
TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 1 of 186

TOSCA Version 2.0

Committee Specification Draft 04

16 June 2022

This stage:
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.docx (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.pdf

Previous stage:
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.docx (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.pdf

Latest stage:
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.docx (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chair:
Chris Lauwers (lauwers@ubicity.com), Individual Member

Editors:
Chris Lauwers (lauwers@ubicity.com), Individual Member
Calin Curescu (calin.curescu@ericsson.com), Ericsson

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

• TBD - schemas?

Related work:
This specification replaces or supersedes:

• Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma
and Thomas Spatzier. OASIS Standard. Latest version: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.

• TOSCA Simple Profile in YAML Version 1.3. Edited by Matt Rutkowski, Chris Lauwers, Claude
Noshpitz, and Calin Curescu. Latest version: https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html.

This specification is related to:

• Introduction to TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. Work in progress.

Declared XML namespace:

• http://docs.oasis-open.org/tosca/ns/2.0

Abstract:
The OASIS TOSCA TC works to enhance the portability of cloud applications and services across their
entire lifecycle. TOSCA will enable the interoperable description of application and infrastructure cloud
services, the relationships between parts of the service, and the operational behavior of these services
(e.g., deploy, patch, shutdown) independent of the supplier creating the service or of any particular cloud

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd03/TOSCA-v2.0-csd03.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf
https://www.oasis-open.org/committees/tosca/
mailto:lauwers@ubicity.com
mailto:lauwers@ubicity.com
mailto:calin.curescu@ericsson.com
http://ericsson.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://docs.oasis-open.org/tosca/ns/2.0

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 2 of 186

provider or hosting technology. TOSCA will also make it possible for higher-level operational behavior to
be associated with cloud infrastructure management.

By increasing service and application portability in a vendor-neutral ecosystem, TOSCA will enable:

• Portable deployment to any compliant cloud

• Smoother migration of existing applications to the cloud

• Flexible bursting (consumer choice)

• Dynamic, multi-cloud provider applications

Status:
This document was last revised or approved by the OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the
“Latest stage” location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/tosca/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/tosca/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification, the following citation format should be used:

[TOSCA-v2.0]

TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. 16 June 2022. OASIS Committee
Specification Draft 04. https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.html.
Latest stage: https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 3 of 186

Notices

Copyright © OASIS Open 2022. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website:
[https://www.oasis-open.org/policies-guidelines/ipr/].

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS
DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards
Final Deliverable documents (Committee Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS
TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this OASIS Standards
Final Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this document, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, documents, while reserving the right to enforce its marks against misleading
uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 4 of 186

Table of Contents

1 Introduction ... 18

1.1 IPR Policy ... 18

1.2 Terminology .. 18

1.3 Normative References .. 18

1.4 Non-Normative References .. 18

2 Overview ... 20

2.1 Objective ... 20

2.2 TOSCA Scope .. 20

2.3 Application Domains ... 20

2.4 Implementations ... 21

2.5 Glossary .. 21

3 TOSCA core concepts .. 23

3.1 Topology Templates, Node Templates, and Relationships .. 23

3.2 Interfaces, Operations, and Artifacts .. 24

3.3 Workflows ... 24

3.4 Requirements and Capabilities ... 24

3.5 Decomposition of Service Templates ... 25

3.6 Policies in TOSCA .. 26

3.7 Archive Format for Cloud Applications ... 26

3.8 TOSCA Entities ... 27

4 TOSCA Operational Model ... 28

4.1 TOSCA Processor .. 28

4.1.1 Parser .. 28

4.1.2 Resolver .. 28
4.1.2.1 Creating Topology Representations... 29
4.1.2.2 Requirement Fulfillment ... 29
4.1.2.3 Substitution Mapping ... 29

4.2 Orchestrator .. 29

5 TOSCA definitions in YAML ... 30

5.1 TOSCA Metamodel ... 30

5.1.1 Modeling concepts and goals .. 30

5.1.2 Modeling definitions and reuse.. 30

5.1.3 Goal of the derivation and refinement rules .. 31

5.1.4 Mandatory Keynames ... 31

5.2 TOSCA Service .. 31

5.2.1 Service Template definition ... 31
5.2.1.1 Keynames .. 31

5.2.1.1.1 Metadata keynames ... 32
5.2.1.2 Grammar .. 33

5.2.1.2.1 Requirements ... 34
5.2.1.2.2 Notes .. 34

5.2.1.3 Top-level keyname definitions.. 34
5.2.1.3.1 tosca_definitions_version ... 34

5.2.1.3.1.1 Keyname ... 34

5.2.1.3.1.2 Grammar ... 34

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 5 of 186

5.2.1.3.1.3 Examples: ... 34

5.2.1.3.2 profile ... 34

5.2.1.3.2.1 Keyname ... 35

5.2.1.3.2.2 Grammar ... 35

5.2.1.3.2.3 Examples .. 35

5.2.1.3.3 metadata .. 35

5.2.1.3.3.1 Keyname ... 35

5.2.1.3.3.2 Grammar ... 35

5.2.1.3.3.3 Example .. 35

5.2.1.3.4 template_name .. 35

5.2.1.3.4.1 Keyname ... 35

5.2.1.3.4.2 Grammar ... 35

5.2.1.3.4.3 Example .. 35

5.2.1.3.5 template_author ... 36

5.2.1.3.5.1 Keyname ... 36

5.2.1.3.5.2 Grammar ... 36

5.2.1.3.5.3 Example .. 36

5.2.1.3.6 template_version .. 36

5.2.1.3.6.1 Keyname ... 36

5.2.1.3.6.2 Grammar ... 36

5.2.1.3.6.3 Example .. 36

5.2.1.3.6.4 Notes: .. 36

5.2.1.3.7 description .. 36

5.2.1.3.7.1 Keyname ... 36

5.2.1.3.7.2 Grammar ... 36

5.2.1.3.7.3 Example .. 36

5.2.1.3.8 dsl_definitions .. 37

5.2.1.3.8.1 Keyname ... 37

5.2.1.3.8.2 Grammar ... 37

5.2.1.3.8.3 Example .. 37

5.2.1.3.9 repositories ... 37

5.2.1.3.9.1 Keyname ... 37

5.2.1.3.9.2 Grammar ... 37

5.2.1.3.9.3 Example .. 37

5.2.1.3.10 imports ... 38

5.2.1.3.10.1 Keyname ... 38

5.2.1.3.10.2 Grammar ... 38

5.2.1.3.10.3 Example .. 38

5.2.1.3.11 artifact_types .. 38

5.2.1.3.11.1 Keyname ... 38

5.2.1.3.11.2 Grammar ... 38

5.2.1.3.11.3 Example .. 38

5.2.1.3.12 data_types .. 38

5.2.1.3.12.1 Keyname ... 39

5.2.1.3.12.2 Grammar ... 39

5.2.1.3.12.3 Example .. 39

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 6 of 186

5.2.1.3.13 capability_types .. 39

5.2.1.3.13.1 Keyname ... 39

5.2.1.3.13.2 Grammar ... 39

5.2.1.3.13.3 Example .. 39

5.2.1.3.14 interface_types ... 40

5.2.1.3.14.1 Keyname ... 40

5.2.1.3.14.2 Grammar ... 40

5.2.1.3.14.3 Example .. 40

5.2.1.3.15 relationship_types .. 40

5.2.1.3.15.1 Keyname ... 40

5.2.1.3.15.2 Grammar ... 40

5.2.1.3.15.3 Example .. 40

5.2.1.3.16 node_types ... 41

5.2.1.3.16.1 Keyname ... 41

5.2.1.3.16.2 Grammar ... 41

5.2.1.3.16.3 Example .. 41

5.2.1.3.17 group_types ... 41

5.2.1.3.17.1 Keyname ... 41

5.2.1.3.17.2 Grammar ... 41

5.2.1.3.17.3 Example .. 41

5.2.1.3.18 policy_types ... 41

5.2.1.3.18.1 Keyname ... 41

5.2.1.3.18.2 Grammar ... 42

5.2.1.3.18.3 Example .. 42

5.2.2 Profiles ... 42
5.2.2.1 Examples ... 42
5.2.2.2 Defining Profiles ... 43
5.2.2.3 Profile Versions .. 43

5.2.3 Imports and Namespaces ... 45
5.2.3.1 Import definition ... 45

5.2.3.1.1 Keynames .. 45
5.2.3.1.2 Grammar .. 45

5.2.3.1.2.1 Single-line grammar: ... 45

5.2.3.1.2.2 Multi-line grammar .. 45

5.2.3.1.3 Import processing rules .. 46

5.2.3.1.3.1 Importing profiles... 46

5.2.3.1.3.2 Importing service templates .. 46

5.2.3.1.4 Examples ... 46
5.2.3.2 Namespaces .. 47

5.2.3.2.1 Additional Requirements .. 50
5.2.3.3 Repository definition .. 50

5.2.3.3.1 Keynames .. 50
5.2.3.3.2 Grammar .. 51

5.2.3.3.2.1 Single-line grammar: ... 51

5.2.3.3.2.2 Multi-line grammar .. 51

5.2.3.3.3 Example ... 51

5.2.4 Additional information definitions... 51

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 7 of 186

5.2.4.1 Description definition .. 51
5.2.4.1.1 Keyname .. 51
5.2.4.1.2 Grammar .. 51
5.2.4.1.3 Examples ... 51
5.2.4.1.4 Notes .. 52

5.2.4.2 Metadata .. 52
5.2.4.2.1 Keyname .. 52
5.2.4.2.2 Grammar .. 52
5.2.4.2.3 Examples ... 52
5.2.4.2.4 Notes .. 52

5.2.4.3 DSL Definitions .. 52

5.2.5 Type definitions ... 52
5.2.5.1 General derivation and refinement rules .. 53
5.2.5.2 Common keynames in type definitions .. 53

5.2.5.2.1 Keynames .. 53
5.2.5.2.2 Grammar .. 54
5.2.5.2.3 Derivation rules .. 54

5.2.6 Topology Template definition .. 54
5.2.6.1 Keynames .. 54
5.2.6.2 Grammar .. 55

5.2.6.2.1 inputs ... 56

5.2.6.2.1.1 Grammar ... 56

5.2.6.2.1.2 Examples .. 56

5.2.6.2.2 node_templates .. 57

5.2.6.2.2.1 grammar .. 57

5.2.6.2.2.2 Example .. 57

5.2.6.2.3 relationship_templates ... 57

5.2.6.2.3.1 Grammar ... 57

5.2.6.2.3.2 Example .. 57

5.2.6.2.4 outputs ... 57

5.2.6.2.4.1 Grammar ... 58

5.2.6.2.4.2 Example .. 58

5.2.6.2.5 groups .. 58

5.2.6.2.5.1 Grammar ... 58

5.2.6.2.5.2 Example .. 58

5.2.6.2.6 policies ... 58

5.2.6.2.6.1 Grammar ... 58

5.2.6.2.6.2 Example .. 59

5.2.6.2.7 substitution_mapping ... 59

5.2.6.2.7.1 requirement_mapping ... 59

5.2.6.2.7.2 Example .. 59

5.2.6.2.8 Notes .. 60

5.3 Nodes and Relationships .. 60

5.3.1 Node Type ... 60
5.3.1.1 Keynames .. 60
5.3.1.2 Grammar .. 61
5.3.1.3 Derivation rules .. 62
5.3.1.4 Additional Requirements .. 62

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 8 of 186

5.3.1.5 Example ... 62

5.3.2 Node Template .. 62
5.3.2.1 Keynames .. 63
5.3.2.2 Grammar .. 63
5.3.2.3 Additional requirements ... 64
5.3.2.4 Example ... 64

5.3.3 Relationship Type .. 65
5.3.3.1 Keynames .. 65
5.3.3.2 Grammar .. 65
5.3.3.3 Derivation rules .. 66
5.3.3.4 Examples ... 66

5.3.4 Relationship Template ... 66
5.3.4.1 Keynames .. 67
5.3.4.2 Grammar .. 67
5.3.4.3 Additional requirements ... 68
5.3.4.4 Example ... 68

5.3.5 Capabilities and Requirements ... 68
5.3.5.1 Capability Type .. 68

5.3.5.1.1 Keynames .. 68
5.3.5.1.2 Grammar .. 68
5.3.5.1.3 Derivation rules .. 69
5.3.5.1.4 Example ... 69

5.3.5.2 Capability definition .. 69
5.3.5.2.1 Keynames .. 69
5.3.5.2.2 Grammar .. 70

5.3.5.2.2.1 Short notation .. 70

5.3.5.2.2.2 Extended notation ... 70

5.3.5.2.3 Refinement rules .. 71
5.3.5.2.4 Examples ... 71

5.3.5.2.4.1 Simple notation example ... 72

5.3.5.2.4.2 Full notation example .. 72

5.3.5.2.5 Additional requirements ... 72
5.3.5.2.6 Note ... 72

5.3.5.3 Capability assignment .. 72
5.3.5.3.1 Keynames .. 72
5.3.5.3.2 Grammar .. 73
5.3.5.3.3 Example ... 73

5.3.5.3.3.1 Notation example .. 73

5.3.5.3.4 Note ... 74
5.3.5.4 Requirement Type ... 74
5.3.5.5 Requirement definition ... 74

5.3.5.5.1 Keynames .. 74

5.3.5.5.1.1 Additional keynames for multi-line relationship grammar .. 75

5.3.5.5.2 Grammar .. 75

5.3.5.5.2.1 Simple grammar (Capability Type only) .. 75

5.3.5.5.2.2 Extended grammar (with Node and Relationship Types) .. 75

5.3.5.5.2.3 Extended grammar for declaring Parameter Definitions on the relationship’s Interfaces 75

5.3.5.5.3 Refinement rules .. 76
5.3.5.5.4 Additional requirements ... 77

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 9 of 186

5.3.5.5.5 Notes .. 77
5.3.5.5.6 Requirement definition is a tuple with a filter .. 77

5.3.5.6 Requirement assignment ... 77
5.3.5.6.1 Keynames .. 77
5.3.5.6.2 Grammar .. 79

5.3.5.6.2.1 Short notation: ... 79

5.3.5.6.2.2 Extended notation: .. 79

5.3.5.6.2.3 Extended grammar with Property Assignments and Interface Assignments for the
relationship 80

5.3.5.6.2.4 Extended grammar with capacity allocation .. 80

5.3.5.6.3 Notes .. 82
5.3.5.6.4 Examples ... 82

5.3.5.6.4.1 Example 1 – Hosting requirement on a Node Type .. 83

5.3.5.6.4.2 Example 2 - Requirement with Node Template and a custom Relationship Type 83

5.3.5.6.4.3 Example 3 - Requirement for a Compute node with additional selection criteria (filter) .. 83

5.3.5.6.4.4 Example 4 - Requirement assignment for definition with count_range: [2,2] 84

5.3.5.6.4.5 Example 5 - Requirement assignment for definition with capacity allocation 84

5.3.5.7 Node Filter definition .. 84
5.3.5.7.1 Keynames .. 84
5.3.5.7.2 Additional filtering on capability properties ... 85
5.3.5.7.3 Grammar .. 85
5.3.5.7.4 Additional requirements ... 85
5.3.5.7.5 Example ... 86

5.3.5.8 Property Filter definition ... 86
5.3.5.8.1 Grammar .. 86

5.3.5.8.1.1 Short notation: ... 86

5.3.5.8.1.2 Extended notation: .. 86

5.3.5.8.2 Additional Requirements .. 86

5.3.6 Interfaces ... 87
5.3.6.1 Interface Type .. 87

5.3.6.1.1 Keynames .. 87
5.3.6.1.2 Grammar .. 87
5.3.6.1.3 Derivation rules .. 87
5.3.6.1.4 Example ... 88
5.3.6.1.5 Additional Requirements .. 88

5.3.6.2 Interface definition .. 88
5.3.6.2.1 Keynames .. 88
5.3.6.2.2 Grammar .. 88
5.3.6.2.3 Refinement rules .. 89

5.3.6.3 Interface assignment .. 89
5.3.6.3.1 Keynames .. 90
5.3.6.3.2 Grammar .. 90

5.3.6.4 Operation definition .. 90
5.3.6.4.1 Keynames .. 90
5.3.6.4.2 Grammar .. 91

5.3.6.4.2.1 Short notation .. 91

5.3.6.4.2.2 Extended notation ... 91

5.3.6.4.3 Refinement rules .. 91
5.3.6.4.4 Additional requirements ... 92

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 10 of 186

5.3.6.4.5 Examples ... 92

5.3.6.4.5.1 Single-line example ... 92

5.3.6.4.5.2 Multi-line example with shorthand implementation definitions ... 92

5.3.6.4.5.3 Multi-line example with extended implementation definitions .. 92

5.3.6.5 Operation assignment .. 93
5.3.6.5.1 Keynames .. 93
5.3.6.5.2 Grammar .. 93

5.3.6.5.2.1 Short notation .. 93

5.3.6.5.2.2 Extended notation ... 93

5.3.6.5.3 Additional requirements ... 94
5.3.6.5.4 Examples ... 94

5.3.6.6 Notification definition .. 94
5.3.6.6.1 Keynames .. 95
5.3.6.6.2 Grammar .. 95

5.3.6.6.2.1 Short notation .. 95

5.3.6.6.2.2 Extended notation ... 95

5.3.6.6.3 Refinement rules .. 95
5.3.6.6.4 Additional requirements ... 96
5.3.6.6.5 Examples ... 96

5.3.6.7 Notification assignment .. 96
5.3.6.7.1 Keynames .. 96
5.3.6.7.2 Grammar .. 97

5.3.6.7.2.1 Short notation .. 97

5.3.6.7.2.2 Extended notation ... 97

5.3.6.7.3 Additional requirements ... 97
5.3.6.7.4 Examples ... 97

5.3.6.8 Operation and notification implementation definition.. 98
5.3.6.8.1 Keynames .. 98
5.3.6.8.2 Grammar .. 98

5.3.6.8.2.1 Short notation for use with single artifact .. 98

5.3.6.8.2.2 Short notation for use with multiple artifacts .. 98

5.3.6.8.2.3 Extended notation for use with single artifact .. 98

5.3.6.8.2.4 Extended notation for use with multiple artifacts ... 99

5.3.7 Artifacts .. 99
5.3.7.1 Artifact Type ... 99

5.3.7.1.1 Keynames .. 99
5.3.7.1.2 Grammar .. 100
5.3.7.1.3 Derivation rules .. 100
5.3.7.1.4 Examples ... 100
5.3.7.1.5 Additional Requirements .. 101
5.3.7.1.6 Notes .. 101

5.3.7.2 Artifact definition .. 101
5.3.7.2.1 Keynames .. 101
5.3.7.2.2 Grammar .. 102

5.3.7.2.2.1 Short notation .. 102

5.3.7.2.2.2 Extended notation: .. 102

5.3.7.2.3 Refinement rules .. 102
5.3.7.2.4 Examples ... 103

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 11 of 186

5.4 Properties, Attributes, and Parameters .. 103

5.4.1 Primitive Types .. 104
5.4.1.1 string .. 104

5.4.1.1.1 Notes: ... 104
5.4.1.2 integer .. 105

5.4.1.2.1 Notes .. 105
5.4.1.3 float .. 105

5.4.1.3.1 Notes .. 106
5.4.1.4 boolean .. 106
5.4.1.5 bytes .. 106

5.4.1.5.1 Notes .. 107
5.4.1.6 nil ... 107

5.4.2 Special Types .. 107
5.4.2.1 TOSCA version .. 107

5.4.2.1.1 Grammar .. 108
5.4.2.1.2 Version Comparison ... 108
5.4.2.1.3 Examples ... 108
5.4.2.1.4 Notes .. 108
5.4.2.1.5 Additional Requirements .. 108

5.4.2.2 TOSCA range type ... 109
5.4.2.2.1 Grammar .. 109
5.4.2.2.2 Keywords ... 109
5.4.2.2.3 Examples ... 109

5.4.2.3 TOSCA timestamp type ... 109
5.4.2.3.1 Notes .. 109

5.4.2.4 TOSCA scalar-unit type ... 110
5.4.2.4.1 Grammar .. 110
5.4.2.4.2 Additional requirements ... 110
5.4.2.4.3 Concrete Types .. 110
5.4.2.4.4 scalar-unit.size ... 111

5.4.2.4.4.1 Recognized Units .. 111

5.4.2.4.4.2 Examples .. 111

5.4.2.4.4.3 Notes ... 111

5.4.2.4.5 scalar-unit.time ... 111

5.4.2.4.5.1 Recognized Units .. 111

5.4.2.4.5.2 Examples .. 112

5.4.2.4.5.3 Notes ... 112

5.4.2.4.6 scalar-unit.frequency .. 112

5.4.2.4.6.1 Recognized Units .. 112

5.4.2.4.6.2 Examples .. 112

5.4.2.4.6.3 Notes ... 112

5.4.2.4.7 scalar-unit.bitrate .. 113

5.4.2.4.7.1 Recognized Units .. 113

5.4.2.4.7.2 Examples .. 113

5.4.3 Collection Types .. 113
5.4.3.1 TOSCA list type ... 113

5.4.3.1.1 Grammar .. 113

5.4.3.1.1.1 Square bracket notation .. 113

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 12 of 186

5.4.3.1.1.2 Bulleted list notation .. 113

5.4.3.1.2 Declaration Examples .. 114

5.4.3.1.2.1 List declaration using a simple type .. 114

5.4.3.1.2.2 List declaration using a complex type ... 114

5.4.3.1.3 Definition Examples ... 114

5.4.3.1.3.1 Square bracket notation .. 114

5.4.3.1.3.2 Bulleted list notation .. 114

5.4.3.2 TOSCA map type ... 114
5.4.3.2.1 Grammar .. 115

5.4.3.2.1.1 Single-line grammar .. 115

5.4.3.2.1.2 Multi-line grammar .. 115

5.4.3.2.2 Declaration Examples .. 115

5.4.3.2.2.1 Map declaration using a simple type ... 115

5.4.3.2.2.2 Map declaration using a complex type .. 115

5.4.3.2.3 Definition Examples ... 115

5.4.3.2.3.1 Single-line notation.. 116

5.4.3.2.3.2 Multi-line notation .. 116

5.4.4 Data Type .. 116
5.4.4.1 Keynames .. 116
5.4.4.2 Grammar .. 116
5.4.4.3 Derivation rules .. 117
5.4.4.4 Additional Requirements .. 117
5.4.4.5 Examples ... 117

5.4.4.5.1 Defining a complex datatype .. 117
5.4.4.5.2 Defining a datatype derived from an existing datatype ... 117

5.4.5 Schema definition .. 118
5.4.5.1 Keynames .. 118
5.4.5.2 Grammar .. 118
5.4.5.3 Refinement rules .. 119

5.4.6 Constraint clause definition ... 119
5.4.6.1 Operator keynames ... 119

5.4.6.1.1 Comparable value types .. 120
5.4.6.2 Schema Constraint purpose .. 120
5.4.6.3 Additional Requirements .. 120
5.4.6.4 Grammar .. 121
5.4.6.5 Examples ... 121

5.4.7 Property definition ... 122
5.4.7.1 Attribute and Property reflection... 122
5.4.7.2 Keynames .. 122
5.4.7.3 Status values ... 123
5.4.7.4 Grammar .. 123
5.4.7.5 Refinement rules .. 124
5.4.7.6 Additional Requirements .. 125
5.4.7.7 Examples ... 125

5.4.8 Property assignment ... 126
5.4.8.1 Keynames .. 126
5.4.8.2 Grammar .. 126

5.4.8.2.1 Short notation: .. 126

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 13 of 186

5.4.8.3 Additional Requirements .. 126

5.4.9 Attribute definition .. 126
5.4.9.1 Attribute and Property reflection... 126
5.4.9.2 Keynames .. 127
5.4.9.3 Grammar .. 127
5.4.9.4 Refinement rules .. 128
5.4.9.5 Additional Requirements .. 128
5.4.9.6 Notes ... 128
5.4.9.7 Example ... 129

5.4.10 Attribute assignment .. 129
5.4.10.1 Keynames .. 129
5.4.10.2 Grammar .. 129

5.4.10.2.1 Short notation: .. 129
5.4.10.3 Additional requirements ... 129

5.4.11 Parameter definition .. 129
5.4.11.1 Keynames .. 130
5.4.11.2 Grammar .. 130
5.4.11.3 Refinement rules .. 132
5.4.11.4 Additional requirements ... 132
5.4.11.5 Example ... 132

5.4.12 Parameter value assignment ... 133
5.4.12.1 Keynames .. 133
5.4.12.2 Grammar .. 133
5.4.12.3 Additional requirements ... 133

5.4.13 Parameter mapping assignment ... 133
5.4.13.1 Keynames .. 133
5.4.13.2 Grammar .. 133
5.4.13.3 Attribute selection format ... 134
5.4.13.4 Additional requirements ... 134

5.5 Substitution ... 134

5.5.1 Substitution mapping ... 134
5.5.1.1 Keynames .. 134
5.5.1.2 Grammar .. 135
5.5.1.3 Examples ... 135
5.5.1.4 Additional requirements ... 136
5.5.1.5 Notes ... 136

5.5.2 Property mapping .. 136
5.5.2.1 Keynames .. 136
5.5.2.2 Grammar .. 136
5.5.2.3 Notes ... 136
5.5.2.4 Additional constraints ... 137

5.5.3 Attribute mapping .. 137
5.5.3.1 Keynames .. 137
5.5.3.2 Grammar .. 137

5.5.4 Capability mapping .. 137
5.5.4.1 Keynames .. 137
5.5.4.2 Grammar .. 138

5.5.5 Requirement mapping ... 138
5.5.5.1 Keynames .. 138

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 14 of 186

5.5.5.2 Grammar .. 139

5.5.6 Interface mapping .. 139
5.5.6.1 Grammar .. 139
5.5.6.2 Notes ... 140

5.6 Groups and Policies .. 140

5.6.1 Group Type.. 140
5.6.1.1 Keynames .. 140
5.6.1.2 Grammar .. 140
5.6.1.3 Derivation rules .. 141
5.6.1.4 Example ... 141

5.6.2 Group definition ... 141
5.6.2.1 Keynames .. 141
5.6.2.2 Grammar .. 142
5.6.2.3 Example ... 142

5.6.3 Policy Type .. 142
5.6.3.1 Keynames .. 143
5.6.3.2 Grammar .. 143
5.6.3.3 Derivation rules .. 143
5.6.3.4 Example ... 144

5.6.4 Policy definition ... 144
5.6.4.1 Keynames .. 144
5.6.4.2 Grammar .. 144
5.6.4.3 Example ... 145

5.6.5 Trigger definition .. 145
5.6.5.1 Keynames .. 145
5.6.5.2 Additional keynames for the extended condition notation .. 146
5.6.5.3 Grammar .. 146

5.6.5.3.1 Short notation ... 146
5.6.5.3.2 Extended notation: ... 146

5.6.6 Event Filter definition ... 147
5.6.6.1 Keynames .. 147
5.6.6.2 Grammar .. 147

5.6.7 Condition clause definition .. 148
5.6.7.1 Keynames .. 148
5.6.7.2 Grammar .. 148

5.6.7.2.1 And clause ... 148
5.6.7.2.2 Or clause .. 149
5.6.7.2.3 Not clause .. 149

5.6.7.3 Direct assertion definition ... 149
5.6.7.4 Additional Requirement .. 149
5.6.7.5 Notes ... 149
5.6.7.6 Example ... 149

5.6.8 Assertion definition .. 150
5.6.8.1 Keynames .. 150
5.6.8.2 Grammar .. 150
5.6.8.3 Example ... 151

5.6.9 Activity definitions .. 151
5.6.9.1 Delegate workflow activity definition .. 151

5.6.9.1.1 Keynames .. 151

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 15 of 186

5.6.9.1.2 Grammar .. 152
5.6.9.1.2.1 Short notation .. 152
5.6.9.1.2.2 Extended notation .. 152

5.6.9.2 Set state activity definition ... 152
5.6.9.2.1 Keynames .. 152
5.6.9.2.2 Grammar .. 152

5.6.9.3 Call operation activity definition.. 153
5.6.9.3.1 Keynames .. 153
5.6.9.3.2 Grammar .. 153
5.6.9.3.2.1 Short notation .. 153
5.6.9.3.2.2 Extended notation .. 153

5.6.9.4 Inline workflow activity definition .. 153
5.6.9.4.1 Keynames .. 154
5.6.9.4.2 Grammar .. 154
5.6.9.4.2.1 Short notation .. 154
5.6.9.4.2.2 Extended notation .. 154

5.6.9.5 Example ... 154

5.7 Workflows ... 154

5.7.1 Imperative Workflow definition .. 155
5.7.1.1 Keynames .. 155
5.7.1.2 Grammar .. 155

5.7.2 Workflow precondition definition.. 156
5.7.2.1 Keynames .. 156
5.7.2.2 Grammar .. 156

5.7.3 Workflow step definition .. 156
5.7.3.1 Keynames .. 156
5.7.3.2 Grammar .. 157

5.8 Normative values .. 158

5.8.1 Node States ... 158

5.8.2 Relationship States .. 158
5.8.2.1 Notes ... 159

5.8.3 Directives ... 159

5.8.4 Network Name aliases .. 159
5.8.4.1 Usage .. 159

6 TOSCA functions .. 160

6.1 Reserved Function Keywords ... 160

6.2 Environment Variable Conventions .. 160

6.2.1 Reserved Environment Variable Names and Usage .. 160

6.2.2 Prefixed vs. Unprefixed TARGET names .. 162
6.2.2.1 Notes ... 162

6.3 Intrinsic functions .. 162

6.3.1 concat .. 162
6.3.1.1 Grammar .. 162
6.3.1.2 Parameters .. 162
6.3.1.3 Examples ... 162

6.3.2 join ... 163
6.3.2.1 Grammar .. 163
6.3.2.2 Parameters .. 163

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 16 of 186

6.3.2.3 Examples ... 163

6.3.3 token .. 163
6.3.3.1 Grammar .. 163
6.3.3.2 Parameters .. 164
6.3.3.3 Examples ... 164

6.4 Property functions ... 164

6.4.1 get_input .. 164
6.4.1.1 Grammar .. 164
6.4.1.2 Parameters .. 164
6.4.1.3 Examples ... 165

6.4.2 get_property .. 166
6.4.2.1 Grammar .. 166
6.4.2.2 Parameters .. 166

6.4.2.2.1 The simplified TOSCA_PATH definition in BNF format .. 166
6.4.2.3 Note ... 167
6.4.2.4 Examples ... 168

6.5 Attribute functions ... 169

6.5.1 get_attribute... 169
6.5.1.1 Grammar .. 170
6.5.1.2 Parameters .. 170
6.5.1.3 Examples: .. 170

6.6 Navigation functions ... 170

6.6.1 get_nodes_of_type .. 170
6.6.1.1 Grammar .. 170
6.6.1.2 Parameters .. 171
6.6.1.3 Returns .. 171

6.7 Artifact functions ... 171

6.7.1 get_artifact ... 171
6.7.1.1 Grammar .. 171
6.7.1.2 Parameters .. 171
6.7.1.3 Examples ... 172

6.7.1.3.1 Example: Retrieving artifact without specified location ... 172
6.7.1.3.2 Example: Retrieving artifact as a local path ... 172
6.7.1.3.3 Example: Retrieving artifact in a specified location .. 173

6.8 Context-based Entity names (global) ... 173

6.8.1 Goals ... 173

7 TOSCA Cloud Service Archive (CSAR) format .. 174

7.1 Overall Structure of a CSAR ... 174

7.2 TOSCA Meta File .. 174

7.2.1 Custom keynames in the TOSCA.meta file ... 175

7.2.2 Example ... 175

7.3 Archive without TOSCA-Metadata .. 175

7.3.1 Example ... 175

8 Security Considerations ... 177

9 Conformance .. 178

9.1 Conformance Targets ... 178

9.2 Conformance Clause 1: TOSCA YAML service template .. 178

9.3 Conformance Clause 2: TOSCA processor .. 178

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 17 of 186

9.4 Conformance Clause 3: TOSCA orchestrator .. 178

9.5 Conformance Clause 4: TOSCA generator .. 179

9.6 Conformance Clause 5: TOSCA archive .. 179

Appendix A. Acknowledgments .. 180

Appendix B. Revision History .. 181

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 18 of 186

1 Introduction
[All text is normative unless otherwise labeled]

1.1 IPR Policy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/tosca/ipr.php).

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.3 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-
editor.org/info/rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14,
RFC 8174, DOI 10.17487/RFC8174, May 2017, <http://www.rfc-
editor.org/info/rfc8174>.

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans,
Ingy döt Net http://www.yaml.org/spec/1.2/spec.html

[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 2005-
01-18, http://yaml.org/type/timestamp.html

[ISO-IEC-21320-1] ISO/IEC 21320-1 "Document Container File — Part 1: Core",
https://www.iso.org/standard/60101.html

1.4 Non-Normative References

[Apache] Apache Server, https://httpd.apache.org/

[Chef] Chef, https://wiki.opscode.com/display/chef/Home

[NodeJS] Node.js, https://nodejs.org/

[Puppet] Puppet, http://puppetlabs.com/

[WordPress] WordPress, https://wordpress.org/

[Maven-Version] Apache Maven version policy draft:
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[JSON-Spec] The JSON Data Interchange Format (ECMA and IETF versions):

• http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

• https://tools.ietf.org/html/rfc7158

https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8174
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.iso.org_standard_60101.html&d=DwMGaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=iMe2kNWJr56-jSW30e_OAg&m=hqJISVD-2P4y8IrUCJEZA3ouwzgY1ma1Dy06ho-cnv8&s=W7RYQGDXRMlMcUW92ZcLjn-x5_hX8TqOZeNMhI4nuDk&e=
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 19 of 186

[JSON-Schema] JSON Schema specification:

• http://json-schema.org/documentation.html

[XMLSpec] XML Specification, W3C Recommendation, February 1998,
http://www.w3.org/TR/1998/REC-xml-19980210

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation, October 2004,
http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,
http://www.w3.org/TR/xmlschema-2/

[IANA register for Hash Function Textual Names] https://www.iana.org/assignments/hash-
function-text-names/hash-function-text-names.xhtml

[Jinja2] Jinja2, jinja.pocoo.org/

[Twig] Twig, https://twig.symfony.com

http://json-schema.org/documentation.html
http://www.w3.org/TR/xmlschema-1/

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 20 of 186

2 Overview

2.1 Objective

Cloud computing can become more valuable if the creation and lifecycle management of application,
infrastructure, and network services can be fully automated and supported across a variety of deployment
environments. The core TOSCA specification provides a language for describing service components and
their relationships using a service topology, and it provides for specifying the lifecycle management
procedures that allow for creation or modification of services using orchestration processes. The
combination of topology and orchestration in a Service Template describes what is needed in different
environments to enable automated deployment of services and their management throughout the
complete service lifecycle (e.g. scaling, patching, monitoring, etc.).

2.2 TOSCA Scope

TOSCA is a domain-specific language for designing services and for defining the deployment and run-
time management aspects of these services with the goal of enabling fully automated service
management. As such, TOSCA is designed to support all three phases of the service lifecycle:

1. Day 0—Service Design: Service designers use TOSCA to model services as topology graphs that
consist of nodes and relationships. Nodes model the components of which a service is composed,
and relationships model dependencies between these service components.

2. Day 1—Service Deployment: TOSCA can also be used to define mechanisms for deploying TOSCA
service topologies on external platforms.

3. Day 2—Service Management: TOSCA can enable run-time management of services by providing
support for updating and/or upgrading deployed services and by providing service assurance
functionality.

Note that it is not mandatory for compliant TOSCA implementations to support all three service lifecycle
phases. Some implementations may use TOSCA only for service design and delegate orchestration and
ongoing lifecycle management functionality to external (non-TOSCA) orchestrators. Other
implementations may decide to use TOSCA for all three phases of the service lifecycle.

2.3 Application Domains

TOSCA can be used to specify automated lifecycle management of the following:

• Infrastructure-as-a-Service Clouds: automate the deployment and management of workloads in IaaS
clouds such as OpenStack, Amazon Web Services, Microsoft Azure, and others.

• Cloud-native applications: deploy containerized applications and micro-services, for example by
interfacing to orchestration platforms such as Kubernetes.

• Network Functions Virtualization: define the management of Virtual Network Functions and their
composition into complex network services.

• Software Defined Networking: support on-demand creation of network services (for example SD-
WAN).

• Functions-as-a-Service: define abstract software applications without any deployment or operational
considerations.

• IoT and Edge computing: deploy services at the network edge with the goal of minimizing latency.

• Process automation: support open and interoperable process control architectures.

This list is by no means intended to be exhaustive and only serves to demonstrate the breadth of
application domains that can benefit from TOSCA’s automated lifecycle management capabilities.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 21 of 186

2.4 Implementations

Different kinds of processors and artifacts qualify as implementations of TOSCA. Those that this
specification is explicitly mentioning or referring to fall into the following categories:

• TOSCA service template (or “service template”): A YAML document artifact containing a (TOSCA)
topology template (see sections 3.9 “Service template definition”) that represents a Cloud application.
(see sections 3.8 “Topology template definition”)

• TOSCA processor (or “processor”): An engine or tool that is capable of parsing and interpreting a
TOSCA service template for a particular purpose. For example, the purpose could be validation,
translation or visual rendering.

• TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a TOSCA
service template or a TOSCA CSAR in order to instantiate, deploy, and manage the described
application in a Cloud.

• TOSCA translator: A tool that translates TOSCA service templates into documents that use another
language, such as Kubernetes Helm charts or Amazon CloudFormation templates.

• TOSCA template generator: A tool that generates a TOSCA service template. An example of
generator is a modeling tool capable of generating or editing a TOSCA service template (often such a
tool would also be a TOSCA processor).

• TOSCA archive (or TOSCA Cloud Service Archive, or “CSAR”): a package artifact that contains a
TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an
application.

The above list is not exclusive. The above definitions should be understood as referring to and
implementing TOSCA as described in this document.

2.5 Glossary

The following terms are used throughout this specification and have the following definitions when used in
context of this document.

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a declarative workflow that is automatically
generated based on the node templates and relationship templates defined in
the Topology Template.

Node Template A Node Template specifies the occurrence of a component node as part of a
Topology Template. Each Node Template refers to a Node Type that defines
the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship
Template

A Relationship Template specifies the occurrence of a relationship between
nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,
attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template A Service Template is typically used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of IT services so that
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 22 of 186

Topology Model The term Topology Model is often used synonymously with the term Topology
Template with the use of “model” being prevalent when considering a Service
Template’s topology definition as an abstract representation of an application
or service to facilitate understanding of its functional components and by

eliminating unnecessary details.

Topology Template A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template
and Relationship Template definitions that together define the topology model of
a service as a (not necessarily connected) directed graph. The term Topology
Template is often used synonymously with the term Topology Model. The
distinction is that a topology template can be used to instantiate and orchestrate
the model as a reusable pattern and includes all details necessary to
accomplish it.

Abstract Node
Template

An abstract node template is a node template that doesn’t define any
implementations for the TOSCA lifecycle management operations. Service
designers explicitly mark node templates as abstract using the substitute
directive. TOSCA orchestrators provide implementations for abstract node
templates by finding substituting templates for those node templates.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 23 of 186

3 TOSCA core concepts
The TOSCA language introduces a YAML-based grammar for creating service templates that define the
lifecycle management of application, infrastructure, and network services. The language defines a
metamodel for specifying both the structure of a service as well as its management aspects. Within a
service template, a Topology Template defines the structure of a service. Interfaces, Operations, and
Workflows define how service elements can be created and terminated as well as how they can be
managed during their whole lifetimes. Policies specify operational behavior of the service such as quality-
of-service objectives, performance objectives, and security constraints, and allow for closed-loop
automation. The major elements defining a service are depicted in Figure 1.

3.1 Topology Templates, Node Templates, and Relationships

Within a Service Template, a Topology Template defines the topology model of a service as a directed
acyclic graph. Each node in this graph is represented by a Node Template. A Node Template specifies
the presence of an entity of a specific Node Type as a component of a service. A Node Type defines the
properties of such a component (via Node Type Properties) and the operations (via Interfaces) available
to manipulate the component. Node Types are defined separately for reuse purposes. In a Topology
template a Node Template assigns values to the properties defined in the Node Type.

Figure 1: Structural Elements of a Service Template and their Relations

For example, consider a service that consists of an application server, a process engine, and a process
model. A Topology Template defining that service would include one Node Template of Node Type
“application server”, another Node Template of Node Type “process engine”, and a third Node Template
of Node Type “process model”. The application server Node Type defines properties like the IP address
of an instance of this type, an operation for installing the application server with the corresponding IP
address, and an operation for shutting down an instance of this application server. A constraint in the
Node Template can specify a range of IP addresses available when making a concrete application server
available.

Node templates may include one or more relationships to other node templates in the Topology
Template. Relationships represent the edges in the service topology graph. The node template that
includes the relationship definition is implicitly defined as the source node of the relationship and the
target node is explicitly specified as part of the relationship definition. Each relationship definition refers
to a Relationship Type that defines the semantics and any properties of the relationship. Relationship
Types are defined separately for reuse purposes.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 24 of 186

In the example above, a relationship can be established from the process engine Node Template to the
application server Node Template with the meaning “hosted by”, and from the process model Node
Template to the process engine Node Template with meaning “deployed on”.

3.2 Interfaces, Operations, and Artifacts

Both node and relationship types may define lifecycle operations that implement the behavior an
orchestration engine can invoke when instantiating a service template. For example, a node type for
some software product might provide a ‘create’ operation to handle the creation of an instance of a
component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an
orchestration engine.

Operations that are related to the same management mission (e.g. lifecycle management) are grouped
together in Interfaces that are defined by node and relationship types. Just like other TOSCA entities,
interfaces refer to their corresponding Interface Type that defines the group of operations that are part of
the interface. Interface Types can also define notifications that represent external events that are
generated by the outside world and received by the orchestrator.

The implementations of interface operations can be provided as TOSCA artifacts. An artifact represents
the content needed to provide an implementation for an interface operation. A TOSCA artifact could be an
executable (e.g. a script, an executable program, an image), a configuration file or data file, or something
that might be needed so that another executable can run (e.g. a library). Artifacts can be of different
types, for example EJBs or python scripts. The content of an artifact depends on its type. Typically,
descriptive metadata (such as properties) will also be provided along with the artifact. This metadata
might be needed to properly process the artifact, for example by describing the appropriate execution
environment.

3.3 Workflows

A deployed service is an instance of a topology template. More precisely, the instance is created by
instantiating the Topology Template of its Service Template by running workflows that are most often
automatically created by the orchestrator and that invoke the interface operations of the Node Types or
the Node Templates. Orchestrators can automatically generate workflows by using the relationship
between components to derive the order of component instantiation. For example, during the instantiation
of a two-tier application that includes a web application that depends on a database, an orchestration
engine would first invoke the ‘create’ operation on the database component to install and configure the
database, and it would then invoke the ‘create’ operation of the web application to install and configure
the application (which includes configuration of the database connection).

Interface operations invoked by workflows must use actual values for the various properties of the various
Node Templates and Relationship Templates of the Topology Template. These values can come from
input passed in by users as triggered by human interactions with the orchestrator or the templates can
specify default values for some properties. For example, the application server Node Template will be
instantiated by installing an actual application server at a concrete IP address considering the specified
range of IP addresses. Next, the process engine Node Template will be instantiated by installing a
concrete process engine on that application server (as indicated by the “hosted by” relationship template).
Finally, the process model Node Template will be instantiated by deploying the process model on that
process engine (as indicated by the “deployed on” relationship template).

3.4 Requirements and Capabilities

We discussed earlier how relationships are used to link node templates together into a service topology
graph. However, it may not always be possible to define all node templates for a given service topology
within a single service template. For example, modular design practices may dictate that different service
subcomponents be modeled using separate service templates. This may result in relationships that need
to be established across multiple service templates. Additionally, relationships may need to target
components that already exist and do not need to be instantiated by an orchestrator. For example,
relationships may reference physical resources that are managed in a resource inventory. Service
topology templates may not include node templates for these resources.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 25 of 186

TOSCA accommodates these scenarios using requirements and capabilities of node templates. A
requirement expresses that one component depends on (requires) a feature provided by another
component, or that a component has certain requirements against the hosting environment such as for
the allocation of certain resources or the enablement of a specific mode of operation. Capabilities
represent features exposed by components that can be used to fulfill requirements of other components.

Relationships are the result of fulfilling a requirement in one node template using a capability of a different
node template. If both source and target node templates are defined in the same service template,
service designers typically define the relationship between these node templates explicitly. Requirements
that do not explicitly specify a target node must be fulfilled by the orchestrator at service deployment time.
Orchestrators can take multiple service templates into account when fulfilling requirements, or they can
attempt to use resources managed in an inventory, which will result in relationships that are established
across service template boundaries.

Requirements and capabilities are modeled by annotating Node Types with Requirement Definitions and
Capability Definitions. Capability Types are defined as reusable entities so that those definitions can be
used in the context of several Node Types. Requirement definitions can specify the relationship type that
will be used when creating the relationship that fulfills the requirement.

Figure 2: Requirements and Capabilities

Node Templates which have corresponding Node Types with Requirement Definitions or Capability
Definitions will include representations of the respective Requirements and Capabilities with content
specific to the respective Node Template.

Requirements can be matched in two ways as briefly indicated above: (1) requirements of a Node
Template can be matched by capabilities of another Node Template in the same Service Template by
connecting the respective requirement-capability-pairs via relationships; (2) requirements of a Node
Template can be matched by the orchestrator, for example by allocating needed resources for a Node
Template during instantiation.

Requirements and capabilities are matched and “consumed” within a Topology Template.

When a Topology Template is defined as substitutable for a Node Type, the unmatched, “unconsumed”
requirements and capabilities of its Node Types are exposed as Requirements and Capabilities of the
substituted Node Type.

3.5 Decomposition of Service Templates

TOSCA provides support for decomposing service components using the Substitution Mapping feature.
For example, a Service Template for a business application that is hosted on an application server tier
might focus on defining the structure and manageability behavior of the business application itself. The
structure of the application server tier hosting the application can be provided in a separate Service
Template built by another vendor specialized in deploying and managing application servers. This
approach enables separation of concerns and re-use of common infrastructure templates.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 26 of 186

Figure 3: Service Template Decomposition

From the point of view of a Service Template (e.g. the business application Service Template from the
example above) that uses another Service Template, the other Service Template (e.g. the application
server tier) “looks” like just a Node Template. During deployment, however, this Node Template can be
substituted by the second Service Template if it exposes the same external façade (i.e. properties,
capabilities, etc.) as the Node Template. Thus, a substitution with any Service Template that has the
same facade as a certain Node Template in one Service Template becomes possible, allowing for a
flexible composition of different Service Templates. This concept also allows for providing substitutable
alternatives in the form of Service Templates. For example, a Service Template for a single node
application server tier and a Service Template for a clustered application server tier might exist, and the
appropriate option can be selected per deployment.

3.6 Policies in TOSCA

Non-functional behavior or quality-of-services are defined in TOSCA by means of policies. A Policy can
express such diverse things like monitoring behavior, payment conditions, scalability, or continuous
availability, for example.

A Node Template can be associated with a set of Policies collectively expressing the non-functional
behavior or quality-of-services that each instance of the Node Template will expose. Each Policy specifies
the actual properties of the non-functional behavior, like the concrete payment information (payment
period, currency, amount etc.) about the individual instances of the Node Template.

These properties are defined by a Policy Type. Policy Types might be defined in hierarchies to properly
reflect the structure of non-functional behavior or quality-of-services in particular domains. Furthermore, a
Policy Type might be associated with a set of Node Types the non-functional behavior or quality-of-
service it describes.

Policy Templates provide actual values of properties of the types defined by Policy Types. For example, a
Policy Template for monthly payments for US customers will set the “payment period” property to
“monthly” and the “currency” property to “US$”, leaving the “amount” property open. The “amount”
property will be set when the corresponding Policy Template is used for a Policy within a Node Template.
Thus, a Policy Template defines the invariant properties of a Policy, while the Policy sets the variant
properties resulting from the actual usage of a Policy Template in a Node Template.

3.7 Archive Format for Cloud Applications

In order to support in a certain environment for the execution and management of the lifecycle of a cloud
application, all corresponding artifacts have to be available in that environment. This means that beside
the service template of the cloud application, the deployment artifacts and implementation artifacts have

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 27 of 186

to be available in that environment. To ease the task of ensuring the availability of all of these, this
specification defines a corresponding archive format called CSAR (Cloud Service ARchive).

A CSAR is a container file, i.e. it contains multiple files of possibly different file types. These files are
typically organized in several subdirectories, each of which contains related files (and possibly other
subdirectories etc.). The organization into subdirectories and their content is specific for a particular cloud
application. CSARs are zip files, typically compressed. A CSAR may contain a file called TOSCA.meta
that describes the organization of the CSAR.

3.8 TOSCA Entities

When defining services using TOSCA, we must distinguish between four kinds of entities:

1. TOSCA Types: TOSCA types define re-usable building blocks that can be used during service
design. For example, TOSCA Node Types define reusable service components, including their
configurable properties.

2. TOSCA Templates: TOSCA templates define (typed) components of a service. For example, service
topology templates include node templates that assign specific values (often using TOSCA intrinsic
functions) to the configurable properties defined in the corresponding node types. It is not uncommon
to have multiple node templates of the same node type in a service template.

3. Representations: At deployment time, TOSCA implementations combine TOSCA service templates
with deployment-specific input values to create run-time representations of the service that is to be
deployed and managed. Note that TOSCA does not standardize an object model for representations.
Instead, such models are implementation specific.

4. External Implementations: These are the actual entities in the external world that correspond to the
representations managed by the orchestrator. TOSCA implementations that provide runtime service
management must keep their internal service representations in sync with the actual state of the
external implementations.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 28 of 186

4 TOSCA Operational Model
This section presents a TOSCA Functional Architecture and an associated operational model that
supports the three service lifecycle phases outline above. Note that this functional architecture is not
intended to prescribe how TOSCA must be implemented. Instead, it aims to provide users of TOSCA with
a mental model of how TOSCA implementations are expected to process TOSCA service templates.

While TOSCA does not mandate that compatible implementations must support all three lifecycle phases,
a complete architecture must anticipate all three and must include support for all four kinds of TOSCA
entities. The TOSCA architecture defined here illustrates how the various TOSCA entities are used and
how they are related.

Figure 4: TOSCA Functional Architecture

The functional architecture defines the following three blocks:

1. TOSCA Processor: This functional block defines functionality that must be provided by all TOSCA
implementations. TOSCA processors convert TOSCA-based service definitions into topology
representations that can be processed by an Orchestrator.

2. Orchestrator: This functional block creates external implementations on various resource platforms
based on the topology representations created by a TOSCA processor. The orchestration
functionality can itself be defined using TOSCA or can be provided by external (non-TOSCA)
orchestration platforms.

3. Platform: In the context of a TOSCA architecture, platforms represent external cloud, networking, or
other infrastructure resources on top of which service entities can be created.

The remainder of this section describes each of these functional blocks in more detail.

4.1 TOSCA Processor

At the core of a compliant TOSCA implementation is a TOSCA Processor that can create topology
representations from TOSCA service definitions. A TOSCA Processor contains the following functional
blocks:

4.1.1 Parser

• Accepts a single TOSCA service template plus imported TOSCA “units” (files without a
“topology_template”)

• Can (optionally) import these units from one or more repositories, either individually or as complete
profiles

• Outputs valid normalized node templates and unresolved requirements (one-to-one equivalency)

4.1.2 Resolver

A resolver performs the following functions

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 29 of 186

4.1.2.1 Creating Topology Representations

• Applies service inputs.

• Converts normalized node templates to node representations (one-to-one equivalency [cardinality?])
[a full TOSCA orchestrator can manage these instead of the external orchestrator/platform]

• Calls intrinsic functions (on demand for all the above) using the graph of node representations.

4.1.2.2 Requirement Fulfillment

• Satisfies all requirements and creates the relationship graph (an unsatisfied requirement results in an
error)

4.1.2.3 Substitution Mapping

4.2 Orchestrator

An orchestrator performs the following actions:

• (Continuously) turns node representations into zero or more node implementations (one-to-any)

• (Continuously) updates node representation attribute values (error if they do not adhere to TOSCA
type constraints) [we still don’t know how to handle multiplicity]

• (Continuously) reactivates the resolver: outputs and even satisfaction of requirements may change.

• (Optionally) changes the node representations themselves for day 2 transformations.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 30 of 186

5 TOSCA definitions in YAML
Except for the examples, this section is normative and describes all of the YAML grammar, definitions
and block structure for all keys and mappings that are defined for the TOSCA Version 2.0 specification
that are needed to describe a TOSCA Service Template.

5.1 TOSCA Metamodel

This section defines the models and the modeling goals that comprise the TOSCA Version 2.0
specification.

5.1.1 Modeling concepts and goals

TBD. Here we should have selected core concepts of TOSCA 1.0 from section “3 Core Concepts and

Usage Pattern” and this section should be a more in-depth section than section 2.1 in this document.

5.1.2 Modeling definitions and reuse

The TOSCA metamodel includes complex definitions used in types and templates. Reuse concepts
simplify the design of TOSCA templates by allowing relevant TOSCA entities to use and/or modify
definitions already specified during entity type design. The following four concepts are clarified next:

• Definition:

• The TOSCA specification is based on defining modeling entities.

• Entity definitions are based on different sets of keynames (with specific syntax and semantics)
that are associated with values (of a specific format).

• Derivation:

• Specific TOSCA entities support a type definition.

• When defining a type, it can be derived from a parent type and inherit all the specifications of the
parent type. .

• The derivation rules describe what (keyname) definitions are inherited from the parent type and
further if and how they can be expanded or modified. Note that some definitions (for example,
“version”) and intrinsic to the type declaration and so are not inherited.

• A parent type can in turn be derived from a parent type. There is no limit to the depth of a chain of
derivations

• Refinement:

• Definitions within a type definition consist of the definition of keynames and other TOSCA entities
(e.g. properties, requirements, capabilities, etc.). Definitions within a parent type can be refined
(adjusted) to better suit the needs of the referencing type

• The refinement rules pertaining to an entity describe how such entity definitions that are inherited
from the parent type during a type derivation can be expanded or modified.

• Augmentation:

• Definitions within a parent type can be expanded, which is the addition of propertys, to better suit
the requirements of the referencing type

• The augmentation rules pertaining to an entity describe how the inherited parent type during a
type derivation can be added to.

• Assignment:

• When creating a topology template, we specify several entities that are part of the template (e.g.
nodes, relationships, groups, etc.).

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403643
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403643

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 186

• When adding such an entity in the topology template, for some definitions that appear in the
corresponding entity type (e.g. properties, operations, requirements, etc.) we may (or must)
assign a certain specification (or value).

5.1.3 Goal of the derivation and refinement rules

The main reason for derivation and refinement rules is to create a framework useful for a consistent
TOSCA type profile creation. The intuitive idea is that a derived type follows to a large extent the structure
and behavior of a parent type, otherwise it would be better to define a new "not derived" type.

The guideline regarding the derivation rules is that a node of a derived type should be usable instead of a
node of the parent type during the selection and substitution mechanisms. These two mechanisms are
used by TOSCA templates to connect to TOSCA nodes and services defined by other TOSCA templates:

• The selection mechanism allows a node instance created a-priori by another service template to be
selected for usage (i.e. building relationships) to the current TOSCA template.

• The substitution mechanism allows a node instance to be represented by a service created
simultaneously via a substitution template.

It is relevant to emphasize the cross-template usage, as only in this case we deal with templates defined
at different design time-points, with potentially different editing and maintenance restrictions.

5.1.4 Mandatory Keynames

The TOSCA metamodel includes complex definitions used in types (e.g., Node Types, Relationship
Types, Capability Types, Data Types, etc.), definitions and refinements (e.g. Requirement Definitions,
Capability Definitions, Property and Parameter Definitions, etc.) and templates (e.g. Service Template,
Topology Template, Node Template, etc.) each of which include their own list of reserved keynames that
are sometimes marked as mandatory. If a keyname is marked as mandatory it MUST be defined in that
particular definition context. In some definitions, certain keywords may be mandatory depending on the
value of other keywords in the definition. In that case, the keyword will be marked as conditional and the
condition will be explained in the description column. Note that in the context of type definitions, types
may be used to derive other types, and keyname definitions MAY be inherited from parent types
(according to the derivation rules of that type entity). If a keyname definition is inherited, the derived type
does not have to provide such definition.

5.2 TOSCA Service

A TOSCA Service is specified by a TOSCA Service Template.

5.2.1 Service Template definition

A TOSCA Service Template) document contains element definitions of building blocks for cloud
applications (when it doesn’t contain a topology_template declaration and its parts are referenced in other
documents),, or complete models of cloud applications(when it contains a topology_template declaration
which defines a service). This section describes the top-level structural elements (TOSCA keynames)
along with their grammars, which are allowed to appear in a TOSCA Service Template document.

5.2.1.1 Keynames

The following is the list of recognized keynames for a TOSCA Service Template definition:

Keyname Mandatory Type Description

tosca_definitions_version yes string Defines the version of the TOSCA specification the
template (grammar) complies with.

profile no string The optional profile name that can be used by other TOSCA
service templates to import the type definitions in this
document.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 32 of 186

Keyname Mandatory Type Description

metadata no map of
string

Defines a section used to declare additional metadata
information. Domain-specific TOSCA profile specifications
may define keynames that are mandatory for their
implementations.

description no string Declares a description for this Service Template and its
contents.

dsl_definitions no N/A Declares language specific definitions and conventions. For
example, in YAML, this allows defining reusable YAML
macros (i.e., YAML alias anchors) for use throughout the
TOSCA Service Template.

repositories no map of
Repository
definitions

Declares the map of external repositories which contain
artifacts that are referenced in the service template along
with their addresses used to connect to them in order to
retrieve the artifacts.

imports no list of
Import
definitions

Declares a list import statements pointing to external
TOSCA Definitions documents. For example, these may be
file location or URIs relative to the service template file
within the same TOSCA CSAR file.

artifact_types no map of
Artifact
Types

This section contains an optional map of artifact type
definitions for use in the service template and/or external
service templates.

data_types no map of
Data Types

Declares a map of optional TOSCA Data Type definitions for
use in the service template and/or external service
templates...

capability_types no map of
Capability
Types

This section contains an optional map of capability type
definitions for use in the service template and/or external
service templates..

interface_types no map of
Interface
Types

This section contains an optional map of interface type
definitions for use in the service template and/or external
service templates..

relationship_types no map of
Relationship
Types

This section contains a map of relationship type definitions
for use in the service template and/or external service
templates..

node_types no map of
Node Types

This section contains a map of node type definitions for use
in the service template and/or external service templates..

group_types no map of
Group Types

This section contains a map of group type definitions for
use in the service template and/or external service
templates..

policy_types no map of
Policy Types

This section contains a list of policy type definitions for use
in the service template and/or external service templates..

topology_template no Topology
Template
definition

Defines the topology template of an application or service,
consisting of node templates that represent the
application’s or service’s components, as well as
relationship templates representing relations between the
components.

5.2.1.1.1 Metadata keynames

The following is the list of recognized metadata keynames for a TOSCA Service Template definition:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 33 of 186

Keyname Mandatory Type Description

template_name no string Declares a descriptive name for the template.

template_author no string Declares the author(s) or owner of the template.

template_version no string Declares the version string for the template.

5.2.1.2 Grammar

The overall structure of a TOSCA Service Template and its top-level key collations is shown below:

Mandatory TOSCA Definitions version string

tosca_definitions_version: <value> # Mandatory, see section 3.1 for usage

profile: <string> # Optional, see section 3.2 for usage

Optional metadata keyname: value pairs

metadata:

 template_name: <value> # Optional, name of this service template

 template_author: <value> # Optional, author of this service template

 template_version: <value> # Optional, version of this service template

 # More optional entries of domain or profile specific metadata keynames

Optional description of the definitions inside the file.

description: <template_ description>

dsl_definitions:

 # map of YAML alias anchors (or macros)

repositories:

 # map of external repository definitions which host TOSCA artifacts

imports:

 # ordered list of import definitions

artifact_types:

 # map of artifact type definitions

data_types:

 # map of datatype definitions

capability_types:

 # map of capability type definitions

interface_types

 # map of interface type definitions

relationship_types:

 # map of relationship type definitions

node_types:

 # map of node type definitions

group_types:

 # map of group type definitions

policy_types:

 # map of policy type definitions

topology_template:

 # topology template definition of the cloud application or service

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 34 of 186

5.2.1.2.1 Requirements

• The key “tosca_definitions_version” .MUSTbe the first line of each Service Template.

5.2.1.2.2 Notes

• TOSCA Service Templates do not have to contain a topology_template and MAY contain simply type
definitions (e.g., Artifact, Interface, Capability, Node, Relationship Types, etc.) and be imported for
use as type definitions in other TOSCA Service Templates.

5.2.1.3 Top-level keyname definitions

5.2.1.3.1 tosca_definitions_version

This mandatory element provides a means to include a reference to the TOSCA specification within the
TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that should be
used to parse the remainder of the document.

5.2.1.3.1.1 Keyname

tosca_definitions_version

5.2.1.3.1.2 Grammar

:

tosca_definitions_version: <tosca_ version>

TOSCA uses the following version strings for the various revisions of the TOSCA specification:

Version String TOSCA Specification

tosca_2_0 TOSCA Version 2.0

tosca_simple_yaml_1_3 TOSCA Simple Profile in YAML Version 1.3

tosca_simple_yaml_1_2 TOSCA Simple Profile in YAML Version 1.2

tosca_simple_yaml_1_1 TOSCA Simple Profile in YAML Version 1.1

tosca_simple_yaml_1_0 TOSCA Simple Profile in YAML Version 1.0

Note that it is not mandatory for TOSCA Version 2.0 implementations to support older versions of the
TOSCA specifications.

5.2.1.3.1.3 Examples:

A service template designed using the TOSCA Version 2.0 specification:

tosca_definitions_version: tosca_2_0

5.2.1.3.2 profile

The profile keyword is used to assign a profile name to the collection of types defined in this service
template. TOSCA implementations use profile names to register known profiles into an internal repository.
These profiles can then be imported by other service templates using the profile keyword in their

import statement.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 35 of 186

5.2.1.3.2.1 Keyname

profile

5.2.1.3.2.2 Grammar

profile: <string_value>

TOSCA does not place any restrictions on the value of the profile name string. However, we encourage a
Java-style reverse-domain notation with version as a best-practice convention.

5.2.1.3.2.3 Examples

The following is an example of a TOSCA Service Template that defines TOSCA Simple Profile Version
2.0 types:

profile: org.oasis-open.tosca.simple:2.0

The following defines a domain-specific profile for Kubernetes:

profile: io.kubernetes:1.18

5.2.1.3.3 metadata

This keyname is used to associate domain-specific metadata with the Service Template. The metadata
keyname allows a declaration of a map of keynames with string values.

5.2.1.3.3.1 Keyname

metadata

5.2.1.3.3.2 Grammar

metadata:

 <map_of_string_values>

5.2.1.3.3.3 Example

metadata:

 creation_date: 2015-04-14

 date_updated: 2015-05-01

 status: developmental

5.2.1.3.4 template_name

This optional metadata keyname can be used to declare the name of service template as a single-line
string value.

5.2.1.3.4.1 Keyname

template_name

5.2.1.3.4.2 Grammar

template_name: <name string>

5.2.1.3.4.3 Example

template_name: My service template

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 36 of 186

5.2.1.3.5 template_author

This optional metadata keyname can be used to declare the author(s) of the service template as a single-
line string value.

5.2.1.3.5.1 Keyname

template_author

5.2.1.3.5.2 Grammar

template_author: <author string>

5.2.1.3.5.3 Example

template_author: OASIS TOSCA TC

5.2.1.3.6 template_version

This optional metadata keyname can be used to declare a domain specific version of the service template
as a single-line string value.

5.2.1.3.6.1 Keyname

template_version

5.2.1.3.6.2 Grammar

template_version: <version>

5.2.1.3.6.3 Example

template_version: 3.0.177

5.2.1.3.6.4 Notes:

• Some service templates are designed to be referenced and reused by other service templates and
have a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD be
included and used in conjunction with a unique template_name value to enable lifecycle management
of the service template and its contents.

5.2.1.3.7 description

This optional keyname provides a means to include single or multiline descriptions within a TOSCA
template as a scalar string value.

5.2.1.3.7.1 Keyname

description

5.2.1.3.7.2 Grammar

description: <description>

5.2.1.3.7.3 Example

Single line example

description: A simple example service template

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 37 of 186

Multi-line example

description: "A multiline description

using a quoted string”

5.2.1.3.8 dsl_definitions

This optional keyname provides a section to define macros (e.g., YAML-style macros when using the
TOSCA specification).

5.2.1.3.8.1 Keyname

dsl_definitions

5.2.1.3.8.2 Grammar

dsl_definitions:

 <dsl_definition_1>

 ...

 <dsl_definition_n>

5.2.1.3.8.3 Example

dsl_definitions:

 ubuntu_image_props: &ubuntu_image_props

 architecture: x86_64

 type: linux

 distribution: ubuntu

 os_version: 14.04

 redhat_image_props: &redhat_image_props

 architecture: x86_64

 type: linux

 distribution: rhel

 os_version: 6.6

5.2.1.3.9 repositories

This optional keyname provides a section to define external repositories which may contain artifacts or
other TOSCA Service Templates which might be referenced or imported by the TOSCA Service Template
definition.

5.2.1.3.9.1 Keyname

repositories

5.2.1.3.9.2 Grammar

repositories:

 <repository_definition_1>

 ...

 <repository_definition_n>

5.2.1.3.9.3 Example

repositories:

 my_project_artifact_repo:

 description: development repository for TAR archives and Bash scripts

 url: http://mycompany.com/repository/myproject/

http://mycompany.com/repository/myproject/

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 38 of 186

 external_repo: https://foo.bar

5.2.1.3.10 imports

This optional keyname provides a way to import a a block sequence of one or more TOSCA Definitions
documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node
Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an
effective way for companies and organizations to define domain-specific types and/or describe their
software applications for reuse in other TOSCA Service Templates.

5.2.1.3.10.1 Keyname

imports

5.2.1.3.10.2 Grammar

imports:

 - <import_definition_1>

 - ...

 - <import_definition_n>

5.2.1.3.10.3 Example

An example import of definitions files from a location relative to the

file location of the service template declaring the import.

imports:

 - relative_path/my_defns/my_typesdefs_1.yaml

 - url: my_defns/my_typesdefs_n.yaml

 repository: my_company_repo

 namespace: mycompany

5.2.1.3.11 artifact_types

This optional keyname lists the Artifact Types that are defined by this Service Template.

5.2.1.3.11.1 Keyname

artifact_types

5.2.1.3.11.2 Grammar

artifact_types:

 <artifact_type_defn_1>

 ...

 <artifact type_defn_n>

5.2.1.3.11.3 Example

artifact_types:

 mycompany.artifacttypes.myFileType:

 derived_from: tosca.artifacts.File

5.2.1.3.12 data_types

This optional keyname provides a section to define new data types in TOSCA.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 39 of 186

5.2.1.3.12.1 Keyname

data_types

5.2.1.3.12.2 Grammar

data_types:

 <tosca_datatype_def_1>

 ...

 <tosca_datatype_def_n>

5.2.1.3.12.3 Example

data_types:

 # A complex datatype definition

 simple_contactinfo_type:

 properties:

 name:

 type: string

 email:

 type: string

 phone:

 type: string

 # datatype definition derived from an existing type

 full_contact_info:

 derived_from: simple_contact_info

 properties:

 street_address:

 type: string

 city:

 type: string

 state:

 type: string

 postalcode:

 type: string

5.2.1.3.13 capability_types

This optional keyname lists the Capability Types that provide the reusable type definitions that can be
used to describe features of Node Templates or Node Types that can be used to fulfill requirements of
other nodes.

5.2.1.3.13.1 Keyname

capability_types

5.2.1.3.13.2 Grammar

capability_types:

 <capability_type_defn_1>

 ...

 <capability type_defn_n>

5.2.1.3.13.3 Example

capability_types:

 mycompany.mytypes.myCustomEndpoint:

 derived_from: tosca.capabilities.Endpoint

 properties:

 # more details ...

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 40 of 186

 mycompany.mytypes.myCustomFeature:

 derived_from: tosca.capabilities.Feature

 properties:

 # more details ...

5.2.1.3.14 interface_types

This optional keyname lists the Interface Types that provide the reusable type definitions that can be used
to describe operations exposed by TOSCA entities such as Relationship Types and Node Types.

5.2.1.3.14.1 Keyname

interface_types

5.2.1.3.14.2 Grammar

interface_types:

 <interface_type_defn_1>

 ...

 <interface type_defn_n>

5.2.1.3.14.3 Example

interface_types:

 mycompany.interfaces.service.Signal:

 operations:

 signal_begin_receive:

 description: Operation to signal start of some message processing.

 signal_end_receive:

 description: Operation to signal end of some message processed.

5.2.1.3.15 relationship_types

This optional keyname lists the Relationship Types that provide the reusable type definitions that can be
used to describe dependent relationships between Node Templates or Node Types.

5.2.1.3.15.1 Keyname

relationship_types

5.2.1.3.15.2 Grammar

relationship_types:

 <relationship_type_defn_1>

 ...

 <relationship type_defn_n>

5.2.1.3.15.3 Example

relationship_types:

 mycompany.mytypes.myCustomClientServerType:

 derived_from: tosca.relationships.HostedOn

 properties:

 # more details ...

 mycompany.mytypes.myCustomConnectionType:

 derived_from: tosca.relationships.ConnectsTo

 properties:

 # more details ...

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 41 of 186

5.2.1.3.16 node_types

This optional keyname lists the Node Types that provide the reusable type definitions for service
components that Node Templates can be based upon.

5.2.1.3.16.1 Keyname

node_types

5.2.1.3.16.2 Grammar

node_types:

 <node_type_defn_1>

 ...

 <node_type_defn_n>

5.2.1.3.16.3 Example

node_types:

 my_webapp_node_type:

 derived_from: WebApplication

 properties:

 my_port:

 type: integer

 my_database_node_type:

 derived_from: Database

 capabilities:

 mytypes.myfeatures.transactSQL

5.2.1.3.17 group_types

This optional keyname lists the Group Types that are defined by this Service Template.

5.2.1.3.17.1 Keyname

group_types

5.2.1.3.17.2 Grammar

group_types:

 <group_type_defn_1>

 ...

 <group type_defn_n>

5.2.1.3.17.3 Example

group_types:

 mycompany.mytypes.myScalingGroup:

 derived_from: tosca.groups.Root

5.2.1.3.18 policy_types

This optional keyname lists the Policy Types that are defined by this Service Template.

5.2.1.3.18.1 Keyname

policy_types

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 42 of 186

5.2.1.3.18.2 Grammar

policy_types:

 <policy_type_defn_1>

 ...

 <policy type_defn_n>

5.2.1.3.18.3 Example

policy_types:

 mycompany.mytypes.myScalingPolicy:

 derived_from: tosca.policies.Scaling

5.2.2 Profiles

A profile is a named collection of TOSCA type definitions, artifacts, and topology templates that logically
belong together. One can think of TOSCA profiles as platform libraries exposed by the TOSCA
orchestration platform and made available to all services that use that platform. Profiles in TOSCA are
similar to libraries in traditional computer programming languages.

Profiles contain a collection of pre-defined components that can be used by service designers to
compose complex service templates, Entities defined in TOSCA profiles are used as follows:

• Types defined in a TOSCA profile provide reusable building blocks from which services can be
composed.

• Artifacts and Topology Templates defined in a TOSCA profile provide implementations for the
TOSCA types defined in the profile. Whereas artifacts provide interface operation implementations for
concrete nodes and relationships, topology templates defined in TOSCA profiles are intended to
implement abstract nodes through substitution mapping.

TOSCA implementations can organize supported profiles in a catalog to allow other service templates to
import those profiles by profile name. This avoids the need for every service that use those profiles to
include the profile type definitions in their service definition packages.

5.2.2.1 Examples

Version 1.x of the TOSCA specification included a collection of normative type definitions for building
cloud applications. This collection of type definitions was defined as the TOSCA Simple Profile.
Implementations of TOSCA Version 1.x were expected to include implementations for the types defined in
the TOSCA Simple Profile, and service templates defined using TOSCA Version 1.x implicitly imported
the corresponding TOSCA Simple Profile version.

Starting with TOSCA Version 2.0, the TOSCA Simple Profile type definitions are no longer part of the
TOSCA standard and support for the TOSCA Simple Profile is no longer mandatory. Instead, the
definition of the TOSCA Simple Profile has been moved to an OASIS Open Github repository with the
goal of being maintained by the TOSCA community and governed as an open source project. In addition,
TOSCA Version 2.0 removes the implicit import of the TOSCA Simple Profile. Service templates that want
to continue to use the TOSCA Simple Profile type definitions must explicitly import that profile.

Eliminating mandatory support for the TOSCA Simple Profile makes it easier for TOSCA to be used for
additional application domains. For example, the European Telecommunications Standards Institute
(ETSI) has introduced a TOSCA profile for Network Functions Virtualization defines Virtualized
Network Function Descriptors (VNFDs), Network Service Descriptors (NSDs) and a Physical Network
Function Descriptors (PNFDs).

We should give a couple of additional examples.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 43 of 186

5.2.2.2 Defining Profiles

A TOSCA Service Template defines a TOSCA Profile if the profile keyword is used in that service

template. The value of the profile keyword defines the name for the profile, which allows other service
templates to import the profile by name.

TOSCA does not impose naming conventions for profile names, but as a best practice we recommend a
domain-name-like structure as used for Java package naming. For example, the following profile
statement is used to define TOSCA Simple Profile Version 2.0 types:

profile: org.oasis-open.tosca.simple:2.0

This section must further define rules for defining profiles. For example:

- what happens if a file imported by a template that defines a profile in turn defines a
profile as well?

- what happens if a template imports a file that defines a profile? Is that an error?

• TOSCA Service Templates that define a profile (i.e. that contain a profile keyname) MUST NOT

also define a topology_template.

• TOSCA Topology Templates defined in profiles MUST advertise substitution mapping to allow them
to be used as implementations for abstract nodes defined using profile types.

5.2.2.3 Profile Versions

TOSCA Profiles are likely to evolve over time and profile designers will release different versions of their
profiles. For example, the TOSCA Simple Profile has gone through minor revisions with each release of
the TOSCA Version 1 standard. It is expected that profile designers will use a version qualifier to
distinguish between different versions of their profiles, and service template designers must use the
proper string name to make sure they import the desired versions of these profiles.

Do we impose a structure on profile names that distinguishes the version qualifier from
the base profile name? If so, is there a specific separator character or string (in which
case the use of the separator must be escaped somehow (or disallowed) in profile
names.

When multiple versions of the same profile exist, it is possibly that service templates could mix and match
different versions of a profile in the same service definition. The following code snippets illustrate this
scenario:

Assume a profile designer creates version 1 of a base profile that defines (among other things) a Host

capability type and a corresponding HostedOn relationship type as follows:

tosca_definitions_version: tosca_2_0

profile: org.base.v1

capability_types:

 Host:

 description: Hosting capability

relationship_types:

 HostedOn:

 valid_capability_types: [Host]

Now let’s assume a different profile designer creates a platform-specific profile that defines (among other
things) a Platform node type. The Platform node type defines a capability of type Host. Since the Host

capability is defined in the org.base.v1 profile, that profile must be imported as shown in the snippet

below:

tosca_definitions_version: tosca_2_0

profile: org.platform

imports:

 - profile: org.base.v1

 namespace: p1

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 44 of 186

node_types:

 Platform:

 capabilities:

 host:

 type: p1:Host

At some later point of time, the original profile designer updates the org.base profile to Version 2. The

updated version of this profile just adds a Credential data type (in addition to defining the Host

capability type and the HostedOn relationship type), as follows:

tosca_definitions_version: tosca_2_0

profile: org.base.v2

capability_types:

 Host:

 description: Hosting capability

relationship_types:

 HostedOn:

 valid_capability_types: [Host]

data_types:

 Credential:

 properties:

 key:

 type: string

Finally, let’s assume a service designer creates a template for a service that is to be hosted on the
platform defined in the org.platform profile. The template introduces a Service node type that has a

requirement for the platform’s Host capability. It also has a credential property of type Credential as

defined in org.base.v2:

tosca_definitions_version: tosca_2_0

imports:

 - profile: org.base.v2

 namespace: p2

 - profile: org.platform

 namespace_prefix: pl

node_types:

 Service:

 properties:

 credential:

 type: p2:Credential

 requirements:

 - host:

 capability: p2:Host

 relationship: p2:HostedOn

topology_template:

 node_templates:

 service:

 type: Service

 properties:

 credential:

 key: password

 requirements:

 - host: platform

 platform:

 type: pl:Platform

This service template is invalid, since the platform node template does not define a capability of a type

that is compatible with the valid_capability_types specified by the host requirement in the

service node template. TOSCA grammar extensions are needed to specify that the Host capability

type defined in org.base.v2 is the same as the Host capability type defined in org.base.v1

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 45 of 186

The example in this section illustrates a general version compatibility issue that exists when different
versions of the same profile are used in a TOSCA service.

A number of suggestions for these extensions are currently being discussed. Grammar
extensions will be included in this document one they are agreed upon.

5.2.3 Imports and Namespaces

5.2.3.1 Import definition

An import definition is used within a TOSCA Service Template to locate and uniquely name another
TOSCA Service Template file which has type and template definitions to be imported (included) and
referenced within another Service Template.

5.2.3.1.1 Keynames

The following is the list of recognized keynames for a TOSCA import definition:

Keyname Mandatory Type Description

url conditional string The url that references a service template to be
imported. An import statement must include
either a url or a profile, but not both.

profile conditional string The profile name that references a named type
profile to be imported. An import statement
must include either a url or a profile, but not
both.

repository conditional string The optional symbolic name of the repository
definition where the imported file can be found
as a string. The repository name can only be used
when a url is specified.

namespace no string The optional namespace into which to import
the type definitions from the imported template
or profile.

5.2.3.1.2 Grammar

Import definitions have one the following grammars:

5.2.3.1.2.1 Single-line grammar:

When using the single-line grammar, the url keyword is assumed:

imports:

 - <URI_1>

 - <URI_2>

5.2.3.1.2.2 Multi-line grammar

The following multi-line grammar can be used for importing service template files:

imports:

 - url: <file_URI>

 repository: <repository_name>

 namespace: <namespace_name>

The following multi-line grammar can be used for importing type profiles:

imports:

 - profile: <profile_name>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 46 of 186

 namespace: <namespace_name>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• file_uri: contains the URL that references the service template file to be imported as a string.

• repository_name: represents the optional symbolic name of the repository definition where the
imported file can be found as a string.

• profile_name: the name of the well-known profile to be imported.

• namespace_name: represents the optional name of the namespace into which type definitions will be
imported. The namespace name can be used to form a namespace-qualified name that uniquely
references type definitions from the imported file or profile. If no namespace name is specified, type
definitions will be imported into the root namespace.

5.2.3.1.3 Import processing rules

TOSCA Orchestrators, Processors and tooling SHOULD handle import statements as follows:

5.2.3.1.3.1 Importing profiles

If the profile keyname is used in the import definition, then the TOSCA orchestrator or processor
SHOULD attempt to import the profile by name:

• If <profile_name> represents the name of a profile that is known to the TOSCA orchestrator or
processor, then it SHOULD cause the Profile Type definitions to be imported.

• If <profile_name> is not known, the import SHOULD be considered a failure.

5.2.3.1.3.2 Importing service templates

If the url keyname is used, the TOSCA orchestrator or processor SHOULD attempt to import the file
referenced by <file_URI> as follows:

• If the <file_URI> includes a URL scheme (e.g. file: or https:) then<file_URI> is considered to be a

network accessible resource. If the resource identified by <file_URL> represents a valid TOSCA
Service Template, then it SHOULD cause the remote Service Template to be imported.

– Note that if in addition to a URL with a URL scheme, the import definition also specifies a
<repository_name> (using the repository key), then that import definition SHOULD be considered
invalid.

• If the <file_URI> does not include a URL scheme, it is a considered a relative path URL. The TOSCA
orchestrator or processor SHOULD handle such a <file_URI> as follows:

– If the import definition also specifies a <repository_name> (using the repository keyname), then
<file_URI> refers to the path name of a file relative to the root of the named repository

– If the import definition does not specify a <profile_name> then <file_URI> refers to a TOSCA
service template located in the repository that contains the Service Template file that includes the
import definition. If the importing service template is located in a CSAR file, then that CSAR file
should be treated as the repository in which to locate the service template file that must be
imported.

• If <file_URI> starts with a leading slash (‘/’) then <file_URI> specifies a path name starting at
the root of the repository.

• If <file_URI> does not start with a leading slash, then <file_URI> specifies a path that is
relative to the importing document’s location within the repository. Double dot notation (‘../’)
can be used to refer to parent directories in a file path name.

• If <file_URI> does not reference a valid TOSCA Service Template file, then the import SHOULD be
considered a failure.

5.2.3.1.4 Examples

The first example shows how to use an import definition import a well-known profile by name:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 47 of 186

Importing a profile

imports:

- profile: org.oasis-open.tosca.simple:2.0

The next example shows an import definition used to import a network-accessible resource using the
https protocol:

Absolute URL with scheme

imports:

- url: https://myorg.org/tosca/types/mytypes.yaml

The following represents shows an import definition used to import a service template in the same
repository as the importing template. The template to be imported is referenced using a path name that is
relative to the location of the importing template. This example shows the short notation:

Short notation supported

imports:

- ../types/mytypes.yaml

The following shows the same example but using the long notation:

Long notation

imports:

- url: ../types/mytypes.yaml

The following example shows how to import service templates using absolute path names (i.e. path
names that start at the root of the repository):

Root file

imports:

- url: /base.yaml

And finally, the following shows how to import templates from a repository that is different than the
repository that contains the importing template:

External repository

imports:

- url: types/mytypes.yaml

 repository: my_repository

5.2.3.2 Namespaces

When importing service templates or type profiles, there exists a possibility for namespace collision. For
example, an imported template may define a node type with the same name as a node type defined in the
importing template.

For example, let say we have two Service Templates, A and B, both of which contain a Node Type
definition for “MyNode”:

Service Template B

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 48 of 186

tosca_definitions_version: tosca_2_0

description: Service Template B

node_types:

 MyNode:

 derived_from: SoftwareComponent

 properties:

 # omitted here for brevity

 capabilities:

 # omitted here for brevity

Service Template A

tosca_definitions_version: tosca_2_0

description: Service Template A

imports:

 - url: /templates/ServiceTemplateB.yaml

node_types:

 MyNode:

 derived_from: Root

 properties:

 # omitted here for brevity

 capabilities:

 # omitted here for brevity

topology_template:

 node_templates:

 my_node:

 type: MyNode

As you can see, Service Template A imports Service Template B which results in duplicate definitions of
the MyNode node type. In this example, it is not clear which type is intended to be used for the my_node
node template.

To address this issue, TOSCA uses the concept of namespaces:

• Each TOSCA service template defines a root namespace for all type definitions defined in that
template. Root namespaces are unnamed.

• When a TOSCA service template imports other templates, it has two options:

– It can import any type definitions from the imported templates into its root namespace

– Or it can import type definitions from the imported templates into a separate named namespace.
This is done using the namespace keyname in the associated import statement. When using

types imported into a named namespace, those type names must be qualified using the
namespace name.

The following snippets update the previous example using namespaces to disambiguate between the two
MyNode type definitions. This first snippet shows the scenario where the MyNode definition from Service
Template B is intended to be used:

tosca_definitions_version: tosca_2_0

description: Service Template A

imports:

 - url: /templates/ServiceTemplateB.yaml

 namespace: templateB

node_types:

 MyNode:

 derived_from: Root

 properties:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 49 of 186

 # omitted here for brevity

 capabilities:

 # omitted here for brevity

topology_template:

 node_templates:

 my_node:

 type: templateB:MyNode

The second snippet shows the scenario where the MyNode definition from Service Template A is
intended to be used:

tosca_definitions_version: tosca_2_0

description: Service Template A

imports:

 - url: /templates/ServiceTemplateB.yaml

 namespace: templateB

node_types:

 MyNode:

 derived_from: Root

 properties:

 # omitted here for brevity

 capabilities:

 # omitted here for brevity

topology_template:

 node_templates:

 my_node:

 type: MyNode

In many scenarios, imported service templates may in turn import their own service templates, and
introduce their own namespaces to avoid name collisisions. In those scenarios, nested namespace
names are used to uniquely identify type definitions in the import tree.

The following example shows a mytypes.yaml service template that imports a Kubernetes profile into the
k8s namespace. It defines a SuperPod node type that derives from the Pod node type defined in that
Kubernetes profile:

tosca_definitions_version: tosca_2_0

description: mytypes.yaml

imports:

- profile: io.kubernetes:1.18

 namespace: k8s

node_types:

 MyNode: {}

 SuperPod:

 derived_from: k8s:Pod

The mytypes.yaml template is then imported into the main.yaml service template, which defines both a
node template of type SuperPod as well as a node template of type Pod. Nested namespace names are
used to identify the Pod node type from the Kubernetes profile:

tosca_definitions_version: tosca_2_0

description: main.yaml

imports:

- url: mytypes.yaml

 namespace: my

topology_template:

 node_templates:

 mynode:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 50 of 186

 type: my:MyType

 pod:

 type: my:k8s:Pod

5.2.3.2.1 Additional Requirements

Within each namespace, names must be unique. This means the following:

• Duplicate local names (i.e., within the same Service Template SHALL be considered an error. These
include, but are not limited to duplicate names found for the following definitions:

– Repositories (repositories)

– Data Types (data_types)

– Node Types (node_types)

– Relationship Types (relationship_types)

– Capability Types (capability_types)

– Artifact Types (artifact_types)

– Interface Types (interface_types)

• Duplicate Template names within a Service Template’s Topology Template SHALL be considered an
error. These include, but are not limited to duplicate names found for the following template types:

– Node Templates (node_templates)

– Relationship Templates (relationship_templates)

– Inputs (inputs)

– Outputs (outputs)

• Duplicate names for the following keynames within Types or Templates SHALL be considered an
error. These include, but are not limited to duplicate names found for the following keynames:

– Properties (properties)

– Attributes (attributes)

– Artifacts (artifacts)

– Requirements (requirements)

– Capabilities (capabilities)

– Interfaces (interfaces)

– Policies (policies)

– Groups (groups)

5.2.3.3 Repository definition

A repository definition defines an external repository which contains deployment and implementation
artifacts that are referenced within the TOSCA Service Template.

5.2.3.3.1 Keynames

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname Mandator
y

Type Description

description no string The optional description for the repository.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 51 of 186

Keyname Mandator
y

Type Description

url yes string The mandatory URL or network address used to access the
repository.

5.2.3.3.2 Grammar

Repository definitions have one the following grammars:

5.2.3.3.2.1 Single-line grammar:

<repository_name>: <repository_address>

5.2.3.3.2.2 Multi-line grammar

<repository_name>:

 description: <repository_description>

 url: <repository_address>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• repository_name: represents the mandatory symbolic name of the repository as a string.

• repository_description: contains an optional description of the repository.

• repository_address: represents the mandatory URL of the repository as a string.

5.2.3.3.3 Example

The following represents a repository definition:

repositories:

 my_code_repo:

 description: My project’s code repository in GitHub

 url: https://github.com/my-project/

5.2.4 Additional information definitions

5.2.4.1 Description definition

This optional element provides a means include single or multiline descriptions within a TOSCA template
as a scalar string value.

5.2.4.1.1 Keyname

The following keyname is used to provide a description within the TOSCA specification:

description

5.2.4.1.2 Grammar

Description definitions have the following grammar:

description: <description_string>

5.2.4.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that
immediately follows the description key:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 52 of 186

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space
characters.

description: >

 This is an example of a multi-line description using YAML. It permits for line

 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space

 character when processed into a single string value.

5.2.4.1.4 Notes

• Use of “folded” style is discouraged for the YAML string type apart from when used with the
description keyname. .

5.2.4.2 Metadata

This optional element provides a means to include optional metadata as a map of strings.

5.2.4.2.1 Keyname

The following keyname is used to provide metadata within the TOSCA specification:

metadata

5.2.4.2.2 Grammar

Metadata definitions have the following grammar:

metadata:

 map of <string>

5.2.4.2.3 Examples

metadata:

 foo1: bar1

 foo2: bar2

 ...

5.2.4.2.4 Notes

• Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators and
SHOULD NOT affect runtime behavior.

5.2.4.3 DSL Definitions

TBD.

5.2.5 Type definitions

TOSCA provides a type system to describe possible building blocks to construct a topology template (i.e.
for the nodes, relationship, group and policy templates, and the data, capabilities, interfaces, and artifacts
used in the node and relationship templates). TOSCA types are reusable TOSCA entities and are defined
in their specific sections in the service template, see Section 5.2.1 Service Template definition.

Next, in Section 5.2.5.2 Common keynames in type definitions we present the definitions of common
keynames that are used by all TOSCA types. Type-specific definitions for the different TOSCA type
entities are presented further in the document:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 53 of 186

• Node Type in Section 5.3.1 Node Type.

5.2.6 Relationship Type in Section 5.3.3 Relationship Type

• .

• Interface Type in Section 5.3.6.1 Interface Type.

• Capability Type in Section 5.3.5.1 Capability Type.

• Requirement Type in Section 5.3.5.4 Requirement Type.

• Data Type in Section 5.4.4 Data Type.

• Artifact Type in Section 5.3.7.1 Artifact Type.

• Group Type in Section 5.6.1 Group Type.

• Policy Type in Section 5.6.3 Policy Type.

5.2.6.1 General derivation and refinement rules

To simplify type creation and to promote type extensibility TOSCA allows the definition of a new type (the
derived type) based on another type (the parent type). The derivation process can be applied recursively,
where a type may be derived from a long list of ancestor types (the parent, the parent of the parent, etc).

Unless specifically stated in the derivation rules, when deriving new types from parent types the keyname
definitions are inherited from the parent type. Moreover, the inherited definitions may be refined according
to the derivation rules of that particular type entity.

For definitions that are not inherited, a new definition MUST be provided (if the keyname is mandatory) or
MAY be provided (if the keyname is not mandatory). If not provided, the keyname remains undefined. For
definitions that are inherited, a refinement of the inherited definition is not mandatory even for mandatory
keynames (since it has been inherited). A definition refinement that is exactly the same as the definition in
the parent type does not change in any way the inherited definition. While unnecessary, it is not wrong.

The following are some generic derivation rules used during type derivation (the specific rules of each
TOSCA type entity are presented in their respective sections):

• If not refined, usually a keyname/entity definition, is inherited unchanged from the parent type,

unless explicitly specified in the rules that it is “not inherited”.

• New entities (such as properties, attributes, capabilities, requirements, interfaces, operations,

notification, parameters) may be added during derivation.

• Already defined entities that have a type may be redefined to have a type derived from the

original type.

• New constraints are added to already defined keynames/entities (i.e. the defined constraints do

not replace the constraints defined in the parent type but are added to them).

• Some definitions must be totally flexible, so they will overwrite the definition in the parent type.

• Some definitions must not be changed at all once defined (i.e. they represent some sort of

“signature” fundamental to the type).

5.2.6.2 Common keynames in type definitions

The following keynames are used by all TOSCA type entities in the same way. This section serves to
define them at once.

5.2.6.2.1 Keynames

The following is the list of recognized keynames used by all TOSCA type definitions:

Keyname Mandatory Type Description

derived_from no string An optional parent type name from which this type derives.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 54 of 186

Keyname Mandatory Type Description

version no version An optional version for the type definition.

metadata no map of string Defines a section used to declare additional metadata information.

description no string An optional description for the type.

5.2.6.2.2 Grammar

The common keynames in type definitions have the following grammar:

<type_name>:

 derived_from: <parent_type_name>

 version: <version_number>

 metadata:

 <metadata_map>

 description: <type_description>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• parent_type_name: represents the optional parent type name.

• version_number: represents the optional TOSCA version number for the type.

• entity_description: represents the optional description string for the type.

• metadata_map: represents the optional metadata map of string.

5.2.6.2.3 Derivation rules

During type derivation the common keyname definitions use the following rules:

• derived_from: obviously, the definition is not inherited from the parent type. If not defined, it remains

undefined and this type does not derive from another type. If defined, then this type derives from

another type, and all its keyname definitions must respect the derivation rules of the type entity.

• version: the definition is not inherited from the parent type. If undefined, it remains undefined.

• metadata: the definition is not inherited from the parent type. If undefined, it remains undefined.

• description: the definition is not inherited from the parent type. If undefined, it remains undefined.

5.2.7 Topology Template definition

This section defines the topology template of service template. The main ingredients of the topology
template are node templates representing components of the application and relationship templates
representing links between the components. These elements are defined in the nested node_templates
section and the nested relationship_templates sections, respectively. Furthermore, a topology template
allows for defining input parameters, output parameters as well as grouping of node templates.

5.2.7.1 Keynames

The following is the list of recognized keynames for a TOSCA Topology Template:

Keyname Mandatory Type Description

description no string The optional description for the
Topology Template.

inputs no map of
parameter definitions

An optional map of input parameters
(i.e., as parameter definitions) for
the Topology Template.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 55 of 186

Keyname Mandatory Type Description

node_templates yes map of
node templates

An mandatory map of node template
definitions for the Topology
Template.

relationship_templates no map of
relationship
templates

An optional map of relationship
templates for the Topology
Template.

groups no map of
group definitions

An optional map of Group definitions
whose members are node templates
defined within this same Topology
Template.

policies no list of
policy definitions

An optional list of Policy definitions
for the Topology Template.

outputs no map of
parameter definitions

An optional map of output
parameters (i.e., as parameter
definitions) for the Topology
Template.

substitution_mappings no substitution_mapping An optional declaration that exports
the topology template as an
implementation of a Node type.

This also includes the mappings
between the external Node Types
capabilities and requirements to
existing implementations of those
capabilities and requirements on
Node templates declared within the
topology template.

workflows no map of imperative
workflow definitions

An optional map of imperative
workflow definition for the Topology
Template.

5.2.7.2 Grammar

The overall grammar of the topology_template section is shown below.Detailed grammar definitions are
provided in subsequent subsections.

topology_template:

 description: <template_description>

 inputs: <input_parameters>

 outputs: <output_parameters>

 node_templates: <node_templates>

 relationship_templates: <relationship_templates>

 groups: <group_definitions>

 policies:

 - <policy_definition_list>

 workflows: <workflows>

 # Optional declaration that exports the Topology Template

 # as an implementation of a Node Type.

 substitution_mappings:

 <substitution_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• template_description: represents the optional description string for Topology Template.

• input_parameters: represents the optional map of input parameter definitions for the Topology
Template.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 56 of 186

• output_parameters: represents the optional map of output parameter definitions for the Topology
Template.

• group_definitions: represents the optional map of group definitions whose members are node
templates that also are defined within this Topology Template.

• policy_definition_list: represents the optional list of sequenced policy definitions for the Topology
Template.

• workflows: represents the optional map of imperative workflow definitions for the Topology Template.

• node_templates: represents the mandatory map of node template definitions for the Topology
Template.

• relationship_templates: represents the optional map of relationship templates for the Topology
Template.

• node_type_name: represents the optional name of a Node Type that the Topology Template
implements as part of the substitution_mappings.

• map_of_capability_mappings_to_expose: represents the mappings that expose internal capabilities
from node templates (within the topology template) as capabilities of the Node Type definition that is
declared as part of the substitution_mappings.

• map_of_requirement_mappings_to_expose: represents the mappings of link requirements of the
Node Type definition that is declared as part of the substitution_mappings to internal requirements
implementations within node templates (declared within the topology template).

More detailed explanations for each of the Topology Template grammar’s keynames appears in the
sections below.

5.2.7.2.1 inputs

The inputs section provides a means to define parameters using TOSCA parameter definitions, their
allowed values via constraints and default values within a TOSCA template. Input parameters defined in
the inputs section of a topology template can be mapped to properties of node templates or relationship
templates within the same topology template and can thus be used for parameterizing the instantiation of
the topology template.

When deploying a service from the service template, values must be provided for all mandatory input
parameters that have no default value defined. If no input is provided, then the default value is used.

5.2.7.2.1.1 Grammar

The grammar of the inputs section is as follows:

inputs:

 <parameter_definitions>

5.2.7.2.1.2 Examples

This section provides a set of examples for the single elements of a topology template.

Simple inputs example without any constraints:

inputs:

 fooName:

 type: string

 description: Simple string typed parameter definition with no constraints.

 default: bar

Example of inputs with constraints:

inputs:

 SiteName:

 type: string

 description: string typed parameter definition with constraints

 default: My Site

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 57 of 186

 constraints:

 - min_length: 9

5.2.7.2.2 node_templates

The node_templates section lists the Node Templates that describe the (software) components that are
used to compose cloud applications.

5.2.7.2.2.1 grammar

The grammar of the node_templates section is a follows:

node_templates:

 <node_template_defn_1>

 ...

 <node_template_defn_n>

5.2.7.2.2.2 Example

Example of node_templates section:

node_templates:

 my_webapp_node_template:

 type: WebApplication

 my_database_node_template:

 type: Database

5.2.7.2.3 relationship_templates

The relationship_templates section lists the Relationship Templates that describe the relations between
components that are used to compose cloud applications.

Note that in TOSCA, the explicit definition of relationship templates as it was required in TOSCA v1.0 is
optional, since relationships between nodes get implicitly defined by referencing other node templates in
the requirements sections of node templates.

5.2.7.2.3.1 Grammar

The grammar of the relationship_templates section is as follows:

relationship_templates:

 <relationship_template_defn_1>

 ...

 <relationship_template_defn_n>

5.2.7.2.3.2 Example

Example of relationship_templates section:

relationship_templates:

 my_connectsto_relationship:

 type: tosca.relationships.ConnectsTo

 interfaces:

 Configure:

 inputs:

 speed: { get_attribute: [SELF, SOURCE, connect_speed] }

5.2.7.2.4 outputs

The outputs section provides a means to define the output parameters that are available from a TOSCA
service template. It allows for exposing attributes of node templates or relationship templates within the
containing topology_template to users of a service.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 58 of 186

5.2.7.2.4.1 Grammar

The grammar of the outputs section is as follows:

outputs:

 <parameter_definitions>

5.2.7.2.4.2 Example

Example of the outputs section:

outputs:

 server_address:

 description: The first private IP address for the provisioned server.

 value: { get_attribute: [node5, networks, private, addresses, 0] }

5.2.7.2.5 groups

The groups section allows for grouping one or more node templates within a TOSCA Service Template
and for assigning special attributes like policies to the group.

5.2.7.2.5.1 Grammar

The grammar of the groups section is as follows:

groups:

 <group_defn_1>

 ...

 <group_defn_n>

5.2.7.2.5.2 Example

The following example shows the definition of three Compute nodes in the node_templates section of a
topology_template as well as the grouping of two of the Compute nodes in a group server_group_1.

node_templates:

 server1:

 type: tosca.nodes.Compute

 # more details ...

 server2:

 type: tosca.nodes.Compute

 # more details ...

 server3:

 type: tosca.nodes.Compute

 # more details ...

groups:

 # server2 and server3 are part of the same group

 server_group_1:

 type: tosca.groups.Root

 members: [server2, server3]

5.2.7.2.6 policies

The policies section allows for declaring policies that can be applied to entities in the topology template.

5.2.7.2.6.1 Grammar

The grammar of the policies section is as follows:

policies:

 - <policy_defn_1>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 59 of 186

 - ...

 - <policy_defn_n>

5.2.7.2.6.2 Example

The following example shows the definition of a placement policy.

policies:

 - my_placement_policy:

 type: mycompany.mytypes.policy.placement

5.2.7.2.7 substitution_mapping

5.2.7.2.7.1 requirement_mapping

The grammar of a requirement_mapping is as follows:

<requirement_name>: [<node_template_name>, <node_template_requirement_name>]

The multi-line grammar is as follows :

<requirement_name>:

 mapping: [<node_template_name>, <node_template_capability_name>]

 properties:

 <property_name>: <property_value>

• requirement_name: represents the name of the requirement as it appears in the Node Type definition
for the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key.

• node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

• node_template_requirement_name: represents a valid name of a requirement definition within the
<node_template_name> declared in this mapping.

5.2.7.2.7.2 Example

The following example shows the definition of a placement policy.

topology_template:

inputs:

 cpus:

 type: integer

 constraints:

 less_than: 2 # OR use “defaults” key

substitution_mappings:

 node_type: MyService

 properties: # Do not care if running or matching (e.g., Compute node)

 # get from outside? Get from contsraint?

 num_cpus: cpus # Implied “PUSH”

 # get from some node in the topology…

 num_cpus: [<node>, <cap>, <property>]

 # 1) Running

 architecture:

 # a) Explicit

 value: { get_property: [some_service, architecture] }

 # b) implicit

 value: [some_service, <req | cap name>, <property name> architecture]

 default: “amd”

 # c) INPUT mapping?

 ???

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 60 of 186

 # 2) Catalog (Matching)

 architecture:

 contraints: equals: “x86”

 capabilities:

 bar: [some_service, bar]

 requirements:

 foo: [some_service, foo]

 node_templates:

 some_service:

 type: MyService

 properties:

 rate: 100

 capabilities:

 bar:

 ...

 requirements:

 - foo:

 ...

5.2.7.2.8 Notes

• The parameters (properties) that are part of the inputs block can be mapped to PropertyMappings
provided as part of BoundaryDefinitions as described by the TOSCA v1.0 specification.

• The node templates that are part of the node_templates block can be mapped to the NodeTemplate
definitions provided as part of TopologyTemplate of a ServiceTemplate as described by the TOSCA
v1.0 specification.

• The relationship templates that are part of the relationship_templates block can be mapped to the
RelationshipTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as
described by the TOSCA v1.0 specification.

• The output parameters that are part of the outputs section of a topology template can be mapped to
PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0
specification.

– Note, however, that TOSCA v1.0 does not define a direction (input vs. output) for those
mappings, i.e. TOSCA v1.0 PropertyMappings are underspecified in that respect and TOSCA ’s
inputs and outputs provide a more concrete definition of input and output parameters.

5.3 Nodes and Relationships

5.3.1 Node Type

A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node
Type defines the structure of observable properties and attributes, the capabilities and requirements of
the node as well as its supported interfaces and the artifacts it uses.

5.3.1.1 Keynames

The Node Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2 Common
keynames in type definitions. In addition, the Node Type has the following recognized keynames:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 61 of 186

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the Node Type.

attributes no map of
attribute
definitions

An optional map of attribute definitions for the Node Type.

capabilities no map of
capability
definitions

An optional map of capability definitions for the Node Type.

requirements no list of
requirement
definitions

An optional list of requirement definitions for the Node Type.

interfaces no map of
interface
definitions

An optional map of interface definitions supported by the Node
Type.

artifacts no map of
artifact
definitions

An optional map of artifact definitions for the Node Type.

5.3.1.2 Grammar

Node Types have following grammar:

<node_type_name>:

 derived_from: <parent_node_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <node_type_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 capabilities:

 <capability_definitions>

 requirements:

 - <requirement_definitions>

 interfaces:

 <interface_definitions>

 artifacts:

 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• node_type_name: represents the mandatory symbolic name of the Node Type being declared.

• parent_node_type_name: represents the name (string) of the Node Type this Node Type definition
derives from (i.e. its parent type).

• version_number: represents the optional TOSCA version number for the Node Type.

• node_type_description: represents the optional description string for the corresponding
node_type_name.

• property_definitions: represents the optional map of property definitions for the Node Type.

• attribute_definitions: represents the optional map of attribute definitions for the Node Type.

• capability_definitions: represents the optional map of capability definitions for the Node Type.

• requirement_definitions: represents the optional list of requirement definitions for the Node Type.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 62 of 186

• interface_definitions: represents the optional map of one or more interface definitions supported by
the Node Type.

• artifact_definitions: represents the optional map of artifact definitions for the Node Type

5.3.1.3 Derivation rules

During Node Type derivation the keyname definitions follow these rules:

• properties: existing property definitions may be refined; new property definitions may be added.

• attributes: existing attribute definitions may be refined; new attribute definitions may be added.

• capabilities: existing capability definitions may be refined; new capability definitions may be added.

• requirements: existing requirement definitions may be refined; new requirement definitions may be

added.

• interfaces: existing interface definitions may be refined; new interface definitions may be added.

• artifacts: existing artifact definitions (identified by their symbolic name) may be redefined; new artifact

definitions may be added.

o note that an artifact is created for a specific purpose and corresponds to a specific file (with

e.g. a path name and checksum); if it cannot meet its purpose in a derived type then a new

artifact should be defined and used.

o thus, if an artifact defined in a parent node type does not correspond anymore with the needs

in the child node type, its definition may be completely redefined; thus, an existing artifact

definition is not refined, but completely overwritten.

5.3.1.4 Additional Requirements

• Requirements are intentionally expressed as a list of TOSCA Requirement definitions which
SHOULD be resolved (processed) in sequence by TOSCA Orchestrators.

5.3.1.5 Example

my_company.my_types.my_app_node_type:

 derived_from: tosca.nodes.SoftwareComponent

 description: My company’s custom applicaton

 properties:

 my_app_password:

 type: string

 description: application password

 constraints:

 - min_length: 6

 - max_length: 10

 attributes:

 my_app_port:

 type: integer

 description: application port number

 requirements:

 - some_database:

 capability: EndPoint.Database

 node: Database

 relationship: ConnectsTo

5.3.2 Node Template

A Node Template specifies the occurrence of a manageable component as part of an application’s
topology model which is defined in a TOSCA Service Template. A Node Template is an instance of a
specified Node Type and can provide customized properties, constraints, relationships or interfaces which
complement and change the defaults provided by its Node Type.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 63 of 186

5.3.2.1 Keynames

The following is the list of recognized keynames for a TOSCA Node Template definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the Node Type the Node Template is
based upon.

description no string An optional description for the Node Template.

metadata no map of string Defines a section used to declare additional metadata information.

directives no list of string An optional list of directive values to provide processing
instructions to orchestrators and tooling.

properties no map of
property
assignments

An optional map of property value assignments for the Node
Template.

attributes no map of
attribute
assignments

An optional map of attribute value assignments for the Node
Template.

requirements no list of
requirement
assignments

An optional list of requirement assignments for the Node
Template.

capabilities no map of
capability
assignments

An optional map of capability assignments for the Node Template.

interfaces no map of
interface
assignments

An optional map of interface assignments for the Node Template.

artifacts no map of
artifact definitions

An optional map of artifact definitions for the Node Template.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to
select the correct target node.

copy no string The optional (symbolic) name of another node template to copy
into (all keynames and values) and use as a basis for this node
template.

5.3.2.2 Grammar

<node_template_name>:

 type: <node_type_name>

 description: <node_template_description>

 directives: [<directives>]

 metadata:

 <map of string>

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 requirements:

 - <requirement_assignments>

 capabilities:

 <capability_assignments>

 interfaces:

 <interface_assignments>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 64 of 186

 artifacts:

 <artifact_definitions>

 node_filter:

 <node_filter_definition>

 copy: <source_node_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• node_template_name: represents the mandatory symbolic name of the Node Template being
declared.

• node_type_name: represents the name of the Node Type the Node Template is based upon.

• node_template_description: represents the optional description string for Node Template.

• directives: represents the optional list of processing instruction keywords (as strings) for use by
tooling and orchestrators.

• property_assignments: represents the optional map of property assignments for the Node Template
that provide values for properties defined in its declared Node Type.

• attribute_assignments: represents the optional map of attribute assignments for the Node Template
that provide values for attributes defined in its declared Node Type.

• requirement_assignments: represents the optional list of requirement assignments for the Node
Template for requirement definitions provided in its declared Node Type.

• capability_assignments: represents the optional map of capability assignments for the Node Template
for capability definitions provided in its declared Node Type.

• interface_assignments: represents the optional map of interface assignments for the Node Template
interface definitions provided in its declared Node Type.

• artifact_definitions: represents the optional map of artifact definitions for the Node Template that
augment those provided by its declared Node Type.

• node_filter_definition: represents the optional node filter TOSCA orchestrators will use for selecting a
matching node template.

• source_node_template_name: represents the optional (symbolic) name of another node template to
copy into (all keynames and values) and use as a basis for this node template.

5.3.2.3 Additional requirements

• The source node template provided as a value on the copy keyname MUST NOT itself use the copy
keyname (i.e., it must itself be a complete node template description and not copied from another
node template).

5.3.2.4 Example

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 root_password: { get_input: my_mysql_rootpw }

 port: { get_input: my_mysql_port }

 requirements:

 - host: db_server

 interfaces:

 Standard:

 operations:

 configure: scripts/my_own_configure.sh

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 65 of 186

5.3.3 Relationship Type

A Relationship Type is a reusable entity that defines the type of one or more relationships between Node
Types or Node Templates.

5.3.3.1 Keynames

The Relationship Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Relationship Type has the following recognized
keynames:

Keyname Mandatory Definition/Type Description

properties no map of
property
definitions

An optional map of property definitions for the
Relationship Type.

attributes no map of
attribute
definitions

An optional map of attribute definitions for the
Relationship Type.

interfaces no map of
interface
definitions

An optional map of interface definitions supported by
the Relationship Type.

valid_capability_types

no list of string An optional list of one or more names of Capability
Types that are valid targets for this relationship. If
undefined, all Capability Types are valid.

valid_target_node_types no list of string An optional list of one or more names of Node Types
that are valid targets for this relationship. If undefined,
all Node Types are valid targets.

valid_source_node_types no list of string An optional list of one or more names of Node Types
that are valid sources for this relationship. If undefined,
all Node Types are valid sources.

5.3.3.2 Grammar

Relationship Types have following grammar:

<relationship_type_name>:

 derived_from: <parent_relationship_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <relationship_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 interfaces:

 <interface_definitions>

 valid_capability_types: [<capability_type_names>]

 valid_target_node_types: [<target_node_type_names>]

 valid_source_node_types: [<source_node_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• relationship_type_name: represents the mandatory symbolic name of the Relationship Type being
declared as a string.

• parent_relationship_type_name: represents the name (string) of the Relationship Type this
Relationship Type definition derives from (i.e., its “parent” type).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 66 of 186

• relationship_description: represents the optional description string for the corresponding
relationship_type_name.

• version_number: represents the optional TOSCA version number for the Relationship Type.

• property_definitions: represents the optional map of property definitions for the Relationship Type.

• attribute_definitions: represents the optional map of attribute definitions for the Relationship Type.

• interface_definitions: represents the optional map of interface definitions supported by the
Relationship Type.

• capability_type_names: represents the optional list of valid target Capability Types for the
relationship; if undefined, the valid target types are not restricted at all (i.e. all Capability Types are
valid).

• target_node_type_names: represents the optional list of valid target Node Types for the relationship;
if undefined, the valid types are not restricted at all (i.e. all Node Types are valid).

• source_node_type_names: represents the optional list of valid source Node Types for the
relationship; if undefined, the valid types are not restricted at all (i.e. all Node Types are valid).

5.3.3.3 Derivation rules

During Relationship Type derivation the keyname definitions follow these rules:

• properties: existing property definitions may be refined; new property definitions may be added.

• attributes: existing attribute definitions may be refined; new attribute definitions may be added.

• interfaces: existing interface definitions may be refined; new interface definitions may be added.

• valid_capability_types: if valid_capability_types is defined in the parent type, each element in this list

must either be in the parent type list or derived from an element in the parent type list; if

valid_target_types is not defined in the parent type then no restrictions are applied.

• valid_target_node_types: same derivation rules as for valid_capability_types

• valid_source_node_types: same derivation rules as for valid_capability_types

5.3.3.4 Examples

mycompanytypes.myrelationships.AppDependency:

 derived_from: tosca.relationships.DependsOn

 valid_capability_types: [mycompanytypes.mycapabilities.SomeAppCapability]

5.3.4 Relationship Template

A Relationship Template specifies the occurrence of a manageable relationship between node templates
as part of an application’s topology model that is defined in a TOSCA Service Template. A Relationship
template is an instance of a specified Relationship Type and can provide customized properties,
constraints or operations which complement and change the defaults provided by its Relationship Type
and its implementations.

Relations between Node Templates can be defined either using Relationship Templates or Requirements
and Capability definitions within Node Types. Use of Relationship Templates decouples relationship
definitions from Node Type definitions, allowing Node Type definitions to be more “generic” for use in a
wider set of topology templates which have varying relation definition requirements. The Relationship
Templates are local within a Topology Template and so have a limited scope. Requirements and
Capabilities defined in Node Types have a wider scope, exposed within any Topology Template which
contains a Node Template of the Node Type.

Note that using the relationship templates is underspecified currently and can be used only as a further
template for relationships in requirements definition. This topic needs further work.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 67 of 186

5.3.4.1 Keynames

The following is the list of recognized keynames for a TOSCA Relationship Template definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the Relationship Type the Relationship
Template is based upon.

description no string An optional description for the Relationship Template.

metadata no map of string Defines a section used to declare additional metadata information.

properties no map of
property
assignments

An optional map of property assignments for the Relationship
Template.

attributes no map of
attribute
assignments

An optional map of attribute assignments for the Relationship
Template.

interfaces no map of
interface
assignments

An optional map of interface assignments for the relationship
template.

copy no string The optional (symbolic) name of another relationship template to
copy into (all keynames and values) and use as a basis for this
relationship template.

5.3.4.2 Grammar

<relationship_template_name>:

 type: <relationship_type_name>

 description: <relationship_type_description>

 metadata:

 <map of string>

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 interfaces:

 <interface_assignments>

 copy:

 <source_relationship_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• relationship_template_name: represents the mandatory symbolic name of the Relationship Template
being declared.

• relationship_type_name: represents the name of the Relationship Type the Relationship Template is
based upon.

• relationship_template_description: represents the optional description string for the Relationship
Template.

• property_assignments: represents the optional map of property assignments for the Relationship
Template that provide values for properties defined in its declared Relationship Type.

• attribute_assignments: represents the optional map of attribute assignments for the Relationship
Template that provide values for attributes defined in its declared Relationship Type.

• interface_assignments: represents the optional map of interface assignments for the Relationship
Template for interface definitions provided by its declared Relationship Type.

• source_relationship_template_name: represents the optional (symbolic) name of another relationship
template to copy into (all keynames and values) and use as a basis for this relationship template.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 68 of 186

5.3.4.3 Additional requirements

• The source relationship template provided as a value on the copy keyname MUST NOT itself use the
copy keyname (i.e., it must itself be a complete relationship template description and not copied from
another relationship template).

5.3.4.4 Example

relationship_templates:

 storage_attachment:

 type: AttachesTo

 properties:

 location: /my_mount_point

5.3.5 Capabilities and Requirements

5.3.5.1 Capability Type

A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to
expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e.,
fulfilled by) the Capabilities declared by another node.

5.3.5.1.1 Keynames

The Capability Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Capability Type has the following recognized
keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the Capability
Type.

attributes no map of
attribute
definitions

An optional map of attribute definitions for the Capability
Type.

valid_source_node_types no list of string An optional list of one or more valid names of Node Types that
are supported as valid sources of any relationship established
to the declared Capability Type. If undefined, all Node Types
are valid sources.

valid_relationship_types no list of string An optional list of one or more valid names of Relationship
Types that are supported as valid types of any relationship
established to the declared Capability Type. If undefined, all
Relationship Types are valid.

5.3.5.1.2 Grammar

Capability Types have following grammar:

<capability_type_name>:

 derived_from: <parent_capability_type_name>

 version: <version_number>

 description: <capability_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 69 of 186

 valid_source_node_types: [<node_type_names>]

 valid_relationship_types: [<relationship_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• capability_type_name: represents the mandatory name of the Capability Type being declared as a
string.

• parent_capability_type_name: represents the name of the Capability Type this Capability Type
definition derives from (i.e., its “parent” type).

• version_number: represents the optional TOSCA version number for the Capability Type.

• capability_description: represents the optional description string for the Capability Type.

• property_definitions: represents the optional map of property definitions for the Capability Type.

• attribute_definitions: represents the optional map of attribute definitions for the Capability Type.

• node_type_names: represents the optional list of one or more names of Node Types that the
Capability Type supports as valid sources for a successful relationship to be established to a
capability of this Capability Type; if undefined, the valid source types are not restricted at all (i.e. all
Node Types are valid).

• relationship_type_names: represents the optional list of one or more names of Relationship Types
that the Capability Type supports as valid types for a successful relationship to be established to a
capability of this Capability Type; if undefined, the valid types are not restricted at all (i.e. all
Relationship Types are valid).

5.3.5.1.3 Derivation rules

During Capability Type derivation the keyname definitions follow these rules:

• properties: existing property definitions may be refined; new property definitions may be added.

• attributes: existing attribute definitions may be refined; new attribute definitions may be added.

• valid_source_node_types: if valid_source_types is defined in the parent type, each element in this list

must either be in the parent type list or derived from an element in the parent type list; if

valid_source_types is not defined in the parent type then no restrictions are applied.

• valid_relationship_types: same derivations rules as for valid_source_node_types.

5.3.5.1.4 Example

mycompany.mytypes.myapplication.MyFeature:

 derived_from: tosca.capabilities.Root

 description: a custom feature of my company’s application

 properties:

 my_feature_setting:

 type: string

 my_feature_value:

 type: integer

5.3.5.2 Capability definition

A Capability definition defines a typed set of data that a node can expose and is used to describe a
relevant feature of the component described by the node. A Capability is defined part of a Node Type
definition and may be refined during Node Type derivation.

5.3.5.2.1 Keynames

The following is the list of recognized keynames for a TOSCA capability definition:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 70 of 186

Keyname Mandatory Type Description

type yes string The mandatory name of the Capability
Type this capability definition is based
upon.

description no string The optional description of the
Capability definition.

properties no map of
property
refinements

An optional map of property
refinements for the Capability
definition. The referred properties must
have been defined in the Capability
Type definition referred by the type
keyword. New properties may not be
added.

attributes no map of
attribute
refinements

An optional map of attribute
refinements for the Capability
definition. The referred attributes must
have been defined in the Capability
Type definition referred by the type
keyword. New attributes may not be
added.

valid_source_node_types no list of string An optional list of one or more valid
names of Node Types that are
supported as valid sources of any
relationship established to the declared
Capability Type. If undefined, all node
types are valid sources.
If valid_source_node_types is defined in
the Capability Type, each element in this
list must either be or derived from an
element in the list defined in the type.

valid_relationship_types no list of string An optional list of one or more valid
names of Relationship Types that are
supported as valid types of any
relationship established to the declared
Capability Type. If undefined, all
Relationship Types are valid.
If valid_relationship_types is defined in
the Capability Type, each element in this
list must either be or derived from an
element in the list defined in the type.

5.3.5.2.2 Grammar

Capability definitions have one of the following grammars:

5.3.5.2.2.1 Short notation

The following single-line grammar may be used when only the capability type needs to be declared,
without further refinement of the definitions in the capability type:

<capability_definition_name>: <capability_type>

5.3.5.2.2.2 Extended notation

The following multi-line grammar may be used when additional information on the capability definition is
needed:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 71 of 186

<capability_definition_name>:

 type: <capability_type>

 description: <capability_description>

 properties:

 <property_refinements>

 attributes:

 <attribute_refinements>

 valid_source_node_types: [<node_type_names>]

 valid_relationship_types: [<relationship_type_names>]

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• capability_definition_name: represents the symbolic name of the capability as a string.

• capability_type: represents the mandatory name of a capability type the capability definition is based
upon.

• capability_description: represents the optional description of the capability definition.

• property_refinements: represents the optional map of property definitions refinements for properties
already defined in the capability type; new properties may not be added.

• attribute_refinements: represents the optional map of attribute definitions refinements for attributes
already defined in the capability type; new attributes may not be added.

• node_type_names: represents the optional list of one or more names of node types that the capability
definition supports as valid sources for a successful relationship to be established to said capability

• if valid_source_node_types is defined in the capability type, each element in this list MUST either
be in that list or derived from an element in that list; if valid_source_types is not defined in the
capability type then no restrictions are applied.

• relationship_type_names: represents the optional list of one or more names of relationship types that
the capability definition supports as valid type for a successful relationship to be established to said
capability

• if valid_relationship_types is defined in the capability type, each element in this list MUST either
be in that list or derived from an element in that list; if valid_source_types is not defined in the
capability type then no restrictions are applied.

5.3.5.2.3 Refinement rules

A capability definition within a node type uses the following definition refinement rules when the
containing node type is derived:

• type: must be derived from (or the same as) the type in the capability definition in the parent node
type definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the capability
definition in the parent node type definition.

• properties: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

• attributes: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

• valid_source_node_types: not applicable to the definitions in the parent node type but to the
definitions in the capability type referred by the type keyname (see grammar above for the rules).

• valid_relationship_types: not applicable to the definitions in the parent node type but to the definitions
in the capability type referred by the type keyname (see grammar above for the rules).

5.3.5.2.4 Examples

The following examples show capability definitions in both simple and full forms:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 72 of 186

5.3.5.2.4.1 Simple notation example

Simple notation, no properties need to be refined

some_capability: mytypes.mycapabilities.MyCapabilityTypeName

5.3.5.2.4.2 Full notation example

Full notation, refining properties

some_capability:

 type: mytypes.mycapabilities.MyCapabilityTypeName

 properties:

 limit:

 default: 100

5.3.5.2.5 Additional requirements

• Capability symbolic names SHALL be unique; it is an error if a capability name is found to occur more
than once.

5.3.5.2.6 Note

• The occurrences keyname is deprecated in TOSCA 2.0. By default, the number of “occurrences” is
UNBOUNDED, i.e. any number of relationships can be created with a certain capability as a target.
To constrain the creation of a relationship to a target capability, the new “allocation” keyname is used
within a requirement assignment.

5.3.5.3 Capability assignment

A capability assignment allows node template authors to assign values to properties and attributes for a
capability definition that is part of the node templates’ respective type definition, and also to set the
capability occurrences.

5.3.5.3.1 Keynames

The following is the list of recognized keynames for a TOSCA capability assignment:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 73 of 186

Keyname Mandatory Type Description

properties no map of
property
assignments

An optional map of property assignments for the
Capability definition.

attributes no map of
attribute
assignments

An optional map of attribute assignments for the
Capability definition.

directives no

default:
[internal,
external]

list of string

valid string
values:
“internal”,
“external”

Describes if the fulfillment of this capability
assignment should use relationships with source
nodes created within this template (“internal”) or
should use source nodes created outside this
template as available to the TOSCA environment
("external”) or if it should use a combination of
the above. If so, the order of the strings in the list
defines which scope should be attempted first. If
no scope is defined, the default value is [internal,
external]. If no directives are defined, the default
value is left to the particular implementation.

5.3.5.3.2 Grammar

Capability assignments have one of the following grammars:

<capability_definition_name>:

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 directives: <directives_list>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• capability_definition_name: represents the symbolic name of the capability as a string.

• property_assignments: represents the optional map of property assignments that provide values for
properties defined in the Capability definition.

• attribute_assignments: represents the optional map of attribute assignments that provide values for
attributes defined in the Capability definition.

• directives_list: represents the optional list of strings that defines directives for this capability:

• valid values for the strings:

• “internal” – relationships to this capability can be created from source nodes created within
this template.

• “external” – relationships to this capability can be created from source nodes created outside
this template as available to the TOSCA environment.

• the order of the strings in the list defines which scope should be attempted first when fulfilling the
assignment.

• If no directives are defined, the default value is left to the particular implementation.

5.3.5.3.3 Example

The following example shows a capability assignment:

5.3.5.3.3.1 Notation example

node_templates:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 74 of 186

5.3.5.3.4 Note

• The occurrences keyname is deprecated in TOSCA 2.0. By default, the number of “occurrences” is
UNBOUNDED, i.e. any number of relationships can be created with a certain capability as a target.
To constrain the creation of a relationship to a target capability, the new “allocation” keyname is used
within a requirement assignment.

5.3.5.4 Requirement Type

Requirement types are not defined in TOSCA. TOSCA seeks to simplify the modeling by not declaring
specific Requirement Types with nodes declaring their features sets using TOSCA Capability Types. So,
it suffices that capabilities are advertised a-priory by Capability Types, while requirement definitions can
be directly created during Node Type design.

5.3.5.5 Requirement definition

The Requirement definition describes a requirement (dependency) of a TOSCA node which needs to be
fulfilled by a matching Capability definition declared by another TOSCA node. A Requirement is defined
as part of a Node Type definition and may be refined during Node Type derivation.

5.3.5.5.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement definition:

Keyname Mandatory Type Description

description no string The optional description of the Requirement definition.

capability yes string The mandatory keyname used to provide either the:

• symbolic name of a Capability definition within a target
Node Type that can fulfill the requirement.

• name of a Capability Type that the TOSCA orchestrator will
use to select a type-compatible target node to fulfill the
requirement at runtime.

node conditional string The optional keyname used to provide the name of a valid Node
Type that contains the capability definition that can be used to
fulfill the requirement.
If a symbolic name of a Capability definition has been used for
the capability keyname, then the node keyname is mandatory.

relationship conditional string The optional keyname used to provide the name of a valid
Relationship Type to construct a relationship when fulfilling the
requirement.
The relationship definition is mandatory either in the
requirement definition of in the requirement assignment.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to
select a type-compatible target node that can fulfill the
associated abstract requirement at runtime.

 some_node_template:

 capabilities:

 some_capability:

 properties:

 limit: 100

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 75 of 186

Keyname Mandatory Type Description

count_range no range of
integer

The optional minimum required and maximum allowed number
of relationships created by the requirement. If this key is not
specified, the implied default of [1,1] will be used.
Note: the keyword UNBOUNDED is also supported to represent
any positive integer.

5.3.5.5.1.1 Additional keynames for multi-line relationship grammar

The Requirement definition contains the Relationship Type information needed by TOSCA Orchestrators
to construct relationships to other TOSCA nodes with matching capabilities; however, it is sometimes
recognized that additional parameters may need to be passed to the relationship (perhaps for
configuration). In these cases, additional grammar is provided so that the requirement definition may
declare interface refinements (e.g. changing the implementation definition or declaring additional
parameter definitions to be used as inputs/outputs).

Keyname Mandatory Type Description

type yes string The optional keyname used to provide the name of the
Relationship Type as part of the relationship keyname
definition.

interfaces no map of
interface
refineme
nts

The optional keyname used to reference declared interface
definitions on the corresponding Relationship Type for
refinement.

5.3.5.5.2 Grammar

Requirement definitions have one of the following grammars:

5.3.5.5.2.1 Simple grammar (Capability Type only)

<requirement_definition_name>: <capability_type_name>

5.3.5.5.2.2 Extended grammar (with Node and Relationship Types)

<requirement_definition_name>:

 description: <requirement_description>

 capability: <capability_symbolic_name> | <capability_type_name>

 node: <node_type_name>

 relationship: <relationship_type_name>

 node_filter: <node_filter_definition>

 count_range: [<min_count>, <max_count>]

5.3.5.5.2.3 Extended grammar for declaring Parameter Definitions on the relationship’s
Interfaces

The following additional multi-line grammar is provided for the relationship keyname in order to declare
new parameter definitions for inputs/outputs of known Interface definitions of the declared Relationship
Type.

<requirement_definition_name>:

 # Other keynames omitted for brevity

 relationship:

 type: <relationship_type_name>

 interfaces: <interface_refinements>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 76 of 186

• requirement_definition_name: represents the mandatory symbolic name of the requirement definition
as a string.

• requirement_description: represents the optional description of the requirement definition.

• capability_symbolic_name: represents the mandatory symbolic name of the Capability definition
within the target Node Type.

• capability_type_name: represents the mandatory name of a Capability Type that can be used to fulfill
the requirement.

• node_type_name: represents the name of a Node Type that contains either the Capability Type or the
Capability definition the requirement can be fulfilled by; the node_type_name is mandatory if the
capability_symbolic_name was used, and is optional if the capability_type_name was used.

• relationship_type_name: represents the optional name of a Relationship Type to be used to construct
a relationship between this requirement definition (i.e. in the source node) to a matching capability
definition (in a target node).

• node_filter_definition: represents the optional node filter TOSCA orchestrators will use to fulfill the
requirement when selecting a target node, or to verify that the specified node template fulfills the
requirement (if a node template was specified during requirement assignment).

• min_count, max_count: represents the optional range between a minimum required and maximum
allowed count of the requirement

• this range constrains how many relationships from this requirement towards target capabilities (in
target nodes) are created, and that number MUST be within the range specified here.

• by default (i.e. if count_range is undefined here), a requirement shall form exactly one
relationship ([1, 1] i.e. allowed at least one, and at most one).

• interface_refinements: represents refinements for one or more already declared interface definitions
in the Relationship Type (as declared on the type keyname)

• allowing for the declaration of new parameter definitions for these interfaces or for specific
operation or notification definitions of these interfaces or for the change of the description or
implementation definitions.

5.3.5.5.3 Refinement rules

A requirement definition within a node type uses the following definition refinement rules when the
containing node type is derived:

• description: a new definition is unrestricted and will overwrite the one inherited from the requirement
definition in the parent node type definition.

• capability: the type of the capability must be derived from (or the same as) the capability type in the
requirement definition in the parent node type definition.

• if the capability was specified using the symbolic name of a capability definition in the target node
type, then the capability keyname definition MUST remain unchanged in any subsequent
refinements or during assignment.

• node: must be derived from (or the same as) the node type in the requirement definition in the parent
node type definition; if node is not defined in the parent type then no restrictions are applied;

• the node type specified by the node keyname must also contain a capability definition that fulfills
the requirement set via the capability keyname above.

• relationship: must be derived from (or the same as) the relationship type in the requirement definition
in the parent node type definition; if relationship is not defined in the parent type then no restrictions
are applied.

• node_filter: a new definition is unrestricted and will be considered in addition (i.e. logical and) to the
node_filter definition in the parent node type definition; further refinements may add further node
filters.

• count_range: the new range MUST be within the range defined in the requirement definition in the
parent node type definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 186

5.3.5.5.4 Additional requirements

• Requirement symbolic names SHALL be unique; it is an error if a requirement name is found to occur
more than once.

• If the count_range keyname is not present, then a default declaration as follows will be assumed:

count_range: [1,1]

5.3.5.5.5 Notes

• The requirement symbolic name is used for identification of the requirement definition only and not
relied upon for establishing any relationships in the topology.

5.3.5.5.6 Requirement definition is a tuple with a filter

A requirement definition allows type designers to govern which types are allowed (valid) for fulfillment
using three levels of specificity with only the Capability definition or Capability Type being mandatory.

4. Node Type (mandatory/optional)
5. Relationship Type (optional)
6. Capability definition or Capability Type (mandatory)

The first level allows selection, as shown in both the simple or complex grammar, simply providing the
node’s type using the node keyname. The second level allows specification of the relationship type to use
when connecting the requirement to the capability using the relationship keyname. Finally, the specific
Capability definition or Capability Type on the target node is provided using the capability keyname. Note
that if a Capability definition is used, the Node Type definition is mandatory (as it refers to a Capability
definition in that Node Type).

In addition to the node, relationship and capability types, a filter, with the keyname node_filter, may be
provided to constrain the allowed set of potential target nodes based upon their properties and their
capabilities’ properties. This allows TOSCA orchestrators to help find the “best fit” when selecting among
multiple potential target nodes for the expressed requirements. Also, if a Node Template was specified
during requirement assignment it allows TOSCA orchestrators to verify that the specified node template
fulfills the requirement.

5.3.5.6 Requirement assignment

A Requirement assignment allows Node Template authors to provide assignments for the corresponding
Requirement definition (i.e. having the same symbolic name) in the Node Type definition.

A Requirement assignment provides either names of Node Templates or selection criteria for TOSCA
orchestrators to find matching TOSCA nodes that are used to fulfill the requirement’s declared Capability
Type and/or Node Type. A Requirement assignment also provides either names of Relationship
Templates (to use) or the name of Relationship Types (to create relationships) for relating the source
node (containing the Requirement) to the target node (containing the Capability).

Note that several Requirement assignments in the Node Template definition can have the same symbolic
name, each referring to different counts of the Requirement definition. To how many counts a particular
assignment allows is set via the count_range keyname. Nevertheless, the sum of the count values for all
of the Requirement assignments with the same symbolic name MUST be within the range of count_range
specified by the corresponding Requirement definition.

5.3.5.6.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 78 of 186

Keyname Mandatory Type Description

capability no string The optional keyname used to provide either the:

• symbolic name of a Capability definition within a target node that
can fulfill the requirement.

• name of a Capability Type that the TOSCA orchestrator will use to
select a type-compatible target node to fulfill the requirement at
runtime.

node no string The optional keyname used to identify the target node of a relationship;
specifically, it is used to provide either the:

• name of a Node Template that can fulfill the target node
requirement.

• name of a Node Type that the TOSCA orchestrator will use to select
a type-compatible target node to fulfill the requirement at runtime.

relationship conditional string The conditional keyname used to provide either the:

• name of a Relationship Template to use to relate this node to the
target node when fulfilling the requirement.

• name of a Relationship Type that the TOSCA orchestrator will use
to create a relationship to relate this node to the target node when
fulfilling the requirement.

• Details of a Relationship Type and its property and interface
assignments that the TOSCA orchestrator will use to create a
relationship to relate this node to the target node when fulfilling
the requirement.

The relationship definition is mandatory either in the requirement
definition of in the requirement assignment.

allocation no allocation
block

The optional keyname that allows the inclusion of an allocation block.
The allocation block contains a map of property assignments that
semantically represent “allocations” from the property with the same
name in the target capability.

• The allocation acts as a “capacity filter” for the target capability
in the target node. When the requirement is resolved, a
capability in a node is a valid target for the requirement
relationship if for each property of the target capability, the
sum of all existing allocations plus the current allocation is
less_or_equal to the property value.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to select a
type-compatible target node that can fulfill the requirement at runtime.

count no non-
negative
integer

An optional keyname that sets the cardinality of the requirement
assignment, that is how many relationships to be established from this
requirement assignment specification.
If not defined, the assumed count for an assignment is 1.
Note that there can be multiple requirement assignments for a
requirement with a specific symbolic name.

• The sum of all count values of assignments for a requirement
with a specific symbolic name must be within the count_range
defined in the requirement definition.

• Moreover, the sum of all count values of non-optional
assignments for a requirement with a specific symbolic name
must also be within the count_range defined in the
requirement definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 79 of 186

Keyname Mandatory Type Description

directives no

list of string

valid string
values:
“internal”,
“external”

Describes if the fulfillment of this requirement assignment should use
relationships with target nodes created within this template (“internal”)
or should use target nodes created outside this template as available to
the TOSCA environment ("external”) or if it should use a combination of
the above. If so, the order of the strings in the list defines which directive
should be attempted first. If no directives are defined, the default value
is left to the particular implementation.

optional no

default:
false

boolean Describes if the fulfillment of this requirement assignment is optional
(true) or not (false).
If not specified, the requirement assignment must be fulfilled, i.e. the
default value is false.
Note also, that non-optional requirements have precedence, thus during
a service deployment, the optional requirements for all nodes should be
resolved only after the non-optional requirements for all nodes have
been resolved.

The following is the list of recognized keynames for a TOSCA requirement assignment’s relationship
keyname which is used when property assignments or interface assignments (for e.g. changing the
implementation keyname or declare additional parameter definitions to be used as inputs/outputs) need to
be provided:

Keyname Mandatory Type Description

type no string The optional keyname used to provide the name of the Relationship Type
for the Requirement assignment’s relationship.

properties no map of
property
assignme
nts

An optional keyname providing property assignments for the relationship.

interfaces no map of
interface
assignme
nts

The optional keyname providing Interface assignments for the
corresponding Interface definitions in the Relationship Type.

5.3.5.6.2 Grammar

Requirement assignments have one of the following grammars:

5.3.5.6.2.1 Short notation:

The following single-line grammar may be used if only a concrete Node Template for the target node
needs to be declared in the requirement:

<requirement_name>: <node_template_name>

5.3.5.6.2.2 Extended notation:

The following grammar should be used if the requirement assignment needs to provide more information
than just the Node Template name:

<requirement_name>:

 capability: <capability_symbolic_name> | <capability_type_name>

 node: <node_template_name> | <node_type_name>

 relationship: <relationship_template_name> | <relationship_type_name>

 node_filter: <node_filter_definition>

 count: <count_value>

 directives: <directives_list>

 optional: <is_optional>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 80 of 186

5.3.5.6.2.3 Extended grammar with Property Assignments and Interface Assignments for the
relationship

The following additional multi-line grammar is provided for the relationship keyname in order to provide
new Property assignments and Interface assignments for the created relationship of the declared
Relationship.

<requirement_name>:

 # Other keynames omitted for brevity

 relationship:

 type: <relationship_template_name> | <relationship_type_name>

 properties: <property_assignments>

 interfaces: <interface_assignments>

5.3.5.6.2.4 Extended grammar with capacity allocation

The following additional multi-line grammar is provided for capacity allocation in the target capability. The
property assignments under the allocation keyname represent “allocations” from the property with the
same name in the target capability.

• The sum of all the allocations for all requirements assignments for a property in a target capability

cannot exceed the value of that property.

• This means that during the deployment time of a certain service template – as a certain

requirement assignment is resolved – a capability in a node is a valid target if

o for each property of the target capability

▪ the sum of all existing allocations plus the current allocation is less_or_equal to

the property value

• Of course, allocations can be defined only for integer, float, or scalar property types.

<requirement_name>:

 # Other keynames omitted for brevity

 allocation:

 properties: <allocation_property_assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• requirement_name: represents the symbolic name of a requirement assignment as a string.

• capability_symbolic_name: represents the optional name of the Capability definition within the target
Node Type or Node Template;

• if the capability in the Requirement definition was specified using the symbolic name of a
capability definition in a target node type, then the capability keyname definition

• MUST remain unchanged in any subsequent refinements or during assignment.

• if the capability in the Requirement definition was specified using the name of a Capability Type,
then the Capability definition referred here by the capability_symbolic_name must be of a type
that is the same as or derived from the said Capability Type in the Requirement definition.

• capability_type_name: represents the optional name of a Capability Type definition within the target
Node Type or Node Template this requirement needs to form a relationship with;

• may not be used if the capability in the Requirement definition was specified using the symbolic
name of a capability definition in a target node type.

• otherwise the capability_type_name must be of a type that is the same as or derived from the
type defined by the capability keyname in the Requirement definition.

• node_template_name: represents the optional name of a Node Template that contains the capability
this requirement will be fulfilled by;

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 81 of 186

• in addition, the Node Type of the Node Template must be of a type that is the same as or derived
from the type defined by the node keyname (if the node keyname is defined) in the Requirement
definition,

• in addition, the Node Template must fulfill the node filter requirements of the node_filter (if a
node_filter is defined) in the Requirement definition.

• node_type_name: represents the optional name of a Node Type that contains the capability this
Requirement will be fulfilled by;

• in addition, the node_type_name must be of a type that is the same as or derived from the type
defined by the node keyname (if the node keyname is defined) in the Requirement definition.

• relationship_template_name: represents the optional name of a Relationship Template to be used
when relating the Requirement to the Capability in the target node.

• in addition, the Relationship Type of the Relationship Template must be of a type that is the same
as or derived from the type defined by the relationship keyname (if the relationship keyname is
defined) in the Requirement definition.

• relationship_type_name: represents the optional name of a Relationship Type that is compatible with
the Capability Type in the target node; the TOSCA orchestrator will create a relationship of the
Relationship Type when relating the Requirement to the Capability in the target node.

• in addition, the relationship_type_name must be of a type that is the same as or derived from the
type defined by the relationship keyname (if the relationship keyname is defined) in the
Requirement definition.

• property_assignments: within the relationship declaration, it represents the optional map of property
assignments for the declared relationship.

• interface_assignments: represents the optional map of interface assignments for the declared
relationship used to provide parameter assignments on inputs and outputs of interfaces, operations
and notifications or changing the implementation definition.

• allocation_property_assignments: within the allocation declaration, it represents the optional map of
property assignments that semantically represent “allocations” from the property with the same name
in the target capability. Syntactically their form is the same as for a normal property assignments.

• The allocation acts as a “capacity filter” for the target capability in the target node. When the
requirement is resolved, a capability in a node is a valid target for the requirement relationship if
for each property of the target capability, the sum of all existing allocations plus the current
allocation is less_or_equal to the property value.

• Intuitively, the sum of “allocations” from all the incoming relationships for a certain capability
property cannot exceed the value of the property.

• If the “allocation” refers (via its name) to a property that does not exist in a capability, then
that capability cannot be a valid target.

• Of course, allocations can be defined only for integer, float, or scalar property types.

• node_filter_definition: represents the optional node filter TOSCA orchestrators will use to fulfill the
requirement for selecting a target node; if a node template was specified during requirement
assignment, the TOSCA orchestrator verifies that the specified node template fulfills the node filter.

• this node_filter does not replace the node_filter definition in the Requirement definition, it is
applied in addition to that.

• count_value: represents the optional cardinality of this requirement assignment, that is how many
relationships are to be established from this requirement assignment specification.

• If count is not defined, the assumed count_value for an assignment is 1.

• Note that there can be multiple requirement assignments for a requirement with a specific
symbolic name.

• The sum of all count values of assignments for a requirement with a specific symbolic name
must be within the count_range defined in the requirement definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 82 of 186

• Moreover, the sum of all count values of non-optional assignments for a requirement with a
specific symbolic name must also be within the count_range defined in the requirement
definition.

• directives: represents the optional list of strings that defines directives for this requirement
assignment:

• valid values for the strings:

• “internal” – relationship created by this requirement assignment use target nodes created
within this template.

• “external” – relationship created by this requirement assignment use target nodes created
outside this template as available to the TOSCA environment.

• the order of the strings in the list defines which directive should be attempted first when fulfilling
the assignment.

• If no directives are defined, the default value is left to the particular implementation.

• is_optional: represents the optional boolean value specifying if this requirement assignment is
optional or not.

• If is_optional is false, the assignment MUST be fulfilled.

• If is_optional is true, the assignment SHOULD be fulfilled, but if not possible the service
deployment is still considered valid.

• The default value for is_optional is false.

5.3.5.6.3 Notes

• If no explicit requirement assignment for a requirement with symbolic name is defined, a default
requirement assignment with keynames: capability, node, relationship, node_filter having the same
values as in the requirement definition in the corresponding node type is assumed.

• Additionally, the count_value is assumed to be equal to the min_count value of the requirement
definition in the corresponding node type.

• For all explicit requirement assignments with the same symbolic name:

• the sum of the count_value must be within the count_range specified in the corresponding
requirement definition.

• the sum of the count_value for all non-optional requirements assignments must be within the
count_range specified in the corresponding requirement definition.

• Non-optional requirements have precedence, thus during a service deployment, the optional
requirements for all nodes should be resolved only after the non-optional requirements for all nodes
have been resolved.

5.3.5.6.4 Examples

Examples of uses for the extended requirement assignment grammar include:

• The need to allow runtime selection of the target node a Node Type rather than a Node Template.
This may include use of the node_filter keyname to provide node and capability filtering information to
find the “best match” of a node at runtime.

• The need to further specify the Relationship Template or Relationship Type to use when relating the
source node’s requirement to the target node’s capability.

• The need to further specify the capability (symbolic) name or Capability Type in the target node to
form a relationship between.

• The need to specify the number of counts the requirement assigns (when greater than 1).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 83 of 186

5.3.5.6.4.1 Example 1 – Hosting requirement on a Node Type

A web application node template named ‘my_application_node_template’ of type WebApplication
declares a requirement named ‘host’ that needs to be fulfilled by any node that derives from the node
type WebServer.

Example of a requirement fulfilled by a specific web server node template

node_templates:

 my_application_node_template:

 type: tosca.nodes.WebApplication

 ...

 requirements:

 - host:

 node: tosca.nodes.WebServer

In this case, the node template’s type is WebApplication which already declares the Relationship Type
HostedOn to use to relate to the target node and the Capability Type of Container to be the specific target
of the requirement in the target node.

5.3.5.6.4.2 Example 2 - Requirement with Node Template and a custom Relationship Type

This example is similar to the previous example; however, the requirement named ‘database’ describes a
requirement for a connection to a database endpoint (Endpoint.Database) Capability Type in a node
template (my_database). However, the connection requires a custom Relationship Type
(my.types.CustomDbConnection’) declared on the keyname ‘relationship’.

Example of a (database) requirement that is fulfilled by a node template named

“my_database”, but also requires a custom database connection relationship

my_application_node_template:

 requirements:

 - database:

 node: my_database

 capability: Endpoint.Database

 relationship: my.types.CustomDbConnection

5.3.5.6.4.3 Example 3 - Requirement for a Compute node with additional selection criteria (filter)

This example shows how to extend an abstract ‘host’ requirement for a Compute node with a filter
definition that further constrains TOSCA orchestrators to include additional properties and capabilities on
the target node when fulfilling the requirement.

node_templates:

 mysql:

 type: tosca.nodes.DBMS.MySQL

 properties:

 # omitted here for brevity

 requirements:

 - host:

 node: tosca.nodes.Compute

 node_filter:

 capabilities:

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 512 MB }

 - os:

 properties:

 - architecture: { equal: x86_64 }

 - type: { equal: linux }

 - distribution: { equal: ubuntu }

 - mytypes.capabilities.compute.encryption:

 properties:

 - algorithm: { equal: aes }

 - keylength: { valid_values: [128, 256] }

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 84 of 186

5.3.5.6.4.4 Example 4 - Requirement assignment for definition with count_range: [2,2]

This example shows how the assignments can look if the Requirement definition has the count_range
different from the default [1,1]. In this case the redundant_database requirement has count_range: [2,2].
The Requirement definition is not presented here for brevity. In the Requirement assignment we use the
short notation. Note that the count keyname for each assignment is not declared (i.e. the default value of
1 is used) and that the sum of the count values of both assignments is 2 which is in the range of [2,2] as
specified in the Requirement definition.

Example of a (redundant_database) requirement that is fulfilled by

two node templates named “database1” and “database1

my_critical_application_node_template:

 requirements:

 - redundant_database: database1

 - redundant_database: database2

5.3.5.6.4.5 Example 5 - Requirement assignment for definition with capacity allocation

This example shows how the assignment can look if the requirement is assuming a “capacity allocation”
on the properties of the target capability (in this case a capability of type “tosca.capabilities.Compute”).
When this requirement is resolved, a node is a valid target and a relationship is created only if both the
capacity allocations for num_cpu and mem_size are fulfilled, that is the sum of the capacity allocations
from all established relationships + current allocation is less or equal to the value of each respective
property in the target capability.

So assuming that num_cpu property in the target capability of a candidate node has value 4 and the sum
of capacity allocations of the other resolved requirements to that capability for num_cpu is 1 then then
there is enough “remaining capacity” (4 – 1 = 3) to fulfill the current allocation (2), and a relationship to
that node is established. Another node with num_cpu with value 2 could not be a valid target since 1
(existing) + 2 (current) = 3, and that is larger than the property value which is 2. Of course, similar
calculations must be done for the mem_size allocation.

Example of a (redundant_database) requirement that is fulfilled by

two node templates named “database1” and “database1

my_critical_application_node_template:

 requirements:

 - host:

 node: tosca.nodes.Compute

 allocation:

 properties:

 num_cpu: 2

 mem_size: 128 MB

5.3.5.7 Node Filter definition

A node filter defines criteria for selection of a target node based upon its property values, capabilities and
capability properties.

5.3.5.7.1 Keynames

The following is the list of recognized keynames for a TOSCA node filter definition:

Keyname Mandatory Type Description

properties no list of

property

filter

definition

An optional list of property filters that will be used to select (filter)

matching TOSCA entities (e.g., Node Template, Node Type,

Capability Types, etc.) based upon their property definitions’ values.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 85 of 186

Keyname Mandatory Type Description

capabilities no list of

capability

names or

capability

type names

An optional list of capability names or types that will be used to

select (filter) matching TOSCA entities based upon their existence.

5.3.5.7.2 Additional filtering on capability properties

Capabilities used as filters often have their own sets of properties which also can be used to construct a
filter.

Keyname Mandatory Type Description

 properties

(within a

capability name

or type name)

no list of

property

filter

definitions

An optional list of property filters that will be used to select (filter)

matching TOSCA entities (e.g., Node Template, Node Type,

Capability Types, etc.) based upon their capabilities’ property

definitions’ values.

5.3.5.7.3 Grammar

Node filter definitions have following grammar:

node_filter:

 properties:

 - <property_filter_def_1>

 - ...

 - <property_filter_def_n>

 capabilities:

 - <capability_name_or_type_1>:

 properties:

 - <cap_1_property_filter_def_1>

 - ...

 - <cap_1_property_filter_def_n>

 - ...

 - <capability_name_or_type_m>:

 properties:

 - <cap_m_property_filter_def_1>

 - ...

 - <cap_m_property_filter_def_n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• property_filter_def_*: represents a property filter definition that will be used to select (filter) matching
TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their property
definitions’ values.

• capability_name_or_type_*: represents the type or name of a capability that will be used to select
(filter) matching TOSCA entities based upon their existence.

• cap_*_property_def_*: represents a property filter definition that will be used to select (filter) matching
TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based upon their
capabilities’ property definitions’ values.

5.3.5.7.4 Additional requirements

• TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming the
capability name is first a symbolic name and secondly it is a type name (in order to avoid namespace
collisions).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 186

5.3.5.7.5 Example

The following example is a filter that will be used to select a Compute node based upon the values of its
defined capabilities. Specifically, this filter will select Compute nodes that support a specific range of
CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or greater) from its
declared “host” capability.

my_node_template:

 # other details omitted for brevity

 requirements:

 - host:

 node_filter:

 capabilities:

 # My “host” Compute node needs these properties:

 - host:

 properties:

 - num_cpus: { in_range: [1, 4] }

 - mem_size: { greater_or_equal: 512 MB }

5.3.5.8 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based
on its property values. Constraint clauses are further defined in Section 5.4.6

5.3.5.8.1 Grammar

Property filter definitions have one of the following grammars:

5.3.5.8.1.1 Short notation:

The following single-line grammar may be used when only a single constraint is needed on a property:

<property_name>: <property_constraint_clause>

5.3.5.8.1.2 Extended notation:

The following multi-line grammar may be used when multiple constraints are needed on a property:

<property_name>:

 - <property_constraint_clause_1>

 - ...

 - <property_constraint_clause_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• property_name: represents the name of property that will be used to select a property definition with
the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node Template, Capability
Type, etc.).

• property_constraint_clause_*: represents constraint clause(s) that will be used to filter entities based
upon the named property’s value(s).

5.3.5.8.2 Additional Requirements

• Property constraint clauses must be type compatible with the property definitions (of the same name)
as defined on the target TOSCA entity that the clause will be applied against.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 87 of 186

5.3.6 Interfaces

5.3.6.1 Interface Type

An Interface Type is a reusable entity that describes a set of operations that can be used to interact with
or to manage a node or relationship in a TOSCA topology.

5.3.6.1.1 Keynames

The Interface Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Interface Type has the following recognized
keynames:

Keyname Mandatory Type Description

inputs no map of
parameter
definitions

The optional map of input parameter definitions available to all
operations defined for this interface.

operations no map of
operation
definitions

The optional map of operations defined for this interface.

notifications no map of
notification
definitions

The optional map of notifications defined for this interface.

5.3.6.1.2 Grammar

Interface Types have following grammar:

<interface_type_name>:

 derived_from: <parent_interface_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <interface_description>

 inputs:

 <parameter_definitions>

 operations:

 <operation_definitions>

 notifications:

 <Error! Reference source not found.Error! Reference source not fo

und.notification_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• interface_type_name: represents the mandatory name of the interface as a string.

• parent_interface_type_name: represents the name of the Interface Type this Interface Type definition
derives from (i.e. its “parent” type).

• version_number: represents the optional TOSCA version number for the Interface Type.

• interface_description: represents the optional description for the Interface Type.

• parameter_definitions: represents the optional map of parameter definitions which the TOSCA
orchestrator will make available (i.e., or pass) to all implementation artifacts for operations declared
on the interface during their execution.

• operation_definitions: represents the optional map of one or more operation definitions.

• notification_definitions: represents the optional map of one or more notification definitions.

5.3.6.1.3 Derivation rules

During Interface Type derivation the keyname definitions follow these rules:

DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 88 of 186

• inputs: existing parameter definitions may be refined; new parameter definitions may be added.

• operations: existing operation definitions may be refined; new operation definitions may be added.

• notifications: existing notification definitions may be refined; new notification definitions may be

added.

5.3.6.1.4 Example

The following example shows a custom interface used to define multiple configure operations.

mycompany.mytypes.myinterfaces.MyConfigure:

 derived_from: tosca.interfaces.relationship.Root

 description: My custom configure Interface Type

 inputs:

 mode:

 type: string

 operations:

 pre_configure_service:

 description: pre-configure operation for my service

 post_configure_service:

 description: post-configure operation for my service

5.3.6.1.5 Additional Requirements

• Interface Types MUST NOT include any implementations for defined operations or notifications; that
is, the implementation keyname is invalid in this context.

5.3.6.2 Interface definition

An Interface definition defines an interface (containing operations and notifications definitions) that can be
associated with (i.e. defined within) a Node or Relationship Type definition (including Interface definitions
in Requirements definitions). An Interface definition may be refined in subsequent Node or Relationship
Type derivations.

5.3.6.2.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the Interface Type this interface definition is
based upon.

description no string The optional description for this interface definition.

inputs no map of
parameter
definitions and
refinements

The optional map of input parameter refinements and new input
parameter definitions available to all operations defined for this
interface (the input parameters to be refined have been defined in the
Interface Type definition).

operations no map of
operation
refinements

The optional map of operations refinements for this interface. The
referred operations must have been defined in the Interface Type
definition.

notifications no map of
notification
refinements

The optional map of notifications refinements for this interface. The
referred operations must have been defined in the Interface Type
definition.

5.3.6.2.2 Grammar

Interface definitions in Node or Relationship Type definitions have the following grammar:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 89 of 186

<interface_definition_name>:

 type: <interface_type_name>

 description: <interface_description>

 inputs:

 <parameter_definitions_and_refinements>

 operations:

 <operation_refinements>

 notifications:

 <Error! Reference source not found.Error! Reference source not fo

und.notification_refinements>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• interface_definition_name: represents the mandatory symbolic name of the interface as a string.

• interface_type_name: represents the mandatory name of the Interface Type for the interface
definition.

• interface_description: represents the optional description string for the interface.

• parameter_definitions_and_refinements: represents the optional map of input parameters which the
TOSCA orchestrator will make available (i.e. pass) to all defined operations. This means these
parameters and their values will be accessible to the implementation artifacts (e.g., scripts)
associated to each operation during their execution

• the map represents a mix of parameter refinements (for parameters already defined in the
Interface Type) and new parameter definitions.

• with the new parameter definitions, we can flexibly add new parameters when changing the
implementation of operations and notifications during refinements or assignments.

• operation_refinements: represents the optional map of operation definition refinements for this
interface; the referred operations must have been previously defined in the Interface Type.

• notification_refinements: represents the optional map of notification definition refinements for this
interface; the referred notifications must have been previously defined in the Interface Type.

5.3.6.2.3 Refinement rules

An interface definition within a node or relationship type (including interface definitions in requirements
definitions) uses the following definition refinement rules when the containing entity type is derived:

• type: must be derived from (or the same as) the type in the interface definition in the parent entity
type definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the interface
definition in the parent entity type definition.

• inputs: not applicable to the definitions in the parent entity type but to the definitions in the interface
type referred by the type keyname (see grammar above for the rules).

• operations: not applicable to the definitions in the parent entity type but to the definitions in the
interface type referred by the type keyname (see grammar above for the rules).

• notifications: not applicable to the definitions in the parent entity type but to the definitions in the
interface type referred by the type keyname (see grammar above for the rules).

5.3.6.3 Interface assignment

An Interface assignment is used to specify assignments for the inputs, operations and notifications
defined in the Interface. Interface assignments may be used within a Node or Relationship Template
definition (including when Interface assignments are referenced as part of a Requirement assignment in a
Node Template).

DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF
DEFN_ELEMENT_NOTIFICATION_DEF

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 90 of 186

5.3.6.3.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Mandatory Type Description

inputs no map of parameter
value assignments

The optional map of input parameter assignments. Template
authors MAY provide parameter assignments for interface inputs
that are not defined in their corresponding Interface Type.

operations no map of operation
assignments

The optional map of operations assignments specified for this
interface.

notifications no map of notification
assignments

The optional map of notifications assignments specified for this
interface.

5.3.6.3.2 Grammar

Interface assignments have the following grammar:

<interface_definition_name>:

 inputs:

 <parameter_value_assignments>

 operations:

 <operation_assignments>

 notifications:

 <notification_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• interface_definition_name: represents the mandatory symbolic name of the interface as a string.

• parameter_value_assignments: represents the optional map of parameter value assignments for
passing input parameter values to all interface operations

• template authors MAY provide new parameter assignments for interface inputs that are not
defined in the Interface definition.

• operation_assignments: represents the optional map of operation assignments for operations defined
in the Interface definition.

• notification_assignments: represents the optional map of notification assignments for notifications
defined in the Interface definition.

5.3.6.4 Operation definition

An operation definition defines a function or procedure to which an operation implementation can be
bound.

A new operation definition may be declared only inside interface type definitions (this is the only place
where new operations can be defined). In interface type, node type, or relationship type definitions
(including operation definitions as part of a requirement definition) we may further refine operations
already defined in an interface type.

An operation definition or refinement inside an interface type definition may not contain an operation
implementation definition and it may not contain an attribute mapping as part of its output definition (as
both these keynames are node/relationship specific).

5.3.6.4.1 Keynames

The following is the list of recognized keynames for a TOSCA operation definition (including definition
refinement)

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 91 of 186

Keyname Mandatory Type Description

description no string The optional description string for the associated
operation.

implementation no operation
implementation
definition

The optional definition of the operation implementation.
May not be used in an interface type definition (i.e.
where an operation is initially defined), but only during
refinements.

inputs no map of
parameter
definitions

The optional map of parameter definitions for operation
input values.

outputs no map of
parameter
definitions

The optional map of parameter definitions for operation
output values.
Only as part of node and relationship type definitions,
the output definitions may include mappings onto
attributes of the node or relationship type that contains
the definition.

5.3.6.4.2 Grammar

Operation definitions have the following grammar:

5.3.6.4.2.1 Short notation

The following single-line grammar may be used when the operation’s implementation definition is the only
keyname that is needed, and when the operation implementation definition itself can be specified using a
single line grammar:

<operation_name>: <operation_implementation_definition>

5.3.6.4.2.2 Extended notation

The following multi-line grammar may be used when additional information about the operation is needed:

<operation_name>:

 description: <operation_description>

 implementation: <operation_implementation_definition>

 inputs:

 <parameter_definitions>

 outputs:

 <parameter_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• operation_name: represents the mandatory symbolic name of the operation as a string.

• operation_description: represents the optional description string for the operation.

• operation_implementation_definition: represents the optional specification of the operation’s
implementation).

• parameter_definitions: represents the optional map of parameter definitions which the TOSCA
orchestrator will make available as inputs to or receive as outputs from the corresponding
implementation artifact during its execution.

5.3.6.4.3 Refinement rules

An operation definition within an interface, node, or relationship type (including interface definitions in
requirements definitions) uses the following refinement rules when the containing entity type is derived:

• description: a new definition is unrestricted and will overwrite the one inherited from the operation
definition in the parent entity type definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 92 of 186

• implementation: a new definition is unrestricted and will overwrite the one inherited from the operation
definition in the parent entity type definition.

• inputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

• outputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

5.3.6.4.4 Additional requirements

• The definition of implementation is not allowed in interface type definitions (as a node or node type
context is missing at that point). Thus, it can be part only of an operation refinement and not of the
original operation definition.

• The default refinement behavior for implementations SHALL be overwrite. That is, implementation
definitions in a derived type overwrite any defined in its parent type.

• Defining a fixed value for an input parameter (as part of its definition) may only use a
parameter_value_expression that is meaningful in the scope of the context. For example, within the
context of an Interface Type definition functions such as get_propery or get_attribute cannot be used.
Within the context of Node or Relationship Type definitions, these functions may only reference
properties and attributes accessible starting from SELF (i.e. accessing a node by symbolic name is
not meaningful).

• Defining attribute mapping as part of the output parameter definition is not allowed in interface type
definitions (i.e. as part of operation definitions). It is allowed only in node and relationship type
definitions (as part of operation refinements) and has to be meaningful in the scope of the context
(e.g. SELF).

• Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

5.3.6.4.5 Examples

5.3.6.4.5.1 Single-line example

interfaces:

 Standard:

 start: scripts/start_server.sh

5.3.6.4.5.2 Multi-line example with shorthand implementation definitions

interfaces:

 Configure:

 pre_configure_source:

 implementation:

 primary: scripts/pre_configure_source.sh

 dependencies:

 - scripts/setup.sh

 - binaries/library.rpm

 - scripts/register.py

5.3.6.4.5.3 Multi-line example with extended implementation definitions

interfaces:

 Configure:

 pre_configure_source:

 implementation:

 primary:

 file: scripts/pre_configure_source.sh

 type: tosca.artifacts.Implementation.Bash

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 93 of 186

 repository: my_service_catalog

 dependencies:

 - file : scripts/setup.sh

 type : tosca.artifacts.Implementation.Bash

 repository : my_service_catalog

5.3.6.5 Operation assignment

An operation assignment may be used to assign values for input parameters, specify attribute mappings
for output parameters, and define/redefine the implementation definition of an already defined operation
in the interface definition. An operation assignment may be used inside interface assignments inside node
template or relationship template definitions (this includes when operation assignments are part of a
requirement assignment in a node template).

An operation assignment may add or change the implementation and description definition of the
operation. Assigning a value to an input parameter that had a fixed value specified during operation
definition or refinement is not allowed. Providing an attribute mapping for an output parameter that was
mapped during an operation refinement is also not allowed.

Note also that in the operation assignment we can use inputs and outputs that have not been previously
defined in the operation definition. This is equivalent to an ad-hoc definition of a parameter, where the
type is inferred from the assigned value (for input parameters) or from the attribute to map to (for output
parameters).

5.3.6.5.1 Keynames

The following is the list of recognized keynames for an operation assignment:

Keyname Mandatory Type Description

implementation no operation
implementation
definition

The optional definition of the operation
implementation. Overrides implementation provided
at operation definition.

inputs no map of parameter
value assignments

The optional map of parameter value assignments for
assigning values to operation inputs.

outputs no map of parameter
mapping assignments

The optional map of parameter mapping assignments
that specify how operation outputs are mapped onto
attributes of the node or relationship that contains the
operation definition.

5.3.6.5.2 Grammar

Operation assignments have the following grammar:

5.3.6.5.2.1 Short notation

The following single-line grammar may be used when the operation’s implementation definition is the only
keyname that is needed, and when the operation implementation definition itself can be specified using a
single line grammar:

<operation_name>: <operation_implementation_definition>

5.3.6.5.2.2 Extended notation

The following multi-line grammar may be used in Node or Relationship Template definitions when
additional information about the operation is needed:

<operation_name>:

 implementation: <operation_implementation_definition>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 94 of 186

 inputs:

 <parameter_value_assignments>

 outputs:

 <parameter_mapping_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• operation_name: represents the mandatory symbolic name of the operation as a string.

• operation_implementation_definition: represents the optional specification of the operation’s
implementation

• the implementation declared here overrides the implementation provided at operation definition.

• parameter_value_assignments: represents the optional map of parameter value assignments for
passing input parameter values to operations.

• assignments for operation inputs that are not defined in the operation definition may be provided

• parameter_mapping_assignments: represents the optional map of parameter mapping assignments
that consists of named output values returned by operation implementations (i.e. artifacts) and
associated attributes into which this output value must be stored

• assignments for operation outputs that are not defined in the operation definition may be
provided.

5.3.6.5.3 Additional requirements

• The behavior for implementation of operations SHALL be override. That is, implementation definitions
assigned in an operation assignment override any defined in the operation definition.

• Template authors MAY provide parameter assignments for operation inputs that are not defined in the
operation definition.

• Template authors MAY provide attribute mappings for operation outputs that are not defined in the
operation definition.

• Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

5.3.6.5.4 Examples

TBD

5.3.6.6 Notification definition

A notification definition defines an asynchronous notification or incoming message that can be associated
with an interface. The notification is a way for an external event to be transmitted to the TOSCA
orchestrator. Values can be sent with a notification as notification outputs and we can map them to
node/relationship attributes similarly to the way operation outputs are mapped to attributes. The artifact
that the orchestrator is registering with in order to receive the notification is specified using the
implementation keyname in a similar way to operations. As opposed to an operation definition, a
notification definition does not include an inputs keyname since notifications are not invoked from the
orchestrator.

When the notification is received an event is generated within the orchestrator that can be associated to
triggers in policies to call other internal operations and workflows. The notification name (using the
<interface_name>.<notification_name> notation) itself identifies the event type that is generated and can
be textually used when defining the associated triggers.

A notification definition may be used only inside interface type definitions (this is the only place where
new notifications can be defined). Inside interface type, node type, or relationship type definitions
(including notifications definitions as part of a requirement definition) we may further refine a notification
already defined in the interface type.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 95 of 186

A notification definition or refinement inside an interface type definition may not contain a notification
implementation definition and it may not contain an attribute mapping as part of its output definition (as
both these keynames are node/relationship specific).

5.3.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA notification definition:

Keyname Mandatory Type Description

description no string The optional description string for the associated notification.

implementation no notification
implementation
definition

The optional definition of the notification implementation.

outputs no map of parameter
definitions

The optional map of parameter definitions that specify
notification output values.
Only as part of node and relationship type definitions, the output
definitions may include their mappings onto attributes of the
node type or relationship type that contains the definition.

5.3.6.6.2 Grammar

Notification definitions have the following grammar:

5.3.6.6.2.1 Short notation

The following single-line grammar may be used when the notification’s implementation definition is the
only keyname that is needed and when the notification implementation definition itself can be specified
using a single line grammar:

<notification_name>: <notification_implementation_definition>

5.3.6.6.2.2 Extended notation

The following multi-line grammar may be used when additional information about the notification is
needed:

<notification_name>:

 description: <notification_description>

 implementation: <notification_implementation_definition>

 outputs:

 <parameter_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• notification_name: represents the mandatory symbolic name of the notification as a string.

• notification_description: represents the optional description string for the notification.

• notification_implementation_definition: represents the optional specification of the notification
implementation (i.e. the external artifact that may send notifications)

• parameter_definitions: represents the optional map of parameter definitions for parameters that the
orchestrator will receive as outputs from the corresponding implementation artifact during its
execution.

5.3.6.6.3 Refinement rules

A notification definition within an interface, node, or relationship type (including interface definitions in
requirements definitions) uses the following refinement rules when the containing entity type is derived:

• description: a new definition is unrestricted and will overwrite the one inherited from the notification
definition in the parent entity type definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 96 of 186

• implementation: a new definition is unrestricted and will overwrite the one inherited from the
notification definition in the parent entity type definition.

• outputs: parameter definitions inherited from the parent entity type may be refined; new parameter
definitions may be added.

5.3.6.6.4 Additional requirements

• The definition of implementation is not allowed in interface type definitions (as a node or node

type context is missing at that point). Thus, it can be part only of a notification refinement and not

of the original notification definition.

• The default sub-classing (i.e. refinement) behavior for implementations of notifications SHALL be

overwrite. That is, implementation artifacts definitions in a derived type overwrite any defined in

its parent type.

• Defining attribute mapping as part of the output parameter definition is not allowed in interface

type definitions (i.e. as part of operation definitions). It is allowed only in node and relationship

type definitions (as part of operation refinements).

• Defining a mapping in an output parameter definition may use an attribute target that is

meaningful in the scope of the context. Within the context of Node or Relationship Type

definitions these functions may only reference attributes starting from the same node (i.e. SELF).

• Implementation artifact file names (e.g., script filenames) may include file directory path names

that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud

Service Archive (CSAR) file.

5.3.6.6.5 Examples

TBD

5.3.6.7 Notification assignment

A notification assignment may be used to specify attribute mappings for output parameters and to
define/redefine the implementation definition and description definition of an already defined notification in
the interface definition. A notification assignment may be used inside interface assignments inside node
or relationship template definitions (this includes when notification assignments are part of a requirement
assignment in a node template).

Providing an attribute mapping for an output parameter that was mapped during a previous refinement is
not allowed. Note also that in the notification assignment we can use outputs that have not been
previously defined in the operation definition. This is equivalent to an ad-hoc definition of an output
parameter, where the type is inferred from the attribute to map to.

5.3.6.7.1 Keynames

The following is the list of recognized keynames for a TOSCA notification assignment:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 97 of 186

Keyname Mandatory Type Description

implementation no notification
implementation
definition

The optional definition of the notification implementation.
Overrides implementation provided at notification definition.

outputs no map of parameter
mapping
assignments

The optional map of parameter mapping assignments that specify
how notification outputs values are mapped onto attributes of
the node or relationship type that contains the notification
definition.

5.3.6.7.2 Grammar

Notification assignments have the following grammar:

5.3.6.7.2.1 Short notation

The following single-line grammar may be used when the notification’s implementation definition is the
only keyname that is needed, and when the notification implementation definition itself can be specified
using a single line grammar:

<notification_name>: <notification_implementation_definition>

5.3.6.7.2.2 Extended notation

The following multi-line grammar may be used in Node or Relationship Template definitions when
additional information about the notification is needed:

<notification_name>:

 implementation: <notification_implementation_definition>

 outputs:

 <parameter_mapping_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• notification_name: represents the mandatory symbolic name of the notification as a string.

• notification_implementation_definition: represents the optional specification of the notification
implementation (i.e. the external artifact that is may send notifications)

• the implementation declared here overrides the implementation provided at notification definition.

• parameter_mapping_assignments: represents the optional map of parameter_mapping_assignments
that consists of named output values returned by operation implementations (i.e. artifacts) and
associated attributes into which this output value must be stored

• assignments for notification outputs that are not defined in the operation definition may be
provided.

5.3.6.7.3 Additional requirements

• The behavior for implementation of notifications SHALL be override. That is, implementation
definitions assigned in a notification assignment override any defined in the notification definition.

• Template authors MAY provide attribute mappings for notification outputs that are not defined in the
corresponding notification definition.

• Implementation artifact file names (e.g., script filenames) may include file directory path names that
are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service
Archive (CSAR) file.

5.3.6.7.4 Examples

TBD

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 98 of 186

5.3.6.8 Operation and notification implementation definition

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the
implementation for an operation in an interface.

A notification implementation definition specifies one or more artifacts to be used by the orchestrator to
subscribe and receive a particular notification (i.e. the artifact implements the notification).

The operation implementation definition and the notification implementation definition share the same
keynames and grammar, with the exception of the timeout keyname that has no meaning in the context of
a notification implementation definition and should not be used in such.

5.3.6.8.1 Keynames

The following is the list of recognized keynames for an operation implementation definition or a
notification implementation definition:

Keyname Mandato
ry

Type Description

primary no artifact
definition

The optional implementation artifact (i.e., the primary script file
within a TOSCA CSAR file).

dependencies no list of
artifact
definition

The optional list of one or more dependent or secondary
implementation artifacts which are referenced by the primary
implementation artifact (e.g., a library the script installs or a
secondary script).

timeout no integer Timeout value in seconds. Has no meaning and should not be used
within a notification implementation definition.

5.3.6.8.2 Grammar

Operation implementation definitions and notification implementation definitions have the following
grammar:

5.3.6.8.2.1 Short notation for use with single artifact

The following single-line grammar may be used when only a primary implementation artifact name is
needed:

implementation: <primary_artifact_name>

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it
refers to an artifact specified in the artifacts section of a type or template, or because it represents the
name of a script in the CSAR file that contains the definition.

5.3.6.8.2.2 Short notation for use with multiple artifacts

The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of
the artifacts can be uniquely identified by name as before:

implementation:

 primary: <primary_artifact_name>

 dependencies:

 - <list_of_dependent_artifact_names>

 timeout: 60

5.3.6.8.2.3 Extended notation for use with single artifact

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
only a single artifact is used but additional information about the primary artifact is needed (e.g. to specify
the repository from which to obtain the artifact, or to specify the artifact type when it cannot be derived
from the artifact file extension):

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 99 of 186

implementation:

 primary:

 <primary_artifact_definition>

 timeout: 100

5.3.6.8.2.4 Extended notation for use with multiple artifacts

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
there are multiple artifacts that may be needed for the operation to be implemented and additional
information about each of the artifacts is required:

implementation:

 primary:

 <primary_artifact_definition>

 dependencies:

 - <list_of_dependent_artifact definitions>

 timeout: 120

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• primary_artifact_name: represents the optional name (string) of an implementation artifact definition
(defined elsewhere), or the direct name of an implementation artifact’s relative filename (e.g., a
service template-relative, path-inclusive filename or absolute file location using a URL).

• primary_artifact_definition: represents a full inline definition of an implementation artifact.

• list_of_dependent_artifact_names: represents the optional ordered list of one or more dependent or
secondary implementation artifact names (as strings) which are referenced by the primary
implementation artifact. TOSCA orchestrators will copy these files to the same location as the
primary artifact on the target node so as to make them accessible to the primary implementation
artifact when it is executed.

• list_of_dependent_artifact_definitions: represents the ordered list of one or more inline definitions of
dependent or secondary implementation artifacts. TOSCA orchestrators will copy these artifacts to
the same location as the primary artifact on the target node so as to make them accessible to the
primary implementation artifact when it is executed.

5.3.7 Artifacts

5.3.7.1 Artifact Type

An Artifact Type is a reusable entity that defines the type of one or more files that are used to define
implementation or deployment artifacts that are referenced by nodes or relationships.

5.3.7.1.1 Keynames

The Artifact Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Artifact Type has the following recognized
keynames:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 100 of 186

Keyname Mandatory Type Description

mime_type no string The optional mime type property for the
Artifact Type.

file_ext no list of
string

The optional file extension property for the
Artifact Type.

properties no map of
property
definitions

An optional map of property definitions for
the Artifact Type.

5.3.7.1.2 Grammar

Artifact Types have following grammar:

<artifact_type_name>:

 derived_from: <parent_artifact_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <artifact_description>

 mime_type: <mime_type_string>

 file_ext: [<file_extensions>]

 properties:

 <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• artifact_type_name: represents the name of the Artifact Type being declared as a string.

• parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type definition
derives from (i.e., its “parent” type).

• version_number: represents the optional TOSCA version number for the Artifact Type.

• artifact_description: represents the optional description string for the Artifact Type.

• mime_type_string: represents the optional Multipurpose Internet Mail Extensions (MIME) standard
string value that describes the file contents for this type of Artifact Type as a string.

• file_extensions: represents the optional list of one or more recognized file extensions for this type of
artifact type as strings.

• property_definitions: represents the optional map of property definitions for the artifact type.

5.3.7.1.3 Derivation rules

During Artifact Type derivation the keyname definitions follow these rules:

• mime_type: a new definition is unrestricted and will overwrite the one inherited from the parent type.

• file_ext: a new definition is unrestricted and will overwrite the one inherited from the parent type.

• properties: existing property definitions may be refined; new property definitions may be added.

5.3.7.1.4 Examples

my_artifact_type:

 description: Java Archive artifact type

 derived_from: tosca.artifact.Root

 mime_type: application/java-archive

 file_ext: [jar]

 properties:

 id:

 description: Identifier of the jar

 type: string

 required: true

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 101 of 186

 creator:

 description: Vendor of the java implementation on which the jar is based

 type: string

 required: false

5.3.7.1.5 Additional Requirements

• The ‘mime_type’ keyname is meant to have values that are Apache mime types such as those
defined here: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

5.3.7.1.6 Notes

Information about artifacts can be broadly classified in two categories that serve different purposes:

• Selection of artifact processor. This category includes informational elements such as artifact version,

checksum, checksum algorithm etc. and s used by TOSCA Orchestrator to select the correct artifact

processor for the artifact. These informational elements are captured in TOSCA as keywords for the

artifact.

• Properties processed by artifact processor. Some properties are not processed by the Orchestrator

but passed on to the artifact processor to assist with proper processing of the artifact. These

informational elements are described through artifact properties.

5.3.7.2 Artifact definition

An artifact definition defines a named, typed file that can be associated with Node Type or Node
Template and used by orchestration engine to facilitate deployment and implementation of interface
operations.

5.3.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended
notation:

Keyname Mandatory Type Description

type yes string The mandatory artifact type for the artifact definition.

file yes string The mandatory URI string (relative or absolute) which can be used
to locate the artifact’s file.

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The
artifact is expected to be referenceable by its file URI within the
repository.

description no string The optional description for the artifact definition.

deploy_path no string The file path the associated file will be deployed on within the
target node’s container.

artifact_version no string The version of this artifact. One use of this artifact_version is to
declare the particular version of this artifact type, in addition to its
mime_type (that is declared in the artifact type definition). Together
with the mime_type it may be used to select a particular artifact
processor for this artifact. For example, a python interpreter that
can interpret python version 2.7.0.

checksum no string The checksum used to validate the integrity of the artifact.

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 102 of 186

Keyname Mandatory Type Description

checksum_algorithm no string Algorithm used to calculate the artifact checksum (e.g. MD5, SHA
[Ref]). Shall be specified if checksum is specified for an artifact.

properties no map of
property
assignments

The optional map of property assignments associated with the
artifact.

5.3.7.2.2 Grammar

Artifact definitions have one of the following grammars:

5.3.7.2.2.1 Short notation

The following single-line grammar may be used when the artifact’s type and mime type can be inferred
from the file URI:

<artifact_name>: <artifact_file_URI>

5.3.7.2.2.2 Extended notation:

The following multi-line grammar may be used when the artifact’s definition’s type and mime type need to
be explicitly declared:

<artifact_name>:

 description: <artifact_description>

 type: <artifact_type_name>

 file: <artifact_file_URI>

 repository: <artifact_repository_name>

 deploy_path: <file_deployment_path>

 version: <artifact _version>

 checksum: <artifact_checksum>

 checksum_algorithm: <artifact_checksum_algorithm>

 properties: <property assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• artifact_name: represents the mandatory symbolic name of the artifact as a string.

• artifact_description: represents the optional description for the artifact.

• artifact_type_name: represents the mandatory artifact type the artifact definition is based upon.

• artifact_file_URI: represents the mandatory URI string (relative or absolute) which can be used to
locate the artifact’s file.

• artifact_repository_name: represents the optional name of the repository definition to use to retrieve
the associated artifact (file) from.

• file_deployement_path: represents the optional path the artifact_file_URI will be copied into within the
target node’s container.

• artifact_version: represents the version of artifact

• artifact_checksum: represents the checksum of the Artifact

• artifact_checksum_algorithm:represents the algorithm for verifying the checksum. Shall be specified if
checksum is specified

• properties: represents an optional map of property assignments associated with the artifact

5.3.7.2.3 Refinement rules

Artifact definitions represent specific external entities. If a certain artifact definition cannot be reused as is,
then it may be completely redefined.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 186

• If an artifact is redefined, the symbolic name from the definition in the parent node type is reused, but
no keyname definitions are inherited from the definition in the parent node type, and the new
definition completely overwrites the definition in the parent.

• If the artifact is not redefined the complete definition is inherited from the parent node type.

5.3.7.2.4 Examples

The following represents an artifact definition:

my_file_artifact: ../my_apps_files/operation_artifact.txt

The following example represents an artifact definition with property assignments:

artifacts:

 sw_image:

 description: Image for virtual machine

 type: tosca.artifacts.Deployment.Image.VM

 file: http://10.10.86.141/images/Juniper_vSRX_15.1x49_D80_preconfigured.qcow2

 checksum: ba411cafee2f0f702572369da0b765e2

 version: 3.2

 checksum_algorithm: MD5

 properties:

 name: vSRX

 container_format: BARE

 disk_format: QCOW2

 min_disk: 1 GB

 size: 649 MB

5.4 Properties, Attributes, and Parameters

This section presents handling data in TOSCA via properties, attributes, and parameters.

The type of the values they contain can be divided into built-in primitive types, special types that are
extensions of the primitive types, and collection types, as well as user-defined refinements of these and
complex data types that can themselves be defined in TOSCA profiles and the TOSCA service template.

Values can also be evaluated from expressions based on TOSCA functions. [See XXX]

The following table summarizes the built-in types. All of these type names are reserved and cannot be
used for custom data types. Note, however, that it is possible to derive a custom data type from a
primitive type in order to add constraints.

Primitive Types: (section 4.4.1)

• string

• integer

• float

• boolean

• bytes

• nil

Special Types: (section 4.4.2)

• range

• timestamp

• scalar-unit.size

• scalar-unit.time

• scalar-unit.frequency

http://10.10.86.141/images/Juniper_vSRX_15.1x49_D80_preconfigured.qcow2

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 104 of 186

• scalar-unit.bitrate

Collection Types: (section 4.4.3)

• list

• map

5.4.1 Primitive Types

The TOSCA primitive types have been specified to allow for the broadest possible support for
implementations.

Guiding principles:

1. Because TOSCA service templates are written in YAML they must support all the literal primitives in
YAML. However, it is important to also allow for consistency of representation of external data, e.g.
service template inputs and outputs, property and attribute values stored in a database, etc.

2. Adherence to 64-bit precision to ensure portability of numeric data.
3. TOSCA parsers shall not automatically convert between primitive types. Thus, care should be taken

to use the correct YAML notation for that type. Details will be provided below.

5.4.1.1 string

An array of Unicode runes. (For storing an arbitrary array of bytes see the “bytes” type, below.)

Because we adhere to 64-bit precision, the minimum length of strings is 0 and the maximum length of
strings is 4,294,967,295.

TOSCA does not specify a character encoding. For example, a string could be encoded as UTF-8 or
UTF-16. The exact encoding used depends on the implementation.

Be aware that YAML parsers will attempt to parse unquoted character sequences as other types
(booleans, integers, floats, etc.) before falling back to the !!string type. For example, the unquoted

sequence “0.1” would be interpreted as a YAML !!float. Likewise, the unquoted sequence “nan” would

become the !!float value of not-a-number. However, in TOSCA a string value must be specified in

YAML as a !!string.

A TOSCA parser shall not attempt to convert other primitive types to strings if a string type is required.
This requirement is necessary for ensuring portability, because there is no single, standard representation
for the other types, e.g. scientific notations for decimals, the words “true” vs. “True” for booleans, etc. In
YAML users should thus add quotation marks around literal strings that YAML would otherwise interpret
as other types.

This following example would be invalid if there were no quotation marks around “0.1”:

node_types:

 Node:

 properties:

 name:

 type: string

topology_template:

 node_templates:

 node:

 type: Node

 properties:

 name: "0.1"

5.4.1.1.1 Notes:

1. There are various ways to specify literal !!string data in YAML for handling indentation, newlines, as
well as convenient support for line folding for multiline strings. All may be used in TOSCA. A TOSCA

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 105 of 186

parser shall not modify the YAML string in any way, e.g. no trimming of whitespace or newlines.
[YAML 1.2 chapter 6]

2. The TOSCA functions “concat”, “join”, and “token” and the TOSCA constraints “length”, “min_length”,
“max_length”, and “pattern” are all Unicode-aware. Specifically, the length of a string is a count of its
runes, not the length of the byte array, which may differ according to the encoding. [See XXX]

3. The TOSCA constraints that check for equality, “equal” and “valid_values”, should work regardless of
the Unicode encoding. For example, comparing two strings that are “!”, one of which is in UTF-8 and
is encoded as “0x21”, the other which is in UTF-16 and is encoded as “0x0021”, would result in
equality. For simplicity, implementations may standardize on a single encoding, e.g. UTF-8, and
convert all other encodings to it. [See XXX]

4. Relatedly, although in YAML 1.2 a !!string is already defined as a Unicode sequence [YAML 1.2

section 10.1.1.3], this sequence can be variously encoded according to the character set and
encoding of the YAML stream [YAML 1.2 chapter 5]. The consequence is that a TOSCA string
specified in literal YAML may inherit the encoding of the YAML document. Again, implementations
may prefer to convert all strings to a single encoding.

5. TOSCA strings cannot be the null value but can be empty strings (a string with length zero). [See
“nil”, below]

6. YAML is a streaming format, but TOSCA strings are explicitly not streams and thus do have a size
limit. Thus, TOSCA implementations should check against the size limit.

[Tal’s comment: for functions and constraints we should specify their exact behavior for various primitive
types. Some won’t work on all types, e.g. “length” should not work on integers.]

5.4.1.2 integer

A 64-bit signed integer.

For simplicity, TOSCA does not have integers of other bit widths, nor does it have an unsigned integer
type. However, it is possible to enforce most of these variations using data type constraints [see XXX].

For example, this would be a custom data type for unsigned 16-bit integers:

data_types:

 UInt16:

 derived_from: integer

 constraints:

 - in_range: [0, 0xFFFF]

5.4.1.2.1 Notes

YAML allows for the standard decimal notation as well as hexadecimal and octal notations [YAML 1.2
example 2.19]. In the above example we indeed used the hexadecimal notation.

1. The JSON schema for YAML 1.2 [YAML 1.2 chapter 10.2] allows for compatibility with JSON, such
that YAML would be a superset of JSON. However, note that the JSON format does not distinguish
between integers and floats, and thus many JSON implementations use floats instead of integers.

2. TOSCA does not specify the endianness of integers and indeed makes no requirements for data
representation.

5.4.1.3 float

A 64-bit (double-precision) floating-point number [IEEE 754], including the standard values for negative
infinity, positive infinity, and not-a-number.

Be aware that YAML parsers will parse numbers with a decimal point as !!float even if they could be

represented as !!int, and likewise numbers without a decimal point would always be parsed as !!int.

A TOSCA parser shall not attempt to convert a YAML !!int to a float. This requirement is necessary for

avoiding rounding errors and ensuring portability. Users should thus add a “.0” suffix to literal integers that

https://yaml.org/spec/1.2/spec.html#Basic
https://yaml.org/spec/1.2/spec.html#id2802842
https://yaml.org/spec/1.2/spec.html#id2802842
https://yaml.org/spec/1.2/spec.html#Characters
https://yaml.org/spec/1.2/spec.html#id2761509
https://yaml.org/spec/1.2/spec.html#id2761509
https://yaml.org/spec/1.2/spec.html#id2803231

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 106 of 186

must be floats. Note that this even includes zero, i.e. users must specify “0” for a zero integer and “0.0” for
a zero float.

This following example would be invalid if there were no “.0” suffix added to “10”:

node_types:

 Node:

 properties:

 velocity:

 type: float

topology_template:

 node_templates:

 node:

 type: Node

 properties:

 velocity: 10.0

5.4.1.3.1 Notes

1. In addition to decimal, YAML also allows for specifying floats using scientific notation as well as
special unquoted words for negative infinity, positive infinity, and not-a-number [YAML 1.2 example
2.20].

2. TOSCA does not specify how to convert to other precisions nor to other formats, e.g. Bfloat16 and
TensorFloat-32.

3. TOSCA does not specify the endianness of floats and indeed makes no requirements for data
representation.

5.4.1.4 boolean

A single bit.

Note that in YAML literal booleans can be only either the unquoted all-lowercase words “true” or “false”.

A TOSCA parser shall not attempt to convert these values, nor variations such as “yes” or “True”, as
quoted strings to booleans, nor shall it attempt to convert integer values (such as 1 and 0) to booleans.
This requirement is necessary for ensuring portability as well as clarity.

5.4.1.5 bytes

An array of arbitrary bytes. Because we adhere to 64-bit precision, the minimum length of bytes is 0 and
the maximum length of bytes is 4,294,967,295.

To specify literal bytes in YAML you must use a Base64-encoded !!string [RFC 2045 section 6.8].

There exist many free tools to help you convert arbitrary data to Base64.

Example:

node_types:

 Node:

 properties:

 preamble:

 type: bytes

topology_template:

 node_templates:

 node:

 type: Node

 properties:

 preamble: "\

R0lGODlhDAAMAIQAAP//9/X17unp5WZmZgAAAOfn515eXvPz7Y6OjuDg4J+fn5\

OTk6enp56enmlpaWNjY6Ojo4SEhP/++f/++f/++f/++f/++f/++f/++f/++f/+\

+f/++f/++f/++f/++f/++SH+Dk1hZGUgd2l0aCBHSU1QACwAAAAADAAMAAAFLC\

https://yaml.org/spec/1.2/spec.html#id2761530
https://yaml.org/spec/1.2/spec.html#id2761530

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 186

AgjoEwnuNAFOhpEMTRiggcz4BNJHrv/zCFcLiwMWYNG84BwwEeECcgggoBADs="

5.4.1.5.1 Notes

1. There is no standard way to represent literal bytes in YAML 1.2. Though some YAML
implementations may support the !!binary type working draft, to ensure portability TOSCA
implementations shall not accept this YAML type.

2. The TOSCA constraints “length”, “min_length”, and “max_length” work differently for the bytes type
vs. the string type. For the latter the length is the count of Unicode runes, not the count of bytes.

3. TOSCA bytes values cannot be the null value but can be empty arrays (a bytes value with length
zero). [See “nil”, below]

5.4.1.6 nil

The nil type always has the same singleton value. No other type can have this value.

This value is provided literally in YAML via the unquoted all-lowercase word “null”.

Example:

node_types:

 Node:

 properties:

 nothing:

 type: nil

 required: true

topology_template:

 node_templates:

 node:

 type: Node

 properties:

 nothing: null

Note that a nil-typed value is distinct from an unassigned value. For consistency TOSCA requires you to
assign nil values even though their value is obvious. Thus, the above example would be invalid if we did
not specify the null value for the property at the node template.

Following is a valid example of not assigning a value:

node_types:

 Node:

 properties:

 nothing:

 type: nil

 required: false

topology_template:

 node_templates:

 node:

 type: Node

5.4.2 Special Types

5.4.2.1 TOSCA version

A TOSCA version string.

https://yaml.org/type/binary.html

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 108 of 186

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be
versioned and change over time. It is important to provide a reliable, normative means to represent a
version string which enables the comparison and management of types and templates over time.

5.4.2.1.1 Grammar

TOSCA version strings have the following grammar:

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• major_version: is a mandatory integer value greater than or equal to 0 (zero)

• minor_version: is a mandatory integer value greater than or equal to 0 (zero).

• fix_version: is an optional integer value greater than or equal to 0 (zero).

• qualifier: is an optional string that indicates a named, pre-release version of the associated code that
has been derived from the version of the code identified by the combination major_version,
minor_version and fix_version numbers.

• build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to further
qualify different build versions of the code that has the same qualifer_string.

5.4.2.1.2 Version Comparison

• When specifying a version string that contains just a major and a minor version number, the version
string must be enclosed in quotes to prevent the YAML parser from treating the version as a floating
point value.

• When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared
in sequence from left to right.

• TOSCA versions that include the optional qualifier are considered older than those without a qualifier.

• TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but
with different build versions can be compared based upon the build version.

• Qualifier strings are considered domain-specific. Therefore, this specification makes no
recommendation on how to compare TOSCA versions with the same major, minor and fix versions,
but with different qualifiers strings and simply considers them different branches derived from the
same code.

5.4.2.1.3 Examples

Examples of valid TOSCA version strings:

basic version strings

‘6.1’

2.0.1

version string with optional qualifier

3.1.0.beta

version string with optional qualifier and build version

1.0.0.alpha-10

5.4.2.1.4 Notes

• [Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning policy.

5.4.2.1.5 Additional Requirements

• A version value of zero (i.e., ‘0.0’, or ‘0.0.0’) SHALL indicate there no version provided.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 109 of 186

• A version value of zero used with any qualifiers SHALL NOT be valid.

5.4.2.2 TOSCA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this
allows for specifying a range of ports to be opened in a firewall.

5.4.2.2.1 Grammar

TOSCA range values have the following grammar:

[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• lower_bound: is a mandatory integer value that denotes the lower boundary of the range.

• upper_bound: is a mandatory integer value that denotes the upper boundary of the range. This value
MUST be greater than or equal to lower_bound.

5.4.2.2.2 Keywords

The following Keywords may be used in the TOSCA range type:

Keyword Applicable
Types

Description

UNBOUNDED scalar Used to represent an unbounded upper bounds (positive) value in a set for a scalar type.

5.4.2.2.3 Examples

Example of a node template property with a range value:

numeric range between 1 and 100

a_range_property: [1, 100]

a property that has allows any number 0 or greater

num_connections: [0, UNBOUNDED]

5.4.2.3 TOSCA timestamp type

A local instant in time containing two elements: the local notation plus the time zone offset.

TOSCA timestamps are represented as strings following [RFC 3339], which in turn uses a simplified
profile of [ISO 8601]. TOSCA adds an exception to RFC 3339: though RFC 3339 supports timestamps
with unknown local offsets, represented as the "-0" timezone, TOSCA does not support this feature and
will treat the unknown timezone as UTC. There are two reasons for this exception: the first is that many
systems do not support this distinction and TOSCA aims for interoperability, and the second is that
timestamps with unknown timezones cannot be converted to UTC, making it impossible to apply
comparison constraints. If this feature is required it can be supported via a custom data type (see XXX).

5.4.2.3.1 Notes

• It is strongly recommended that all literal YAML timestamps be enclosed in quotation marks to ensure
that they are parsed as strings. Otherwise, some YAML parsers might interpret them as the YAML
!!timestamp type, which is rejected by TOSCA (see below).

• The TOSCA constraints "equal", "greater_than", "greater_or_equal", "less_than", and "less_or_equal"
all use the universal instant, i.e. as the local instant is converted to UTC by applying the timezone
offset.

https://tools.ietf.org/html/rfc3339
https://www.iso.org/iso-8601-date-and-time-format.html
https://tools.ietf.org/html/rfc3339#section-4.3

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 110 of 186

• Some YAML implementations may support the !!timestamp type working draft, but to ensure
portability TOSCA implementations shall not accept this YAML type. Also note that the YAML
!!timestamp supports a relaxed notation with whitespace, which does not conform to RFC 3339.

• RFC 3339 is based on the Gregorian calendar, including leap years and leap seconds, and is thus
explicitly culturally biased. It cannot be used for non-Gregorian locales. Other calendar
representations can be supported via custom data types (see XXX).

• Time zone information is expressed and stored numerically as an offset from UTC, thus daylight
savings and other local changes are not included.

• TOSCA does not specify a canonical representation for timestamps. The only requirement is that
representations adhere to RFC 3339.

5.4.2.4 TOSCA scalar-unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units
provided below.

5.4.2.4.1 Grammar

TOSCA scalar-unit typed values have the following grammar:

<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• scalar: is a mandatory scalar value.

• unit: is a mandatory unit value. The unit value MUST be type-compatible with the scalar.

5.4.2.4.2 Additional requirements

• Whitespace: any number of spaces (including zero or none) SHALL be allowed between the scalar
value and the unit value.

• It SHALL be considered an error if either the scalar or unit portion is missing on a property or attribute
declaration derived from any scalar-unit type.

• When performing constraint clause evaluation on values of the scalar-unit type, both the scalar value
portion and unit value portion SHALL be compared together (i.e., both are treated as a single value).
For example, if we have a property called storage_size (which is of type scalar-unit) a valid range
constraint would appear as follows:

– storage_size: in_range [4 GB, 20 GB]

where storage_size’s range will be evaluated using both the numeric and unit values (combined

together), in this case ‘4 GB’ and ’20 GB’.

5.4.2.4.3 Concrete Types

The scalar-unit type grammar is abstract and has four recognized concrete types in TOSCA:

• scalar-unit.size – used to define properties that have scalar values measured in size units.

• scalar-unit.time – used to define properties that have scalar values measured in size units.

• scalar-unit.frequency – used to define properties that have scalar values measured in units per
second.

• scalar-unit.bitrate – used to define properties that have scalar values measured in bits or bytes per
second

These types and their allowed unit values are defined below.

https://yaml.org/type/timestamp.html

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 111 of 186

5.4.2.4.4 scalar-unit.size

5.4.2.4.4.1 Recognized Units

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)

GiB size gibibytes (1073741824 bytes)

TB size terabyte (1000000000000 bytes)

TiB size tebibyte (1099511627776 bytes)

5.4.2.4.4.2 Examples

Storage size in Gigabytes

properties:

 storage_size: 10 GB

5.4.2.4.4.3 Notes

• The unit values recognized by TOSCA for size-type units are based upon a subset of those defined
by GNU at http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative
reference to this specification.

• TOSCA treats these unit values as case-insensitive (e.g., a value of ‘kB’, ‘KB’ or ‘kb’ is equivalent),
but it is considered best practice to use the case of these units as prescribed by GNU.

• Some cloud providers may not support byte-level granularity for storage size allocations. In those
cases, these values could be treated as desired sizes and actual allocations will be based upon
individual provider capabilities.

5.4.2.4.5 scalar-unit.time

5.4.2.4.5.1 Recognized Units

Unit Usage Description

d time days

h time hours

m time minutes

s time seconds

http://www.gnu.org/software/parted/manual/html_node/unit.html

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 112 of 186

Unit Usage Description

ms time milliseconds

us time microseconds

ns time nanoseconds

5.4.2.4.5.2 Examples

Response time in milliseconds

properties:

 respone_time: 10 ms

5.4.2.4.5.3 Notes

• The unit values recognized by TOSCA for time-type units are based upon a subset of those defined
by International System of Units whose recognized abbreviations are defined within the following
reference:

– http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

– This document is a non-normative reference to this specification and intended for publications or
grammars enabled for Latin characters which are not accessible in typical programming
languages

5.4.2.4.6 scalar-unit.frequency

5.4.2.4.6.1 Recognized Units

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

5.4.2.4.6.2 Examples

Processor raw clock rate

properties:

 clock_rate: 2.4 GHz

5.4.2.4.6.3 Notes

• The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau
International des Poids et Mesures (BIPM) in the “SI Brochure: The International System of Units (SI)
[8th edition, 2006; updated in 2014]”, http://www.bipm.org/en/publications/si-brochure/

http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf
http://www.bipm.org/en/publications/si-brochure/

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 113 of 186

5.4.2.4.7 scalar-unit.bitrate

5.4.2.4.7.1 Recognized Units

Unit Usage Description

bps bitrate bit per second

Kbps bitrate kilobit (1000 bits) per second

Kibps bitrate kibibits (1024 bits) per second

Mbps bitrate megabit (1000000 bits) per second

Mibps bitrate mebibit (1048576 bits) per second

Gbps bitrate gigabit (1000000000 bits) per second

Gibps bitrate gibibits (1073741824 bits) per second

Tbps bitrate terabit (1000000000000 bits) per second

Tibps bitrate tebibits (1099511627776 bits) per second

5.4.2.4.7.2 Examples

Somewhere in a node template definition

requirements:

 - link:

 node_filter:

 capabilities:

 - myLinkable

 properties:

 bitrate:

 - greater_or_equal: 10 Kbps # 10 * 1000 bits per second at least

5.4.3 Collection Types

5.4.3.1 TOSCA list type

The list type allows for specifying multiple values for a a parameter of property. For example, if an
application allows for being configured to listen on multiple ports, a list of ports could be configured using
the list data type.

Note that entries in a list must be of the same type. The type (for simple entries) or schema (for complex
entries) is defined by the mandatory entry_schema attribute of the respective property definition, attribute
definitions, or input or output parameter definitions. Schema definitions can be arbitrarily complex (they
may themselves define a list).

5.4.3.1.1 Grammar

TOSCA lists are essentially normal YAML lists with the following grammars:

5.4.3.1.1.1 Square bracket notation

 [<list_entry_1>, <list_entry_2>, ...]

5.4.3.1.1.2 Bulleted list notation

- <list_entry_1>

- ...

- <list_entry_n>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 114 of 186

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• <list_entry_*>: represents one entry of the list.

5.4.3.1.2 Declaration Examples

5.4.3.1.2.1 List declaration using a simple type

The following example shows a list declaration with an entry schema based upon a simple integer type
(which has additional constraints):

<some_entity>:

 ...

 properties:

 listen_ports:

 type: list
 entry_schema:

 description: listen port entry (simple integer type)

 type: integer
 constraints:

 - max_length: 128

5.4.3.1.2.2 List declaration using a complex type

The following example shows a list declaration with an entry schema based upon a complex type:

<some_entity>:

 ...

 properties:

 products:

 type: list
 entry_schema:

 description: Product information entry (complex type) defined elsewhere

 type: ProductInfo

5.4.3.1.3 Definition Examples

These examples show two notation options for defining lists:

• A single-line option which is useful for only short lists with simple entries.

• A multi-line option where each list entry is on a separate line; this option is typically useful or more
readable if there is a large number of entries, or if the entries are complex.

5.4.3.1.3.1 Square bracket notation

listen_ports: [80, 8080]

5.4.3.1.3.2 Bulleted list notation

listen_ports:

 - 80

 - 8080

5.4.3.2 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to
the list type, where each entry can only be addressed by its index in the list, entries in a map are named
elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definition, or input or output parameter definition. In addition, the keys that

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 115 of 186

identify entries in a map must be of the same type as well. The type of these keys is defined by the
key_schema attribute of the respective property_definition, attribute_definition, or input or output
parameter_definition. If the key_schema is not specified, keys are assumed to be of type string.

5.4.3.2.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:

5.4.3.2.1.1 Single-line grammar

{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }

5.4.3.2.1.2 Multi-line grammar

<entry_key_1>: <entry_value_1>

...

<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• entry_key_*: is the mandatory key for an entry in the map

• entry_value_*: is the value of the respective entry in the map

5.4.3.2.2 Declaration Examples

5.4.3.2.2.1 Map declaration using a simple type

The following example shows a map with an entry schema definition based upon an existing string type
(which has additional constraints):

<some_entity>:

 ...

 properties:

 emails:

 type: map
 entry_schema:

 description: basic email address

 type: string
 constraints:

 - max_length: 128

5.4.3.2.2.2 Map declaration using a complex type

The following example shows a map with an entry schema definition for contact information:

<some_entity>:

 ...

 properties:

 contacts:

 type: map
 entry_schema:

 description: simple contact information

 type: ContactInfo

5.4.3.2.3 Definition Examples

These examples show two notation options for defining maps:

• A single-line option which is useful for only short maps with simple entries.

• A multi-line option where each map entry is on a separate line; this option is typically useful or more
readable if there is a large number of entries, or if the entries are complex.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 116 of 186

5.4.3.2.3.1 Single-line notation

notation option for shorter maps

user_name_to_id_map: { user1: 1001, user2: 1002 }

5.4.3.2.3.2 Multi-line notation

notation for longer maps

user_name_to_id_map:

 user1: 1001

 user2: 1002

5.4.4 Data Type

A Data Type definition defines the schema for new datatypes in TOSCA.

5.4.4.1 Keynames

The Data Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2 Common
keynames in type definitions. In addition, the Data Type has the following recognized keynames:

Keyname Mandatory Type Description

constraints no list of

constraint

clauses

The optional list of sequenced constraint clauses for the Data

Type.

properties no map of property

definitions

The optional map property definitions that comprise the schema

for a complex Data Type in TOSCA.

key_schema conditional

(default:

string)

schema

definition

For data types that derive from the TOSCA map data type, the

optional schema definition for the keys used to identify entries in

properties of this data type. If not specified, the key_schema

defaults to string. For data types that do not derive from the

TOSCA map data type, the key_schema is not allowed.

entry_schema conditional schema

definition

For data types that derive from the TOSCA map or list data types,

the mandatory schema definition for the entries in properties of

this data type. For data types that do not derive from the TOSCA

list or map data type, the entry_schema is not allowed.

5.4.4.2 Grammar

Data Types have the following grammar:

<data_type_name>:

 derived_from: <existing_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <datatype_description>

 constraints:

 - <type_constraints>

 properties:

 <property_definitions>

 key_schema: <key_schema_definition>

 entry_schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• data_type_name: represents the mandatory symbolic name of the data type as a string.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 117 of 186

• version_number: represents the optional TOSCA version number for the data type.

• datatype_description: represents the optional description for the data type.

• existing_type_name: represents the optional name of a valid TOSCA primitive type or data type this
new data type derives from.

• type_constraints: represents the optional list of one or more type-compatible constraint clauses that
restrict the data type.

• property_definitions: represents the optional map of one or more property definitions that provide the
schema for the data type

• property_definitions may not be added to data types derived_from TOSCA primitive types.

• key_schema_definition: if the data type derives from the TOSCA map type (i.e existing_type_name is
a map or derives from a map), it represents the optional schema definition for the keys used to
identify entry properties of this type.

• entry_schema_definition: if the data type derives from the TOSCA map or list types (i.e. existing_type
name is a map or list or derives from a map or list), it represents the mandatory schema definition for
the entries in properties of this type.

5.4.4.3 Derivation rules

During Data Type derivation the keyname definitions follow these rules:

• constraints: new constraints may be defined; these constraints do not replace the constraints defined

in the parent type but are considered in addition to them.

• properties: existing property definitions may be refined; new property definitions may be added.

• key_schema: the key_schema definition may be refined according to schema refinement rules.

• entry_schema: the entry_schema definition may be refined according to schema refinement rules.

5.4.4.4 Additional Requirements

• A valid datatype definition MUST have either a valid derived_from declaration or at least one valid
property definition.

• Any constraint clauses SHALL be type-compatible with the type declared by the derived_from
keyname.

• If a properties keyname is provided, it SHALL contain one or more valid property definitions.

• Property definitions may not be added to data types derived from TOSCA primitive types.

5.4.4.5 Examples

The following example represents a Data Type definition based upon an existing string type:

5.4.4.5.1 Defining a complex datatype

define a new complex datatype

mytypes.phonenumber:

 description: my phone number datatype

 properties:

 countrycode:

 type: integer

 areacode:

 type: integer

 number:

 type: integer

5.4.4.5.2 Defining a datatype derived from an existing datatype

define a new datatype that derives from existing type and extends it

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 118 of 186

mytypes.phonenumber.extended:

 derived_from: mytypes.phonenumber

 description: custom phone number type that extends the basic phonenumber type

 properties:

 phone_description:

 type: string

 constraints:

 - max_length: 128

5.4.5 Schema definition

All entries in a map or list for one property or parameter must be of the same type. Similarly, all keys for
map entries for one property or parameter must be of the same type as well. A TOSCA schema definition
specifies the type (for simple entries) or schema (for complex entries) for keys and entries in TOSCA set
types such as the TOSCA list or map.

If the schema definition specifies a map key, the type of the key schema must be derived originally from
the string type (which basically ensures that the schema type is a string with additional constraints). As
there is little need for complex keys this caters to more straight-forward and clear specifications. If the key
schema is not defined it is assumed to be string by default.

Schema definitions appear in data type definitions when derived_from a map or list type or in parameter,
property, or attribute definitions of a map or list type.

5.4.5.1 Keynames

The following is the list of recognized keynames for a TOSCA schema definition:

Keyname Mandatory Type Description

type yes string The mandatory data type for the key or entry.
If this schema definition is for a map key, then the referred type must
be derived originally from string.

description no string The optional description for the schema.

constraints no list of
constraint
clauses

The optional list of sequenced constraint clauses for the property.

key_schema no (default:
string)

schema
definition

When the schema itself is of type map, the optional schema definition
that is used to specify the type of the keys of that map’s entries (if
key_schema is not defined it is assumed to be “string” by default). For
other schema types, the key_schema must not be defined.

entry_schema conditional schema
definition

When the schema itself is of type map or list, the schema definition is
mandatory and is used to specify the type of the entries in that map or
list. For other schema types, the entry_schema must not be defined.

5.4.5.2 Grammar

Schema definitions have the following grammar:

<schema_definition>:

 type: <schema_type>

 description: <schema_description>

 constraints:

 - <schema_constraints>

 key_schema: <key_schema_definition>

 entry_schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 119 of 186

• schema_type: represents the mandatory type name for entries of the specified schema

• if this schema definition is for a map key, then the schema_type must be derived originally from
string.

• schema_description: represents the optional description of the schema definition

• schema_constraints: represents the optional list of one or more constraint clauses on entries of the
specified schema.

• key_schema_definition: if the schema_type is map, it represents the optional schema definition for
the keys of that map’s entries.

• entry_schema_definition: if the schema_type is map or list, it represents the mandatory schema
definition for the entries in that map or list.

5.4.5.3 Refinement rules

A schema definition uses the following definition refinement rules when the containing entity type is
derived:

• type: must be derived from (or the same as) the type in the schema definition in the parent entity type
definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the schema
definition in the parent entity type definition.

• constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in

the schema definition in the parent entity type but are considered in addition to them.

• key_schema: may be refined (recursively) according to schema refinement rules.

• entry_schema: may be refined (recursively) according to schema refinement rules.

5.4.6 Constraint clause definition

A constraint clause defines an operation along with one or more compatible values that can be used to
define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service
Template or one of its entities.

5.4.6.1 Operator keynames

The following is the list of recognized operators (keynames) when defining constraint clauses:

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=’) the value
declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (‘>’) the
value declared.

greater_or_equal scalar comparable Constrains a property or parameter to a value greater than or equal to
(‘>=’) the value declared.

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to
(‘<=’) the value declared.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 120 of 186

Operator Type Value Type Description

in_range dual
scalar

comparable,
range

Constrains a property or parameter to a value in range of (inclusive)
the two values declared.

Note: subclasses or templates of types that declare a property with the
in_range constraint MAY only further restrict the range specified by
the parent type.

valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.

length scalar string, list,
map

Constrains the property or parameter to a value of a given length.

min_length scalar string, list,
map

Constrains the property or parameter to a value to a minimum length.

max_length scalar string, list,
map

Constrains the property or parameter to a value to a maximum length.

pattern regex string Constrains the property or parameter to a value that is allowed by the
provided regular expression.

Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.

schema string string Constrains the property or parameter to a value that is allowed by the
referenced schema.

5.4.6.1.1 Comparable value types

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string,
version, and scalar-unit types while an entry of “any” refers to any type allowed in the TOSCA.

5.4.6.2 Schema Constraint purpose

TOSCA recognizes that there are external data-interchange formats that are widely used within Cloud
service APIs and messaging (e.g., JSON, XML, etc.).

The ‘schema’ Constraint was added so that, when TOSCA types utilize types from these externally
defined data (interchange) formats on Properties or Parameters, their corresponding Property definitions’
values can be optionally validated by TOSCA Orchestrators using the schema string provided on this
operator.

5.4.6.3 Additional Requirements

• If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted as
being equivalent to having the “equal” operator provided; however, the “equal” operator may be used
for clarity when expressing a constraint clause.

• The “length” operator SHALL be interpreted mean “size” for set types (i.e., list, map, etc.).

• Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with
their associated operations.

• Future drafts of this specification will detail the use of regular expressions and reference an
appropriate standardized grammar.

• The value for the keyname ‘schema’ SHOULD be a string that contains a valid external schema
definition that matches the corresponding Property definitions type.

– When a valid ‘schema’ value is provided on a Property definition, a TOSCA Orchestrator MAY
choose to use the contained schema definition for validation.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 121 of 186

5.4.6.4 Grammar

Constraint clauses have one of the following grammars:

Scalar grammar

<operator>: <scalar_value>

Dual scalar grammar

<operator>: [<scalar_value_1>, <scalar_value_2>]

List grammar

<operator>: [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar

pattern: <regular_expression_value>

Schema grammar

schema: <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• operator: represents a mandatory operator from the specified list shown above in section “Operator
keynames”.

• scalar_value, scalar_value_*: represents a mandatory scalar (or atomic quantity) that can hold only
one value at a time. This will be a value of a primitive type, such as an integer or string that is
allowed by this specification.

• value_*: represents a mandatory value of the operator that is not limited to scalars.

• reqular_expression_value: represents a regular expression (string) value.

• schema_definition: represents a schema definition as a string.

5.4.6.5 Examples

Constraint clauses used on parameter or property definitions:

equal

equal: 2

greater_than

greater_than: 1

greater_or_equal

greater_or_equal: 2

less_than

less_than: 5

less_or_equal

less_or_equal: 4

in_range

in_range: [1, 4]

valid_values

valid_values: [1, 2, 4]

specific length (in characters)

length: 32

min_length (in characters)

min_length: 8

max_length (in characters)

max_length: 64

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 122 of 186

schema

schema: <

 {

 # Some schema syntax that matches corresponding property or parameter.

 }

5.4.7 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties are
used by template authors to provide input values to TOSCA entities which indicate their “desired state”
when they are instantiated. The value of a property can be retrieved using the get_property function
within TOSCA Service Templates.

5.4.7.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by an attribute.
TOSCA orchestrators automatically create an attribute for every declared property (with the same
symbolic name) to allow introspection of both the desired state (property) and actual state (attribute). If an
attribute is reflected from a property, its initial value is the value of the reflected property.

5.4.7.2 Keynames

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Mandatory Type Description

type yes string The mandatory data type for the property.

description no string The optional description for the property.

required No (default:
true)

boolean An optional key that declares a property as required
(true) or not (false). Defaults to true.

default no <must
match
property
type>

An optional key that may provide a value to be used
as a default if not provided by another means.
The default keyname SHALL NOT be defined when
property is not required (i.e. the value of the required
keyname is false).

value no <see
below>

An optional key that may provide a fixed value to be
used. A property that has a fixed value provided (as
part of a definition or refinement) cannot be subject
to a further refinement or assignment. That is, a fixed
value cannot be changed.

status No (default:
supported)

string The optional status of the property relative to the
specification or implementation. See table below for
valid values. Defaults to supported.

constraints no list of
constraint
clauses

The optional list of sequenced constraint clauses for
the property.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 123 of 186

Keyname Mandatory Type Description

key_schema conditional
(default:
string)

schema
definition

The schema definition for the keys used to identify
entries in properties of type TOSCA map (or types that
derive from map). If not specified, the key_schema
defaults to string. For properties of type other than
map, the key_schema is not allowed.

entry_schema conditional schema
definition

The schema definition for the entries in properties of
TOSCA collection types such as list, map, or types that
derive from list or map) If the property type is a
collection type, the entry schema is mandatory. For
other types, the entry_schema is not allowed.

external-
schema

no string The optional key that contains a schema definition
that TOSCA Orchestrators MAY use for validation
when the “type” key’s value indicates an External
schema (e.g., “json”).
See section “External schema” below for further
explanation and usage.

metadata no map of
string

Defines a section used to declare additional metadata
information.

5.4.7.3 Status values

The following property status values are supported:

Value Description

supported Indicates the property is supported. This is the default value for all property definitions.

unsupported Indicates the property is not supported.

experimental Indicates the property is experimental and has no official standing.

deprecated Indicates the property has been deprecated by a new specification version.

5.4.7.4 Grammar

Property definitions have the following grammar:

<property_name>:

 type: <property_type>

 description: <property_description>

 required: <property_required>

 default: <default_value>

 value: <property_value> | { <property_value_expression> }

 status: <status_value>

 constraints:

 - <property_constraints>

 key_schema: <key_schema_definition>

 entry_schema: <entry_schema_definition>

 metadata:

 <metadata_map>

The following single-line grammar is supported when only a fixed value or fixed value expression needs
to be provided to a property:

<property_name>: <property_value> | { <property_value_expression> }

This single-line grammar is equivalent to the following:

<property_name>:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 124 of 186

 value: <property_value> | { <property_value_expression> }

Note that the short form can be used only during a refinement (i.e. the property has been previously
defined).

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• property_name: represents the mandatory symbolic name of the property as a string.

• property_description: represents the optional description of the property.

• property_type: represents the mandatory data type of the property.

• property_required: represents an optional boolean value (true or false) indicating whether or not the
property is required. If this keyname is not present on a property definition, then the property SHALL
be considered required (i.e., true) by default.

• default_value: contains a type-compatible value that is used as a default value if a value is not
provided by another means (via the fixed_value definition or via property assignment);

• the default_value shall not be defined for properties that are not required (i.e. property_required is
“false”) as they will stay undefined.

• <property_value> | { <property_value_expression> }: contains a type-compatible value or value
expression that may be defined during property definition or refinement to set and fix the value
definition of the property

• note that a value definition cannot be changed; once defined, the property cannot be further
refined or assigned. Thus, value definitions should be avoided in data_type definitions.

• status_value: a string that contains a keyword that indicates the status of the property relative to the
specification or implementation.

• property_constraints: represents the optional list of one or more sequenced constraint clauses on the
property definition.

• key_schema_definition: if the property_type is map, represents the optional schema definition for the
keys used to identify entries in that map.

• entry_schema_definition: if the property_type is map or list, represents the mandatory schema
definition for the entries in that map or list.

• metadata_map: represents the optional map of string.

5.4.7.5 Refinement rules

A property definition within data, capability, node, relationship, group, policy, and artifact types (including
capability definitions in node types) matching the name of a property in the derived entity type uses the
following refinement rules to combine the two property definitions together:

• type: must be derived from (or the same as) the type in the property definition in the parent entity type
definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition.

• required: if defined to “false” in the property definition parent entity type it may be redefined to “true”;
note that if undefined it is automatically considered as being defined to “true”.

• default: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition (note that the definition of a default value is only allowed if the
required keyname is (re)defined as “true”).

• value: if undefined in the property definition in the parent entity type, it may be defined to any type-
compatible value; once defined, the property cannot be further refined or assigned.

• status: a new definition is unrestricted and will overwrite the one inherited from the property definition
in the parent entity type definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 125 of 186

• constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the property definition in the parent entity type but are considered in addition to them.

• key_schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

• entry_schema: if defined in the property definition in the parent entity type it may be refined according
to schema refinement rules.

• metadata: a new definition is unrestricted and will overwrite the one inherited from the property
definition in the parent entity type definition.

5.4.7.6 Additional Requirements

• Implementations of TOSCA SHALL automatically reflect (i.e., make available) any property defined
on an entity as an attribute of the entity with the same name as the property.

• A property SHALL be considered required by default (i.e., as if the required keyname on the definition
is set to true) unless the definition’s required keyname is explicitly set to false.

• The value provided on a property definition’s default keyname SHALL be type compatible with the
type declared on the definition’s type keyname.

• Constraints of a property definition SHALL be type-compatible with the type defined for that definition.

• If a key_schema or entry_schema keyname is provided, its value (string) MUST represent a valid
schema definition that matches the property type (i.e. the property type as defined by the type
keyword must be the same as or derived originally from map (for key_schema) or map or list (for
entry_schema).

• TOSCA Orchestrators MAY choose to validate the value of the ‘schema’ keyname in accordance with
the corresponding schema specification for any recognized external types.

5.4.7.7 Examples

The following represents an example of a property definition with constraints:

properties:

 num_cpus:

 type: integer

 description: Number of CPUs requested for a software node instance.

 default: 1

 required: true

 constraints:

 - valid_values: [1, 2, 4, 8]

The following shows an example of a property refinement. Consider the definition of an Endpoint
capability type:

tosca.capabilities.Endpoint:

 derived_from: tosca.capabilities.Root

 properties:

 protocol:

 type: string

 required: true

 default: tcp

 port:

 type: PortDef

 required: false

 secure:

 type: boolean

 required: false

 default: false

 # Other property definitions omitted for brevity

The Endpoint.Admin capability type refines the secure property of the Endpoint capability type from which
it derives by forcing its value to always be true:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 126 of 186

tosca.capabilities.Endpoint.Admin:

 derived_from: tosca.capabilities.Endpoint

 # Change Endpoint secure indicator to true from its default of false

 properties:

 secure: true

5.4.8 Property assignment

This section defines the grammar for assigning values to properties within TOSCA templates.

5.4.8.1 Keynames

The TOSCA property assignment has no keynames.

5.4.8.2 Grammar

Property assignments have the following grammar:

5.4.8.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<property_name>: <property_value> | { <property_value_expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• property_name: represents the name of a property that will be used to select a property definition with
the same name within on a TOSCA entity (e.g., Node Template, Relationship Template, etc.) which is
declared in its declared type (e.g., a Node Type, Node Template, Capability Type, etc.).

• property_value, property_value_expression: represent the type-compatible value to assign to the
property. Property values may be provided as the result from the evaluation of an expression or a
function.

5.4.8.3 Additional Requirements

• Properties that have a (fixed) value defined during their definition or during a subsequent refinement
may not be assigned (as their value is already set).

• If a required property has no value defined or assigned, its default value is assigned

• A non-required property that is not assigned it stays undefined, thus the default keyname is irrelevant
for a non-required property.

5.4.9 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the “actual
state” of some property of a TOSCA entity after it has been deployed and instantiated (as set by the
TOSCA orchestrator). Attribute values can be retrieved via the get_attribute function from the instance
model and used as values to other entities within TOSCA Service Templates.

5.4.9.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by an attribute.
TOSCA orchestrators automatically create an attribute for every declared property (with the same
symbolic name) to allow introspection of both the desired state (property) and actual state (attribute). If an
attribute is reflected from a property, its initial value is the value of the reflected property.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 127 of 186

5.4.9.2 Keynames

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Mandatory Type Description

type yes string The mandatory data type for the attribute.

description no string The optional description for the attribute.

default no <any> An optional key that may provide a value to be
used as a default if not provided by another
means.

This value SHALL be type compatible with the
type declared by the attribute definition’s type
keyname.

status no string The optional status of the attribute relative to
the specification or implementation. See
supported status values . Defaults to
supported.

constraints no list of
constraint
clauses

The optional list of sequenced constraint
clauses for the attribute.

key_schema conditional
(default:
string)

schema
definition

The schema definition for the keys used to
identify entries in attributes of type TOSCA
map (or types that derive from map). If not
specified, the key_schema defaults to string.
For attributes of type other than map, the
key_schema is not allowed.

entry_schema conditional schema
definition

The schema definition for the entries in
attributes of TOSCA collection types such as
list, map, or types that derive from list or map)
If the attribute type is a collection type, the
entry schema is mandatory. For other types,
the entry_schema is not allowed.

metadata no map of
string

Defines a section used to declare additional
metadata information.

5.4.9.3 Grammar

Attribute definitions have the following grammar:

attributes:

 <attribute_name>:

 type: <attribute_type>

 description: <attribute_description>

 default: <default_value>

 status: <status_value>

 constraints:

 - <attribute_constraints>

 key_schema: <key_schema_definition>

 entry_schema: <entry_schema_definition>

 metadata:

 <metadata_map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• attribute_name: represents the mandatory symbolic name of the attribute as a string.

• attribute_type: represents the mandatory data type of the attribute.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 128 of 186

• attribute_description: represents the optional description of the attribute.

• default_value: contains a type-compatible value that may be used as a default if not provided by
another means.

• status_value: contains a value indicating the attribute’s status relative to the specification version
(e.g., supported, deprecated, etc.); supported status values for this keyname are defined in the
property definition section.

• attribute_constraints: represents the optional list of one or more sequenced constraint clauses in the
attribute definition.

• key_schema_definition: if the attribute_type is map, represents the optional schema definition for the
keys used to identify entries in that map.

• entry_schema_definition: if the attribute_type is map or list, represents the mandatory schema
definition for the entries in that map or list.

• metadata_map: represents the optional map of string.

5.4.9.4 Refinement rules

An attribute definition within data, capability, node, relationship, and group types (including capability
definitions in node types) uses the following refinement rules when the containing entity type is derived:

• type: must be derived from (or the same as) the type in the attribute definition in the parent entity type
definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the attribute
definition in the parent entity type definition.

• default: a new definition is unrestricted and will overwrite the one inherited from the attribute definition
in the parent entity type definition.

• status: a new definition is unrestricted and will overwrite the one inherited from the attribute definition
in the parent entity type definition.

• constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the attribute definition in the parent entity type but are considered in addition to them.

• key_schema: if defined in the attribute definition in the parent entity type it may be refined according
to schema refinement rules.

• entry_schema: if defined in the attribute definition in the parent entity type it may be refined according
to schema refinement rules.

• metadata: a new definition is unrestricted and will overwrite the one inherited from the attribute
definition in the parent entity type definition

5.4.9.5 Additional Requirements

• In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type, Relationship Type,
etc.), implementations of TOSCA MUST automatically reflect (i.e., make available) any property
defined on an entity as an attribute of the entity with the same name as the property.

• Values for the default keyname MUST be derived or calculated from other attribute or operation
output values (that reflect the actual state of the instance of the corresponding resource) and not
hard-coded or derived from a property settings or inputs (i.e., desired state).

5.4.9.6 Notes

• Attribute definitions are very similar to Property definitions; however, properties of entities reflect an
input that carries the template author’s requested or desired value (i.e., desired state) which the
orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the actual value
(i.e., actual state) that provides the actual instantiated value.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 129 of 186

• For example, a property can be used to request the IP address of a node using a property
(setting); however, the actual IP address after the node is instantiated may by different and made
available by an attribute.

5.4.9.7 Example

The following represents a mandatory attribute definition:

actual_cpus:

 type: integer

 description: Actual number of CPUs allocated to the node instance.

5.4.10 Attribute assignment

This section defines the grammar for assigning values to attributes within TOSCA templates.

5.4.10.1 Keynames

The TOSCA attribute assignment has no keynames.

5.4.10.2 Grammar

Attribute assignments have the following grammar:

5.4.10.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<attribute_name>: <attribute_value> | { <attribute_value_expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• attribute_name: represents the name of an attribute that will be used to select an attribute definition
with the same name within on a TOSCA entity (e.g., Node Template, Relationship Template, etc.)
which is declared (or reflected from a Property definition) in its declared type (e.g., a Node Type,
Node Template, Capability Type, etc.).

• attribute_value, attribute_value_expresssion: represent the type-compatible value to assign to the
attribute. Attribute values may be provided as the result from the evaluation of an expression or a
function.

5.4.10.3 Additional requirements

• Attributes that are the target of a parameter mapping assignment cannot also be assigned a value
using an attribute assignment.

5.4.11 Parameter definition

A parameter definition defines a named, typed value and related data and may be used to exchange
values between the TOSCA orchestrator and the external world. Such values may be

• inputs and outputs of interface operations and notifications

• inputs and outputs of workflows

• inputs and outputs of service templates

From the perspective of the TOSCA orchestrator such parameters are either “incoming” (i.e. transferring a
value from the external world to the orchestrator) or “outgoing” (transferring a value from the orchestrator
to the external world). Thus:

• outgoing parameters are:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 130 of 186

– template outputs

– internal workflow outputs

– external workflow inputs

– operation inputs

• incoming parameters are:

– template inputs

– internal workflow inputs

– external workflow outputs

– operation outputs

– notification outputs

An “outgoing” parameter definition is essentially the same as a TOSCA property definition, however it
may optionally inherit the data type of the value assigned to it rather than have an explicit data type
defined.

An “incoming” parameter definition may define an attribute mapping of the parameter value to an attribute
of a node. Optionally, it may inherit the data type of the attribute it is mapped to, rather than have an
explicit data type defined for it.

5.4.11.1 Keynames

The TOSCA parameter definition has all the keynames of a TOSCA property definition with the following
additional or changed keynames:

Keyname Mandatory Type Description

type no string The data type of the parameter.

Note: This keyname is mandatory for a TOSCA Property definition but is
not mandatory for a TOSCA Parameter definition.

value no <any> The type-compatible value to assign to the parameter. Parameter values
may be provided as the result from the evaluation of an expression or a
function. May only be defined for outgoing parameters. Mutually
exclusive with the “mapping” keyname.

mapping no attribute
selection
format

A mapping that specifies the node or relationship attribute into which the
returned output value must be stored. May only be defined for incoming
parameters. Mutually exclusive with the “value” keyname.

5.4.11.2 Grammar

Parameter definitions have the following grammar:

<parameter_name>:

 type: <parameter_type>

 description: <parameter_description>

 value: <parameter_value> | { <parameter_value_expression> }

 required: <parameter_required>

 default: <parameter_default_value>

 status: <status_value>

 constraints:

 - <parameter_constraints>

 key_schema: <key_schema_definition>

 entry_schema: <entry_schema_definition>

 mapping: <attribute_selection_form>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 131 of 186

The following single-line grammar is supported when only a fixed value needs to be provided provided to
an outgoing parameter:

<parameter_name>: <parameter_value> | { <parameter_value_expression> }

This single-line grammar is equivalent to the following:

<parameter_name>:

 value: <parameter_value> | { <parameter_value_expression> }

The following single-line grammar is supported when only a parameter to attribute mapping needs to be
provided to an incoming parameter:

<parameter_name>: <attribute_selection_form>

This single-line grammar is equivalent to the following:

<parameter_name>:

 mapping: <attribute_selection_form>

Note that the context of the parameter definition unambiguously determines if the parameter is an
incoming or an outgoing parameter.

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• parameter_name: represents the mandatory symbolic name of the parameter as a string.

• parameter_description: represents the optional description of the parameter.

• parameter_type: represents the optional data type of the parameter. Note, this keyname is
mandatory for a TOSCA Property definition, but is not for a TOSCA Parameter definition.

• parameter_value, parameter_value_expresssion: represent the type-compatible value to assign to the
parameter. Parameter values may be provided as the result from the evaluation of an expression or
a function.

• once the value keyname is defined, the parameter cannot be further refined or assigned.

• the value keyname is relevant only for “outgoing” parameter definitions and SHOULD NOT be
defined in “incoming” parameter definitions.

• parameter_required: represents an optional boolean value (true or false) indicating whether or not the
parameter is required. If this keyname is not present on a parameter definition, then the parameter
SHALL be considered required (i.e., true) by default.

• default_value: contains a type-compatible value that may be used as a default if not provided by other
means.

• the default keyname SHALL NOT be defined for parameters that are not required (i.e.
parameter_required is “false”) as they will stay undefined.

• status_value: a string that contains a keyword that indicates the status of the parameter relative to the
specification or implementation.

• parameter_constraints: represents the optional list of one or more sequenced constraint clauses on
the parameter definition.

• key_schema_definition: if the parameter_type is map, represents the optional schema definition for
the keys used to identify entries in that map. Note that if the key_schema is not defined, the
key_schema defaults to string.

• entry_schema_definition: if the parameter_type is map or list, represents the mandatory schema
definition for the entries in that map or list.

• attribute_selection_form: a list that corresponds to a valid attribute_selection_format; the parameter is
mapped onto an attribute of the containing entity

• the mapping keyname is relevant only for “incoming” parameter definitions and SHOULD NOT be
defined in “outgoing” parameter definitions.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 132 of 186

5.4.11.3 Refinement rules

A parameter definition within interface types, interface definitions in node and relationship types, uses the
following refinement rules when the containing entity type is derived:

• type: must be derived from (or the same as) the type in the parameter definition in the parent entity
type definition.

• description: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

• required: if defined to “false” in the parameter definition parent entity type it may be redefined to
“true”; note that if undefined it is automatically considered as being defined to “true”.

• default: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition (note that the definition of a default value is only allowed if
the required keyname is (re)defined as “true”).

• value: if undefined in the parameter definition in the parent entity type, it may be defined to any type-
compatible value; once defined, the parameter cannot be further refined or assigned

• the value keyname should be defined only for “outgoing” parameters.

• mapping: if undefined in the parameter definition in the parent entity type, it may be defined to any
type-compatible attribute mapping; once defined, the parameter cannot be further refined or mapped

• the mapping keyname should be defined only for “incoming” parameters.

• status: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

• constraints: a new definition is unrestricted; these constraints do not replace the constraints defined in
the parameter definition in the parent entity type but are considered in addition to them.

• key_schema: if defined in the parameter definition in the parent entity type it may be refined
according to schema refinement rules.

• entry_schema: if defined in the parameter definition in the parent entity type it may be refined
according to schema refinement rules.

• metadata: a new definition is unrestricted and will overwrite the one inherited from the parameter
definition in the parent entity type definition.

5.4.11.4 Additional requirements

• A parameter SHALL be considered required by default (i.e., as if the required keyname on the
definition is set to true) unless the definition’s required keyname is explicitly set to false.

• The value provided on a parameter definition’s default keyname SHALL be type compatible with the
type declared on the definition’s type keyname.

• Constraints of a parameter definition SHALL be type-compatible with the type defined for that
definition.

5.4.11.5 Example

The following represents an example of an input parameter definition with constraints:

inputs:

 cpus:

 type: integer

 description: Number of CPUs for the server.

 constraints:

 - valid_values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition:

outputs:

 server_ip:

 description: The private IP address of the provisioned server.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 133 of 186

 value: { get_attribute: [my_server, private_address] }

5.4.12 Parameter value assignment

This section defines the grammar for assigning values to “outgoing” parameters in TOSCA templates.

5.4.12.1 Keynames

The TOSCA parameter value assignment has no keynames.

5.4.12.2 Grammar

Parameter value assignments have the following grammar:

<parameter_name>: <parameter_value> | { <parameter_value_expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• parameter_name: represents the symbolic name of the parameter to assign; note that in some cases,
even parameters that do not have a corresponding definition in the entity type of the entity containing
them may be assigned (see e.g. inputs and outputs in interfaces).

• parameter_value, parameter_value_expression: represent the type-compatible value to assign to the
parameter. Parameter values may be provided as the result from the evaluation of an expression or
a function.

5.4.12.3 Additional requirements

• Parameters that have a (fixed) value defined during their definition or during a subsequent refinement
may not be assigned (as their value is already set).

• If a required parameter has no value defined or assigned, its default value is assigned.

• A non-required parameter that has no value assigned it stays undefined, thus the default keyname is
irrelevant for a non-required parameter.

5.4.13 Parameter mapping assignment

A parameter to attribute mapping defines an “incoming” parameter value (e.g. an output value that is
expected to be returned by an operation implementation) and a mapping that specifies the node or
relationship attribute into which the returned “incoming” parameter value must be stored.

5.4.13.1 Keynames

The TOSCA parameter mapping assignment has no keynames.

5.4.13.2 Grammar

Parameter mapping assignments have the following grammar:

<parameter_name>: <attribute_selection_format>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• parameter_name: represents the symbolic name of the parameter to assign; note that in some cases,
even parameters that do not have a corresponding definition in the entity type of the entity containing
them may be assigned (see e.g. inputs and outputs in interfaces).

• attribute_selection_format: represents a format that is used to select an attribute or a nested attribute
on which to map the parameter value of the incoming parameter referred by parameter_name.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 134 of 186

5.4.13.3 Attribute selection format

The attribute_selection_format is a list of the following format:

[<tosca_traversal_path>, <attribute_name>, <nested_attribute_name_or_index_1>,

..., <nested_attribute_name_or_index_n>]

The various entities in this grammar are defined as follows:

Parameter Mandatory Description

<tosca_traversal_path> yes Using the <tosca_traversal_path> we can traverse the
representation graph to reach the attribute we need to store the
output value into. The specification of the <tosca_traversal_path> is
explicated in section 6.4.2 get_property.

Note that while the <tosca_traversal_path> is very powerful, its
usage should normally be restricted to reach attributes in the local
node ore relationship (i.e. SELF) or in a local capability definition.

<attribute_name> yes The name of the attribute into which the output value must be
stored.

<nested_attribute_name_or_index
_or_key_*>

no Some TOSCA attributes are complex (i.e., composed as nested
structures). These parameters are used to dereference into the
names of these nested structures when needed.
Some attributes represent list or map types. In these cases, an index
or key may be provided to reference a specific entry in the list or
map (identified by the previous parameter).

Note that it is possible for multiple operations to define outputs that map onto the same attribute value.
For example, a create operation could include an output value that sets an attribute to an initial value, and
the subsequence configure operation could then update that same attribute to a new value.

It is also possible that a node template assigns a value to an attribute that has an operation output
mapped to it (including a value that is the result of calling an intrinsic function). Orchestrators could use
the assigned value for the attribute as its initial value. After the operation runs that maps an output value
onto that attribute, the orchestrator must then use the updated value, and the value specified in the node
template will no longer be used.

5.4.13.4 Additional requirements

• Parameters that have a mapping defined during their definition or during a subsequent refinement
may not be assigned (as their mapping is already set).

5.5 Substitution

5.5.1 Substitution mapping

A substitution mapping allows a given topology template to be used as an implementation of abstract
node templates of a specific node type. This allows the consumption of complex systems using a
simplified vision.

5.5.1.1 Keynames

Keyname Mandatory Type Description

node_type yes string The mandatory name of the Node Type the Topology Template is
providing an implementation for.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 135 of 186

Keyname Mandatory Type Description

substitution_filter no node filter The optional filter that further constrains the abstract node
templates for which this topology template can provide an
implementation.

properties no map of property
mappings

The optional map of properties mapping allowing to map
properties of the node_type to inputs of the topology template.

attributes no map of attribute
mappings

The optional map of attribute mappings allowing to map outputs
from the topology template to attributes of the node_type.

capabilities no map of
capability
mappings

The optional map of capabilities mapping.

requirements no map of
requirement
mappings

The optional map of requirements mapping.

interfaces no map of
interfaces
mappings

The optional map of interface mapping allows to map an interface
and operations of the node type to implementations that could be
either workflows or node template interfaces/operations.

5.5.1.2 Grammar

The grammar of the substitution_mapping section is as follows:

node_type: <node_type_name>

substitution_filter : <node_filter>

properties:

 <property_mappings>

capabilities:

 <capability_mappings>

requirements:

 <requirement_mappings>

attributes:

 <attribute_mappings>

interfaces:

 <interface_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• node_type_name: represents the mandatory Node Type name that the Service Template’s topology
is offering an implementation for.

• node_filter: represents the optional node filter that reduces the set of abstract node templates for
which this topology template is an implementation by only substituting for those node templates
whose properties and capabilities satisfy the constraints specified in the node filter.

• properties: represents the <optional> map of properties mappings.

• capability_mappings: represents the <optional> map of capability mappings.

• requirement_mappings: represents the <optional> map of requirement mappings.

• attributes: represents the <optional> map of attributes mappings.

• interfaces: represents the <optional> map of interfaces mappings.

5.5.1.3 Examples

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 136 of 186

5.5.1.4 Additional requirements

• The substitution mapping MUST provide mapping for every property, capability and requirement
defined in the specified <node_type>

5.5.1.5 Notes

• The node_type specified in the substitution mapping SHOULD be abstract (does not provide
implementation for normative operations).

5.5.2 Property mapping

A property mapping allows to map the property of a substituted node type an input of the topology
template.

5.5.2.1 Keynames

The following is the list of recognized keynames for a TOSCA property mapping:

Keyname Mandatory Type Description

mapping no list of strings An array with 1 string element that references an input of the
topology.

value no matching the type
of this property

This deprecated keyname allows to explicitly assigne a value to this
property. This field is mutually exclusive with the mapping keyname.

5.5.2.2 Grammar

The single-line grammar of a property_mapping is as follows:

<property_name>: <property_value> # This use is deprecated

<property_name>: [<input_name>]

The multi-line grammar is as follows :

<property_name>:

 mapping: [< input_name >]

<property_name>:

 value: <property_value> # This use is deprecated

5.5.2.3 Notes

• Single line grammar for a property value assignment is not allowed for properties of type in order to
avoid collision with the mapping single line grammar.

• The property_value mapping grammar has been deprecated. The original intent of the property-to-
constant-value mapping was not to provide a mapping, but rather to present a matching mechanism
to drive selection of the appropriate substituting template when more than one template was available
as a substitution for the abstract node. In that case, a topology template was only a valid candidate
for substitution if the property value in the abstract node template matched the constant value
specified in the property_value mapping for that property. With the introduction of substitution filter
syntax to drive matching, there is no longer a need for the property-to-constant-value mapping
functionality.

• The previous version of the specification allowed direct mappings from properties of the abstract node
template to properties of node templates in the substituting topology template. Support for these
mappings has been deprecated since they would have resulted in unpredictable behavior, for the
following reason. If the substituting template is a valid TOSCA template, then all the (required)

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 137 of 186

properties of all its node templates must have valid property assignments already defined. If the
substitution mappings of the substituting template include direct property-to-property mappings, the
the substituting template ends up with two conflicting property assignments: one defined in the
substituting template itself, and one defined by the substitution mappings. These conflicting
assignments lead to unpredictable behavior.

5.5.2.4 Additional constraints

• When Input mapping it may be referenced by multiple nodes in the topologies with resulting attributes
values that may differ later on in the various nodes. In any situation, the attribute reflecting the
property of the substituted type will remain a constant value set to the one of the input at deployment
time.

5.5.3 Attribute mapping

An attribute mapping allows to map the attribute of a substituted node type an output of the topology
template.

5.5.3.1 Keynames

The following is the list of recognized keynames for a TOSCA attribute mapping:

Keyname Mandatory Type Description

mapping no list of strings An array with 1 string element that references an output of the
topology..

5.5.3.2 Grammar

The single-line grammar of an attribute_mapping is as follows:

<attribute_name>: [<output_name>]

5.5.4 Capability mapping

A capability mapping allows to map the capability of one of the node of the topology template to the
capability of the node type the service template offers an implementation for.

5.5.4.1 Keynames

The following is the list of recognized keynames for a TOSCA capability mapping:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 138 of 186

Keyname Mandatory Type Description

mapping no list of
strings (with
2 members)

A list of strings with 2 members, the first one being the name of a node
template, the second the name of a capability of the specified node
template.

properties no map of
property
assignments

This field is mutually exclusive with the mapping keyname and allows to
provide a capability assignment for the template and specify it’s related
properties.

attributes no map of
attributes
assignments

This field is mutually exclusive with the mapping keyname and allows to
provide a capability assignment for the template and specify it’s related
attributes.

5.5.4.2 Grammar

The single-line grammar of a capability_mapping is as follows:

<capability_name>: [<node_template_name>, <node_template_capability_name>]

The multi-line grammar is as follows :

<capability_name>:

 mapping: [<node_template_name>, <node_template_capability_name>]

 properties:

 <property_name>: <property_value>

 attributes:

 <attribute_name>: <attribute_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• capability_name: represents the name of the capability as it appears in the Node Type definition for
the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key.

• node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

• node_template_capability_name: represents a valid name of a capability definition within the
<node_template_name> declared in this mapping.

• property_name: represents the name of a property of the capability.

• property_value: represents the value to assign to a property of the capability.

• attribute_name: represents the name a an attribute of the capability.

• attribute_value: represents the value to assign to an attribute of the capability.

5.5.5 Requirement mapping

A requirement mapping allows to map the requirement of one of the node of the topology template to the
requirement of the node type the service template offers an implementation for.

5.5.5.1 Keynames

The following is the list of recognized keynames for a TOSCA requirement mapping:

Keyname Mandatory Type Description

mapping no list of strings
(2 members)

A list of strings with 2 elements, the first one being the name of a node
template, the second the name of a requirement of the specified node
template.

properties no List of
property
assignment

This field is mutually exclusive with the mapping keyname and allow to
provide a requirement for the template and specify it’s related
properties.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 139 of 186

Keyname Mandatory Type Description

attributes no List of
attributes
assignment

This field is mutually exclusive with the mapping keyname and allow to
provide a requirement for the template and specify it’s related
attributes.

5.5.5.2 Grammar

The single-line grammar of a requirement_mapping is as follows:

<requirement_name>: [<node_template_name>, <node_template_requirement_name>]

The multi-line grammar is as follows :

<requirement_name>:

 mapping: [<node_template_name>, <node_template_requirement_name>]

 properties:

 <property_name>: <property_value>

 attributes:

 <attribute_name>: <attribute_value>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• requirement_name: represents the name of the requirement as it appears in the Node Type definition
for the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key.

• node_template_name: represents a valid name of a Node Template definition (within the same
topology_template declaration as the substitution_mapping is declared).

• node_template_requirement_name: represents a valid name of a requirement definition within the
<node_template_name> declared in this mapping.

• property_name: represents the name of a property of the requirement.

• property_value: represents the value to assign to a property of the requirement.

• attribute_name: represents the name of an attribute of the requirement.

• attribute_value: represents the value to assign to an attribute of the requirement.

5.5.6 Interface mapping

An interface mapping allows to map a workflow of the topology template to an operation of the node type
the service template offers an implementation for.

5.5.6.1 Grammar

The grammar of an interface_mapping is as follows:

<interface_name>:

 <operation_name>: <workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• interface_name: represents the name of the interface as it appears in the Node Type definition for
the Node Type (name) that is declared as the value for on the substitution_mappings’ “node_type”
key. Or the name of a new management interface to add to the generated type.

• operation_name: represents the name of the operation as it appears in the interface type definition.

• workflow_name: represents the name of a workflow of the template to map to the specified
operation.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 140 of 186

5.5.6.2 Notes

• Declarative workflow generation will be applied by the TOSCA orchestrator after the topology
template have been substituted. Unless one of the normative operation of the standard interface is
mapped through an interface mapping. In that case the declarative workflow generation will consider
the substitution node as any other node calling the create, configure and start mapped workflows as if
they where single operations.

• Operation implementation being TOSCA workflows the TOSCA orchestrator replace the usual
operation_call activity by an inline activity using the specified workflow.

5.6 Groups and Policies

5.6.1 Group Type

A Group Type defines logical grouping types for nodes, typically for different management purposes.
Conceptually, group definitions allow the creation of logical “membership” relationships to nodes in a
service template that are not a part of the application’s explicit requirement dependencies in the topology
template (i.e. those required to actually get the application deployed and running). Instead, such logical
membership allows for the introduction of things such as group management and uniform application of
policies (i.e. requirements that are also not bound to the application itself) to the group’s members. .

5.6.1.1 Keynames

The Group Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Group Type has the following recognized
keynames:

Keyname Mandatory Type Description

properties no map of
property definitions

An optional map of property definitions for the Group
Type.

attributes no map of
attribute definitions

An optional map of attribute definitions for the
Group Type.

members no list of string An optional list of one or more names of Node Types
that are valid (allowed) as members of the Group
Type.

5.6.1.2 Grammar

Group Types have the following grammar:

<group_type_name>:

 derived_from: <parent_group_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <group_description>

 properties:

 <property_definitions>

 attributes:

 <attribute_definitions>

 members: [<list_of_valid_member_types>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 141 of 186

• group_type_name: represents the mandatory symbolic name of the Group Type being declared as a
string.

• parent_group_type_name: represents the name (string) of the Group Type this Group Type definition
derives from (i.e. its “parent” type).

• version_number: represents the optional TOSCA version number for the Group Type.

• group_description: represents the optional description string for the corresponding group_type_name.

• attribute_definitions: represents the optional map of attribute definitions for the Group Type.

• property_definitions: represents the optional map of property definitions for the Group Type.

• list_of_valid_member_types: represents the optional list of TOSCA Node Types that are valid
member types for being added to (i.e. members of) the Group Type; if the members keyname is not
defined then there are no restrictions to the member types;

• note that the members of a group ultimately resolve to nodes, the types here just restrict which
nodes can be defined as members in a group definition.

• A node type is matched if it is the specified type or is derived from the node type

5.6.1.3 Derivation rules

During Group Type derivation the keyname definitions follow these rules:

• properties: existing property definitions may be refined; new property definitions may be added.

• attributes: existing attribute definitions may be refined; new attribute definitions may be added.

• members: if the members keyname is defined in the parent type, each element in this list must either

be in the parent type list or derived from an element in the parent type list; if the members keyname is

not defined in the parent type then no restrictions are applied to the definition.

5.6.1.4 Example

The following represents a Group Type definition:

group_types:

 mycompany.mytypes.groups.placement:

 description: My company’s group type for placing nodes of type Compute

 members: [tosca.nodes.Compute]

5.6.2 Group definition

Collections of Nodes may be defined using a Group. A group definition defines a logical grouping of node
templates, typically for management purposes, but is separate from the application’s topology template.

5.6.2.1 Keynames

The following is the list of recognized keynames for a TOSCA group definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the group type the group
definition is based upon.

description no string The optional description for the group definition.

metadata no map of string Defines a section used to declare additional
metadata information.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 142 of 186

properties no map of
property
assignments

An optional map of property value assignments
for the group definition.

attributes no map of
attribute
assignments

An optional map of attribute value assignments
for the group definition.

members no list of string The optional list of one or more node template
names that are members of this group definition.

5.6.2.2 Grammar

Group definitions have one the following grammars:

<group_name>:

 type: <group_type_name>

 description: <group_description>

 metadata:

 <map of string>

 properties:

 <property_assignments>

 attributes:

 <attribute_assignments>

 members: [<list_of_node_templates>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• group_name: represents the mandatory symbolic name of the group as a string.

• group_type_name: represents the name of the Group Type the definition is based upon.

• group_description: contains an optional description of the group.

• property_assignments: represents the optional map of property assignments for the group definition
that provide values for properties defined in its declared Group Type.

• attribute_assigments: represents the optional map of attribute assignments for the group definition
that provide values for attributes defined in its declared Group Type.

• list_of_node_templates: contains the mandatory list of one or more node template names or group
symbolic names (within the same topology template) that are members of this logical group

• if the members keyname was defined (by specifying a list_of_valid_member_types) in the
group type of this group then the nodes listed here must be compatible (i.e. be of that type or
of type that is derived from) with the node types in the list_of_valid_member_types

5.6.2.3 Example

The following represents a group definition:

groups:

 my_app_placement_group:

 type: tosca.groups.Root

 description: My application’s logical component grouping for placement

 members: [my_web_server, my_sql_database]

5.6.3 Policy Type

A Policy Type defines a type of a policy that affects or governs an application or service’s topology at
some stage of its lifecycle, but is not explicitly part of the topology itself (i.e., it does not prevent the
application or service from being deployed or run if it did not exist).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 143 of 186

5.6.3.1 Keynames

The Policy Type is a TOSCA type entity and has the common keynames listed in Section 5.2.6.2
Common keynames in type definitions. In addition, the Policy Type has the following recognized
keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the Policy Type.

targets

no list of string An optional list of valid Node Types or Group Types the Policy
Type can be applied to.

triggers no map of trigger
definitions

An optional map of policy triggers for the Policy Type.

5.6.3.2 Grammar

Policy Types have the following grammar:

<policy_type_name>:

 derived_from: <parent_policy_type_name>

 version: <version_number>

 metadata:

 <map of string>

 description: <policy_description>

 properties:

 <property_definitions>

 targets: [<list_of_valid_target_types>]

 triggers:

 <trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• policy_type_name: represents the mandatory symbolic name of the Policy Type being declared as a
string.

• parent_policy_type_name: represents the name (string) of the Policy Type this Policy Type definition
derives from (i.e., its “parent” type).

• version_number: represents the optional TOSCA version number for the Policy Type.

• policy_description: represents the optional description string for the corresponding policy_type_name.

• property_definitions: represents the optional map of property definitions for the Policy Type.

• list_of_valid_target_types: represents the optional list of TOSCA types (i.e. Group or Node Types)
that are valid targets for this Policy Type; if the targets keyname is not defined then there are no
restrictions to the targets’ types.

• trigger_definitions: represents the optional map of trigger definitions for the policy.

5.6.3.3 Derivation rules

During Policy Type derivation the keyname definitions follow these rules:

• properties: existing property definitions may be refined; new property definitions may be added.

• targets: if the targets keyname is defined in the parent type, each element in this list must either be in

the parent type list or derived from an element in the parent type list; if the targets keyname is not

defined in the parent type then no restrictions are applied to this definition.

• triggers: existing trigger definitions may not be changed; new trigger definitions may be added.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 144 of 186

5.6.3.4 Example

The following represents a Policy Type definition:

policy_types:

 mycompany.mytypes.policies.placement.Container.Linux:

 description: My company’s placement policy for linux

 derived_from: tosca.policies.Root

5.6.4 Policy definition

A policy definition defines a policy that can be associated with a TOSCA topology or top-level entity
definition (e.g., group definition, node template, etc.).

5.6.4.1 Keynames

The following is the list of recognized keynames for a TOSCA policy definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the policy type the policy
definition is based upon.

description no string The optional description for the policy definition.

metadata no map of string Defines a section used to declare additional
metadata information.

properties no map of
property
assignments

An optional map of property value assignments
for the policy definition.

targets

no list of string An optional list of valid Node Templates or
Groups the Policy can be applied to.

triggers no map of trigger
definitions

An optional map of trigger definitions to invoke
when the policy is applied by an orchestrator
against the associated TOSCA entity. These
triggers apply in addition to the triggers defined
in the policy type.

5.6.4.2 Grammar

Policy definitions have one the following grammars:

<policy_name>:

 type: <policy_type_name>

 description: <policy_description>

 metadata:

 <map of string>

 properties:

 <property_assignments>

 targets: [<list_of_policy_targets>]

 triggers:

 <trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• policy_name: represents the mandatory symbolic name of the policy as a string.

• policy_type_name: represents the name of the policy the definition is based upon.

• policy_description: contains an optional description of the policy.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 145 of 186

• property_assignments: represents the optional map of property assignments for the policy definition
that provide values for properties defined in its declared Policy Type.

• list_of_policy_targets: represents the optional list of names of node templates or groups that the
policy is to applied to.

• if the targets keyname was defined (by specifying a list_of_valid_target_types) in the policy type
of this policy then the targets listed here must be compatible (i.e. be of that type or of type that is
derived from) with the types (of nodes or groups) in the list_of_valid_target_types.

• trigger_definitions: represents the optional map of trigger definitions for the policy; these triggers
apply in addition to the triggers defined in the policy type.

5.6.4.3 Example

The following represents a policy definition:

policies:

 - my_compute_placement_policy:

 type: tosca.policies.placement

 description: Apply my placement policy to my application’s servers

 targets: [my_server_1, my_server_2]

 # remainder of policy definition left off for brevity

5.6.5 Trigger definition

A trigger definition defines the event, condition and action that is used to “trigger” a policy it is associated
with.

5.6.5.1 Keynames

The following is the list of recognized keynames for a TOSCA trigger definition:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 146 of 186

Keyname Mandatory Type Description

description no string The optional description string for the trigger.

event yes string The mandatory name of the event that activates the trigger’s
action. A deprecated form of this keyname is “event_type”.

target_filter no event filter The optional filter used to locate the attribute to monitor for
the trigger’s defined condition. This filter helps locate the
TOSCA entity (i.e., node or relationship) or further a specific
capability of that entity that contains the attribute to monitor.

condition no list of condition
clause definitions

The optional condition which contains a list of condition clause
definitions containing one or multiple attribute constraints
that can be evaluated. For the condition to be fulfilled all the
condition clause definitions must evaluate to true (i.e. a logical
and). Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

action yes list of activity
definition

The list of sequential activities to be performed when the
event is triggered, and the condition is met (i.e. evaluates to
true).

5.6.5.2 Additional keynames for the extended condition notation

Keyname Mandatory Type Description

constraint no condition clause
definition

The optional condition which contains a condition clause definition
specifying one or multiple attribute constraint that can be
monitored. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

period no scalar-unit.time The optional period to use to evaluate for the condition.

evaluations no integer The optional number of evaluations that must be performed over
the period to assert the condition exists.

method no string The optional statistical method name to use to perform the
evaluation of the condition.

5.6.5.3 Grammar

Trigger definitions have the following grammars:

5.6.5.3.1 Short notation

<trigger_name>:

 description: <trigger_description>

 event: <event_name>

 target_filter:

 <event_filter_definition>

 condition: <list_of_condition_clause_definitions>

 action:

 - <list_of_activity_definition>

5.6.5.3.2 Extended notation:

<trigger_name>:

 description: <trigger_description>

 event: <event_name>

 target_filter:

 <event_filter_definition>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 147 of 186

 condition:

 constraint: <list_of_condition_clause_definitions>

 period: <scalar-unit.time> # e.g., 60 sec

 evaluations: <integer> # e.g., 1

 method: <string> # e.g., mean

 action:

 - <list_of_activity_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• trigger_name: represents the mandatory symbolic name of the trigger as a string.

• trigger_description: represents the optional description string for the corresponding trigger_name.

• event_name: represents the mandatory name of an event associated with an interface notification on
the identified resource (node).

• event_filter_definition: represents the optional filter to use to locate the resource (node) or capability
attribute to monitor.

• list_of_condition_clause_definitions: represents one or multiple condition clause definitions containing
one or multiple attribute constraints that can be evaluated;

• for the condition to be fulfilled all the condition clause definitions must evaluate to true (i.e. a
logical and).

• list_of_activity_definition: represents the list of activities that are performed if the event and the
(optional) condition are met. The activity definitions are the same as the ones used in a workflow
step. One could regard these activities as an anonymous workflow that is invoked by this trigger and
is applied to the target(s) of this trigger’s policy.

5.6.6 Event Filter definition

An event filter definition defines criteria for selection of an attribute, for the purpose of monitoring it, within
a TOSCA entity, or one its capabilities.

5.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA event filter definition:

Keyname Mandatory Type Description

node yes string The mandatory name of the node type or template that contains

either the attribute to be monitored or contains the requirement that

references the node that contains the attribute to be monitored.

requirement no string The optional name of the requirement within the filter’s node that

can be used to locate a referenced node that contains an attribute to

monitor.

capability no string The optional name of a capability within the filter’s node or within

the node referenced by its requirement that contains the attribute to

monitor.

5.6.6.2 Grammar

Event filter definitions have following grammar:

node: <node_type_name> | <node_template_name>

requirement: <requirement_name>

capability: <capability_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 148 of 186

• node_type_name: represents the mandatory name of the node type that will be used to select (filter)
the node that contains the attribute to monitor or contains the requirement that references another
node that contains the attribute to monitor.

• node_template_name: represents the mandatory name of the node template that will be used to
select (filter) the node that contains the attribute to monitor or contains the requirement that
references another node that contains the attribute to monitor.

• requirement_name: represents the optional name of the requirement that will be used to select (filter)
a referenced node that contains the attribute to monitor.

• capability_name: represents the optional name of a capability that will be used to select (filter) the
attribute to monitor. If a requirement_name is specified, then the capability_name refers to a
capability of the node that is targeted by the requirement.

5.6.7 Condition clause definition

A workflow condition clause definition is used to specify a condition that can be used within a workflow
precondition or workflow filter.

5.6.7.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Mandatory Type Description

and no list of condition
clause definition

An and clause allows to define sub-filter clause definitions that
must all be evaluated truly so the and clause is considered as
true.

or no list of condition
clause definition

An or clause allows to define sub-filter clause definitions where
one of them must all be evaluated truly so the or clause is
considered as true.

not no list of condition
clause definition

A not clause allows to define sub-filter clause definitions where
one or more of them must be evaluated as false.

assert

(deprecated)

no list of assertion
definition

An assert clause defines a list of assertions that are evaluated on
entity attributes. Assert acts as an and clause, i.e. every defined
constraint clause must be true for the assertion to be true.
Because assert and and (applied to several direct assertion
clauses) are logically identical, the assert keyname has been
deprecated.

Note: It is allowed to add direct assertion definitions directly to the condition clause definition without
using any of the supported keynames. In that case, an and clause is performed for all direct assertion
definition.

5.6.7.2 Grammar

Condition clause definitions have the following grammars:

5.6.7.2.1 And clause

and: <list_of_condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• list_of_condition_clause_definition: represents the list of condition clauses. All condition clauses
MUST be asserted to true so that the and clause is asserted to true.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 149 of 186

5.6.7.2.2 Or clause

or: <list_of_condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• list_of_condition_clause_definition: represents the list of condition clauses. One of the condition
clause have to be asserted to true so that the or clause is asserted to true.

5.6.7.2.3 Not clause

not: <list_of_condition_clause_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• list_of_condition_clause_definition: represents the list of condition clauses. One of the condition
clause have to be asserted to false so that the not clause is asserted to true.

5.6.7.3 Direct assertion definition

<attribute_name>: <list_of_constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• attribute_name: represents the name of an attribute defined on the assertion context entity (node
instance, relationship instance, group instance) and from which value will be evaluated against the
defined constraint clauses.

• list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate the
attribute assertion.

5.6.7.4 Additional Requirement

• Keynames are mutually exclusive, i.e. a filter definition can define only one of the and, or, or not
keynames.

5.6.7.5 Notes

• The TOSCA processor SHOULD perform assertion in the order of the list for every defined condition
clause or direct assertion definition.

5.6.7.6 Example

Following represents a workflow condition clause with a single direct assertion definition:

condition:

 - my_attribute: [{equal: my_value}]

Following represents a workflow condition clause with a direct assertion definition with multiple
constraints:

condition:

 - my_attribute:

 - min_length: 8

 - max_length: 11

Following represents a workflow condition clause with single equals constraints on two different attributes.

condition:

 - my_attribute: [{equal: my_value}]

 - my_other_attribute: [{equal: my_other_value}]

Note that these two direct assertion constraints are logically and-ed. This means that the following is
logically identical to the previous example:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 150 of 186

condition:

 - and:

 - my_attribute: [{equal: my_value}]

 - my_other_attribute: [{equal: my_other_value}]

Following represents a workflow condition clause with an or constraint on two different assertions:

condition:

 - or:

 - my_attribute: [{equal: my_value}]

 - my_other_attribute: [{equal: my_other_value}]

The following shows an example of the not operator. The condition yields TRUE when the attribute
my_attribute1 takes any value other than value1:

condition:

 - not:

 - my_attribute1: [{equal: value1}]}

The following condition yields TRUE when none of the attributes my_attribute1 and my_attribute2 is equal
to value1.

condition:

 - not:

 - and:

 - my_attribute1: [{equal: value1}]

 - my_attribute2: [{equal: value1}]

The following condition is a functional equivalent of the previous example:

condition:

 - or:

 - not:

 - my_attribute1: [{equal: value1}]

 - not:

 - my_attribute2: [{equal: value1}]

Following represents multiple levels of condition clauses with direct assertion definitions to build the
following logic: use http on port 80 or https on port 431:

condition:

 - or:

 - and:

 - protocol: { equal: http }

 - port: { equal: 80 }

 - and:

 - protocol: { equal: https }

 - port: { equal: 431 }

5.6.8 Assertion definition

A workflow assertion is used to specify a single condition on a workflow filter definition. The assertion
allows to assert the value of an attribute based on TOSCA constraints.

5.6.8.1 Keynames

The TOSCA workflow assertion definition has no keynames.

5.6.8.2 Grammar

Workflow assertion definitions have the following grammar:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 151 of 186

<attribute_name>: <list_of_constraint_clauses>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

• attribute_name: represents the name of an attribute defined on the assertion context entity (node
instance, relationship instance, group instance) and from which value will be evaluated against the
defined constraint clauses.

• list_of_constraint_clauses: represents the list of constraint clauses that will be used to validate the
attribute assertion.

5.6.8.3 Example

Following represents a workflow assertion with a single equals constraint:

 my_attribute: [{equal : my_value}]

Following represents a workflow assertion with multiple constraints:

 my_attribute:

 - min_length: 8

 - max_length : 10

5.6.9 Activity definitions

An activity defines an operation to be performed in a TOSCA workflow step or in an action body of a
policy trigger. Activity definitions can be of the following types:

• Delegate workflow activity definition:

• Defines the name of the delegate workflow and optional input assignments. This activity requires
the target to be provided by the orchestrator (no-op node or relationship).

• Set state activity definition:

• Sets the state of a node.

• Call operation activity definition:

• Calls an operation defined on a TOSCA interface of a node, relationship or group. The operation
name uses the <interface_name>.<operation_name> notation. Optionally, assignments for the
operation inputs can also be provided. If provided, they will override for this operation call the
operation inputs assignment in the node template.

• Inline workflow activity definition:

• Inlines another workflow defined in the topology (allowing reusability). The definition includes the
name of a workflow to be inlined and optional workflow input assignments.

5.6.9.1 Delegate workflow activity definition

5.6.9.1.1 Keynames

The following is a list of recognized keynames for a delegate activity definition.

Keyname Mandator
y

Type Description

delegate yes string or empty

(see grammar below)

Defines the name of the delegate workflow and optional
input assignments.

This activity requires the target to be provided by the
orchestrator (no-op node or relationship).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 152 of 186

Keyname Mandator
y

Type Description

workflow no string The name of the delegate workflow. Mandatory in the
extended notation.

inputs no map of parameter
assignments

The optional map of input parameter assignments for the
delegate workflow.

5.6.9.1.2 Grammar

A delegate activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

5.6.9.1.2.1 Short notation

- delegate: <delegate_workflow_name>

5.6.9.1.2.2 Extended notation

- delegate:

 workflow: <delegate_workflow_name>

 inputs:

 <parameter_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• delegate_workflow_name: represents the name of the workflow of the node provided by the TOSCA
orchestrator.

• parameter_assignments: represents the optional map of parameter assignments for passing

parameters as inputs to this workflow delegation.

5.6.9.2 Set state activity definition

Sets the state of the target node.

5.6.9.2.1 Keynames

The following is a list of recognized keynames for a set state activity definition.

Keyname Mandator
y

Type Description

set_state yes string Value of the node state.

5.6.9.2.2 Grammar

A set state activity definition has the following grammar.

- set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• new_node_state: represents the state that will be affected to the node once the activity is performed.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 153 of 186

5.6.9.3 Call operation activity definition

This activity is used to call an operation on the target node. Operation input assignments can be
optionally provided.

5.6.9.3.1 Keynames

The following is a list of recognized keynames for a call operation activity definition.

Keyname Mandator
y

Type Description

call_operation yes string or empty

(see grammar below)

Defines the opration call. The operation name uses the
<interface_name>.<operation_name> notation.

Optionally, assignments for the operation inputs can also be
provided. If provided, they will override for this operation
call the operation inputs assignment in the node template.

operation no string The name of the operation to call, using the
<interface_name>.<operation_name> notation.

Mandatory in the extended notation.

inputs no map of parameter
assignments

The optional map of input parameter assignments for the
called operation. Any provided input assignments will
override the operation input assignment in the target node
template for this operation call.

5.6.9.3.2 Grammar

A call operation activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

5.6.9.3.2.1 Short notation

- call_operation: <operation_name>

5.6.9.3.2.2 Extended notation

- call_operation:

 operation: <operation_name>

 inputs:

 <parameter_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• operation_name: represents the name of the operation that will be called during the workflow
execution. The notation used is <interface_sub_name>.<operation_sub_name>, where
interface_sub_name is the interface name and the operation_sub_name is the name of the operation
within this interface.

• parameter_assignments: represents the optional map of parameter assignments for passing

parameters as inputs to this workflow delegation.

5.6.9.4 Inline workflow activity definition

This activity is used to inline a workflow in the activities sequence. The definition includes the name of the
inlined workflow and optional input assignments.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 154 of 186

5.6.9.4.1 Keynames

The following is a list of recognized keynames for an inline workflow activity definition.

Keyname Mandator
y

Type Description

inline yes string or empty

(see grammar below)

The definition includes the name of a workflow to be inlined
and optional workflow input assignments.

workflow no string The name of the inlined workflow. Mandatory in the
extended notation.

inputs no map of

parameter
assignments

The optional map of input parameter assignments for the
inlined workflow.

5.6.9.4.2 Grammar

An inline workflow activity definition has the following grammar. The short notation can be used if no input
assignments are provided.

5.6.9.4.2.1 Short notation

- inline: <inlined_workflow_name>

5.6.9.4.2.2 Extended notation

- inline:

 workflow: <inlined_workflow_name>

 inputs:

 <parameter_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• inlined_workflow_name: represents the name of the workflow to inline.

• parameter_assignments: represents the optional map of parameter assignments for passing

parameters as inputs to this workflow delegation.

5.6.9.5 Example

The following represents a list of activity definitions (using the short notation):

 - delegate: deploy

 - set_state: started

 - call_operation: tosca.interfaces.node.lifecycle.Standard.start

 - inline: my_workflow

5.7 Workflows

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 155 of 186

5.7.1 Imperative Workflow definition

A workflow definition defines an imperative workflow that is associated with a TOSCA topology. A
workflow definition can either include the steps that make up the workflow, or it can refer to an artifact that
expresses the workflow using an external workflow language.

5.7.1.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow definition:

Keyname Mandatory Type Description

description no string The optional description for the workflow definition.

metadata no map of string Defines a section used to declare additional metadata information.

inputs no map of
parameter
definitions

The optional map of input parameter definitions.

preconditions no list of
precondition
definitions

List of preconditions to be validated before the workflow can be
processed.

steps

no map of step
definitions

An optional map of valid imperative workflow step definitions.

implementation no operation
implementation
definition

The optional definition of an external workflow definition. This
keyname is mutually exclusive with the steps keyname above.

outputs no map of
attribute
mappings

The optional map of attribute mappings that specify workflow
output values and their mappings onto attributes of a node or
relationship defined in the topology.

5.7.1.2 Grammar

Imperative workflow definitions have the following grammar:

<workflow_name>:

 description: <workflow_description>

 metadata:

 <map of string>

 inputs:

 <parameter_definitions>

 preconditions:

 - <workflow_precondition_definition>

 steps:

 <workflow_steps>

 implementation:

 <operation_implementation_definitions>

 outputs:

 <attribute_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• workflow_name:

• workflow_description:

• parameter_definitions:

• workflow_precondition_definition:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 156 of 186

• workflow_steps:

• operation_implementation_definition: represents a full inline definition of an implementation artifact

• attribute_mappings: represents the optional map of attribute_mappings that consists of named output
values returned by operation implementations (i.e. artifacts) and associated mappings that specify the
attribute into which this output value must be stored.

5.7.2 Workflow precondition definition

A workflow condition can be used as a filter or precondition to check if a workflow can be processed or
not based on the state of the instances of a TOSCA topology deployment. When not met, the workflow
will not be triggered.

5.7.2.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow condition definition:

Keyname Mandatory Type Description

target yes string The target of the precondition (this can be a node template
name, or a group name)

target_relationship no string The optional name of a requirement of the target in case the
precondition has to be processed on a relationship rather than a
node or group. Note that this is applicable only if the target is a
node.

condition no list of condition
clause
definitions

A list of workflow condition clause definitions. Assertion between
elements of the condition are evaluated as an AND condition.

5.7.2.2 Grammar

Workflow precondition definitions have the following grammars:

 - target: <target_name>

 target_relationship: <target_requirement_name>

 condition:

 <list_of_condition_clause_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• target_name: represents the name of a node template or group in the topology.

• target_requirement_name: represents the name of a requirement of the node template (in case
target_name refers to a node template.

• list_of_condition_clause_definition: represents the list of condition clauses to be evaluated. The value
of the resulting condition is evaluated as an AND clause between the different elements.

5.7.3 Workflow step definition

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are
connected to other steps in the workflow. They are the building blocks of a declarative workflow.

5.7.3.1 Keynames

The following is the list of recognized keynames for a TOSCA workflow step definition:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 157 of 186

Keyname Mandatory Type Description

target yes string The target of the step (this can be a node template name, a
group name)

target_relationship no string The optional name of a requirement of the target in case the step
refers to a relationship rather than a node or group. Note that
this is applicable only if the target is a node.

operation_host no string The node on which operations should be executed (for TOSCA
call_operation activities).
This element is mandatory only for relationships and groups
target.

If target is a relationship then operation_host is mandatory and
valid_values are SOURCE or TARGET – referring to the
relationship source or target node.

If target is a group then operation_host is optional.
If not specified the operation will be triggered on every node of
the group.
If specified the valid_value is a node_type or the name of a node
template.

filter no list of
constraint
clauses

Filter is a list of constraint clauses that allows to provide a
filtering logic.

activities yes list of activity
definition

The list of sequential activities to be performed in this step.

on_success no list of string The optional list of step names to be performed after this one has
been completed with success (all activities has been correctly
processed).

on_failure no list of string The optional list of step names to be called after this one in case
one of the step activity failed.

5.7.3.2 Grammar

Workflow step definitions have the following grammars:

steps:

 <step_name>

 target: <target_name>

 target_relationship: <target_requirement_name>

 operation_host: <operation_host_name>

 filter:

 - <list_of_condition_clause_definition>
 activities:

 - <list_of_activity_definition>
 on_success:

 - <target_step_name>

 on_failure:

 - <target_step_name>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

• target_name: represents the name of a node template or group in the topology.

• target_requirement_name: represents the name of a requirement of the node template (in case
target_name refers to a node template.

• operation_host: the node on which the operation should be executed

• list_of_condition_clause_definition: represents a list of condition clause definition.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 158 of 186

• list_of_activity_definition: represents a list of activity definition

• target_step_name: represents the name of another step of the workflow.

5.8 Normative values

5.8.1 Node States

As components (i.e. nodes) of TOSCA applications are deployed, instantiated and orchestrated over their
lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) i t is
important define normative values for communicating the states of these components normatively
between orchestration and workflow engines and any managers of these applications.

The following table provides the list of recognized node states for TOSCA that will be set by the
orchestrator to describe a node instance’s state:

Node State

Value Transitional Description

initial no Node is not yet created. Node only exists as a template definition.

creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring yes Node is transitioning from created state to configured state.

configured no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state
is no longer tracked by the instance model.

error no Node is in an error state.

5.8.2 Relationship States

Similar to the Node States described in the previous section, Relationships have state relative to their
(normative) lifecycle operations.

The following table provides the list of recognized relationship states for TOSCA that will be set by the
orchestrator to describe a node instance’s state:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 159 of 186

Node State

Value Transitional Description

initial no Relationship is not yet created. Relationship only exists as a template definition.

5.8.2.1 Notes

• Additional states may be defined in future versions of the TOSCA specification.

5.8.3 Directives

The following directive values are defined for this version of TOSCA :

Directive Description

substitute Marks a node template as abstract and instructs the TOSCA Orchestrator to substitute this
node template with an appropriate substituting template.

substitutable This deprecated directive is synonymous to the substitute directive.

select Marks a node template as abstract and instructs the TOSCA Orchestrator to select a node
instance of this type from its inventory (based on constraints specified in the optional
node_filter in the node template).

selectable This deprecated directive is synonymous to the select directive.

5.8.4 Network Name aliases

The following are recognized values that may be used as aliases to reference types of networks within an
application model without knowing their actual name (or identifier) which may be assigned by the
underlying Cloud platform at runtime.

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which will be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Intranet and not accessible to the public internet.

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which will be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic
to an application or service from the Internet.

5.8.4.1 Usage

These aliases will be used in the tosca.capabilities.Endpoint Capability type (and types derived from it)
within the network_name field for template authors to use to indicate the type of network the Endpoint is
supposed to be assigned an IP address from.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 160 of 186

6 TOSCA functions
Except for the examples, this section is normative and includes functions that are supported for use
within a TOSCA Service Template.

6.1 Reserved Function Keywords

The following keywords MAY be used in some TOSCA function in place of a TOSCA Node or
Relationship Template name. A TOSCA orchestrator will interpret them at the time the function will be
evaluated (e.g. at runtime) as described in the table below. Note that some keywords are only valid in the
context of a certain TOSCA entity as also denoted in the table.

Keyword Valid Contexts Description

SELF Node Template or
Relationship Template

A TOSCA orchestrator will interpret this keyword as the Node or
Relationship Template instance that contains the function at the time the
function is evaluated.

SOURCE Relationship Template
only.

A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the source end of the relationship that contains the
referencing function.

TARGET Relationship Template
only.

A TOSCA orchestrator will interpret this keyword as the Node Template
instance that is at the target end of the relationship that contains the
referencing function.

6.2 Environment Variable Conventions

6.2.1 Reserved Environment Variable Names and Usage

TOSCA orchestrators utilize certain reserved keywords in the execution environments that
implementation artifacts for Node or Relationship Templates operations are executed in. They are used to
provide information to these implementation artifacts such as the results of TOSCA function evaluation or
information about the instance model of the TOSCA application

The following keywords are reserved environment variable names in any TOSCA supported execution
environment:

Keyword Valid Contexts Description

TARGETS Relationship Template
only.

• For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of
Node Template instances in a TOSCA application’s instance
model that are currently target of the context relationship.

• The value of this environment variable will be a comma-separated
list of identifiers of the single target node instances (i.e., the
tosca_id attribute of the node).

TARGET Relationship Template
only.

• For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a target
of the context relationship, and which is being acted upon in the
current operation.

• The value of this environment variable will be the identifier of the
single target node instance (i.e., the tosca_id attribute of the
node).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 161 of 186

Keyword Valid Contexts Description

SOURCES Relationship Template
only.

• For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, is used to supply a list of
Node Template instances in a TOSCA application’s instance
model that are currently source of the context relationship.

• The value of this environment variable will be a comma-separated
list of identifiers of the single source node instances (i.e., the
tosca_id attribute of the node).

SOURCE Relationship Template
only.

• For an implementation artifact that is executed in the context of a
relationship, this keyword, if present, identifies a Node Template
instance in a TOSCA application’s instance model that is a source
of the context relationship, and which is being acted upon in the
current operation.

• The value of this environment variable will be the identifier of the
single source node instance (i.e., the tosca_id attribute of the
node).

For scripts (or implementation artifacts in general) that run in the context of relationship operations, select
properties and attributes of both the relationship itself as well as select properties and attributes of the
source and target node(s) of the relationship can be provided to the environment by declaring respective
operation inputs.

Declared inputs from mapped properties or attributes of the source or target node (selected via the
SOURCE or TARGET keyword) will be provided to the environment as variables having the exact same
name as the inputs. In addition, the same values will be provided for the complete set of source or target
nodes, however prefixed with the ID if the respective nodes. By means of the SOURCES or TARGETS
variables holding the complete set of source or target node IDs, scripts will be able to iterate over
corresponding inputs for each provided ID prefix.

The following example snippet shows an imaginary relationship definition from a load-balancer node to
worker nodes. A script is defined for the add_target operation of the Configure interface of the
relationship, and the ip_address attribute of the target is specified as input to the script:

node_templates:

 load_balancer:

 type: some.vendor.LoadBalancer

 requirements:

 - member:

 relationship: some.vendor.LoadBalancerToMember

 interfaces:

 Configure:

 add_target:

 inputs:

 member_ip: { get_attribute: [TARGET, ip_address] }

 implementation: scripts/configure_members.py

The add_target operation will be invoked, whenever a new target member is being added to the load-
balancer. With the above inputs declaration, a member_ip environment variable that will hold the IP
address of the target being added will be provided to the configure_members.py script. In addition, the IP
addresses of all current load-balancer members will be provided as environment variables with a naming
scheme of <target node ID>_member_ip. This will allow, for example, scripts that always just write the
complete list of load-balancer members into a configuration file to do so instead of updating existing list,
which might be more complicated.

Assuming that the TOSCA application instance includes five load-balancer members, node1 through
node5, where node5 is the current target being added, the following environment variables (plus
potentially more variables) will be provided to the script:

the ID of the current target and the IDs of all targets

TARGET=node5

TARGETS=node1,node2,node3,node4,node5

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 162 of 186

the input for the current target and the inputs of all targets

member_ip=10.0.0.5

node1_member_ip=10.0.0.1

node2_member_ip=10.0.0.2

node3_member_ip=10.0.0.3

node4_member_ip=10.0.0.4

node5_member_ip=10.0.0.5

With code like shown in the snippet below, scripts could then iterate of all provided member_ip inputs:

#!/usr/bin/python

import os

targets = os.environ['TARGETS'].split(',')

for t in targets:

 target_ip = os.environ.get('%s_member_ip' % t)

 # do something with target_ip ...

6.2.2 Prefixed vs. Unprefixed TARGET names

The list target node types assigned to the TARGETS key in an execution environment will have names
prefixed by unique IDs that distinguish different instances of a node in a running model. Future drafts of
this specification will show examples of how these names/IDs will be expressed.

6.2.2.1 Notes

• Target of interest is always un-prefixed. Prefix is the target opaque ID. The IDs can be used to find
the environment variable for the corresponding target. Need an example here.

• If you have one node that contains multiple targets this would also be used (add or remove target
operations would also use this you would get set of all current targets).

6.3 Intrinsic functions

These functions are supported within the TOSCA template for manipulation of template data.

6.3.1 concat

The concat function is used to concatenate two or more string values within a TOSCA service template.

6.3.1.1 Grammar

concat: [<string_value_expressions_*>]

6.3.1.2 Parameters

Parameter Mandatory Type Description

<string_value_expressions_*> yes list of
string or
string value
expressions

A list of one or more strings (or expressions that result in a
string value) which can be concatenated together into a
single string.

6.3.1.3 Examples

outputs:

 description: Concatenate the URL for a server from other template values

 server_url:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 163 of 186

 value: { concat: ['http://',

 get_attribute: [server, public_address],

 ':',

 get_attribute: [server, port]] }

6.3.2 join

The join function is used to join an array of strings into a single string with optional delimiter.

6.3.2.1 Grammar

join: [<list of string_value_expressions_*> [<delimiter>]]

6.3.2.2 Parameters

Parameter Mandatory Type Description

<list of
string_value_expressions_*>

yes list of
string or
string value
expressions

A list of one or more strings (or expressions that result in a
list of string values) which can be joined together into a
single string.

<delimiter> no string An optional delimiter used to join the string in the provided
list.

6.3.2.3 Examples

outputs:

 example1:

 # Result: prefix_1111_suffix

 value: { join: [["prefix", 1111, "suffix"], "_"] }

 example2:

 # Result: 9.12.1.10,9.12.1.20

 value: { join: [{ get_input: my_IPs }, “,”] }

6.3.3 token

The token function is used within a TOSCA service template on a string to parse out (tokenize) substrings
separated by one or more token characters within a larger string.

6.3.3.1 Grammar

token: [<string_with_tokens>, <string_of_token_chars>, <substring_index>]

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 164 of 186

6.3.3.2 Parameters

Parameter Mandatory Type Description

string_with_tokens yes string The composite string that contains one or more substrings
separated by token characters.

string_of_token_chars yes string The string that contains one or more token characters that
separate substrings within the composite string.

substring_index yes integer The integer indicates the index of the substring to return from
the composite string. Note that the first substring is denoted
by using the ‘0’ (zero) integer value.

6.3.3.3 Examples

outputs:

 webserver_port:

 description: the port provided at the end of my server’s endpoint’s IP

address

 value: { token: [get_attribute: [my_server, data_endpoint, ip_address],

 ‘:’,

 1] }

6.4 Property functions

The get_input function is used within a service template to obtain template input parameter values. The
get_property function is used to get property values from property definitions declared in the same service
template (e.g. node or relationship templates).

Note that the get_input and get_property functions may only retrieve the static values of parameter or
property definitions of a TOSCA application as defined in the TOSCA Service Template. The
get_attribute function should be used to retrieve values for attribute definitions (or property definitions
reflected as attribute definitions) from the representation graph of the TOSCA application (as realized by
the TOSCA orchestrator).

6.4.1 get_input

The get_input function is used to retrieve the values of parameters declared within the inputs section of a
TOSCA Service Template.

6.4.1.1 Grammar

get_input: <input_parameter_name>

or

get_input: [<input_parameter_name>, <nested_input_parameter_name_or_index_1>,

..., <nested_input_parameter_name_or_index_n>]

6.4.1.2 Parameters

Parameter Mandatory Type Description

<input_parameter_na
me>

yes string The name of the parameter as defined in the inputs section of
the service template.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 165 of 186

Parameter Mandatory Type Description

<nested_input_paratm
er_name_or_index_*>

no string|
integer

Some TOSCA input parameters are complex (i.e., composed as
nested structures). These parameters are used to dereference
into the names of these nested structures when needed.

Some parameters represent list types. In these cases, an index
may be provided to reference a specific entry in the list (as
identified by the previous parameter) to return.

6.4.1.3 Examples

The following snippet shows an example of the simple get_input grammar:

inputs:

 cpus:

 type: integer

node_templates:

 my_server:

 type: tosca.nodes.Compute

 capabilities:

 host:

 properties:

 num_cpus: { get_input: cpus }

The following template shows an example of the nested get_input grammar. The template expects two
input values, each of which has a complex data type. The get_input function is used to retrieve individual
fields from the complex input data.

data_types:

 NetworkInfo:

 derived_from: tosca.Data.Root

 properties:

 name:

 type: string

 gateway:

 type: string

 RouterInfo:

 derived_from: tosca.Data.Root

 properties:

 ip:

 type: string

 external:

 type: string

topology_template:

 inputs:

 management_network:

 type: NetworkInfo

 router:

 type: RouterInfo

 node_templates:

 Bono_Main:

 type: vRouter.Cisco

 directives: [substitutable]

 properties:

 mgmt_net_name: { get_input: [management_network, name]}

 mgmt_cp_v4_fixed_ip: { get_input: [router, ip]}

 mgmt_cp_gateway_ip: { get_input: [management_network, gateway]}

 mgmt_cp_external_ip: { get_input: [router, external]}

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 166 of 186

 requirements:

 - lan_port:

 node: host_with_net

 capability: virtualBind

 - mgmt_net: mgmt_net

6.4.2 get_property

The get_property function is used to retrieve property values of modelable entities in the representation
graph.

6.4.2.1 Grammar

get_property: [<tosca_traversal_path>, <property_name>,

<nested_property_name_or_index_1>, ..., <nested_property_name_or_index_n>]

6.4.2.2 Parameters

Parameter Mandatory Description

< tosca_traversal_path > yes Using the <tosca_traversal_path> we can traverse the representation graph
to extract information from a certain node or relationship. We start from a
specific node or relationship identified by its symbolic name (or by the SELF
keyword representing the node or relationship containing the definition) and
then we may further traverse the relationships and nodes of the
representation graph (using a variable number of steps) until reaching the
desired node or relationship. In the following subsection the specification of
the <tosca_traversal_path> is explicated.

<property_name> yes The name of the property definition the function will return the value from.

<nested_property_name
_or_index_*>

no Some TOSCA properties are complex (i.e., composed as nested structures).
These parameters are used to dereference into the names of these nested
structures when needed.

Some properties represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as identified by the previous
parameter) to return.

6.4.2.2.1 The simplified TOSCA_PATH definition in BNF format

<tosca_traversal_path> ::= <initial_context>, <node_context> |

<initial_context>, <rel_context>

<initial_context> ::= <node_symbolic_name> |

 <relationship_symbolic_name> |

 SELF

<rel_context> ::= SOURCE, <node_context> |

 TARGET, <node_context> |

 CAPABILITY |

 <empty>

<node_context> ::= RELATIONSHIP, <requirement_name>, <idx_of_out_rel_in_req>, <rel_context> |

 CAPABILITY, <capability_name>, RELATIONSHIP, <idx_of_incoming_rel>, <rel_context> |

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 167 of 186

 CAPABILITY, <capability_name> |

 <empty>

<idx_of_out_rel_in_req> ::= <integer_index> |

 ALL |

 <empty>

< idx_of_incoming_rel > ::= <integer_index> |

 ALL |

 <empty>

The initial context (if we refer to a node or relationship) determines if the next context is a relationship
context or a node context. Then, each <node_context> can further resolve to a <rel_context> and vice
versa, thus building additional traversal steps. In the end we reach either a node context, a relationship
context, or a capability context as presented above.

A <rel_context> can

• further lead to the source node of the current relationship

• further lead to the target node of the current relationship

• end within the target capability of the current relationship

• end within the current relationship via the <empty> resolution

A <node_context> can

• further lead to the relationship with index <idx_of_out_rel_in_req> defined by requirement with

symbolic name <requirement_name> of the current node

• further lead to the relationship with index <idx_of_incoming_rel> that has as target the capability

with symbolic name <capability_name> of the current node

• end within the capability with symbolic name <capability_name> in the current node

• end within the current node via the <empty> resolution

Note that both the indexes can either be a non-negative integer, the keyword ALL, or missing. If it is a
non-negative integer, 0 represents the first index and so on incrementally. If the index is missing, the
semantic meaning is that the first index (index with value 0) is used. If it is the keyword ALL, then we
return the result for all possible indices (further resolved separately) as a list. If the there are multiple ALL
keywords in the definition, then all the results shall be merged into a single list.

6.4.2.3 Note

We further list the changes from the get_property and get_attribute expression from v1.3 to v2.0:

• Added multi-step traversal of the representation graph

• Added the backward traversal from capabilities to incoming relationships

• Added the target capability of a relationship as a possible traversal

• Added the specification of indexes and allowing traversal of multi-count requirements

• Changed the following syntax to work better in multi-step traversal:

o The initial SOURCE, … becomes SELF, SOURCE, …

o The initial TARGET, … becomes SELF, TARGET, …

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 168 of 186

6.4.2.4 Examples

The following example shows how to use the get_property function with an actual Node Template name:

node_templates:

 mysql_database:

 type: tosca.nodes.Database

 properties:

 name: sql_database1

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 inputs:

 wp_db_name: { get_property: [mysql_database, name] }

The following example shows how to use the get_property function traversing from the relationship to its
target node:

relationship_templates:

 my_connection:

 type: ConnectsTo

 interfaces:

 Configure:

 inputs:

 targets_value: { get_property: [SELF, TARGET, value] }

The following example shows how to use the get_property function using the SELF keyword, and
traversing from a wordpress node (via the first relationship of the database_endpoint requirement to the
target capability in the target node) and accessing the port property of that capability:

node_templates:

 mysql_database:

 type: tosca.nodes.Database

 ...

 capabilities:

 database_endpoint:

 properties:

 port: 3306

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 ...

 wp_db_port:

 get_property:

 - SELF

 - RELATIONSHIP

 - database_endpoint

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 169 of 186

 - 0

 - CAPABILITY

 - port

NOTE that in the above example the index 0 is used but can also be omitted with the same semantic
meaning.

The following example shows how to use the get_property function to traverse over two requirement
relationships, from the wordpress node to its database node and further to its DBMS host to get its
admin_credential property:

node_templates:

 mysql_database:

 type: tosca.nodes.Database

 ...

 capabilities:

 database_endpoint:

 properties:

 port: 3306

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 requirements:

 ...

 - database_endpoint: mysql_database

 interfaces:

 Standard:

 create: wordpress_install.sh

 configure:

 implementation: wordpress_configure.sh

 inputs:

 ...

 host_dbms_admin_credential:

 get_property:

 - SELF

 - RELATIONSHIP

 - database_endpoint

 - TARGET

 - RELATIONSHIP

 - host

 - TARGET

 - admin_credential

TODO: An example of second index (i.e. 1) and index ALL !!!

6.5 Attribute functions

These functions (attribute functions) are used within a representation graph an to obtain attribute values
from nodes and relationships that have been created from an application model described in a service
template. The nodes or relationships can be referenced by their name as assigned in the service template
or relative to the context where they are being invoked.

6.5.1 get_attribute

The get_attribute function is used to retrieve the values of attributes of modelable entities in the

representation graph.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 170 of 186

6.5.1.1 Grammar

get_attribute: [<tosca_traversal_path>, <attribute_name>,

<nested_attribute_name_or_index_1>, ..., <nested_attribute_name_or_index_n>]

6.5.1.2 Parameters

Parameter Mandatory Description

<tosca_traversal_path> yes Using the <tosca_traversal_path> we can traverse the representation graph
to extract information from a certain node or relationship. We start from a
specific node or relationship identified by its symbolic name (or by the SELF
keyword representing the node or relationship containing the definition) and
then we may further traverse the relationships and nodes of the
representation graph (using a variable number of steps) until reaching the
desired node or relationship. The specification of the <tosca_traversal_path>
is explicated in the get_property section.

<attribute_name> yes The name of the attribute definition the function will return the value from.

<nested_attribute_name
_or_index_*>

no Some TOSCA attributes are complex (i.e., composed as nested structures).
These parameters are used to dereference into the names of these nested
structures when needed.

Some attributes represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as identified by the previous
parameter) to return.

6.5.1.3 Examples:

The attribute functions are used in the same way as the equivalent Property functions described above.
Please see their examples and replace “get_property” with “get_attribute” function name.

6.6 Navigation functions

• This version of TOSCA does not define any model navigation functions.

6.6.1 get_nodes_of_type

The get_nodes_of_type function can be used to retrieve a list of all known instances of nodes of the

declared Node Type.

6.6.1.1 Grammar

get_nodes_of_type: <node_type_name>

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 171 of 186

6.6.1.2 Parameters

Parameter Mandator
y

Type Description

<node_type_name> yes string The name of a Node Type that a TOSCA orchestrator will use to
search a running application instance in order to return all unique,
node instances of that type.

6.6.1.3 Returns

Return Key Type Description

TARGETS <see
above>

The list of node instances from the current application instance that match
the node_type_name supplied as an input parameter of this function.

6.7 Artifact functions

6.7.1 get_artifact

The get_artifact function is used to retrieve artifact location between modelable entities defined in the
same service template.

6.7.1.1 Grammar

get_artifact: [<modelable_entity_name>, <artifact_name>, <location>, <remove>]

6.7.1.2 Parameters

Parameter Mandatory Type Description

<modelable entity
name> | SELF | SOURCE
| TARGET | HOST

yes string The mandatory name of a modelable entity (e.g., Node Template
or Relationship Template name) as declared in the service
template that contains the property definition the function will
return the value from. See section B.1 for valid keywords.

<artifact_name> yes string The name of the artifact definition the function will return the
value from.

<location> | LOCAL_FILE no string Location value must be either a valid path e.g. ‘/etc/var/my_file’
or ‘LOCAL_FILE’.

If the value is LOCAL_FILE the orchestrator is responsible for
providing a path as the result of the get_artifact call where the
artifact file can be accessed. The orchestrator will also remove the
artifact from this location at the end of the operation.

If the location is a path specified by the user the orchestrator is
responsible to copy the artifact to the specified location. The
orchestrator will return the path as the value of the get_artifact

function and leave the file here after the execution of the
operation.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 172 of 186

Parameter Mandatory Type Description

remove no boolean Boolean flag to override the orchestrator default behavior so it
will remove or not the artifact at the end of the operation
execution.

If not specified the removal will depends of the location e.g.
removes it in case of ‘LOCAL_FILE’ and keeps it in case of a path.

If true the artifact will be removed by the orchestrator at the end
of the operation execution, if false it will not be removed.

6.7.1.3 Examples

The following example uses a snippet of a WordPress [WordPress] web application to show how to use
the get_artifact function with an actual Node Template name:

6.7.1.3.1 Example: Retrieving artifact without specified location

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

 inputs

 wp_zip: { get_artifact: [SELF, zip] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator may provide the wordpress.zip archive as

• a local URL (example: file://home/user/wordpress.zip) or

• a remote one (example: http://cloudrepo:80/files/wordpress.zip) where some orchestrator may indeed
provide some global artifact repository management features.

6.7.1.3.2 Example: Retrieving artifact as a local path

The following example explains how to force the orchestrator to copy the file locally before calling the
operation’s implementation script:

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

 inputs

 wp_zip: { get_artifact: [SELF, zip, LOCAL_FILE] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path
(example: /tmp/wordpress.zip) and will remove it after the operation is completed.

file://///home/user/wordpress.zip
http://cloudrepo/files/wordpress.zip
file://///home/user/wordpress.zip

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 173 of 186

6.7.1.3.3 Example: Retrieving artifact in a specified location

The following example explains how to force the orchestrator to copy the file locally to a specific location
before calling the operation’s implementation script :

node_templates:

 wordpress:

 type: tosca.nodes.WebApplication.WordPress

 ...

 interfaces:

 Standard:

 configure:

 create:

 implementation: wordpress_install.sh

 inputs

 wp_zip: { get_artifact: [SELF, zip, C:/wpdata/wp.zip] }

 artifacts:

 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator must provide the wordpress.zip archive as a local path
(example: C:/wpdata/wp.zip) and will let it after the operation is completed.

6.8 Context-based Entity names (global)

Future versions of this specification will address methods to access entity names based upon the context
in which they are declared or defined.

6.8.1 Goals

• Using the full paths of modelable entity names to qualify context with the future goal of a more robust
get_attribute function: e.g., get_attribute(<context-based-entity-name>, <attribute name>)

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 174 of 186

7 TOSCA Cloud Service Archive (CSAR) format
This section defines the metadata of a cloud service archive as well as its overall structure. Except for the
examples, this section is normative.

7.1 Overall Structure of a CSAR

A CSAR is a zip file where TOSCA definitions along with all accompanying artifacts (e.g. scripts, binaries,
configuration files) can be packaged together. The zip file format shall conform to the Document
Container File format as defined in the ISO/IEC 21320-1 "Document Container File — Part 1: Core"
standard [ISO-IEC-21320-1]. A CSAR zip file MUST contain one of the following:

• A TOSCA.meta metadata file that provides entry information for a TOSCA orchestrator processing the

CSAR file. The TOSCA.meta file may be located either at the root of the archive or inside a TOSCA-
Metadata directory (the directory being at the root of the archive). The CSAR may contain only one

TOSCA.meta file.

• a yaml (.yml or .yaml) file at the root of the archive, the yaml file being a valid tosca definition
template.

The CSAR file MAY contain other directories and files with arbitrary names and contents.

7.2 TOSCA Meta File

A TOSCA meta file consists of name/value pairs. The name-part of a name/value pair is followed by a
colon, followed by a blank, followed by the value-part of the name/value pair. The name MUST NOT
contain a colon. Values that represent binary data MUST be base64 encoded. Values that extend beyond
one line can be spread over multiple lines if each subsequent line starts with at least one space. Such
spaces are then collapsed when the value string is read.

<name>: <value>

Each name/value pair is in a separate line. A list of related name/value pairs, i.e. a list of consecutive
name/value pairs is called a block. Blocks are separated by an empty line. The first block, called block_0,
contains metadata about the CSAR itself and is further defined below. Other blocks may be used to
represent custom generic metadata or metadata pertaining to files in the CSAR. A TOSCA.meta file is only

required to include block_0. The structure of block_0 in the TOSCA meta file is as follows:

CSAR-Version: digit.digit

Created-By: string

Entry-Definitions: string

Other-Definitions: string

The name/value pairs are as follows:

• CSAR-Version: This is the version number of the CSAR specification. It defines the structure of the

CSAR and the format of the TOSCA.meta file. The value MUST be “2.0” for this version of the CSAR

specification.

• Created-By: The person or organization that created the CSAR.

• Entry-Definitions: This references the TOSCA definitions file that SHOULD be used as entry

point for processing the contents of the CSAR (e.g. the main TOSCA service template).

• Other-Definitions: This references an unambiguous set of files containing substitution templates

that can be used to implement nodes defined in the main template (i.e. the file declared in Entry-
Definitions). Thus, all the topology templates defined in files listed under the Other-Definitions
key are to be used only as substitution templates, and not as standalone services. If such a topology
template cannot act as a substitution template, it will be ignored by the orchestrator. The value of the

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 175 of 186

Other-Definitions key is a string containing a list of filenames (relative to the root of the CSAR

archive) delimited by a blank space. If the filenames contain blank spaces, the filename should be
enclosed by double quotation marks (“)

Note that any further TOSCA definitions files required by the definitions specified by Entry-Definitions

or Other-Definitions can be found by a TOSCA orchestrator by processing respective imports

statements. Note also that artifact files (e.g. scripts, binaries, configuration files) used by the TOSCA
definitions and included in the CSAR are fully described and referred via relative path names in artifact
definitions in the respective TOSCA definitions files contained in the CSAR.

7.2.1 Custom keynames in the TOSCA.meta file

Users can populate other blocks than block_0 in the TOSCA.meta file with custom name/value pairs that
follow the entry syntax defined above and have names that are different from the normative keynames
(e.g. CSAR-Version, Created-By, Entry-Definitions, Other-Definitions). These custom name/value pairs
are outside the scope of the TOSCA specification.Nevertheless, future versions of the TOSCA
specification may add definitions of new keynames to be used in the TOSCA.meta file. In case of a

keyname collision (with a custom keyname) the TOSCA specification definitions take precedence.

To minimize such keyname collisions the specification reserves the use of keynames starting with
TOSCA and tosca. It is recommended as a good practice to use a specific prefix (e.g. identifying the
organization, scope, etc.) when using custom keynames.

7.2.2 Example

The following listing represents a valid TOSCA.meta file according to this TOSCA specification.

CSAR-Version: 2.0

Created-By: OASIS TOSCA TC

Entry-Definitions: tosca_elk.yaml

Other-Definitions: definitions/tosca_moose.yaml definitions/tosca_deer.yaml

This TOSCA.meta file indicates its structure (as well as the overall CSAR structure) by means of the CSAR-
Version keyname with value 2.0. The Entry-Definitions keyname points to a TOSCA definitions

YAML file with the name tosca_elk.yaml which is contained in the root of the CSAR file. Additionally, it

specifies that substitution templates can be found in the files tosca_moose.yaml and tosca_deer.yaml

found in the directory called definitions in the root of the CSAR file.

7.3 Archive without TOSCA-Metadata

In case the archive doesn’t contains a TOSCA.meta file the archive is required to contains a single YAML

file at the root of the archive (other templates may exist in sub-directories).

TOSCA processors should recognize this file as being the CSAR Entry-Definitions file. The CSAR-
Version is inferred from the tosca_definitions_version keyname in the Entry-Definitions file. For
tosca_definitions_version: tosca_2_0 and onwards, the corresponding CSAR-version is 2.0 unless further
defined.

Note that in a CSAR without TOSCA-metadata it is not possible to unambiguously include definitions for
substitution templates as we can have only one topology template defined in a yaml file.

7.3.1 Example

The following represents a valid TOSCA template file acting as the CSAR Entry-Definitions file in an
archive without TOSCA-Metadata directory.

tosca_definitions_version: tosca_2_0

metadata:

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 176 of 186

 template_name: my_template

 template_author: OASIS TOSCA TC

 template_version: 1.0

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 177 of 186

8 Security Considerations
(Note: OASIS strongly recommends that Technical Committees consider issues that could affect security
when implementing their specification and document them for implementers and adopters. For some
purposes, you may find it required, e.g. if you apply for IANA registration.

While it may not be immediately obvious how your specification might make systems vulnerable to attack,
most specifications, because they involve communications between systems, message formats, or
system settings, open potential channels for exploit. For example, IETF [RFC3552] lists “eavesdropping,
replay, message insertion, deletion, modification, and man-in-the-middle” as well as potential denial of
service attacks as threats that must be considered and, if appropriate, addressed in IETF RFCs.

In addition to considering and describing foreseeable risks, this section should include guidance on how
implementers and adopters can protect against these risks.

We encourage editors and TC members concerned with this subject to read Guidelines for Writing RFC
Text on Security Considerations, IETF [RFC3552], for more information.)

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 178 of 186

9 Conformance

9.1 Conformance Targets

The implementations subject to conformance are those introduced in Section 11.3 “Implementations”.
They are listed here for convenience:

• TOSCA YAML service template

• TOSCA processor

• TOSCA orchestrator (also called orchestration engine)

• TOSCA generator

• TOSCA archive

9.2 Conformance Clause 1: TOSCA YAML service template

A document conforms to this specification as TOSCA YAML service template if it satisfies all the
statements below:

1. It is valid according to the grammar, rules and requirements defined in section 3 “TOSCA definitions
in YAML”.

2. When using functions defined in section 4 “TOSCA functions”, it is valid according to the grammar
specified for these functions.

3. When using or referring to data types, artifact types, capability types, interface types, node types,
relationship types, group types, policy types defined in section 5 “TOSCA normative type definitions”,
it is valid according to the definitions given in section 5.

9.3 Conformance Clause 2: TOSCA processor

A processor or program conforms to this specification as TOSCA processor if it satisfies all the
statements below:

1. It can parse and recognize the elements of any conforming TOSCA YAML service template, and
generates errors for those documents that fail to conform as TOSCA YAML service template while
clearly intending to.

2. It implements the requirements and semantics associated with the definitions and grammar in section
3 “TOSCA definitions in YAML”, including those listed in the “additional requirements” subsections.

3. It resolves the imports, either explicit or implicit, as described in section 3 “TOSCA definitions in
YAML”.

4. It generates errors as required in error cases described in sections 3.1 (TOSCA Namespace URI and
alias), 3.2 (Parameter and property type) and 3.6 (Type-specific definitions).

5. It normalizes string values as described in section 5.4.9.3 (Additional Requirements)

9.4 Conformance Clause 3: TOSCA orchestrator

A processor or program conforms to this specification as TOSCA orchestrator if it satisfies all the
statements below:

1. It is conforming as a TOSCA Processor as defined in conformance clause 2: TOSCA Processor.
2. It can process all types of artifact described in section 5.3 “Artifact types” according to the rules and

grammars in this section.
3. It can process TOSCA archives as intended in section 6 “TOSCA Cloud Service Archive (CSAR)

format” and other related normative sections.
4. It can understand and process the functions defined in section 4 “TOSCA functions” according to their

rules and semantics.
5. It can understand and process the normative type definitions according to their semantics and

requirements as described in section 5 “TOSCA normative type definitions”.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 179 of 186

6. It can understand and process the networking types and semantics defined in section 7 “TOSCA
Networking”.

7. It generates errors as required in error cases described in sections 2.10 (Using node template
substitution for chaining subsystems), 5.4 (Capabilities Types) and 5.7 (Interface Types).).

9.5 Conformance Clause 4: TOSCA generator

A processor or program conforms to this specification as TOSCA generator if it satisfies at least one of
the statements below:

1. When requested to generate a TOSCA service template, it always produces a conforming TOSCA
service template, as defined in Clause 1: TOSCA YAML service template,

2. When requested to generate a TOSCA archive, it always produces a conforming TOSCA archive, as
defined in Clause 5: TOSCA archive.

9.6 Conformance Clause 5: TOSCA archive

A package artifact conforms to this specification as TOSCA archive if it satisfies all the statements below:

1. It is valid according to the structure and rules defined in section 6 “TOSCA Cloud Service Archive
(CSAR) format”.

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 180 of 186

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:
Adam Souzis (adam@souzis.com)
Alex Vul (alex.vul@intel.com), Intel
Anatoly Katzman (anatoly.katzman@att.com), AT&T
Arturo Martin De Nicolas (arturo.martin-de-nicolas@ericsson.com), Ericsson
Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent
Calin Curescu (calin.curescu@ericsson.com), Ericsson
Chris Lauwers (lauwers@ubicity.com)
Claude Noshpitz (claude.noshpitz@att.com), AT&T
Derek Palma (dpalma@vnomic.com), Vnomic
Dmytro Gassanov (dmytro.gassanov@netcracker.com), NetCracker
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart
Gábor Marton (gabor.marton@nokia.com), Nokia
Gerd Breiter (gbreiter@de.ibm.com), IBM
Hemal Surti (hsurti@cisco.com), Cisco
Ifat Afek (ifat.afek@alcatel-lucent.com), Alcatel-Lucent
Idan Moyal, (idan@gigaspaces.com), Gigaspaces
Jacques Durand (jdurand@us.fujitsu.com), Fujitsu
Jin Qin, (chin.qinjin@huawei.com), Huawei
Jeremy Hess, (jeremy@gigaspaces.com), Gigaspaces

John Crandall, (mailto:jcrandal@brocade.com), Brocade
Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu
Kapil Thangavelu (kapil.thangavelu@canonical.com), Canonical
Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu
Kevin Wilson (kevin.l.wilson@hp.com), HP
Krishna Raman (kraman@redhat.com), Red Hat
Luc Boutier (luc.boutier@fastconnect.fr), FastConnect
Luca Gioppo, (luca.gioppo@csi.it), CSI-Piemonte
Matej Artač, (matej.artac@xlab.si), XLAB
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent
Nate Finch (nate.finch@canonical.com), Canonical
Nikunj Nemani (nnemani@vmware.com), Wmware
Peter Bruun (peter-michael.bruun@hpe.com), Hewlett Packard Enterprise
Priya TG (priya.g@netcracker.com) NetCracker
Richard Probst (richard.probst@sap.com), SAP AG
Sahdev Zala (spzala@us.ibm.com), IBM
Shitao li (lishitao@huawei.com), Huawei
Simeon Monov (sdmonov@us.ibm.com), IBM
Sivan Barzily, (sivan@gigaspaces.com), Gigaspaces
Sridhar Ramaswamy (sramasw@brocade.com), Brocade
Stephane Maes (stephane.maes@hp.com), HP
Steve Baillargeon (steve.baillargeon@ericsson.com), Ericsson
Tal Liron (tliron@redhat.com)
Thinh Nguyenphu (thinh.nguyenphu@nokia.com), Nokia
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Ton Ngo (ton@us.ibm.com), IBM
Travis Tripp (travis.tripp@hp.com), HP
Vahid Hashemian (vahidhashemian@us.ibm.com), IBM
Wayne Witzel (wayne.witzel@canonical.com), Canonical
Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces

mailto:adam@souzis.com
mailto:alex.vul@intel.com
mailto:anatoly.katzman@att.com
mailto:arturo.martin-de-nicolas@ericsson.com
mailto:avi.vachnis@alcatel-lucent.com
mailto:calin.curescu@ericsson.com
mailto:lauwers@ubicity.com)
mailto:claude.noshpitz@att.com
mailto:dpalma@vnomic.com
mailto:dmytro.gassanov@netcracker.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/Frank.Leymann@informatik.uni-stuttgart.de
mailto:gabor.marton@nokia.com
mailto:gbreiter@de.ibm.com
mailto:hsurti@cisco.com
mailto:ifat.afek@alcatel-lucent.com
mailto:idan@gigaspaces.com
mailto:jdurand@us.fujitsu.com
mailto:chin.qinjin@huawei.com
mailto:jeremy@gigaspaces.com
mailto:jcrandal@brocade.com
mailto:juergen.meynert@ts.fujitsu.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kapil.thangavelu@canonical.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:luca.gioppo@csi.it
mailto:matej.artac@xlab.si
mailto:mrutkows@us.ibm.com
mailto:moshe.elisha@alcatel-lucent.com
mailto:nate.finch@canonical.com
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/nnemani@vmware.com
mailto:peter-michael.bruun@hpe.com
mailto:priya.g@netcracker.com)
file:///C:/Users/IBM_ADMIN/Documents/IBM/SWG/Standards/SDOs/OASIS/TOSCA/Interop%20SC/YAML/richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:lishitao@huawei.com
mailto:sdmonov@us.ibm.com
mailto:sivan@gigaspaces.com
mailto:sramasw@brocade.com
mailto:stephane.maes@hp.com
mailto:steve.baillargeon@ericsson.com
mailto:thinh.nguyenphu@nokia.com
mailto:thomas.spatzier@de.ibm.com
mailto:ton@us.ibm.com
mailto:travis.tripp@hp.com
mailto:vahidhashemian@us.ibm.com
mailto:wayne.witzel@canonical.com
mailto:yaronpa@gigaspaces.com

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 181 of 186

Appendix B. Revision History

Revision Date Editor Changes Made

WD01, Rev01 2019-04-01 Chris Lauwers Initial WD01, Revision 01 baseline for TOSCA v2.0

WD01, Rev02 2019-04-22 Chris Lauwers Split of introductory chapters into the Introduction to TOSCA
Version 2.0 document.

WD01, Rev03 2019-05-08 Calin Curescu Incorporate fixes from latest v1.3 specification

WD01, Rev04 2019-05-10 Chris Lauwers Fix syntax of schema constraint examples (Sections 5.3.2 and
5.3.4)

WD01, Rev05 2019-08-30 Chris Lauwers Cleanup formatting. No content changes.

WD01, Rev06 2019-08-30 Chris Lauwers • Remove 3.6.20.3 since it is no longer relevant.

• Separate out new Operation Assignment section 3.8.3 from
the original Operation Definition section 3.6.17

• Separate out new Notification Assignment section 3.8.4 from
the original Notification Definition section 3.6.19

• Separate out new Interface Assignment section 3.8.5 from the
original Interface Definition section 3.6.20

• Update the Interface Type definitions in section 5.8 to show
the (now mandatory) ‘operations’ keyname.

• Remove erroneous interface definition in tosca.groups.Root
type (section 5.10.1)

• Added ‘description’ keyname to Requirement definition
(section 3.7.3)

WD01, Rev07 2019-09-08 Calin Curescu • Added the “value” keyname to property definition (Section
3.6.10 Property Definition),

• Made the difference between outgoing and incoming
parameters in the parameter definition (Section 3.6.14
Parameter definition)

• Added the “mapping” keyname to the parameter definition, for
mapping the incoming parameter to an attribute (Section
3.6.14 Parameter definition)

• Changed the wrong usage of “property definitions” and
“property assignments” instead of “parameter definitions” and
“parameter assignments” throughout the document. For
example, a larger impact can be seen in the definition of the
get_input function (Section 4.4.1 get_input).

• Changed Section “3.6.16 Operation implementation definition”
to include notification implementation definition (Section 3.6.16
Operation implementation definition and notification
implementation definition).

• Deleted Section “3.6.18 Notification implementation definition”
since it was redundant and all relevant information has been
transferred to Section “3.6.16 Operation implementation
definition and notification implementation definition”. The
“Notification definition” section becomes the new Section
3.6.18.

• Added operation assignment rules to the operation
assignment section (Section 3.8.3 Operation Assignment).

• Added notification assignment rules to the notification
assignment section (Section 3.8.4 Notification assignment).

• Added interface assignment rules to the interface assignment
section (Section 3.8.5 Interface assignment).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 182 of 186

• Changed “interface definitions” with “interface assignments” in
the node template specification, given that we have split
interface assignments from interface definitions (Section 3.8.6
Node Template)

• Changed “interface definitions” with “interface assignments” in
the relationship template specification, given that we have split
interface assignments from interface definitions (Section 3.8.7
Relationship Template)

WD01, Rev08 2019-09-30 Chris Lauwers • Fix error in TimeInterval example (Section 5.3.7.3.1)

WD01, Rev09 2020-02-20 Chris Lauwers • Move normative type definitions to the “Intro to TOSCA”
document

• Move non-normative type definitions to the “Intro to TOSCA”
document

• Move “CSAR” specification from the “intro to TOSCA”
document into this document

WD01, Rev10 2020-04-15 Calin Curescu • Reorganized sections into a new layout (starting with the main
concepts):

• 3.5 -> 3.1; 3.10 -> 3.2.1; 3.1 -> 3.2.2.1; 3.2 -> 3.2.2.2; 3.6.8 ->
3.2.3.1; 3.6.6 -> 3.2.3.2; 3.6.1 -> 3.2.4.1; 3.6.2 -> 3.2.4.2;
3.7.1 -> 3.2.5.2; 3.9 -> 3.2.6; 3.7.9 -> 3.3.1; 3.8.6 -> 3.3.2;
3.7.10 -> 3.3.3; 3.8.7 -> 3.3.4; 3.7.7 -> 3.3.5.1; 3.7.2 ->
3.3.5.2; 3.8.1 -> 3.3.5.3; 3.7.8 -> 3.3.5.4; 3.7.3 -> 3.3.5.5;
3.8.2 -> 3.3.5.6; 3.6.5 -> 3.3.5.7; 3.6.4 -> 3.3.5.8; 3.7.5 ->
3.3.6.1; 3.6.19 -> 3.3.6.2; 3.8.5 -> 3.3.6.3; 3.6.17 -> 3.3.6.4;
3.8.3 -> 3.3.6.5; 3.6.18 -> 3.3.6.6; 3.8.4 -> 3.3.6.7; 3.6.16 ->
3.3.6.8; 3.7.4 -> 3.3.7.1; 3.6.7 -> 3.3.7.2; 3.3 -> 3.4.1; 3.7.6 ->
3.4.2; 3.6.9 -> 3.4.3; 3.6.3 -> 3.4.4; 3.6.10 -> 3.4.5; 3.6.11 ->
3.4.6; 3.6.12 -> 3.4.7; 3.6.13 -> 3.4.8; 3.6.14 -> 3.4.9; 3.8.16 -
> 3.5.1; 3.8.11 -> 3.5.2; 3.8.12 -> 3.5.3; 3.8.13 -> 3.5.4; 3.8.14
-> 3.5.5; 3.8.15 -> 3.5.6; 3.7.11 -> 3.6.1; 3.8.8 -> 3.6.2; 3.7.12
-> 3.6.3; 3.8.9 -> 3.6.4; 3.6.21 -> 3.6.5; 3.6.20 -> 3.6.6; 3.6.24
-> 3.6.7; 3.6.23 -> 3.6.8; 3.6.22 -> 3.6.9; 3.8.10 -> 3.7.1;
3.6.25 -> 3.7.2; 3.6.26 -> 3.7.3

WD02, Rev01 2020-04-23 Calin Curescu • Added Section 3.1.2 Modeling definitions and reuse

• Added Section 3.1.3 Goal of the derivation and refinement
rules

• Added Section 3.2.5 Type definitions

• Added Section 3.2.5.1 General derivation and refinement rules

• Reworked and simplified Section 3.2.5.2 as describing
common keynames that apply to all TOSCA entity types.
Added derivation rules for the common keynames in TOSCA
entity types (Section 3.2.5.2.3 Derivation rules).

• Added derivation rules for the following TOSCA entity types:
node, relationship, capability, interface, and data types in their
specific sections. The new sub-sections are named
“Derivation rules”.

• Added refinement rules for entitiy definitions contained in
types undergoing derivations. Refinement rules for the
following entity definitions: capability, requirement, interface,
operation, notification, schema, property, attribute, and
parameter definitions have been added in their specific
sections. The new sub-sections are named “Refinement
rules”.

• Explained that definitions for the properties, attributes and
valid_source_types in a capability definition are refinements of
the definitions in the capability type (Section 3.3.5.2.
Capability definition).

• Changed the occurrences keyname in a capability assignment
from a range of integer to an integer, to correct the wrong

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 183 of 186

specification in TOSCA v1.3 (Section 3.3.5.3. Capability
assignment).

• Added the possibility to have provide a symbolic name of a
Capability definition within a target Node Type that can fulfill
the requirement in the Requirement definition (in addition to
the Capability Type) (Section 3.3.5.5. Requirement definition).

• Added the possibility to provide a node_filter also in the
Requirement definition (this node filter is applied in addition to
the node filter defined in the Requirement assignment)
(Section 3.3.5.5. Requirement definition).

• Explained that the specification supports providing several
requirement assignments with the same symbolic name that
represent subsets of the occurrences specified in the
Requirement definition (Section 3.3.5.6. Requirement
assignment).

• Changed the occurrences keyname in a requirement
assignment from a range of integer to an integer, to correct
the wrong specification in TOSCA v1.3 (Section 3.3.5.6.
Requirement assignment).

• Explained that property definitions may not be added to data
types derived_from TOSCA primitive types (Section 3.4.2
Data Type).

• Added the rule for a map key definition that its type must be
originally derived from string. This is due to fact that in many
YAML/TOSCA parsers it is hard to process keys that are not
strings, and the added benefit of non-string keys is minimal
(Section 3.4.3 Schema definition).

• Explained that the default value is irrelevant for properties and
parameters that are not required (i.e. where the keyname
required is “false”) as they will stay undefined (Section 3.4.5
Property definition and Section 3.4.9 Parameter definition).

• A value definition “fixes” the property, that is it cannot be
further refined (in a type) or even assigned in (in a template)
(Section 3.4.5 Property definition and Section 3.4.6 Property
assignment).

• Added metadata keyname to attribute definitions (Section
3.4.7 Attribute definition).

• Explained that parameter can be of two different kinds:
outgoing parameters and incoming parameters, and this
depends on the context they are defined in, and steers if these
parameters will have a value assigned or will have a mapping
to an attribute assigned (Section 3.4.9 Parameter definition).

• A value or mapping definition “fixes” the parameter, that is it
cannot be further refined (in a type) or even assigned in (in a
template) (Section 3.4.9 Parameter definition and 3.4.10
Parameter assignment).

WD02, Rev02 2020-05-07 • Added derivation rules for the following TOSCA entity types:
artifact, group, and policy types) in their specific sections; the
new sub-sections are named “Derivation rules”.

• Added refinement rules for Artifact definitions (contained in
node types undergoing derivations). The new sub-section is
named “Refinement rules”.

• Added a single-line grammar for defining a value for a
property to simplify the value definition for a property (Section
3.4.5 Property definition).

• Added the constraints keyname to attribute definitions
(Section 3.4.7 Attribute definition).

• Added a single-line grammar for parameter definitions when
only a parameter to attribute mapping needs to be provided to
an incoming parameter (Section 3.4.9 Parameter definition).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 184 of 186

• Added explanation that triggers defined in the policy definition
are applied in addition to the triggers defined in the policy type
(Section 3.6.4 Policy definition).

WD02, Rev03 Chris Lauwers • Incorporate introductory content from the TOSCA v1.0
document with the goal of removing references to the XML
version of the standard and making this a stand-alone
document.

• Explicitly stated that the default keyname SHALL NOT be
defined for properties and parameters that are not required
(i.e. where the keyname required is “false”) as they will stay
undefined (Section 4.4.5 Property definition and Section 4.4.9
Parameter definition).

WD02, Rev04 2020-06-09 Calin Curescu • Eliminated some comments that were addressed already.

• Eliminated the namespace_uri that was already deprecated in
TOSCA v1.3

• Eliminated the credential keyname from the repository
definition (Section 4.2.3.2 Repository definition) since it was
not very useful in the context and also to eliminate the
dependency on an external type simple (Credential – in the
simple profile)

WD02, Rev05 2020-06-18 Calin Curescu • Eliminated the schedule keyname in trigger definitions, it was
not relevant and used a complex type from the simple profile
(Section 4.6.5 Trigger definition).

• Deleted the operation_host keyword from the operation
implementation definition since it was connected to a
hostedOn relationship type, and this is a type feature and not
a grammar feature (Section 4.3.6.8 Operation and notification
implementation definition).

• Eliminated the HOST from the reserved function keywords
since it was connected to a hostedOn relationship type, and
this is a type feature and not a grammar feature (Section 5
TOSCA functions).

• Eliminated some comments that were addressed already.

• Changed the type of description to string in the keyname
tables throughout the specification.

WD02, Rev06 2020-06-20 Chris Lauwers • Update the TOSCA overview diagram to include workflows
and policies (Section 3.1)

• Update the diagram that explains requirements and
capabilities (Section 3.4)

• Update the diagram that explains substitution (Section 3.5)

WD02, Rev07 2020-06-22 Chris Lauwers • Edit the “TOSCA core concepts” section to reflect current
status of TOSCA (Section 3)

WD02, Rev08 2020-06-24 Thinh
Nguyenphu

• Provide additional detail about the required ZIP format and
standards in the CSAR definition (Section 6.1)

WD03, Rev01 2020-07-22 Calin Curescu
Chris Lauwers

• Remove numerous comments that have been resolved since
they were first introduced.

WD03, Rev02 2020-07-26 Chris Lauwers • Mark keywords as “mandatory” rather than “required” (to avoid
confusion with the “required” keyword in property definitions

• Introduce “conditional” as an alternative to “yes” or “no” in the
“mandatory” columns of the grammar definition.

• Remove “Constraints” columns in grammar definitions.

• Clarify that entry_schema is mandatory for collection types.

WD03, Rev03 2020-07-28 Tal Liron • Introduce clear specification of TOSCA built-in types (Sections
4.4.1, 4.4.2, and 4.4.3)

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 185 of 186

WD03, Rev04 2020-08-03 Chris Lauwers • Fix typos

• Minor formatting fixes

WD03, Rev05 2020-08-18 Tal Liron
Chris Lauwers

• Add description of timestamp type

• Move scalar-unit types into the Special Types section (4.4.2)

• Remove multiples of “bytes per second” from scalar-
unit.bitrate to make all scalar units case insensitive

• Remove references to the tosca namespace prefix from the

built-in type definitions.

WD03, Rev06 2020-08-31 Tal Liron
Chris lauwers

• Introduce the notion of “profiles”

• Support “import by profile name”

• Simplify “namespaces”

WD03, Rev07 2020-09-06 Chris Lauwers
Tal Liron

• Remove obsolete prose about namespace URIs (4.2)

• Update the section about “import processing rules” (4.2.3.1)

• Introduce new prose about support for namespaces (4.2.3.2)

WD03, Rev08 2020-09-07 Calin Curescu • Clarify discussion of custom keynames in CSAR (6.2.1)

WD03, Rev09 2020-10-26 Chris Lauwers • Additional discussion of TOSCA Profiles (section 4.2.2)

WD03, Rev10 2020-10-27 Calin Curescu • Clarified throughout the specification that the key_schema
keyname for maps has the default value as “string”, and that
the entry_schema keyname definition is mandatory for lists
and maps (sections 4.4.5 Schema definition, 4.4.7 Property
definition, 4.4.9 Attribute definition, 4.4.11 Parameter
definition, 4.4.4. Data type)

WD04, Rev01 2020-11-19 Chris Lauwers • New OASIS Logo

• Correct broken cross reference (Section 4.3.5.8)

WD04, Rev02 2021-01-25 Chris Lauwers • Incorporate comments provided as part of external review by
Paul Jordan (BT) and Mike Rehder (Amdocs)

WD04, Rev03 2021-05-03 Chris Lauwers • Introduce new Chapter 4 that describes Operational Model.

WD04, Rev04 2021-06-28 Chris Lauwers • Slight reorganization of the Operation Model chapter (Chapter
4)

WD04, Rev05 2022-02-15 Calin Curescu • Modified the capability definition (Section 5.3.5.2) and
assignment (Section 5.3.5.3) removing the occurrences
keyname We also added the scope of relationships to the
capability assignment (via directives).

• Modified the requirement definition (Section 5.3.5.5) and
assignment (Section 5.3.5.6) replacing the occurrences
keyname with the count_range keyname in the requirements
definition, and how the assignment must respect the definition
and how an automated assignment is assumed to exist if no
assignment is specified. The keyname count replaces the
keyname occurrences in the assignment to remove any
confusion between their slightly different semantics. We also
added the scope of relationships to the requirement
assignment (via directives). Finally, we added the optional
keyname for a requirement assignment to designate if the
assignment is optional or not.

• We also added the possibility to specify capacity allocation in
a requirement assignment (Section 5.3.5.6) where the target
capability properties can act as capacity.

• Made the relationship definition conditional, it must be present
either in the requirement definition (Section 5.3.5.5) or in the
requirement assignment (Section 5.3.5.5).

TOSCA-v2.0-csd04 16 June 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 186 of 186

WD04, Rev06 2022-06-08 Calin Curescu • Increased the expressivity of accessing properties and
attributes in the representation graph by improving the
navigation expression in the get_property and
get_attribute functions. The representation graph
traversal is handled via a new definition (tosca path), that
is common to both and is described in section 6.4.2.2.1
The simplified TOSCA_PATH definition in BNF format.

• Added multi-step traversal of the representation graph

• Added the backward traversal from capabilities to
incoming relationships

• Added the target capability of a relationship as a possible
traversal

• Added the specification of indexes and allowing traversal
of multi-count requirements

• Examples for get_property have been corrected and
extended.

• Removed the deprecated get_operation_output function

• In relationship types (section 5.3.3) following keynames
changed/added:
valid_capability_types replaces valid_target_types
valid_target_node_types - new
valid_source_node_types - new

• In capability type (section 5.3.5.1) and definition (section
5.3.5.2) following keynames changed/added:
valid_source_node_types - replaces valid_source_types
valid_relationship_types - new

