
Universal Business Language (UBL)
2.0 Naming and Design Rules
Public Review Draft 02

6 November 2009

Specification URIs:

This Version:
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.html
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.pdf
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.xml (Au-
thoritative)

Previous Version:
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.doc
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.htm
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.pdf

Latest Version:
http://docs.oasis-open.org/ubl/UBL-2.0-NDR/UBL-2.0-NDR.html
http://docs.oasis-open.org/ubl/UBL-2.0-NDR/UBL-2.0-NDR.pdf
http://docs.oasis-open.org/ubl/UBL-2.0-NDR/UBL-2.0-NDR.xml (Au-
thoritative)

Technical Committee:
OASIS Universal Business Language (UBL) TC

Chairs:
Jon Bosak, Pinax <bosak@pinax.com>
Tim McGrath, Document Engineering
 Services <tim.mcgrath@documentengineeringservices.com>

Editors:
Mike Grimley, US Navy <MJGrimley@acm.org>
Mavis Cournane, Cognitran Limited <mavis.Cournane@cognitran.com>

Abstract:
This specification documents the naming and design rules and guidelines for the construction of
XML components for the UBL vocabulary.

Status:
This document was last revised or approved by the UBL TC on the above date.The level of approval
is also listed above. Check the current location noted above for possible later revisions of this doc-
ument. This document is updated periodically on no particular schedule.

6 November 2009
Page 1 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.html
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.pdf
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.xml
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.doc
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.htm
http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0.pdf
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.html
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.pdf
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/prd2-UBL-2.0-NDR.xml
mailto:bosak@pinax.com
mailto:tim.mcgrath@documentengineeringservices.com
mailto:MJGrimley@acm.org
mailto:mavis.Cournane@cognitran.com
http://www.oasis-open.org/committees/ubl/

Technical Committee members should send comments on this specification to the Technical Com-
mittee's email list. Others should send comments to the Technical Committee by using the "Send
A Comment" button on the Technical Committee's web page at http://www.oasis-open.org/commit-
tees/ubl.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the Technical Committee web page (http://www.oasis-open.org/commit-
tees/ubl/ipr.php).

The non-normative errata page (if any) for this specification is located at http://www.oasis-
open.org/committees/ubl.

Notices:
Copyright © OASIS® Open 2001-2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intel-
lectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS
website.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However,
this document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as
set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its suc-
cessors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Committee Specification or
OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS
Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership
of any patent claims that would necessarily be infringed by implementations of this specification by
a patent holder that is not willing to provide a license to such patent claims in a manner consistent
with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may
include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by implementers

6 November 2009
Page 2 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl

or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the
OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual
property rights will at any time be complete, or that any claims in such list are, in fact, Essential
Claims.

The name "OASIS" is a trademark of OASIS [http://www.oasis-open.org], the owner and developer
of this specification, and should be used only to refer to the organization and its official outputs.
OASIS welcomes reference to, and implementation and use of, specifications, while reserving the
right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php [http://www.oasis-open.org/who/trademark.php] for above
guidance.

6 November 2009
Page 3 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://www.oasis-open.org
http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

Table of Contents
1. Introduction ... 6

1.1. Terminology and Notation .. 6
1.2. Normative References ... 7
1.3. Non-normative References .. 8

2. Relationship to ebXML Core Components ... 9
2.1. Mapping Business Information Entities to XSD .. 11

3. General XML Constructs .. 14
3.1. Overall Schema Structure .. 14

3.1.1. Element Declarations within Document Schemas ... 15
3.1.2. Root Element ... 16

3.2. Naming and Modeling Constraints .. 16
3.2.1. Naming Constraints .. 16

3.3. Reusability Scheme ... 17
3.3.1. Reusable Elements .. 17

3.4. Extension Scheme .. 18
3.5. Namespace Scheme ... 19

3.5.1. Declaring Namespaces ... 19
3.5.2. Namespace Uniform Resource Identifiers .. 19
3.5.3. Schema Location .. 20
3.5.4. Persistence .. 20

3.6. Versioning Scheme .. 20
3.6.1. Versioning Information in the Namespace URI .. 20
3.6.2. Versioning representation in the xsd:schema element ... 21
3.6.3. Instance Versioning .. 21

3.7. Modularity Strategy ... 21
3.7.1. UBL Modularity Model .. 22
3.7.2. Internal and External Schema Modules .. 25
3.7.3. Internal Schema Modules ... 25
3.7.4. External Schema Modules .. 25

3.8. Annotation and Documentation Requirements ... 27
3.8.1. Schema Annotation .. 27
3.8.2. Embedded Documentation .. 28

4. Naming Rules .. 31
4.1. General Naming Rules .. 31
4.2. Type Naming Rules ... 32

4.2.1. Complex Type Names for CCTS Aggregate Business Information Entities
(ABIEs) ... 32
4.2.2. Complex Type Names for CCTS Basic Business Information Entity (BBIE) Prop-
erties .. 33

4.3. Element Naming Rules .. 34
4.3.1. Element Names for CCTS ABIEs (ABIEs) .. 34
4.3.2. Element Names for CCTS BBIE Properties .. 34
4.3.3. Element Names for CCTS ASBIEs .. 35

4.4. Attributes in UBL ... 35
5. Declarations and Definitions ... 36

5.1. Type Definitions ... 36
5.1.1. General Type Definitions ... 36
5.1.2. Simple Types .. 36
5.1.3. Complex Types ... 36

5.2. Element Declarations .. 39
5.2.1. Elements Bound to Complex Types .. 39
5.2.2. Elements Representing ASBIEs .. 39

5.3. Code List Import ... 39
5.4. Empty Elements .. 39

6. Code Lists ... 40

6 November 2009
Page 4 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

7. Miscellaneous XSD Rules ... 41
7.1. xsd:simpleType ... 41
7.2. Namespace Declaration ... 41
7.3. xsd:substitutionGroup .. 41
7.4. xsd:final .. 41
7.5. xsd: notation ... 41
7.6. xsd:all ... 41
7.7. xsd:choice .. 42
7.8. xsd:include ... 42
7.9. xsd:union .. 42
7.10. xsd:appinfo ... 42
7.11. xsd:schemaLocation .. 42
7.12. xsd:nillable .. 42
7.13. xsd:any ... 42
7.14. Extension and Restriction .. 43

8. Instance Documents .. 44
9. Conformance ... 46

Appendixes

A. Acknowledgements .. 46
B. Code List Metadata (Informative) .. 47
C. UBL-approved Acronyms and Abbreviations (Informative) .. 49
D. Technical Terminology (Informative) ... 50
E. UBL NDR Checklist ... 52

6 November 2009
Page 5 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

1. Introduction
XML is often described as the lingua franca of e-commerce. The implication is that by standardizing on
XML, enterprises will be able to trade with anyone, any time, without the need for the costly custom in-
tegration work that has been necessary in the past. But this vision of XML-based "plug-and-play" com-
merce is overly simplistic. Of course XML can be used to create electronic catalogs, purchase orders,
invoices, shipping notices, and the other documents needed to conduct business. But XML by itself
doesn't guarantee that these documents can be understood by any business other than the one that
creates them. XML is only the foundation on which additional standards can be defined to achieve the
goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in
achieving this goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises
have already invested significant time and money in an e-business infrastructure and are reluctant to
change the way they conduct electronic business. Furthermore, every company has different requirements
for the information exchanged in a specific business process, such as procurement or supply-chain op-
timization. A standard business language must strike a difficult balance, adapting to the specific needs
of a given company while remaining general enough to let different companies in different industries
communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML)
initiative. UBL is organized as an OASIS Technical Committee to guarantee a rigorous, open process
for the standardization of the XML business language.The development of UBL within OASIS also helps
ensure a fit with other essential ebXML specifications.

This specification documents the rules and guidelines for the naming and design of XML components
for the UBL library. It contains only rules that have been agreed on by the OASIS UBL Technical Com-
mittee. Consumers of the Naming and Design Rules Specification should consult previous UBL position
papers that are available at http://www.oasis-open.org/committees/ubl/ndrsc/. These provide a useful
background to the development of the current rule set.

Audiences. This document has several primary and secondary targets that together constitute its in-
tended audience. Our primary target audience is the members of the UBL Technical Committee. Spe-
cifically, the UBL Technical Committee uses the rules in this document to create normative form
schemas for business transactions. Other XML schema developers may find the rules contained herein
sufficiently useful to merit consideration for adoption as, or infusion into, their own approaches to XML
schema development.

Scope. This specification conveys a normative set of XML schema design rules and naming conventions
for the creation of UBL schemas for business documents being exchanged between two parties using
XML constructs defined in accordance with the ebXML Core Components Technical Specification.

Guiding Principles. The UBL NDR primary objectives are to provide the UBL TC with a set of unam-
biguous, consistent rules for the development of extensible, reusable UBL schemas.

1.1.Terminology and Notation
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RE-
COMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet
Engineering Task Force (IETF) Request for Comments (RFC) 2119. Non-capitalized forms of these
words are used in the regular English sense.

Definition A formal definition of a term. Definitions are normative.

Example An example of a definition or a rule. Examples are informative.

Note Explanatory information. Notes are informative.

6 November 2009
Page 6 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://www.oasis-open.org/committees/ubl/ndrsc/

RRRn Identifier of a rule to which an XML schema must comply in order to be
UBL conformant. The value RRR is a prefix to categorize the type of
rule where the value of RRR is as defined in Table 1, “Rule Prefix
Value”, and n (1..n) is the sequential number of the rule within its cat-
egory. To ensure continuity across versions of the specification, rule
numbers that are deleted in future versions will not be re-issued, and
any new rules will be assigned the next higher number — regardless
of location in the text. Only rules and definitions are normative; all other
text is explanatory.

Table 1. Rule Prefix Value

ValueRule Prefix

Attribute DeclarationATD

Code ListCDL

ComplexType DefinitionCTD

ComplexType Naming RulesCTN

DocumentationDOC

Element DeclarationELD

Element NamingELN

General NamingGNR

General Type DefinitionGTD

General XML SchemaGXS

Instance DocumentIND

Modeling ConstraintsMDC

Naming ConstraintsNMC

NamespaceNMS

Root Element DeclarationRED

Schema Structure ModularitySSM

VersioningVER

The term "XSD" is used throughout this document to refer to Parts 1 and 2 of the W3C XML Schema
Definition Language (XSD) Recommendation.

1.2. Normative References
[CCTS] ISO 15000-5 ebXML Core Components Technical Specification.

[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6.

[RFC 2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, ht-
tp://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6,
2000.

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2, 2 May 2001.

6 November 2009
Page 7 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

1.3. Non-normative References
[SchCust] Guidelines for the Customization of UBL v1.0 Schemas, http://docs.oasis-open.org/ubl/cd-
UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html, an informative annex to the UBL 1.0 Standard.

6 November 2009
Page 8 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html
http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html

2. Relationship to ebXML Core Components
UBL employs the methodology and model described in ISO TS 15000-5:2005 -- ebXML Core Components
Technical Specification, Version 2.01 [CCTS] to build the UBL Component Library. CCTS defines a new
paradigm in the design and implementation of reusable, syntactically neutral information building blocks.
Syntax-neutral Core Components are intended to form the basis of business information standardization
efforts and to be realized in syntactically specific instantiations such as ANSI ASC X12, UN/EDIFACT,
and various XML representations such as UBL.

Context-neutral and context-specific building blocks are the essence of the Core Components specific-
ation. The context-neutral components are called Core Components. A Core Component is defined in
CCTS as "a building block for the creation of a semantically correct and meaningful information exchange
package. It contains only the information pieces necessary to describe a specific concept". Figure 1 il-
lustrates the various pieces of the overall Core Components metamodel.

The context-specific components are called Business Information Entities (BIEs). A BIE is defined in
CCTS as "a piece of business data or a group of pieces of business data with a unique Business Se-
mantic definition". Figure 2 illustrates the various pieces of the overall BIE metamodel and its relationship
to the Core Components metamodel. As shown here, there are different types of Core Components and
BIEs, each of which has specific relationships to the other components and entities.The context-neutral
Core Components establish the formal relationship between the various context-specific BIEs.

6 November 2009
Page 9 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 1. Core Components and Datatypes Metamodel

6 November 2009
Page 10 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 2. Business Information Entities Basic Definition Model

2.1. Mapping Business Information Entities to XSD
UBL consists of a library of CCTS BIEs, each of which is mapped to an XSD construct (See Figure 3).

6 November 2009
Page 11 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 3. UBL Document Metamodel

A BIE can be a CCTS Aggregate Business Information Entity (ABIE), a CCTS Basic Business Information
Entity (BBIE), or a CCTS Association Business Information Entity (ASBIE). In understanding the logic
of the UBL binding of BIEs to XSD expressions, it is important to understand the basic constructs of the
BIEs and their relationships as shown in Figure 2. The ABIEs are treated as objects and are defined as
xsd:complexTypes. The BBIEs are treated as properties of the ABIE and are found in the content model
of the ABIE as a referenced xsd:element. The BBIEs are based on reusable CCTS Basic Business In-
formation Entity Properties (BBIE Properties), which are defined as xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a data type.
UBL uses two kinds of data types — unqualified datatypes, which are provided by the UN/CEFACT
Unqualified Data Type (UDT) schema module, and Qualified Data Types, which are defined by UBL.

UBL's use of the UN/CEFACT UDT schema module is primarily confined to its importation. It must not
be assumed that UBL's adoption of the UDT schema module extends to any of the UN/CEFACT rules
relating to use of the UDT.

6 November 2009
Page 12 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

The CCTS Unqualified Data Types correspond to CCTS Representation Terms.The UBL Qualified Data
Types are derived from CCTS Unqualified Data Types with restrictions to the allowed values or ranges
of the corresponding CCTS Content Component or CCTS Supplementary Component (see CCTS for
explanations of these terms).

CCTS defines an approved set of primary and secondary representation terms. However, these repres-
entation terms are simply naming conventions to identify the data type of an object, not actual constructs.

A CCTS data type defines the set of values that can be used for a particular Basic Core Component
Property or Basic Business Information Entity Property data type. The CCTS data types can be either
unqualified (no restrictions applied) or qualified through the application of restrictions. These data types
form the basis for the various XSD simple and complex types defined in the UBL schemas. CCTS supports
data types that are qualified, i.e., it enables users to define their own data types for their syntax-neutral
constructs. Thus, CCTS data types allow UBL to identify restrictions for elements when restrictions to
the corresponding CCTS Content Component or CCTS Supplementary Component are required.

There are two kinds of BIE Properties — Basic and Association. A CCTS Association BIE Property
(ASBIE Property) represents an extrinsic property — in other words, an association from one ABIE in-
stance to another ABIE instance. It is the ASBIE Property that expresses the relationship between ABIEs.

Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes; rather,
they are either declared as elements that are then bound to the xsd:complexType of the associated
ABIE, or they are reclassified as ABIEs.

BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in that
they contain no other BIEs.

A BBIE must have a CCTS Core Component Type. All CCTS Core Component Types are low-level
types such as Identifiers and Dates. A CCTS Core Component Type describes these low-level types
for use by CCTS Core Components, and (in parallel) a CCTS data type, corresponding to that CCTS
Core Component Type, describes these low-level types for use by BBIEs. Every CCTS Core Component
Type has a single CCTS Content Component and one or more CCTS Supplementary Components. A
CCTS Content Component is of some Primitive Type. All CCTS Core Component Types and their cor-
responding content and supplementary components are predefined in CCTS.

UBL has developed an XSD schema module that declares each of the predefined CCTS Core Component
Types as an xsd:complexType or xsd:simpleType and declares each CCTS Supplementary Component
as an xsd:attribute or uses the predefined facets of the built-in XSD datatypes for those that are used
as the base expression for an xsd:simpleType.

6 November 2009
Page 13 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

3. General XML Constructs
This chapter defines UBL rules related to general XML constructs, including overall schema structure,
naming and modeling constraints, reusability, namespaces, versioning, modularity, and documentation.

3.1. Overall Schema Structure
A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is
essential to provide a mechanism that will guarantee that each occurrence of a UBL conformant schema
will have the same look and feel.

[GXS1] Except in the case of extension, where the "UBL Extensions" element is used,
UBL schemas SHOULD conform to the following physical layout as applicable: See
Figure 4.

6 November 2009
Page 14 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 4. Physical layout

As shown above, a UBL schema should contain a comment block at the top of the schema that functions
as a "schema header".

3.1.1. Element Declarations within Document Schemas

A document schema is a schema within a specific namespace that conveys the business document
functionality of that namespace. The document schema declares a target namespace and is likely to
include (xsd:include) internal schema modules or import (xsd:import) external schema modules. Each
namespace will have one, and only one, major version of a document schema as well as any related
minor versions.

6 November 2009
Page 15 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

In order to facilitate the management and reuse of UBL constructs, all global elements, excluding the
root element of the document schema, must be declared in either the Common Aggregate Components
(CAC) or Common Basic Components (CBC) schema modules and referenced from within the document
schema.

3.1.2. Root Element

Only a single global element is declared inside a UBL document schema. The single global element is
the root element of every conforming instance.

[RED2] The root element MUST be the only global element declared in the document
schema.

3.2. Naming and Modeling Constraints
UBL has the following naming and modeling constraints.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation is its spreadsheet models. The entries in these
spreadsheet models fully define the constructs available for use in UBL business documents. The
spreadsheet entries contain fully conformant CCTS Dictionary Entry Names (DENs) as well as truncated
UBL XML element names developed in conformance with the rules in Section 4.The XML element name
is the short form of the DEN. The rules for element naming differ from the rules for DEN naming.

[NMC1] Each Dictionary Entry Name MUST define one and only one fully qualified path
(FQP) for an element or attribute.

The FQP anchors the use of the element or attribute to a particular location in a business message. Any
semantic dependencies that the element or attribute has on other elements and attributes within the
UBL library that are not otherwise enforced or made explicit in its structural definition can be found in
its prose definition.

3.2.1.1. Modeling Constraints

Modeling constraints are limited to those necessary to ensure consistency in development of the UBL
library.

3.2.1.1.1. Defining Classes

UBL is based on instantiating ebXML CCTS BIEs. UBL models and the XML expressions of those
models are class driven. Specifically, the UBL library defines classes for each CCTS ABIE and the UBL
schemas instantiate those classes.The properties of those classes consist of CCTS BBIEs and ASBIEs.

3.2.1.1.2. Core Component Types

Each BBIE is associated with one of an approved set of CCTS Core Component Types.

[MDC1] UBL libraries and schemas MUST only use CCTS Core Component Types,
except in the case of extension, where the UBLExtensions element is used.

3.2.1.1.3. XML Mixed Content

UBL documents are designed to effect data-centric electronic commerce transactions. Including XML
mixed content in business documents is undesirable because business transactions are based on ex-
change of discrete pieces of data. The white space aspects of XML mixed content make processing
unnecessarily difficult and add a layer of complexity not desirable in business exchanges.

6 November 2009
Page 16 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[MDC2] XML mixed content MUST NOT be used except where contained in an
xsd:documentation element.

3.2.1.1.4. Sequencing

In the UBL model, the prescribed order for the contents of an ABIE is that ASBIEs follow BBIEs. However,
this is, strictly speaking, a rule of the modeling methodology rather than an NDR. The NDR in this case
is that the sequential order of entities in the model must be preserved.

[MDC0] The sequence of the business information entities that is expressed in the UBL
model MUST be preserved in the schema.

3.3. Reusability Scheme
To promote effective management of the UBL library, all element declarations are unique. Consequently,
UBL elements are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the Address element is directly
reusable as a modular component.

6 November 2009
Page 17 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Example 1.

<xsd:element name="Party" type="PartyType"/>
 <xsd:complexType name="PartyType">
 <xsd:annotation>
 <!-- Documentation goes here -->
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="PartyIdentification" minOccurs="0" maxOccurs="unbounded">
 ...
 </xsd:element>
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="Address" type="AddressType"/>

 <xsd:complexType name="AddressType">
 ...
 <xsd:sequence>
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

Software written to work with UBL's standard library should work with new assemblies of the same
components, since global elements will remain consistent and unchanged. The globally declared <Ad-
dress> element is fully reusable without regard to the reusability of types and provides a solid mechanism
for ensuring that extensions to the UBL core library will provide consistency and semantic clarity regardless
of their placement within a particular type.

[ELD2] All element declarations MUST be global.

3.4. Extension Scheme
Some organizations are required by law to send additional information not covered by the UBL document
structure, thus requiring an extension to the UBL message. The xsd:any construct is seen as the most
efficient way to implement this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the introduction of unknown
elements into an XML instance. However, limiting its use to a single, predefined element mitigates this

6 November 2009
Page 18 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

risk. For meaningful validation of UBL document instances, the value of the xsd:processContents attribute
of the element must be set to "skip", thereby removing the potential for errors in the validation layer.
Extension imposes cardinality constraints.

The following rules apply in the order below.

[ELD12] The UBL Extensions element MUST be declared as the first child of the docu-
ment element with xsd:minOccurs="0".

[ELD13] The UBLProfileID element MUST be declared immediately following the UBL
Extensions element with xsd:minOccurs="0".

[ELD14] The UBLSubsetID element MUST be declared immediately following the
UBLProfileID element with xsd:minOccurs="0".

3.5. Namespace Scheme
The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The
use of XML namespace is specified in the W3C XML Schema (XSD) Recommendation. A namespace
is declared in the root element of a schema using a namespace identifier. Namespace declarations can
also identify an associated prefix "shorthand identifier" that allows for compression of the namespace
name. For each UBL namespace, a normative token is defined as its prefix. These tokens (currently
udt, qdt, cac, cbc, ext) are defined in Section 3.7.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD requires the use of namespaces. However, the use of namespaces is essential
to managing the complex UBL library. UBL uses UBL-defined schemas (created by the UBL TC) and
UBL-used schemas (created by external activities), and both require a consistent approach to namespace
declarations.

[NMS1] Every UBL-defined or -used schema module, except internal schema modules,
MUST declare a namespace using the xsd:targetNamespace attribute.

Each UBL schema module consists of a logical grouping of lower level artefacts that can be used in a
variety of UBL schemas. These schema modules are grouped into a schema set. Each schema set is
assigned a namespace that identifies that group of schema modules. As constructs are changed, new
versions are to be created. The schema set is the versioned entity; all schema modules within that
package are of the same version, and each major version has a unique namespace.

Schema set A collection of schemas that constitute a specific UBL namespace.

Schema validation ensures that an instance conforms to its declared schema. In keeping with Rule
NMS1, each UBL schema module is part of a versioned namespace.

[NMS2] Every UBL-defined or -used major version schema set MUST have its own
unique namespace.

UBL's extension methodology encourages a wide variety in the number of schema modules that are
created as derivations from UBL schema modules. Customized schemas should not be confused with
those developed by UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

3.5.2. Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI that conforms to RFC 2396. UBL has adopted the Uniform
Resource Name (URN) scheme as the standard for URIs for UBL namespaces, in conformance with
IETF's RFC 3121.

6 November 2009
Page 19 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Rule NMS2 requires separate namespaces for each UBL major version schema set. In accordance with
OASIS procedures, the UBL namespace rules differentiate between committee draft and OASIS
Standard status. For each schema holding draft status, a UBL namespace must be declared and named.

[NMS4] The namespace names for UBL schemas holding committee draft status MUST
be of the form

urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

The format for document-id is found in Section 3.6.

For each UBL schema holding OASIS Committee Specification or Standard status, a UBL namespace
must be declared and named using the same notation, but with the value "specification" replacing the
value "tc".

[NMS5] The namespace names for UBL schemas holding OASIS Standard status MUST
be of the form

urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>

3.5.3. Schema Location

UBL schemas use a URN namespace scheme. In contrast, schema locations are defined as a Uniform
Resource Locator (URL). UBL schemas must be available both at design time and run time. Therefore,
the UBL schema locations will differ from the UBL namespace declarations. UBL uses an OASIS URL
for hosting retrievable copies of UBL schemas.

3.5.4. Persistence

UBL namespaces use URNs to provide name persistence. UBL namespaces must never change once
they have been declared. Conversely, changes to a schema may result in a new namespace declaration.
Thus, a published schema version and its namespace association will always be inviolate.

[NMS6] UBL published namespaces MUST never be changed.

3.6. Versioning Scheme
UBL distinguishes between major versions and minor versions. Major versions are not backwards
compatible. Minor versions do not break backwards compatibility. In other words, a document instance
that validates against version 1 of the schema must also validate against version 1.1 of the schema,
where version 1.1 is a minor version change based on version 1. However, the same document instances
would not necessarily be valid against version 2 of the schema, where version 2 is a major version
change.

Versioning information is indicated both in the namespace URI and in the version attribute of the schema
module. However, this information is represented somewhat differently in these two locations.

3.6.1. Versioning Information in the Namespace URI

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121. All UBL namespace
URIs have the form:

urn:oasis:names:specification:ubl:schema:xsd:<modulename>-<major>

where <modulename> is the name of the schema module and <major> is a positive integer representing
the major version. The field containing <modulename>-<major> is called the document-id.

[VER2] Every UBL schema module major version MUST have an RFC 3121 document-
id of the form <modulename>-<major>

6 November 2009
Page 20 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[VER6] Every UBL schema module major version number MUST be a sequentially as-
signed integer greater than zero.

The value of <major> is "1" for the first release of a namespace. For example, the namespace URI for
the first major release of the Invoice domain has the form:

urn:oasis:names:specification:ubl:schema:xsd:Invoice-1

Subsequent major releases increment the value by 1. For example, the second major release of the In-
voice domain has the URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

The rule for minor version releases is as follows:

[VER4] Every minor version release of a UBL schema module MUST have a document-
id of the form <modulename>-<major>

For example, the fifth minor version of the release based on the second major release mentioned above
will have the URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

As can be seen, both the rule and the example for the minor version releases is exactly the same as
that for the major version. There is even a rule stating this directly.

[VER5] For UBL minor version changes, the namespace name MUST not change.

However, minor versioning is handled differently in the xsd:schema element.

3.6.2. Versioning representation in the xsd:schema element

UBL uses the version attribute in the xsd:schema element to convey minor version releases of the
schema module.

[VER12] Every major version release of a UBL schema module MUST capture its version
number in the xsd:version attribute of the xsd:schema element in the form <major>.0

[VER14] Every minor version release of a UBL schema module MUST capture its version
information in the xsd:version attribute in the form <major>.<non-zero>

[VER7] Every UBL schema module minor version number MUST be a sequentially as-
signed, non-negative integer.

3.6.3. Instance Versioning

UBL version information can also be captured in instances of UBL document schemas via the
ubl:UBLVersionID element.

[VER15] Every UBL document schema MUST declare an optional element named
UBLVersionID immediately following the optional UBL Extensions element.

3.7. Modularity Strategy
There are many possible mappings of XML schema constructs to namespaces and to files. In addition
to the logical taming of complexity that namespaces provide, dividing the physical realization of schemas
into multiple schema modules provides a mechanism whereby reusable components can be imported
as needed without the need to import complete schemas.

[SSM1] UBL schema expressions MAY be split into multiple schema modules.

6 November 2009
Page 21 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Schema module A schema document containing type definitions and element declara-
tions intended to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather,
there are a number of UBL document schemas used to perform different business functions. UBL is
structured so that users can reuse individual document schemas without having to import the entire UBL
document schema library. A document schema can import individual modules without having to import
all UBL schema modules. Each document schema defines its own dependencies. The UBL schema
modularity approach reflects logical associations that exist between document and internal schema
modules,and it ensures that individual modules can be reused to the maximum extent possible. If the
contents of a namespace are small enough then they can be completely specified within a single docu-
ment. Document and internal schema modules are shown in Figure 5.

Figure 5. UBL Schema Modularity Model

Figure 5 shows the one-to-one correspondence between document schemas and namespaces. It also
shows the one-to-one correspondence between files and schema modules. As shown here, there are
two types of schemas in the UBL library — document schemas and schema modules. Both types of
schemas are conformant with XSD.

Each document schema occupies its own namespace and may include zero or more internal modules.
The namespace for a document schema includes any of its internal modules. Schema modules that are
not internal to a document occupy a different namespace, as in the qdt, cbc, and cac schema modules.

6 November 2009
Page 22 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 6. Schema Modules

Another way to visualize the structure is by example. Figure 6 depicts instances of the various schema
modules from the previous diagram.

Figure 7 shows how the Order and Invoice document schemas import the CommonAggregateComponents
and CommonBasicComponents external schema modules. It also shows how the Order document
schema may include internal schema modules — modules local to that namespace. The clear boxes
show how the various schema modules are grouped into namespaces.

Any UBL schema module, be it a document schema or an internal module, may import other document
schemas from other namespaces.

6 November 2009
Page 23 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Figure 7. Order and Invoice Schema Import of Common Component Schema
Modules

If two namespaces are mutually dependent, then importing one will cause the other to be imported as
well. For this reason there must not exist circular dependencies between UBL schema modules. By ex-
tension, there must notexist circular dependencies between namespaces. A namespace A dependent

6 November 2009
Page 24 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

upon type definitions or element declarations defined in another namespace B must import B's document
schema.

[SSM2] A schema in one UBL namespace that is dependent upon type definitions or
element declarations in another schema namespace MUST only import that schema.

An additional rule is necessary to address potentially circular dependencies as well — schema A must
not import internal schema modules of schema B.

[SSM3] A schema in one UBL namespace that is dependent upon type definitions or
element declarations defined in another schema namespace MUST NOT import the
internal schema modules of that schema.

3.7.2. Internal and External Schema Modules

As illustrated in figures 5 and 6, UBL schema modules are either internal or external.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace
of their parent schema. All internal schema modules are accessed using xsd:include.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their
corresponding document schema.

UBL internal schema modules must have semantically meaningful names. Internal schema module
names identify the parent schema module, the internal schema module function, and the schema module
itself.

[SSM7] Each UBL internal schema module MUST be named <ParentSchemaModule-
Name><InternalSchemaModuleFunction>

Example: ExtensionContentDatatype

3.7.4. External Schema Modules

External schema modules are used to group complex types and global elements that are used in multiple
document schemas.

[SSM8] UBL schema modules MAY be created for reusable components.

UBL external schema modules organize the reusable components into logical groupings. At a minimum,
UBL defines the following external schema modules:

1. UBL CommonAggregateComponents
2. UBL CommonBasicComponents
3. UBL Qualified Datatypes

In addition, UBL 2.0 uses the following schema modules provided by UN/CEFACT.

1. CCTS Core Component Types
2. CCTS Unqualified Datatypes
3. Multiple UN/CEFACT Code Lists

Furthermore, where extensions are used, an extension schema module must be provided.This schema
module must be named:

CommonExtensionComponents

6 November 2009
Page 25 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[SSM21] The UBL extension schema module MUST be identified as CommonExtension-
Components in the document name within the schema header.

To ensure consistency in expressing the CommonExtensionComponents schema module, a namespace
prefix that will be used in all UBL schemas must be defined.

[NMS18] The CommonExtensionComponents schema module namespace MUST be
represented by the namespace prefix "ext" when referenced in other schemas.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library contains a wide variety of CCTS ABIEs, each defined as an xsd:complexType. Although
some of these complex types may be used in only one UBL schema, many will be reused in multiple
UBL schema modules. For ease of reuse, all the ABIE xsd:complexType definitions used in more than
one UBL schema module are grouped into a single schema module of their own.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST
be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified
as CommonAggregateComponents in the document name within the schema header.

[NMS7] The UBL Common Aggregate Components schema module MUST reside in
its own namespace.

[NMS8] The UBL Common Aggregate Components schema module namespace MUST
be represented by the namespace prefix "cac" when referenced in other schemas.

3.7.4.2. UBL CommonBasicComponents Schema Module

The UBL library contains a wide variety of CCTS BBIEs based on CCTS BBIE Properties. BBIE Properties
are reusable in multiple BBIEs, and each is defined as an xsd:complexType. Although some of these
complex types may be used in only one UBL schema, many will be reused in multiple UBL schema
modules. For ease of reuse, all the BBIE Property xsd:complexType definitions used in more than one
UBL schema module are grouped into a single schema module of their own.

[SSM11] A schema module defining all UBL Common Basic Components MUST be
created.

[SSM12] The UBL Common Basic Components schema module MUST be identified
as CommonBasicComponents in the document name within the schema header.

[NMS9] The UBL Common Basic Components schema module MUST reside in its own
namespace.

[NMS10] The UBL Common Basic Components schema module namespace MUST be
represented by the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

CCTS defines an authorized set of Core Component Types that convey content and supplementary in-
formation related to exchanged data. As the basis for all higher level CCTS models, these Core Com-
ponent Types are reusable in every UBL schema. The complex type definitions for all CCTS Core
Component Types are collected in the Core Component Type schema module published by UN/CEFACT.

3.7.4.4. CCTS Qualified and Unqualified Datatypes

CCTS defines a set of primary and secondary Representation Terms that describe the form of every
CCTS BIE. These Representation Terms are instantiated in the form of data types that are reusable in
every UBL schema. Each CCTS Datatype defines the set of values that can be used for its associated

6 November 2009
Page 26 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

CCTS BBIE Property. These datatypes may be unqualified or qualified, that is to say, unrestricted or
restricted.We refer to these two categories as CCTS Unqualified Datatypes and UBL Qualified Datatypes.

3.7.4.4.1. CCTS Unqualified Datatypes Schema Module

UBL 2.0 uses the UN/CEFACT Unqualified Data Type schema module, including the code list schema
modules that it imports. When the CCTS Unqualified Datatypes schema module is referenced, the "udt"
namespace prefix must be used.

[NMS17] The CCTS Unqualified Datatypes schema module namespace MUST be
represented by the prefix "udt" when referenced in other schemas.

Note: It is the intention of the UBL TC to move the UN/CEFACT code lists out of the UDT module and
into the set of other UBL code lists in versions of UBL following 2.0. See Section 6.

3.7.4.4.2. UBL Qualified Datatypes Schema Module

UBL Qualified Datatypes are defined by specifying restrictions on CCTS Unqualified Datatypes. All the
UBL Qualified Datatype definitions are collected in a single schema module named QualifiedDatatypes
that imports the CCTS UnqualifiedDatatypes module.

[SSM18] A schema module defining all UBL Qualified Datatypes MUST be created.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as Quali-
fiedDatatypes in the document name in the schema header.

[SSM20] The UBL Qualified Datatypes schema module MUST import the CCTS Unqual-
ified Datatypes schema module.

[NMS15] The UBL Qualified Datatypes schema module MUST reside in its own
namespace.

To ensure consistency in expressing the UBL Qualified Datatypes schema module, a namespace prefix
that will be used in all UBL schemas must be defined.

[NMS16] The UBL Qualified Datatypes schema module namespace MUST be repres-
ented by the namespace prefix "qdt" when referenced in other schemas.

3.8. Annotation and Documentation Requirements
Annotation is an essential tool in understanding and reusing a schema. UBL, as an implementation of
CCTS, requires an extensive amount of annotation to provide all necessary metadata required by the
CCTS specification.

3.8.1. Schema Annotation

The annotation needed to satisfy CCTS requirements considerably increases the size of the UBL
schemas, with undesirable performance impacts.To address this issue, a cut-down alternative has been
developed for each UBL schema. A normative, fully annotated schema is provided to facilitate greater
understanding of the schema module and its components and to meet the CCTS metadata requirements.
A non-normative schema devoid of annotation is provided that can be used at run-time if required to
meet processor resource constraints.

[GXS2] UBL MUST provide two schemas for each transaction. One normative schema
shall be fully annotated. One non-normative schema shall be a run-time schema devoid
of documentation.

6 November 2009
Page 27 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

3.8.2. Embedded Documentation

UBL spreadsheets contain all necessary information to produce fully annotated schemas, including in-
formation about each UBL BBIE. UBL annotations consist of information currently required by Section
7 of the CCTS and supplemented by metadata from the UBL spreadsheet models.

The absence of an optional annotation from the structured set of annotations in a documentation element
implies the use of the default value. For example, there are several annotations relating to context, such
as CCTS Business Context and CCTS Industry Context; their absence implies that their value is "all
contexts".

The following rules describe the documentation requirements for each UBL Qualified Datatype and UBL
Unqualified Datatype definition. None of these documentation rules apply in the case of extension where
the UBL Extensions element is used.

[DOC1] The xsd:documentation element for every data type MUST contain a set of
annotations in the following order (as defined in CCTS Section 7):

• DictionaryEntryName (mandatory)
• Version (mandatory)
• Definition (mandatory)
• RepresentationTerm (mandatory)
• QualifierTerm(s) (mandatory, where used)
• UniqueIdentifier (mandatory)
• Usage Rule(s) (optional)
• Content Component Restriction (optional)

[DOC2] A datatype definition MAY contain one or more Content Component Restrictions
to provide additional information on the relationship between the datatype and its cor-
responding Core Component Type. If used, the Content Component Restrictions MUST
contain a set of annotations in the following order:

• RestrictionType (mandatory): Defines the type of format restriction that applies to
the Content Component.

• RestrictionValue (mandatory): The actual value of the format restriction that applies
to the Content Component.

• ExpressionType (optional): Defines the type of the regular expression of the restriction
value.

[DOC3] A datatype definition MAY contain one or more Supplementary Component
Restrictions to provide additional information on the relationship between the datatype
and its corresponding Core Component Type. If used, the Supplementary Component
Restrictions MUST contain a set of annotations in the following order:

• SupplementaryComponentName (mandatory): Identifies the Supplementary Com-
ponent to which the restriction applies.

• RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for
the Supplementary Component.

The following rule describes the documentation requirements for each Basic Business Information Entity
definition.

[DOC4] The xsd:documentation element for every BBIE MUST contain a set of annota-
tions in the following order:

• ComponentType (mandatory): The type of component to which the object belongs.
For BBIEs this MUST be "BBIE".

• DictionaryEntryName (mandatory): The official name of a BBIE.
• Version (optional): An indication of the evolution over time of the BBIE Entity.

6 November 2009
Page 28 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

• Definition (mandatory): The meaning of a BBIE.
• Cardinality (mandatory): Indicates whether the BBIE represents a not-applicable,

optional, mandatory, or repetitive characteristic of the Aggregate Business Information
Entity to which it belongs.

• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class containing the BBIE.
• PropertyTermQualifier (optional): A word or words which help define and differentiate

a BBIE.
• PropertyTerm (mandatory): Conveys the characteristic or Property of the Object

Class.
• RepresentationTerm (mandatory): Describes the form in which the BBIE is repres-

ented.
• DataTypeQualifier (optional): A meaningful name that differentiates the data type of

the BBIE from its underlying Core Component Type.
• DataType (mandatory): Defines the data type used for the BBIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the BBIE

is commonly known and used in the business.
• Examples (optional): Examples of possible values for the BBIE.

The following rule describes the documentation requirements for each CCTS Aggregate Business In-
formation Entity definition.

[DOC5] The xsd:documentation element for every ABIE MUST contain a set of annota-
tions in the following order:

• ComponentType (mandatory): The type of component to which the object belongs.
For ABIEs this MUST be "ABIE".

• DictionaryEntryName (mandatory): The official name of the ABIE .
• Version (optional): An indication of the evolution over time of the ABIE.
• Definition (mandatory): The meaning of the ABIE.
• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class represented by the ABIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the ABIE

is commonly known and used in the business.

The following rule describes the documentation requirements for each CCTS Association Business In-
formation Entity definition.

[DOC6] The xsd:documentation element for every ASBIE element declaration MUST
contain a set of annotations in the following order:

• ComponentType (mandatory): The type of component to which the object belongs.
For ASBIEs this MUST be "ASBIE".

• DictionaryEntryName (mandatory): The official name of the ASBIE.
• Version (optional): An indication of the evolution over time of the ASBIE.
• Definition (mandatory): The meaning of the ASBIE.
• Cardinality (mandatory): Indicates whether the ASBIE represents an optional, man-

datory, or repetitive assocation.
• ObjectClass (mandatory): The Object Class containing the ASBIE.
• PropertyTermQualifier (optional): A word or words which help define and identify

the ASBIE.
• PropertyTerm (mandatory): Represents the ASBIE contained by the Association

Business Information Entity.
• AssociatedObjectClassQualifier (optional): The Associated Object Class Qualifiers

describe the "context" of the relationship with another ABIE.That is, it is the role the
contained ABIE plays within its association with the containing ABIE.

• AssociatedObjectClass (mandatory):The Object Class at the other end of the asso-
ciation. It represents the ABIE contained by the ASBIE.

6 November 2009
Page 29 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[DOC8] The xsd:documentation element for every Supplementary Component attribute
declaration MUST contain a set of annotations in the following order:

• Name (mandatory): Name in the Registry of a Supplementary Component of a Core
Component Type.

• Definition (mandatory): An explanation of the meaning of a Supplementary Compon-
ent and its relevance for the related Core Component Type.

• Primitive type (mandatory): The PrimitiveType to be used for the representation of
the value of a Supplementary Component.

• Possible Value(s) (optional): Possible values of Supplementary Components.

[DOC9] The xsd:documentation element for every Supplementary Component attribute
declaration containing restrictions MUST include the following additional information
appended to the information required by DOC8:

• Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Sup-
plementary Component.

6 November 2009
Page 30 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

4. Naming Rules
The rules in this section make use of the following special concepts related to XML elements.

1. Top-level element: An element that encloses a whole UBL business message. Note that UBL
business messages might be carried by messaging transport protocols that themselves have higher-
level XML structure. Thus, a UBL top-level element is not necessarily the root element of the XML
document that carries it.

2. Lower-level element: An element that appears inside a UBL business message. Lower-level elements
consist of intermediate elements and leaf level elements.

3. Intermediate element: An element not at the top level that is of a complex type, containing only
other elements and possibly attributes, but no mixed content.

4. Leaf element: An element containing only character data (though it may also have attributes). Note
that, because of the XSD mechanisms involved, a leaf element that has attributes must be declared
as having a complex type, but a leaf element with no attributes may be declared with either a simple
type or a complex type.

4.1. General Naming Rules
In keeping with CCTS, UBL uses English as its normative language.

[GNR1] UBL XML element and type names MUST be in the English language, using
the primary English spellings provided in the Oxford English Dictionary.

CCTS adheres to ISO/IEC 11179. The UBL component library is also fully conformant to those rules.
The UBL XSD instantiation of the UBL component library in some cases refines the CCTS naming rules
to leverage the capabilities of XML and XSD. Specifically, truncation rules are applied to allow for reuse
of element names across parent element environments and to maintain brevity and clarity. Following
11179, CCTS mandates three-part Dictionary Entry Names (DENs) for information items. As an imple-
mentation of CCTS, UBL assigns an official DEN to each item and then converts this to the name in
UBL schemas using determinate transformation rules.

[GNR2] UBL XML element and type names MUST be consistently derived from CCTS
conformant Dictionary Entry Names.

DENs contain spaces and characters not allowed by XML and therefore not appropriate for UBL XML
component names.

[GNR3] UBL XML element and type names constructed from CCTS Dictionary Entry
Names MUST NOT include periods, spaces, other separators, or characters not allowed
by XSD.

Acronyms and abbreviations impair interoperability and therefore are to be avoided to the maximum
extent practicable. Since some abbreviations will inevitably be necessary, UBL maintains a normative
list of authorized acronyms and abbreviations. Creation and maintainance of this list belongs to content
definition rather than Naming and Design, but for convenience, the list used for UBL 2.0 is provided in
Appendix B.

[GNR4] UBL XML element names and simple and complex type names MUST NOT
use acronyms, abbreviations, or other word truncations, except those in the list of ex-
ceptions maintained and published by the UBL TC.

The exception list is maintained and tightly controlled by UBL. Additions are made only when necessary.
Once approved, an acronym or abbreviation must always be used to replace the term it stands for.

6 November 2009
Page 31 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST always
be used in place of the word or phrase they represent.

Generally speaking, the names for UBL XML constructs must always be singular. The only exception
is where the concept itself is plural.

[GNR7] UBL XML element and type names MUST be in singular form unless the concept
itself is plural.

Approved acronyms and abbreviations must be used consistently across documents.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST ap-
pear in all lower case. Acronyms and abbreviations elsewhere in an attribute name
MUST appear in upper case.

[GNR11] Acronyms and abbreviations MUST appear in all upper case for all element
and type names.

XML is case sensitive. Consistency in the use of case for a specific XML component (element, type,
attribute) is essential to ensure that every occurrence of a component is treated as the same. Capitaliz-
ation helps readability and consistency. The ebXML architecture document specifies a standard use of
upper and lower camel case for expressing XML elements and attributes, respectively. Following this
practice, UBL element and type names use UpperCamelCase (UCC), and attribute names use lower-
CamelCase (LCC).

[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming elements
and types.

Example 2.

CurrencyBaseRate
CityNameType

[GNR9] The lowerCamelCase (LCC) convention MUST be used for naming attributes.

Example 3.

currencyID
unitCode

4.2.Type Naming Rules
UBL specifies naming rules for complex types based on CCTS ABIEs, BBIEs, and BBIE Properties.The
use of unique CCTS Dictionary Entry Names for these constructs disambiguates their meanings and
prevents duplication.

4.2.1. Complex Type Names for CCTS Aggregate Business Inform-
ation Entities (ABIEs)

UBL xsd:complexType names for ABIEs are derived from their DENs by removing separators to follow
general naming rules and appending the suffix "Type" to replace the word "Details".

[CTN1] A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS
Dictionary Entry Name with the separators removed and with the "Details" suffix replaced
with "Type".

6 November 2009
Page 32 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Example 4.

UBL xsd:complexTypeCCTS Aggregate Business Information Entity

AddressTypeAddress. Details

FinancialAccountTypeFinancial Account. Details

4.2.2. Complex Type Names for CCTS Basic Business Information
Entity (BBIE) Properties

All BBIE Properties are reusable across multiple BBIEs. The CCTS does not specify, but implies, that
BBIE Property names are the reusable property term and representation term of the family of BBIEs
that are based on them. The UBL xsd:complexType names for BBIE Properties are derived from the
shared Property and Representation terms portion of the DENs in which they appear by removing sep-
arators to follow general naming rules and appending the suffix "Type".

[CTN2] A UBL xsd:complexType name based on a CCTS BBIE Property MUST be the
CCTS Dictionary Entry Name shared Property Term and its qualifiers and the Repres-
entation Term of the BBIE with the separators removed and with the "Type" suffix ap-
pended after the Representation Term.

Example 5.

UBL xsd:complexTypeCCTS Business Information Entity Property

DeclaredCustomsValueAmountTypeDeclared Customs_ Value. Amount

GrossWeightMeasureTypeGross_ Weight. Measure

[CTN6] A UBL xsd:complexType name based on a CCTS BBIE Property and with a
CCTS BBIE Representation Term of "Text" MUST have the word "Text" removed from
the end of its name.

Example 6.

UBL xsd:complexTypeCCTS Basic Business Information Entity

AgencyNameTypeAgency Name. Text

FloorTypeFloor. Text

[CTN7] A UBL xsd:complexType name based on a CCTS BBIE Property and with a
CCTS BBIE Representation Term of "Identifier" MUST replace "Identifier" with "ID" at
the end of its name.

Example 7.

UBL xsd:complexTypeCCTS Basic Business Information Entity

AgencyIDTypeAgency Identifier. Identifier

VesselIDTypeVessel Identifier. Identifier

[CTN8] A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove
all duplication of words that occurs as a result of duplicate Property Terms and Repres-
entation Terms.

6 November 2009
Page 33 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Example 8.

UBL xsd:complexTypeCCTS Basic Business Information Entity

IssueDateTypeIssue Date. Date

IssueTimeTypeIssue Time. Time

4.3. Element Naming Rules
As shown in Figure 3, UBL elements are created for each UBL ABIE, BBIE, and ASBIE.

4.3.1. Element Names for CCTS ABIEs (ABIEs)

[ELN1] A UBL global element name based on a CCTS ABIE MUST be the same as the
name of the corresponding xsd:complexType to which it is bound, with the word "Type"
removed.

For example, a UBL xsd:complexType name based on the ABIE Party. Details will be PartyType. The
global element based on PartyType will be named Party.

Example 9.

<xsd:element name="Party" type="PartyType"/>
 <xsd:complexType name="PartyType">
 <xsd:annotation>
 <!-- Documentation goes here -->
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="PartyIdentification" minOccurs="0" maxOccurs="unbounded">
 ...
 </xsd:element>
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>

4.3.2. Element Names for CCTS BBIE Properties

The same naming concept used for ABIEs applies to BBIE Properties.

[ELN2] A UBL global element name based on a CCTS BBIE Property MUST be the
same as the name of the corresponding xsd:complexType to which it is bound, with the
word "Type" removed.

6 November 2009
Page 34 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Example 10.

<!--===== Basic Business Information Entity Type Definitions =====-->
<xsd:complexType name="ChargeIndicatorType">
 ...
</xsd:complexType>
 ...
<!--===== Basic Business Information Entity Property Element Declarations =====-->
<xsd:element name="ChargeIndicator" type="ChargeIndicatorType"/>

4.3.3. Element Names for CCTS ASBIEs

An ASBIE is not a class like an ABIE or a BBIE Property that is reused as a BBIE. Rather, it is an asso-
ciation between two classes.Therefore, an element representing an ASBIE does not have its own unique
xsd:complexType. Instead, when an element representing an ASBIE is declared, the element is bound
to the xsd:complexType of its associated ABIE by referencing the ABIE's global element declaration.

[ELN3] A UBL global element name based on a CCTS ASBIE MUST be the CCTS
ASBIE Dictionary Entry Name Property Term and its qualifiers and the Object Class
Term and qualifiers of its associated CCTS ABIE. All CCTS Dictionary Entry Name
separators MUST be removed.

Example 11.

Global Element NameAssociated ABIE Object ClassCCTS ASBIE Property Term

BuyerContactContact.DetailsBuyer_Contact

OriginAddressAddress.DetailsOrigin_Address

4.4. Attributes in UBL
As a transaction-based XML exchange format, UBL significantly restricts the use of XML attributes. At-
tribute usage is relegated to supplementary components only; all "primary" business data appears ex-
clusively in element content. Attributes are defined in the UN/CEFACT Unqualified Datatype schema
module.

6 November 2009
Page 35 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

5. Declarations and Definitions
In XSD, elements are defined in terms of complex or simple types, and attributes are defined in terms
of simple types. The rules in this section govern the consistent structuring of these types and their doc-
umentation in the UBL Library.

5.1.Type Definitions

5.1.1. General Type Definitions

Since UBL elements and types are intended to be reusable, all types must be named. This permits
other types to establish elements that reference these types, and also supports the use of extensions
for the purposes of versioning and customization.

[GTD1] All types MUST be named.

Example 12.

<xsd:complexType name="QuantityType">
 ...
</xsd:complexType>

UBL disallows the use of the type xsd:anyType, because this feature permits the introduction of potentially
unknown types into an XML instance.

[GTD2] The predefined XML schema type xsd:anyType MUST NOT be used.

5.1.2. Simple Types

CCTS provides a set of constructs called Core Component Types (CCTs) for the modeling of basic data.
These are represented in UBL with a library of complex types. Most "simple" data is represented as
property sets defined according to the CCTs, made up of content components and supplementary
components. In most cases, the supplementary components are expressed as XML attributes, the
content component becomes element content, and the CCT is represented with an xsd:complexType.
There are exceptions to this rule in those cases where all of a CCT's properties can be expressed without
the use of attributes. In these cases, an xsd:simpleType is used.

UBL does not define its own simple types. These are defined in the UN/CEFACT Unqualified Datatype
schema module. UBL defines restrictions of these simple types in the UBL Qualified Datatype schema
module.

5.1.3. Complex Types

Since even simple datatypes are modeled as property sets in most cases, the XML expression of these
models primarily employs xsd:complexType. To facilitate reuse, versioning, and customization, all
complex types are named. In the UBL model, ABIEs are considered classes (objects) .

[CTD1] For every class identified in the UBL model, a named xsd:complexType MUST
be defined.

Example 13.

<xsd:complexType name="BuildingNameType">
</xsd:complexType>

6 November 2009
Page 36 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Every class identified in the UBL model consists of properties.These properties are either ASBIEs, when
the property represents another class, or BBIEs.

[CTD25] For every CCTS BBIE Property identified in the UBL model, a named
xsd:complexType MUST be defined.

5.1.3.1. Aggregate Business Information Entities (ABIEs)

An ABIE encapsulates the relationship between a class (the ABIE) and its properties (those data items
contained within the ABIE). UBL represents this relationship by defining an xsd:complexType for each
ABIE with its properties represented as a sequence of references to global elements.

[CTD2] Every CCTS ABIE xsd:complexType definition content model MUST contain an
xsd:sequence element containing the appropriate global element declarations.

Example 14.

<xsd:complexType name="AddressType">
 ...
 <xsd:sequence>
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
</xsd:complexType>

5.1.3.2. Basic Business Information Entities (BBIEs)

In accordance with CCTS, all BBIEs have a primary or secondary Representation Term. Representation
Terms are expressed in the UBL Model as Unqualified Datatypes bound to a Core Component Type
that describes their structure. In addition to the Unqualified Datatypes defined in CCTS, UBL has defined
a set of Qualified Datatypes that are derived from the CCTS Unqualified Datatypes. The following set
of rules specifies the way these relationships are expressed in the UBL XML library. As discussed above,
BBIE Properties are represented with complex types.Within these are xsd:simpleContent elements that
extend the Datatypes.

[CTD3] Every CCTS BBIE Property xsd:complexType definition content model MUST
contain an xsd:simpleContent element.

[CTD4] Every CCTS BBIE Property xsd:complexType content model xsd:simpleContent
element MUST consist of an xsd:extension element.

[CTD5] Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST
be the UN/CEFACT Unqualified Datatype or UBL Qualified Datatype as appropriate.

Example 15.

<xsd:complexType name="StreetNameType">
 <xsd:simpleContent>
 <xsd:extension base="udt:NameType"/>
 </xsd:simpleContent>
</xsd:complexType>

6 November 2009
Page 37 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

5.1.3.3. Datatypes

There is a one-to-one relationship between CCTS CoreComponentTypes and CCTS PrimaryRepresent-
ationTerms. Additionally, there are several CCTS SecondaryRepresentationTerms that are semantic
refinements of their parent CCTS PrimaryRepresentationTerms. There is a CCTS UnqualifiedDataType
for each CCTS PrimaryRepresentationTerm or CCTS SecondaryRepresentationTerm. In the UBL XML
Library, each CCTS UnqualifiedDatatype is expressed as complex or simple type that is of the type of
its corresponding CCTS CoreComponentType. UBL uses the CCTS UnqualifiedDatatypes that are
provided by the UN/CEFACT Unqualified Datatype (UDT) schema module.

5.1.3.3.1. Qualified Datatypes

The data types defined in the Unqualified Datatype (UDT) schema module are intended to be suitable
as the xsd:base types for some, but not all BBIEs. As business process modeling reveals the need for
specialized data types, new qualified data types will need to be defined. These new CCTS Qualified
Datatypes must each be based on a CCTS Unqualified Datatype and must represent a semantic or
technical restriction of the CCTS Unqualified Datatype. Technical restrictions must be implemented as
an xsd:restriction or as a new xsd:simpleType if the supplementary components of the Qualified Datatype
map directly to the properties of a built-in XSD data type.

[CTD6] For every CCTS Qualified Datatype used in the UBL model, a named
xsd:complexType or xsd:simpleType MUST be defined.

[CTD20] A CCTS Qualified DataType MUST be based on an CCTS Unqualified Datatype
and add some semantic and/or technical restriction to the CCTS Unqualified Datatype.

[CTD21] The name of a UBL Qualified DataType MUST be the qualifier term followed
by the name of its base CCTS Unqualified DataType with separators and spaces re-
moved.

In accordance with rule GXS3, built-in XSD data types are used whenever possible.

[CTD22] Every Qualified Datatype based on an Unqualified Datatype xsd:complexType
whose supplementary components map directly to the properties of an XSD built-in
data type

MUST be defined as an xsd:simpleType,

MUST contain one xsd:restriction element, and

MUST include an xsd:base attribute that defines the specific XSD built-in data type re-
quired for the content component.

[CTD23] Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype
xsd:complexType whose supplementary components do not map directly to the properties
of an XSD built-in data type

MUST be defined as an xsd:complexType,

MUST contain one xsd:simpleContent element,

MUST contain one xsd:restriction element, and

MUST include the Unqualified Datatype as its xsd:base attribute.

[CTD24] Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype
xsd:simpleType

MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute.

6 November 2009
Page 38 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

5.1.3.4. Core Component Types

UBL uses UN/CEFACT's Core Component Type schema module.

5.2. Element Declarations

5.2.1. Elements Bound to Complex Types

The binding of UBL elements to their xsd:complexTypes is based on the associations identified in the
UBL model. For the BBIEs and ABIEs, the UBL elements are directly associated to their corresponding
xsd:complexTypes.

[ELD3] For every class and property identified in the UBL model, a global element bound
to the corresponding xsd:complexType MUST be declared.

Example 16.

For the Party.Details object class, a complex type/global element declaration pair is created through the
declaration of a Party element that is of type PartyType.

The element thus created can be reused in the building of new business messages. The complex type
thus created can be used through the declaration of new elements of that type in the building of both
new and contextualized business messages.

Example 17.

<xsd:element name="SupplierParty" type="SupplierPartyType"/>
 <xsd:complexType name="SupplierPartyType"/>
 ...
</xsd:complexType>

5.2.2. Elements Representing ASBIEs

An ASBIE is not a class like an ABIE. Rather, it is an association between two classes, and therefore
the element declaration binds the element to the xsd:complexType of the associated ABIE. There are
two types of ASBIEs — those that have qualifiers in the object class, and those that do not.

[ELD4] When a CCTS ASBIE is unqualified, it is bound via reference to the global CCTS
ABIE element with which it is associated.

[ELD11] When a CCTS ASBIE is qualified, a new element MUST be declared and bound
to the xsd:complexType of its associated CCTS ABIE.

5.3. Code List Import
[ELD6] The code list xsd:import element MUST contain the namespace and schema
location attributes.

5.4. Empty Elements
[ELD7] Empty elements MUST not be declared, except in the case of extension where
the UBL Extensions element is used.

6 November 2009
Page 39 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

6. Code Lists
The following rules apply to the use of code lists in UBL.

[CDL1] All UBL codes MUST be part of a UBL or externally maintained code list.

The majority of code lists are owned and maintained by external agencies. UBL makes maximum use
of such external code lists where they exist.

[CDL2] The UBL Library SHOULD identify and use external standardized code lists
rather than develop its own UBL-native code lists.

In some cases, UBL may extend an existing code list to meet specific business requirements. In others
cases, UBL may create and maintain a code list where a suitable code list does not exist in the public
domain. Both of these types of code lists would be considered UBL-internal code lists.

[CDL3] The UBL Library MAY design and use an internal code list where an existing
external code list needs to be extended, or where no suitable external code list exists.

6 November 2009
Page 40 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

7. Miscellaneous XSD Rules
As a business standard vocabulary, UBL requires consistency in its development. The number of UBL
schema developers will expand over time.To ensure consistency, it is necessary to address the optional
features in XSD that are not addressed elsewhere.

7.1. xsd:simpleType
XSD provides for 44 built-in data types expressed as simple types. For maximum reuse, these built-in
simple types should be used wherever possible.

[GXS3] Built-in xsd:simpleTypes SHOULD be used wherever possible.

7.2. Namespace Declaration
XSD allows any prefixes to be used in referencing its namespaces. To ensure consistency, UBL has
adopted the generally accepted convention of using the "xsd" prefix for the XSD namespace.

[GXS4] All XSD constructs in UBL schema and schema modules MUST contain the
following namespace declaration on the xsd:schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

7.3. xsd:substitutionGroup
The xsd:substitutionGroup feature enables a type definition to identify substitution elements in a group.
Although a useful feature in document-centric XML applications, this feature is not used by UBL.

[GXS5] The xsd:substitutionGroup feature MUST NOT be used.

7.4. xsd:final
UBL does not use extensions in its normative schemas. Extensions are allowed by customizers as outlined
in the Guidelines for Customization. In cases where type definitions are inappropriate for any customiz-
ation, the xsd:final attribute is used.

[GXS6] The xsd:final attribute MUST be used to control extensions where there is a
desire to prohibit further extensions.

7.5. xsd: notation
The UBL schema model does not require or support the use of xsd:notation.

[GXS7] xsd:notation MUST NOT be used.

7.6. xsd:all
When xsd:all is used, elements can occur in any order, are always optional, and can never occur more
than once. Such restrictions are inconsistent with the applications of UBL.

[GXS8] xsd:all MUST NOT be used.

6 November 2009
Page 41 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

7.7. xsd:choice
xsd:choice allows one of a set of alternatives to appear in a document instance. This is useful in some
contexts but xsd:choice cannot be extended and therefore is not recommended.

[GXS9] The xsd:choice element SHOULD NOT be used where customization and ex-
tensibility are a concern.

7.8. xsd:include
xsd:include may be used in accordance with rule GXS10.

[GXS10] xsd:include can only be used when the including schema is in the same
namespace as the included schema.

7.9. xsd:union
The xsd:union feature provides a mechanism whereby a datatype is created as a union of two or more
existing datatypes. As UBL strictly adheres to the use of CCTS Datatypes that are explicitly declared in
the UBL library, this feature is inappropriate except for code lists.

[GXS11] The xsd:union technique MUST NOT be used except for code lists.

7.10. xsd:appinfo
The xsd:appinfo feature is used by schemas to convey processing instructions to a processing application,
stylesheet, or other tool. Some users of UBL believe that this technique poses a security risk and have
employed techniques for stripping xsd:appinfo from schemas. As UBL is committed to ensuring the
widest possible target audience for its XML library, this feature is used only to convey information.

[GXS12] UBL schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST be
used only to convey non-normative information.

7.11. xsd:schemaLocation
UBL is an international standard that will be used in perpetuity by companies around the globe. It is im-
portant that these users have unfettered access to all UBL schemas.

[GXS15] Each xsd:schemaLocation attribute declaration MUST contain a system-
resolvable URL, which at the time of release from OASIS shall be a relative URL refer-
encing the location of the schema or schema module in the release package.

7.12. xsd:nillable
[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL declared
element.

7.13. xsd:any
UBL disallows the use of xsd:any because this feature permits the introduction of unknown attributes
into an XML instance. UBL intends that all constructs within an instance be governed by the schemas
describing that instance, and therefore xsd:any is not allowed outside of the ExtensionContentType
definition.

[GXS14] xsd:any MUST NOT be used except within the ExtensionContentType type
definition, and with xsd:processContents= "skip" for non-UBL namespaces.

6 November 2009
Page 42 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

7.14. Extension and Restriction
UBL recognizes the value of supporting extension and restriction of its core schema library by customizers.
The UBL schema extension and restriction recommendations are discussed in the Guidelines for the
Customization of UBL 1.0 Schemas (SchCust) available as part of the UBL 1.0 Standard.

[GXS13] Complex type extension or restriction MAY be used where appropriate.

6 November 2009
Page 43 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

8. Instance Documents
In addition to the UBL 2.0 document constraints formally expressed in the schemas, UBL mandates
several other rules governing conformant UBL 2.0 instances that cannot be expressed using XSD.These
additional UBL rules address instance validation, character encoding, and empty elements.

Note that these rules first appeared in the OASIS UBL 1.0 and UBL 1.0 NDR Standards, as well as in
the Universal Business Language v2.0 release package. They are copied here for reference and put in
this section to separate them from the schema-specific rules contained in the rest of the NDR.

The UBL library and document schemas are targeted at supporting business information exchanges.
Business information exchanges require a high degree of precision to ensure that application processing
and corresponding business cycle actions are reflective of the purpose, intent, and information content
agreed to by both trading partners. Schemas provide the necessary mechanism for ensuring that instance
documents do in fact support these requirements.

[IND1] All UBL instance documents MUST validate to a corresponding UBL schema.

XML supports a wide variety of character encodings. Processors must understand which character en-
coding is employed in each XML document. XML assumes a default value of UTF-8 for character encod-
ing, but best practice is to always identify the character encoding being employed.

[IND2] All UBL instance documents MUST identify their character encoding within the
XML declaration.

Example:

<?xml version="1.0" encoding="UTF-8"?>

UBL, as an OASIS TC, is obligated to conform to agreements OASIS has entered into. OASIS is a liaison
member of the ISO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding Management
Group (MOUMG). Resolution 01/08 (MOU/MG01n83) requires the use of UTF-8.

[IND3] In conformance with ISO IEC ITU UN/CEFACT eBusiness Memorandum of Un-
derstanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as
agreed to by OASIS, all UBL XML SHOULD be expressed using UTF-8.

Example:

<?xml version="1.0" encoding="UTF-8"?>

Use of empty elements within XML instance documents is a source of controversy for a variety of reasons.
An empty element does not simply represent data that is missing. It may express data that is not applicable
for some reason, trigger the expression of an attribute, denote all possible values instead of just one,
mark the end of a series of data, or appear as a result of an error in XML file generation. Conversely,
missing data elements can also have meaning, for example, "data not provided by trading partner". In
information exchange environments, different trading partners may allow, require, or ban empty elements.
UBL has determined that empty elements do not provide the level of assurance necessary for business
information exchanges and therefore will not be used.

[IND5] UBL conformant instance documents MUST NOT contain an element devoid of
content or containing null values, except in the case of extension, where the UBLExten-
sionContent element is used.

To ensure that no attempt is made to circumvent rule IND5, UBL also prohibits attempting to convey
meaning by not conveying an element.

6 November 2009
Page 44 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

[IND6] The absence of a construct or data in a UBL instance document MUST NOT
carry meaning.

6 November 2009
Page 45 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

9. Conformance
This document was prepared for the internal use of the UBL 2.0 development effort and has no external
conformance implications. Any organization wishing to adapt the UBL 2.0 Naming and Design Rules to
its own use should specify conformance requirements in its version of this document.

6 November 2009
Page 46 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

A. Acknowledgements
The editors thank Betty Harvey and G. Ken Holman for their assistance in producing this document.

6 November 2009
Page 47 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

B. Code List Metadata (Informative)
Included here for convenience are some observations regarding instance-level code list metadata defined
in UBL 2.0 schemas for the information items governed by code lists. Note that what follows are not
UBL Naming and Design Rules but rather implications of UBL's use of the UN/CEFACT Unqualified
Data Type Schema Module.

For items based on the unqualified data type Amount, the attribute currencyID has the coded value, and
the instance-level metadata is one attribute:

currencyCodeListVersionID

For items based on the unqualified data type MeasureType, the attribute unitCode has the coded value,
and the instance-level metadata is one attribute:

unitCodeListVersionID

For items based on the unqualified data type QuantityType, the attribute unitCode has the coded value,
and the instance-level metadata consists of three attributes:

unitCodeListID
unitCodeListAgencyID
unitCodeListAgencyName

For an element named <xxxxxCode> based on the unqualified data type CodeType, the element has
the coded value, and the instance-level metadata consists of seven attributes:

listName
listID
listVersionID
listSchemeURI
listURI
listAgencyName
listAgencyID

For an element named <yyyyyID> based on the unqualified data type IdentifierType, the element has
the coded value, and the instance-level metadata consists of six attributes:

schemeName
schemeVersionID
schemeURI
schemeDataURI
schemeAgencyName
schemeAgencyID

All instance-level code list metadata attributes are optional and can be specified separately for each
coded value used; there are no global document-wide properties representing these attributes.

Any combination of allowable metadata attributes can be specified by the author of the UBL instance to
identify the semantics associated with the coded value in the information item. Absent any of these at-
tributes, an implementation must make its own judgements about the implied semantics of the code
based on the information available.

In some cases, an incomplete set of metadata attributes may be enough to uniquely identify an associated
code list. For example, a listSchemeURI or schemeURI value is probably sufficient to uniquely identify,
respectively, a code or identifier. A combination of listName or listID with listVersionID for a code, or
schemeName and schemeVersionID for an identifier, would probably also be sufficient.

6 November 2009
Page 48 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

In the extreme case, all code list information associated with a coded value may be missing; for example:

<cbc:DocumentCurrencyCode>USD</cbc:DocumentCurrencyCode>

There is no harm in omitting code list identification for this code value if the application can safely assume
that a value of "USD" for DocumentCurrencyCode means U.S. Dollar, which is usually a safe assumption
if the instance comes from a known trading partner.

Omission of code list metadata can be useful when it is desired to leave the exact version unspecified,
as for example when making updates to a particular code list within a particular trading community.
Omitting the metadata attributes associating instance data with a particular release of a code list makes
it unnecessary to change instance generation at the moment the update is deployed. This assumes, of
course, that such changes are being managed out-of-band by protocols within the community.

Identifying metadata should be included in the instance if the sender thinks the receiver might misinterpret
the code. And if an information item allows the union of two lists, and there happens to be an overlap
between the two lists such that one or more codes appear on both lists, then identifying metadata must
be used to unambiguously specify which code is intended.

6 November 2009
Page 49 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

C. UBL-approved Acronyms and Abbreviations
(Informative)
The information included in this appendix is historical and has been included for informational purposes
only.

Table C.1. Abbreviation and Acronym Table for UBL 2.0
CV2Credit Card Verification Numbering System

IDIdentifier

URIUniform Resource Identifier

UNDGUnited Nations Dangerous Goods

UBLUniversal Business Language

UUIDUniversally Unique Identifier

6 November 2009
Page 50 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

D.Technical Terminology (Informative)
A collection of related pieces of business information that together convey a
distinct business meaning in a specific Business Context. Expressed in model-

Aggregate Business In-
formation Entity (ABIE)

ling terms, it is the representation of an Object Class, in a specific Business
Context.

Adherence to business requirements, such as valid account numbers.Application-level valida-
tion

Using parts of the library of reusable UBL components to create a new kind of
business document type.

Assembly

Defines a context in which a business has chosen to employ an information
entity.

Business Context

The formal description of a specific business circumstance as identified by the
values of a set of Context Categories allowing different business circumstances
to be uniquely distinguished.

An unambiguously identified, specified, referenceable, registerable, and re-
useable scenario or scenario component of a business transaction.

Business Object

The term business object is used in two distinct but related ways, with slightly
different meanings for each usage:

In a business model, business objects describe its business context. The
business objects capture business concepts and express an abstract view of
the business's "real world". The term "modeling business object" is used to
designate this usage.

In a design for a software system or in program code, business objects reflect
how business concepts are represented in software.The term "system business
objects" is used to designate this usage.

The precise meaning of words from a business perspective.Business semantic(s)

A synonym under which the Core Component or Business Information Entity
is commonly known and used in the business. A Core Component or Business
Information Entity may be known by several business terms or synonyms.

Business Term

A description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class may use a set of interfaces to
specify collections of operations it provides to its environment.

Class

(OMG Distilled) Shows Static structure of concepts, types, and classes. Con-
cepts show how users think about the world; types show interfaces of software
components; classes show implementation of software components.

Class diagram

(Rational Unified Process) A diagram that shows a collection of declarative
(static) model elements, such as classes, types, and their contents and rela-
tionships.

Officially supported scheme to describe a given Context Category.Classification scheme

A schema document corresponding to a single namespace, which is likely to
include or import schema modules.

Document schema

A building block for the creation of a semantically correct and meaningful in-
formation exchange package. It contains only the information pieces necessary
to describe a specific concept.

Core Component

A Core Component which consists of one and only one Content Component
that carries the actual content plus one or more Supplementary Components

Core Component Type

6 November 2009
Page 51 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

giving an essential extra definition to the Content Component. Core Component
Types do not have business semantics.

(XSD) A descriptor of a set of values that lack identity and whose operations
do not have side effects. XSD data types include primitive pre-defined types

Data type

and user-definable types. Pre-defined types include numbers, string, and time.
User-definable types include enumerations.

(CCTS) Defines the set of valid values that can be used for a particular Basic
Core Component Property or Basic Business Information Entity Property. It is
defined by specifying restrictions on the Core Component Type that forms the
basis of the data type.

An individual entity satisfying the description of a class or type. In XML, an in-
dividual document of a certain type (a specific purchase order, invoice, etc.).

Instance

Additional validation checking of an instance, beyond what XSD makes avail-
able, that relies only on constraints describable in terms of the instance and

Instance constraint
checking

not additional business knowledge; e.g., checking co-occurrence constraints
across elements and attributes. Such constraints might be described using
Schematron, for example.

An element not at the top level that is of a complex type, only containing other
elements and attributes.

Intermediate element

A schema module that does not declare a target namespace.Internal schema module

An element containing only character data (though it may also have attributes).
Note that, because of the XSD mechanisms involved, a leaf element that has

Leaf element

attributes must be declared as having a complex type, but a leaf element with
no attributes may be declared with either a simple type or a complex type.

An element that appears inside a business message. Lower-level elements
consist of intermediate and leaf level.

Lower-level element

The logical data grouping (in a logical data model) to which a data element
belongs (ISO11179). The Object Class is the part of a Core Component's
Dictionary Entry Name that represents an activity or object in a specific Context.

Object Class

A schema module that declares a target namespace and is likely to include or
import schema modules.

Namespace schema
module

The set of rules that together comprise how the Dictionary Entry Name for Core
Components and Business Information Entities are constructed.

Naming convention

An XML Schema consists of components such as type definitions and element
declarations. These can be used to assess the validity of well-formed element

(XML) Schema

and attribute information items (as defined in [XSD]), and furthermore may
specify augmentations to those items and their descendants.

A schema that can be included or imported by other schemas.Schema module

Schema validation checking plus provision of default values and provision of
new infoset properties.

Schema processing

The process of programmatically checking a document instance for adherence
to an XSD schema.

Schema validation

Relating to meaning in language; relating to the connotations of words.Semantic

An element that encloses a whole UBL business message. Note that UBL
business messages might be carried by messaging transport protocols that

Top-level element

themselves have higher-level XML structure. Thus, a UBL top-level element
is not necessarily the root element of the XML document that carries it.

Description of a set of entities that share common characteristics, relations,
attributes, and semantics.

Type

6 November 2009
Page 52 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

E. UBL NDR Checklist
The following checklist reproduces all the UBL XML naming and design rules defined in this document.
The checklist is in alphabetical sequence as follows:

• Attribute Declaration Rules (ATD)
• Code List Rules (CDL)
• ComplexType Definition Rules (CTD)
• ComplexType Naming Rules (CTN)
• Documentation Rules (DOC)
• Element Declaration Rules (ELD)
• Element Naming Rules (ELN)
• General Naming Rules (GNR)
• General Type Definition Rules (GTD)
• General XML Schema Rules (GXS)
• Instance Document Rules (IND)
• Modeling Constraints Rules (MDC)
• Naming Constraints Rules (NMC)
• Namespace Rules (NMS)
• Root Element Declaration Rules (RED)
• Schema Structure Modularity Rules (SSM)
• Standards Adherence Rules (STA)
• Versioning Rules (VER)

Code List Rules

All UBL codes MUST be part of a UBL or externally maintained code list.CDL1

The UBL Library SHOULD identify and use external standardized code lists rather than
develop its own UBL-native code lists.

CDL2

The UBL Library MAY design and use an internal code list where an existing external code
list needs to be extended, or where no suitable external code list exists.

CDL3

ComplexType Definition rules

For every class identified in the UBL model, a named xsd:complexType MUST be defined.CTD1

Every CCTS ABIE xsd:complexType definition content model MUST contain an xsd:se-
quence element containing the appropriate global element declarations.

CTD2

Every CCTS BBIE Property xsd:complexType definition content model MUST contain an
xsd:simpleContent element.

CTD3

Every CCTS BBIE Property xsd:complexType content model xsd:simpleContent element
MUST consist of an xsd:extension element.

CTD4

Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST be the
UN/CEFACT Unqualified Datatype or UBL Qualified Datatype as appropriate.

CTD5

For every CCTS Qualified Datatype used in the UBL model, a named xsd:complexType or
xsd:simpleType MUST be defined.

CTD6

A CCTS Qualified DataType MUST be based on an CCTS Unqualified Datatype and add
some semantic and/or technical restriction to the CCTS Unqualified Datatype.

CTD20

The name of a UBL Qualified DataType MUST be the qualifier term followed by the name
of its base CCTS Unqualified DataType with separators and spaces removed.

CTD21

Every Qualified Datatype based on an Unqualified Datatype xsd:complexType whose
supplementary components map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:simpleType,

CTD22

6 November 2009
Page 53 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

ComplexType Definition rules

MUST contain one xsd:restriction element, and

MUST include an xsd:base attribute that defines the specific XSD built-in data type required
for the content component.

Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:complexType
whose supplementary components do not map directly to the properties of an XSD built-in
data type

MUST be defined as an xsd:complexType,

CTD23

MUST contain one xsd:simpleContent element,

MUST contain one xsd:restriction element, and

MUST include the Unqualified Datatype as its xsd:base attribute.

Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:simpleType

MUST contain one xsd:restriction element

CTD24

MUST include the unqualified datatype as its xsd:base attribute.

For every CCTS BBIE Property identified in the UBL model, a named xsd:complexType
MUST be defined.

CTD25

Complex Type Naming rules

A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS Dictionary
Entry Name with the separators removed and with the "Details" suffix replaced with "Type".

CTN1

A UBL xsd:complexType name based on a CCTS BBIE Property MUST be the CCTS Dic-
tionary Entry Name shared Property Term and its qualifiers and the Representation Term

CTN2

of the BBIE with the separators removed and with the "Type" suffix appended after the
Representation Term.

A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE
Representation Term of "Text" MUST have the word "Text" removed from the end of its
name.

CTN6

A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE
Representation Term of "Identifier" MUST replace "Identifier" with "ID" at the end of its
name.

CTN7

A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove all duplic-
ation of words that occurs as a result of duplicate Property Terms and Representation
Terms.

CTN8

Documentation rules

The xsd:documentation element for every data type MUST contain a set of annotations in
the following order (as defined in CCTS Section 7):

DOC1

• DictionaryEntryName (mandatory)
• Version (mandatory)
• Definition (mandatory)
• RepresentationTerm (mandatory)
• QualifierTerm(s) (mandatory, where used)
• UniqueIdentifier (mandatory)
• Usage Rule(s) (optional)
• Content Component Restriction (optional)

6 November 2009
Page 54 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Documentation rules

A datatype definition MAY contain one or more Content Component Restrictions to provide
additional information on the relationship between the datatype and its corresponding Core

DOC2

Component Type. If used, the Content Component Restrictions MUST contain a set of an-
notations in the following order:

• RestrictionType (mandatory): Defines the type of format restriction that applies to the
Content Component.

• RestrictionValue (mandatory): The actual value of the format restriction that applies to
the Content Component.

• ExpressionType (optional): Defines the type of the regular expression of the restriction
value.

A datatype definition MAY contain one or more Supplementary Component Restrictions to
provide additional information on the relationship between the datatype and its corresponding

DOC3

Core Component Type. If used, the Supplementary Component Restrictions MUST contain
a set of annotations in the following order:

• SupplementaryComponentName (mandatory): Identifies the Supplementary Component
to which the restriction applies.

• RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the
Supplementary Component.

The xsd:documentation element for every BBIE MUST contain a set of annotations in the
following order:

DOC4

• ComponentType (mandatory): The type of component to which the object belongs. For
BBIEs this MUST be "BBIE".

• DictionaryEntryName (mandatory): The official name of a BBIE.
• Version (optional): An indication of the evolution over time of the BBIE Entity.
• Definition (mandatory): The meaning of a BBIE.
• Cardinality (mandatory): Indicates whether the BBIE represents a not-applicable, optional,

mandatory, or repetitive characteristic of the Aggregate Business Information Entity to
which it belongs.

• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class containing the BBIE.
• PropertyTermQualifier (optional): A word or words which help define and differentiate

a BBIE.
• PropertyTerm (mandatory): Conveys the characteristic or Property of the Object Class.
• RepresentationTerm (mandatory): Describes the form in which the BBIE is represented.
• DataTypeQualifier (optional): A meaningful name that differentiates the data type of the

BBIE from its underlying Core Component Type.
• DataType (mandatory): Defines the data type used for the BBIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the BBIE is

commonly known and used in the business.
• Examples (optional): Examples of possible values for the BBIE.

The xsd:documentation element for every ABIE MUST contain a set of annotations in the
following order:

DOC5

• ComponentType (mandatory): The type of component to which the object belongs. For
ABIEs this MUST be "ABIE".

• DictionaryEntryName (mandatory): The official name of the ABIE .
• Version (optional): An indication of the evolution over time of the ABIE.
• Definition (mandatory): The meaning of the ABIE.
• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class represented by the ABIE.

6 November 2009
Page 55 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Documentation rules

• AlternativeBusinessTerms (optional): Any synonymous terms under which the ABIE is
commonly known and used in the business.

The xsd:documentation element for every ASBIE element declaration MUST contain a set
of annotations in the following order:

DOC6

• ComponentType (mandatory): The type of component to which the object belongs. For
ASBIEs this MUST be "ASBIE".

• DictionaryEntryName (mandatory): The official name of the ASBIE.
• Version (optional): An indication of the evolution over time of the ASBIE.
• Definition (mandatory): The meaning of the ASBIE.
• Cardinality (mandatory): Indicates whether the ASBIE represents an optional, mandatory,

or repetitive assocation.
• ObjectClass (mandatory): The Object Class containing the ASBIE.
• PropertyTermQualifier (optional): A word or words which help define and identify the

ASBIE.
• PropertyTerm (mandatory): Represents the ASBIE contained by the Association Business

Information Entity.
• AssociatedObjectClassQualifier (optional): The Associated Object Class Qualifiers de-

scribe the "context" of the relationship with another ABIE. That is, it is the role the con-
tained ABIE plays within its association with the containing ABIE.

• AssociatedObjectClass (mandatory):The Object Class at the other end of the association.
It represents the ABIE contained by the ASBIE.

The xsd:documentation element for every Supplementary Component attribute declaration
MUST contain a set of annotations in the following order:

DOC8

• Name (mandatory) Name in the Registry of a Supplementary Component of a Core
Component Type.

• Definition (mandatory): An explanation of the meaning of a Supplementary Component
and its relevance for the related Core Component Type.

• Primitive type (mandatory): The PrimitiveType to be used for the representation of the
value of a Supplementary Component.

• Possible Value(s) (optional): Possible values of Supplementary Components.

The xsd:documentation element for every Supplementary Component attribute declaration
containing restrictions MUST include the following additional information appended to the
information required by DOC8:

DOC9

• Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Supple-
mentary Component.

Element Declaration rules

All element declarations MUST be global.ELD2

For every class and property identified in the UBL model, a global element bound to the
corresponding xsd:complexType MUST be declared.

ELD3

When a CCTS ASBIE is unqualified, it is bound via reference to the global CCTS ABIE
element with which it is associated.

ELD4

The code list xsd:import element MUST contain the namespace and schema location attrib-
utes.

ELD6

Empty elements MUST not be declared, except in the case of extension where the UBL
Extensions element is used.

ELD7

6 November 2009
Page 56 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Element Declaration rules

When a CCTS ASBIE is qualified, a new element MUST be declared and bound to the
xsd:complexType of its associated CCTS ABIE.

ELD11

The UBL Extensions element MUST be declared as the first child of the document element
with xsd:minOccurs="0".

ELD12

The UBLProfileID element MUST be declared immediately following the UBL Extensions
element with xsd:minOccurs="0".

ELD13

The UBLSubsetID element MUST be declared immediately following the UBLProfileID
element with xsd:minOccurs="0".

ELD14

Element Naming rules

A UBL global element name based on a CCTS ABIE MUST be the same as the name of
the corresponding xsd:complexType to which it is bound, with the word "Type" removed.

ELN1

A UBL global element name based on a CCTS BBIE Property MUST be the same as the
name of the corresponding xsd:complexType to which it is bound, with the word "Type"
removed.

ELN2

A UBL global element name based on a CCTS ASBIE MUST be the CCTS ASBIE Dictionary
Entry Name Property Term and its qualifiers and the Object Class Term and qualifiers of
its associated CCTS ABIE. All CCTS Dictionary Entry Name separators MUST be removed.

ELN3

General Naming rules

UBL XML element and type names MUST be in the English language, using the primary
English spellings provided in the Oxford English Dictionary.

GNR1

UBL XML element and type names MUST be consistently derived from CCTS conformant
Dictionary Entry Names.

GNR2

UBL XML element and type names constructed from CCTS Dictionary Entry Names MUST
NOT include periods, spaces, other separators, or characters not allowed by XSD.

GNR3

UBL XML element names and simple and complex type names MUST NOT use acronyms,
abbreviations, or other word truncations, except those in the list of exceptions maintained
and published by the UBL TC.

GNR4

The acronyms and abbreviations listed in the UBL-approved list MUST always be used in
place of the word or phrase they represent.

GNR6

UBL XML element and type names MUST be in singular form unless the concept itself is
plural.

GNR7

The UpperCamelCase (UCC) convention MUST be used for naming elements and types.GNR8

The lowerCamelCase (LCC) convention MUST be used for naming attributes.GNR9

Acronyms and abbreviations at the beginning of an attribute name MUST appear in all
lower case. Acronyms and abbreviations elsewhere in an attribute name MUST appear in
upper case.

GNR10

Acronyms and abbreviations MUST appear in all upper case for all element and type names.GNR11

General Type Definition Rules

All types MUST be named.GTD1

The predefined XML schema type xsd:anyType MUST NOT be used.GTD2

General XML Schema Rules

Except in the case of extension, where the "UBL Extensions" element is used, UBL
schemas SHOULD conform to the following physical layout as applicable: See .

GXS1

6 November 2009
Page 57 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

General XML Schema Rules

UBL MUST provide two schemas for each transaction. One normative schema shall be
fully annotated. One non-normative schema shall be a run-time schema devoid of docu-
mentation.

GXS2

Built-in xsd:simpleTypes SHOULD be used wherever possible.GXS3

All XSD constructs in UBL schema and schema modules MUST contain the following
namespace declaration on the xsd:schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

GXS4

The xsd:substitutionGroup feature MUST NOT be used.GXS5

The xsd:final attribute MUST be used to control extensions where there is a desire to pro-
hibit further extensions.

GXS6

xsd:notation MUST NOT be used.GXS7

xsd:all MUST NOT be used.GXS8

The xsd:choice element SHOULD NOT be used where customization and extensibility are
a concern.

GXS9

xsd:include can only be used when the including schema is in the same namespace as the
included schema.

GXS10

The xsd:union technique MUST NOT be used except for code lists.GXS11

UBL schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST be used only to
convey non-normative information.

GXS12

Each xsd:schemaLocation attribute declaration MUST contain a system-resolvable URL,
which at the time of release from OASIS shall be a relative URL referencing the location
of the schema or schema module in the release package.

GXS15

The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.GXS16

xsd:any MUST NOT be used except within the ExtensionContentType type definition, and
with xsd:processContents= "skip" for non-UBL namespaces.

GXS14

Complex type extension or restriction MAY be used where appropriate.GXS13

Instance document rules

All UBL instance documents MUST validate to a corresponding UBL schema.IND1

All UBL instance documents MUST identify their character encoding within the XML declar-
ation.

IND2

In conformance with ISO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding
Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by OASIS,
all UBL XML SHOULD be expressed using UTF-8.

IND3

UBL conformant instance documents MUST NOT contain an element devoid of content or
containing null values, except in the case of extension, where the UBLExtensionContent
element is used.

IND5

The absence of a construct or data in a UBL instance document MUST NOT carry meaning.IND6

Modelling constraint rules

The sequence of the business information entities that is expressed in the UBL model
MUST be preserved in the schema.

MDC0

UBL libraries and schemas MUST only use CCTS Core Component Types, except in the
case of extension, where the UBLExtensions element is used.

MDC1

XML mixed content MUST NOT be used except where contained in an xsd:documentation
element.

MDC2

6 November 2009
Page 58 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Naming constraint rules

Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP) for
an element or attribute.

NMC1

Namespace Rules

Every UBL-defined or -used schema module, except internal schema modules, MUST de-
clare a namespace using the xsd:targetNamespace attribute.

NMS1

Every UBL-defined or -used major version schema set MUST have its own unique
namespace.

NMS2

UBL namespaces MUST only contain UBL developed schema modules.NMS3

The namespace names for UBL schemas holding committee draft status MUST be of the
form urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

NMS4

The namespace names for UBL schemas holding OASIS Standard status MUST be of the
form urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>

NMS5

UBL published namespaces MUST never be changed.NMS6

The UBL Common Aggregate Components schema module MUST reside in its own
namespace.

NMS7

The UBL Common Aggregate Components schema module namespace MUST be repres-
ented by the namespace prefix "cac" when referenced in other schemas.

NMS8

The UBL Common Basic Components schema module MUST reside in its own namespace.NMS9

The UBL Common Basic Components schema module namespace MUST be represented
by the namespace prefix "cbc" when referenced in other schemas.

NMS10

The UBL Qualified Datatypes schema module MUST reside in its own namespace.NMS15

The UBL Qualified Datatypes schema module namespace MUST be represented by the
namespace prefix "qdt" when referenced in other schemas.

NMS16

The CCTS Unqualified Datatypes schema module namespace MUST be represented by
the prefix "udt" when referenced in other schemas.

NMS17

The CommonExtensionComponents schema module namespace MUST be represented
by the namespace prefix "ext" when referenced in other schemas.

NMS18

Root element declaration rules

The root element MUST be the only global element declared in the document schema.RED2

Schema structure modularity rules

UBL schema expressions MAY be split into multiple schema modules.SSM1

A schema in one UBL namespace that is dependent upon type definitions or element de-
clarations in another schema namespace MUST only import that schema.

SSM2

A schema in one UBL namespace that is dependent upon type definitions or element de-
clarations defined in another schema namespace MUST NOT import the internal schema
modules of that schema.

SSM3

All UBL internal schema modules MUST be in the same namespace as their corresponding
document schema.

SSM6

Each UBL internal schema module MUST be named <ParentSchemaModuleName><In-
ternalSchemaModuleFunction>

SSM7

UBL schema modules MAY be created for reusable components.SSM8

A schema module defining all UBL Common Aggregate Components MUST be created.SSM9

6 November 2009
Page 59 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

Schema structure modularity rules

The UBL Common Aggregate Components schema module MUST be identified as Com-
monAggregateComponents in the document name within the schema header.

SSM10

A schema module defining all UBL Common Basic Components MUST be created.SSM11

The UBL Common Basic Components schema module MUST be identified as CommonBa-
sicComponents in the document name within the schema header.

SSM12

A schema module defining all UBL Qualified Datatypes MUST be created.SSM18

The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes
in the document name in the schema header.

SSM19

The UBL Qualified Datatypes schema module MUST import the CCTS Unqualified Datatypes
schema module.

SSM20

The UBL extension schema module MUST be identified as CommonExtensionComponents
in the document name within the schema header.

SSM21

Versioning rules

Every UBL schema module major version MUST have an RFC 3121 document-id of the
form <modulename>-<major>

VER2

Every minor version release of a UBL schema module MUST have a document-id of the
form <modulename>-<major>

VER4

For UBL minor version changes, the namespace name MUST not change.VER5

Every UBL schema module major version number MUST be a sequentially assigned integer
greater than zero.

VER6

Every UBL schema module minor version number MUST be a sequentially assigned, non-
negative integer.

VER7

Every major version release of a UBL schema module MUST capture its version number
in the xsd:version attribute of the xsd:schema element in the form <major>.0

VER12

Every minor version release of a UBL schema module MUST capture its version information
in the xsd:version attribute in the form <major>.<non-zero>

VER14

Every UBL document schema MUST declare an optional element named UBLVersionID
immediately following the optional UBL Extensions element.

VER15

6 November 2009
Page 60 of 60

prd2-UBL-2.0-NDR
Copyright © OASIS® . All Rights Reserved.

