | 04 Oct 2021 Junji Wei Reserve device id for RDMA device
Use device ID 42
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/116
Signed-off-by: Junji  Wei  <wei-
junji@bytedance.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.

f5a8d38achd0 | 04 Oct 2021 Max Gurtovoy Fix copy/paste bug in PCI transport para-

graph

Refer to "Shared memory capability” and
not to "Device-specific configuration”.
Signed-off-by:  Max Gurtovoy <mgur-
tovoy@nvidia.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.1.4.7.

bcf4bddb256e | 07 Oct 2021

Jean-Philippe Brucker

content: Remove duplicate paragraph

It looks like commit 356aeeb40d7a ("con-
tent: add vendor specific cfg type”) had a
merge issue. It includes the device norma-
tive paragraph for Shared memory capabil-
ity, which was already added right above
it by commit 855ad7af2bd6 ("shared mem-
ory: Define PCI capability”).

The two paragraphs differ, and the first
paragraph is correct. It refers to struct vir-
tio_pci_cap64 which embeds struct virtio_-
pci_cap:

struct virtio_pci_cap64 .

struct virtio_pci_cap .

... 1e32 offset; 132 length; } cap; u32 off-
set_hi; u32 length_hi; .

Merge the two paragraph while keeping the
best of both. Drop the spaces after \field to
stay consistent with the rest of the docu-
ment.

Acked-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Jean-Philippe Brucker
<jean-philippe@linaro.org>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.1.4.7.

591eb4c2f76e | 07 Oct 2021

Cornelia Huck

PCI: fix level for vendor data capability
The normative statements for the vendor
data capability need to be at paragraph
level insted of subsection level.
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 4.1.4.8.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 270 of 284



https://github.com/oasis-tcs/virtio-spec/issues/116
https://github.com/oasis-tcs/virtio-spec/issues/116

Revision

Date

Editor

Changes Made

2f4a36d5e36d | 14 Oct 2021

Enrico Granata

Provide detailed specification of virtio-blk
lifetime metrics

In the course of review, some concerns
were surfaced about the original virtio-blk
lifetime proposal, as it depends on the
eMMC spec which is not open

Add a more detailed description of the
meaning of the fields added by that pro-
posal to the virtio-blk specification, as to
make it feasible to understand and imple-
ment the new lifetime metrics feature with-
out needing to refer to JEDEC’s specifica-
tion

This patch does not change the meaning of
those fields nor add any new fields, but it is
intended to provide an open and more clear
description of the meaning associated with
those fields.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/106

Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Enrico Granata
<egranata@google.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.2.6.

fc387ffae917 15 Oct 2021

Pankaj Gupta

virtio-pmem: PMEM device spec

Posting virtio specification for virtio pmem
device. Virtio pmem is a paravirtualized de-
vice which allows the guest to bypass page
cache. Virtio pmem kernel driver is merged
in Upstream Kernel 5.3. Also, Qemu de-
vice is merged in Qemu 4.1.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/78

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Pankaj Gupta
<pankaj.gupta.linux@gmail.com>

[CH: editorial update to fix conformance
section]

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.19.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 271 of 284



https://github.com/oasis-tcs/virtio-spec/issues/106
https://github.com/oasis-tcs/virtio-spec/issues/106
https://github.com/oasis-tcs/virtio-spec/issues/78
https://github.com/oasis-tcs/virtio-spec/issues/78

Revision Date Editor Changes Made

b5115a8fc8ed | 15 Oct 2021 David Hildenbrand virtio-mem: simplify statements that ex-
press unexpected behavior on memory ac-
cess

Some statements express that the device
MAY allow access to memory inside un-
plugged memory blocks, although it’s really
just unexpected behavior and conforming
drivers MUST NOT perform such access.
Clarify that, and move the special CPU vs.
DMA handling for some unplugged mem-
ory blocks to the driver section instead.
While at it, start rephrasing our statements
to clarify and prepare for further changes.

Signed-off-by: David  Hildenbrand
<david@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.15.6.

708ef827b092 | 15 Oct 2021 David Hildenbrand virtio-mem: rephrase remaining memory
access statements

Let's rephrase the remaining statements
regarding memory access to unify and pre-
pare for further changes.

Signed-off-by: David  Hildenbrand
<david@redhat.com>

Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.15.6.

f579906e7364 | 15 Oct 2021 David Hildenbrand virtio-mem: document basic memory ac-
cess to plugged memory blocks

Let's cleanly document that the driver just
has to allow for access to plugged memory

blocks.
Signed-off-by: David  Hildenbrand
<david@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.15.6.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 272 of 284



Revision

Date

Editor

Changes Made

5b6a9d2a1d43 | 15 Oct 2021

David Hildenbrand

virtio-mem: introduce VIRTIO_MEM F -
UNPLUGGED_INACCESSIBLE

Until now, we allowed a driver to read un-
plugged memory within the usable device-
managed region: this simplified bring-up of
virtio-mem in Linux quite a bit, especially
when it came to physical memory dumping.
When the device is using a memory back-
end that supports a shared zeropage,
such as virtio-mem in QEMU under Linux
on anonymous memory, the old behavior
could be realized easily.

However, when using other memory back-
ends (such as hugetlbfs or shmem) or ar-
chitectures, such as s390x, where a shared
zeropage either does not exist or cannot
be used, letting the driver read unplugged
memory can result in undesired memory
consumption in the hypervisor. The device
wants to make sure that the guest is aware
and will not read unplugged memory, not
even in corner cases.

In the meantime, the Linux implementa-
tion matured such that it will no longer ac-
cess unplugged memory, for example, dur-
ing kdump, when reading /proc/kcore, or
via (now removed) /dev/kmem.

Similar to VIRTIO_F_ACCESS_PLAT-
FORM, this change will be disruptive and
require driver adaptions — even if it's just
accepting the new feature. Devices are
expected to only set the bit when really
required, to keep existing setups working.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/118
Signed-off-by: David  Hildenbrand
<david@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.15.3, 5.15.5, and 5.15.6.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 273 of 284



https://github.com/oasis-tcs/virtio-spec/issues/118
https://github.com/oasis-tcs/virtio-spec/issues/118

Revision

Date

Editor

Changes Made

26947c¢3e7b05 | 15 Oct 2021

David Hildenbrand

virtio-mem: describe interaction with mem-
ory properties

Let's describe how we expect the interac-
tion with memory properties that might be
available on a specific platform for ordinary
system RAM.

This is primarily a preparation for s390x
support, which provides storage keys and
may provide storage attributes, depending
on the system configuration.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/118
Signed-off-by: David  Hildenbrand
<david@redhat.com>
Reviewed-by: Cornelia  Huck <co-
huck@redhat.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.15, 5.15.3, 5.15.5, and 5.15.6.

ca1463daea5d | 03 Nov 2021

Viresh Kumar

virtio: i2c: No need to have separate read-
write buffers

The virtio 12C protocol allows to contain
multiple read-write requests in a single
I2C transaction using the VIRTIO I2C -
FLAGS_FAIL_NEXT flag, where each re-
quest contains a header, buffer and status.
There is no need to pass both read and
write buffers in a single request, as we have
a better way of combining requests into a
single 12C transaction. Moreover, this also
limits the transactions to two buffers, one
for read operation and one for write. By us-
ing VIRTIO_12C_FLAGS_FAIL_NEXT, we
don’t have any such limits.

Remove support for multiple buffers within
a single request.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/112

Reviewed-by: Arnd Bergmann
<arnd@arndb.de>

Reviewed-by: Jie Deng
<jie.deng@intel.com>

Signed-off-by: Viresh Kumar
<viresh.kumar@linaro.org>

Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>
See 5.16.6.1, and 5.16.6.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 274 of 284



https://github.com/oasis-tcs/virtio-spec/issues/118
https://github.com/oasis-tcs/virtio-spec/issues/118
https://github.com/oasis-tcs/virtio-spec/issues/112
https://github.com/oasis-tcs/virtio-spec/issues/112

Revision

Date

Editor

Changes Made

69d399bd3f19 | 03 Nov 2021

Viresh Kumar

virtio: i2c: Allow zero-length transactions
The 12C protocol allows zero-length re-
guests with no data, like the SMBus Quick
command, where the command is inferred
based on the read/write flag itself.

In order to allow such a request, allo-
cate another bit, VIRTIO_12C_FLAGS_M -
RD(1), in the flags to pass the request type,
as read or write. This was earlier done us-
ing the read/write permission to the buffer
itself.

Add a new feature flag for zero length re-
quests and make it mandatory for it to be
implemented, so we don’t need to drag the
old implementation around.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/112

Reviewed-by: Arnd Bergmann
<arnd@arndb.de>

Reviewed-by: Jie Deng
<jie.deng@intel.com>

Signed-off-by: Viresh Kumar
<viresh.kumar@linaro.org>

Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>
See 5.16.3, 5.16.6.1, and 5.16.6.2.

ca3252712d98 | 03 Nov 2021

Viresh Kumar

virtio-gpio: Add support for interrupts

This patch adds support for interrupts to the
virtio-gpio specification. This uses the fea-
ture bit O for the same.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/114

Cc: Marc Zyngier <maz@kernel.org>

Cc: Thomas Gleixner <tgix@linutronix.de>

Reviewed-by: Linus  Walleij <li-
nus.walleij@linaro.org>

Signed-off-by: Viresh Kumar
<viresh.kumar@linaro.org>
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>

Reviewed-by: Arnd Bergmann
<arnd@arndb.de>

See 5.18.2, 5.18.3, 5.18.4, and 5.18.6.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 275 of 284



https://github.com/oasis-tcs/virtio-spec/issues/112
https://github.com/oasis-tcs/virtio-spec/issues/112
https://github.com/oasis-tcs/virtio-spec/issues/114
https://github.com/oasis-tcs/virtio-spec/issues/114

Revision

Date

Editor

Changes Made

48340e86b087 | 29 Nov 2021

Halil Pasic

split-ring: clarify the field len in the used
ring

The current description is misleading: "the
descriptor chain which was used” generally
includes both the descriptors that map the
device read only, and descriptors that map
the device write only portions of the buffer
described by the descriptor chain. The ar-
gument that "used” means "written to” does
not stand because one has to "use” the de-
scriptor chain even when the whole buffer
is device read only.

One can argue, that the most straight-
forward way to interpret the phrase "to-
tal length of that descriptor chain” (without
context) like the length of the list is usually
defined: i.e. like the number of descriptors
that constitute the chain. This is clearly not
what we want here. Another intuitive way
to interpret "total length of that descriptor
chain” is size of the buffer mapped by the
descriptor chain. This is not what we want
either. In fact such wrongful interpretations
have caused bugs in the wild.

On the other hand, the text below the listing
that gets modified here clearly describes
the semantics of \field{len}. So let us re-
place the ambiguous explanation in the list-
ing, with a hopefully non-ambiguous one.
Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Hall Pasic <pa-
sic@linux.ibm.com>

[CH: fixed up commit message typo and
tabs-vs-spaces]

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 2.7.8.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 276 of 284




Revision

Date

Editor

Changes Made

795391311bb1 | 30 Nov 2021

Taylor Stark

virtio-pmem: Support describing pmem as
shared memory region

Update the virtio-pmem spec to add sup-
port for describing the pmem region as
a shared memory window. This is re-
quired to support virtio-pmem in Hyper-
V, since Hyper-V only allows PCI devices
to operate on memory ranges defined via
BARs. When using the virtio PCI transport,
shared memory regions are described via
PCI BARs.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/121

Reviewed-by: Pankaj Gupta
<pankaj.gupta.linux@gmail.com>
Signed-off-by: Taylor Stark

<tstark@microsoft.com>

Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>

See 5.19.3,5.19.4, and 5.19.5.

ec3997b8a402 | 30 Nov 2021

Cornelia Huck

pmem: correct wording

s/guest absolute/physical/

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.19.5.

d6645979dad9b | 07 Dec 2021

Cornelia Huck

ccw: clarify device reset

Unlike other transports, a reset triggered
by the driver is actually complete once the
command has been completed. Make this
behaviour and the requirements more ex-

plicit.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/123

Reviewed-by: Jason Wang <ja-

sowang@redhat.com>

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.3.3.3.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 277 of 284



https://github.com/oasis-tcs/virtio-spec/issues/121
https://github.com/oasis-tcs/virtio-spec/issues/121
https://github.com/oasis-tcs/virtio-spec/issues/123
https://github.com/oasis-tcs/virtio-spec/issues/123

Revision

Date

Editor

Changes Made

wn <

41644c17c971

rtio-v1.2-csd01
tandards Track Work

09 Dec 2021

Product

Cop

Jean-Philippe Brucker

yright © OASIS Open 2022. Al

virtio-iommu: Rework the bypass feature
The VIRTIO_IOMMU_F_BYPASS feature
is awkward to use and incomplete. Al-
though it is implemented by QEMU, it is not
supported by any driver as far as | know.
Replace it with a new VIRTIO_IOMMU_F_-
BYPASS_CONFIG feature.

Two features are missing from virtio-
iommu:

* The ability for an hypervisor to start the
device in bypass mode. The wording for
VIRTIO_IOMMU_F_BYPASS is not clear
enough to allow it at the moment, because
it only specifies the behavior after feature
negotiation.

* The ability for a guest to set individual
endpoints in bypass mode when bypass is
globally disabled. An OS should have the
ability to allow only endpoints it trusts to by-
pass the IOMMU, while keeping DMA dis-
abled for endpoints it isn’t even aware of.
At the moment this can only be emulated
by creating identity mappings.

The VIRTIO_IOMMU_F_BYPASS_CON-
FIG feature adds a ’bypass’ config field
that allows to enable and disable bypass
globally. It also adds a new flag for the
ATTACH request.

* The hypervisor can start the VM with by-
pass enabled or, if it knows that the soft-
ware stack supports it, disabled. The ’by-
pass’ config fields is initialized to 0 or 1. It
is sticky and isn’t affected by device reset.
* Generally the firmware won’t have an
IOMMU driver and will need to be started in
bypass mode, so the bootloader and kernel
can be loaded from storage endpoint.

For more security, the firmware could im-
plement a minimal virtio-iommu driver that
reuses existing virtio support and only
touches the config space. It could en-
able PCI bus mastering in bridges only for
the endpoints that need it, enable global
IOMMU bypass by flipping a bit, then tear
everything down before handing control
over to the OS. This prevents vulnerability
windows where a malicious endpoint repro-
grams the IOMMU while the OS is config-
uring it [1].

The isolation provided by vIOMMUs has
mainly been used for securely assigning
endpoints to untrusted applications so far,
while kernel DMA bypasses the IOMMU.
But we can expect boot security to become
as important in virtualization as it presently
is on bare-metal systems, where some de-
vices are untrusted and must never be able
to access memory that wasn’t assié;[ﬂﬁg{/tﬂ32
RIdB@Reserved. Page 278 of 28
* The OS can enable and disable bypass
alobally. It can then enable bypass for

AN


https://link.springer.com/article/10.1186/s13173-017-0066-7
https://link.springer.com/article/10.1186/s13173-017-0066-7
https://github.com/oasis-tcs/virtio-spec/issues/119
https://github.com/oasis-tcs/virtio-spec/issues/119

Revision

Date

Editor

Changes Made

ed9152310708

21 Dec 2021

Yadong Qi

virtio-blk: add secure erase feature to
specification
There are user requests to use the Linux
BLKSECDISCARD ioctl on virtio-blk de-
vice. A secure discard is the same as areg-
ular discard except that all copies of the dis-
carded blocks that were possibly created
by garbage collection must also be erased.
This requires support from the device. And
"secure erase” is more commonly used in
industry to name this feature. Hence in this
proposal, extend virtio-blk protocol to sup-
port secure erase command.
Introduced new feature flag and command
type: VIRTIO BLK F_SECURE_ERASE
VIRTIO_BLK T _SECURE_ERASE
This feature is a passthrough feature on
backend because it is hard to emulate a
secure erase. So virtio-blk will report this
feature to guest OS if backend device sup-
port such kind of feature. And when guest
OS issues a secure erase command, back-
end driver will passthrough the command to
host device blocks.
Introduced new fields in virtio_blk config
for secure erase commands: struct virtio_-
blk_config .

max_secure_erase_sectors; max_se-

cure_erase_seg; secure_erase_sector -
alignment; };
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/125
Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Yadong Qi
<yadong.qi@intel.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 5.2.3,5.2.4,5.2.5, and 5.2.6.

virtio-v1.2-csd01

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 279 of 284



https://github.com/oasis-tcs/virtio-spec/issues/125
https://github.com/oasis-tcs/virtio-spec/issues/125

Revision Date Editor Changes Made

3b5378d70a42 | 21 Dec 2021 Xuan Zhuo virtio: introduce virtqueue reset as basic
facility
This patch allows the driver to reset a
queue individually.
This is very common on general network
equipment. By disabling a queue, you can
quickly reclaim the buffer currently on the
queue. If necessary, we can reinitialize the
queue separately.
For example, when virtio-net implements
support for AF_XDP, we need to disable
a queue to release all the original buffers
when AF_XDP setup. And quickly release
all the AF_XDP buffers that have been
placed in the queue when AF_XDP exits.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/124
Reviewed-by: Jason Wang <ja-
sowang@redhat.com>
Signed-off-by: Xuan Zhuo  <xu-
anzhuo@linux.alibaba.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 2.6, and 6.

12998e738621 | 21 Dec 2021 Xuan Zhuo virtio: pci support virtqueue reset
PCI support virtqueue reset.
virtio_pci_common_cfg add "queue_reset”
to support virtqueue reset. The driver uses
this to selectively reset the queue.
Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/124
Reviewed-by: Jason Wang <ja-
sowang@redhat.com>
Signed-off-by: Xuan Zhuo  <xu-
anzhuo@linux.alibaba.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 4.1.4.3.

a4ce81a83780 | 21 Dec 2021 Xuan Zhuo virtio: mmio support virtqueue reset

mmio support virtqueue reset.

MMIO Device Register Layout
"QueueReady” to support virtqueue
reset. The driver uses this to selectively
reset the queue.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/124
Reviewed-by: Jason Wang <ja-
sowang@redhat.com>
Signed-off-by: Xuan Zhuo  <xu-

anzhuo@linux.alibaba.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 4.2.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 280 of 284



https://github.com/oasis-tcs/virtio-spec/issues/124
https://github.com/oasis-tcs/virtio-spec/issues/124
https://github.com/oasis-tcs/virtio-spec/issues/124
https://github.com/oasis-tcs/virtio-spec/issues/124
https://github.com/oasis-tcs/virtio-spec/issues/124
https://github.com/oasis-tcs/virtio-spec/issues/124

Revision

Date

Editor

Changes Made

f65613a48826 | 11 Jan 2022

Max Gurtovoy

Fix reserved Feature bits numbering

This should have been updated during VIR-
TIO_F_NOTIFICATION_DATA, VIRTIO_-
F_NOTIF_CONFIG_DATA and VIRTIO_-
F_RING_RESET standartization.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/128

Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by:  Max Gurtovoy <mgur-
tovoy@nvidia.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 2.2.

5e1c3fa81e29 | 21 Jan 2022

Arseny Krasnov

virtio-vsock: use C style defines for con-
stants

This: 1) Replaces enums with C style "de-
fines”, because use of enums is not docu-
mented, while "defines” are widely used in
spec. 2) Adds defines for some constants.
Reviewed-by: Stefan Hajnoczi <ste-
fanha@redhat.com>

Signed-off-by: Arseny Krasnov <ar-
seny.krasnov@kaspersky.com>

Reviewed-by: Stefano  Garzarella
<sgarzare@redhat.com>
Signed-off-by: Stefano  Garzarella

<sgarzare@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.10.6.

1a90fc6e4228 | 21 Jan 2022

Stefano Garzarella

virtio-vsock: add VIRTIO_VSOCK_F_-
STREAM feature bit
Initially vsock devices only supported
stream sockets, but now we are adding
support for new types (i.e. SEQPACKET,
DGRAM).
Since some devices may not want to sup-
port stream sockets, we add a feature bit
for this type.
For backward compatibility, if no feature bit
is set, only stream socket type is supported.
Reviewed-by:  Stefan Hajnoczi <ste-
fanha@redhat.com>
Signed-off-by: Stefano  Garzarella
<sgarzare@redhat.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 5.10.3.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 281 of 284



https://github.com/oasis-tcs/virtio-spec/issues/128
https://github.com/oasis-tcs/virtio-spec/issues/128

Revision

Date

Editor

Changes Made

d6d9c734b42e | 21 Jan 2022

Arseny Krasnov

virtio-vsock: SOCK_SEQPACKET de-
scription

This adds description of SOCK_SEQ-
PACKET socket type support for virtio-
vsock.

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/132

Signed-off-by: Arseny Krasnov <ar-
seny.krasnov@kaspersky.com>
[reworked "Message and record bound-
aries” paragraph]

Signed-off-by: Stefano  Garzarella
<sgarzare@redhat.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 5.10.3, and 5.10.6.

88895f56e642 | 24 Jan 2022

Cornelia Huck

Reserve more feature bits for device type
usage

Feature bits 41 and above are noted as be-
ing reserved for future extensions. How-
ever, the net device has been using bits in
that space for some time now, as it already
used up the device type specific range up
to 23.

To avoid problems in the future, let's des-
ignate bits 50 to 127 to device type spe-
cific usage (which accommodates current
usage by the net driver, and gives breath-
ing room for future type specific bits), and
declare bits 41 to 49 and bits 128 and
above to be reserved for future extensions
(which gives us some time before bit num-
bers move beyond 63, which would need
some changes in existing device and driver
implementations.)

Reported-by: Max Gurtovoy <mgur-
tovoy@nvidia.com>

Fixes: https://github.com/oasis-tcs/
virtio-spec/issues/131

Reviewed-by:  Max Gurtovoy <mgur-
tovoy@nvidia.com>

Signed-off-by: Cornelia Huck <co-
huck@redhat.com>

See 2.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 282 of 284



https://github.com/oasis-tcs/virtio-spec/issues/132
https://github.com/oasis-tcs/virtio-spec/issues/132
https://github.com/oasis-tcs/virtio-spec/issues/131
https://github.com/oasis-tcs/virtio-spec/issues/131

Revision Date Editor Changes Made

6708e0fc2frd | 07 Apr 2022 Michael S. Tsirkin virtio-gpio: offered -> negotiated
virtqueues are only discovered after FEA-
TURES_OK. As such it makes no sense to
talk about virtqueues being affected by fea-
tures which are offered but not negotiated,
and doing so will confuse the reader.
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com> Acked-by: Viresh
Kumar <viresh.kumar@linaro.org>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 5.18.2.

a214ffb64f45 11 Apr 2022 Cornelia Huck introduction: add more section labels
In order to be able to refer to changes in
sections.
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 1.4, and 1.5.

79f705b96040 | 11 Apr 2022 Cornelia Huck conformance: hook up GPU device nor-
mative statements
These statements already exist, but were
not linked in the conformance section.
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 7.1.

26f15550226b | 19 Apr 2022 Michael S. Tsirkin packed-ring: fix some typos
The VIRTQ_DESC_F_INDIRECT flag is
misnamed in a couple of places.
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Signed-off-by: Cornelia Huck <co-
huck@redhat.com>
See 2.8.19.

b13f67fca90e | 20 Apr 2022 Michael S. Tsirkin packed-ring.tex: link conformance state-
ments
Link conformance statements into confor-
mance chapter.
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 7.1.

3a7f07897958 | 20 Apr 2022 Michael S. Tsirkin content.tex: drop space after \field
Always use \field{foo} not \field {foo}, the
latter confuses latexdiff.
Signed-off-by: Michael S. Tsirkin
<mst@redhat.com>
Signed-off-by: Cornelia  Huck <co-
huck@redhat.com>
See 4.1.4.

virtio-v1.2-csd01 09 May 2022

Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

Page 283 of 284



Revision

Date

Editor

Changes Made

c5fd7eda1203 | 29 Apr 2022

Parav Pandit

virtio: Improve queue_reset polarity to
match to default reset state
Currently when driver initiates a queue re-
set, device is expected to communicate re-
set status to the driver by changing the
value of the queue_reset register twice.
First to return value other than 1 when re-
set is ongoing, later to return 1 when queue
reset is completed.
However initially during the device reset
time the queue reset value is zero. queue_-
reset changes the value of the register
to a different value on reset completion.
Yet another time queue_reset value is ex-
pected to change when queue_select is re-
programmed.
Instead, it is better and efficient to main-
tain the same VQ state on the device when
queue reset is completed.
new proposed flow:
q_enable, g_reset
A) 0, 0 -> default, device init time
B) 1, 0 -> driver has enabled vq
C) 1, 1 -> driver started g reset
D) 1, 1 -> g_reset stays 1 until device is
busy resetting vq (device communicates
that its working on resetting VQ, consistent
with #C)
E) 0, 0 -> q_reset by device is completed,
g got disabled (consistent with device init
time #A)
Hence, this patch proposes a simple
change to have reset register polarity to be
same as that of initial reset value.
Fixes: https://github.com/oasis-tcs/virtio-
speclissues/139
Fixes: 12998e738621 ("virtio: pci support
virtqueue reset”)
Fixes: a4ce81a83780 ("virtio: mmio sup-
port virtqueue reset”)
Fixes: 3b5378d70a42 (’virtio: introduce
virtqueue reset as basic facility”)

Reviewed-by: Jason Wang <ja-
sowang@redhat.com>

Reviewed-by: Xuan Zhuo  <xu-
anzhuo@linux.alibaba.com>
Signed-off-by: Parav Pandit
<parav@nvidia.com>

Signed-off-by: Michael S. Tsirkin

<mst@redhat.com>
See 4.1.4.3 and 4.2.2.

virtio-v1.2-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

09 May 2022
Page 284 of 284




	Introduction
	Normative References
	Non-Normative References
	Terminology
	Legacy Interface: Terminology
	Transition from earlier specification drafts

	Structure Specifications
	Constant Specifications

	Basic Facilities of a Virtio Device
	Device Status Field
	Driver Requirements: Device Status Field
	Device Requirements: Device Status Field

	Feature Bits
	Driver Requirements: Feature Bits
	Device Requirements: Feature Bits
	Legacy Interface: A Note on Feature Bits

	Notifications
	Device Reset
	Device Requirements: Device Reset
	Driver Requirements: Device Reset

	Device Configuration Space
	Driver Requirements: Device Configuration Space
	Device Requirements: Device Configuration Space
	Legacy Interface: A Note on Device Configuration Space endian-ness
	Legacy Interface: Device Configuration Space

	Virtqueues
	Virtqueue Reset
	Virtqueue Reset
	Device Requirements: Virtqueue Reset
	Driver Requirements: Virtqueue Reset

	Virtqueue Re-enable
	Device Requirements: Virtqueue Re-enable
	Driver Requirements: Virtqueue Re-enable



	Split Virtqueues
	Driver Requirements: Virtqueues
	Legacy Interfaces: A Note on Virtqueue Layout
	Legacy Interfaces: A Note on Virtqueue Endianness
	Message Framing
	Device Requirements: Message Framing
	Driver Requirements: Message Framing
	Legacy Interface: Message Framing

	The Virtqueue Descriptor Table
	Device Requirements: The Virtqueue Descriptor Table
	Driver Requirements: The Virtqueue Descriptor Table
	Indirect Descriptors
	Driver Requirements: Indirect Descriptors
	Device Requirements: Indirect Descriptors


	The Virtqueue Available Ring
	Driver Requirements: The Virtqueue Available Ring

	Used Buffer Notification Suppression
	Driver Requirements: Used Buffer Notification Suppression
	Device Requirements: Used Buffer Notification Suppression

	The Virtqueue Used Ring
	Legacy Interface: The Virtqueue Used Ring
	Device Requirements: The Virtqueue Used Ring
	Driver Requirements: The Virtqueue Used Ring

	In-order use of descriptors
	Available Buffer Notification Suppression
	Driver Requirements: Available Buffer Notification Suppression
	Device Requirements: Available Buffer Notification Suppression

	Helpers for Operating Virtqueues
	Virtqueue Operation
	Supplying Buffers to The Device
	Placing Buffers Into The Descriptor Table
	Updating The Available Ring
	Updating idx
	Driver Requirements: Updating idx

	Notifying The Device
	Driver Requirements: Notifying The Device


	Receiving Used Buffers From The Device

	Packed Virtqueues
	Driver and Device Ring Wrap Counters
	Polling of available and used descriptors
	Write Flag
	Element Address and Length
	Scatter-Gather Support
	Next Flag: Descriptor Chaining
	Indirect Flag: Scatter-Gather Support
	In-order use of descriptors
	Multi-buffer requests
	Driver and Device Event Suppression
	Structure Size and Alignment

	Driver Requirements: Virtqueues
	Device Requirements: Virtqueues
	The Virtqueue Descriptor Format
	Event Suppression Structure Format
	Device Requirements: The Virtqueue Descriptor Table
	Driver Requirements: The Virtqueue Descriptor Table
	Driver Requirements: Scatter-Gather Support
	Device Requirements: Scatter-Gather Support
	Driver Requirements: Indirect Descriptors
	Virtqueue Operation
	Supplying Buffers to The Device
	Placing Available Buffers Into The Descriptor Ring
	Driver Requirements: Updating flags

	Sending Available Buffer Notifications
	Implementation Example
	Driver Requirements: Sending Available Buffer Notifications


	Receiving Used Buffers From The Device
	

	Driver Notifications
	Shared Memory Regions
	Addressing within regions
	Device Requirements: Shared Memory Regions

	Exporting Objects

	General Initialization And Device Operation
	Device Initialization
	Driver Requirements: Device Initialization
	Legacy Interface: Device Initialization

	Device Operation
	Notification of Device Configuration Changes

	Device Cleanup
	Driver Requirements: Device Cleanup


	Virtio Transport Options
	Virtio Over PCI Bus
	Device Requirements: Virtio Over PCI Bus
	PCI Device Discovery
	Device Requirements: PCI Device Discovery
	Driver Requirements: PCI Device Discovery
	Legacy Interfaces: A Note on PCI Device Discovery

	PCI Device Layout
	Driver Requirements: PCI Device Layout
	Device Requirements: PCI Device Layout

	Virtio Structure PCI Capabilities
	Driver Requirements: Virtio Structure PCI Capabilities
	Device Requirements: Virtio Structure PCI Capabilities
	Common configuration structure layout
	Device Requirements: Common configuration structure layout
	Driver Requirements: Common configuration structure layout

	Notification structure layout
	Device Requirements: Notification capability

	ISR status capability
	Device Requirements: ISR status capability
	Driver Requirements: ISR status capability

	Device-specific configuration
	Device Requirements: Device-specific configuration

	Shared memory capability
	Device Requirements: Shared memory capability

	Vendor data capability
	Device Requirements: Vendor data capability
	Driver Requirements: Vendor data capability

	PCI configuration access capability
	Device Requirements: PCI configuration access capability
	Driver Requirements: PCI configuration access capability

	Legacy Interfaces: A Note on PCI Device Layout
	Non-transitional Device With Legacy Driver: A Note on PCI Device Layout

	PCI-specific Initialization And Device Operation
	Device Initialization
	Virtio Device Configuration Layout Detection
	MSI-X Vector Configuration
	Virtqueue Configuration

	Available Buffer Notifications
	Driver Requirements: Available Buffer Notifications

	Used Buffer Notifications
	Device Requirements: Used Buffer Notifications

	Notification of Device Configuration Changes
	Device Requirements: Notification of Device Configuration Changes
	Driver Requirements: Notification of Device Configuration Changes

	Driver Handling Interrupts


	Virtio Over MMIO
	MMIO Device Discovery
	MMIO Device Register Layout
	Device Requirements: MMIO Device Register Layout
	Driver Requirements: MMIO Device Register Layout

	MMIO-specific Initialization And Device Operation
	Device Initialization
	Driver Requirements: Device Initialization

	Virtqueue Configuration
	Available Buffer Notifications
	Notifications From The Device
	Driver Requirements: Notifications From The Device


	Legacy interface

	Virtio Over Channel I/O
	Basic Concepts
	Channel Commands for Virtio
	Notifications
	Device Requirements: Basic Concepts
	Driver Requirements: Basic Concepts

	Device Initialization
	Setting the Virtio Revision
	Device Requirements: Setting the Virtio Revision
	Driver Requirements: Setting the Virtio Revision
	Legacy Interfaces: A Note on Setting the Virtio Revision

	Configuring a Virtqueue
	Device Requirements: Configuring a Virtqueue
	Legacy Interface: A Note on Configuring a Virtqueue

	Communicating Status Information
	Driver Requirements: Communicating Status Information
	Device Requirements: Communicating Status Information

	Handling Device Features
	Device Configuration
	Setting Up Indicators
	Setting Up Classic Queue Indicators
	Setting Up Configuration Change Indicators
	Setting Up Two-Stage Queue Indicators
	Legacy Interfaces: A Note on Setting Up Indicators


	Device Operation
	Host->Guest Notification
	Notification via Classic I/O Interrupts
	Notification via Adapter I/O Interrupts
	Legacy Interfaces: A Note on Host->Guest Notification

	Guest->Host Notification
	Device Requirements: Guest->Host Notification
	Driver Requirements: Guest->Host Notification

	Resetting Devices
	Device Requirements: Resetting Devices
	Driver Requirements: Resetting Devices




	Device Types
	Network Device
	Device ID
	Virtqueues
	Feature bits
	Feature bit requirements
	Legacy Interface: Feature bits

	Device configuration layout
	Device Requirements: Device configuration layout
	Driver Requirements: Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Device Operation
	Legacy Interface: Device Operation
	Packet Transmission
	Driver Requirements: Packet Transmission
	Device Requirements: Packet Transmission
	Packet Transmission Interrupt

	Setting Up Receive Buffers
	Driver Requirements: Setting Up Receive Buffers
	Device Requirements: Setting Up Receive Buffers

	Processing of Incoming Packets
	Device Requirements: Processing of Incoming Packets
	Driver Requirements: Processing of Incoming Packets
	Hash calculation for incoming packets
	Hash reporting for incoming packets

	Control Virtqueue
	Packet Receive Filtering
	Setting MAC Address Filtering
	VLAN Filtering
	Gratuitous Packet Sending
	Device operation in multiqueue mode
	Automatic receive steering in multiqueue mode
	Receive-side scaling (RSS)
	Offloads State Configuration

	Legacy Interface: Framing Requirements


	Block Device
	Device ID
	Virtqueues
	Feature bits
	Legacy Interface: Feature bits

	Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Driver Requirements: Device Initialization
	Device Requirements: Device Initialization
	Legacy Interface: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation
	Legacy Interface: Device Operation
	Legacy Interface: Framing Requirements


	Console Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Device Requirements: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Multiport Device Operation
	Device Requirements: Multiport Device Operation
	Driver Requirements: Multiport Device Operation

	Legacy Interface: Device Operation
	Legacy Interface: Framing Requirements


	Entropy Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation


	Traditional Memory Balloon Device
	Device ID
	Virtqueues
	Feature bits
	Driver Requirements: Feature bits
	Device Requirements: Feature bits

	Device configuration layout
	Device Initialization
	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation
	Legacy Interface: Device Operation

	Memory Statistics
	Driver Requirements: Memory Statistics
	Device Requirements: Memory Statistics
	Legacy Interface: Memory Statistics

	Memory Statistics Tags
	Free Page Hinting
	Driver Requirements: Free Page Hinting
	Device Requirements: Free Page Hinting
	Legacy Interface: Free Page Hinting

	Page Poison
	Driver Requirements: Page Poison
	Device Requirements: Page Poison

	Free Page Reporting
	Driver Requirements: Free Page Reporting
	Device Requirements: Free Page Reporting



	SCSI Host Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Driver Requirements: Device configuration layout
	Device Requirements: Device configuration layout
	Legacy Interface: Device configuration layout

	Device Requirements: Device Initialization
	Device Operation
	Legacy Interface: Device Operation
	Device Operation: Request Queues
	Device Requirements: Device Operation: Request Queues
	Driver Requirements: Device Operation: Request Queues
	Legacy Interface: Device Operation: Request Queues

	Device Operation: controlq
	Legacy Interface: Device Operation: controlq

	Device Operation: eventq
	Driver Requirements: Device Operation: eventq
	Device Requirements: Device Operation: eventq
	Legacy Interface: Device Operation: eventq

	Legacy Interface: Framing Requirements


	GPU Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device configuration fields
	Events

	Device Requirements: Device Initialization
	Device Operation
	Device Operation: Create a framebuffer and configure scanout
	Device Operation: Update a framebuffer and scanout
	Device Operation: Using pageflip
	Device Operation: Multihead setup
	Device Requirements: Device Operation: Command lifecycle and fencing
	Device Operation: Configure mouse cursor
	Device Operation: Request header
	Device Operation: controlq
	Device Operation: controlq (3d)
	Device Operation: cursorq

	VGA Compatibility

	Input Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Driver Requirements: Device Initialization
	Device Requirements: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation


	Crypto Device
	Device ID
	Virtqueues
	Feature bits
	Feature bit requirements

	Supported crypto services
	CIPHER services
	HASH services
	MAC services
	AEAD services

	Device configuration layout
	Device Requirements: Device configuration layout
	Driver Requirements: Device configuration layout

	Device Initialization
	Driver Requirements: Device Initialization

	Device Operation
	Operation Status
	Control Virtqueue
	Session operation

	Data Virtqueue
	HASH Service Operation
	Driver Requirements: HASH Service Operation
	Device Requirements: HASH Service Operation

	MAC Service Operation
	Driver Requirements: MAC Service Operation
	Device Requirements: MAC Service Operation

	Symmetric algorithms Operation
	Driver Requirements: Symmetric algorithms Operation
	Device Requirements: Symmetric algorithms Operation

	AEAD Service Operation
	Driver Requirements: AEAD Service Operation
	Device Requirements: AEAD Service Operation



	Socket Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Operation
	Virtqueue Flow Control
	Driver Requirements: Device Operation: Virtqueue Flow Control
	Device Requirements: Device Operation: Virtqueue Flow Control

	Addressing
	Buffer Space Management
	Driver Requirements: Device Operation: Buffer Space Management
	Device Requirements: Device Operation: Buffer Space Management

	Receive and Transmit
	Driver Requirements: Device Operation: Receive and Transmit
	Device Requirements: Device Operation: Receive and Transmit

	Stream Sockets
	Seqpacket Sockets
	Message and record boundaries

	Device Events
	Driver Requirements: Device Operation: Device Events



	File System Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Driver Requirements: Device configuration layout
	Device Requirements: Device configuration layout

	Device Initialization
	Device Operation
	Device Operation: Request Queues
	Device Operation: High Priority Queue
	Device Requirements: Device Operation: High Priority Queue
	Driver Requirements: Device Operation: High Priority Queue

	Device Operation: Notification Queue
	Driver Requirements: Device Operation: Notification Queue

	Device Operation: DAX Window
	Device Requirements: Device Operation: DAX Window
	Driver Requirements: Device Operation: DAX Window

	Security Considerations
	Live migration considerations


	RPMB Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Requirements: Device Initialization
	Device Operation
	Device Operation: Request Queue
	Device Requirements: Device Operation: Program Key
	Device Requirements: Device Operation: Get Write Counter
	Device Requirements: Device Operation: Data Write
	Device Requirements: Device Operation: Data Read
	Device Requirements: Device Operation: Result Read

	Driver Requirements: Device Operation
	Device Requirements: Device Operation


	IOMMU device
	Device ID
	Virtqueues
	Feature bits
	Driver Requirements: Feature bits
	Device Requirements: Feature bits

	Device configuration layout
	Driver Requirements: Device configuration layout
	Device Requirements: Device configuration layout

	Device initialization
	Driver Requirements: Device Initialization

	Device operations
	Driver Requirements: Device operations
	Device Requirements: Device operations
	ATTACH request
	Driver Requirements: ATTACH request
	Device Requirements: ATTACH request

	DETACH request
	Driver Requirements: DETACH request
	Device Requirements: DETACH request

	MAP request
	Driver Requirements: MAP request
	Device Requirements: MAP request

	UNMAP request
	Driver Requirements: UNMAP request
	Device Requirements: UNMAP request

	PROBE request
	Driver Requirements: PROBE request
	Device Requirements: PROBE request

	PROBE properties
	Property RESV_MEM

	Fault reporting
	Driver Requirements: Fault reporting
	Device Requirements: Fault reporting



	Sound Device
	Device ID
	Virtqueues
	Feature Bits
	Device Configuration Layout
	Device Initialization
	Driver Requirements: Device Initialization

	Device Operation
	Item Information Request
	Driver Requirements: Item Information Request
	Relationships with the High Definition Audio Specification
	Jack Control Messages
	VIRTIO_SND_R_JACK_INFO
	VIRTIO_SND_R_JACK_REMAP

	Jack Notifications
	PCM Control Messages
	PCM Command Lifecycle
	VIRTIO_SND_R_PCM_INFO
	VIRTIO_SND_R_PCM_SET_PARAMS
	VIRTIO_SND_R_PCM_PREPARE
	VIRTIO_SND_R_PCM_RELEASE
	VIRTIO_SND_R_PCM_START
	VIRTIO_SND_R_PCM_STOP

	PCM Notifications
	PCM I/O Messages
	Output Stream
	Input Stream

	Channel Map Control Messages
	VIRTIO_SND_R_CHMAP_INFO



	Memory Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Driver Requirements: Device configuration layout
	Device Requirements: Device configuration layout

	Device Initialization
	Driver Requirements: Device Initialization
	Device Requirements: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation
	PLUG request
	Driver Requirements: PLUG request
	Device Requirements: PLUG request

	UNPLUG request
	Driver Requirements: UNPLUG request
	Device Requirements: UNPLUG request

	UNPLUG ALL request
	Driver Requirements: UNPLUG request
	Device Requirements: UNPLUG request

	STATE request
	Driver Requirements: STATE request
	Device Requirements: STATE request



	I2C Adapter Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Operation
	Device Operation: Request Queue
	Device Operation: Operation Status
	Driver Requirements: Device Operation
	Device Requirements: Device Operation


	SCMI Device
	Device ID
	Virtqueues
	Feature bits
	Device Requirements: Feature bits

	Device configuration layout
	Device Initialization
	Device Operation
	cmdq Operation
	Device Requirements: cmdq Operation
	Driver Requirements: cmdq Operation

	Setting Up eventq Buffers
	Driver Requirements: Setting Up eventq Buffers

	eventq Operation
	Device Requirements: eventq Operation

	Shared Memory Operation
	Device Requirements: Shared Memory Operation



	GPIO Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Operation: requestq
	requestq Operation: Get Line Names
	requestq Operation: Get Direction
	requestq Operation: Set Direction
	requestq Operation: Get Value
	requestq Operation: Set Value
	requestq Operation: Set IRQ Type
	requestq Operation: Message Flow
	Driver Requirements: requestq Operation
	Device Requirements: requestq Operation

	Device Operation: eventq
	eventq Operation: Message Flow
	Driver Requirements: eventq Operation
	Device Requirements: eventq Operation


	PMEM Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Requirements: Device Initialization
	Driver Requirements: Device Initialization

	Driver Operations
	Device Operations
	Device Requirements: Device Operation: Virtqueue flush
	Device Operations
	Device Requirements: Device Operation: Virtqueue return

	Possible security implications
	Countermeasures
	With SHARED mapping
	With PRIVATE mapping
	Workload specific mapping
	Prevent cache eviction



	Reserved Feature Bits
	Driver Requirements: Reserved Feature Bits
	Device Requirements: Reserved Feature Bits
	Legacy Interface: Reserved Feature Bits

	Conformance
	Conformance Targets
	
	Clause 1: Driver Conformance
	
	Clause 2: PCI Driver Conformance
	
	Clause 3: MMIO Driver Conformance
	
	Clause 4: Channel I/O Driver Conformance
	
	Clause 5: Network Driver Conformance
	
	Clause 6: Block Driver Conformance
	
	Clause 7: Console Driver Conformance
	
	Clause 8: Entropy Driver Conformance
	
	Clause 9: Traditional Memory Balloon Driver Conformance
	
	Clause 10: SCSI Host Driver Conformance
	
	Clause 11: Input Driver Conformance
	
	Clause 12: Crypto Driver Conformance
	
	Clause 13: Socket Driver Conformance

	
	Clause 14: File System Driver Conformance
	Clause 15: RPMB Driver Conformance
	Clause 16: IOMMU Driver Conformance
	Clause 17: Sound Driver Conformance
	Clause 18: Memory Driver Conformance
	Clause 19: I2C Adapter Driver Conformance
	Clause 20: SCMI Driver Conformance
	Clause 21: GPIO Driver Conformance
	Clause 22: PMEM Driver Conformance

	Clause 23: Device Conformance
	
	Clause 24: PCI Device Conformance
	
	Clause 25: MMIO Device Conformance
	
	Clause 26: Channel I/O Device Conformance
	
	Clause 27: Network Device Conformance
	
	Clause 28: Block Device Conformance
	
	Clause 29: Console Device Conformance
	
	Clause 30: Entropy Device Conformance
	
	Clause 31: Traditional Memory Balloon Device Conformance
	
	Clause 32: SCSI Host Device Conformance
	
	Clause 33: GPU Device Conformance
	Clause 34: Input Device Conformance
	
	Clause 35: Crypto Device Conformance
	
	Clause 36: Socket Device Conformance

	
	Clause 37: File System Device Conformance
	Clause 38: RPMB Device Conformance
	Clause 39: IOMMU Device Conformance
	Clause 40: Sound Device Conformance
	Clause 41: Memory Device Conformance
	Clause 42: I2C Adapter Device Conformance
	Clause 43: SCMI Device Conformance
	Clause 44: GPIO Device Conformance
	Clause 45: PMEM Device Conformance

	Clause 46: Legacy Interface: Transitional Device and Transitional Driver Conformance

	virtio_queue.h
	Creating New Device Types
	How Many Virtqueues?
	What Device Configuration Space Layout?
	What Device Number?
	How many MSI-X vectors? (for PCI)
	Device Improvements

	Acknowledgements
	Revision History

