
TOSCA Version 2.0
Committee Specification 01
5 December 2024
This Stage

https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.md (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.pdf

Previous Stage

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.md (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.pdf

Latest Stage

https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf

Technical Committee

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chair

Chris Lauwers (lauwers@ubicity.com), Individual Member

Editors

Chris Lauwers (lauwers@ubicity.com), Individual Member
Calin Curescu (calin.curescu@ericsson.com), Ericsson

Related Work

This specification replaces or supersedes:

Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma and
Thomas Spatzier. OASIS Standard. Latest version: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-
v1.0.html.

TOSCA Simple Profile in YAML Version 1.3. Edited by Matt Rutkowski, Chris Lauwers, Claude Noshpitz, and
Calin Curescu. Latest stage: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-
Simple-Profile-YAML-v1.3.html.

This specification is related to:

Introduction to TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. Work in progress.

Abstract

The Topology and Orchestration Specification for Cloud Applications (TOSCA) provides a language for describing
application components and their relationships by means of a service topology, and for specifying the lifecycle

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 1 of 211

https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-csd07.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409
mailto:lauwers@ubicity.com
mailto:lauwers@ubicity.com
mailto:calin.curescu@ericsson.com
http://ericsson.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

management procedures for creation or modification of services using orchestration processes. The combination of
topology and orchestration enables not only the automation of deployment but also the automation of the complete
service lifecycle management. The TOSCA specification promotes a model-driven approach, whereby information
embedded in the model structure (the dependencies, connections, compositions) drives the automated processes.

Status

This document was last revised or approved by the OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) TC on the above date. The level of approval is also listed above. Check the "Latest stage"
location noted above for possible later revisions of this document. Any other numbered Versions and other technical
work produced by the Technical Committee (TC) are listed at https://groups.oasis-open.org/communities/tc-
community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409#technical.

TC members should send comments on this specification to the TC's email list. Any individual may submit comments
to the TC by sending email to Technical-Committee-Comments@oasis-open.org. Please use a Subject line like
"Comment on TOSCA".

This specification is provided under the RF on Limited Terms of the OASIS IPR Policy, the mode chosen when the
Technical Committee was established. For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual
Property Rights section of the TC's web page (https://www.oasis-open.org/committees/tosca/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product
is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display
content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.

Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

Citation Format

When referencing this specification the following citation format should be used:

[TOSCA-v2.0]

TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. 5 December 2024. OASIS Committee Specification
01. https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.md. Latest stage: https://docs.oasis-
open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md

Notices

Copyright © OASIS Open 2024. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only
to refer to the organization and its official outputs.

For complete copyright information please see the full Notices section in Appendix E.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 2 of 211

https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409#technical
mailto:Technical-Committee-Comments@oasis-open.org
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA/v2.0/cs01/TOSCA-v2.0-cs01.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

Table of Contents
1 Introduction

1.1 Changes from Earlier Versions
1.2 Document Conventions

1.2.1 Specification Conventions
1.2.1.1 Code Snippets
1.2.1.2 Placeholders

1.2.2 TOSCA Naming Conventions
1.3 Glossary

1.3.1 Definitions of Terms
1.3.2 Acronyms and Abbreviations

2 TOSCA Overview
2.1 Objectives
2.2 TOSCA Features and Benefits

2.2.1 TOSCA Is Model-Driven
2.2.2 TOSCA Models Are Graphs
2.2.3 TOSCA Promotes Reuse and Modularity
2.2.4 TOSCA Is Domain-Independent

2.3 TOSCA Core Concepts
2.4 Using TOSCA

2.4.1 TOSCA Files
2.4.2 Archive Format for Cloud Applications

3 TOSCA Language Abstractions
3.1 Service Templates, Node Templates, and Relationship Templates
3.2 Requirements and Capabilities
3.3 Decomposition of Node Representations
3.4 Interfaces, Operations, and Artifacts
3.5 Workflows
3.6 Policies

4 TOSCA Operational Model
4.1 TOSCA Functional Architecture
4.2 TOSCA Processor

4.2.1 Parser
4.2.2 Resolver

4.3 Orchestrator
4.4 Changes in the Representation Graph

5 TOSCA Grammar Overview
5.1 TOSCA Modeling Concepts

5.1.1 Type Definitions and Entity Definitions
5.1.2 Templates and Entity Assignments
5.1.3 Type Derivation, Augmentation, and Refinement
5.1.4 TOSCA File Reuse

5.2 Mandatory Keynames
5.3 Common Keynames

5.3.1 metadata

5.3.2 description

6 TOSCA File Definition
6.1 Keynames

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 3 of 211

6.2 TOSCA Definitions Version
6.3 DSL Definitions
6.4 Type Definitions

6.4.1 Common Keynames in Type Definitions
6.4.2 Type Derivation
6.4.3 Types of Types

6.4.3.1 Artifact Types
6.4.3.2 Data Types
6.4.3.3 Capability Types
6.4.3.4 Interface Types
6.4.3.5 Relationship Types
6.4.3.6 Node Types
6.4.3.7 Group Types
6.4.3.8 Policy Types

6.5 Repository Definitions
6.6 Function Definitions
6.7 Profiles

6.7.1 Grammar
6.7.2 TOSCA Simple Profile
6.7.3 Profile Versions

6.8 Imports and Namespaces
6.8.1 Import Definitions
6.8.2 Import Processing Rules

6.8.2.1 Importing Profiles
6.8.2.2 Importing a TOSCA File

6.8.3 Examples
6.8.4 Namespaces

6.9 Service Template Definition
6.9.1 Service Template Grammar
6.9.2 Input Parameters
6.9.3 Node Templates
6.9.4 Relationship Templates
6.9.5 Output Parameters
6.9.6 Workflow Definitions
6.9.7 Group Definitions
6.9.8 Policy Definitions
6.9.9 Substitution Mappings

7 Nodes and Relationships
7.1 Node Type
7.2 Node Template

7.2.1 Node Template Directives
7.3 Relationship Type
7.4 Relationship Template

8 Capabilities and Requirements
8.1 Capability Type
8.2 Capability Definition

8.2.1 Capability Refinement
8.3 Capability Assignment
8.4 Requirement Definition

8.4.1 Requirement Refinement

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 4 of 211

8.5 Requirement Assignment
8.5.1 Supported Keynames
8.5.2 Requirement Assignment Grammar
8.5.4 Requirement Count
8.5.5 Capability Allocation

8.6 Node Filter Definition
9 Properties, Attributes, and Parameters

9.1 TOSCA Built-In Types
9.1.1 Primitive Types

9.1.1.1 string

9.1.1.2 integer

9.1.1.3 float

9.1.1.4 boolean

9.1.1.5 bytes

9.1.1.6 nil

9.1.2 Special Types
9.1.2.1 timestamp

9.1.2.2 scalar

9.1.2.2.2 Examples
9.1.2.3 version

9.1.3 Collection Types
9.1.3.1 list

9.1.3.2 map

9.2 Data Type
9.3 Schema Definition
9.4 Property Definition
9.5 Property Assignment
9.6 Attribute Definition
9.7 Attribute Assignment
9.8 Parameter Definition
9.9 Parameter Value Assignment
9.10 Parameter Mapping Assignment
9.11 Validation Clause

10 TOSCA Functions
10.1 Function Syntax
10.2 TOSCA Built-In Functions

10.2.1 Representation Graph Query Functions
10.2.1.1 $get_input

10.2.1.2 $get_property

10.2.1.3 $get_attribute

10.2.1.4 $get_artifact

10.2.1.5 $value

10.2.1.6 $node_index

10.2.1.7 $relationship_index

10.2.1.8 $available_allocation

10.2.2 Boolean Functions
10.2.2.1 Boolean Logic Functions

10.2.2.1.1 $and

10.2.2.1.2 $or

10.2.2.1.3 $not

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 5 of 211

10.2.2.1.4 $xor

10.2.2.2 Comparison Functions
10.2.2.2.1 $equal

10.2.2.2.2 $greater_than

10.2.2.2.3 $greater_or_equal

10.2.2.2.4 $less_than

10.2.2.2.5 $less_or_equal

10.2.2.2.6 $valid_values

10.2.2.2.7 $matches

10.2.2.3 Boolean List, Map and String Functions
10.2.2.3.1 $has_suffix

10.2.2.3.2 $has_prefix

10.2.2.3.3 $contains

10.2.2.3.4 $has_entry

10.2.2.3.5 $has_key

10.2.2.3.6 $has_all_entries

10.2.2.3.7 $has_all_keys

10.2.2.3.8 $has_any_entry

10.2.2.3.9 $has_any_key

10.2.3 String, List, and Map Functions
10.2.3.1 $length

10.2.3.2 $concat

10.2.3.3 $join

10.2.3.4 $token

10.2.4 Set Functions
10.2.4.1 $union

10.2.4.2 $intersection

10.2.5 Arithmetic Functions
10.2.5.1 $sum

10.2.5.2 $difference

10.2.5.3 $product

10.2.5.4 $quotient

10.2.5.5 $remainder

10.2.5.6 $round

10.2.5.7 $floor

10.2.5.8 $ceil

10.3 TOSCA Path
10.4 Function Definitions

11 Interfaces, Operations, and Notifications
11.1 Interface Type
11.2 Interface Definition
11.3 Interface Assignment
11.4 Operation Definition
11.5 Operation Assignment
11.6 Notification Definition
11.7 Notification Assignment
11.8 Operation and Notification Implementations

12 Artifacts
12.1 Artifact Type
12.2 Artifact Definition

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 6 of 211

13 Workflows
13.1 Declarative Workflows
13.2 Imperative Workflows

13.2.1 Workflow Precondition Definition
13.2.2 Workflow Step Definition
13.2.3 Activity Definition

13.2.3.1 Delegate Workflow Activity Definition
13.2.3.2 Set State Activity Definition
13.2.3.3 Call Operation Activity Definition
13.2.3.4 Inline Workflow Activity Definition

14 Creating Multiple Representations from Templates
14.1 Specifying Number of Node Representations
14.2 Node-Specific Input Values
14.3 Cardinality of Relationships

14.3.1 Many-to-One Relationships
14.3.2 One-to-Many Relationships
14.3.3 Full Mesh
14.3.4 Matched Pairs
14.3.5 Random Pairs
14.3.6 Many-to-Many Relationships

15 Substitution
15.1 Substitution Mapping
15.2 Property Mapping
15.3 Attribute Mapping
15.4 Capability Mapping
15.5 Requirement Mapping

15.5.1 Mapping Multiple Requirements with the Same Name
15.5.2 Mapping a Requirement Multiple Times
15.5.3 Requirement Mapping and Selectable Nodes
15.5.4 Requirement Mapping Rules
15.5.5 Handling UNBOUNDED Requirement Count Ranges

15.6 Interface Mapping
16 Groups and Policies

16.1 Group Type
16.2 Group Definition
16.3 Policy Type
16.4 Policy Definition
16.5 Trigger Definition

17 Cloud Service Archive (CSAR) Format
17.1 Overall Structure of a CSAR

17.1.1 CSAR Archiving Formats
17.1.1.1 Tarballs
17.1.1.2 Zip Files

17.2 TOSCA.meta File
17.2.1 Block 0 Keynames in the TOSCA.meta File
17.2.2 Custom Keynames in the TOSCA.meta File

17.3 CSAR Without a TOSCA.meta File
18 Conformance

18.1 Conformance Targets
18.2 Conformance Clause 1: TOSCA File

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 7 of 211

18.3 Conformance Clause 2: TOSCA Processor
18.4 Conformance Clause 3: TOSCA Orchestrator
18.5 Conformance Clause 4: TOSCA Generator
18.6 Conformance Clause 5: TOSCA Archive

Appendix A. References
A.1 Normative References
A.2 Informative References

Appendix B. Safety, Security and Privacy Considerations
Appendix C. Acknowledgments

C.1 Special Thanks
C.2 Participants

Appendix D. Revision History
Appendix E. Notices

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 8 of 211

1 Introduction
The Topology and Orchestration Specification for Cloud Applications (TOSCA) provides a language for describing
components and their relationships by means of a service topology, and for specifying the lifecycle management
procedures for creation or modification of services using orchestration processes. The combination of topology and
orchestration enables not only the automation of deployment but also the automation of the complete service
lifecycle management. The TOSCA specification promotes a model-driven approach, whereby information embedded
in the model structure (the dependencies, connections, compositions) drives the automated processes.

The content in this section is non-normative.

1.1 Changes from Earlier Versions

This version of the specification includes significant changes from TOSCA 1.3. In particular:

1. TOSCA v2.0 removes the Simple Profile type definitions from the standard. These type definitions are now
managed as an open source project in the TOSCA Discussion github repository.

2. Rather than bundling Profiles with the TOSCA standard, TOSCA v2.0 provides support for user-defined
domain-specific profiles as follows:

It allows collections of type definitions to be bundled together into named profiles.

It supports importing profiles using their profile name.

3. TOSCA v2.0 formalizes support for in-life operation of a running service.

It formalizes the role of a representation model and clarifies how to create representation models from
service templates.

It documents how to create multiple node representations from the same node template and multiple
relationships from the same requirement assignment.

It defines an operational model that provides guidance for updating and/or upgrading a running service
and for responding to notifications about state changes or errors.

4. TOSCA v2.0 introduces a new TOSCA Path syntax that allows a defined traversal of an arbitrary graph of
nodes and relationships to an attribute or property.

5. TOSCA v2.0 significantly enhances support for functions. It formalizes function syntax, it extends the set of
built-in functions, and it introduces support for user-defined custom functions.

6. TOSCA v2.0 harmonizes constraint syntax, filter syntax, and condition syntax using Boolean functions.

7. TOSCA v2.0 addresses shortcomings of the v1.3 substitution mapping grammar.

8. TOSCA v2.0 simplifies and extends the CSAR file format.

9. TOSCA v2.0 includes a broad set of syntax clarifications, including but not limited to:

The service template is renamed TOSCA file and service template is redefined.

Grammar for relationship types, requirement definitions, and requirement assignments has been
extended and clarified.

Short notation for entry_schema and key_schema has been documented

1.2 Document Conventions
1.2.1 Specification Conventions

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 9 of 211

1.2.1.1 Code Snippets

Within this document we use monospace font sections to denote code snippets, primarily for TOSCA (YAML), but
also for other textual file formats (e.g. CSAR meta files). For example:

1.2.1.2 Placeholders

Within this document we use angle brackets (<...>) with snake case names in monospace font to denote specification
placeholders: values that must be provided by service template and profile authors. These are used both in the
explanatory language of the specification as well as in the TOSCA (YAML) code snippets.

We use snake case in order to avoid spaces that could introduce rendering problems due to malformed code parsing.

The names in the angle brackets are a brief description of the value and sometimes also hint at the type of value
when appropriate and helpful. Examples: <relationship_template_name>, <node_filter_def>, <directives_list>.

Note that if you copy a TOSCA code snippet that includes this notation you must replace the placeholders with your
own content.

Also note that while some placeholders are for specific YAML types (e.g. strings, numbers, booleans), some may
allow for complex values (sequences and maps), and indeed allow for nested complex values. Refer to the
explanations for details.

Variations:

<foo> | <bar>: placeholder for one of several kinds of value. Each kind has a different meaning, use, or rule, and
is often (but not always) of a different data type.

There can be multiple pipes | if more than two kinds of value are possible. Example:

<node_template_name> | <tuple_of_node_template_and_index> | <node_type_name>.

[<foo_1>, <foo_2>, ...]: placeholder for a YAML sequence of placeholders of the same kind. Note that in some
cases this may mean "one or more", but in other cases an empty sequence is also possible. See the
explanatory text for rules.

The sequence may also appear in long YAML notation:

Note that elements may have more than one kind, noted with a | as above. Example:

[<foo_1> | <bar_1>, <foo_2> | <bar_2>, ...]

Placeholders for YAML map entries always appear nested in the long YAML notation:

<foo_*> is used to refer to any or all of the placeholders in the sequence or map notations.

MyMap:
 property1: value
 property2: [value1, value2]

- <foo_1>
- <foo_2>
- ...

key:
 <foo_1>
 <foo_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 10 of 211

1.2.2 TOSCA Naming Conventions

In the TOSCA examples included in this specification we adhere to a few conventions.

Note that TOSCA parser should not normally enforce these conventions and you are generally free to use other
conventions in your service templates and profiles. However, we encourage authors to adopt our conventions if
possible in order to encourage consistent readability within the TOSCA ecosystem.

TOSCA keynames: snake case. Future versions of TOSCA, as well as forked variants, will continue to use this
convention when introducing new keynames. Examples: service_template, node_filter, valid_relationship_types.

In this document we use monospace font for all TOSCA keynames in order to clearly differentiate the language
specification from user values.

TOSCA value names: dash case (also called kebab case). This includes names of node templates, properties,
attributes, inputs, operations, capabilities, relationships, metadata keys, repository names, artifacts names, etc.
Dash case is preferred in order to differentiate these names from keynames. Examples: "control-plane", "max-
bandwidth", "source-url", "deployment-host", "connection-pool-size".

TOSCA entity type names: camel case. This includes all TOSCA entity types: nodes, relationships, capabilities,
artifacts, data, etc. Examples: "Server", "BlockStorage", "OperatingSystem", "VirtualLink". All words in the name
should be capitalized, including prepositions. Examples: "AddressAndPort", "NetworkOrFile". Acronyms and
abbreviations should be treated as words, except when the name is just a single acronym. Examples:
"HttpEndpoint", "TcpOrUdp", "TCP", "DBMS".

TOSCA relationship type names: prefer fragments that appear between nouns, which usually are verbs in
present simple form and may include a preposition. Examples: "Includes", "Rejects", "DependsOn",
"LinksTo", "RunAt", "FromSource".

TOSCA capability type names: these are commonly -able adjectives or other typifying, characterizing, or
modifying words. Examples: "Bindable", "Linkable", "Scalable", "Host", "DataSource".

TOSCA primitive data type names: we prefer single lower-case whole words: string, integer, float, boolean. Note that
previous versions of TOSCA also had types with the "scalar-unit." prefix, however we now prefer to to use
normal camel case type names for these. See scalar for more examples.

As primitive data type names are part of the language specification, they are represented in monospace font.

TOSCA function names: snake case. This includes the built-in functions as well as custom functions. Examples:
$greater_than, $has_any_key, $my_custom_function.

As function names are part of the language specification, they are represented in monospace font.

1.3 Glossary
1.3.1 Definitions of Terms

The following terms are used throughout this specification and have the following definitions when used in context of
this document.

Term Definition

External
implementation

An external implementation is a component in the real world that can be used or managed by an
Orchestrator. External implementations can consist of physical resources deployed in the real
world as well as logical or virtual components provisioned or configured on those resources.

System A collection of one or more external implementations that is designed to work together to deliver
a specific mission.

Service A system that can be deployed, provisioned, or configured on-demand by an Orchestrator.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 11 of 211

Topology A topology defines the structure of a system. Topologies define the external implementations
that make up the system as well as the interactions or other dependencies between these
components.

Representation A representation is a model maintained by an Orchestrator that represents external
implementations. Representations capture those aspects of external implementations that are
relevant for management purposes.

Service
representation

A model that represents a system of one or more external implementations. Service
representations model the topology of systems as directed graphs that consist of node
representations and relationship representations.

Node
representation

Node representations are the vertices in a service representation graph. They represent external
implementations.

Relationship
representation

Relationship representations are the edges in a service representation graph. They represent
the interactions or other dependencies between the external implementations in a system.

Template Templates are blueprints that capture the design of external implementations. Representations
are created from templates.

Service
template

A template that captures the design of a entire system or service. Service templates consist of
node templates from which node representations can be created. Node templates can include
requirements (and associated relationship templates) from which relationship representations
can be created. Service templates can also define the actions required to create or configure
external implementations based on these node and relationship representations.

Node template A template that captures the design of an individual component. Node templates define values
for the configurable properties of components, specify observable runtime state, and define
requirements and capabilities that specify how components interact. Node representations are
created from node templates.

Relationship
template

A template that captures the design of interactions between components. Relationship
representations are created from relationship templates.

Term Definition

1.3.2 Acronyms and Abbreviations

Defined in this document:

TOSCA: Topology and Orchestration Specification for Cloud Applications
CSAR: Cloud Service Archive A file format defined by OASIS TOSCA to contain TOSCA files

Used by this specification:

YAML: Yet Another Markup Language The Language TOSCA uses for files
MACD: Moves, Adds, Changes, and Deletions
DSL: Domain Specific Language

Used as examples:

DBMS: Database Management System
EJB: Enterprise Java Beans
SD-WAN: Software-Defined Wide Area Network
SQL: Structured Query Language
TAR: Tape Archive (a file format originally used in Unix)

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 12 of 211

VPN: Virtual Private Network
USD: United States Dollar

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 13 of 211

2 TOSCA Overview
The Topology and Orchestration Specification for Cloud Applications (TOSCA) is a domain-specific language (DSL)
for automating Lifecycle Management of large complex systems.

The TOSCA language allows service designers to describe system components and their relationships by means of
a service topology, and to specify the lifecycle management procedures for the creation and modification of services
using orchestration processes. The combination of topology and orchestration enables not only the automation of
deployment but also the automation of the complete service lifecycle management (including scaling, patching,
upgrading, monitoring, etc.).

The content in this section is non-normative.

2.1 Objectives

Large systems such a cloud applications, telecommunications networks, and software services are becoming
increasingly more difficult to manage. This challenge is the result of a recent technology trends such as the adoption
of cloud-native architectures that build systems as collections of microservices, the disaggregation of large hardware
appliances, the decoupling of hardware and software, and the adoption of edge deployments that move application
functionality closer to the end-user.

As a result of the above technology trends, large systems typically involve a wide variety of technologies and include
components from multiple vendors. This results in management systems based on vendor-specific tools, dedicated
component management systems, and special-purpose controllers, each of which manages only a small subset of
the system. To make matters worse, these tools often use incompatible interfaces or data schemas, resulting in
integration nightmares. As the number of components grows—because the scale of the system increases and
disaggregation becomes the norm—so will the number of required management tools.

Management of such systems can be greatly simplified if the creation and lifecycle management of application,
infrastructure, and network services can be fully automated and supported across a variety of deployment
environments. TOSCA was expressly designed to address the complexity associated with managing large systems
by providing a language for specifying an information model and automating the lifecycle management of large
complex systems. The goal of TOSCA is to define a language that is agnostic to specific technological and
commercial ecosystems and that supports the design and operation of large systems without being tied to specific
technologies or specific vendors. This enables a uniform management approach that can be used for all parts of the
system and can integrate components across all layers of the technology stack.

The capabilities offered by TOSCA will facilitate higher service continuity, reduce service disruption and manual
mitigation, increase interoperability, avoid lock-in, and achieve the intended orchestration. Ultimately, this will benefit
the consumers, developers, and providers of more and more complex and heterogeneous networks, systems, and
cloud-native applications.

2.2 TOSCA Features and Benefits
2.2.1 TOSCA Is Model-Driven

The TOSCA specification promotes a model-driven management approach, whereby TOSCA processors maintain
service models (digital twins) for all system components under management. In a model-driven approach, all
management actions are performed on service models first and then propagated to the external real-world entities by
the management system. Similarly, changes to external resources are reflected into models first and then handled by
management system.

TOSCA's model-driven management approach is what enables its use for all Lifecycle Management Phases:
information embedded in the model structure (the dependencies, connections, compositions) drives the automated
processes. Specifically, it allows service models to be used:

As desired state for Moves, Adds, Changes, and Deletions (MACDs)

As context for handling faults and events using Closed Loop Automation

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 14 of 211

In addition, changing or augmenting the model also automatically adapts the LCM / orchestration behavior. Without
the context provided by service models, lifecycle management cannot be fully automated.

2.2.2 TOSCA Models Are Graphs

TOSCA models systems as graphs, where the vertices represent the components of the system and the edges
represents relationships, dependencies, and other interactions between these components.

The use of graphs enables declarative orchestration, where system designers can simply create descriptions
("models") of their systems, and delegate to the orchestrator the task of translating these descriptions into the
commands required to realize the systems being described. The use of graphs enables this as follows:

Relationships in a TOSCA graph encode dependencies that allow an orchestrator to automatically determine
the sequencing between the management operations on invoked on various components in the system,
thereby avoiding the need for human-defined workflows. Implementing lifecycle or other management
operations on the service can be achieved by traversing the graph.

Relationships in a TOSCA graph allow an orchestrator to automatically determine which system components
may be affected by a component failure or by a change to an external resource. The orchestrator can then
determine corrective actions that restore the system as a whole to its nominal state, rather than just fixing
individual components.

Declarative management is often also referred to as desired state or intent-based orchestration.

2.2.3 TOSCA Promotes Reuse and Modularity

TOSCA models are based on service templates that are created by service designers. Service templates consist of
node templates and relationship templates that have associated node types and relationship types. Types in TOSCA
represent reusable components that can be used as building blocks from which services are constructed, thereby
promoting modularity and reuse.

In addition, TOSCA allows modular designs whereby service templates describe only parts of a system rather than a
complete end-to-end system definition. Composition of partial system descriptions into complete system models can
be done by an orchestrator at deployment time. This enables automation of placement decisions, resource allocation,
and system integration.

TOSCA's modularity features allow some service design decisions to be made by an orchestrator at deployment time
rather than by a service designer at service design time.

TOSCA also allows for the definition of abstract components that hide technology and vendor-specific
implementation details, via mechanisms such as derivation of types and substitution of nodes. The choice of how to
implement abstract components can be left to the orchestrator at deployment time. This further increases the value
of TOSCA as a technology and vendor-neutral technology language orchestration. TOSCA supports the use of
policies to guide the service design decisions made by orchestrators at deployment time.

2.2.4 TOSCA Is Domain-Independent

Since the fundamental abstraction defined by the TOSCA language is a graph, TOSCA is not tied to any specific
application domain. For example, TOSCA can be used to specify automated lifecycle management of the following:

Infrastructure-as-a-Service Clouds: automate the deployment and management of workloads in IaaS clouds
such as OpenStack, Amazon Web Services, Microsoft Azure, Google Cloud, and others.

Cloud-Native Applications: deploy containerized applications, micro-services, and service meshes, for example
by interfacing to orchestration platforms such as Kubernetes.

Network Function Virtualization: define the management of Virtual Network Functions and their composition
into complex network services.

Software Defined Networking: support on-demand creation of network services (for example SD-WAN).

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 15 of 211

Functions-as-a-Service: define software applications without any deployment or operational considerations.

IoT and Edge computing: deploy many very similar copies of a service at the network edge.

Process Automation: support open and interoperable process control architectures.

This list is by no means intended to be exhaustive and only serves to demonstrate the breadth of application
domains that can benefit from TOSCA's automated lifecycle management capabilities.

2.3 TOSCA Core Concepts

As stated above, the TOSCA language assumes a model-driven management paradigm. Using model-driven
management, a model representing the managed external components is maintained and all management
operations are performed on this model first and any resulting changes to the model are then propagated to the
external components. Similarly, any status changes or errors experienced by the external components are reflected
in the model first before they are handled by the management system. The model maintained by the management
system must capture all aspects of the external components that are relevant for the purpose of managing those
components.

External components under management can consist of physical resources deployed in the real world as well as
logical or virtual components provisioned or configured on those resources. In the context of TOSCA, we will refer to
the physical or virtual components under management as external implementations, and we will refer to the models
as representations. Note that the TOSCA language does not standardize any object models or schemas for
representations. It presumes the existence of such models, but the model details are implementation specific.

A model-driven management system must include a component that is responsible for keeping the representations
and the external implementations synchronized. In the context of this specification, we will refer to this component as
the orchestrator. An orchestrator may perform this synchronization task based on workflows, policies, or other
mechanisms that are defined using statements expressed in the TOSCA language, in which case we will refer to the
component as a TOSCA orchestrator. Alternatively, an orchestrator may also perform this task based on domain-
specific knowledge that is built-in to the orchestrator rather than being defined using TOSCA. This specification
allows for either approach.

The following diagram shows how external implementations are modeled using representations, and how the
Orchestrator synchronizes the two.

Figure 1: Representations and Implementations

TOSCA representations don't just track individual components and their management aspects; they also capture
how the various components interact, with the goal of providing complete system functionality. TOSCA accomplishes
this by modeling the topology of systems as graphs where nodes in the graph represent the components under
management and vertices in the graph represent containment, dependencies, interactions, or other relationships
between these components. In this specification, we use the term service representation to refer to a graph that
models the topology of an entire system or subsystem, and we use the terms node representation and relationship
representation respectively to model the nodes and vertices in a service representation graph.

Information about how node and relationship representations are organized in service representation graphs is
captured in designs (a.k.a blueprints) that are created by service designers and expressed in the TOSCA language.
In this specification, we refer to those designs as service templates and we use the term resolver to refer to the
management component that instantiates service representations based on service templates. TOSCA service

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 16 of 211

templates define service elements and their relationships which results in the service representations to be created
as graphs. Service templates consist of node templates from which node representations are created, and
relationship templates from which relationship representations are created. Note that while TOSCA does not
standardize representations, it does standardize the grammar for defining templates.

The use of templates supports reuse of service designs while at the same time allowing for service-specific
variability. Specifically, node templates and relationship templates can use TOSCA functions to specify that
configuration values need to be provided as template inputs to each deployment, or that configuration values need
to be retrieved at deployment time from other node or relationship representations in the service representation
graph. At deployment time, TOSCA resolvers evaluate these functions to generate the values to be used when
creating new service representations. TOSCA also includes grammar for creating multiple node representations from
the same node template and for creating multiple relationship representations from the same relationship template.
TOSCA supports modular designs where different deployments can combine sub-system representations created
from different service templates into deployment-specific system representations.

The following diagram shows how representations are created from templates by a resolver:

Figure 2: TOSCA Templates and Representations

To allow for design-time validation of service templates, all TOSCA templates defined by those service templates
have associated TOSCA types. TOSCA types define schemas and constraints with which TOSCA templates have to
comply. For example, a TOSCA node type defines configurable properties that must be provided for the associated
component, it defines the runtime attributes that are expected to be available for the component, and it specifies
allowed and required interactions with other components. A TOSCA-based management system must include a
TOSCA parser/validator that checks if the templates used in a TOSCA file are valid for the types with which they
are associated. This allows many kinds of errors to be flagged at service design time rather than at service
deployment time.

The following diagram shows how templates are created from and validated against TOSCA type definitions:

Figure 3: TOSCA Types and TOSCA Templates

The use of types in TOSCA also provides the additional benefits of abstraction, information hiding, and reuse.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 17 of 211

TOSCA types can be organized in a type hierarchy where one or more type definitions can inherit from another type,
each derived type may then be refined. This promotes reuse. The base type may be more generic and the derived
types may be more concrete which promotes abstraction. TOSCA node types and TOSCA relationship types
define an externally visible management façade for entities of that type while hiding internal implementation details.
This management façade defines interfaces that can be used by an orchestrator to interact with the external
implementations represented by the entity. When node types and relationship types are packaged together with
internal implementation artifacts for their interfaces, they become reusable building blocks that can greatly facilitate
the creation of end-to-end services. TOSCA types that define such reusable building blocks are typically organized in
domain-specific TOSCA profiles.

The following figure summarizes the various concepts introduced in this section. When a TOSCA implementation
implements multiple TOSCA processing modules such as parsing, validating, and resolving, such an implementation
is commonly referred to as a TOSCA processor.

Figure 4: Summary of Core TOSCA Concepts

Note that this diagram is only intended to highlight concepts used in this specification, not to suggest software
architectures or implementations. Nor is this diagram intended to be comprehensive or exclusive. Other kinds of
processors and modules may qualify as implementations of TOSCA, for example:

TOSCA translator: A tool that translates TOSCA files into documents that use another language, such as
Kubernetes Helm charts or Amazon CloudFormation templates.

TOSCA template generator: A tool that generates a TOSCA file. An example of generator is a modeling tool
capable of generating or editing a system design expressed using TOSCA.

2.4 Using TOSCA
2.4.1 TOSCA Files

TOSCA files are files describing TOSCA service templates, TOSCA types, or a combination thereof.

2.4.2 Archive Format for Cloud Applications

In order to support in a certain environment the execution and management of the lifecycle of a cloud application, all
corresponding artifacts have to be available in that environment. This means that beside the TOSCA file of the cloud
application, the deployment artifacts and implementation artifacts have to be available in that environment. To ease
the task of ensuring the availability of all of these, this specification defines a corresponding archive format called
CSAR (Cloud Service ARchive).

A CSAR is a container file, i.e. it contains multiple files of possibly different file types. These files are typically

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 18 of 211

organized in several subdirectories, each of which contains related files (and possibly other subdirectories etc.). The
organization into subdirectories and their content is specific for a particular cloud application. CSARs are zip or tar
files, typically compressed. A CSAR may contain a file called TOSCA.meta that describes the organization of the
CSAR.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 19 of 211

3 TOSCA Language Abstractions
The TOSCA language introduces a YAML-based grammar for automating the lifecycle management of application,
infrastructure, and network services. The language defines a metamodel for specifying both the structure of a service
as well as its management aspects. Using TOSCA statements expressed in a TOSCA file, service designers create a
service template that defines the structure of a service. Interfaces, operations, and workflows define how service
elements can be created and terminated as well as how they can be managed during their whole lifetimes. Policies
specify operational behavior of the service such as quality-of-service objectives, performance objectives, and
security constraints, and allow for closed-loop automation.

The content in this section is non-normative.

3.1 Service Templates, Node Templates, and Relationship Templates

Within a TOSCA file, a service template defines the topology model of a service as a directed graph. Each node in
this graph is represented by a node template. A node template specifies the presence of an entity of a specific node
type as a component of a service. A node type defines the semantics of such a component, including the
configurable properties of the component (via property definitions), its runtime state (via attribute definitions) and
the operations (via interface definitions) available to manipulate the component. In a service template, a node
template assigns values to the properties defined in the corresponding node type. An orchestrator updates attribute
values as a result of performing lifecycle management operations or in response to notifications about changes in
component state.

For example, consider a service that consists of an some computing application, a database and some computing
resource to run them on. A service template defining that service would include one node template of the node type
for the particular software application, another node template of node type database management system or a more
specific derivative (MariaDB,perhaps), and a third node template of node type compute or more likely a more specific
derivative. The DBMS node type defines properties like the IP address of an instance of this type, an operation for
installing the database application with the corresponding IP address, and an operation for shutting down an instance
of this DBMS. A constraint in the node template can specify a range of IP addresses available when making a
concrete application server available.

Node templates may include one or more relationship templates to other node templates in the service template.
These relationship templates represent the edges in the service topology graph and model dependencies and other
interactions between components. Note that in this specification, relationship templates are more frequently referred
to as requirements for reasons that will be explained below. Relationship templates in TOSCA are unidirectional: the
node template that includes the relationship template is implicitly defined as the source node of that relationship
template and the relationship template explicitly specifies its target node. Each relationship template refers to a
relationship type that defines the semantics of the relationship. Just like node types, relationship types define
properties, attributes, and interfaces. Node types and relationship types are typically defined separately for reuse
purposes and organized into profiles.

In the example above, a relationship can be established from the application server node template to the database
node template with the meaning depends on, and from both the application and DBMS node templates to the
compute node template with meaning deployed on.

3.2 Requirements and Capabilities

We discussed earlier how relationship templates are used to link node templates together into a service topology
graph. However, it may not always be possible to define all node templates for a given service topology within a
single service template. For example, modular design practices may dictate that different service sub-components be
modelled using separate service templates. This may result in relationships across multiple service templates.
Additionally, relationships may need to target components that already exist and do not need to be instantiated by an
orchestrator. For example, relationships may reference physical resources that are managed in a resource inventory.
Service templates may not include node templates for these resources.

TOSCA accommodates both service template internal and external relationships using requirements and
capabilities of node templates. Requirements express that a component depends on a feature provided by another

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 20 of 211

component, or that the component has certain requirements against the hosting environment such as for the
allocation of certain resources or the enablement of a specific mode of operation. Capabilities represent features
exposed by components that can be targeted by requirements of other components. A requirement defined in one
node template is fulfilled by establishing a relationship to a corresponding capability defined in a second node
template. If a requirement explicitly specifies a target node template defined in the same service template, it acts as a
relationship template. A requirement that does not explicitly specify a target node template is referred to as a
dangling requirement. For simplicity, this specification uses the term requirement for both relationship templates
and dangling requirements.

All mandatory dangling requirements must be fulfilled by the TOSCA processor at service deployment time. While
dangling requirements are defined in the context of node templates, fulfilling dangling requirements is done in the
context of node representations. This means that when finding candidates for fulfilling a dangling requirement, the
TOSCA processor must consider node representations rather than the templates from which these representations
were created. When fulfilling requirements, template directives to the TOSCA processor can be used to specify if the
target candidates are template-internal node representations, or external representations created from multiple
service templates, or representations for external resources managed in an inventory. Thus, requirement fulfillment
may result in relationships that are established across service template boundaries.

Requirements and capabilities are modelled by annotating node types with requirement definitions and capability
definitions respectively. Capability definitions themselves have associated capability types that are defined as
reusable entities so that those definitions can be used in the context of several node types. Just like node types and
relationship types, capability types can define properties and attributes. Requirement definitions are effectively
relationship definitions that specify the relationship type that will be used when creating the relationship that fulfils the
requirement.

The following figure summarizes the various TOSCA abstractions used for defining requirements and capabilities:

Figure 5: Requirements and Capabilities

3.3 Decomposition of Node Representations

TOSCA provides support for decomposing service components using its substitution mapping feature. This feature
allows for the definition of abstract service designs that consist of generic components that are largely independent of
specific technologies or vendor implementations. Technology or vendor-specific implementation details can be
defined for each generic component using substituting service templates that describe the internals of that
component.

For example, a service template for a business application that is hosted on an application server tier might focus on
defining the structure and manageability behavior of the business application itself. The internals of the application
server tier hosting the application can be provided in a separate service template built by another vendor specialized
in deploying and managing application servers. This approach enables separation of concerns as well as re-use of
common infrastructure templates.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 21 of 211

Figure 6: Node Decomposition

From the point of view of a service template (e.g. the business application service template from the example above)
that uses another service template, the other service template (e.g. the application server tier) looks just like a node
template. During deployment, however, the node representation created from this node template can be substituted
by a service created from the second service template if it exposes the same external façade (i.e. properties,
capabilities, requirements, etc.) as the node for which it is a substitution. Thus, a substitution by any service template
that has the same façade as the substituted node becomes possible, allowing for a hierarchical decomposition of
service representations. This concept also allows for providing alternative substitutions that can be selected by a
TOSCA processor at service deployment time. For example there might exist two service templates, one for a single
node application server tier and another for a clustered application server tier, and the appropriate option can be
selected on a deployment-by-deployment basis.

3.4 Interfaces, Operations, and Artifacts

Both node types and relationship types may define lifecycle operations that define the actions an orchestration
engine can invoke when instantiating a service from a service template or when managing a deployed service. For
example, a node type for some software product might provide a "create" operation to handle the creation of an
instance of a component at runtime, or a "start" or "stop" operation to allow an orchestration engine to start or stop
the software component.

Operations that are related to the same management mission (e.g. lifecycle management) are grouped together in
interface definitions in node and relationship types. Just like other TOSCA entities, interfaces have a corresponding
interface type that defines the group of operations that are part of the interface, the input parameters that are
required by those operations, and any output parameters returned by the operations. Interface types can also define
notifications that represent external events that are generated by the external implementations and received by the
orchestrator.

The implementations of interface operations can be provided as TOSCA artifacts. An artifact represents the content
needed to provide an implementation for an interface operation. A TOSCA artifact could be an executable (e.g. a
script, an executable program, an image), a configuration file or data file, or something that might be needed so that
another executable can run (e.g. a library). Artifacts can be of different types, for example Ansible playbooks or
Python scripts. The content of an artifact depends on its artifact type. Typically, descriptive metadata (such as
properties) will also be provided along with the artifact. This metadata might be needed by an orchestrator to properly
process the artifact, for example by describing the appropriate execution environment.

3.5 Workflows

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 22 of 211

A deployed service is an instance of a service template. More precisely, a service is deployed by first creating a
service representation based on the service template describing the service and then orchestrating the external
implementations modelled by those representations. If TOSCA orchestration is used, the external implementations
are created by running workflows that invoke interface operations defined in the types of the nodes and relationships
in the representation graph. TOSCA workflows can often be generated automatically by the orchestrator by using the
relationships in the service representation graph to determine the order in which external implementations must be
created. For example, during the instantiation of a two-tier application that includes a web application that depends
on a database, an orchestration engine would first invoke the "create" operation on the database component to install
and configure the database, and it would then invoke the "create" operation of the web application to install and
configure the application (which includes configuration of the database connection).

Interface operations invoked by workflows must use actual values for the various properties in the node templates
and relationship templates in the service template. These values are tracked in the node representations and
relationship representations in the service representation graph. They can be provided as inputs passed in by users
as triggered by human interactions with the TOSCA processor. Alternatively, the templates can specify default values
for some properties, or use TOSCA functions to retrieve those values from other entities in the service representation
graph.

For example, the application server node template will be instantiated by installing an actual application server at a
concrete IP address considering the specified range of IP addresses. Next, the process engine node template will be
instantiated by installing a concrete process engine on that application server (as indicated by the "hosted-on"
relationship template). Finally, the process model node template will be instantiated by deploying the process model
on that process engine (as indicated by the "deployed-on" relationship template).

3.6 Policies

Non-functional behavior or quality-of-services are defined in TOSCA by means of policies. A policy can express
such diverse things like monitoring behavior, payment conditions, scalability, or continuous availability, for example.

A node template can be associated with a set of policies collectively expressing the non-functional behavior or
quality-of-services that each instance of the node template will expose. Each policy specifies the actual properties of
the non-functional behavior, like the concrete payment information (payment period, currency, amount etc.) about the
individual instances of the node template.

These properties are defined by a policy type. Policy types might be defined in hierarchies to properly reflect the
structure of non-functional behavior or quality-of-services in particular domains. Furthermore, a policy type might be
associated with a set of node types the non-functional behavior or quality-of-service it describes.

Policy templates provide actual values of properties of the types defined by policy types. For example, a policy
template for monthly payments for customers located in the USA will set the "payment-period" property to "monthly"
and the "currency" property to "USD", leaving the "amount" property open. The "amount" property will be set when
the corresponding policy template is used for a policy within a node template. Thus, a policy template defines the
invariant properties of a policy, while the policy sets the variant properties resulting from the actual usage of a policy
template in a node template.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 23 of 211

4 TOSCA Operational Model
The content in this section is normative unless otherwise labeled except for:

the examples
references (unless they are labelled as normative)

TOSCA is designed to support all three phases of the service lifecycle:

1. Day 0—Service Design: Service designers use TOSCA to model services as topology graphs that consist of
nodes and relationships. Nodes model the components of which a service is composed, and relationships
model dependencies between these service components.

2. Day 1—Service Deployment: TOSCA can also be used to define mechanisms for deploying TOSCA service
topologies on external platforms.

3. Day 2—Service Management: TOSCA can enable run-time management of services by providing support for
updating and/or upgrading deployed services and by providing service assurance functionality.

This section presents a TOSCA functional architecture and an associated operational model that supports the three
service lifecycle phases outlined above. Note that this functional architecture is not intended to prescribe how
TOSCA must be implemented. Instead, it aims to provide users of TOSCA with a mental model of how TOSCA
implementations are expected to process TOSCA files.

Note that it is not mandatory for compliant TOSCA implementations to four kinds of TOSCA abstractions defined in
Section 2.4 support all three service lifecycle phases. Some implementations may use TOSCA only for service
design and delegate orchestration and ongoing lifecycle management functionality to external (non-TOSCA)
orchestrators. Other implementations may decide to use TOSCA for all three phases of the service lifecycle.
However, a complete architecture must anticipate all three lifecycle phases and must clearly distinguish between the
different types of TOSCA abstractions introduced in the section TOSCA language abstractions.

4.1 TOSCA Functional Architecture

The following Figure shows the TOSCA functional architecture defined in this section. It illustrates how the various
TOSCA entities are used by the different functional blocks and how they are related.

Figure 7: TOSCA Functional Architecture

The functional architecture defines the following three blocks:

1. TOSCA Processor: This functional block defines functionality that must be provided by all TOSCA
implementations. TOSCA processors convert TOSCA-based service definitions into service representations
that can be processed by an Orchestrator.

2. Orchestrator: This functional block creates external implementations on various resource platforms based on

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 24 of 211

the service representations created by a TOSCA processor. The orchestration functionality can itself be defined
using TOSCA or can be provided by external (non-TOSCA) orchestration platforms.

3. Platform: In the context of a TOSCA architecture, platforms represent external cloud, networking, or other
infrastructure resources on top of which service entities can be created.

The remainder of this section describes each of these functional blocks in more detail.

4.2 TOSCA Processor

At the core of a compliant TOSCA implementation is a TOSCA Processor that can create service representations
from TOSCA service templates. A TOSCA Processor contains the following functional blocks:

4.2.1 Parser

A TOSCA parser performs the following functions:

Accepts a single TOSCA file plus imported TOSCA files (files without a service_template)

Can (optionally) import these files from one or more repositories, either individually or as complete profiles

Outputs valid normalized node templates. Note that normalized node templates may include unresolved
(dangling) requirements.

4.2.2 Resolver

A resolver creates service representations based on normalized service templates. It performs the following
functions:

1. Creating Node Representations based on Normalized Node Templates.

Either one-to-one or one-to-many if multiplicity is involved.

Node templates with a "select" directive create a node in the local representation graph that is a reference
to the selected node (from the local or a remote representation graph).

Node templates with a "substitute" directive create a node in the local representation graph that is
associated to a remote representation graph created from the substitution template.

The resolver assigns values to node properties and attributes in node representations based on values or
functions defined in the corresponding node templates.

Some property and attribute values cannot be initialized since they either depend on other uninitialized
properties or attributes or need to access other node representations via relationships that have not been
yet initialized.

2. Creating Relationships that Connect Node Representations

Some relationships can be created directly based on target node templates specified in node template
requirements.

Other relationships are created by fulfilling dangling requirements

If a requirement uses a node_filter that refers to uninitialized properties or attributes, then the
fulfillment of this requirement is postponed until all referred properties or attributes are initialized.

A circular dependency signifies a erroneous template and shall report an error

After a relationship is created, properties and attributes that depend on it to be initialized will be
initialized.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 25 of 211

At the end of this process all mandatory requirements must be satisfied and all relationships are added to
the representation graph. An unsatisfied non-optional requirement results in an error.

3. Substitution Mapping

When substitution is directed for a node, the resolver creates a new service representation based on the
substituting template, basically creating a service that represents the internals of the substituted node.

The substituting service is initialized from the properties of the substituted node and the workflows of the
substituting service act as operations for the substituted node (that is, the behavior of the node is
substituted by the substituting service).

This is defined via substitution mapping rules.

4.3 Orchestrator

An orchestrator performs the following actions:

(Continuously) turns node representations into one or more node implementations

(Continuously) updates node representation attribute values (error if they do not adhere to TOSCA type
validation clauses or property definition validation clauses)

(Continuously) reactivates the resolver: outputs may change attribute values, which can require refulfillment of
dangling requirements or resubsitution of substituted nodes.

(Optionally) changes the node representations themselves for day 2 transformations.

4.4 Changes in the Representation Graph

During the lifetime of a service there can be several actions or events that change the representation graph of the
running service.

We can identify the several situations that mandate the change of the representation graph, for example:

Update:

The service input values have changed and need to be re-evaluated while the service is running.

Upgrade:

The service template has changed and needs to be re-evaluated while the service is running.

Runtime failures:

Nodes or relationships in the representation graph have failed and need to be recreated or healed while
the service is running.

Change in dependencies

External nodes or relationships to external nodes have failed and new relationships to external nodes
need to be created (i.e. external requirements need to be fulfilled again) while the service is running.

For the service to reach the new desired runtime state, operations that are associated with the creation, deletion, and
modification of nodes and relationships in the representation graph need to be performed.

We can visualize (and the orchestrator can perform) these restorative actions via graph traversals on the "old" and
"new" representation graph.

First let's categorize the nodes and relationships in the "old" and "new" representation graphs in the following four
categories:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 26 of 211

Unchanged: These are nodes and relationships that appear in both the "old" and "new" representation graphs
and have the same property values. Given that a template can be upgraded, we correlate the same nodes and
relationships via their symbolic node names and requirement names.

Modified: These are nodes and relationships that appear in both the "old" and "new" representation graphs and
have different property values.

Obsolete: These are nodes and relationships that appear in the "old" representation graph but not in the "new"
representation graph.

Novel: These are nodes and relationships that do not appear in the "old" representation graph but appear in the
"new" representation graph.

We then perform deletions of the obsolete nodes by traversing the representation graph in reverse dependency
order as follows:

We start in parallel with all nodes that have no incoming dependency relationship

we perform operations associated with deleting on all adjacent relationships to this node that are in the
"obsolete" category.

we perform operations associated with deleting on the node itself if it is in the "obsolete" category.

we move to nodes that have no incoming dependency relationship to nodes that have not been processed yet.

After we have processed the deletion of the obsolete elements we traverse the "new" representation graph in
dependency order to perform the modifications and creations:

we start in parallel with the nodes that have no outgoing dependency relationship

we perform operations associated with creation resp. modification on the node itself if it is in the "novel" resp.
"modified" category

we perform operations associated with creation resp. modification on all adjacent relationships in the "novel"
resp. "modified" category if the node on the other side of the relationship has been processed.

we move to nodes that have no outgoing dependency relationship to nodes that have not been processed yet.

After this we can consider the service to be in the new desired runtime state, and the "old" representation graph can
be discarded and the "new" representation graph becomes the current representation graph of the service.

Note that this graph traversal behavior should be associated with the relevant interface types that are defined in a
TOSCA profile, where it should be specified which relationship types form the dependency relationships, which
operation(s) are associated with the deletion, modification, and creation of the nodes and relationships when the
representation graph changes.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 27 of 211

5 TOSCA Grammar Overview
The content in this section is normative unless otherwise labeled except for:

the examples
references (unless they are labelled as normative)

5.1 TOSCA Modeling Concepts

This section defines concepts used in support of the modeling functionality of the TOSCA Version 2.0 specification.
Specifically, it introduces grammar for defining TOSCA types and templates as defined in the Chapter TOSCA Core
Concepts, it introduces the concepts of entity definitions and entity assignments, and presents rules for type
derivation and entity refinement.

5.1.1 Type Definitions and Entity Definitions

TOSCA templates are defined in TOSCA files and expressed using statements in the TOSCA language. All TOSCA
templates are typed using TOSCA types that are also defined in TOSCA files and expressed in the TOSCA
language. Not only do types promote reuse, they also simplify the design of TOSCA templates by allowing relevant
TOSCA entities to use and/or modify definitions already specified in the types.

TOSCA type definitions consist of pairs of keynames and associated values that specify information relevant to the
type. While all TOSCA types share a number of common keynames, each type definition has its own set of
keynames with their own syntax and semantics. TOSCA supports node types, relationship types, capability types,
interface types, artifact types, policy types, group types, and data types.

Some keynames in TOSCA type definitions are used to specify TOSCA entity definitions that declare the presence
of those entities in the context of the type being defined. For example, most TOSCA type definitions include property
definitions and attribute definitions. Node types and relationship types also include interface definitions, and node
types have requirement definitions and capability definitions. Interface types can include parameter definitions that
specify required inputs and expected outputs for interface operations and notifications.

Just like type definitions, entity definitions consist of pairs of keynames and values. Each entity definition has it own
syntax, semantics and set of keynames, but all entity definitions share a type keyname that references the TOSCA
type of the entity being defined. Other keynames in entity definitions are used to further define or refine definitions
already specified in the corresponding entity type. TOSCA supports capability definitions, requirement definitions,
interface definitions, policy definitions, group definitions, property definitions, attribute definitions, and parameter
definitions.

5.1.2 Templates and Entity Assignments

The service templates introduced in the section on Reuse and Modularity are defined in TOSCA files and expressed
using statements in the TOSCA language. Service templates define directed graphs that consist of node templates
and requirements. Node templates specify a node type used for the template and then add additional information
using pairs of keynames and associated values. Service templates may include other templates as well such as
relationship templates, groups, policies etc.

Node types specified in node templates will typically include definition of entities, many node templates will use
keynames to specify additional information for those entity definitions. Such information is referred to as an entity
assignment. In general for each entity definition in the type of a template, the template can include a corresponding
entity assignment that provides template-specific information about the entity. For example, node templates can
include property assignments that assign template-specific values for the properties defined using property
definitions in the node type. Property assignments can be provided as fixed values, but more often they will be
specified using a TOSCA function that retrieve input values or that retrieve property or attribute values from other
entities in a service representation graph. Entity assignments make sure that the service template can be used to
generate a complete representation of the system under management.

5.1.3 Type Derivation, Augmentation, and Refinement

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 28 of 211

The TOSCA type system supports inheritance which means that types can be derived from a parent type. A parent
type can in turn be derived from its own parent type. There is no limit to the depth of a chain of derivations.
Inheritance is a useful feature in support of abstraction. For example, base node types can be used to define generic
components without specifying technology or vendor-specific details about those components. Concrete derived
node types can the be used to define technology-specific or vendor-specific specializations of the generic types.

The TOSCA specification includes type derivation rules that describe which keyname definitions are inherited from
the parent type and which definitions are intrinsic to the type declaration and are not inherited. An example of an
intrinsic definition is version, all type definitions include a version keyname the value of which is not inherited from a
parent type.

Except for keynames that are explicitly flagged as intrinsic to each type definition, derived types inherit all the
definitions of their parent type. Specifically, derived types inherit all entity definitions from their parent. In addition,
these entity definitions can be expanded or modified.

Expansion of entity definitions is done through entity augmentation. Derived types use entity augmentation to
add entity definitions to those already defined in the parent type. Augmentation rules pertaining to an entity
describe how derived types can add to the entity definitions in the inherited parent type.

Modification of entity definitions is done through entity refinement. Derived types use entity refinement to
further constrain or otherwise specialize entities already defined in the parent type. Refinement rules pertaining
to an entity describe how such entity definitions that are inherited from the parent type during a type derivation
can be expanded or modified.

The main reason for augmentation and refinement rules is to create a framework useful for a consistent TOSCA type
profile creation. The intuitive idea is that a derived type follows to a large extent the structure and behavior of a
parent type, otherwise it would be better to define a new "not derived" type.

The guideline regarding the derivation rules is that a node of a derived type should be usable instead of a node of the
parent type during the selection and substitution mechanisms. These two mechanisms are used by TOSCA
templates to connect to TOSCA nodes and services defined by other TOSCA templates:

The selection mechanism allows a node representation created a-priori from another service template to be
selected for usage (i.e., building relationships) by node representations created from the current TOSCA
template.

The substitution mechanism allows a node representation to be decomposed by a service created
simultaneously from a substituting template.

5.1.4 TOSCA File Reuse

A single TOSCA file may be reused by including it in one or more other TOSCA file. Each file may be separately
maintained and use it's own naming scheme. The resolution of naming scheme conflicts is discussed later in this
document.

5.2 Mandatory Keynames

The TOSCA metamodel includes complex definitions used in types (e.g., node types, relationship types, capability
types, data types, etc.), definitions and refinements (e.g., requirement definitions, capability definitions, property and
parameter definitions, etc.) and templates (e.g., service template, node template, etc.) all of which include their own
list of reserved keynames that are sometimes marked as mandatory. If a keyname is marked as mandatory it MUST
be defined in that particular definition context. In some definitions, certain keynames may be mandatory depending
on the value of other keynames in the definition. In that case, the keyname will be marked as conditional and the
condition will be explained in the description column. Note that in the context of type definitions, types may be used
to derive other types, and keyname definitions MAY be inherited from parent types (according to the derivation rules
of that type entity). A derived type does not have to provide a keyname definition if this has already been defined in a
parent type.

5.3 Common Keynames

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 29 of 211

Except where explicitly noted, all multi-line TOSCA grammar elements support the following keynames:

Keyname Mandatory Type Description

metadata no map of
metadata

Defines a section used to declare additional information about the
element being defined.

description no str Declares a description for the TOSCA element being defined.

Grammar for these keynames is described here and may not be repeated for each entity definition.

5.3.1 metadata

This optional keyname is used to associate domain-specific metadata with a TOSCA element. The metadata keyname
allows a declaration of a map of keynames with values that can use all types supported by the [YAML-1.2] chapter 10
recommended schemas as follows:

Specifically, the following YAML types can be used for metadata values: "!!map", "!!seq", "!!str", "!!null", "!!bool",
"!!int", "!!float".

The following shows an example that uses metadata to track revision status of a TOSCA file:

Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators and SHOULD NOT
affect runtime behavior.

5.3.2 description

This optional keyname provides a means to include single or multiline descriptions within a TOSCA element as a
YAML string value, as follows:

Standard YAML block and flow formats are supported for the description string. Simple descriptions are treated as a
single literal that includes the entire contents of the line that immediately follows the description keyname:

The following shows a multiline flow example:

The YAML folded format may also be used for multiline descriptions, which folds line breaks as space characters:

metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...

metadata:
 creation-date: 2024-04-14
 date-updated: 2024-05-01
 status: developmental

description: <description_string>

description: This is an example of a single line description (no folding).

description: "A multiline description
using a quoted string"

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 30 of 211

https://yaml.org/spec/1.2.2/#chapter-10-recommended-schemas

6 TOSCA File Definition
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

A TOSCA file can contain definitions of reusable building blocks for use in cloud applications, complete models of
cloud applications, or both. This section describes the top-level TOSCA keynames—along with their grammars—that
are allowed to appear in a TOSCA file.

The major entities that can be defined in a TOSCA file are depicted in Figure 8.

Figure 8: Structural Elements of a TOSCA File

6.1 Keynames

The following is the list of recognized keynames for a TOSCA file:

Keyname Mandatory Type Description

tosca_definitions_version yes str Defines the version of the TOSCA specification used in this
TOSCA file.

description no str Declares a description for this TOSCA file and its contents.

description: >
 This is an example of a multi-line description using YAML. It permits for line
 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space
 character when processed into a single string value.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 31 of 211

metadata no map of
metadata

Defines a section used to declare additional information.
Domain-specific TOSCA profile specifications may define
keynames that are mandatory for their implementations.

dsl_definitions no N/A Defines reusable YAML aliases (i.e., YAML alias anchors) for
use throughout this TOSCA file.

artifact_types no map of
artifact
types

Declares a map of artifact type definitions for use in this
TOSCA file and/or external TOSCA files.

data_types no map of
data types

Declares a map of TOSCA data type definitions for use in this
TOSCA file and/or external TOSCA files.

capability_types no map of
capability
types

Declares a map of capability type definitions for use in this
TOSCA file and/or external TOSCA files.

interface_types no map of
interface
types

Declares a map of interface type definitions for use in this
TOSCA file and/or external TOSCA files.

relationship_types no map of
relationship
types

Declares a map of relationship type definitions for use in this
TOSCA file and/or external TOSCA files.

node_types no map of
node types

Declares a map of node type definitions for use in this TOSCA
file and/or external TOSCA files.

group_types no map of
group
types

Declares a map of group type definitions for use in this TOSCA
file and/or external TOSCA files.

policy_types no map of
policy
types

Declares a map of policy type definitions for use in this TOSCA
file and/or external TOSCA files.

repositories no map of
repository
definitions

Declares a map of external repositories that contain artifacts
that are referenced in this TOSCA file along with the addresses
used to connect to them in order to retrieve the artifacts.

functions no map of
function
definitions

Declares a map of function definitions for use in this TOSCA file
and/or external TOSCA files.

profile no str The profile name that can be used by other TOSCA files to
import the type definitions in this document.

imports no seq of
import
definitions

Declares a list of import statements pointing to external TOSCA
files or well-known profiles. For example, these may be file
locations or URIs relative to the TOSCA file within the same
TOSCA CSAR file.

Keyname Mandatory Type Description

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 32 of 211

service_template no service
template
definition

Defines a template from which to create a mode/representation
of an application or service. Service templates consist of node
templates that represent the application's or service's
components, as well as relationship templates representing
relations between these components.

Keyname Mandatory Type Description

The following rules apply:

The key tosca_definitions_version MUST be the first line of each TOSCA file.

TOSCA files do not have to define a service_template and MAY contain simply type definitions, repository
definitions, function definitions, or other import statements and be imported for use in other TOSCA files.
However, a TOSCA file that defines a profile MUST NOT define a service_template.

The remainder of this chapter provides detailed descriptions of the keynames and associated grammars used in a
TOSCA file definition.

6.2 TOSCA Definitions Version

The mandatory tosca_definitions_version keyname provides a means to specify the TOSCA version used within the
TOSCA file as follows:

It is an indicator for the version of the TOSCA grammar that MUST be used to parse the remainder of the TOSCA
file. TOSCA uses the following version strings for the various revisions of the TOSCA specification:

Version String TOSCA Specification

tosca_2_0 TOSCA Version 2.0

tosca_simple_yaml_1_3 TOSCA Simple Profile in YAML Version 1.3

tosca_simple_yaml_1_2 TOSCA Simple Profile in YAML Version 1.2

tosca_simple_yaml_1_1 TOSCA Simple Profile in YAML Version 1.1

tosca_simple_yaml_1_0 TOSCA Simple Profile in YAML Version 1.0

The version for this specification is tosca_2_0. The following shows an example tosca_definitions_version in a TOSCA file
created using the TOSCA Version 2.0 specification:

Note that it is not mandatory for TOSCA Version 2.0 implementations to support older versions of the TOSCA
specifications.

6.3 DSL Definitions

The optional dsl_definitions keyname provides a section where template designers can define YAML-style macros for
use elsewhere in the TOSCA file. DSL definitions use the following grammar:

tosca_definitions_version: <tosca_version>

tosca_definitions_version: tosca_2_0

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 33 of 211

The grammar for each <dsl_def> is as follows:

where <anchor_block> defines a set of reusable YAML definitions (the <anchor_definitions>) for which <anchor> can be used
as an alias elsewhere in the document.

An example of defining and using a DSL definition, a YAML anchor, is given in scalar.

6.4 Type Definitions

TOSCA provides a type system to describe reusable building blocks to construct a service template (i.e. for the
nodes, relationship, group and policy templates, and the data, capabilities, interfaces, and artifacts used in the node
and relationship templates). TOSCA types are reusable TOSCA entities and are defined in their specific sections in
the TOSCA file.

In this section, we present the definitions of common keynames that are used by all TOSCA type definitions. Type-
specific definitions for the different TOSCA type entities are presented further in the document:

Node Types
Relationship Types
Interface Types
Capability Types
Data Types
Artifact Types
Group Types
Policy Types

6.4.1 Common Keynames in Type Definitions

The following keynames are used by all TOSCA type entities in the same way. This section serves to define them at
once.

Keyname Mandatory Type Description

derived_from no str An optional parent type name from which this type derives.

version no version An optional version for the type definition.

metadata no map of metadata Defines a section used to declare additional information.

description no str An optional description for the type.

The common keynames in type definitions have the following grammar:

dsl_definitions:
 <dsl_definition_1>
 <dsl_definition_2>
 ...

<anchor_block>: &<anchor>
 <anchor_definitions>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 34 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<parent_type_name>: represents the optional parent type name.

<version_number>: represents the optional version number for the type.

<type_description>: represents the optional description string for the type.

<metadata_name_*>, <metadata_value_*>: represents the optional metadata map of string.

6.4.2 Type Derivation

To simplify type creation and to promote type extensibility TOSCA allows the definition of a new type (the derived
type) based on another type (the parent type). The derivation process can be applied recursively, where a type may
be derived from a long list of ancestor types (the parent, the parent of the parent, etc). Unless specifically stated in
the derivation rules, when deriving new types from parent types the keyname definitions are inherited from the parent
type. Moreover, the inherited definitions may be refined according to the derivation rules of that particular type entity.
For definitions that are not inherited, a new definition MUST be provided (if the keyname is mandatory) or MAY be
provided (if the keyname is not mandatory). If not provided, the keyname remains undefined. For definitions that are
inherited, a refinement of the inherited definition is not mandatory even for mandatory keynames (since it has been
inherited). A definition refinement that is exactly the same as the definition in the parent type does not change in any
way the inherited definition. While unnecessary, it is not wrong.

The following are some generic derivation rules used during type derivation (the specific rules of each TOSCA type
entity are presented in their respective sections):

If not refined, usually a keyname/entity definition, is inherited unchanged from the parent type, unless explicitly
specified in the rules that it is "not inherited".

New entities (such as properties, attributes, capabilities, requirements, interfaces, operations, notification,
parameters) may be added during derivation.

Already defined entities that have a type may be redefined to have a type derived from the original type.

New validation clause is added to already defined keynames/entities (i.e. the defined validation clause does not
replace the validation clauses of the parent type but are added to them).

Some definitions must be totally flexible, so they will overwrite the definition in the parent type.

Some definitions must not be changed at all once defined (i.e. they represent some sort of "signature"
fundamental to the type).

During type derivation the common keynames in type definitions use the following rules:

derived_from: obviously, the definition is not inherited from the parent type. If not defined, it remains undefined
and this type does not derive from another type. If defined, then this type derives from another type, and all its
keyname definitions must respect the derivation rules of the type entity.

version: the definition is not inherited from the parent type. If undefined, it remains undefined.

metadata: the definition is not inherited from the parent type. If undefined, it remains undefined.

<type_name>:
 derived_from: <parent_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <type_description>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 35 of 211

description: the definition is not inherited from the parent type. If undefined, it remains undefined.

6.4.3 Types of Types

TOSCA supports eight different types of types. These types can be defined in a TOSCA file using the grammars
described in this section.

6.4.3.1 Artifact Types

Artifact types can be defined in a TOSCA file using the optional artifact_types keyname using the following grammar:

The following code snippet shows an example artifact type definition:

A detailed description of the artifact type definition grammar is provided in the Artifacts chapter.

6.4.3.2 Data Types

Data types can be defined in a TOSCA file using the optional data_types keyname using the following grammar:

The following code snippet shows an example of data type definition:

artifact_types:
 <artifact_type_def_1>
 <artifact_type_def_2>
 ...

artifact_types:
 MyFile:
 derived_from: foobar:File

data_types:
 <data_type_def_1>
 <data_type_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 36 of 211

A detailed description of the data type definition grammar is provided in the Data Type section.

6.4.3.3 Capability Types

Capability types can be defined in a TOSCA file using the optional capability_types keyname using the following
grammar:

The following code snippet shows example capability type definitions:

A detailed description of the capability type definition grammar is provided in the Capability Type section.

6.4.3.4 Interface Types

data_types:
 # A complex datatype definition
 SimpleContactInfo:
 properties:
 name:
 type: string
 email:
 type: string
 phone:
 type: string

 # datatype definition derived from an existing type
 FullContactInfo:
 derived_from: SimpleContactInfo
 properties:
 street-address:
 type: string
 city:
 type: string
 state:
 type: string
 postal-code:
 type: string

capability_types:
 <capability_type_def_1>
 <capability_type_def_2>
 ...

capability_types:
 MyGenericFeature:
 properties:
 # more details ...

 MyFirstCustomFeature:
 derived_from: MyGenericFeature
 properties:
 # more details ...

 TransactSQL:
 derived_from: MyGenericFeature
 properties:
 # more details ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 37 of 211

Interface types can be defined in a TOSCA file using the optional interface_types keyname using the following
grammar:

The following code snippet shows an example interface type definition:

A detailed description of the interface type definition grammar is provided in the Interface Type section.

6.4.3.5 Relationship Types

Relationship types can be defined in a TOSCA file using the optional relationship_types keyname using the following
grammar:

The following code snippet shows example relationship type definitions:

A detailed description of the relationship type definition grammar is provided in the Interface Type section.

6.4.3.6 Node Types

Node types can be defined in a TOSCA file using the optional node_types keyname using the following grammar:

interface_types:
 <interface_type_def_1>
 <interface_type_def_2>
 ...

interface_types:
 Signal:
 operations:
 signal-begin-receive:
 description: Operation to signal start of some message processing.
 signal-end-receive:
 description: Operation to signal end of some message processed.

relationship_types:
 <relationship_type_def_1>
 <relationship_type_def_2>
 ...

relationship_types:
 HostedOn:
 properties:
 # more details ...

 MyCustomClientServer:
 derived_from: HostedOn
 properties:
 # more details ...

 MyCustomConnectionType:
 properties:
 # more details ...

node_types:
 <node_type_def_1>
 <node_type_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 38 of 211

The following code snippet shows example node type definitions:

A detailed description of the node type definition grammar is provided in the Node Type section.

6.4.3.7 Group Types

Group types can be defined in a TOSCA file using the optional group_types keyname using the following grammar:

The following code snippet shows an example group type definition:

A detailed description of the group type definition grammar is provided in the Group Type section.

6.4.3.8 Policy Types

Policy types can be defined in a TOSCA file using the optional policy_types keyname using the following grammar:

The following code snippet shows an example policy type definition:

A detailed description of the policy type definition grammar is provided in the Policy Type section.

6.5 Repository Definitions

node_types:
 Database:
 description: A generic node type for all databases

 WebApplication:
 description: A generic node type

 MyWebApplication:
 derived_from: WebApplication
 properties:
 my-port:
 type: integer

 MyDatabase:
 derived_from: Database
 capabilities:
 TransactSQL

group_types:
 <group_type_def_1>
 <group_type_def_2>
 ...

group_types:
 MyScalingGroup:
 derived_from: foobar:MyGroup

policy_types:
 <policy_type_def_1>
 <policy_type_def_2>
 ...

policy_types:
 MyScalingPolicy:
 derived_from: foobar:Scaling

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 39 of 211

A repository definition defines an external repository that contains TOSCA files and/or artifacts that are referenced or
imported by this TOSCA file. Repositories are defined using the optional repositories keyname as follows:

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname Mandatory Type Description

description no str Declares a description for the repository being defined.

metadata no map of metadata Defines a section used to declare additional information.

url yes str The URL or network address used to access the repository.

These keynames can be used to define a repository using a grammar as follows:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<repository_name>: represents the mandatory symbolic name of the repository as a string

<repository_description>: contains an optional description of the repository.

<metadata_name_*>, <metadata_value_*>: contains an optional map of metadata using YAML types

<repository_address>: represents the mandatory URL to access the repository as a string.

If only the url needs to be specified, repository definitions can also use a single-line grammar as follows:

The following example show repository definitions using both multiline as well as single-line grammars.

6.6 Function Definitions

A function definition defines an custom function that can be used within this TOSCA file. Function definitions may
include one or more function signatures as well as function implementations. Functions are defined using the optional
functions keyname as follows:

repositories:
 <repository_def_1>
 <repository_def_2>
 ...

<repository_name>:
 description: <repository_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 url: <repository_address>

<repository_name>: <repository_address>

repositories:
 my-project:
 description: My project's code repository in GitHub
 url: https://github.com/my-project/

 external-repo: https://foo.bar

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 40 of 211

The following example shows the definition of a square root function:

6.7 Profiles

A TOSCA profile is a named collection of TOSCA type definitions, repository definitions, artifacts, and function
definitions that logically belong together. One can think of TOSCA profiles as platform libraries exposed by the
TOSCA processor and made available to all services that use that processor. Profiles in TOSCA are similar to
libraries in traditional computer programming languages. They are intended to define collections of domain-specific
components that can be used by service designers to compose complex service templates. Entities defined in
TOSCA profiles are used as follows:

Types defined in a TOSCA profile provide reusable building blocks on which services can be composed.

Artifacts defined in a TOSCA profile can provide implementations for the TOSCA types defined in the profile.

TOSCA implementations can organize supported profiles in a catalog to allow other service templates to import
those profiles by profile name. This avoids the need for every service that uses those profiles to include the profile
type definitions in their service definition packages.

TOSCA files that define profiles can be bundled together with other TOSCA files in the same CSAR package. For
example, a TOSCA profile that defines more abstract node types can be packaged together with TOSCA files that
define substituting service templates for those types.

6.7.1 Grammar

A TOSCA file defines a TOSCA Profile using the profile keyname as follows:

Using this grammar, the profile keyname assigns a profile name to the collection of types, repositories, and functions
defined in this TOSCA file. The specified <profile_name> can be an arbitrary string value that defines the name by which
other TOSCA files can import this profile. TOSCA does not place any restrictions on the value of the profile name
string. However, we encourage a Java-style reverse-domain notation with version as a best-practice convention. For

functions:
 <function_def_1>
 <function_def_2>
 ...

functions:
 sqrt:
 signatures:
 - arguments:
 - type: integer
 validation: { $greater_or_equal: [$value, 0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 - arguments:
 - type: float
 validation: { $greater_or_equal: [$value, 0.0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function
 returns the square root as a float.

profile: <profile_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 41 of 211

example, the following profile statement is used to define Version 2.0 of a set of definitions suitable for describing
cloud computing in an example company:

The following defines a domain-specific profile for Kubernetes:

TOSCA parsers MUST process profile definitions according to the following rules:

TOSCA files that define a profile (i.e., that contain a profile keyname) MUST NOT also define a service template.

If the parser encounters the profile keyname in a TOSCA file, then the corresponding profile name will be
applied to all types defined in that file as well as to types defined in any imported TOSCA files.

If one of those imported files itself contains also defines the profile keyname—and that profile name is different
from the name of the importing profile, then that profile name overrides the profile name value from that point in
the import tree onward, recursively.

6.7.2 TOSCA Simple Profile

Version 1.x of the TOSCA specification included a collection of normative type definitions for building cloud
applications. This collection of type definitions was defined as the TOSCA Simple Profile. Implementations of
TOSCA Version 1.x were expected to include implementations for the types defined in the TOSCA Simple Profile,
and service templates defined using TOSCA Version 1.x implicitly imported the corresponding TOSCA Simple Profile
version.

Starting with TOSCA Version 2.0, the TOSCA Simple Profile type definitions are no longer part of the TOSCA
standard and support for the TOSCA Simple Profile is no longer mandatory. Instead, the definition of the TOSCA
Simple Profile has been moved to an OASIS Open Github repository with the goal of being maintained by the
TOSCA community and governed as an open-source project. In addition, TOSCA Version 2.0 removes the implicit
import of the TOSCA Simple Profile. Service templates that want to continue to use the TOSCA Simple Profile type
definitions must explicitly import that profile.

Eliminating mandatory support for the TOSCA Simple Profile makes it easier for TOSCA to be used for additional
application domains. For example, the European Telecommunications Standards Institute (ETSI) has introduced a
TOSCA profile for Network Functions Virtualization defines Virtualized Network Function Descriptors (VNFDs),
Network Service Descriptors (NSDs) and a Physical Network Function Descriptors (PNFDs).

6.7.3 Profile Versions

TOSCA Profiles are likely to evolve over time and profile designers will release different versions of their profiles. For
example, the TOSCA Simple Profile has gone through minor revisions with each release of the TOSCA Version 1
standard. It is expected that profile designers will use a version qualifier to distinguish between different versions of
their profiles, and service template designers must use the proper string name to make sure they import the desired
versions of these profiles.

When multiple versions of the same profile exist, it is possibly that service templates could mix and match different
versions of a profile in the same service definition. The following code snippets illustrate this scenario:

Assume a profile designer creates version 1 of a base profile that defines (among other things) a "Host" capability
type and a corresponding "HostedOn" relationship type as follows:

profile: com.example.tosca_profiles.cloud_computing:2.0

profile: io.kubernetes:1.30

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 42 of 211

Now let's assume a different profile designer creates a platform-specific profile that defines (among other things) a
"Platform" node type. The Platform node type defines a capability of type "Host". Since the "Host" capability is
defined in the "org.base:v1" profile, that profile must be imported as shown in the snippet below:

At some later point in time, the original profile designer updates the "org.base" profile to Version 2. The updated
version of this profile just adds a "Credential" data type (in addition to defining the "Host" capability type and the
"HostedOn" relationship type), as follows:

Finally, let's assume a service designer creates a template for a service that is to be hosted on the platform defined in
the "org.platform" profile. The template introduces a "Service" node type that has a requirement for the platform's
"Host" capability. It also has a credential property of type "Credential" as defined in "org.base:v2":

tosca_definitions_version: tosca_2_0
profile: org.base:v1

capability_types:
 Host:
 description: Hosting capability

relationship_types:
 HostedOn:
 valid_capability_types: [Host]

tosca_definitions_version: tosca_2_0
profile: org.platform

imports:
- profile: org.base:v1
 namespace: p1

node_types:
 Platform:
 capabilities:
 host:
 type: p1:Host

tosca_definitions_version: tosca_2_0
profile: org.base:v2

capability_types:
 Host:
 description: Hosting capability

relationship_types:
 HostedOn:
 valid_capability_types: [Host]

data_types:
 Credential:
 properties:
 key:
 type: string

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 43 of 211

This service template is invalid, since the "platform" node template does not define a capability of a type that is
compatible with the valid_capability_types specified by the "host" requirement in the "service" node template. TOSCA
grammar extensions are needed to specify that the "Host" capability type defined in "org.base:v2" is the same as the
"Host" capability type defined in "org.base:v1".

The example in this section illustrates a general version compatibility issue that exists when different versions of the
same profile are used in a TOSCA service.

6.8 Imports and Namespaces

Modern software projects typically use modular designs that divide large systems into smaller subsystems (modules)
that together achieve complete system functionality. TOSCA includes a number of features in support of functionality,
including the ability for a TOSCA file to import TOSCA definitions from another TOSCA file. For example, a first
TOSCA file could contain reusable TOSCA type definitions (e.g., node types, relationship types, artifact types, etc.),
function definitions, or repository definitions created by a domain expert. A system integrator could create a second
TOSCA file that defines a service template comprised of node templates and relationship templates that use those
types. TOSCA supports this scenario by allowing the second TOSCA file to import the first TOSCA file, thereby
making the definitions in the first file available to the second file. This mechanism provides an effective way for
companies and organizations to define domain-specific types and/or describe their software applications for reuse in
other TOSCA files.

6.8.1 Import Definitions

Import definitions are used within a TOSCA file to uniquely identify and locate other TOSCA files that have type,
repository, and function definitions to be imported (included) into this TOSCA file. Import definitions are defined in a
TOSCA file using the optional imports keyname as follows:

tosca_definitions_version: tosca_2_0

imports:
- profile: org.base:v2
 namespace: p2
- profile: org.platform
 namespace: pl

node_types:
 Service:
 properties:
 credential:
 type: p2:Credential
 requirements:
 - host:
 capability: p2:Host
 relationship: p2:HostedOn

service_template:
 node_templates:
 service:
 type: Service
 properties:
 credential:
 key: password
 requirements:
 - host: platform
 platform:
 type: pl:Platform

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 44 of 211

The value of the imports keyname consists of a list of import definitions that identify the TOSCA files to be imported.
The following is the list of recognized keynames for a TOSCA import definition:

Keyname Mandatory Type Description

url conditional str The url that references a TOSCA file to be imported. An import statement
must include either a URL or a profile, but not both.

profile conditional str The profile name that references a named type profile to be imported. An
import statement must include either a URL or a profile, but not both.

repository conditional str The optional symbolic name of the repository definition where the imported
file can be found as a string. The repository name can only be used when a
URL is specified.

namespace no str The optional name of the namespace into which to import the type
definitions from the imported template or profile.

description no str Declares a description for the import definition.

metadata no map of
metadata

Defines a section used to declare additional information about the import
definition.

These keynames can be used to import individual TOSCA files using the following grammar:

The following grammar can be used for importing TOSCA profiles:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<file_uri>: contains the URL that references the service template file to be imported as a string.

<repository_name>: represents the optional symbolic name of the repository definition where the imported file can
be found as a string

<profile_name>: the name of the well-known profile to be imported.

<namespace_name>: represents the optional name of the namespace into which type definitions will be imported.
The namespace name can be used to form a namespace-qualified name that uniquely references type
definitions from the imported file or profile. If no namespace name is specified, type definitions will be imported
into the root namespace.

If only the <file_uri> needs to be specified, import definitions can also use a single-line grammar as follows:

imports:
- <import_def_1>
- <import_def_2>
- ...

imports:
- url: <file_uri>
 repository: <repository_name>
 namespace: <namespace_name>

imports:
- profile: <profile_name>
 namespace: <namespace_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 45 of 211

6.8.2 Import Processing Rules

TOSCA processors and tooling MUST handle import statements as follows:

6.8.2.1 Importing Profiles

If the profile keyname is used in the import definition, then the TOSCA processor SHOULD attempt to import the
profile by name:

If <profile_name> represents the name of a profile that is known to the TOSCA processor, then it SHOULD cause
that profile's type definitions to be imported.

If <profile_name> is not known, the import SHOULD be considered a failure.

6.8.2.2 Importing a TOSCA File

If the url keyname is used, the TOSCA processor SHOULD attempt to import the file referenced by <file_uri> as
follows:

If the <file_uri> includes a URL scheme (e.g. "file:" or "https:") then <file_uri> is considered to be a network
accessible resource. If the resource identified by <file_URL> represents a valid TOSCA file, then it SHOULD
cause that TOSCA file to be imported.

Note that if in addition to a URL with a URL scheme, the import definition also specifies a <repository_name>
(using the repository key), then that import definition SHOULD be considered invalid.

If the <file_uri> does not include a URL scheme, it is considered a relative path URL. The TOSCA processor
SHOULD handle such a <file_uri> as follows:

If the import definition also specifies a <repository_name> (using the repository keyname), then <file_uri> refers
to the path name of a file relative to the root of the named repository

If the import definition does not specify a <profile_name> then <file_uri> refers to a TOSCA file located in the
repository that contains the TOSCA file that includes the import definition. If the importing TOSCA file is
located in a CSAR file, then that CSAR file should be treated as the repository in which to locate the
TOSCA file that must be imported.

If <file_uri> starts with a leading slash ("/") then <file_uri> specifies a path name starting at the root of
the repository.

If <file_uri> does not start with a leading slash, then <file_uri> specifies a path that is relative to the
importing document's location within the repository. Double dot notation ("../") can be used to refer
to parent directories in a file path name.

If <file_uri> does not reference a valid TOSCA file file, then the import SHOULD be considered a failure.

6.8.3 Examples

The first example shows how to use an import definition import a well-known profile by name:

The next example shows an import definition used to import a network-accessible resource using the https protocol:

imports:
- <file_uri_1>
- <file_uri_2>

Importing a profile
imports:
- profile: org.oasis-open.tosca.simple:2.0

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 46 of 211

The following shows an import definition used to import a TOSCA file located in the same repository as the importing
file. The file to be imported is referenced using a path name that is relative to the location of the importing file. This
example shows the short notation:

The following shows the same example but using the long notation:

The following example mixes short-notation and long-notation import definitions:

The following example shows how to import TOSCA files using absolute path names (i.e. path names that start at
the root of the repository):

And finally, the following shows how to import TOSCA files from a repository that is different than the repository that
contains the importing TOSCA file:

6.8.4 Namespaces

When importing TOSCA files or TOSCA profiles, there exists a possibility for name collision. For example, an
imported file may define a node type with the same name as a node type defined in the importing file.

For example, let say we have two TOSCA files, A and B, both of which contain a node type definition for "MyNode":

TOSCA File B

Absolute URL with scheme
imports:
- url: https://myorg.org/tosca/types/mytypes.yaml

Short notation supported
imports:
- ../types/mytypes.yaml

Long notation
imports:
- url: ../types/mytypes.yaml

Short notation and long notation supported
imports:
- relative_path/my_defns/my_typesdefs_1.yaml
- url: my_defns/my_typesdefs_2.yaml
 repository: my-company-repo
 namespace: mycompany

Root file
imports:
- url: /base.yaml

External repository
imports:
- url: types/mytypes.yaml
 repository: my-repository

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 47 of 211

TOSCA File A

As you can see, TOSCA file A imports TOSCA file B which results in duplicate definitions of the MyNode node type.
In this example, it is not clear which type is intended to be used for the my_node node template.

To address this issue, TOSCA uses the concept of namespaces:

Each TOSCA file defines a root namespace for all type definitions defined in that file. Root namespaces are
unnamed.

When a TOSCA file imports other TOSCA files, it has two options:

It can import any type definitions from the imported TOSCA files into its root namespace.

Or it can import type definitions from the imported TOSCA files into a separate named namespace. This is
done using the namespace keyname in the associated import definition. When using types imported into a
named namespace, those type names must be qualified by using the namespace name as a prefix.

The following snippets update the previous example using namespaces to disambiguate between the two "MyNode"
type definitions. This first snippet shows the scenario where the "MyNode" definition from TOSCA file B is intended to
be used:

tosca_definitions_version: tosca_2_0
description: TOSCA File B

node_types:
 MyNode:
 derived_from: SoftwareComponent
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity

tosca_definitions_version: tosca_2_0
description: TOSCA File A

imports:
- url: /templates/TOSCAFileB.yaml

node_types:
 MyNode:
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity

service_template:
 node_templates:
 my-node:
 type: MyNode

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 48 of 211

The second snippet shows the scenario where the "MyNode" definition from TOSCA file A is intended to be used:

In many scenarios, imported TOSCA files may in turn import their own TOSCA files, and introduce their own
namespaces to avoid name collisions. In those scenarios, nested namespace names are used to uniquely identify
type definitions in the import tree.

The following example shows a mytypes.yaml TOSCA file that imports a Kubernetes profile into the "k8s"
namespace. It defines a "SuperPod" node type that derives from the "Pod" node type defined in that Kubernetes
profile:

tosca_definitions_version: tosca_2_0
description: TOSCA file A

imports:
- url: /templates/TOSCAFileB.yaml
 namespace: fileB

node_types:
 MyNode:
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity

service_template:
 node_templates:
 my-node:
 type: fileB:MyNode

tosca_definitions_version: tosca_2_0
description: TOSCA file A

imports:
- url: /templates/TOSCAFileB.yaml
 namespace: fileB

node_types:
 MyNode:
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity

service_template:
 node_templates:
 my-node:
 type: MyNode

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 49 of 211

The "mytypes.yaml" file is then imported into the main.yaml TOSCA file, which defines both a node template of type
"SuperPod" as well as a node template of type "Pod". Nested namespace names are used to identify the "Pod" node
type from the Kubernetes profile:

Within each namespace (including the unnamed root namespace), names must be unique. This means that duplicate
local names (i.e., within the same TOSCA file SHALL be considered an error. These include, but are not limited to
duplicate names found for the following definitions:

Repositories (repositories)
Data Types (data_types)
Node Types (node_types)
Relationship Types (relationship_types)
Capability Types (capability_types)
Artifact Types (artifact_types)
Interface Types (interface_types)
Policy Types (policy_types)
Group Types (group_types)
Function definitions (functions)

6.9 Service Template Definition

This section defines the service template of a TOSCA file. The main ingredients of the service template are node
templates representing components of the application and relationship templates representing links between the
components. These elements are defined in the nested node_templates section and the nested relationship_templates
sections, respectively. Furthermore, a service template allows for defining input parameters, output parameters,
workflows as well as grouping of node templates and associated policies.

6.9.1 Service Template Grammar

The following is the list of recognized keynames for a TOSCA service template:

tosca_definitions_version: tosca_2_0
description: mytypes.yaml

imports:
- profile: io.kubernetes:1.30
 namespace: k8s

node_types:
 MyNode: {}
 SuperPod:
 derived_from: k8s:Pod

tosca_definitions_version: tosca_2_0
description: main.yaml

imports:
- url: mytypes.yaml
 namespace: my

service_template:
 node_templates:
 my-node:
 type: my:MyType
 pod:
 type: my:k8s:Pod

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 50 of 211

Keyname Mandatory Type Description

description no str The optional description for the service template.

metadata no map of metadata Defines a section used to declare additional information
about this service template.

inputs no map of parameter
definitions

An optional map of input parameters (i.e., as parameter
definitions) for the service template.

outputs no map of parameter
definitions

An optional map of output parameters (i.e., as
parameter definitions) for the service template.

node_templates yes map of node
templates

A mandatory map of node template definitions for the
service template.

relationship_templates no map of relationship
templates

An optional map of relationship templates for the
service template.

groups no map of group
definitions

An optional map of group definitions whose members
are node templates defined within this same service
template.

policies no seq of policy
definitions

An optional list of policy definitions for the service
template.

substitution_mappings no substitution_mapping An optional declaration that exports the service
template as an implementation of a Node type. This
also includes the mappings between the external node
type's capabilities and requirements to existing
implementations of those capabilities and requirements
on node templates declared within the service template.

workflows no map of workflow
definitions

An optional map of workflow definitions for the service
template.

The overall grammar of the service_template section is shown below. Detailed grammar definitions are provided in
subsequent subsections.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 51 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<input_parameter_def_*>: represents the optional map of input parameter definitions for the service template.

<output_parameter_def_*>: represents the optional map of output parameter definitions for the service template.

<node_template_def_*>: represents the mandatory map of node template definitions for the service template.

<group_def_*>: represents the optional map of group definitions whose members are node templates that also are
defined within this service template.

<policy_def_*>: represents the optional ordered list of policy definitions for the service template.

<substitution_mappings>: defines how services created from this template can substitute other nodes.

<workflow_def_*>: represents the optional map of imperative workflow definitions for the service template.

Note that duplicate template names within a service template SHALL be considered an error. These include, but are
not limited to duplicate names found for the following template types:

Inputs (inputs)
Outputs (outputs)

service_template:
 description: <template_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 inputs:
 <input_parameter_def_1>
 <input_parameter_def_2>
 ...
 outputs:
 <output_parameter_def_1>
 <output_parameter_def_2>
 ...
 node_templates:
 <node_template_def_1>
 <node_template_def_2>
 ...
 relationship_templates:
 <relationship_template_def_1>
 <relationship_template_def_2>
 ...
 groups:
 <group_def_1>
 <group_def_2>
 ...
 policies:
 - <policy_def_1>
 - <policy_def_2>
 - ...
 substitution_mappings:
 <substitution_mappings>
 workflows:
 <workflow_def_1>
 <workflow_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 52 of 211

Node Templates (node_templates)
Relationship Templates (relationship_templates)
Groups (groups)
Policies (policies)
Workflows (workflows)

More detailed explanations for each of the service template grammar's keynames appears in the sections below.

6.9.2 Input Parameters

The inputs section of a service template provides a means to define parameters using TOSCA parameter definitions,
their allowed values via validation clauses and default values. Input parameters defined in the inputs section of a
service template can be mapped to properties of node templates or relationship templates within the same service
template and can thus be used for parameterizing the instantiation of the service template.

When deploying a service from the service template, values must be provided for all mandatory input parameters that
have no default value defined. If no input is provided, then the default value is used.

The grammar of the inputs section is as follows:

The following code snippet shows a simple inputs example without any validation clause:

The following is an example of input parameter definitions with a validation clause:

6.9.3 Node Templates

The node_templates section of a service template lists the node templates that describe the components that are used
to compose applications.

The grammar of the node_templates section is a follows:

The following code snippet shows an example of a node_templates section:

inputs:
 <parameter_def_1>
 <parameter_def_2>
 ...

inputs:
 foo-name:
 type: string
 description: Simple string parameter without a validation clause.
 default: bar

inputs:
 site-name:
 type: string
 description: String parameter with validation clause.
 default: My Site
 validation: { $greater_or_equal: [$value, 9] }

node_templates:
 <node_template_def_1>
 <node_template_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 53 of 211

6.9.4 Relationship Templates

The relationship_templates section of a service template lists the relationship templates that describe the relations
between components that are used to compose cloud applications. Note that the explicit definition of relationship
templates is optional, since relationships between nodes get implicitly defined by referencing other node templates in
the requirements sections of node templates.

The grammar of the relationship_templates section is as follows:

The following code snippet shows an example of a relationship_templates section:

6.9.5 Output Parameters

The outputs section of a service template provides a means to define the output parameters that are available from a
deployed TOSCA service. It allows for exposing attributes defined in node templates or relationship templates within
the containing service_template to users of a service.

The grammar of the outputs section is as follows:

The following code snippet shows an example of the outputs section:

6.9.6 Workflow Definitions

The workflows section of a service template allows for declaring imperative workflows that can operate on entities in
the service template.

The grammar of the workflows section is as follows:

node_templates:
 my-webapp:
 type: WebApplication

 my-database:
 type: Database

relationship_templates:
 <relationship_template_def_1>
 <relationship_template_def_2>
 ...

relationship_templates:
 my-connects-to:
 type: ConnectsTo
 interfaces:
 configure:
 inputs:
 speed: { $get_attribute: [SELF, SOURCE, connect-speed] }

outputs:
 <parameter_def_1>
 <parameter_def_2>
 ...

outputs:
 server-address:
 description: The first private IP address for the provisioned server.
 value: { $get_attribute: [node5, networks, private, addresses, 0] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 54 of 211

The following example shows the definition of a workflow:

6.9.7 Group Definitions

The groups section of a service template allows for grouping node representations created from one or more node
templates within a TOSCA service template. This grouping can then be used to apply policies to the group.

The grammar of the groups section is as follows:

The following example shows the definition of three "Compute" nodes in the node_templates section of a service_template
as well as the grouping of two of the "Compute" nodes in group "servers":

6.9.8 Policy Definitions

The policies section of a service template allows for declaring policies that can be applied to entities in the service
template.

The grammar of the policies section is as follows:

workflows:
 <workflow_def_1>
 <workflow_def_2>
 ...

workflows:
 scaling-workflow:
 steps:
 TO BE PROVIDED

groups:
 <group_def_1>
 <group_def_2>
 ...

node_templates:
 server1:
 type: Compute
 # more details ...

 server2:
 type: Compute
 # more details ...

 server3:
 type: Compute
 # more details ...

groups:
 # server2 and server3 are part of the same group
 servers:
 type: MyScaling
 members: [server2, server3]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 55 of 211

The following example shows the definition of a placement policy:

6.9.9 Substitution Mappings

The substitution_mappingssection of a service template declares this service template as a candidate for substituting
nodes marked with the "substitute" directive in other service templates.

The grammar of a substitution_mapping is as follows:

The following code snippet shows an example substitution mapping:

7 Nodes and Relationships
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

policies:
- <policy_def_1>
- <policy_def_2>
- ...

policies:
- my-placement:
 type: Placement

substitution_mappings:
 <substitution_mapping>

service_template:
 inputs:
 cpus:
 type: integer
 validation: { $less_than: [$value, 5] }

 substitution_mappings:
 node_type: MyService
 properties:
 num-cpus: cpus
 capabilities:
 bar: [some-service, bar]
 requirements:
 foo: [some-service, foo]

 node_templates:
 some-service:
 type: MyService
 properties:
 rate: 100
 capabilities:
 bar:
 ...
 requirements:
 - foo:
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 56 of 211

7.1 Node Type

A node type is a reusable entity that defines the structure of observable properties and attributes of a node, the
capabilities and requirements of that node, as well as its supported interfaces and the artifacts it uses.

A node type definition is a type of TOSCA type definition and as a result supports the common keynames listed in the
section Common Keynames in Type Definitions. In addition, the node type definition has the following recognized
keynames:

Keyname Mandatory Type Description

properties no map of property
definitions

An optional map of property definitions for the node type.

attributes no map of attribute
definitions

An optional map of attribute definitions for the node type.

capabilities no map of capability
definitions

An optional map of capability definitions for the node type.

requirements no seq of requirement
definitions

An optional list of requirement definitions for the node type.

interfaces no map of interface
definitions

An optional map of interface definitions supported by the
node type.

artifacts no map of artifact definitions An optional map of artifact definitions for the node type.

These keynames can be used according to the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 57 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<node_type_name>: represents the mandatory symbolic name of the node type being declared.

<parent_node_type_name>: represents the name (string) of the node type from which this node type definition
derives (i.e. its parent type). Parent node types names can be qualified using a namespace prefix.

<property_def_*>: represents the optional map of property definitions for the node type.

<attribute_def_*>: represents the optional map of attribute definitions for the node type.

<capability_def_*>: represents the optional map of capability definitions for the node type.

<requirement_def_*>: represents the optional list of requirement definitions for the node type. Note that
requirements are intentionally expressed as a list of TOSCA Requirement definitions that SHOULD be resolved
(processed) in sequence by TOSCA processors. Requirement names must be unique within the context of a
node type definition.

<interface_def_*>: represents the optional map of interface definitions supported by the node type.

<artifact_def_*>: represents the optional map of artifact definitions for the node type

During node type derivation, the keynames follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.

<node_type_name>:
 derived_from: <parent_node_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <node_type_description>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 attributes:
 <attribute_def_1>
 <attribute_def_2>
 ...
 capabilities:
 <capability_def_1>
 <capability_def_2>
 ...
 requirements:
 - <requirement_def_1>
 - <requirement_def_2>
 - ...
 interfaces:
 <interface_def_1>
 <interface_def_2>
 ...
 artifacts:
 <artifact_def_1>
 <artifact_def_1>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 58 of 211

attributes: existing attribute definitions may be refined; new attribute definitions may be added.

capabilities: existing capability definitions may be refined; new capability definitions may be added.

requirements: existing requirement definitions may be refined; new requirement definitions may be added.

interfaces: existing interface definitions may be refined; new interface definitions may be added.

artifacts: existing artifact definitions (identified by their symbolic name) may be redefined; new artifact definitions
may be added.

note that an artifact is created for a specific purpose and corresponds to a specific file (with e.g. a path
name and checksum); if it cannot meet its purpose in a derived type then a new artifact should be defined
and used.

thus, if an artifact defined in a parent node type does not correspond anymore with the needs in the child
node type, its definition may be completely redefined; thus, an existing artifact definition is not refined, but
completely overwritten.

The following code snippet shows an example node type definition:

7.2 Node Template

A node template specifies the occurrence of one or more instances of a component of a given type in an application
or service. A node template defines application-specific values for the properties, relationships, or interfaces defined
by its node type.

The following is the list of recognized keynames for a TOSCA node template definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the node type on which the node template is
based.

description no str An optional description for the node template.

MyApp:
 derived_from: SoftwareComponent
 description: My company's custom application
 properties:
 my-app-password:
 type: string
 description: Application password
 validation:
 $and:
 - { $greater_or_equal: [$value, 6] }
 - { $less_or_equal: [$value, 10] }
 attributes:
 my-app-port:
 type: integer
 description: Application port number
 requirements:
 - some-database:
 capability: EndPoint.Database
 node: Database
 relationship: ConnectsTo

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 59 of 211

metadata no map of
metadata

Defines a section used to declare additional information.

directives no seq of strs An optional list of directive values to provide processing instructions to
orchestrators and tooling.

properties no map of
property
assignments

An optional map of property value assignments for the node template.

attributes no map of
attribute
assignments

An optional map of attribute value assignments for the node template.

requirements no seq of
requirement
assignments

An optional list of requirement assignments for the node template.

capabilities no map of
capability
assignments

An optional map of capability assignments for the node template.

interfaces no map of
interface
assignments

An optional map of interface assignments for the node template.

artifacts no map of
artifact
definitions

An optional map of artifact definitions for the node template.

count no non-negative
integer

An optional keyname that specifies how many node representations
must be created from this node template. If not defined, the assumed
count value is 1.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to select
an already existing node if this node template is marked with the
"select" directive.

copy no str The optional (symbolic) name of another node template from which to
copy all keynames and values into this node template.

Keyname Mandatory Type Description

These keynames can be used according to the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 60 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<node_template_name>: represents the mandatory symbolic name of the node template being defined.

<node_type_name>: represents the name of the node type on which the node template is based.

<directive_*>: represents the optional list of processing instruction values (as strings) for use by tooling and
orchestrators. Valid directives supported by this version of the standard are "create", "select", and "substitute".
If no directives are specified, "create" is used as the default value.

<property_assignment_*>: represents the optional map of property assignments for the node template that provide
values for properties defined in its declared node type.

<attribute_assignment_*>: represents the optional map of attribute assignments for the node template that provide
values for attributes defined in its declared node type.

<requirement_assignment_*>: represents the optional list of requirement assignments for the node template for
requirement definitions provided in its declared node type.

<capability_assignment_*>: represents the optional map of capability assignments for the node template for
capability definitions provided in its declared node type.

<interface_assignment_*>: represents the optional map of interface assignments for the node template interface

<node_template_name>:
 type: <node_type_name>
 description: <node_template_description>
 directives: [<directive_1>, <directive_2>, ...]
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 attributes:
 <attribute_assignment_1>
 <attribute_assignment_2>
 ...
 requirements:
 - <requirement_assignment_1>
 - <requirement_assignment_2>
 - ...
 capabilities:
 <capability_assignment_1>
 <capability_assignment_2>
 ...
 interfaces:
 <interface_assignment_1>
 <interface_assignment_2>
 ...
 artifacts:
 <artifact_def_1>
 <artifact_def_2>
 ...
 count: <node_count_value>
 node_filter: <node_filter_def>
 copy: <source_node_template_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 61 of 211

definitions provided in its declared node type.

<artifact_def_*>: represents the optional map of artifact definitions for the node template that augment or replace
those provided by its declared node type.

<node_count_value>: represents the number of node representations that must be created from this node template.
If not specified, a default value of 1 is used.

<node_filter_def>: represents the optional node filter TOSCA orchestrators will use for selecting a matching node
template.

<source_node_template_name>: represents the optional (symbolic) name of another node template from which to
copy all keynames and values into this node template. Note that he source node template provided as a value
on the copy keyname MUST NOT itself use the copy keyname (i.e., it must itself be a complete node template
description and not copied from another node template).

The following code snippet shows an example node template definition:

7.2.1 Node Template Directives

As described in the section above, a node template supports the following 3 directives used by the TOSCA resolver
to populate nodes in the representation graph:

"create" is the default directive, assumed if no directives are defined. The resolver is creating the node based
on the node template with the specified properties, attributes, and interface implementations.

"select" is the directive that specifies that a node from a representation graph external to this service should be
selected and added into this service representation graph. The node is not duplicated and its properties,
attributes, interfaces and outgoing relationships cannot be changed. Nevertheless, this node can become the
target of incoming relationships within this representation graph. The symbolic name of the node is an alias by
which this node is accessible in this representation graph.

The only keyname that is relevant for the resolver if the "select" directive is used is the node_filter, which is
used to select a suitable node. All the others (e.g. property assignments, interface implementations,
requirements, etc.) are ignored.

As the node_filter is only relevant for the "select" directive, it should not be present if the "select" directive is
not present. Note that if the node_filter is missing then the selection will be based solely on the node type.

A detailed description of the node_filter is given in the Node Filter Definition Section.

"substitute" is the directive that specifies that this node's realization and behavior should be realized by an
internal service created from a substitution template.

A node representation for the substituted node will be created and added to the representation graph of
the top-level service, and can be accessed in the top-level service via its symbolic name as any other

node_templates:
 mysql:
 type: DBMS.MySQL
 properties:
 root-password: { $get_input: my-mysql-rootpw }
 port: { $get_input: my-mysql-port }
 requirements:
 - host: db-server
 interfaces:
 standard:
 operations:
 configure: scripts/my_own_configure.sh

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 62 of 211

node representation. Within the the top-level service scope none of the substitution service details are
visible.

The substituted node properties are defined from the property assignments, its relationships are
established from requirements, and the node can be target of other relationships.

A service is created from the substitution template having its own representation graph and associated to
the substituted node in the top-level service.

The properties of the substituted node may become inputs to the substitution service if such a
substitution mapping is defined.

The attributes of the substituted node will receive the output values of the substitution service if
such substitution mapping is defined. Otherwise their value will remain undefined.

As the behavior of the substituted node is deferred to the substitution service, any implementation of the
interfaces in the node template are ignored. To connect a behavior to the interface operations and
notifications they or must be mapped to workflows in the substitution service (which then provide the
"implementation").

A detailed description of the substitution mechanism is given in the Substitution Section.

Note that several directives can be specified in a list. The TOSCA resolver will attempt to use them in the right
sequence. If not possible to fulfill the first in the list, it will try with the second, and so on. For example directives: select,
substitute, create means that first the resolver will try to find a node that matches the node_filter within its available scope.
If not found, it will try to find a suitable substitution template that matches this node. If not found, it will finally try to
create a new node from the node template definition.

7.3 Relationship Type

A relationship type is a reusable entity that defines the structure of observable properties and attributes of a
relationship as well as its supported interfaces.

A relationship type definition is a type of TOSCA type definition and as a result supports the common keynames
listed in the section Common Keynames in Type Definitions. In addition, the relationship type definition has the
following recognized keynames:

Keyname Mandatory Definition/Type Description

properties no map of property
definition

An optional map of property definitions for the relationship
type.

attributes no map of attribute
definitions

An optional map of attribute definitions for the relationship
type.

interfaces no map of interface
definitions

An optional map of interface definitions supported by the
relationship type.

valid_capability_types no seq of strs An optional list of one or more names of capability types
that are valid targets for this relationship. If undefined, all
capability types are valid.

valid_target_node_types no seq of strs An optional list of one or more names of node types that
are valid targets for this relationship. If undefined, all node
types are valid targets.

valid_source_node_types no seq of strs An optional list of one or more names of node types that
are valid sources for this relationship. If undefined, all node
types are valid sources.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 63 of 211

These keynames can be used according to the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<relationship_type_name>: represents the mandatory symbolic name of the relationship type being declared as a
string.

<parent_relationship_type_name>: represents the name (string) of the relationship type from which this relationship
type definition derives (i.e., its "parent" type). Parent node type names can be qualified using a namespace
prefix.

<property_def_*>: represents the optional map of property definitions for the relationship type.

<attribute_def_*>: represents the optional map of attribute definitions for the relationship type.

<interface_def_*>: represents the optional map of interface definitions supported by the relationship type.

<capability_type_name_*>: represents the optional list of valid target capability types for the relationship. Target
capability type names can be qualified using a namespace prefix. If undefined, the valid target types are not
restricted at all (i.e., all capability types are valid).

<target_node_type_name_*>: represents the optional list of valid target node types for the relationship. Target node
type names can be qualified using a namespace prefix. If undefined, the valid types are not restricted at all (i.e.,
all node types are valid).

<source_node_type_name_*>: represents the optional list of valid source node types for the relationship. Source
node type names can be qualified using a namespace prefix. If undefined, the valid types are not restricted at
all (i.e., all node types are valid).

During relationship type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.

attributes: existing attribute definitions may be refined; new attribute definitions may be added.

<relationship_type_name>:
 derived_from: <parent_relationship_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <relationship_description>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 attributes:
 <attribute_def_1>
 <attribute_def_2>
 ...
 interfaces:
 <interface_def_1>
 <interface_def_2>
 ...
 valid_capability_types: [<capability_type_name_1>, <capability_type_name_2>, ...]
 valid_target_node_types: [<target_node_type_name_1>, <target_node_type_name_2>, ...]
 valid_source_node_types: [<source_node_type_name_1>, <source_node_type_name_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 64 of 211

interfaces: existing interface definitions may be refined; new interface definitions may be added.

valid_capability_types: A derived type is only allowed to further restrict the list of valid capability types, not to
expand it. This means that if valid_capability_types is defined in the parent type, each element in the derived type's
list of valid capability types must either be in the parent type list or derived from an element in the parent type
list; if valid_target_types is not defined in the parent type then no derivation restrictions need to be applied.

valid_target_node_types: same derivation rules as for valid_capability_types

valid_source_node_types: same derivation rules as for valid_capability_types

The following code snippet shows an example relationship type definition:

7.4 Relationship Template

A relationship template specifies the occurrence of a relationship of a given type between nodes in an application or
service. A relationship template defines application-specific values for the properties, relationships, or interfaces
defined by its relationship type.

TOSCA allows relationships between nodes to be defined inline using requirement assignments within node
templates or out-of-band using relationship templates as defined in this section. While the use of requirement
assignments is more common, the use of relationship templates decouples relationship definitions from specific node
templates, allowing reuse of these relationship templates by multiple node templates. Relationship templates are
local within a service template and so have a limited scope.

Note that relationship template grammar is underspecified currently and needs further work.

The following is the list of recognized keynames for a TOSCA relationship template definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the relationship type on which the relationship
template is based.

description no str An optional description for the relationship template.

metadata no map of
metadata

Defines a section used to declare additional information.

properties no map of
property
assignments

An optional map of property assignments for the relationship template.

attributes no map of
attribute
assignments

An optional map of attribute assignments for the relationship template.

interfaces no map of
interface
assignments

An optional map of interface assignments for the relationship template.

copy no str The optional (symbolic) name of another relationship template from
which to copy all keynames and values into this relationship template.

These keynames can be used according to the following grammar:

AppDependency:
 derived_from: DependsOn
 valid_capability_types: [SomeAppFeature]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 65 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<relationship_template_name>: represents the mandatory symbolic name of the relationship template being
declared.

<relationship_type_name>: represents the name of the relationship type the relationship template is based upon.

<relationship_template_description>: represents the optional description string for the relationship template.

<property_assignment_*>: represents the optional map of property assignments for the relationship template that
provide values for properties defined in its declared relationship type.

<attribute_assignment_*>: represents the optional map of attribute assignments for the relationship template that
provide values for attributes defined in its declared relationship type.

<interface_assignment_*>: represents the optional map of interface assignments for the relationship template for
interface definitions provided by its declared relationship type.

<source_relationship_template_name>: represents the optional (symbolic) name of another relationship template to
copy into (all keynames and values) and use as a basis for this relationship template.

<source_relationship_template_name>: represents the optional (symbolic) name of another relationship template from
which to copy all keynames and values into this relationship template. Note that he source relationship template
provided as a value on the copy keyname MUST NOT itself use the copy keyname (i.e., it must itself be a
complete relationship template description and not copied from another relationship template).

The following code snippet shows an example relationship template definition:

8 Capabilities and Requirements
The content in this section is normative unless otherwise labeled except:

<relationship_template_name>:
 type: <relationship_type_name>
 description: <relationship_type_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 attributes:
 <attribute_assignment_1>
 <attribute_assignment_2>
 ...
 interfaces:
 <interface_assignment_1>
 <interface_assignment_2>
 ...
 copy: <source_relationship_template_name>

relationship_templates:
 storage-attachment:
 type: AttachesTo
 properties:
 location: /my_mount_point

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 66 of 211

the examples
references unless labelled as normative.

8.1 Capability Type

A capability type is a reusable entity that describes the properties and attributes of a capability that a node type can
declare to expose. Requirements that are declared as part of one node can be fulfilled by the capabilities declared by
another node.

A capability type definition is a type of TOSCA type definition and as a result supports the common keynames listed
in the section Common Keynames in Type Definitions. In addition, the capability type definition has the following
recognized keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the capability type.

attributes no map of
attribute
definitions

An optional map of attribute definitions for the capability type.

valid_source_node_types no seq of
strs

An optional list of one or more valid names of node types that
are supported as valid sources of any relationship established to
the declared capability type. If undefined, all node types are valid
sources.

valid_relationship_types no seq of
strs

An optional list of one or more valid names of relationship types
that are supported as valid types of any relationship established
to the declared capability type. If undefined, all relationship types
are valid.

These keynames can be used according to the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<capability_type_name>: represents the mandatory name of the capability type being declared as a string.

<capability_type_name>:
 derived_from: <parent_capability_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <capability_description>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 attributes:
 <attribute_def_1>
 <attribute_def_2>
 ...
 valid_source_node_types: [<node_type_name_1>, <node_type_name_2>, ...]
 valid_relationship_types: [<relationship_type_name_1>, <relationship_type_name_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 67 of 211

<parent_capability_type_name>: represents the name of the capability type from which this capability type derives
(i.e., its parent type). Parent capability type names can be qualified using a namespace prefix.

<property_def_*>: represents the optional map of property definitions for the capability type.

<attribute_def_*>: represents the optional map of attribute definitions for the capability type.

<node_type_name_*>: represents the optional list of one or more type names for nodes that are allowed to
establish a relationship to a capability of this capability type; if undefined, the valid source types are not
restricted at all (i.e. all node types are valid).

<relationship_type_name_*>: represents the optional list of one or more type names for relationship that are allowed
to be established to a capability of this capability type; if undefined, the valid types are not restricted at all (i.e.
all relationship types are valid).

During capability type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.

attributes: existing attribute definitions may be refined; new attribute definitions may be added.

valid_source_node_types: A derived type is only allowed to further restrict the list of valid source node types, not to
expand it. This means that if valid_source_node_types is defined in the parent type, each element in the derived
type's list of valid source node types must either be in the parent type list or derived from an element in the
parent type list; if valid_source_node_types is not defined in the parent type then no derivation restrictions need to
be applied.

valid_relationship_types: same derivations rules as for valid_source_node_types.

The following code snippet shows an example capability type definition:

8.2 Capability Definition

A capability definition defines a typed set of data that a node can expose and that is used to describe a relevant
feature of the component described by the node that can be used to fulfill a requirement exposed by another node. A
capability is defined as part of a node type definition and may be refined during node type derivation.

The following is the list of recognized keynames for a TOSCA capability definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the capability type on which this
capability definition is based.

description no str The optional description of the Capability definition.

metadata no map of
metadata

Defines a section used to declare additional information.

MyFeature:
 description: A custom feature of my company's application
 properties:
 my-feature-setting:
 type: string
 my-feature-value:
 type: integer
 valid_source_node_types:
 - MyCompanyNodes

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 68 of 211

properties no map of
property
refinements

An optional map of property refinements for the capability
definition. The referred properties must have been defined in
the capability type definition referred to by the type keyname.
New properties may not be added.

attributes no map of
attribute
refinements

An optional map of attribute refinements for the capability
definition. The referred attributes must have been defined in
the capability type definition referred by the type keyname. New
attributes may not be added.

valid_source_node_types no seq of strs An optional list of one or more valid names of node types that
are supported as valid sources of any relationship established
to the declared capability type. If undefined, all node types are
valid sources. If valid_source_node_types is defined in the
capability type, each element in this list must either be or
derived from an element in the list defined in the type.

valid_relationship_types no seq of strs An optional list of one or more valid names of relationship
types that are supported as valid types of any relationship
established to the declared capability type. If undefined, all
relationship types are valid. If valid_relationship_types is defined in
the capability type, each element in this list must either be or
derived from an element in the list defined in the type.

Keyname Mandatory Type Description

Note that the occurrences keyname that was present in previous versions of TOSCA is deprecated in TOSCA 2.0. By
default, the number of occurrences is UNBOUNDED, i.e. any number of relationships can be created with a certain
capability as a target. To constrain the creation of a relationship to a target capability, the new allocation keyname is
used within a requirement assignment.

These keynames can be used according to the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<capability_definition_name>: represents the symbolic name of the capability as a string. Capability symbolic names
SHALL be unique; it is an error if a capability name is found to occur more than once.

<capability_type>: represents the mandatory name of a capability type on which the capability definition is based.

<property_refinement_*>: represents the optional map of property refinements for properties already defined in the
capability type; new properties may not be added.

<attribute_refinement_*>: represents the optional map of attribute refinements for attributes already defined in the

<capability_definition_name>:
 type: <capability_type>
 description: <capability_description>
 properties:
 <property_refinement_1>
 <property_refinement_2>
 ...
 attributes:
 <attribute_refinement_1>
 <attribute_refinement_2>
 ...
 valid_source_node_types: [<node_type_name_1>, <node_type_name_2>, ...]
 valid_relationship_types: [<relationship_type_name_1>, <relationship_type_name_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 69 of 211

capability type; new attributes may not be added.

<node_type_name_*>: represents the optional list of one or more node type names for nodes that are allowed to
establish a relationship to this capability.

if valid_source_node_types is defined in the capability type, each element in this list MUST either be in that list
or derived from an element in that list; if valid_source_node_types is not defined in the capability type then no
restrictions are applied.

<relationship_type_name_*>: represents the optional list of one or more relationship type names for relationships
that are allowed to be established to this capability

if valid_relationship_types is defined in the capability type, each element in this list MUST either be in that list
or derived from an element in that list; if valid_relationship_types is not defined in the capability type then no
restrictions are applied.

The following single-line grammar may be used when only the capability type needs to be declared, without further
refinement of the definitions in the capability type:

The following code snippet shows an example capability definition:

The following shows a capability definition using single-line grammar:

8.2.1 Capability Refinement

If a node type defines a capability with the same name as a capability that is already defined in one of its parent node
types, then that capability definition is considered a capability refinement rather than a capability definition. Capability
refinements adhere to the following refinement rules for the supported keynames:

type: in a capability refinement, the type keyname is no longer mandatory. If the type is omitted, the type of the
refined capability definition will be used. If the type is specified, it must be derived from (or the same as) the
type in the capability definition in the parent node type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the capability definition in the
parent node type definition.

properties: not applicable to the definitions in the parent node type but to the definitions in the capability type
referred by the type keyname (see grammar above for the rules).

attributes: not applicable to the definitions in the parent node type but to the definitions in the capability type
referred by the type keyname (see grammar above for the rules).

valid_source_node_types: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

valid_relationship_types: not applicable to the definitions in the parent node type but to the definitions in the
capability type referred by the type keyname (see grammar above for the rules).

8.3 Capability Assignment

<capability_definition_name>: <capability_type>

some-capability:
 type: MyCapabilityTypeName
 properties:
 limit:
 default: 100

some-capability: MyCapabilityTypeName

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 70 of 211

A capability assignment allows node template authors to assign values to properties and attributes for a capability
definition that is part of the node template's type definition.

The following is the list of recognized keynames for a TOSCA capability assignment:

Keyname Mandatory Type Description

properties no map of property assignments An optional map of property
assignments for the capability
definition.

attributes no map of attribute assignments An optional map of attribute
assignments for the capability
definition.

directives no An optional list of directive values to provide
processing instructions to orchestrators and
tooling.

Note that the occurrences keyname that was present in previous versions of TOSCA is deprecated in TOSCA 2.0. By
default, the number of occurrences is UNBOUNDED, i.e. any number of relationships can be created with a certain
capability as a target. To constrain the creation of a relationship to a target capability, the new allocation keyname is
used within a requirement assignment.

These capability definition keynames can be used according to the following grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<capability_definition_name>: represents the symbolic name of the capability as a string.

<property_assignment_*>: represents the optional map of property assignments that provide values for properties
defined in the Capability definition.

<attribute_assignment_*>: represents the optional map of attribute assignments that provide values for attributes
defined in the Capability definition.

<directive_*>: represents the optional list of strings that defines if this capability allows relationships from source
nodes created within this service template (internal) or from source nodes created outside this service template
as available to the TOSCA environment (external) or if it should use a combination of the above. Valid values
for the strings are as follows:

internal: relationships to this capability can be created from source nodes created within this template.

external: relationships to this capability can be created from source nodes created outside this template as
available to the TOSCA environment.

The order of the strings in the list defines which scope should be attempted first when fulfilling the assignment.

<capability_definition_name>:
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 attributes:
 <attribute_assignment_1>
 <attribute_assignment_2>
 ...
 directives: [<directive_1>, <directive_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 71 of 211

If no directives are defined, the default value is left to the particular implementation.

The following code snippet shows an example capability assignment:

8.4 Requirement Definition

The requirement definition describes a requirement of a TOSCA node that needs to be fulfilled by a matching
capability declared by another TOSCA node. A requirement is defined as part of a node type definition and may be
refined during node type derivation.

The following is the list of recognized keynames for a TOSCA requirement definition:

Keyname Mandatory Type Description

description no str The optional description of the requirement definition.

metadata no map of
metadata

Defines a section used to declare additional information.

relationship yes relationship
definition

The mandatory keyname used to define the relationship created as a
result of fulfilling the requirement.

node no str The optional keyname used to provide the name of a valid node type that
contains the capability definition that can be used to fulfill the requirement.

capability yes str The mandatory keyname used to specify the capability type for
capabilities that can be used to fulfill this requirement. If the requirement
definition defines a target node type, the capability keyname can also be
used instead to specify the symbolic name of a capability defined by that
target node type.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to select a
type-compatible target node that can fulfill this requirement at runtime.

count_range no seq of 2
ints (see
note)

The optional minimum required and maximum allowed number of
relationships created by the requirement. If this key is not specified, the
implied default of [0, UNBOUNDED] will be used. Note: the value
UNBOUNDED is also supported to represent any positive integer.

The relationship keyname in a requirement definition specifies a relationship definition that provides information needed
by TOSCA Orchestrators to construct a relationship to the TOSCA node that contains the matching target capability.
Relationship definitions support the following keynames:

Keyname Mandatory Type Description

type yes str The mandatory keyname used to provide the name of the relationship
type used for the relationship.

description no str The optional description of the relationship definition.

node_templates:
 my-node:
 capabilities:
 my-feature:
 properties:
 limit: 100

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 72 of 211

metadata no map of
metadata

Defines a section used to declare additional information.

properties no map of
property
refinements

An optional map of property refinements for the relationship definition.
The referred properties must have been defined in the relationship type
definition referred by the type keyname. New properties may not be added.

attributes no map of
attribute
refinements

An optional map of attribute refinements for the relationship definition.
The referred attributes must have been defined in the relationship type
definition referred by the type keyname. New attributes may not be added.

interfaces no map of
interface
refinements

The optional keyname used to define interface refinements for interfaces
defined by the relationship type.

Keyname Mandatory Type Description

The keynames supported by requirement definitions and relationship definitions can be used according to the
following grammar:

If the relationship definition only needs to specify the relationship type without refining properties, attributes, or
interfaces then as a convenience the following short-hand grammar can also be used:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<requirement_definition_name>: represents the mandatory symbolic name of the requirement definition as a string.
Requirement definition names SHALL be unique within a node type definition; it is an error if the same
requirement name occurs more than once.

<requirement_definition_name>:
 description: <requirement_description>
 capability: <capability_type_name> | <capability_symbolic_name>
 node: <node_type_name>
 relationship:
 type: <relationship_type_name>
 properties:
 <property_refinement_1>
 <property_refinement_2>
 ...
 attributes:
 <attribute_refinement_1>
 <attribute_refinement_2>
 ...
 interfaces:
 <interface_refinement_1>
 <interface_refinement_2>
 ...
 node_filter: <node_filter_def>
 count_range: [<min_count>, <max_count>]

<requirement_definition_name>:
 description: <requirement_description>
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_type_name>
 relationship: <relationship_type_name>
 node_filter: <node_filter_def>
 count_range: [<min_count>, <max_count>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 73 of 211

<capability_type_name>: represents the mandatory name of a capability type that can be used to fulfill the
requirement.

<capability_symbolic_name>: represents the mandatory symbolic name of the capability definition within the target
node type; a capability_symbolic_name is only allowed if a node_type_name is provided.

<node_type_name>: represents the optional name of a node type that contains either a capability of type
<capability_type_name> or a capability named <capability_symbolic_name> that can be used to fulfill the requirement.

<relationship_type_name>: represents the mandatory name of a relationship type to be used to construct a
relationship from this requirement definition (i.e. in the source node) to a matching capability definition (in a
target node).

<property_refinement_*>: represents the optional map of property refinements for properties already defined in the
relationship type; new properties may not be added.

<attribute_refinement_*>: represents the optional map of attribute refinements for attributes already defined in the
relationship type; new attributes may not be added.

<interface_refinement_*>: represents refinements for one or more already declared interface definitions in the
relationship type (as declared on the type keyname)

allowing for the declaration of new parameter definitions for these interfaces or for specific operation or
notification definitions of these interfaces or for the change of the description or implementation
definitions.

<node_filter_def>: represents the optional node filter TOSCA orchestrators will use to fulfill the requirement when
selecting a target node, or to verify that the specified node template fulfills the requirement (if a node template
was specified during requirement assignment).

<min_count>, <max_count>: represents the optional range between a minimum required and maximum allowed
count of the requirement

this range constrains how many relationships from this requirement towards target capabilities (in target
nodes) are created, and that number MUST be within the range specified here.

If the count_range keyname is not present, then a default declaration will be assumed as follows:

8.4.1 Requirement Refinement

If a node type defines a requirement with the same name as a requirement that is already defined in one of its parent
node types, then that requirement definition is considered a requirement refinement rather than a requirement
definition. Requirement refinements adhere to the following refinement rules for the supported keynames:

description: a new definition is unrestricted and will overwrite the one inherited from the requirement definition in
the parent node type definition.

capability: the type of the capability must be derived from (or the same as) the capability type in the requirement
definition in the parent node type definition.

if the capability was specified using the symbolic name of a capability definition in the target node type,
then the capability keyname definition MUST remain unchanged in any subsequent refinements or during
assignment.

node: must be derived from (or the same as) the node type in the requirement definition in the parent node type
definition; if node is not defined in the parent type then no restrictions are applied;

the node type specified by the node keyname must also contain a capability definition that fulfills the

count_range: [0, UNBOUNDED]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 74 of 211

requirement set via the capability keyname above.

relationship: must be derived from (or the same as) the relationship type in the requirement definition in the
parent node type definition.

node_filter: a new definition is unrestricted and will be considered in addition (i.e. logical and) to the node_filter
definition in the parent node type definition; further refinements may add further node filters.

count_range: the new range MUST be within the range defined in the requirement definition in the parent node
type definition.

8.5 Requirement Assignment

A requirement assignment is used by node template authors to provide assignments for the corresponding
requirement definition in the node template's node type. This includes specifying target nodes, either by providing
symbolic names of target nodes or by providing selection criteria for TOSCA orchestrators to find candidate nodes
that can be used to fulfill the requirement. In addition, requirement assignments must uniquely identify the specific
target capability in the target node for the requirement. Requirement assignments must also assign values to
properties and attributes defined in the relationship definition that is part of the requirement definition, and provide
values for the input parameters defined by the relationship definition's interfaces.

Note that several requirement assignments in a node template can have the same symbolic name, each referring to
different counts of the corresponding requirement definition. The number of instances a particular assignment allows
is set via the count keyname. Nevertheless, the sum of the count values for all of the requirement assignments with
the same symbolic name MUST be within the range of count_range specified by the corresponding requirement
definition.

8.5.1 Supported Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

Keyname Mandatory Type Description

node no str or 2-
entry list

The optional keyname used to identify the target node of the requirement:
- This can either be the symbolic name of a node template, where the
TOSCA processor will select a node representation created from that
template. If the count of the node template is 1 then the potential target is
unique, otherwise the processor can select from several node
representations.
- It can also be a 2-entry list, where the first entry is a string denoting the
symbolic name of a node template, while the second entry is an index,
thus uniquely identifying the node representation when multiple
representations are created from the same node template. The index is a
non-negative integer, with 0 being the first index. Note that functions like
$node_index or $relationship_index may be used to match the target index
withe the source/relationship index. More information on multiplicity and
node and relationship indexes can be found in Chapter 14.
- Finally, it can also be the name of a node type that the TOSCA
processor will use to select a type-compatible target node to fulfill the
requirement.

capability no str The optional keyname used to identify the target capability of the
requirement. This can either be the name of a capability defined within a
target node or the name of a target capability type that the TOSCA
orchestrator will use to select a type-compatible target node to fulfill the
requirement at runtime.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 75 of 211

relationship conditional relationship
assignment
or str

The conditional keyname used to provide values for the relationship
definition in the corresponding requirement definition. This keyname can
also be overloaded to define a symbolic name that references a
relationship template defined elsewhere in the service template.

allocation no allocation
block

The optional keyname that allows the inclusion of an allocation block. The
allocation block contains a map of property assignments that semantically
represent allocations from the property with the same name in the target
capability. The allocation acts as a capacity filter for the target capability in
the target node. When the requirement is resolved, a capability in a node
is a valid target for the requirement relationship if for each property of the
target capability, the sum of all existing allocations plus the current
allocation is less than or equal to the property value.

count no non-
negative
integer

An optional keyname that sets the cardinality of the requirement
assignment, that is how many relationships must be established from this
requirement assignment. If not defined, the default count for an
assignment is 1. Note that there can be multiple requirement assignments
for a requirement with a specific symbolic name. The sum of all count
values of assignments for a requirement with a specific symbolic name
must be within the count_range defined in the requirement definition.
Moreover, the sum of all count values of non-optional assignments for a
requirement with a specific symbolic name must also be within the
count_range defined in the requirement definition.

node_filter no node filter The optional filter definition that TOSCA orchestrators will use to select a
type-compatible target node that can fulfill the requirement at runtime.

directives no seq of strs An optional list of directive values to provide processing instructions to
orchestrators and tooling.

optional no bool Describes if the fulfillment of this requirement assignment is optional (true)
or not (false). If not specified, the requirement assignment must be
fulfilled, i.e. the default value is false. Note also, that non-optional
requirements have precedence, thus during a service deployment, the
optional requirements for all nodes should be resolved only after the non-
optional requirements for all nodes have been resolved.

Keyname Mandatory Type Description

The relationship keyname in a requirement assignment typically specifies a relationship assignment that provides
information needed by TOSCA Orchestrators to construct a relationship to the TOSCA node that is the target of the
requirement. Relationship assignments support the following keynames:

Keyname Mandatory Type Description

type no str The optional keyname used to provide the name of the relationship
type for the requirement assignment's relationship.

properties no map of property
assignments

An optional map of property assignments for the relationship.

attributes no map of attribute
assignments

An optional map of attribute assignments for the relationship.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 76 of 211

interfaces no map of interface
assignments

An optional map of interface assignments for the corresponding
interface definitions in the relationship type.

Keyname Mandatory Type Description

8.5.2 Requirement Assignment Grammar

The keynames supported by requirement assignments and relationship assignments can be used according to the
following grammar:

In some cases, the relationship keyname in a requirement assignment is only used to refine the type of the relationship
and does not assign properties, attributes, or interfaces. In that case, a single-line relationship assignment grammar
can be used where the string value of the relationship keyname refers to the symbolic name of the type of the
relationship. This single-line relationship assignment grammar is shown here:

As stated in the description of the supported keynames for requirement assignments, the relationship keyname in a
requirement assignment can also be overloaded to specify the symbolic name of a relationship template to use for
creating the relationship to the target node when fulfilling the requirement. In that case, the following single-line

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> | <node_type_name>
 relationship:
 type: <relationship_type_name>
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 attributes:
 <attribute_assignment_1>
 <attribute_assignment_2>
 ...
 interfaces:
 <interface_assignment_1>
 <interface_assignment_2>
 ...
 node_filter: <node_filter_def>
 count: <count_value>
 directives: [<directive_1>, <directive_2>, ...]
 optional: <is_optional>
 allocation:
 <allocation_property_assignment_1>
 <allocation_property_assignment_2>
 ...

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> | <node_type_name>
 relationship: <relationship_type_name>
 node_filter: <node_filter_def>
 count: <count_value>
 directives: [<directive_1>, <directive_2>, ...]
 optional: <is_optional>
 allocation:
 <allocation_property_assignment_1>
 <allocation_property_assignment_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 77 of 211

grammar is used for the relationship keyname:

When single-line grammar is used for the relationship keyname in a requirement assignment, TOSCA Processors
MUST first try to resolve the value of the relationship keyname as the symbolic name of a relationship type. If no
relationship type with that name is found, the Processor MUST then try to find a relationship template with that name.
If no such relationship template is found, the grammar must be determined to be in error.

And finally, to simplify requirement assignment grammar, the following single-line grammar may be used if only a
concrete node template for the target node needs to be assigned:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<requirement_name>: represents the symbolic name of a requirement assignment as a string.

<capability_symbolic_name>: represents the optional name of the capability definition within the target node type or
node template;

if the capability in the requirement definition was specified using the symbolic name of a capability
definition in a target node type, then the capability keyname definition MUST remain unchanged in any
subsequent refinements or during assignment.

if the capability in the requirement definition was specified using the name of a capability type, then the
capability definition referred here by the <capability_symbolic_name> must be of a type that is the same as or
derived from the said capability type in the requirement definition.

<capability_type_name>: represents the optional name of a capability type definition within the target node type or
node template this requirement needs to form a relationship with;

may not be used if the capability in the requirement definition was specified using the symbolic name of a
capability definition in a target node type.

otherwise the <capability_type_name> must be of a type that is the same as or derived from the type defined
by the capability keyname in the requirement definition.

<node_template_name>: represents the optional name of a node template that contains the capability that fulfills
this requirement;

in addition, the node type of the node template must be of a type that is the same as or derived from the
type defined by the node keyname (if the node keyname is defined) in the requirement definition,

note that if the template has count > 1 there are several target node representation candidates,

in addition, the node representation created from the template must fulfill the node filter requirements of
the node_filter (if a node_filter is defined) in the requirement definition.

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> | <node_type_name>
 relationship: <relationship_template_name>
 node_filter: <node_filter_def>
 count: <count_value>
 directives: [<directive_1>, <directive_2>, ...]
 optional: <is_optional>
 allocation:
 <allocation_property_assignment_1>
 <allocation_property_assignment_2>
 ...

<requirement_name>: <node_template_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 78 of 211

<tuple_of_node_template_and_index>: represents an optional 2-entry list, where the first entry is the name of a node
template, and the second entry is an index;

the node template is subject to the same conditions as presented above,
the index is a non-negative integer,
for indexes outside the count range of the template, no valid target node representation candidate will
exist.

<node_type_name>: represents the optional name of a node type that contains the capability that fulfills this
requirement;

in addition, the <node_type_name> must be of a type that is the same as or derived from the type defined by
the node keyname (if the node keyname is defined) in the requirement definition.

<relationship_template_name>: represents the optional name of a relationship template to be used when relating the
requirement to the capability in the target node.

in addition, the relationship type of the relationship template must be of a type that is the same as or
derived from the type defined by the relationship keyname (if the relationship keyname is defined) in the
requirement definition.

<relationship_type_name>: represents the optional name of a relationship type that is compatible with the capability
type in the target node;

in addition, the <relationship_type_name> must be of a type that is the same as or derived from the type
defined by the relationship keyname in the requirement definition.

<property_assignment_*>: within the relationship declaration, it represents the optional map of property assignments
for the declared relationship.

<attribute_assignment_*>: within the relationship declaration, it represents the optional map of attribute assignments
for the declared relationship.

<interface_assignment_*>: represents the optional map of interface assignments for the declared relationship used
to provide parameter assignments on inputs and outputs of interfaces, operations and notifications or changing
the implementation definition.

<allocation_property_assignment_*>: within the allocation declaration, it represents the optional map of property
assignments that semantically represent allocations from the property with the same name in the target
capability. Syntactically their form is the same as for a normal property assignments.

<node_filter_def>: represents the optional node filter TOSCA orchestrators will use to fulfill the requirement for
selecting a target node; if a node template was specified during requirement assignment, the TOSCA
orchestrator verifies that the specified node template fulfills the node filter.

this node_filter does not replace the node_filter definition in the requirement definition, it is applied in addition
to that.

<count_value>: represents the optional cardinality of this requirement assignment, that is how many relationships
are to be established from this requirement assignment specification.

If count is not defined, the default <count_value> for an assignment is 1.

<directive_*>: represents the optional list of strings that defines if this requirement needs to be fulfilled using target
nodes created within this service template only, target nodes created outside this service template only, or both.
Valid values for the strings are as follows:

"internal": this requirement is fulfilled using target nodes created within this template.

"external": this requirement is fulfilled using target nodes created outside this template as available to the

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 79 of 211

TOSCA environment.

The order of the strings in the list defines which directive should be attempted first when fulfilling the
assignment.

If no directives are defined, the default value is left to the particular implementation.

<is_optional>: represents the optional boolean value specifying if this requirement assignment is optional or not.

If <is_optional> is false, the assignment MUST be fulfilled.

If <is_optional> is true, the assignment SHOULD be fulfilled, but if not possible the service deployment is still
considered valid.

The default value for <is_optional> is false.

Non-optional requirements have precedence, thus during a service deployment, the optional requirements for
all nodes should be fulfilled only after the non-optional requirements for all nodes have been fulfilled.

The following code snippet shows an example requirement assignment. It defines a web application node template
named "my-application" of type "WebApplication" that declares a requirement named "host" that needs to be fulfilled
by any node that derives from the node type "WebServer":

In this case, it is assumed that the "WebApplication" type defines a "host" requirement that uses relationship type
"HostedOn" to relate to the target node. The "host" requirement also specifies a capability type of "Container" to be
the specific target of the requirement in the target node.

The following example targets a "WebServer" created from the "tomcat-server" template that has the same
multiplicity index as the actual "my-application" node.

The following example shows a requirement named "database" that describes a requirement for a connection to a
capability of type "Endpoint.Database" in a node template called my-database. However, the connection requires a
custom relationship type ("CustomDbConnection") declared on the relationship keyname.

service_template:
 node_templates:
 my-application:
 type: WebApplication
 requirements:
 - host:
 node: WebServer

service_template:
 node_templates:
 my-application:
 type: WebApplication
 count: 3
 requirements:
 - host:
 node: [tomcat-server, $node_index]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 80 of 211

8.5.4 Requirement Count

A node template may include multiple requirement assignments with the same symbolic requirement name. In
addition, each of these requirement assignments may define their own count value, and some requirement
assignments may be marked as optional. This section specifies rules for handling requirement counts:

The sum of all count values for requirement assignments with a specific symbolic name MUST be within the
count_range defined in the corresponding requirement definition.

Moreover, the sum of all count values for non-optional requirement assignments with a specific symbolic name
MUST also be within the count_range defined in the requirement definition.

If a node template does not define an explicit requirement assignment for a requirement defined in its
corresponding node type, an implicit requirement assignment will be created automatically if the lower bound of
the count_range in the requirement definition is greater than zero

The automatically created requirement assignments use the same values for the capability, node, relationship,
and node_filter keynames as defined in the corresponding requirement definition.

Additionally, the <count_value> is assumed to be equal to the <min_count> value of the requirement definition
in the corresponding node type.

The following example illustrates requirement assignment count rules. It uses the types defined in the following code
snippet:

service_template:
 node_templates:
 my-application:
 type: WebApplication
 requirements:
 - database:
 node: my-database
 capability: Endpoint.Database
 relationship: CustomDbConnection

capability_types:
 Service:
 description: >-
 Ability to provide service.

relationship_types:
 ServedBy:
 description: >-
 Connection to a service.

node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [1, 4]

 Server:
 capabilities:
 service:
 type: Service

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 81 of 211

In this example, the "Client" node type defines a "service" requirement with a count_range of "[1, 4]". This means that
a client can have up to four "service" connections to "Server" nodes, but only one of those is non-optional.

Any service template that uses the "Client" node type must specify the correct number of requirement assignments,
i.e, the number of non-optional requirements must be greater than or equal to the lower bound of the count_range and
he total number of requirement assignments (optional as well as non-optional) must be less than or equal to the
upper bound of the count range.

The following shows a valid service template that uses Client and Server nodes:

In this example, the requirement assignments specify the target nodes directly, but it is also valid to leave
requirements dangling as in the following example:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

service_template:
 node_templates:
 server1:
 type: Server

 server2:
 type: Server

 server3:
 type: Server

 client:
 type: Client
 directives: [substitute]
 requirements:
 - service: server1
 - service: server2
 - service: server3

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 82 of 211

In this example, only the first "service" assignment is non-optional. The next two are optional. However, after the
orchestrator fulfills the dangling (optional) requirements, the resulting service topology for this second example will
likely be identical to the service topology in the first example, since the orchestrator is able to fulfill both of the
optional requirements using "server" nodes in this topology.

Note that after requirements have been fulfilled, it no longer matters whether the requirement were non-optional or
optional. All that matters is that if the service topology is valid, the number of established relationships is guaranteed
to fall within the count_range specified in the corresponding requirement definition.

8.5.5 Capability Allocation

The value of the allocation keyname in a requirement assignment acts as a capacity filter for the target capability in the
target node. When the requirement is fulfilled, a capability in a node is a valid target for the requirement if, for each
property of the target capability, the sum of all existing allocations plus the current allocation is less than or equal to
the property value.

The following allocation rules apply:

The sum of allocations from all the incoming relationships for a certain capability property cannot exceed the
value of the property.

If the allocation refers (via its name) to a property that does not exist in a capability, then the allocation
statement is invalid.

Of course, allocations can be defined only for integer, float, or scalar property types.

The following example shows a capacity allocation on the properties of a target capability of type "Compute". When
this requirement is fulfilled, a node is a valid target and a relationship is created only if both the capacity allocations
for "num-cpu" and "mem-size" are fulfilled, that is if the sum of the capacity allocations from all established
relationships + current allocation is less or equal to the value of each respective property in the target capability.

So assuming that "num-cpu" property in the target capability of a candidate node has value 4 and the sum of
capacity allocations of the other fulfilled requirements to that capability for "num-cpu" is 1 then then there is enough

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

service_template:
 node_templates:
 server1:
 type: Server

 server2:
 type: Server

 server3:
 type: Server

 client:
 type: Client
 directives: [substitute]
 requirements:
 - service: server1
 - service:
 optional: true
 - service:
 optional: true

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 83 of 211

remaining capacity (4 – 1 = 3) to fulfill the current allocation (2), and a relationship to that node is established.
Another node with "num-cpu" with value 2 could not be a valid target since 1 (existing) + 2 (current) = 3, and that is
larger than the property value which is 2. Of course, similar calculations must be done for the "mem-size" allocation.

8.6 Node Filter Definition

A node filter definition may be provided in the following two situations:

Within a node template definition where the "select" directive is defined. The node_filter is used to select an
already existing node from another service representation graph.

Within requirement definitions or assignments to constrain the allowed set of potential target nodes based upon
their properties and their capabilities' properties. This allows TOSCA orchestrators to help find the best fit when
selecting among multiple potential target nodes for the expressed requirements. Also, if a node template was
specified during requirement assignment it allows TOSCA orchestrators to verify that the specified node
template fulfills the requirement.

Node filters are defined using condition clauses as shown in the following grammar:

In the above grammar, the condition_clause represents a Boolean expression that will be used to select (filter)
TOSCA nodes that are valid candidates. TOSCA orchestrators use node filters are follows:

Within a node template definition using the "select" directive:

Orchestrators select a external node of the same type as specified in the node template that also fulfills
the condition_clause of the node_filter.

Note that the context within which the node filter is evaluated is the potential target node to be selected.
Specifically, this means that the SELF value in any TOSCA Path expressions refers to the node.

Within requirement definitions or assignments:

Orchestrators select an initial set of target node candidates based on the target capability type and/or the
target node type specified in the requirement definition.

A node in this initial set is a valid target node candidate if, when that node is used as the target node for
the requirement, the node filter condition clause evaluates to True.

Note that the context within which the node filter is evaluated is the relationship that is established to the
target node as a result of fulfilling the requirement. Specifically, this means that the SELF value in any
TOSCA Path expressions refers to the relationship.

The following example shows a node filter that will be used to select a "Compute" node based upon the values of its
defined capabilities. Specifically, this filter will select "Compute" nodes that support a specific range of CPUs (i.e.,
"num-cpus" value between 1 and 4) and memory size (i.e., "mem-size" of 2 or greater) from its declared "host"
capability.

service_template:
 node_templates:
 my-application:
 requirements:
 - host:
 node: Compute
 allocation:
 num-cpu: 2
 mem-size: 128 MB

node_filter: <condition_clause>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 84 of 211

9 Properties, Attributes, and Parameters
This section presents how data are handled in TOSCA via properties, attributes, and parameters. As with other
entities in TOSCA, all data are typed. TOSCA data types can be divided into built-in data types and user-defined
types. Built-in types comprise primitive types, special types, and collection types. Custom (user-defined) types can be
user-defined refinements of the built-in types as well as complex data types.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

9.1 TOSCA Built-In Types

The following table summarizes the TOSCA built-in data types. All of these type names are reserved and cannot be
used for custom data types. Note, however, that it is possible to derive a custom data type from a primitive type, for
example to add a validation clause or to specify a default value.

Primitive Types Special Types Collection Types

string timestamp list

integer scalar map

float

boolean version

bytes

nil

See also Time

9.1.1 Primitive Types

The TOSCA primitive types have been specified to allow for the broadest possible support for implementations.
TOSCA types use the following guiding principles:

1. Because TOSCA files are written in YAML they must support all the literal primitives in YAML. However, it is
important to also allow for consistency of representation of external data, e.g. service template inputs and
outputs, property and attribute values stored in a database, etc.

service_template:
 node_templates:
 my-node:
 # other details omitted for brevity
 requirements:
 - host:
 node_filter:
 $and:
 - $in_range:
 - $get_property: [SELF, CAPABILITY, num-cpus]
 - [1, 4]
 - $greater_or_equal:
 - $get_property: [SELF, CAPABILITY, mem-size]
 - 512 MB

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 85 of 211

2. Adherence to 64-bit precision to ensure portability of numeric data.

3. TOSCA parsers shall not automatically convert between primitive types. Thus, care should be taken to use the
correct YAML notation for that type. Details will be provided below.

9.1.1.1 string

A TOSCA string is an array of Unicode runes. (For storing an arbitrary array of bytes see the bytes type, below.)

Because TOSCA adheres to 64-bit precision, the minimum length of strings is 0 and the maximum length of strings is
4,294,967,295.

TOSCA does not specify a character encoding. For example, a string could be encoded as UTF-8 or UTF-16. The
exact encoding used depends on the implementation.

Be aware that YAML parsers will attempt to parse unquoted character sequences as other types ("!!bool", "!!int",
"!!float", etc.) before falling back to the "!!string" type. For example, the unquoted sequence "0.1" would be interpreted
as a YAML "!!float". Likewise, the unquoted sequence "nan" would become the "!!float" value of not-a-number.
However, in TOSCA a string value MUST be specified in YAML as a "!!str".

A TOSCA parser SHALL NOT attempt to convert other primitive types to strings if a string type is required. This
requirement is necessary for ensuring portability, because there is no single, standard representation for the other
types, e.g. scientific notations for decimals, the words "true" vs. "True" for booleans, etc. In YAML users should thus
add quotation marks around literal strings that YAML would otherwise interpret as other types.

This following example would be invalid if there were no quotation marks around "0.1":

Please note:

1. There are various ways to specify literal "!!string" data in YAML for handling indentation, newlines, as well as
convenient support for line folding for multiline strings. All may be used in TOSCA. A TOSCA parser shall not
modify the YAML string in any way, e.g. no trimming of whitespace or newlines. [YAML-1.2] chapter 6

2. The TOSCA functions $concat, $join, $token, $length, and $matches are all Unicode-aware. Specifically, the length of
a string is a count of its runes, not the length of the byte array, which may differ according to the encoding. See
String, List, and Map Functions.

3. The TOSCA functions that check for equality, $equal and $valid_values, should work regardless of the Unicode
encoding. For example, comparing two strings that are "!", one of which is in UTF-8 and is encoded as "0x21",
the other which is in UTF-16 and is encoded as "0x0021", would result in equality. For simplicity,
implementations may standardize on a single encoding, e.g., UTF-8, and convert all other encodings to it. See
Comparison Functions.

4. Relatedly, although in YAML 1.2 a "!!string" is already defined as a Unicode sequence See [YAML-1.2] section
10.1.1.3, this sequence can be variously encoded according to the character set and encoding of the YAML
stream. See [YAML-1.2] chapter 5. The consequence is that a TOSCA string specified in literal YAML may

node_types:
 Node:
 properties:
 name:
 type: string

service_template:
 node_templates:
 node:
 type: Node
 properties:
 name: "0.1"

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 86 of 211

https://yaml.org/spec/1.2/spec.html#Basic
https://yaml.org/spec/1.2/spec.html#id2802842
https://yaml.org/spec/1.2/spec.html#Characters

inherit the encoding of the YAML document. Again, implementations may prefer to convert all strings to a single
encoding.

5. TOSCA strings cannot be the null value but can be empty strings (a string with length zero). See nil, below.

6. YAML is a streaming format, but TOSCA strings are explicitly not streams and thus do have a size limit. Thus,
TOSCA implementations should check against the size limit.

9.1.1.2 integer

A TOSCA integer is a 64-bit signed integer.

For simplicity, TOSCA does not have integers of other bit widths, nor does it have an unsigned integer type.
However, it is possible to enforce most of these variations using data type validation clauses.

For example, this would be a custom data type for unsigned 16-bit integers:

YAML allows for the standard decimal notation as well as hexadecimal and octal notations [YAML-1.2] example 2.19.
In the above example we indeed used the hexadecimal notation.

Please note:

1. The JSON schema in [YAML-1.2] chapter 10.2 allows for compatibility with JSON, such that YAML would be a
superset of JSON. However, note that the JSON format does not distinguish between integers and floats, and
thus many JSON implementations use floats instead of integers.

2. TOSCA does not specify the endianness of integers and indeed makes no requirements for data
representation.

9.1.1.3 float

A TOSCA float is a 64-bit (double-precision) floating-point number [IEEE 754], including the standard values for
negative infinity, positive infinity, and not-a-number.

Be aware that YAML parsers will parse numbers with a decimal point as "!!float" even if they could be represented as
"!!int", and likewise numbers without a decimal point would always be parsed as "!!int".

A TOSCA parser SHALL NOT attempt to convert a YAML "!!int" to a float except where the int is supplied as the
value of a TOSCA property of type float. Type conversion in this exceptional case is to prevent the need for users to
add a ".0" suffix to literal integers that must be floats.

Thus following example MUST NOT result in an error:

data_types:
 UInt16:
 derived_from: integer
 validation: { $in_range: [$value, [0, 0xFFFF]] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 87 of 211

https://yaml.org/spec/1.2/spec.html#id2761509
https://yaml.org/spec/1.2/spec.html#id2803231

Please note:

1. In addition to decimal, YAML also allows for specifying floats using scientific notation as well as special
unquoted words for negative infinity, positive infinity, and not-a-number [YAML-1.2] example 2.20.

2. TOSCA does not specify how to convert to other precisions nor to other formats, e.g. Bfloat16 and TensorFloat-
32.

3. TOSCA does not specify the endianness of floats and indeed makes no requirements for data representation.

9.1.1.4 boolean

A TOSCA boolean is a single bit.

Note that in YAML literal booleans can be only either the unquoted all-lowercase words "true" or "false".

A TOSCA parser SHALL NOT attempt to convert these values, nor variations such as "yes" or "True", as quoted
strings to booleans, nor shall it attempt to convert integer values (such as 1 and 0) to booleans. This requirement is
necessary for ensuring portability as well as clarity.

9.1.1.5 bytes

A TOSCA bytes is an array of arbitrary bytes. Because we adhere to 64-bit precision, the minimum length of bytes is
0 and the maximum length of bytes is 4,294,967,295.

To specify literal bytes in YAML you must use a Base64-encoded "!!string" [RFC 2045 section 6.8]. There exist many
free tools to help you convert arbitrary data to Base64.

Example:

node_types:
 Node:
 properties:
 speed:
 type: float

service_template:
 node_templates:
 node:
 type: Node
 properties:
 speed: 10

node_types:
 Node:
 properties:
 preamble:
 type: bytes

service_template:
 node_templates:
 node:
 type: Node
 properties:
 preamble: "\
R0lGODlhDAAMAIQAAP//9/X17unp5WZmZgAAAOfn515eXvPz7Y6OjuDg4J+fn5\
OTk6enp56enmlpaWNjY6Ojo4SEhP/++f/++f/++f/++f/++f/++f/++f/++f/+\
+f/++f/++f/++f/++f/++SH+Dk1hZGUgd2l0aCBHSU1QACwAAAAADAAMAAAFLC\
AgjoEwnuNAFOhpEMTRiggcz4BNJHrv/zCFcLiwMWYNG84BwwEeECcgggoBADs="

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 88 of 211

https://yaml.org/spec/1.2/spec.html#id2761530

Please note:

1. There is no standard way to represent literal bytes in YAML 1.2. Though some YAML implementations may
support the "!!binary" type working draft, to ensure portability TOSCA implementations shall not accept this
YAML type.

2. The TOSCA function $length works differently for the bytes type vs. the string type. For the latter the length is
the count of Unicode runes, not the count of bytes.

3. TOSCA bytes values cannot be the null value but can be empty arrays (a bytes value with length zero). See nil,
below.

9.1.1.6 nil

The TOSCA nil type always has the same singleton value. No other type can have this value.

This value is provided literally in YAML via the unquoted all-lowercase word "null".

Example:

Note that a nil-typed value is distinct from an unassigned value. For consistency TOSCA requires you to assign null
values even though their value is obvious. Thus, the above example would be invalid if we did not specify the null
value for the property at the node template.

Following is a valid example of not assigning a value:

9.1.2 Special Types
9.1.2.1 timestamp

The TOSCA timestamp type represents a local instant in time containing two elements: the local notation plus the
time zone offset.

node_types:
 Node:
 properties:
 nothing:
 type: nil
 required: true

service_template:
 node_templates:
 my-node:
 type: Node
 properties:
 nothing: null

node_types:
 Node:
 properties:
 nothing:
 type: nil
 required: false

service_template:
 node_templates:
 my-node:
 type: Node

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 89 of 211

https://yaml.org/type/binary.html

TOSCA timestamps are represented as strings following [RFC 3339], which in turn uses a simplified profile of [ISO
8601]. TOSCA adds an exception to RFC 3339: though RFC 3339 supports timestamps with unknown local offsets,
represented as the "-0" timezone, TOSCA does not support this feature and will treat the unknown time zone as
UTC. There are two reasons for this exception: the first is that many systems do not support this distinction and
TOSCA aims for interoperability, and the second is that timestamps with unknown time zones cannot be converted to
UTC, making it impossible to apply comparison functions. If this feature is required, it can be supported via a custom
data type.

Please note:

It is strongly recommended that all literal YAML timestamps be enclosed in quotation marks to ensure that they
are parsed as strings. Otherwise, some YAML parsers might interpret them as the YAML "!!timestamp" type,
which is rejected by TOSCA (see below).

The TOSCA functions $equal, $greater_than, $greater_or_equal, $less_than, and $less_or_equal all use the universal
instant, i.e. as the local instant is converted to UTC by applying the timezone offset.

Some YAML implementations may support the "!!timestamp" type working draft, but to ensure portability
TOSCA implementations shall not accept this YAML type. Also note that the YAML "!!timestamp" supports a
relaxed notation with whitespace, which does not conform to RFC 3339.

RFC 3339 is based on the Gregorian calendar, including leap years and leap seconds, and is thus explicitly
culturally biased. It cannot be used for non-Gregorian locales. Other calendar representations can be supported
via custom data types.

Time zone information is expressed and stored numerically as an offset from UTC, thus daylight savings and
other local changes are not included.

TOSCA does not specify a canonical representation for timestamps. The only requirement is that
representations adhere to RFC 3339.

9.1.2.2 scalar

The TOSCA scalar types can be used to define scalar values along with an associated unit.

TOSCA scalar types are represented as YAML strings and have the following grammar:

<number> <unit>

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<number>: is a mandatory number in YAML notation preceded by at whitespace. The number may be in any valid
YAML format including hex, octal and scientific as well as float and integer.

<unit>: is a mandatory string preceeded by at least one white space. The string represents the name of unit in
which the scalar is measured.

The following additional requirements apply:

The unit string MUST be defined in a concrete scalar type definition.

It SHALL be considered an error if either the scalar or unit portion is missing on a property or attribute
declaration using a scalar type.

The scalar type is abstract and cannot be used directly in a valid TOSCA document, rather it must be refined into a
concrete scalar type by means of a type definition.

A scalar type definition is a type of TOSCA type definition and as a result supports the common keynames listed in
the section Common Keynames in Type Definitions In addition, the scalar type definition has the following recognized
keynames:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 90 of 211

https://tools.ietf.org/html/rfc3339
https://www.iso.org/iso-8601-date-and-time-format.html
https://tools.ietf.org/html/rfc3339#section-4.3
https://yaml.org/type/timestamp.html

Keyname Mandatory Type Description

derived_from yes str The string scalar or the name of a scalar unit.

data_type no str The data type of the number element of the scalar. Default value if not present
is float.

units yes map
of
strs
to
floats
or
ints

Defines at least one unit string and its associated multiplier. At least one entry
MUST have a multiplier value of one. The multiplier MUST be an integer or a
float. If the data_type is integer then the multiplier MUST be an integer. If prefixes
is used then the map MUST only contain one entry which MUST have a
multiplier value of one

canonical_unit no str Informs the TOSCA processor which of the possible units to use when storing,
computing and presenting scalars of this type. MUST be present if 'units has
more than one multiplier of one. If not present the unit with multipler of one is
the default canonical_unit.

prefixes no map
of
strs
to
floats
or
ints

Defines at least one prefix and its associated multiplier. Where prefixes are
defined they are prepended to the unit to obtain the unit string. This keyname
is provided as a convenience so that metric units can use YAML anchor and
alias to avoid repeating the table of SI prefixes.

A concrete scalar type is defined using the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<scalar_name>: The YAML string scalar or the name of a TOSCA scalar type.

<data_type_name>: The TOSCA data type of the scalar. MUST be either TOSCA float, TOSCA integer or derived
from them.

<unit>: The YAML string, with no white space, of the unit element of the scalar.

<multiplier>: An integer or float which which MUST be used by a TOSCA processor to convert values with this
unit into values in the canonical unit.

<unit_name>: The name of the unit (including any prefix) which is to be used as the common unit for calculation
and for presentation of results.

<scalar_name>:
 derived_from: <scalar_name>
 data_type: <data_type_name>
 units:
 <unit_1>: <unit_multiplier_1>
 <unit_2>: <unit_multiplier_2>
 ...
 canonical_unit: <unit_name>
 prefixes:
 <prefix_1>: <unit_multiplier_1>
 <prefix_2>: <unit_multiplier_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 91 of 211

Note that <unit> is case sensitive. Implementors may guard against word overflow when performing calculations on
multipliers with many digits.

The following gives an example of the use of scalar:

dsl_definitions:
 # Defined a reusable set of prefixes taken from ISO80000
 iso-prefixes: &ISO80000
 # Prefixes for smaller multipliers ommitted
 μ: 0.0001
 m: 0.001
 c: 0.01
 d: 0.1
 "": 1.0 # allows use of the base unit without any prefix
 da: 10 # units may be muliple characters
 h: 100 # integer multipliers auto-converted to floats
 k: 1000
 M: 1000000
 # Prefixes for larger multipliers omitted

data_types:
 PositiveInteger:
 derived_from: integer
 validation: { $greater_or_equal: [$value, 1] }

 Bitrate:
 version: "2.0"
 description: Data rate allowing multiples of 1024 as well as 1000 but not including prefixes above 10^12
 derived_from: scalar
 data_type: PositiveInteger
 units:
 bits/s: 1 # This is the mandatory entry with multiplier one
 bps: 1 # A second entry with multiplier one so a canonical_unit is required
 kbits/s: 1000 # No prefix defined so unit includes the prefix 'k' and the base unit 'bits/s'
 Kibits/s: 1024
 Mbits/s: 1000000
 Mibits/s: 1048576
 Gbits/s: 1000000000
 Gibits/s: 1073741824
 Tbits/s: 1000000000000
 Tibits/s: 1099511627776
 canonical_unit: bits/s

 Length:
 derived_from: scalar
 # data_type defaults to float
 units:
 m: 1.0 # Just one entry which defines the base to which defined prefixes are applied
 # Only one unit so no need for canonical_unit
 prefixes: *ISO80000 # First use of the YAML anchor and alias

 Mass:
 derived_from: scalar
 units: { g: 1 } # Short notation. Integer automatically converted to float
 prefixes: *ISO80000 # Note map of prefixes is used by both Length and Mass by means of YAML anchor and alias

node_types:
 Box:
 properties:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 92 of 211

During scalar type derivation the keyname definitions follow these rules in addition to the rules which apply to all data
type derivations:

data_type: The MUST NOT be modified.

units: Entries may be added to the units map.

cannonical_unit: MUST NOT be added and an existing value MUST NOT be modified.

prefixes: Entries may be added to an existing prefixes map.

9.1.2.2.2 Examples

As examples for scalar definitions, we will recreate the "scalar-unit" types that existed in previous versions of the
TOSCA specification, such that these might work as drop-in replacements. Note that our versions here are all case-
sensitive.

 properties:
 weight:
 type: Mass
 height:
 type: Length
 width:
 type: Length
 validation: { $less_than: [$value, 15 cm] } # Validation is in centimeters
 throughput:
 type: Bitrate

service_template:
 node_templates:
 node:
 type: Box
 properties:
 weight: 10 kg # Automatic conversion to float
 height: 0.1 m
 width: 125.3 mm # Definition is in millimeters, conversion of units within a scalar is performed by the parser
 throughput: 10 Kibits/s

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 93 of 211

9.1.2.3 version

dsl_definitions:
 iso-prefixes: &ISO80000
 "": 1
 k: 1000
 Ki: 1024
 M: 1000000
 Mi: 1048576
 G: 1000000000
 Gi: 1073741824
 T: 1000000000000
 Ti: 1099511627776

data_types:
 Bitrate:
 description: Replacement for "scalar-unit.bitrate"
 derived_from: scalar
 data_type: float
 units:
 bps: 1 # bits per second
 Bps: 8 # bytes per second
 prefixes: *ISO80000
 validation: { $greater_or_equal: [$value, 0.0] }

 Frequency:
 description: Replacement for "scalar-unit.frequency"
 derived_from: scalar
 data_type: float
 units:
 Hz: 1
 prefixes: *ISO80000
 validation: { $greater_or_equal: [$value, 0.0] }

 Size:
 description: Replacement for "scalar-unit.size"
 derived_from: scalar
 data_type: integer
 units:
 B: 1 # bytes
 prefixes: *ISO80000
 validation: { $greater_or_equal: [$value, 0] }

 Time:
 description: Replacement for "scalar-unit.time"
 derived_from: scalar
 data_type: float
 units:
 ns: 0.000000001
 us: 0.000001
 μs: 0.000001
 ms: 0.001
 s: 1
 m: 60
 h: 3600
 d: 86400
 validation: { $greater_or_equal: [$value, 0.0] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 94 of 211

The TOSCA version type represents a version string.

TOSCA versions provide a normative means to represent a version string which enables the comparison and
management of version information over time.

TOSCA version strings have the following grammar:

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version>]]]

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<major_version>: is a mandatory integer value greater than or equal to 0 (zero)

<minor_version>: is a mandatory integer value greater than or equal to 0 (zero).

<fix_version>: is an optional integer value greater than or equal to 0 (zero).

<qualifier>: is an optional string that indicates a named, pre-release version of the associated code that has been
derived from the version of the code identified by the combination <major_version>, <minor_version> and <fix_version>
numbers.

<build_version>: is an optional integer value greater than or equal to 0 (zero) that can be used to further qualify
different build versions of the code that has the same <qualifer_string>.

A version value of zero (i.e., "0.0", or "0.0.0") SHALL indicate there no version provided.

When specifying a version string that contains just a major and a minor version number, the version string must be
enclosed in quotes to prevent the YAML parser from treating the version as a floating point value.

The TOSCA version type is compatible with the Apache Maven versioning policy [Maven-Version]. It supports
version comparison as follows:

When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared in
sequence from left to right.

TOSCA versions that include the optional qualifier are considered older than those without a qualifier.

TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but with
different build versions can be compared based upon the build version.

Qualifier strings are considered domain-specific. Therefore, this specification makes no recommendation on
how to compare TOSCA versions with the same major, minor and fix versions, but with different qualifiers
strings and simply considers them different branches derived from the same code.

The following are examples of valid TOSCA version strings:

9.1.3 Collection Types
9.1.3.1 list

basic version strings
"6.1"
2.0.1

version string with optional qualifier
3.1.0.beta

version string with optional qualifier and build version
1.0.0.alpha-10

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 95 of 211

The TOSCA list type allows for specifying multiple values. For example, if an application allows for being configured
to listen on multiple ports, a list of ports could be configured using the list data type.

Note that all entries in a list must be of the same type. The type (for simple entries) or schema (for complex entries) is
defined by the mandatory entry_schema attribute of the respective property definition, attribute definitions, or input or
output parameter definitions. Schema definitions can be arbitrarily complex (they may themselves define a list).

TOSCA list values are represented as YAML sequences. They support the square bracket notation as follows:

TOSCA list values also support bulleted list notation as follows:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<list_entry_*>: represents an element of the list.

The following example shows a list assignment using the square bracket notation:

The following example shows the same list assignment using the bulleted list notation:

The following example shows a list declaration with an entry schema based upon a simple integer type (which has an
additional validation clause):

The following example shows a list declaration with an entry schema based upon a complex type:

9.1.3.2 map

[<list_entry_1>, <list_entry_2>, ...]

- <list_entry_1>
- <list_entry_2>
- ...

listen-ports: [80, 8080]

listen-ports:
- 80
- 8080

<some_entity>:
 ...
 properties:
 listen-ports:
 type: list
 entry_schema:
 description: listen port entry (simple integer type)
 type: integer
 validation: { $less_or_equal: [$value, 128] }

<some_entity>:
 ...
 properties:
 products:
 type: list
 entry_schema:
 description: Product information entry (complex type) defined elsewhere
 type: ProductInfo

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 96 of 211

The TOSCA map type allows for specifying multiple values for a parameter of property as a map. In contrast to the
list type, where each entry can only be addressed by its index in the list, entries in a map are named elements that
can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple entries) or
schema (for complex entries) is defined by the entry_schema attribute of the respective property definition, attribute
definition, or input or output parameter definition. In addition, the keys that identify entries in a map must be of the
same type as well. The type of these keys is defined by the key_schema attribute of the respective
property_definition, attribute_definition, or input or output parameter_definition. If the key_schema is not specified,
keys are assumed to be of type string.

TOSCA maps are normal YAML dictionaries. They support the following single-line grammar:

In addition, TOSCA maps also support the following multi-line grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<entry_key_*>: the mandatory key for an entry in the map. While YAML allows arbitrary data to be used as
dictionary keys, TOSCA map keys must be strings.

<entry_value_*>: is the value of the respective entry in the map

The following example shows the single-line option which is useful for only short maps with simple entries:

The next example shows the multi-line option where each map entry is on a separate line; this option is typically
useful or more readable if there is a large number of entries, or if the entries are complex.

The following example shows a declaration of a property of type map with an entry schema definition based upon the
built-in string type (which has an additional validation clause):

The next example shows a map with an entry schema definition for contact information:

{ <entry_key_1>: <entry_value_1>, <entry_key_2>: <entry_value_2>, ... }

<entry_key_1>: <entry_value_1>
<entry_key_2>: <entry_value_2>
...

notation option for shorter maps
user-name-to-id: { user1: 1001, user2: 1002 }

notation for longer maps
user-name-to-id:
 user1: 1001
 user2: 1002

<some_entity>:
 ...
 properties:
 emails:
 type: map
 entry_schema:
 description: basic email address
 type: string
 validation: { $less_or_equal: [$value, 128] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 97 of 211

9.2 Data Type

A data type defines the schema for user-defined data types in TOSCA. User-defined data types comprise derived
types that derive from from the TOSCA built-in types and complex types that define collections of properties that
each have their own data types.

A data type definition is a type of TOSCA type definition and as a result supports the common keynames listed in the
section Common Keynames in Type Definitions . In addition, the data type definition has the following recognized
keynames:

Keyname Mandatory Type Description

validation no validation
clause

The optional validation clause that must evaluate to True for values of this
data type to be valid.

properties no map of
property
definitions

The optional map property definitions that comprise the schema for a
complex data type in TOSCA.

key_schema conditional schema
definition

For data types that derive from the TOSCA map data type, the optional
schema definition for the keys used to identify entries in properties of this
data type. If not specified, the key_schema defaults to string. If present, the
key_schema must derive from string. For data types that do not derive from
the TOSCA map data type, the key_schema is not allowed.

entry_schema conditional schema
definition

For data types that derive from the TOSCA list or map data types, the
mandatory schema definition for the entries in properties of this data type.
For data types that do not derive from the TOSCA list or map data type, the
entry_schema is not allowed.

These keynames can be used according to the following grammar:

<some_entity>:
 ...
 properties:
 contacts:
 type: map
 entry_schema:
 description: simple contact information
 type: ContactInfo

<data_type_name>:
 derived_from: <existing_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <datatype_description>
 validation: <validation_clause>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 key_schema: <key_schema_def>
 entry_schema: <entry_schema_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 98 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<data_type_name>: represents the mandatory symbolic name of the data type as a string.

<existing_type_name>: represents the optional name of a valid TOSCA built-in type or data type from which this
new data type derives.

<validation_clause>: represents the optional validation clause that must evaluate to True for values of this data
type to be valid.

<property_def_*>: represents the optional map of one or more property definitions that provide the schema for the
data type

<property_def_*> are only allowed for complex type definitions and MAY NOT be added to custom data
types derived_from TOSCA built-in types.

<key_schema_def>: if the data type derives from the TOSCA map type (i.e <existing_type_name> is a map or derives
from a map), it represents the optional schema definition for the keys used to identify entry properties of this
type.

<entry_schema_def>: if the data type derives from the TOSCA map or list types (i.e. <existing_type> name is a list or
map or derives from a list or map), it represents the mandatory schema definition for the entries in properties of
this type.

The following requirements apply:

A valid datatype definition MUST have either a valid derived_from declaration or at least one valid property
definition.

A validation clause SHALL be type-compatible with the type declared by the derived_from keyname.

If a properties keyname is provided, it SHALL contain one or more valid property definitions.

During data type derivation the keyname definitions follow these rules:

validation: a new validation clause may be defined; this validation clause does not replace the validation clause
defined in the parent type but is considered in addition to it.

properties: existing property definitions may be refined; new property definitions may be added.

key_schema: the key_schema definition may be refined according to schema refinement rules.

entry_schema: the entry_schema definition may be refined according to schema refinement rules.

The following code snippet shows an example data type definition that derives from the built-in "string" type:

The next example defines a complex data type that represents a phone number:

ShortString:
 derived_from: string
 validation: { $less_or_equal: [$value, 16] }

PhoneNumber:
 properties:
 country-code:
 type: integer
 area-code:
 type: integer
 number:
 type: integer

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 99 of 211

The following example shows a complex data type that derives from and extends a previously defined complex data
type:

9.3 Schema Definition

All entries in a list or map for one property or parameter must be of the same type. Similarly, all keys for map entries
for one property or parameter must be of the same type as well. A TOSCA schema definition must be used to specify
the type (for simple entries) or schema (for complex entries) for keys and entries in TOSCA set types such as the
TOSCA list or map.

If the schema definition specifies a map key, the type of the key schema must be derived originally from the string
type (which basically ensures that the schema type is a string with additional validation clause). As there is little need
for complex keys this caters to more straight-forward and clear specifications. If the key schema is not defined it is
assumed to be string by default.

Schema definitions appear in data type definitions when derived_from a list or map type or in parameter, property, or
attribute definitions of a list or map type.

The following is the list of recognized keynames for a TOSCA schema definition:

Keyname Mandatory Type Description

type yes str The mandatory data type for the key or entry. If this schema definition is for
a map key, then the referred type must be derived originally from string.

description no str The optional description for the schema.

validation no validation
clause

The optional validation clause that must evaluate to True for the property.

key_schema no schema
definition

When the schema itself is of type map, the optional schema definition that
is used to specify the type of the keys of that map's entries (if key_schema is
not defined it is assumed to be "string" by default). For other schema
types, the key_schema must not be defined.

entry_schema conditional schema
definition

When the schema itself is of type list or map, the schema definition is
mandatory and is used to specify the type of the entries in that map or list.
For other schema types, the entry_schema must not be defined.

These keynames can be used according to the following grammar:

ExtendPhoneNumber:
 derived_from: PhoneNumber
 properties:
 phone-description:
 type: string
 validation: { $less_or_equal: [$value, 128] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 100 of 211

The following single-line grammar may be used when only the schema type needs to be declared:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<schema_type>: represents the mandatory type name for entries of the specified schema

if this schema definition is for a map key, then the schema_type must be derived originally from string.

<schema_validation_clause>: represents the optional validation clause for entries of the specified schema.

<key_schema_def>: if the <schema_type> is map, it represents the optional schema definition for the keys of that
map's entries.

<entry_schema_def>: if the <schema_type> is list or map, it represents the mandatory schema definition for the entries
in that map or list.

A schema definition uses the following definition refinement rules when the containing entity type is derived:

type: must be derived from (or the same as) the type in the schema definition in the parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the schema definition in the
parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the validation clause defined in
the schema definition in the parent entity type but is considered in addition to it.

key_schema: may be refined (recursively) according to schema refinement rules.

entry_schema: may be refined (recursively) according to schema refinement rules.

9.4 Property Definition

A property definition defines a named, typed value and related data that can be associated with an entity defined in
this specification (e.g., node types, relationship types, capability types, etc.). Properties are used by template authors
to provide configuration values to TOSCA entities that indicate their desired state when they are instantiated. The
value of a property can be retrieved using the $get_property function within TOSCA service templates.

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Mandatory Type Description

type yes str The mandatory data type for the property.

description no str The optional description for the property.

<schema_def>:
 type: <schema_type>
 description: <schema_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 validation: <schema_validation_clause>
 key_schema: <key_schema_def>
 entry_schema: <entry_schema_def>

<schema_def>: <schema_type>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 101 of 211

metadata no map of
metadata

Defines a section used to declare additional information.

required no bool An optional key that declares a property as required (true) or not (false).
Defaults to true.

default no <must
match
property
type>

An optional key that may provide a value to be used as a default if not
provided by another means. The default keyname SHALL NOT be defined
when property is not required (i.e. the value of the required keyname is
false).

value no <see
below>

An optional key that may provide a fixed value to be used. A property that
has a fixed value provided (as part of a definition or refinement) cannot be
subject to a further refinement or assignment. That is, a fixed value cannot
be changed.

validation no validation
clause

The optional validation clause for the property.

key_schema conditional schema
definition

The schema definition for the keys used to identify entries in properties of
type map (or types that derive from map). If not specified, the key_schema
defaults to string. For properties of type other than map, the key_schema is
not allowed.

entry_schema conditional schema
definition

The schema definition for the entries in properties of collection types such
as list, map, or types that derive from list or map. If the property type is a
collection type, entry_schema is mandatory. For other types, the entry_schema
is not allowed.

Keyname Mandatory Type Description

Property definitions have the following grammar:

The following single-line grammar is supported when only a fixed value or fixed value expression needs to be
provided to a property:

This single-line grammar is equivalent to the following:

<property_name>:
 type: <property_type>
 description: <property_description>
 required: <property_required>
 default: <default_value>
 value: <property_value> | <property_value_expression>
 status: <status_value>
 validation: <validation_clause>
 key_schema: <key_schema_def>
 entry_schema: <entry_schema_def>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...

<property_name>: <property_value> | <property_value_expression>

<property_name>:
 value: <property_value> | <property_value_expression>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 102 of 211

Note that the short form can be used only during a refinement (i.e. the property has been previously defined).

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<property_name>: represents the mandatory symbolic name of the property as a string.

<property_type>: represents the mandatory data type of the property.

<property_required>: represents an optional Boolean value (true or false) indicating whether or not the property is
required. If this keyname is not present on a property definition, then the property SHALL be considered
required (i.e., true) by default.

<default_value>: contains a type-compatible value that is used as a default value if a value is not provided by
another means (via the fixed value definition or via property assignment);

the <default_value> shall not be defined for properties that are not required (i.e. <property_required> is "false")
as they will stay undefined.

<property_value> or <property_value_expression>: contains a type-compatible value or value expression that may be
defined during property definition or refinement to set and fix the value definition of the property.

note that a value definition cannot be changed; once defined, the property cannot be further refined or
assigned. Thus, value definitions should be avoided in data_type definitions.

<validation_clause>: represents the optional Boolean expression that must evaluate to true for a value of this
property to be valid.

<key_schema_def>: if the <property_type> is map or derives from map, represents the optional schema definition for the
keys used to identify entries in that map.

<entry_schema_def>: if the <property_type> is list or map, or derives from list or map, represents the mandatory schema
definition for the entries in that map or list.

A property definition within data, capability, node, relationship, group, policy, and artifact types (including capability
definitions in node types) matching the name of a property in the derived entity type uses the following refinement
rules to combine the two property definitions together:

type: must be derived from (or the same as) the type in the property definition in the parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the property definition in the
parent entity type definition.

required: if defined to "false" in the property definition parent entity type it may be redefined to "true"; note that if
undefined it is automatically considered as being defined to "true".

default: a new definition is unrestricted and will overwrite the one inherited from the property definition in the
parent entity type definition (note that the definition of a default value is only allowed if the required keyname is
(re)defined as "true").

value: if undefined in the property definition in the parent entity type, it may be defined to any type-compatible
value; once defined, the property cannot be further refined or assigned.

validation: a new definition is unrestricted; this validation clause does not replace the validation clause defined in
the property definition in the parent entity type but is considered in addition to it.

key_schema: if defined in the property definition in the parent entity type it may be refined according to schema
refinement rules.

entry_schema: if defined in the property definition in the parent entity type it may be refined according to schema
refinement rules.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 103 of 211

The following code snippet shows an example property definition with a validation clause:

The following shows an example of a property refinement. Consider the definition of an Endpoint capability type:

The "Endpoint.Admin" capability type refines the secure property of the "Endpoint" capability type from which it
derives by forcing its value to always be true:

9.5 Property Assignment

A property assignment is used to assign a value to a property within a TOSCA template. A TOSCA property
assignment has no keynames. Property assignments have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<property_name>: represents the name of a property that will be used to select a property definition with the same
name within on a TOSCA entity (e.g., node template, relationship template, etc.) which is declared in its
declared type (e.g., a node type, node template, capability type, etc.).

<property_value>, <property_value_expression>: represent the type-compatible value to assign to the property.
Property values may be provided as the result of the evaluation of an expression or a function.

The following requirements apply:

Properties that have a (fixed) value defined during their definition or during a subsequent refinement may not
be assigned (as their value is already set).

If a required property has no value defined or assigned, its default value is assigned

properties:
 num-cpus:
 type: integer
 description: Number of CPUs requested for a software node instance.
 default: 1
 required: true
 validation: { $valid_values: [$value, [1, 2, 4, 8]] }

Endpoint:
 properties:
 protocol:
 type: string
 required: true
 default: tcp
 port:
 type: PortDef
 required: false
 secure:
 type: boolean
 required: false
 default: false

Endpoint.Admin:
 derived_from: Endpoint
 # Change Endpoint secure indicator to true from its default of false
 properties:
 secure: true

<property_name>: <property_value> | <property_value_expression>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 104 of 211

A non-required property that is not assigned stays undefined, thus the default keyname is irrelevant for a non-
required property.

9.6 Attribute Definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this specification
(e.g., a node, relationship or capability type). Specifically, it is used to expose the actual state of some a TOSCA
entity after it has been deployed and instantiated (as set by the TOSCA orchestrator).

Attribute definitions are very similar to property definitions; however, properties of entities reflect a configuration
value that carries the template author's requested or desired value (i.e., desired state) which the orchestrator
(attempts to) use when instantiating the entity. Attributes on the other hand reflect the actual value (i.e., actual state)
that provides the actual instantiated value. For example, a property can be used to request the IP address of a node
using a property (setting); however, the actual IP address after the node is instantiated may by different and made
available by an attribute. To allow both the desired state and the actual state to be tracked, TOSCA orchestrators
MUST automatically create an attribute for every declared property (with the same symbolic name) to allow
introspection of both the desired state (property) and actual state (attribute). If an attribute is reflected from a
property, its initial value is the value of the reflected property.

Attribute values can be retrieved via the $get_attribute function from the representation model and used as values to
other entities within TOSCA service templates. Attribute values an also be set by output mappings defined in
interface operations.

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Mandatory Type Description

type yes str The mandatory data type for the attribute.

description no str The optional description for the attribute.

metadata no map of
metadata

Defines a section used to declare additional information.

default no <must
match
attribute
type>

An optional key that may provide a value to be used as a default if not
provided by another means. This value SHALL be type compatible with
the type declared by the attribute definition's type keyname.

validation no validation
clause

The optional validation clause for the attribute.

key_schema conditional schema
definition

The schema definition for the keys used to identify entries in attributes of
type TOSCA map (or types that derive from map). If not specified, the
key_schema defaults to string. For attributes of type other than map, the
key_schema is not allowed.

entry_schema conditional schema
definition

The schema definition for the entries in attributes of collection types such
as list, map, or types that derive from list or map) If the attribute type is a
collection type, entry_schema is mandatory. For other types, the entry_schema
is not allowed.

Attribute definitions have the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 105 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<attribute_name>: represents the mandatory symbolic name of the attribute as a string.

<attribute_type>: represents the mandatory data type of the attribute.

<default_value>: contains a type-compatible value that may be used as a default if not provided by another means.
Values for the default keyname MUST be derived or calculated from other attribute or operation output values
(that reflect the actual state of the instance of the corresponding resource) and not hard-coded or derived from
a property settings or inputs (i.e., desired state).

<attribute_validation_clause>: represents the optional validation clause that must evaluate to True for values for the
defined attribute to be valid.

<key_schema_def>: if the <attribute_type> is map, represents the optional schema definition for the keys used to
identify entries in that map.

<entry_schema_def>: if the <attribute_type> is list or map, represents the mandatory schema definition for the entries in
that map or list.

An attribute definition within data, capability, node, relationship, and group types (including capability definitions in
node types) uses the following refinement rules when the containing entity type is derived:

type: must be derived from (or the same as) the type in the attribute definition in the parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the attribute definition in the
parent entity type definition.

default: a new definition is unrestricted and will overwrite the one inherited from the attribute definition in the
parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the validation clause defined in
the attribute definition in the parent entity type but is considered in addition to it.

key_schema: if defined in the attribute definition in the parent entity type it may be refined according to schema
refinement rules.

entry_schema: if defined in the attribute definition in the parent entity type it may be refined according to schema
refinement rules.

The following represents a mandatory attribute definition:

attributes:
 <attribute_name>:
 type: <attribute_type>
 description: <attribute_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 default: <default_value>
 validation: <attribute_validation_clause>
 key_schema: <key_schema_def>
 entry_schema: <entry_schema_def>

actual_cpus:
 type: integer
 description: Actual number of CPUs allocated to the node instance.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 106 of 211

9.7 Attribute Assignment

An attribute assignment is used to assign a value to an attribute within a TOSCA template. A TOSCA attribute
assignment has no keynames. Attribute assignments have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<attribute_name>: represents the name of an attribute that will be used to select an attribute definition with the
same name within on a TOSCA entity (e.g., node template, relationship template, etc.) which is declared (or
reflected from a Property definition) in its declared type (e.g., a node type, node template, capability type, etc.).

<attribute_value>, <attribute_value_expresssion>: represent the type-compatible value to assign to the attribute.
Attribute values may be provided as the result from the evaluation of an expression or a function.

Note that attributes that are the target of a parameter mapping assignment cannot also be assigned a value using an
attribute assignment.

9.8 Parameter Definition

A parameter definition defines a named, typed value and related data that may be used to exchange values between
the TOSCA orchestrator and the external world. Such values may be

inputs and outputs of interface operations and notifications

inputs and outputs of workflows

inputs and outputs of service templates

From the perspective of the TOSCA orchestrator such parameters are either incoming (i.e. transferring a value from
the external world to the orchestrator) or outgoing (transferring a value from the orchestrator to the external world).
Thus:

outgoing parameters are:

template outputs
internal workflow outputs
external workflow inputs
operation inputs

incoming parameters are:

template inputs
internal workflow inputs
external workflow outputs
operation outputs
notification outputs

An outgoing parameter definition is essentially the same as a TOSCA property definition, however it may optionally
inherit the data type of the value assigned to it rather than have an explicit data type defined.

An incoming parameter definition may define an attribute mapping of the parameter value to an attribute of a node.
Optionally, it may inherit the data type of the attribute it is mapped to, rather than have an explicit data type defined
for it.

The TOSCA parameter definition has all the keynames of a TOSCA property definition with the following additional or
changed keynames:

<attribute_name>: <attribute_value> | <attribute_value_expression>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 107 of 211

Keyname Mandatory Type Description

type no str The data type of the parameter. While this keyname is mandatory for a
TOSCA Property definition, it is not mandatory for a TOSCA parameter
definition.

value no <must
match
parameter
type>

The type-compatible value to assign to the parameter. Parameter values
may be provided as the result from the evaluation of an expression or a
function. May only be defined for outgoing parameters. Mutually exclusive
with the mapping keyname.

mapping no attribute
selection
format

A mapping that specifies the node or relationship attribute into which the
returned output value must be stored. May only be defined for incoming
parameters. Mutually exclusive with the value keyname.

Parameter definitions have the following grammar:

The following single-line grammar is supported for outgoing parameter definitions when only a fixed value needs to
be provided:

This single-line grammar is equivalent to the following:

The following single-line grammar is supported for incoming parameter definitions when only a parameter to attribute
mapping needs to be provided:

This single-line grammar is equivalent to the following:

Note that the context of the parameter definition unambiguously determines if the parameter is an incoming or an
outgoing parameter.

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<parameter_name>:
 type: <parameter_type>
 description: <parameter_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 value: <parameter_value> | <parameter_value_expression>
 mapping: <attribute_selection_format>
 required: <parameter_required>
 default: <parameter_default_value>
 validation: <parameter_validation_clause>
 key_schema: <key_schema_def>
 entry_schema: <entry_schema_def>

<parameter_name>: <parameter_value> | <parameter_value_expression>

<parameter_name>:
 value: <parameter_value> | <parameter_value_expression>

<parameter_name>: <attribute_selection_form>

<parameter_name>:
 mapping: <attribute_selection_form>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 108 of 211

<parameter_name>: represents the mandatory symbolic name of the parameter as a string.

<parameter_type>: represents the optional data type of the parameter. Note, this keyname is mandatory for a
TOSCA Property definition, but is not for a TOSCA Parameter definition.

<parameter_value>, <parameter_value_expresssion>: represent the type-compatible value to assign to the parameter.
Parameter values may be provided as the result from the evaluation of an expression or a function.

once the value keyname is defined, the parameter cannot be further refined or assigned.

the value keyname is relevant only for outgoing parameter definitions and SHOULD NOT be defined in
incoming parameter definitions.

<parameter_required>: represents an optional Boolean value (true or false) indicating whether or not the parameter
is required. If this keyname is not present on a parameter definition, then the parameter SHALL be considered
required (i.e., true) by default.

<default_value>: contains a type-compatible value that may be used as a default if not provided by other means.

the default keyname SHALL NOT be defined for parameters that are not required (i.e. <parameter_required> is
"false") as they will stay undefined.

<parameter_validation_clause>: represents the optional validation clause on the parameter definition.

<key_schema_def>: if the <parameter_type> is map, represents the optional schema definition for the keys used to
identify entries in that map. Note that if the key_schema is not defined, the key_schema defaults to string.

<entry_schema_def>: if the <parameter_type> is list or map, represents the mandatory schema definition for the entries
in that map or list.

<attribute_selection_format>: a list that corresponds to a valid attribute selection format; the parameter is mapped
onto an attribute of the containing entity

the mapping keyname is relevant only for incoming parameter definitions and SHOULD NOT be defined in
outgoing parameter definitions.

A parameter definition within interface types, interface definitions in node and relationship types, uses the following
refinement rules when the containing entity type is derived:

type: must be derived from (or the same as) the type in the parameter definition in the parent entity type
definition.

description: a new definition is unrestricted and will overwrite the one inherited from the parameter definition in the
parent entity type definition.

required: if defined to "false" in the parameter definition parent entity type it may be redefined to "true"; note that
if undefined it is automatically considered as being defined to "true".

default: a new definition is unrestricted and will overwrite the one inherited from the parameter definition in the
parent entity type definition (note that the definition of a default value is only allowed if the required keyname is
(re)defined as "true").

value: if undefined in the parameter definition in the parent entity type, it may be defined to any type-compatible
value; once defined, the parameter cannot be further refined or assigned

the value keyname should be defined only for outgoing parameters.

mapping: if undefined in the parameter definition in the parent entity type, it may be defined to any type-
compatible attribute mapping; once defined, the parameter cannot be further refined or mapped

the mapping keyname should be defined only for incoming parameters.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 109 of 211

status: a new definition is unrestricted and will overwrite the one inherited from the parameter definition in
the parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the validation clause defined in
the parameter definition in the parent entity type but is considered in addition to it.

key_schema: if defined in the parameter definition in the parent entity type it may be refined according to schema
refinement rules.

entry_schema: if defined in the parameter definition in the parent entity type it may be refined according to
schema refinement rules.

metadata: a new definition is unrestricted and will overwrite the one inherited from the parameter definition in the
parent entity type definition.

The following represents an example of an input parameter definition with a validation clause:

The following represents an example of an (untyped) output parameter definition:

9.8 Parameter Value Assignment

A parameter value assignment is used to assign a value to an outgoing parameter within a TOSCA template. A
TOSCA parameter value assignment has no keynames. Parameter value assignments have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<parameter_name>: represents the symbolic name of the parameter to assign; note that in some cases, even
parameters that do not have a corresponding definition in the entity type of the entity containing them may be
assigned (see e.g. inputs and outputs in interfaces).

<parameter_value>, <parameter_value_expression>: represent the type-compatible value to assign to the parameter.
Parameter values may be provided as the result from the evaluation of an expression or a function.

The following requirements apply:

Parameters that have a (fixed) value defined during their definition or during a subsequent refinement may not
be assigned (as their value is already set).

If a required parameter has no value defined or assigned, its default value is assigned.

A non-required parameter that has no value assigned it stays undefined, thus the default keyname is irrelevant
for a non-required parameter.

9.10 Parameter Mapping Assignment

A parameter mapping assignment is used to define the mapping of an incoming parameter value (e.g. an output

inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 validation: { $valid_values: [$value, [1, 2, 4, 8]] }

outputs:
 server-ip:
 description: The private IP address of the provisioned server.
 value: { $get_attribute: [my-server, private-address] }

<parameter_name>: <parameter_value> | <parameter_value_expression>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 110 of 211

value that is expected to be returned by an operation implementation) to an attribute into which the returned incoming
parameter value must be stored. A TOSCA parameter value assignment has no keynames. Parameter value
assignments use the following grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<parameter_name>: represents the symbolic name of the parameter to assign assign; note that in some cases,
even parameters that do not have a corresponding definition in the entity type of the entity containing them may
be assigned (see e.g. inputs and outputs in interfaces).

<tosca_path>: used by the TOSCA processor to traverse the representation graph to reach the attribute into
which to store the output value. Note that while the <tosca_path> is very powerful, its usage should be restricted
to only reach attributes in the local node or local relationship or in a local capability.

<attribute_name>: represents the name of the attribute in the local node or relationship context (i.e., "SELF") into
which to map the value of the incoming parameter referred to by parameter_name.

<nested_attribute_name_or_index_or_key_*>: Some TOSCA attributes are complex (i.e. composed as nested
structures). These parameters are used to dereference into the names of these nested structures when
needed. Som attributes are lists or maps. In these cases, an index or key may be provided to reference a
specific entry in the list or map (identified by the previous parameter).

Note that it is possible for multiple operations to define outputs that map onto the same attribute value. For example,
a "create" operation could include an output value that sets an attribute to an initial value, and the subsequent
"configure" operation could then update that same attribute to a new value.

It is also possible that a node template assigns a value to an attribute that has an operation output mapped to it
(including a value that is the result of calling an intrinsic function). Orchestrators could use the assigned value for the
attribute as its initial value. After the operation runs that maps an output value onto that attribute, the orchestrator
must then use the updated value, and the value specified in the node template will no longer be used.

Note that parameters that have a mapping defined during their definition or during a subsequent refinement may not
be assigned (as their mapping is already set).

9.11 Validation Clause

A validation clause is a Boolean expression that must evaluate to True if the value for the entity it references is
considered valid. Validation clauses have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<validation_clause>: represents a Boolean expression that must evaluate to True in order for values to be valid.
Any Boolean expression can be used with any function with any degree of nesting.

The Boolean expression used as a validation clause must have a mechanism for referencing the value to which the
expression applies. A special-purpose function is introduced for this purpose. This function is named $value and refers
to the value used for the data type or the parameter definition that contains the validation clause.

The following shows an example of validation clauses used in data type definitions. They also illustrate the various
alternatives for the $value function syntax:

<parameter_name>: [<tosca_path>, <attribute_name>, <nested_attribute_name_or_index_or_key_1>, <nested_attribute_name_or_index_or_key_2>

validation: <validation_clause>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 111 of 211

The following shows an example of validation clauses used in property definitions:

10 TOSCA Functions
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

10.1 Function Syntax

TOSCA supports the use of functions for providing dynamic service data values at runtime. The syntax of a function

data_types:
 # Full function syntax for the $value function
 Count1:
 derived_from: integer
 validation: { $greater_or_equal: [{ $value: [] }, 0] }

 # Simple function syntax for the $value function
 Count2:
 derived_from: integer
 validation: { $greater_or_equal: [$value, 0] }

 # Full function syntax with arguments
 SizeRange:
 properties:
 low:
 type: float
 high:
 type: float
 validation:
 $greater_or_equal: [{ $value: [high] }, { $value: [low] }]

node_types:
 Scalable:
 properties:
 minimum-instances:
 type: integer
 validation: { $greater_or_equal: [$value, 0] }
 maximum-instances:
 type: integer
 validation:
 $greater_or_equal:
 - $value
 - $get_property: [SELF, minimum-instances]
 default-instances:
 type: integer
 validation:
 $and:
 - $greater_or_equal:
 - $value
 - $get_property: [SELF, minimum-instances]
 - $less_or_equal:
 - $value
 - $get_property: [SELF, maximum-instances]
 required: false

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 112 of 211

has two representations:

Any function can be represented by a YAML map with a single key, where the key is a string starting with a $
(dollar sign) character and where the remainder of the string represents the function name. If present, the value
in the key-value pair represents the function arguments.

A function without arguments can alternatively be represented by a YAML string value, where the string starts
with a $ (dollar sign) character and where the remainder of the string represents the function name. This
representation cannot be used in map keys.

Function names may not contain the $ character as it will conflict with the escape mechanisms described below.

Therefore, any string starting with a $ (dollar sign) character will be interpreted as a function call. To allow for strings
starting with \$ character to be specified, the $ character at the start of the string needs to be escaped by using $$(two
dollar signs) characters instead. For example:

$$name will represent the literal string $name

$$$item will represent the literal string $$item, as only the first $ character is escaped.

As we could have function calls that return values to be used as keys in a map, hypothetically it is possible that we
use the same function call as a YAML key more than once. Because YAML does not allow for duplicate map keys, in
such cases we must allow for key variation. This is achieved by adding suffixes after the function name starting with a
second $ character. For example, the following is a valid map where the function "keygen" is called three times and
the returned values are used as keys in the hint map:

TOSCA functions may be used wherever a value is expected, such as:

a value for a TOSCA keyname

a value for a parameter or property or attribute, including a value within a complex datatype

a value for the arguments of another function

other places such as in validation clauses, conditions, etc.

TOSCA parsers are expected to evaluate function values at runtime based on the provided function arguments.

The following snippet shows an example of a node template that uses a function to retrieve a security context at
runtime:

Nested functions are supported, that is, functions can be used in the arguments of another function. The result of the
internal function will be passed as an argument to the outer function:

The following snippet shows escaped strings in a map that do not represent function calls:

hint:
 { $keygen: [UUID] }: 34
 { $keygen$1: [UUID] }: 56
 { $keygen$2: [UUID] }: 78

properties:
 context: { $get_security_context: { env: staging, role: admin } }

properties:
 nested: { $outer_func: [{ $inner_func: [iarg1, iarg2] }, oarg2] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 113 of 211

The arguments to the functions can be arbitrary TOSCA data, although TOSCA defines a number of built-in functions
that define function-specific syntax for providing arguments. In addition, service designers can optionally define
custom function signatures definitions for function arguments and function return values as specified in the section
Function Definitions.

When parsing TOSCA files, TOSCA parsers MUST identify functions wherever values are specified using the
following algorithm:

Does the YAML string start with $?

If yes, is the second character $?

If yes, discard the first $ and stop here (escape).

If no, is this a key in a YAML map?

If yes, is this the only key in a YAML map?

If yes, this is a function call.

If no, emit a parsing syntax error ("malformed function").

If no, this is a function call without arguments.

10.2 TOSCA Built-In Functions
10.2.1 Representation Graph Query Functions
10.2.1.1 $get_input

The $get_input function is used to retrieve the values of parameters declared within the inputs section of a TOSCA
service template. It uses the following grammars

or

Note that the signature shown in the first grammar does not conform to the custom function definition, but it does not
have to as it is a TOSCA built-in function.

The $get_input function takes the arguments shown in the following table:

Argument Mandatory Type Description

<input_parameter_name> yes str The name of the parameter as defined in the inputs
section of the service template.

properties:
 prop1:
 $$myid1: myval1
 myid2: $$myval2
 $$myid3: $$myval3

$get_input: <input_parameter_name>

$get_input: [<input_parameter_name>, <nested_input_parameter_name_or_index_1>, <nested_input_parameter_name_or_index_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 114 of 211

<nested_input_parameter_name_or_index_*> no str or
int

Some TOSCA input parameters are complex (i.e.,
composed as nested structures). These parameters
are used to dereference into the names of these
nested structures when needed. Some parameters
represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as
identified by the previous parameter) to return. The
index is a non-negative integer. If $get_inputis used
within a node template definition the function
$node_index can retrieve the index of the current node
representation among the nodes created from the
same template, and/or if $get_inputis used within a
requirement definition the function $relationship_index
can retrieve the index of the actual relationship
among the relationships created from the same
requirement. More information on multiplicity and
node and relationship indexes can be found in the
chapter Creating Multiple Representations From
Templates.

Argument Mandatory Type Description

The following snippet shows an example of the simple $get_input grammar:

The following template shows an example of the nested get_input grammar. The template expects two input values,
each of which has a complex data type. The get_input function is used to retrieve individual fields from the complex
input data.

inputs:
 cpus:
 type: integer

node_templates:
 my-server:
 type: Compute
 capabilities:
 host:
 properties:
 num-cpus: { $get_input: cpus }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 115 of 211

10.2.1.2 $get_property

The $get_property function is used to retrieve property values of modelable entities in the representation graph. Note
that the get_property function may only retrieve the static values of parameter or property definitions of a TOSCA
application as defined in the TOSCA service template. The $get_attribute function should be used to retrieve values for
attribute definitions (or property definitions reflected as attribute definitions) from the representation graph of the
TOSCA application (as realized by the TOSCA orchestrator).

The $get_property function uses the following grammar:

The $get_property function takes the arguments shown in the following table:

Argument Mandatory Type Description

data_types:
 NetworkInfo:
 properties:
 name:
 type: string
 gateway:
 type: string

RouterInfo:
 properties:
 ip:
 type: string
 external:
 type: string

service_template:
 inputs:
 management-network:
 type: NetworkInfo
 router:
 type: RouterInfo

 node_templates:
 bono-main:
 type: vRouter.Cisco
 directives: [substitutable]
 properties:
 mgmt-net-name: { $get_input: [management-network, name] }
 mgmt-cp-v4-fixed-ip: { $get_input: [router, ip] }
 mgmt-cp-gateway-ip: { $get_input: [management-network, gateway] }
 mgmt-cp-external-ip: { $get_input: [router, external] }
 requirements:
 - lan-port:
 node: host-with-net
 capability: VirtualBind
 - mgmt-net: mgmt-net

$get_property: [<tosca_path>, <property_name>, <nested_property_name_or_index_1>, <nested_property_name_or_index_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 116 of 211

<tosca_path> yes seq of strs
or non-
negative
ints as
defined in
tosca_path

Using the <tosca_path> we can traverse the
representation graph to extract information from a
certain node or relationship. We start from a specific
node or relationship identified by its symbolic name
(or by the SELF value representing the node or
relationship containing the definition) and then we
may further traverse the relationships and nodes of
the representation graph (using a variable number of
steps) until reaching the desired node or relationship.
The syntax is described in the section TOSCA Path.

<property_name> yes str The name of the property definition from which the
function will return the value.

<nested_property_name_or_index_*> no seq of strs
or ints

Some TOSCA properties are complex (i.e.,
composed as nested structures). These parameters
are used to dereference into the names of these
nested structures when needed. Some properties
represent list types. In these cases, an index may be
provided to reference a specific entry in the list (as
identified by the previous parameter) to return.

Argument Mandatory Type Description

The following example shows how to use the get_property function with an actual node template name:

The following example shows how to use the $get_property function traversing from the relationship to its target node:

The following example shows how to use the get_property function using the "SELF" value, and traversing from a
wordpress node (via the first relationship of the database_endpoint requirement to the target capability in the target
node) and accessing the port property of that capability:

node_templates:
 mysql-database:
 type: Database
 properties:
 name: sql_database1

 wordpress:
 type: WordPress
 ...
 interfaces:
 standard:
 configure:
 inputs:
 wp-db-name: { $get_property: [mysql-database, name] }

relationship_templates:
 my-connection:
 type: ConnectsTo
 interfaces:
 configure:
 inputs:
 targets_value: { $get_property: [SELF, TARGET, value] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 117 of 211

The following example shows how to use the $get_property function to traverse over two requirement relationships,
from the "wordpress" node to its database node and further to its "DBMS" host to get its "admin-credential" property:

node_templates:
 mysql-database:
 type: Database
 ...
 capabilities:
 database-endpoint:
 properties:
 port: 3306

wordpress:
 type: WordPress
 requirements:
 ...
 - database-endpoint: mysql-database
 interfaces:
 standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 ...
 wp-db-port:
 $get_property:
 - SELF
 - RELATIONSHIP
 - database-endpoint
 - 0
 - CAPABILITY
 - port

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 118 of 211

10.2.1.3 $get_attribute

The $get_attribute function is used within a representation graph to obtain attribute values from nodes and relationships
that have been created from an application model described in a service template. The nodes or relationships can be
referenced by their name as assigned in the service template or relative to the context where they are being invoked.

The get_attribute function uses the following grammar:

The $get_attribute function takes the arguments shown in the following table:

Argument Mandatory Type Description

<tosca_path> yes seq of strs
or non-
negative
ints as
defined in
tosca_path

Using the <tosca_path> we can traverse the
representation graph to extract information from a
certain node or relationship. The syntax is described
in the section TOSCA Path.

node_templates:
 mysql-database:
 type: Database
 ...
 capabilities:
 database-endpoint:
 properties:
 port: 3306

 wordpress:
 type: WordPress
 requirements:
 ...
 - database-endpoint: mysql-database
 interfaces:
 standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 ...
 host-dbms-admin-credential:
 $get_property:
 - SELF
 - RELATIONSHIP
 - database_endpoint
 - TARGET
 - RELATIONSHIP
 - host
 - TARGET
 - admin_credential

$get_attribute: [<tosca_path, <attribute_name>, <nested_attribute_name_or_index_1>, <nested_attribute_name_or_index_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 119 of 211

<attribute_name> yes The name
of the
attribute
definition
the
function
will return
the value
from.

<nested_attribute_name_or_index_*> no seq of strs
or ints

Some TOSCA attributes are complex (i.e., composed
as nested structures). These parameters are used to
dereference into the names of these nested structures
when needed. Some attributes represent list types. In
these cases, an index may be provided to reference a
specific entry in the list (as identified by the previous
parameter) to return.

Argument Mandatory Type Description

The $get_attribute function is used in the same way as the equivalent $get_property functions described above. Please
see their examples and replace $get_property with the $get_attribute function name.

10.2.1.4 $get_artifact

The $get_artifact function is used to retrieve the location of artifacts defined by modelable entities in a service template.
It uses the following grammar:

The $get_artifact function takes the arguments shown in the following table:

Argument Mandatory Type Description

<tosca_path> yes seq of strs or non-
negative ints as
defined in
tosca_path

Using the <tosca_path> a TOSCA processor can traverse the
representation graph to the node that contains the artifact. The
syntax is described in the section TOSCA Path.

<artifact_name> yes str The name of the artifact definition for which the function will
return the location.

The following example uses a snippet of a WordPress [WordPress] web application to show how to use the
get_artifact function with an actual node template name:

$get_artifact: [<tosca_path, <artifact_name>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 120 of 211

In such implementation the TOSCA orchestrator may provide the "wordpress.zip" archive as

a local URL (example: file://home/user/wordpress.zip) or

a remote one (example: http://cloudrepo:80/files/wordpress.zip) where some orchestrator may indeed provide
some global artifact repository management features.

10.2.1.5 $value

This function is used as an argument inside validation functions. It returns the value of the property, attribute, or
parameter for which the validation clause is defined. The $value function uses the following grammar:

It takes the arguments shown in the following table:

Argument Mandatory Type Description

<nested_value_name_or_index> no seq
of
strs
or
ints

Some TOSCA data are complex (i.e., composed as nested
structures). These parameters are used to dereference into the
names of these nested structures when needed. Some data
represent lists. In these cases, an index may be provided to
reference a specific entry in the list (as identified by the
previous parameter) to return.

10.2.1.6 $node_index

This function is used to return the runtime index of the current node representation in the list of node representations
created from the same node template. The first index is 0, which is also what $node_index will return when a single
node representation is created from a node template (i.e. where the default count is 1). The function should not be
used outside a valid node context. The $node_index function uses the following grammar:

10.2.1.7 $relationship_index

This function is used to return the runtime index of the current relationship in the list of relationships created from the
same requirement. The first index is 0. The function should not be used outside a valid relationship context (i.e. a
relationship type definitiom, or a requirement definition or assignment). The $relationship_index function uses the
following grammar:

node_templates:
 wordpress:
 type: WordPress
 ...
 interfaces:
 standard:
 configure:
 create:
 implementation: wordpress_install.sh
 inputs:
 wp-zip: { $get_artifact: [SELF, zip] }
 artifacts:
 zip: /data/wordpress.zip

$value: [<nested_value_name_or_index>, ...]

$node_index

$relationship_index

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 121 of 211

file:///%5Chome%5Cuser%5Cwordpress.zip
http://cloudrepo:80/files/wordpress.zip

10.2.1.8 $available_allocation

The $available_allocation function is used to retrieve the available allocation for capablity properties that can be targeted
by relationships to the capability. The main intended usage is to use this function within the condition clause in a
node_filter of a node with a select directive; this allows to select only nodes that have a certain available capacity that for
example can accomodate the expected allocations when used as a target for a relationship. The $available_allocation
function uses the following grammar:

The $available_allocation function takes the arguments shown in the following table:

Argument Mandatory Type Description

<tosca_path> yes seq of strs or
non-negative ints
as defined in
tosca_path

Using the <tosca_path> we can traverse the representation graph
to extract information from a certain node or relationship. In this
case the <tosca_path> must lead to a capability context.

<property_name> yes str The name of the capability property definition from which the
function will return the value. In this case it must be a
allocatable property (i.e. of integer, float, or scalar property types).

Usage example:

10.2.2 Boolean Functions

TOSCA includes a number of functions that return Boolean values. These functions are used in validation
expressions and in condition clauses in workflow definitions and policy definitions. They are also used as node filters
in requirement definitions and requirement templates and as substitution filters in substitution mappings.

10.2.2.1 Boolean Logic Functions

10.2.2.1.1 $and

The $and function takes two or more Boolean arguments. It evaluates to true if all its arguments evaluate to true. It
evaluates to false in all other cases. The $and function uses the following grammar:

Note that the evaluation of the arguments in the $and function may stop as soon as a false argument is encountered,
and the function may return immediately without evaluating the rest of the arguments.

10.2.2.1.2 $or

$available_allocation: [<tosca_path>, <property_name>]

service_template:
 node_templates:
 my-node:
 directive: [select]
 node_filter:
 $and:
 - $greater_or_equal:
 - $available_allocation: [SELF, CAPABILITY, host, num-cpus]
 - 3
 - $greater_or_equal:
 - $available_allocation: [SELF, CAPABILITY, host, mem-size]
 - 256 MB

$and: [<boolean_arg1>, <boolean_arg2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 122 of 211

The $or function takes two or more Boolean arguments. It evaluates to false if all of its arguments evaluate to false. It
evaluates to true in all other cases. The $or function uses the following grammar:

Note that the evaluation of the arguments in the $or function may stop as soon as a true argument is encountered,
and the function may return immediately without evaluating the rest of the arguments.

10.2.2.1.3 $not

The $not function takes one Boolean argument. It evaluates to true if its argument evaluates to false and evaluates to
false if its argument evaluates to true. The $not function uses the following grammar:

10.2.2.1.4 $xor

The $xor function takes two Boolean arguments. It evaluates to false if both arguments either evaluate to true or both
arguments evaluate to false, and evaluates to true otherwise. The $xor function uses the following grammar:

10.2.2.2 Comparison Functions

This section documents the list of built-in comparison functions.

Note that some implementations may fail the evaluation if the arguments are not of the same type.

Also note that Unicode string comparisons are implementation specific.

10.2.2.2.1 $equal

The $equal function takes two arguments that have the same type. It evaluates to true if the arguments are equal. An
$equal function that uses arguments of different types SHOULD be flagged as an error. The $equal function uses the
following grammar:

10.2.2.2.2 $greater_than

The $greater_than function takes two arguments of integer, float, string, timestamp, version, any scalar type, or their
derivations. It evaluates to true if both arguments are of the same type, and if the first argument is greater than the
second argument and evaluates to false otherwise. The $greater_than function uses the following grammar:

10.2.2.2.3 $greater_or_equal

The $greater_or_equal function takes two arguments of integer, float, string, timestamp, version, any scalar type, or their
derivations. It evaluates to true if both arguments are of the same type, and if the first argument is greater than or
equal to the second argument and evaluates to false otherwise. The $greater_or_equal function uses the following
grammar:

10.2.2.2.4 $less_than

The $less_than function takes two arguments of integer, float, string, timestamp, version, any scalar type, or their derivations. It

$or: [<boolean_arg1>, <boolean_arg2>, ...]

$not: [<boolean_arg>]

$xor: [<boolean_arg1>, <boolean_arg2>]

$equal: [<any_type_arg1>, <any_type_arg2>]

$greater_than: [<comparable_type_arg1>, <comparable_type_arg2>]

$greater_or_equal: [<comparable_type_arg1>, <comparable_type_arg2>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 123 of 211

evaluates to true if both arguments are of the same type, and if the first argument is less than the second argument
and evaluates to false otherwise. The $less_than function uses the following grammar:

10.2.2.2.5 $less_or_equal

The $less_or_equal function takes two arguments of integer, float, string, timestamp, version, any scalar type, or their
derivations. It evaluates to true if both arguments are of the same type, and if the first argument is less than or equal
to the second argument and evaluates to false otherwise. The $less_or_equal function uses the following grammar:

10.2.2.2.6 $valid_values

The $valid_values function takes two arguments. The first argument is of any type and the second argument is a list
with any number of values of the same type as the first argument. It evaluates to true if the first argument is equal to
a value in the second argument list and false otherwise. The $valid_values function uses the following grammar:

Note that the $valid_values function is equivalent to the $has_entry function, except with reversed argument order.

10.2.2.2.7 $matches

The $matches function takes two arguments. The first argument is a general string, and the second argument is a
string that encodes a regular expression pattern. It evaluates to true if the first argument matches the regular
expression pattern represented by the second argument and false otherwise. The $matches function uses the following
grammar:

Future drafts of this specification will detail the use of regular expressions and reference an appropriate standardized
grammar.

Note also that if ones means that the whole string is to be matched, the regular expression must start with a caret ̂
and end with a $.

10.2.2.3 Boolean List, Map and String Functions

10.2.2.3.1 $has_suffix

The $has_suffix function takes two arguments. Both arguments are either of type string or of type list. It evaluates to
true if the second argument is a suffix of the first argument. For lists this means that the values of the second list are
the last values of the first list in the same order. The $has_suffix function uses the following grammar:

10.2.2.3.2 $has_prefix

The $has_prefix function takes two arguments. Both arguments are either of type string or of tpe list. It evaluates to true
if the second argument is a prefix of the first argument. For lists this means that the values of the second list are the
first values of the first list in the same order. The $has_prefix function uses the following grammar:

10.2.2.3.3 $contains

$less_than: [<comparable_type_arg1>, <comparable_type_arg2>]

$less_or_equal: [<comparable_type_arg1>, <comparable_type_arg2>]

$valid_values: [<any_type_arg1>, <any_type_list_arg2>]

$matches: [<string_type_arg1>, <regex_pattern_arg2>]

$has_suffix: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

$has_prefix: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 124 of 211

The $contains function takes two arguments. Both arguments are either of type string or of type list. It evaluates to true
if the second argument is contained in the first argument. For strings that means that the second argument is a
substring of the first argument. For lists this means that the values of the second list are contained in the first list in
an uninterrupted sequence and in the same order. The $contains function uses the following grammar:

10.2.2.3.4 $has_entry

The $has_entry function takes two arguments. The first argument is a list or a map. The second argument is of the type
matching the entry_schema of the first argument. It evaluates to true if the second argument is an entry in the first
argument. For lists this means that the second argument is a value in the first argument list. For maps this means that
the second argument is a value in any of the key-value pairs in the first argument map. The $has_entry function uses
the following grammar:

10.2.2.3.5 $has_key

The $has_key function takes two arguments. The first argument is a map. The second argument is of the type
matching the key_schema of the first argument. It evaluates to true if the second argument is a key in any of the key-
value pairs in the first argument map. The $has_key function uses the following grammar:

10.2.2.3.6 $has_all_entries

The $has_all_entries function takes two arguments. The first argument is a list or a map. The second argument is a list
with the entry_schema matching the entry_schema of the first argument. It evaluates to true if for all entries in the
second argument there is an equal value entry in the first argument. The $has_all_entries function uses the following
grammar:

10.2.2.3.7 $has_all_keys

The $has_all_keys function takes two arguments. The first argument is a map. The second argument is a list with the
entry_schema matching the key_schema of the first argument. It evaluates to true if for all entries in the second
argument there is an equal value key in the first argument. The $has_all_keys function uses the following grammar:

10.2.2.3.8 $has_any_entry

The $has_any_entry function takes two arguments. The first argument is a list or a map. The second argument is a list
with the entry_schema matching the entry_schema of the first argument. It evaluates to true if there is an entry in the
second argument that is equal to an entry in the first argument. The $has_any_entry function uses the following
grammar:

10.2.2.3.9 $has_any_key

The $has_any_key function takes two arguments. The first argument is a map. The second argument is a list with the
entry_schema matching the key_schema of the first argument. It evaluates to true if there is an entry in the second
argument which is equal to a key in the first argument. The $has_any_key function uses the following grammar:

$contains: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

$has_entry: [<list_or_map_type_arg1>, <any_type_arg2>]

$has_key: [<map_type_arg1>, <any_type_arg2>]

$has_all_entries: [<list_or_map_type_arg1>, <list_type_arg2>]

$has_all_keys: [<map_type_arg1>, <list_type_arg2>]

$has_any_entry: [<list_or_map_type_arg1>, <list_type_arg2>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 125 of 211

10.2.3 String, List, and Map Functions
10.2.3.1 $length

The $length function takes an argument of type string, list, or map. It returns the number of nicode characters in the
string, or the numbers of values in the list, or the number of key-values pairs in the map. The $length function uses the
following grammar:

10.2.3.2 $concat

The $concat function takes one or more arguments of either the type string or the type list with the same type of their
entry_schema. In the case of strings, it returns a string which is the concatenation of the argument strings. In the
case of lists, it returns a list that contains all the entries of all the argument lists. Order is preserved both for strings
and lists. This function does not recurse into the entries of the lists. The $concat function uses the following grammar:

The following code snippet shows an example of a $concat function:

10.2.3.3 $join

The $join function takes either one or two arguments where the first one is of type list of strings and the second
(optional) argument is of type string. It returns a string that is the joining of the entries in the first argument while
adding an optional delimiter between the strings. The $join function uses the following grammar:

It takes the arguments shown in the following table:

Argument Mandatory Type Description

<string_*> yes seq of strs or
string value
expressions

A list of one or more strings (or expressions that result in a list of
string values) which can be joined together into a single string.

<delimiter> no str An optional delimiter used to join the string in the provided list.

The following code snippet shows example $join functions:

$has_any_key: [<map_type_arg1>, <list_type_arg2>]

$length: [<string_list_or_map_type_arg>]

$concat: [<string_or_list_type_arg1>, ...]

outputs:
 description: Concatenate the URL for a server from other template values
 server-url:
 value: { $concat: ['http://',
 $get_attribute: [server, public_address],
 ':',
 $get_attribute: [server, port]] }

$join: [[<string_1>, <string_2>, ...]]
$join: [[<string_1>, <string_2>, ...], <delimiter>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 126 of 211

10.2.3.4 $token

The $token function is used within a TOSCA service template on a string to parse out (tokenize) substrings separated
by one or more token characters within a larger string. The $token function uses the following grammar:

It takes the arguments shown in the following table:

Argument Mandatory Type Description

<string_with_tokens> yes str The composite string that contains one or more substrings separated
by token characters.

<string_of_token_chars> yes str The string that contains one or more token characters that separate
substrings within the composite string.

<substring_index> yes int The integer indicates the index of the substring to return from the
composite string. Note that the first substring is denoted by using the
"0" (zero) integer value.

The following code snippet shows an example use of the $token function:

10.2.4 Set Functions
10.2.4.1 $union

The $union function takes one or more list arguments, all having the entry schema of the same type. The result is a list
that contains all non-duplicate entries from all the argument lists. By non-duplicate is meant that no two entries in the
result list are equal. The $union function uses the following grammar:

The $union function applied to only one list will return a result where all the duplicate entries of the argument list are
eliminated. Note also that the order of the elements in the result list is not specified.

10.2.4.2 $intersection

The $intersection function takes one or more list arguments, all having the entry schema of the same type. The result is
a list that contains all entries that can be found in each of the argument lists. The $intersection function uses the
following grammar:

outputs:
 example1:
 # Result: prefix_1111_suffix
 value: { $join: [["prefix", 1111, "suffix"], "_"] }
 example2:
 # Result: 9.12.1.10,9.12.1.20
 value: { $join: [{ $get_input: my-ips }, ","] }

$token: [<string_with_tokens>, <string_of_token_chars>, <substring_index>]

outputs:
 webserver_port:
 description: the port provided at the end of my server's endpoint's IP address
 value: { $token: [$get_attribute: [my-server, data-endpoint, ip-address], ":", 1] }

$union: [<list_arg1>, <list_arg2>, ...]

$intersection: [<list_arg1>, <list_arg2>,...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 127 of 211

The $intersection function applied to only one list will return a result where all the duplicate entries of the argument
list are eliminated. Note also that the order of the elements in the result list is not specified.

10.2.5 Arithmetic Functions
10.2.5.1 $sum

The $sum function takes one or more arguments of either integer, float, or scalar type. The result is of the same type as
the arguments and its value is the arithmetic sum of the arguments' values. The $sum function uses the following
grammar:

10.2.5.2 $difference

The $difference function takes two arguments of either integer, float, or scalar type. The result is of the same type as the
arguments and its value is the arithmetic subtraction of the second argument value from the first argument value.
The $difference function uses the following grammar:

10.2.5.3 $product

The $product function takes either:

Two arguments where the first argument is of a scalar type and the second argument is of an integer or float type.
The result is of the same type as the first argument and its value is the arithmetic product of the first argument
value and the second argument value.

Any number of arguments of type integer or float. If all inputs are of type integer, then the result is of type integer,
otherwise it is of type float. The result value is the arithmetic product of all the arguments values.

The $product function uses the following grammars:

10.2.5.4 $quotient

The $quotient function takes two arguments where the first argument is of an integer, float, or scalar type and the second
argument is of an integer or float type. The result is of

A scalar type if the first argument is a scalar, and its value is the arithmetic division of the first argument value by
the second argument value. If necessary, the result might be truncated, as decided by the implementation.

A float if the first argument is an integer or a float. Note that to transform the float to an integer a round or ceil or floor
function must be used.

The $quotient function uses the following grammar:

10.2.5.5 $remainder

The $remainder function takes two arguments where the first argument is of an integer, or scalar type and the second
argument is of an integer. The result is of the same type as the first argument and its value is the remainder of the
division to the second argument. The $remainder function uses the following grammar:

$sum: [<int_float_or_scalar_type_1>, <int_float_or_scalar_type_2>, ...]

$difference: [<int_float_scalar_type_1>, <int_float_scalar_type_2>]

$product: [<scalar_type_arg1>, <int_or_float_type_arg2>]
$product: [<int_or_float_type_arg1>, <int_or_float_type_arg2>, ...]

$quotient: [<int_float_or_scalar_type_arg1>, <int_or_float_type_arg2>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 128 of 211

10.2.5.6 $round

The $round function takes a float argument. The result is an integer with the closest value to the float argument. Equal
value distance is rounded down (e.g. 3.5 is rounded down to 3, while 3.53 is rounded up to 4). The $round function
uses the following grammar:

10.2.5.7 $floor

The $floor function takes a float argument. The result is an integer with the closest value that is less or equal to the
value of the float argument. The $floor function uses the following grammar:

10.2.5.8 $ceil

The $ceil function takes a float argument. The result is an integer with the closest value that is greater or equal to the
value of the float argument. The $ceil function uses the following grammar:

10.3 TOSCA Path

The following shows the TOSCA Path syntax in BNF format:

<tosca_path> ::= <node_symbolic_name>, <idx>, <node_context> |
 SELF, <node_context> |
 <relationship_symbolic_name>, <rel_context> |
 SELF, <rel_context>
<node_context> ::= RELATIONSHIP, <requirement_name>, <idx>, <rel_context> |
 CAPABILITY, <capability_name>, RELATIONSHIP, <idx>, <rel_context> |
 CAPABILITY, <capability_name> |
 <empty>
<rel_context> ::= SOURCE, <node_context> |
 TARGET, <node_context> |
 CAPABILITY, RELATIONSHIP <idx>, <rel_context> |
 CAPABILITY |
 <empty>
<idx> ::= <integer_index> |
 ALL |
 <empty>

The initial context can refer to either a node or a relationship context:

Since several node representations can be created from the same node template, the <idx> after the initial
<node_symbolic_name> selects one (or all) of them.
If "SELF" is used, and if the <tosca_path> is used within a requirement definition, "SELF" refers to the current
relationship context, otherwise it refers to the current node context.
A <node_context> can further resolve to a <rel_context> and so on, adding more traversal steps. In the end we reach
a final node, relationship, or capability context.

A <node_context> can further:

lead to the outgoing relationship with index <idx> out of the relationship defined by the requirement with

$remainder: [<int_or_scalar_type_arg1>, <int_type_arg2>]

$round: [<float_type_arg>]

$floor: [<float_type_arg>]

$ceil: [<float_type_arg>]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 129 of 211

symbolic name <requirement_name> of the current node
lead to the relationship with index <idx> out of the incoming relationships that target the capability with symbolic
name <capability_name> of the current node
end within the capability with symbolic name <capability_name> in the current node
end within the current node via the <empty> resolution

A <rel_context> can further:

lead to the "SOURCE" node of the current relationship
lead to the "TARGET" node of the current relationship
lead to a relationship with index <idx> out of the relationships defined by the same requirement as the current
relationship
end within the target capability of the current relationship
end within the current relationship via the <empty> resolution

Note that the <idx> can either be a non-negative integer, the value "ALL", or missing:

If it is a non-negative integer, 0 represents the first index and so on incrementally.
If the index is missing, the semantic meaning is that the first index (index with value 0) is used.
If it is the value "ALL", then we return the result for all possible indices (further resolved separately) as a list. If
the there are multiple "ALL" values in the definition, then all the results shall be merged into a single list.

We further list the changes from the $get_property and $get_attribute expression from v1.3 to v2.0:

Added multi-step traversal of the representation graph
Added the backward traversal from capabilities to incoming relationships
Added the target capability of a relationship as a possible traversal
Added the specification of indexes and allowing traversal of multi-count requirements
Changed the following syntax to work better in multi-step traversal:

The initial "SOURCE", ... becomes "SELF", "SOURCE", ...
The initial "TARGET", ... becomes "SELF", "TARGET", ...

10.4 Function Definitions

TOSCA allows for the use of custom functions that extend the set of built-in functions documented in the previous
section. TOSCA Processors use standard function parsing rules to detect the presence of a custom function.

In addition, TOSCA also includes grammar for defining function signatures and associated implementation artifacts in
TOSCA profiles or in TOSCA service templates. This allows for validation of function return values and function
arguments at design time, and the possibility to provide function implementation artifacts within CSARs. Note that the
use of custom function definitions is entirely optional. Service designers can use custom functions without defining
associated function signatures and instead rely on support for those functions directly in the TOSCA orchestrator that
will be used to process the TOSCA files. Of course, TOSCA processors may support custom functions that are not
user-defined.

The following is the list of recognized keynames for a TOSCA function definition:

Keyname Mandatory Type Description

signatures yes map of signature definitions The map of signature definitions.

description no str The description of the function.

metadata no map of metadata Defines additional information.

The following is the list of recognized keynames for a TOSCA function signature definition:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 130 of 211

Keyname Mandatory Type Description

arguments no seq of schema
definitions

All defined arguments must be used in the function invocation
(and in the order defined here). If no arguments are defined, the
signature either accepts no arguments or any arguments of any
form (depending on if the variadic keyname is false or true).

optional_arguments no seq of schema
definitions

Optional arguments may be used in the function invocation after
the regular arguments. Still the order defined here must be
respected.

variadic no bool Specifies if the last defined argument (or optional_arguments if
defined) may be repeated any number of times in the function
invocation. If this value is not specified, a default of False is
assumed.

result no schema
definition

Defines the type of the function result. If no result keyname is
defined, then the function may return any result

implementation no implementation
definition

Defines the implementation (e.g., artifact) for the function. The
same definition as for operation/notification implementation is
used.

Function signatures can be defined in TOSCA profiles or TOSCA service templates using a YAML map under the
functions keyname using the grammar specified below. Note that this grammar allows the definition of functions that
have arguments expressed within a YAML seq, however intrinsic functions may accept other argument definition
syntaxes.

Each <function_def> defines the name of a function with an associated list of signature definitions as follows:

Only the signatures keyname is mandatory and must provide at least one signature definition. Note that the signatures
are tested in the order of their definition. The first matching implementation is used.

Each <signature_def_*> uses the following grammar:

functions:
 <function_def_1>
 <function_def_2>
 ...

<function_name>:
 signatures:
 - <signature_def_1>
 - <signature_def_2>
 - ...
 description: <string>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 131 of 211

None of the keynames in the signature definition are mandatory.

The keynames have the following meaning:

The arguments keyname defines the type and the position of the function arguments. All defined arguments must
be used in the function invocation (and in the order defined here).

The full flexibility of the schema definition for types can be used.

The optional_arguments keyname defines the type and the position of the function arguments. Optional arguments
may be used in the function invocation after the regular arguments. Still the order defined here must be
respected (that is, if m out of n of the optional arguments are used, they will correspond to the first m
<schema_def>).

The full flexibility of the schema definition for types can be used.

The result keyname defines the type of the function result.

Again, the full flexibility of the schema definition for types can be used.

If no result keyname is defined, then the function may return any result.

The variadic keyname defines if the last defined argument may be repeated any number of times in the function
invocation.

If variadic is true, the last defined argument may be repeated any number of times in the function
invocation (on the last positions).

If optional_arguments is defined, then the last defined argument is the last defined optional argument.
Note that in this case we have a 0+ usage of the last argument.

If optional_arguments is not defined, then the last defined argument is the last defined regular
argument. Note that in this case we have a 1+ usage of the last argument.

If variadic is false, the last argument definition has no special semantics.

If the arguments list is empty or not defined:

If variadic is false, the function is not accepting any arguments.

If variadic is true, the function is considered to accept any numbers of arguments of any type or form.

Default value of variadic is false.

The implementation keyname defines the implementation (e.g., artifact) for the function.

The same definition as for operation/notification implementation is used.

arguments:
- <schema_def_1>
- <schema_def_2>
- ...
optional_arguments:
- <schema_def_1>
- <schema_def_2>
- ...
variadic: <boolean>
result: <schema_def>
implementation: <implementation_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 132 of 211

If no implementation is specified, then it's assumed that the TOSCA processor is preconfigured to handle
the function call.

Note that several signatures of a function (or even of several functions) may refer to the same
implementation in the implementation definition.

The functions section can be defined both outside and/or inside a service_template section:

Function definitions outside a service_template can be within a profile TOSCA file or imported TOSCA file

Namespacing works as for types. Overlapping definitions under the same <function_name> are not allowed.

Note that in that case the $ (dollar sign) character will be put in front of the namespace name. For
example:

Function definitions inside a service_template that have the same <function_name> are considered a refinement of
the homonymous definition outside the service_template, see refinement rules below.

For example, this would allow for two separated design moments in function design:

At profile design time (outside the service_template), when e.g. the arguments and the result is defined
and thus the function can be correctly used in the node type definitions.

At service template design time (inside the service_template), when function implementation references
within a current CSAR can be decided, and thus the implementation or the description may be added or
changed.

Note also that we could have the whole definition in the service template or outside the service template,
in the latter case defining a global implementation.

Function definitions inside a service_template that have the same <function_name> are considered a refinement of the
homonymous definition outside the service_template. They use the following refinement rules:

signatures: as a general function refinement rule, for an already defined signature only the implementation may
be changed.

New function signatures may be added to the signatures list, but only after the refinements of the existing
signatures.

If an existing signature is not refined, an empty element must be used at the relevant location in the list.

description: a new definition is unrestricted and will overwrite the one inherited from the function definition outside
the service_template.

metadata: a new definition is unrestricted and will overwrite the one inherited from the function definition outside
the service_template.

The following example shows the definition of a square root function:

properties:
 rnd-nr: { $namespace1:random_generator: [seed] }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 133 of 211

The next $sqrt is similar to above, but uses a simplified type notation (in this short form no validation clause can be
expressed):

The following example shows a function that takes a list of arguments with different types:

The following snippet defines the same function as the example above, but in compact notation:

functions:
 sqrt:
 signatures:
 - arguments:
 - type: integer
 validation: { $greater_or_equal: [$value, 0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 - arguments:
 - type: float
 validation: { $greater_or_equal: [$value, 0.0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function
 returns the square root as a float.

functions:
 sqrt:
 signatures:
 - arguments: [integer]
 result: float
 implementation: scripts/sqrt.py
 - arguments: [float]
 result: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function
 returns the suare root as a float

functions:
 my_func_with_different_argument_types:
 signatures:
 - arguments:
 - type: MyType1
 description: "this is the first argument ..."
 - type: string
 description: "this is the second argument ..."
 - type: string
 description: "this is the third argument ..."
 - type: MyType2
 description: "this is the argument that can be repeated ..."
 variadic: true
 result:
 type: MyTypeRez
 implementation: scripts/my.py

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 134 of 211

The arguments list can be empty or completely missing. In such a case, when using the function the arguments will
be an empty list:

The following shows function signatures with polymorphic arguments and result lists:

The following shows the use of an argument that is a map of lists of MyType:

The following shows more examples of function usage. Note that in the usage of the polymorphic union function, the
TOSCA parser knows to identify the right signature via the types of the function arguments. Also note the usage of a
user-defined function with no parameters; an empty list is used for the arguments.

functions:
 my_func_with_different_argument_types:
 signatures:
 - arguments: [MyType1, string, string, MyType2]
 variadic: true
 result: MyTypeRez
 implementation: scripts/my.py

functions:
 get_random_nr:
 signatures:
 - result: float
 implementation: scripts/myrnd.py

functions:
 union:
 signatures:
 - arguments:
 - type: list
 entry_schema: integer
 variadic: true
 result:
 type: list
 entry_schema: integer
 implementation: scripts/libpi.py
 - arguments:
 - type: list
 entry_schema: float
 variadic: true
 result:
 type: list
 entry_schema: float
 implementation: scripts/libpi.py

functions:
 complex_arg_function:
 signatures:
 - arguments:
 - type: map
 key_schema: string
 entry_schema:
 type: list
 entry_schema: MyType
 result: string
 implementation: scripts/complex.py

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 135 of 211

11 Interfaces, Operations, and Notifications
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

11.1 Interface Type

An interface type is a reusable entity that describes a set of operations and notifications that can be used to interact
with or to manage a node or relationship in a TOSCA topology as well as the input and output parameters used by
those operations and notifications.

An interface type definition is a type of TOSCA type definition and as a result supports the common keynames listed
in the section Common Keynames in Type Definitions . In addition, the interface type definition has the following
recognized keynames:

Keyname Mandatory Type Description

inputs no map of parameter
definitions

The optional map of input parameter definitions available to all
operations defined for this interface.

operations no map of operation
definitions

The optional map of operations defined for this interface.

notifications no map of notification
definitions

The optional map of notifications defined for this interface.

These keynames can be used according to the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

properties:
 integer_union: { $union: [[1, 7], [3, 4, 9], [15, 16]] }
 float_union: { $union: [[3.5, 8.8], [1.3]] }
 rnd: { $get_random_nr: [] }

<interface_type_name>:
 derived_from: <parent_interface_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <interface_description>
 inputs:
 <input_parameter_def_1>
 <input_parameter_def_2>
 ...
 operations:
 <operation_def_1>
 <operation_def_2>
 ...
 notifications:
 <notification_def_1>
 <notification_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 136 of 211

<interface_type_name>: represents the mandatory name of the interface as a string.

<parent_interface_type_name>: represents the name of the interface type from which this interface type definition
derives (i.e. its "parent" type).

<parameter_def_*>: represents the optional map of parameter definitions which the TOSCA orchestrator will make
available (i.e., or pass) to all implementation artifacts for operations declared on the interface during their
execution.

<operation_def_*>: represents the optional map of one or more operation definitions.

<notification_def_*>: represents the optional map of one or more notification definitions.

During interface type derivation the keyname definitions follow these rules:

inputs: existing parameter definitions may be refined; new parameter definitions may be added.

operations: existing operation definitions may be refined; new operation definitions may be added.

notifications: existing notification definitions may be refined; new notification definitions may be added.

Note that interface types definitions MUST NOT include any implementations for defined operations or notifications;
that is, the implementation keyname is invalid in this context.

The following example shows a custom interface used to define multiple configure operations.

11.2 Interface Definition

An interface definition defines an interface (containing operations and notifications definitions) that can be associated
with (i.e. defined within) a node or relationship type definition. An interface definition may be refined in subsequent
node or relationship type derivations.

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the interface type on which this interface
definition is based.

description no str The optional description for this interface definition.

metadata no map of
metadata

Defines additional information.

MyConfigure:
 description: My custom configure interface type
 inputs:
 mode:
 type: string
 operations:
 pre-configure-service:
 description: pre-configure operation for my service
 post-configure-service:
 description: post-configure operation for my service

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 137 of 211

inputs no map of
parameter
definitions
and
refinements

The optional map of input parameter refinements and new input
parameter definitions available to all operations defined for this interface
(the input parameters to be refined have been defined in the interface
type definition).

operations no map of
operation
refinements

The optional map of operations refinements for this interface. The
referred operations must have been defined in the interface type
definition.

notifications no map of
notification
refinements

The optional map of notifications refinements for this interface. The
referred operations must have been defined in the interface type
definition.

Keyname Mandatory Type Description

Interface definitions in node or relationship type definitions have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<interface_definition_name>: represents the mandatory symbolic name of the interface as a string.

<interface_type_name>: represents the mandatory name of the interface type for the interface definition.

<parameter_def_or_refinement_*>: represents the optional map of input parameters which the TOSCA orchestrator
will make available (i.e. pass) to all defined operations. This means these parameters and their values will be
accessible to the implementation artifacts (e.g., scripts) associated to each operation during their execution

the map represents a mix of parameter refinements (for parameters already defined in the interface type)
and new parameter definitions.

with the new parameter definitions, we can flexibly add new parameters when changing the
implementation of operations and notifications during refinements or assignments.

<operation_refinement_*>: represents the optional map of operation definition refinements for this interface; the
referred operations must have been previously defined in the interface type.

<notification_refinement_*>: represents the optional map of notification definition refinements for this interface; the

<interface_definition_name>:
 type: <interface_type_name>
 description: <interface_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 inputs:
 <parameter_def_or_refinement_1>
 <parameter_def_or_refinement_2>
 ...
 operations:
 <operation_refinement_1>
 <operation_refinement_2>
 ...
 notifications:
 <notification_refinement_1>
 <notification_refinement_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 138 of 211

referred notifications must have been previously defined in the interface type.

An interface definition within a node or relationship type (including interface definitions in requirements definitions)
uses the following definition refinement rules when the containing entity type is derived:

type: must be derived from (or the same as) the type in the interface definition in the parent entity type
definition.

description: a new definition is unrestricted and will overwrite the one inherited from the interface definition in the
parent entity type definition.

inputs: not applicable to the definitions in the parent entity type but to the definitions in the interface type referred
by the type keyname (see grammar above for the rules).

operations: not applicable to the definitions in the parent entity type but to the definitions in the interface type
referred by the type keyname (see grammar above for the rules).

notifications: not applicable to the definitions in the parent entity type but to the definitions in the interface type
referred by the type keyname (see grammar above for the rules).

11.3 Interface Assignment

An interface assignment is used to specify assignments for the inputs, operations and notifications defined in the
interface. Interface assignments may be used within a node or relationship template definition (including when
interface assignments are referenced as part of a requirement assignment in a node template).

The following is the list of recognized keynames for a TOSCA interface assignment:

Keyname Mandatory Type Description

inputs no map of
parameter
value
assignments

The optional map of input parameter assignments. Template authors
MAY provide parameter assignments for interface inputs that are not
defined in their corresponding interface type.

operations no map of
operation
assignments

The optional map of operations assignments specified for this interface.

notifications no map of
notification
assignments

The optional map of notifications assignments specified for this
interface.

Interface assignments have the following grammar:

<interface_definition_name>:
 inputs:
 <parameter_value_assignment_1>
 <parameter_value_assignment_2>
 ...
 operations:
 <operation_assignment_1>
 <operation_assignment_2>
 ...
 notifications:
 <notification_assignment_1>
 <notification_assignment_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 139 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<interface_definition_name>: represents the mandatory symbolic name of the interface as a string.

<parameter_value_assignment_*>: represents the optional map of parameter value assignments for passing input
parameter values to all interface operations

template authors MAY provide new parameter assignments for interface inputs that are not defined in the
interface definition.

<operation_assignment_*>: represents the optional map of operation assignments for operations defined in the
interface definition.

<notification_assignment_*>: represents the optional map of notification assignments for notifications defined in the
interface definition.

11.4 Operation Definition

An operation definition defines a function or procedure to which an operation implementation can be bound.

A new operation definition may be declared only inside interface type definitions (this is the only place where new
operations can be defined). In interface type, node type, or relationship type definitions (including operation
definitions as part of a requirement definition) we may further refine operations already defined in an interface type.

An operation definition or refinement inside an interface type definition may not contain an operation implementation
definition and it may not contain an attribute mapping as part of its output definition (as both these keynames are
node/relationship specific).

The following is the list of recognized keynames for a TOSCA operation definition (including definition refinement)

Keyname Mandatory Type Description

description no str The optional description string for the associated operation.

implementation no operation
implementation
definition

The optional definition of the operation implementation. May not be
used in an interface type definition (i.e. where an operation is initially
defined), but only during refinements.

inputs no map of
parameter
definitions

The optional map of parameter definitions for operation input values.

outputs no map of
parameter
definitions

The optional map of parameter definitions for operation output
values. Only as part of node and relationship type definitions, the
output definitions may include mappings onto attributes of the node
or relationship type that contains the definition.

Operation definitions have the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 140 of 211

The following single-line grammar may be used when the operation's implementation definition is the only keyname
that is needed, and when the operation implementation definition itself can be specified using a single line grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<operation_name>: represents the mandatory symbolic name of the operation as a string.

<operation_description>: represents the optional description string for the operation.

<operation_implementation_def>: represents the optional specification of the operation's implementation.

<parameter_def_*>: represents the optional map of parameter definitions which the TOSCA orchestrator will make
available as inputs to or receive as outputs from the corresponding implementation artifact during its execution.

An operation definition within an interface, node, or relationship type (including interface definitions in requirements
definitions) uses the following refinement rules when the containing entity type is derived:

description: a new definition is unrestricted and will overwrite the one inherited from the operation definition in the
parent entity type definition.

implementation: a new definition is unrestricted and will overwrite the one inherited from the operation definition in
the parent entity type definition.

inputs: parameter definitions inherited from the parent entity type may be refined; new parameter definitions may
be added.

outputs: parameter definitions inherited from the parent entity type may be refined; new parameter definitions
may be added.

The following additional requirements apply:

The definition of implementation is not allowed in interface type definitions (as a node or node type context is
missing at that point). Thus, it can be part only of an operation refinement and not of the original operation
definition.

The default refinement behavior for implementations SHALL be overwrite. That is, implementation definitions in
a derived type overwrite any defined in its parent type.

Defining a fixed value for an input parameter (as part of its definition) may only use a <parameter_value_expression>
that is meaningful in the scope of the context. For example, within the context of an interface type definition
functions such as $get_property or $get_attribute cannot be used. Within the context of Node or relationship type
definitions, these functions may only reference properties and attributes accessible starting from "SELF" (i.e.
accessing a node by symbolic name is not meaningful).

Defining attribute mapping as part of the output parameter definition is not allowed in interface type definitions

<operation_name>:
 description: <operation_description>
 implementation: <operation_implementation_def>
 inputs:
 <parameter_def_1>
 <parameter_def_2>
 ...
 outputs:
 <parameter_def_1>
 <parameter_def_2>
 ...

<operation_name>: <operation_implementation_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 141 of 211

(i.e. as part of operation definitions). It is allowed only in node and relationship type definitions (as part of
operation refinements) and has to be meaningful in the scope of the context (e.g. "SELF").

Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative
to the TOSCA file file itself when packaged within a TOSCA Cloud Service Archive (CSAR) file.

The following code snippet shows an example operation definition:

The next example shows single-line grammar for the operation implementation:

The following code snippet shows an example of the single-line grammar for the entire operation definitions:

11.5 Operation Assignment

An operation assignment may be used to assign values for input parameters, specify attribute mappings for output
parameters, and define/redefine the implementation definition of an already defined operation in the interface
definition. An operation assignment may be used inside interface assignments inside node template or relationship
template definitions (this includes when operation assignments are part of a requirement assignment in a node
template).

An operation assignment may add or change the implementation and description definition of the operation.
Assigning a value to an input parameter that had a fixed value specified during operation definition or refinement is
not allowed. Providing an attribute mapping for an output parameter that was mapped during an operation refinement
is also not allowed.

Note also that in the operation assignment we can use inputs and outputs that have not been previously defined in
the operation definition. This is equivalent to an ad-hoc definition of a parameter, where the type is inferred from the
assigned value (for input parameters) or from the attribute to map to (for output parameters).

The following is the list of recognized keynames for an operation assignment:

interfaces:
 configure:
 pre-configure-source:
 implementation:
 primary:
 file: scripts/pre_configure_source.sh
 type: Bash
 repository: my_service_catalog
 dependencies:
 - file : scripts/setup.sh
 type : Bash
 repository : my_service_catalog

interfaces:
 configure:
 pre-configure-source:
 implementation:
 primary: scripts/pre_configure_source.sh
 dependencies:
 - scripts/setup.sh
 - binaries/library.rpm
 - scripts/register.py

interfaces:
 standard:
 start: scripts/start_server.sh

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 142 of 211

Keyname Mandatory Type Description

implementation no operation
implementation
definition

The optional definition of the operation implementation. Overrides
implementation provided at operation definition.

inputs no map of
parameter
value
assignments

The optional map of parameter value assignments for assigning
values to operation inputs.

outputs no map of
parameter
mapping
assignments

The optional map of parameter mapping assignments that specify
how operation outputs are mapped onto attributes of the node or
relationship that contains the operation definition.

Operation assignments have the following grammar:

The following single-line grammar may be used when the operation's implementation definition is the only keyname
that is needed, and when the operation implementation definition itself can be specified using a single line grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<operation_name>: represents the mandatory symbolic name of the operation as a string.

<operation_implementation_def>: represents the optional specification of the operation's implementation

the implementation declared here overrides the implementation provided at operation definition.

<parameter_value_assignment_*>: represents the optional map of parameter value assignments for passing input
parameter values to operations.

assignments for operation inputs that are not defined in the operation definition may be provided

<parameter_mapping_assignment_*>: represents the optional map of parameter mapping assignments that consists
of named output values returned by operation implementations (i.e. artifacts) and associated attributes into
which this output value must be stored

assignments for operation outputs that are not defined in the operation definition may be provided.

The following additional requirements apply:

The behavior for implementation of operations SHALL be overwrite. That is, implementation definitions
assigned in an operation assignment override any defined in the operation definition.

<operation_name>:
 implementation: <operation_implementation_def>
 inputs:
 <parameter_value_assignment_1>
 <parameter_value_assignment_2>
 ...
 outputs:
 <parameter_mapping_assignment_1>
 <parameter_mapping_assignment_2>
 ...

<operation_name>: <operation_implementation_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 143 of 211

Template authors MAY provide parameter assignments for operation inputs that are not defined in the
operation definition.

Template authors MAY provide attribute mappings for operation outputs that are not defined in the operation
definition.

Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative
to the TOSCA file file itself when packaged within a TOSCA Cloud Service Archive (CSAR) file.

11.6 Notification Definition

A notification definition defines an asynchronous notification or incoming message that can be associated with an
interface. The notification is a way for events generated by external implementations to be transmitted to the TOSCA
orchestrator. Values can be sent with a notification as notification outputs and can be mapped to node/relationship
attributes similarly to the way operation outputs are mapped to attributes. The artifact that the orchestrator is
registering with in order to receive the notification is specified using the implementation keyname in a similar way to
operations. Artifacts registered to recieve events may be configured by means of parameters provided under the
inputs keyname of the notification definition.

When the notification is received an event is generated within the orchestrator that can be associated to triggers in
policies to call other internal operations and workflows. The notification name (using the <interface_name>.
<notification_name> notation) itself identifies the event type that is generated and can be textually used when defining
the associated triggers.

A notification definition may be used only inside interface type definitions (this is the only place where new
notifications can be defined). Inside interface type, node type, or relationship type definitions (including notifications
definitions as part of a requirement definition) we may further refine a notification already defined in the interface
type.

A notification definition or refinement inside an interface type definition may not contain a notification implementation
definition and it may not contain an attribute mapping as part of its output definition (as both these keynames are
node/relationship specific).

The following is the list of recognized keynames for a TOSCA notification definition:

Keyname Mandatory Type Description

description no str The optional description string for the associated notification.

implementation no notification
implementation
definition

The optional definition of the notification implementation.

inputs no map of
parameter
definitions

The optional map of parameter definitions for notification input
values.

outputs no map of
parameter
definitions

The optional map of parameter definitions that specify notification
output values. Only as part of node and relationship type definitions,
the output definitions may include their mappings onto attributes of
the node type or relationship type that contains the definition.

Notification definitions have the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 144 of 211

The following single-line grammar may be used when the notification's implementation definition is the only keyname
that is needed and when the notification implementation definition itself can be specified using a single line grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<notification_name>: represents the mandatory symbolic name of the notification as a string.

<notification_description>: represents the optional description string for the notification.

<notification_implementation_def>: represents the optional specification of the notification implementation (i.e. the
external artifact that may send notifications)

<parameter_def_*>: represents the optional map of parameter definitions for parameters that the orchestrator will
make available as inputs or receive as outputs from the corresponding implementation artifact during its
execution.

A notification definition within an interface, node, or relationship type (including interface definitions in requirements
definitions) uses the following refinement rules when the containing entity type is derived:

description: a new definition is unrestricted and will overwrite the one inherited from the notification definition in
the parent entity type definition.

implementation: a new definition is unrestricted and will overwrite the one inherited from the notification definition
in the parent entity type definition.

inputs: parameter definitions inherited from the parent entity type may be refined; new parameter definitions may
be added.

outputs: parameter definitions inherited from the parent entity type may be refined; new parameter definitions
may be added.

The following additional requirements apply:

The definition of implementation is not allowed in interface type definitions (as a node or node type context is
missing at that point). Thus, it can be part only of a notification refinement and not of the original notification
definition.

The default sub-classing (i.e. refinement) behavior for implementations of notifications SHALL be overwrite.
That is, implementation artifacts definitions in a derived type overwrite any defined in its parent type.

Defining attribute mapping as part of the output parameter definition is not allowed in interface type definitions
(i.e. as part of operation definitions). It is allowed only in node and relationship type definitions (as part of
operation refinements).

Defining a mapping in an output parameter definition may use an attribute target that is meaningful in the scope

<notification_name>:
 description: <notification_description>
 implementation: <notification_implementation_def>
 inputs:
 <parameter_def_1>
 <parameter_def_2>
 ...
 outputs:
 <parameter_def_1>
 <parameter_def_2>
 ...

<notification_name>: <notification_implementation_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 145 of 211

of the context. Within the context of Node or relationship type definitions these functions may only reference
attributes starting from the same node (i.e. SELF).

Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative
to the TOSCA file file itself when packaged within a TOSCA Cloud Service Archive (CSAR) file.

11.7 Notification Assignment

A notification assignment may be used to specify attribute mappings for output parameters and to define/redefine the
implementation definition and description definition of an already defined notification in the interface definition. A
notification assignment may be used inside interface assignments which are themselves inside node or relationship
template definitions (this includes when notification assignments are part of a requirement assignment in a node
template).

Providing an attribute mapping for an output parameter that was mapped during a previous refinement is not allowed.
Note also that in the notification assignment we can use outputs that have not been previously defined in the
operation definition. This is equivalent to an ad-hoc definition of an output parameter, where the type is inferred from
the attribute to map to.

The following is the list of recognized keynames for a TOSCA notification assignment:

Keyname Mandatory Type Description

implementation no notification
implementation
definition

The optional definition of the notification implementation. Overrides
implementation provided at notification definition.

inputs no map of
parameter
value
assignments

The optional map of parameter value assignments for assigning
values to notification inputs.

outputs no map of
parameter
mapping
assignments

The optional map of parameter mapping assignments that specify
how notification outputs values are mapped onto attributes of the
node or relationship type that contains the notification definition.

Notification assignments have the following grammar:

The following single-line grammar may be used when the notification's implementation definition is the only keyname
that is needed, and when the notification implementation definition itself can be specified using a single line grammar:

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<notification_name>: represents the mandatory symbolic name of the notification as a string.

<notification_name>:
 implementation: <notification_implementation_def>
 inputs:
 <parameter_value_assignment_1>
 <parameter_value_assignment_2>
 ...
 outputs:
 <parameter_mapping_assignment_1>
 <parameter_mapping_assignment_2>
 ...

<notification_name>: <notification_implementation_def>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 146 of 211

<notification_implementation_def>: represents the optional specification of the notification implementation (i.e. the
external artifact that is may send notifications)

the implementation declared here overrides the implementation provided at notification definition.

<parameter_value_assignment_*>: represents the optional map of parameter value assignments for passing input
parameter values to notifications.

assignments for notification inputs that are not defined in the notification definition may be provided

<parameter_mapping_assignment_*>: represents the optional map of parameter mapping assignments that consists
of named output values returned by notification implementations (i.e. artifacts) and associated attributes into
which this output value must be stored

assignments for notification outputs that are not defined in the notification definition may be provided.

The following additional requirements apply:

The behavior for implementation of notifications SHALL be override. That is, implementation definitions
assigned in a notification assignment override any defined in the notification definition.

Template authors MAY provide attribute mappings for notification outputs that are not defined in the
corresponding notification definition.

Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative
to the TOSCA file file itself when packaged within a TOSCA Cloud Service Archive (CSAR) file.

11.8 Operation and Notification Implementations

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the implementation
for an operation in an interface.

A notification implementation definition specifies one or more artifacts to be used by the orchestrator to subscribe and
receive a particular notification (i.e. the artifact implements the notification).

The operation implementation definition and the notification implementation definition share the same keynames and
grammar, with the exception of the timeout keyname that has no meaning in the context of a notification
implementation definition and should not be used in such.

The following is the list of recognized keynames for an operation implementation definition or a notification
implementation definition:

Keyname Mandatory Type Description

primary no artifact
definition

The optional implementation artifact (i.e., the primary script file within a
TOSCA CSAR file).

dependencies no seq of
artifact
definitions

The optional list of one or more dependent or secondary implementation
artifacts which are referenced by the primary implementation artifact (e.g.,
a library the script installs or a secondary script).

Operation implementation definitions and notification implementation definitions have the following grammar:

implementation:
 primary: <primary_artifact_def> | <primary_artifact_name>
 dependencies:
 - <dependent_artifact_1>
 - <dependent_artifact_2>
 - ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 147 of 211

The following single-line grammar may be used when only a primary implementation artifact name is needed:

This notation can be used when the primary artifact name uniquely identifies the artifact because it refers to an
artifact specified in the artifacts section of a type or template.

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<primary_artifact_def>: represents a full inline definition of an artifact that can be used as an implementation of an
operation or notification.

<primary_artifact_name>: represents the symbolic name of an artifact defined in the node type or node template
that contains the interface operation or notification for which the implementation is defined.

<dependent_artifact_*>: represents the optional ordered list of one or more dependent or secondary implementation
artifacts. Each of these artifacts can be defined using an inline artifact definition or using a symbolic name of an
artifact that is defined in the node type or node template that contains the interface operation or notification for
which the implementation is defined.

12 Artifacts
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

12.1 Artifact Type

An artifact type is a reusable entity that defines the type of one or more files that are used to define implementation
or deployment artifacts that are referenced by nodes or relationships.

An artifact type definition is a type of TOSCA type definition and as a result supports the common keynames listed in
the section Common Keynames in Type Definitions. In addition, the artifact type definition has the following
recognized keynames:

Keyname Mandatory Type Description

mime_type no str The optional mime type property for the artifact type.

file_ext no seq of strs The optional file extension property for the artifact type.

properties no map of property definitions An optional map of property definitions for the artifact type.

implementation: <primary_artifact_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 148 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<artifact_type_name>: represents the name of the artifact type being declared as a string.

<parent_artifact_type_name>: represents the name of the artifact type this artifact type definition derives from (i.e., its
"parent" type).

<mime_type_string>: represents the optional Multipurpose Internet Mail Extensions (MIME) standard string value
that describes the file contents for this type of artifact type as a string. The mime_type keyname is meant to have
values that are Apache mime types such as those defined here:
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

<file_extension_*>: represents the optional list of one or more recognized file extensions for this type of artifact
type as strings.

<property_def_*>: represents the optional map of property definitions for the artifact type.

During artifact type derivation the keyname definitions follow these rules:

mime_type: a new definition is unrestricted and will overwrite the one inherited from the parent type.

file_ext: a new definition is unrestricted and will overwrite the one inherited from the parent type.

properties: existing property definitions may be refined; new property definitions may be added.

The following shows an example artifact type definition:

Information about artifacts can be broadly classified in two categories that serve different purposes:

Selection of artifact processor. This category includes informational elements such as artifact version,

<artifact_type_name>:
 derived_from: <parent_artifact_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <artifact_description>
 mime_type: <mime_type_string>
 file_ext: [<file_extension_1>, <file_extension_2>, ...]
 properties:
 <property_def_1>
 <property_def_2>
 ...

JavaArchive:
 description: Java Archive artifact type
 mime_type: application/java-archive
 file_ext: [jar]
 properties:
 id:
 description: Identifier of the jar
 type: string
 required: true
 creator:
 description: Vendor of the java implementation on which the jar is based
 type: string
 required: false

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 149 of 211

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

checksum, checksum algorithm etc. and is used by TOSCA Orchestrator to select the correct artifact processor
for the artifact. These informational elements are captured in TOSCA as keynames for the artifact.

Properties processed by artifact processor. Some properties are not processed by the Orchestrator but passed
on to the artifact processor to assist with proper processing of the artifact. These informational elements are
described through artifact properties.

12.2 Artifact Definition

An artifact definition defines a named, typed file that can be associated with a node type or node template and used
by a TOSCA Orchestrator to facilitate deployment and implementation of interface operations.

The following is the list of recognized keynames for a TOSCA artifact definition:

Keyname Mandatory Type Description

type yes str The mandatory artifact type for the artifact definition.

file yes str The mandatory URI string (relative or absolute) that can be used
to locate the artifact's file.

repository no str The optional name of the repository definition that contains the
location of the external repository that contains the artifact. The
artifact is expected to be referenceable by its file URI within the
repository.

description no str The optional description for the artifact definition.

metadata no map of
metadata

Defines additional information.

artifact_version no str The version of this artifact. One use of this artifact_version is to
declare the particular version of this artifact type, in addition to its
mime_type (that is declared in the artifact type definition).
Together with the mime_type it may be used to select a particular
artifact processor for this artifact. For example, a Python
interpreter that can interpret Python version 2.7.0.

checksum no str The checksum used to validate the integrity of the artifact.

checksum_algorithm no str Algorithm used to calculate the artifact checksum (e.g. MD5, SHA
[Ref]). Shall be specified if checksum is specified for an artifact.

properties no map of
property
assignments

The optional map of property assignments associated with the
artifact.

Artifact definitions have the following grammar:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 150 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<artifact_name>: represents the mandatory symbolic name of the artifact as a string.

<artifact_type_name>: represents the mandatory artifact type the artifact definition is based upon.

<artifact_file_uri>: represents the mandatory URI string (relative or absolute) which can be used to locate the
artifact's file.

<artifact_repository_name>: represents the optional name of the repository definition to use to retrieve the
associated artifact (file) from.

<artifact_version>: represents the version of artifact

<artifact_checksum>: represents the checksum of the Artifact

<artifact_checksum_algorithm>: represents the algorithm for verifying the checksum. Shall be specified if checksum
is specified

<property_assignment_*>: represents an optional map of property assignments associated with the artifact

Artifact definitions represent specific external entities. If a certain artifact definition cannot be reused as is, then it may
be completely redefined.

If an artifact is redefined, the symbolic name from the definition in the parent node type is reused, but no
keyname definitions are inherited from the definition in the parent node type, and the new definition completely
overwrites the definition in the parent.

If the artifact is not redefined the complete definition is inherited from the parent node type.

The following example represents an artifact definition with property assignments:

<artifact_name>:
 description: <artifact_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 type: <artifact_type_name>
 file: <artifact_file_uri>
 repository: <artifact_repository_name>
 version: <artifact _version>
 checksum: <artifact_checksum>
 checksum_algorithm: <artifact_checksum_algorithm>
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 151 of 211

13 Workflows
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

13.1 Declarative Workflows
13.2 Imperative Workflows

A workflow definition defines an imperative workflow that is associated with a TOSCA service. A workflow definition
can either include the steps that make up the workflow, or it can refer to an artifact that expresses the workflow using
an external workflow language.

The following is the list of recognized keynames for a TOSCA workflow definition:

Keyname Mandatory Type Description

description no str The optional description for the workflow definition.

metadata no map of
metadata

Defines a section used to declare additional information.

inputs no map of
parameter
definitions

The optional map of input parameter definitions.

precondition no condition
clause

Condition clause that must evaluate to true before the workflow can
be processed.

steps no map of step
definitions

An optional map of valid imperative workflow step definitions.

implementation no operation
implementation
definition

The optional definition of an external workflow definition. This
keyname is mutually exclusive with the steps keyname above.

outputs no map of
attribute
mappings

The optional map of attribute mappings that specify workflow output
values and their mappings onto attributes of a node or relationship
defined in the service.

Imperative workflow definitions have the following grammar:

artifacts:
 sw-image:
 description: Image for virtual machine
 type: Deployment.Image.VM
 file: http://10.10.86.141/images/Juniper_vSRX_15.1x49_D80_preconfigured.qcow2
 checksum: ba411cafee2f0f702572369da0b765e2
 version: '3.2'
 checksum_algorithm: MD5
 properties:
 name: vSRX
 container-format: BARE
 disk-format: QCOW2
 min-disk: 1 GB
 size: 649 MB

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 152 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<workflow_name>:

<workflow_description>:

<parameter_def_*:

<condition_clause>:

<workflow_step_*>:

<operation_implementation_def>: represents a full inline definition of an implementation artifact

<attribute_mapping_*>: represents the optional map of attribute_mappings that consists of named output values
returned by operation implementations (i.e. artifacts) and associated mappings that specify the attribute into
which this output value must be stored.

13.2.1 Workflow Precondition Definition

A workflow precondition defines a condition clause that checks if a workflow can be processed or not based on the
state of the instances of a TOSCA service deployment. If the condition is not met, the workflow will not be triggered.

13.2.2 Workflow Step Definition

A workflow step allows to define one or multiple sequenced activities in a workflow and how they are connected to
other steps in the workflow. They are the building blocks of a declarative workflow.

The following is the list of recognized keynames for a TOSCA workflow step definition:

Keyname Mandatory Type Description

target yes str The target of the step (this can be a node template name, a group
name)

target_relationship no str The optional name of a requirement of the target in case the step
refers to a relationship rather than a node or group. Note that this is
applicable only if the target is a node.

<workflow_name>:
 description: <workflow_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 inputs:
 <parameter_def_1>
 <parameter_def_2>
 ...
 precondition: <condition_clause>
 steps:
 <workflow_step_1>
 <workflow_step_2>
 ...
 implementation: <operation_implementation_definitions>
 outputs:
 <attribute_mapping_1>
 <attribute_mapping_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 153 of 211

filter no seq of
validation
clauses

Filter is a list of validation clauses that allows to provide a filtering
logic.

activities yes seq of
activity
definitions

The list of sequential activities to be performed in this step.

on_success no seq of
strs

The optional list of step names to be performed after this one has been
completed with success (all activities has been correctly processed).

on_failure no seq of
strs

The optional list of step names to be called after this one in case one
of the step activity failed.

Keyname Mandatory Type Description

Workflow step definitions have the following grammars:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<target_name>: represents the name of a node template or group in the service.

<target_requirement_name>: represents the name of a requirement of the node template (in case <target_name> refers
to a node template).

<condition_clause_def_*>: represents a list of condition clause definitions.

<activity_def_*>: represents a list of activity definitions.

<target_step_name>: represents the name of another step of the workflow.

13.2.3 Activity Definition

An activity defines an operation to be performed in a TOSCA workflow step or in an action body of a policy trigger.
Activity definitions can be of the following types:

Delegate workflow activity definition:

Defines the name of the delegate workflow and optional input assignments. This activity requires the
target to be provided by the orchestrator (no-op node or relationship).

Set state activity definition:

Sets the state of a node.

steps:
 <step_name>:
 target: <target_name>
 target_relationship: <target_requirement_name>
 filter:
 - <condition_clause_def_1>
 - <condition_clause_def_2>
 - ...
 activities:
 - <activity_def_1>
 - <activity_def_2>
 - ...
 on_success: <target_step_name>
 on_failure: <target_step_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 154 of 211

Call operation activity definition:

Calls an operation defined on a TOSCA interface of a node, relationship or group. The operation name
uses the <interface_name>.<operation_name> notation. Optionally, assignments for the operation inputs can
also be provided. If provided, they will override for this operation call the operation inputs assignment in
the node template.

Inline workflow activity definition:

Inlines another workflow defined in the service (allowing reusability). The definition includes the name of a
workflow to be inlined and optional workflow input assignments.

13.2.3.1 Delegate Workflow Activity Definition

The following is a list of recognized keynames for a delegate activity definition.

Keyname Mandatory Type Description

delegate yes str or empty
(see
grammar
below)

Defines the name of the delegate workflow and optional input
assignments. This activity requires the target to be provided by the
orchestrator (no-op node or relationship).

workflow no str The name of the delegate workflow. Mandatory in the extended notation.

inputs no map of
parameter
assignments

The optional map of input parameter assignments for the delegate
workflow.

A delegate activity definition has the following grammar.

As an optimizaton, the following short notation can be used if no input assignments are provided.

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<delegate_workflow_name>: represents the name of the workflow of the node provided by the TOSCA orchestrator.

<parameter_assignment_*>: represents the optional map of parameter assignments for passing parameters as
inputs to this workflow delegation.

13.2.3.2 Set State Activity Definition

This activity sets the state of the target node.

The following is a list of recognized keynames for a set state activity definition.

Keyname Mandatory Type Description

set_state yes str Value of the node state.

- delegate:
 workflow: <delegate_workflow_name>
 inputs:
 <parameter_assignment_1>
 <parameter_assignment_2>
 ...

- delegate: <delegate_workflow_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 155 of 211

A set state activity definition has the following grammar.

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<new_node_state>: represents the state that will be affected to the node once the activity is performed.

13.2.3.3 Call Operation Activity Definition

This activity is used to call an operation on the target node. Operation input assignments can be optionally provided.

The following is a list of recognized keynames for a call operation activity definition.

Keyname Mandatory Type Description

call_operation yes str or empty
(see
grammar
below)

Defines the opration call. The operation name uses the
<interface_name>.<operation_name> notation. Optionally, assignments
for the operation inputs can also be provided. If provided, they will
override for this operation call the operation inputs assignment in the
node template.

operation no str The name of the operation to call, using the <interface_name>.
<operation_name> notation. Mandatory in the extended notation.

inputs no map of
parameter
assignments

The optional map of input parameter assignments for the called
operation. Any provided input assignments will override the operation
input assignment in the target node template for this operation call.

A call operation activity definition has the following grammar.

As an optimization, the following short notation can be used if no input assignments are provided:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<operation_name>: represents the name of the operation that will be called during the workflow execution. The
notation used is <interface_sub_name>.<operation_sub_name>, where <interface_sub_name> is the interface name and the
<operation_sub_name> is the name of the operation within this interface.

<parameter_assignment_*>: represents the optional map of parameter assignments for passing parameters as
inputs to this workflow delegation.

13.2.3.4 Inline Workflow Activity Definition

This activity is used to inline a workflow in the activities sequence. The definition includes the name of the inlined
workflow and optional input assignments.

The following is a list of recognized keynames for an inline workflow activity definition.

- set_state: <new_node_state>

- call_operation:
 operation: <operation_name>
 inputs:
 <parameter_assignment_1>
 <parameter_assignment_2>
 ...

- call_operation: <operation_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 156 of 211

Keyname Mandatory Type Description

inline yes str or empty (see
grammar below)

The definition includes the name of a workflow to be inlined and
optional workflow input assignments.

workflow no str The name of the inlined workflow. Mandatory in the extended
notation.

inputs no map of parameter
assignments

The optional map of input parameter assignments for the inlined
workflow.

An inline workflow activity definition has the following grammar.

As an optimization, the following short notation can be used if no input assignments are provided.

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<inlined_workflow_name>: represents the name of the workflow to inline.

<parameter_assignment_*>: represents the optional map of parameter assignments for passing parameters as
inputs to this workflow delegation.

The following represents a list of activity definitions (using the short notation):

14 Creating Multiple Representations from Templates
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

TOSCA service templates specify a set of nodes that need to be instantiated at service deployment time. As
discussed in the chapter Tosca Operational Model this occurs in two separate steps:

1. A TOSCA Processor first creates a service representation based on a service template. This representation is a
graph that contains node representations and relationship representations.

2. An Orchestrator then creates external implementations based on the information stored in the representation
graph (e.g., by running workflows that call interface operations on each of the nodes and relationships in the
graph).

The chapter TOSCA Operational Model discusses how node and relationship representations are created by
matching a service template with deployment-specific input values. This chapter discusses issues of cardinality that

- inline:
 workflow: <inlined_workflow_name>
 inputs:
 <parameter_assignment_1>
 <parameter_assignment_2>
 ...

- inline: <inlined_workflow_name>

- delegate: deploy
- set_state: started
- call_operation: standard.start
- inline: my-workflow

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 157 of 211

determine how many node representations are created from each node template and how relationships are
established between these multiple node represenations.

14.1 Specifying Number of Node Representations

Some service templates may include multiple nodes that perform the same role. For example, a template that
models an SD-WAN service might contain multiple VPN Site nodes, one for each location that connects to the SD-
WAN. Rather than having to create a separate service template for each possible number of VPN sites, it is
preferable to create a single service template that allows the number of VPN sites to be specified at deployment time
as an input to the template. This section documents TOSCA language support for this functionality.

The discussion in this section uses an example SD-WAN with three sites as shown in the following figure:

Figure 9: SD-WAN Example

The following code snippet shows a possible TOSCA service template from which this service could be deployed:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 158 of 211

As defined here, this template can only be used to deploy an SD-WAN with three sites. To deploy a different number
of sites, additional service templates must be created, one for each possible number of SD-WAN sites. This leads to
undesirable template proliferation. The next section presents an alternative.

To avoid the need for multiple service templates, TOSCA allows all VPN Site nodes to be created from the same Site
node template in the service template. The TOSCA node template definition grammar uses a count keyname that
specifies the requested number of runtime representations for this node template. This count keyname is similar to the
count keyname in requirement definitions.

The grammar for the count keyname is as follows:

Keyname Mandatory Type Description

count no int The optional number of nodes in the representation graph that will be created
from this node template. If not specified, one single node is created.

It is expected that the value of the count is provided as an input to the service template. This enables the creation of a
simplified SD-WAN service template that contains only one single VPN Site node as shown in the following figure:

Figure 10: TOSCA Service Template with Single VPN Site Node

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with three sites.

service_template:
 inputs:
 location1:
 type: Location
 location2:
 type: Location
 location3:
 type: Location

node_templates:
 sdwan:
 type: VPN

 site1:
 type: VPNSite
 properties:
 location: { $get_input: location1 }
 requirements:
 - vpn: sdwan

 site2:
 type: VPNSite
 properties:
 location: { $get_input: location2 }
 requirements:
 - vpn: sdwan

 site3:
 type: VPNSite
 properties:
 location: { $get_input: location3 }
 requirements:
 - vpn: sdwan

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 159 of 211

An implementation of such a service template is shown in the following code snippet:

14.2 Node-Specific Input Values

The service template in the previous section conveniently ignores the location property of the Site node. As shown
earlier, the location property is expected to be provided as an input value. If Site node templates can be instantiated
multiple times, then it follows that multiple input values are required to initialize the location property for each of the
Site node representations.

To allow specific input values to be matched with specific node representations, each node representation is
assigned a unique index to differentiate it from other nodes representations created from the same node template.
This index is accessed using the $node_index function that retrieves the index of the node in the context of which
$node_index is used. This can then be used to index the list of input values.

The node index for a node representation is immutable: it never changes during the lifetime of that node
representation, even if node representations are added or deleted after the service has been deployed.

The following service template shows how the $node_index function is used to retrieve specific values from a list of
input values in a service template:

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with a variable number of sites.

service_template:
 inputs:
 number-of-sites:
 type: integer

 node_templates:
 sdwan:
 type: VPN

 site:
 type: VPNSite
 count: { $get_input: number-of-sites }
 requirements:
 - vpn: sdwan

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 160 of 211

14.3 Cardinality of Relationships

We may also need to accommodate scenarios where a node template with multiple representations defines a
requirement to another node template that also has multiple representations. This section introduces grammar for
specifying the cardinality of such requirements. Specific mechanisms depend on the type of the relationships to be
established.

14.3.1 Many-to-One Relationships

In the SD-WAN service template above, each of the site node representations has a relationship to a VPN node that
can only be instantiated once. This is an example of a many-to-one relationship which is shown in the following
figure:

Figure 11: SD-WAN Service Template with Many-to-One Relationship

This scenario is supported using existing relationship syntax as shown in the following code snippet:

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with a variable number of sites.

service_template:
 inputs:
 number-of-sites:
 type: integer
 location:
 type: list
 entry_schema: Location

 node_templates:
 sdwan:
 type: VPN

 site:
 type: VPNSite
 count: { $get_input: number-of-sites }
 properties:
 location: { $get_input: [location, $node_index] }
 requirements:
 - vpn: sdwan

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 161 of 211

This template specifies that all four node representations created from the "left" node template must use the one
node representation created from the "right" node template as their target node.

14.3.2 One-to-Many Relationships

An example of a one-to-many relationship is shown in the following figure:

Figure 12: Service Template with One-to-Many Relationship

One-to-many relationships are less common, but they can just as easily be accommodated using existing TOSCA
grammar, as long as the requirement in the single node specifies the appropriate count value. This is shown in the
following code snippet:

service_template:
 inputs:
 number-of-left:
 type: integer

 node_templates:
 right:
 type: Right

 left:
 type: Left
 count: { $get_input: number-of-left }
 requirements:
 - uses: right

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 162 of 211

In this example, a total number of count relationships will be created from the single "left" node to the group of "right"
nodes. The orchestrator must select a different "right" node for each relationship. If the count value is not specified in
the "uses" requirement, it defaults to 1 and the orchestrator will only establish one single relationship to one of the
"right" nodes. The choice of which one of the several "right" nodes is selected is implementation-specific.

14.3.3 Full Mesh

In a full mesh scenario, all nodes on the left establish relationships to all of the nodes on the right as shown in the
following figure:

Figure 13: Service Template with Full Mesh Relationships

Note that the many-to-one and one to-many pattern are just special cases of a full-mesh when either the number of
nodes on the left or the number of nodes on the right side is 1.

As before, the full mesh scenario can easily be defined using existing requirement syntax as shown in the following
code snippet:

service_template:
 inputs:
 number-of-right:
 type: integer

 node_templates:
 right:
 type: Right
 count: { $get_input: number_of_right }

 left:
 type: Left
 requirements:
 - uses:
 node: right
 count: { $get_input: number-of-right }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 163 of 211

14.3.4 Matched Pairs

For some services, representations created from different node templates must remain matched up in pairs. For
example, let's extend the SD-WAN service above with a third node template that represents a virtual PE router that
must be used at each site. Let's assume that Site nodes establish a HostedOn relationship to the vPE nodes. The
extended service topology is shown in the following figure:

Figure 14: SD-WAN Service Template showing Matched Pairs

In this example, the intent is for each site node to remain paired with its own vPE node for that site. A generic
illustration of the matched pairs scenario is shown in the following figure:

Figure 15: Generic Matched Pairs Example

service_template:
 inputs:
 number-of-left:
 type: integer
 number-of-right:
 type: integer

 node_templates:
 right:
 type: Right
 count: { $get_input: number-of-right }

 left:
 type: Left
 count: { $get_input: number-of-left }
 requirements:
 - uses:
 node: right
 count: { $get_input: number-of-right }

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 164 of 211

To create matched pairs, the service template designer must first make sure that the number of nodes on the left
matches the number of nodes on the right by using the same input value for the count keynames in both the "left" and
"right" node templates. In addition, each requirement must correctly match source nodes and target nodes are
matched correctly, which can be accomplished by making sure that a target node of each relationship has the same
node index value as its source node. This following code snippet shows requirement definition grammar that uses the
$node_index function to uniquely identify target nodes:

14.3.5 Random Pairs

Some scenarios require nodes to be organized in pairs, but the ordering of the nodes is not important. The following
figure shows and such a random pairs example:

Figure 16: Service Template Showing Random Pairs

service_template:
 inputs:
 number-of-nodes:
 type: integer

 node_templates:
 right:
 type: Right
 count: { $get_input: number_of_nodes }

 left:
 type: Left
 count: { $get_input: number-of-nodes }
 requirements:
 - uses: [right, $node_index]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 165 of 211

In this scenario, it is not important how target nodes are paired with source nodes, as long as each target node is only
used once. To make sure each target node is only used once, the allocations keyname in the requirement can be used
as shown in the following code snippet:

This scenario works as follows:

The target capability in each target node defines a property that is intended to restrict how many times that
capability can be targeted. In the example above, the "right" nodes are the target nodes. These nodes define a
"feature" capability that in turn defines a "target-count" property. The value of this property is set to 1 to only
allow one single incoming relationship.

The requirement in each source node includes an allocations section that allocates a single unit from the target
capability. In the example above, the "left" nodes define a "uses" requirement that allocates a single unit from
the "target-count" property in the target capability.

When a relationship is established to a target node, that target node's "target_count" property is exhausted and
no additional incoming relationships will be established. This ensures that each target node is only allocated

service_template:
 inputs:
 number-of-nodes:
 type: integer

 node_templates:
 right:
 type: Right
 count: { $get_input: number-of-nodes }
 capabilities:
 feature:
 properties:
 target-count: 1

 left:
 type: Left
 count: { $get_input: number-of-nodes }
 requirements:
 - uses:
 node: right
 allocations:
 target-count: 1

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 166 of 211

once.

14.3.6 Many-to-Many Relationships

The mechanisms introduced above can also be used to define more complex many-to-many scenarios. For example,
a 1:2 pattern is shown in the following figure:

Figure 17: Service Template Showing 1:2 Relationship Pattern

This pattern can be accomplished using the following code snippet:

The following figure shows a 3:2 pattern:

service_template:
 node_templates:
 right:
 type: Right
 count: 6
 capabilities:
 feature:
 properties:
 target-count: 1

 left:
 type: Left
 count: 6
 requirements:
 - uses:
 node: right
 count: 2
 allocations:
 target-count: 1

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 167 of 211

Figure 18: Service Template Showing 3:2 Relationship Pattern

This pattern can be implemented using the following code snippet:

Finally, there may be scenarios where the multiplicity of the left nodes and the multiplicity of the right nodes do not
allow clean pairing scenarios. In that case, more complicated expressions might be needed to specify target node
indices or to restrict capacity. For example, if nodes are expected to be paired but there are more nodes on the left
than on the right. The following code snippet shows a mismatched pairs example where the orchestrator may have to
cycle through the target nodes multiple times:

service_template:
 node_templates:
 right:
 type: Right
 count: 6
 capabilities:
 feature:
 properties:
 target-count: 3

 left:
 type: Left
 count: 6
 requirements:
 - uses:
 node: right
 count: 2
 allocations:
 target-count: 1

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 168 of 211

To allow specific input values to be matched with specific relationship representations, each relationship
representation is assigned a unique index to differentiate it from other relationship representations created from the
same requirement definition. This index is accessed using the $relationship_index function that references the index of
the relationship in the context of its requirement. This can then can be used to index the list of input values.

15 Substitution
The TOSCA substitution feature allows nodes in a service topology to be decomposed using substituting services
that describe the internals of those nodes. Substitution provides a declarative mechanism for implementing TOSCA
nodes that can be used as an alternative to implementation artifacts. Substitution allows for simplified representations
of complex systems that abstract away technology or vendor-specific implementation details. More generic nodes
that expect to be substituted are based on node templates that are annotated with the "substitute" directive. Service
templates advertize their ability to provide substituting implementations using the substitution_mapping section in the
service template definition. Substitution mapping can also be used to provide alternative implementation(s) (on a
more detailed level) to those already defined in the node type or node template.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

15.1 Substitution Mapping

The substitution_mapping section in a service template serves four purposes:

1. It identifies the nodes for which the service template is a substitution candidate by specifying a node type and
an associated substitution filter.

2. It defines how configuration and state values flow between the substituted node and the substituting template:
property mappings specify how configuration values are propagated from the substituted node to the
substituting service, and attribute mappings specify how runtime values are propagated back from the
substituting service to the substituted node.

3. It dictates how the topology graph of the substituting service is stitched in to the top-level topology graph that
contains the substituted node (using requirement and capability mappings).

4. It specifies how interface operations called on the substituted node are implemented using workflows on the
substituting service, and how events generated in the substituting service are escalated to notifications on the
substituted node.

service_template:
 inputs:
 number-of-right:
 type: integer
 number-of-left:
 type: integer

 node_templates:
 right:
 type: Right
 count: { $get_input: number-of-right }

 left:
 type: Left
 count: { $get_input: number-of-left }
 requirements:
 - uses: [right, { $remainder: [$node_index, { $get_input: number-of-right }] }]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 169 of 211

Note that while capabilities and relationships may define properties and attributes, capability mappings and
requirement mappings do not propagate these values. Capability and requirement mappings are used exclusively to
control service topology. If capability or relationship values must be passed between the substituted node and its
substituting service, property and attribute mappings must be used to define how these values are mapped.

Keyname Mandatory Type Description

node_type yes str The name of the node type of the nodes for which the service
template can provide an implementation.

substitution_filter no condition
clause

The filter that further constrains the nodes for which this service
template can provide an implementation. For a node that needs to be
substituted, the condition clause specified by the substitution filter
must evaluate to True for this template to be a valid substitution
candidate.

properties no map of
property
mappings

The map of property mappings that map properties of the substituted
node to inputs of the service template.

attributes no map of
attribute
mappings

The map of attribute mappings that map outputs from the service
template to attributes of the substituted node.

capabilities no map of
capability
mappings

The map of capability mappings.

requirements no seq of
requirement
mappings

The list of requirement mappings.

interfaces no map of
interfaces
mappings

The map of interface mappings that map interface operations called
on the substituted node to implementations workflows on the
substituting service.

The grammar of the substitution_mapping section is as follows:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 170 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<node_type_name>: represents the node type name for which the service template can offer an implementation.

<substitution_filter>: represents a filter that reduces the set of nodes for which this service template is an
implementation by only substituting for those nodes whose properties and capabilities satisfy the condition
clause specified in the filter.

<property_mapping_*>: represents the map of property to input mappings.

<attribute_mapping_*>: represents the map of output to attribute mappings.

<capability_mapping_*>: represents the map of capability mappings.

<requirement_mapping_*>: represents the list of requirement mappings.

<interface_mapping_*>: represents the map of interface mappings.

Please note:

A substituting service template MUST be a valid TOSCA template in its own right (i.e., when not used as a
substituting implementation). Specifically, all the required properties of all its node templates must have valid
property assignments.

15.2 Property Mapping

A property mapping allows a property value of a substituted node to be mapped to an input value of the substituting
service template.

The grammar of a property mapping is as follows:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

node_type: <node_type_name>
substitution_filter: <substitution_filter>
properties:
 <property_mapping_1>
 <property_mapping_2>
 ...
attributes:
 <attribute_mapping_1>
 <attribute_mapping_2>
 ...
capabilities:
 <capability_mapping_1>
 <capability_mapping_2>
 ...
requirements:
- <requirement_mapping_1>
- <requirement_mapping_2>
- ...
interfaces:
 <interface_mapping_1>
 <interface_mapping_2>
 ...

<property_name>: <input_name>
[CAPABILITY, <capability_name>, <property_name>]: <input_name>
[RELATIONSHIP, <requirement_name>, <idx>, <property_name>]: <input_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 171 of 211

<input_name>: represents the name of an input defined for the substituting service template.

<property_name>: represents the name of a property of the substituted node (defined using a corresponding
property definition in the specified node type), or a property of a capability, or a property of a relationship
created by a requirement of the substituted node.

<capability_name>: represents the name of the capability as it appears in the node type definition for the
substituted node

<requirement_name>: represents the name of the requirement as it appears in the node type definition for the
substituted node

<idx>: index of the relationship defined from that requirement (0 is the first index); if the index is missing, index 0
is assumed; if the value ALL is used by as index, the corresponding input will be assigned a list of all values of
properties with <property_name> from all relationships created from the requirement with <requirement_name>.

The following additional requirements apply:

Mappings must be type-compatible (i.e., properties mapped to input must have the type specified in the
corresponding input definition).

Property mappings must be defined for all non-optional service template inputs that do not define a default value.

15.3 Attribute Mapping

An attribute mapping allows an output value of the substituting service template to be mapped to an attribute of the
substituted node.

The grammar of an attribute mapping is as follows:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<output_name>: represents the name of an output defined in the substituting service template.

<attribute_name>: represents the name of an attribute of the substituted node (defined using a corresponding
attribute definition in the specified node type) or an attribute of a capability, or an attribute of a relationship
created by a requirement of the substituted node.

<capability_name>: represents the name of the capability as it appears in the node type definition for the
substituted node

<requirement_name>: represents the name of the requirement as it appears in the node type definition for the
substituted node

<idx>: index of the relationship defined from that requirement (0 is the first index); if the index is missing, index 0
is assumed; if the value ALL is used by as index, all attributes with <attribute_name> from all relationships created
from the requirement with <requirement_name> will be assigned a coresponding value from the output which is of a
list type.

The following additional requirements apply:

Mappings must be type-compatible (i.e., outputs mapped to attributes must have the type specified in the
corresponding attribute definition).

15.4 Capability Mapping

<attribute_name>: <output_name>
[CAPABILITY, <capability_name>, <attribute_name>]: <output_name>
[RELATIONSHIP, <requirement_name>, <idx>, <attribute_name>]: <output_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 172 of 211

A capability mapping allows a capability of one of the nodes in the substituting service template to be mapped to a
capability of the substituted node.

The grammar of a capability mapping is as follows:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<capability_name>: represents the name of the capability as it appears in the node type definition for the
substituted node.

<node_template_name>: represents a valid name of a node template definition within the substituting service
template.

<node_template_capability_name>: represents a valid name of a capability definition within the <node_template_name>
declared in this mapping.

15.5 Requirement Mapping

A requirement mapping defines how requirements of the substituted node are mapped to one or more requirements
of nodes in the substituting service. The term requirement mapping is somewhat of a misnomer, since mapping a
requirement results in the target node of that requirement also being used as the target node for the mapped
requirement. As a result, requirement mappings are a mechanism for passing nodes between templates.

The grammar for requirement mapping differs slightly from other substitution mapping grammars for the following two
reasons:

1. It is possible for a substituted node to have multiple requirement assignments (up to the upper bound of the
count_range), each of which may need to be mapped separately.

2. It is possible for the same requirement in a substituted node to be mapped multiple times.

To accommodate these use cases, requirement mappings are defined using YAML sequences rather than maps. In
addition, each of the mappings in the sequences may in turn identify a sequence of requirements.

The grammar for requirement mappings is as follows:

If the substituting template uses selectable nodes to define requirements, then the following alternative syntax can be
used:

The TOSCA grammar allows mixing and matching these two alternative syntaxes within the same requirement
mappings list.

As an optimization, if the requirement mapping defines a one-to-one mapping (i.e., a mapping of a requirement onto
a single requirement of a single node in the substituting template or a mapping to a single selectable node), the
following single-line grammar may be used:

<capability_name>: [<node_template_name>, <node_template_capability_name>]

<requirement_name>:
- [<node_template_name_1>, <node_template_requirement_name_1>]
- [<node_template_name_2>, <node_template_requirement_name_2>]
- ...

<requirement_name>:
- <selectable_node_template_name_1>
- <selectable_node_template_name_2>
- ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 173 of 211

or

If we have several requirement mappings with the same requirement name (i.e. as the key of the requirement
mapping) that means that each requirement assignment is mapped separately (in the order they appear in the list). If
there is only one requirement mapping with a certain requirement name (i.e. as the key of the requirement mapping)
then it means that all requirements assignments of that requirement are mapped to the same target requirement(s).

In the above grammars, the placeholders that appear in angle brackets have the following meaning:

<requirement_name>: represents the name of the requirement as it appears in the type definition for the node type
name that is declared as the value for on the substitution_mappings' node_type keyname.

<node_template_name>: represents a valid name of a node template definition within the same substituting service
template

<selectable_node_template_name>: represents a valid name of a selectable node template definition within the same
substituting service template.

<node_template_requirement_name>: represents a valid name of a requirement definition within the
<node_template_name> declared in this mapping.

<count>: is the number of assignments of a requirement mapped to the same target requirement(s). It can be
either a non-negetive integer or the value UNBOUNDED, which represents all the remaining assignments. Note
that mappings with count can interspread mappings without count for the same requirement_name, however no
other assignment for the same requirement_name should not be used after one containing an UNBOUNDED
count.

The following subsections illustrate this grammar in the context of various use cases.

15.5.1 Mapping Multiple Requirements with the Same Name

The following example shows a "Client" node type that defines a "service" requirement with a count_range of "[2, 2]",
which means that nodes of type "Client" need exactly two "service" relationships to nodes of type "Server".

<requirement_name>: [<node_template_name>, <node_template_requirement_name>]

<requirement_name>: <selectable_node_template_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 174 of 211

This following figure shows a service that consists of one such client node connected to two server nodes.

Figure 19: Single Client Connected to Two Servers

This service can be implemented using the following TOSCA service template:

tosca_definitions_version: tosca_2_0

capability_types:
 Service:
 description: >-
 Ability to provide service.

relationship_types:
 ServedBy:
 description: >-
 Connection to a service.

node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [2, 2]

 Server:
 capabilities:
 service:
 type: Service

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 175 of 211

In this template, the "client" node is annotated with the "substitute" directive, which means that a substituting template
must be found to instantiate this node. The following figure shows one possible substitution.

Figure 20: Example Substitution for Client Connected to Two Servers

This substitution decomposes the "client" node into two different "software" nodes, each with exactly one "service"
requirement. The requirement mapping syntax must distribute the two "service" requirements from the substituted
"client" node between the "service" requirements of the two software nodes in the substituting template. The
substitution mapping code in the following substituting service template shows how this is accomplished:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

service_template:
 node_templates:
 server1:
 type: Server

 server2:
 type: Server

 client:
 type: Client
 directives: [substitute]
 requirements:
 - service: server1
 - service: server2

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 176 of 211

The following figure shows an alternative substitution where both "service" requirements of the substituted "client"
node are mapped to corresponding requirements of a single "software" node in the substituting topology:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]

 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1

 software2:
 type: ClientSoftware
 requirements:
 - host: compute2

 compute1:
 type: Compute

 compute2:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 177 of 211

Figure 21: Alternative Substitution for Client Connected to Two Servers

The requirement mapping syntax for this template distributes the two "service" requirements from the substituted
"client" node to the same software node in the substituting template using two identical mappings for the two
"service" requirements as follows:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 178 of 211

As a convenience feature, it is possible to group identical mapping statements using the syntax in the following
example. This syntax states that two "service" requirements of the substituted node are mapped to two
corresponding "service" requirements of the "software" node in the substituting template.

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [2, 2]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]
 - service: [software, service]

 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 179 of 211

As a further convenience feature, if all of the requirement assignments are mapped to the same target requirement(s)
is possible to drop the grammar using the count. This syntax states that all "service" requirements of the substituted
node are mapped to the corresponding "service" requirements of the "software" node in the substituting template.

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [2, 2]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - [service, 2]: [software, service]

 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 180 of 211

15.5.2 Mapping a Requirement Multiple Times

Imagine a scenario where nodes of type "Client" need to be hosted on nodes of type "Compute" as shown by the
following type definitions:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [2, 2]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]

 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 181 of 211

The following figure shows a service that contains one node of type "Client", one node of type "Compute", and the
"host" relationship between them:

Figure 22: Client Deployed on Single Host

This example can be implemented using the following service template:

tosca_definitions_version: tosca_2_0

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 Client:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 node: Compute
 count_range: [1, 1]

 Compute:
 capabilities:
 host:
 type: Host

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 182 of 211

The following figure shows a substituting topology that decomposes the node of type "Client" into two software
components, each of which needs to be hosted on the same "compute" node defined in the top-level template that
defines the "client" node.

Figure 23: Example Substitution for Client Deployed on Single Host

The requirement mapping syntax must replicate the single "host" requirements from the substituted "client" node to
the two software nodes in the subsituting template. The substitution mapping code in the following substituting
service template shows how this is accomplished by mapping the "host" requirement of the "client" node twice, once
to the "host" requirement of the "software1" node and once to the "host" requirement of the "software2" node.

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

service_template:
 node_templates:
 compute:
 type: Compute

 client:
 type: Client
 directives: [substitute]
 requirements:
 - host: compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 183 of 211

Using this syntax, the target of the requirement mapping is a list of target requirements rather than a single
requirement.

15.5.3 Requirement Mapping and Selectable Nodes

The previous section shows a use case where the target node of a requirement of the substituted node is to be used
multiple times as the target node of multiple different requirements in a subsituting template. The need for multiple
requirements to be fulfilled by the same target node is quite common and usually exists independently of whether the
service template is used as a substitution or as a stand-alone service. In fact, the TOSCA selectable node feature
was introduced specifically for scenarios where requirements of different nodes need to be fulfilled by the same
target node.

The requirement mapping examples presented so far only show how to map requirements of a substituted node onto
dangling requirements of nodes in the substituting template. This section shows how requirement mappings can also
be used in conjunction with selectable nodes in substituting templates.

Let's again consider the scenario from the previous section where a node of type "Client" is hosted on a node of type
"Compute":

Figure 24: Client Deployed on Single Host

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 count_range: [1, 1]

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - host:
 - [software1, host]
 - [software2, host]

 node_templates:
 software1:
 type: ClientSoftware

 software2:
 type: ClientSoftware

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 184 of 211

The following service template shows an implementation of this example:

The following figure shows a substituting topology that decomposes the node of type "Client" into two software
components, each of which needs to be hosted on the same "compute" node. Unlike in the example in the previous
section, a selectable node is used to express the need for both software components to be hosted on the same
"compute" node:

Figure 25: Substituting Template using Selectable Node

The requirement mappings defined in the corresponding service template must express that the target node of the
"host" requirement of the substituted node is to be selected as the node represented by the selectable "compute"
node in the subsituting template, as shown in the following Figure:

Figure 26: Substitution with Requirement Mapping to Selectable Node

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

service_template:
 node_templates:
 compute:
 type: Compute

 client:
 type: Client
 directives: [substitute]
 requirements:
 - host: compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 185 of 211

This can trivially be done using the syntax shown in the following code snippet:

The substitution mapping code in this service template provides an elegant mechanism for expressing that the target
node of the "host" requirement of the "client" node is to be mapped directly to the selectable "compute" node in the
substituting template.

15.5.4 Requirement Mapping Rules

This section documents the rules for requirement mapping.

1. Requirements from a substituted node can only be mapped onto dangling requirements in the substituting
template.

2. The total number of requirements mapped onto mandatory requirements in the substituting template must not
exceed the lower bound of the count_range in the corresponding requirement definition in the substituted node's
type.

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 count_range: [1, 1]

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - host: compute

 node_templates:
 software1:
 type: ClientSoftware

 software2:
 type: ClientSoftware

 compute:
 type: Compute
 directives: [select]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 186 of 211

3. The total number of requirement mappings must not exceed the upper bound of the count_range in the
corresponding requirement definition in the substituted node's type. Note that this is a convenience rule only,
since according to rule 2, any excess mappings would have to map onto optional requirements, and as a result
can safely be ignored.

Note that there are no constraints on the minimum number of requirement mappings. More specifically, the total
number of requirement mappings is allowed to be smaller than the lower bound of the count_range in the
corresponding requirement definition.

The types defined in the following code snippet are used to illustrate these rules:

In this example, the "Client" node type defines a "service" requirement with a count_range of [1, 4]. This means that a
client can have up to four "service" connections to a "Server" node, but only one of those is mandatory.

The following code snippet shows a valid substituting template for the "client" node in the template shown above:

tosca_definitions_version: tosca_2_0

capability_types:
 Service:
 description: >-
 Ability to provide service.

relationship_types:
 ServedBy:
 description: >-
 Connection to a service.

node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [1, 4]

 Server:
 capabilities:
 service:
 type: Service

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 187 of 211

While the substituted "client" node in the template above has three requirement assigments with target nodes, only
one of those requirements is mapped to a requirement in the substituting template.

The next code snippet shows a slightly different substituting template for the "client" node in the template shown
above. This template decomposes the "client" node into three different software nodes, each with a single "service"
requirement to its own server. The substitution mapping defines three requirement mappings for the "service"
requirement of the "client" node, one to each of the "service" requirements of the "software" nodes in the substituting
template.

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]

 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

tosca_definitions_version: tosca_2_0

imports:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 188 of 211

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - service: [software3, service]

 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1

 software2:
 type: ClientSoftware
 requirements:
 - host: compute2

 software3:
 type: ClientSoftware
 requirements:
 - host: compute3

 compute1:
 type: Compute

 compute2:
 type: Compute

 compute3:

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 189 of 211

Unfortunately, this substituting template is invalid. Since the "service" requirement of each "software" node is
mandatory, this template needs three different "service" requirements in any node of type "Client" for which it is a
substitution. This cannot be guaranteed, since the "service" requirement definition in the "Client" node type specifies
a count_range with a lower bound of one, which means that only such requirement is guaranteed to exist.

The following shows a corrected version of this substituting template:

 compute3:
 type: Compute

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

capability_types:
 Host:
 description: >-
 Ability to host software.

relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.

node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, 1]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - service: [software3, service]

 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1
 - service:
 optional: false

 software2:
 type: ClientSoftware

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 190 of 211

In this template, the "service" requirement of the "ClientSoftware" node type is defined with a count_range of "[0, 1]",
which means the requirement is no longer mandatory. Only the "software1" node template annotates its "service"
requirement as mandatory (using the optional: false statement). The other two software nodes leave their "service"
requirement optional. As a result, this is now a valid substituting template for nodes of type "Client" that define a
"service" requirement with count_range equal to "[1, 4]".

Requirement mapping must take one more rule into account: if the number of requirement mappings is greater than
the lower bound of the count_range, the orchestrator must first perform those mappings that map requirements onto
non-optional requirements in the substituting template, and then it will perform the remaining mappings (which
presumably will map onto optional requirements in the substituting template). This is done independent of the order
in which the requirement mappings are specified.

15.5.5 Handling UNBOUNDED Requirement Count Ranges

In the case of UNBOUNDED count ranges, we must use unbounded grammar forms.

In the following case all "service" requirements of the substituted node are mapped to the corresponding "service"
requirements of the "software1" node in the substituting template. This allows for the follwing compact syntax:

 type: ClientSoftware
 requirements:
 - host: compute2

 software3:
 type: ClientSoftware
 requirements:
 - host: compute3

 compute1:
 type: Compute

 compute2:
 type: Compute

 compute3:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 191 of 211

In the next case the "service" requirements of the substituted node are mapped to the corresponding "service"
requirements of both the "software1" and "software2" nodes in the substituting template as follows: the first
requirement assignment is mapped to the "service" requirement of the "software1" node, the second requirement
assignment is mapped to the "service" requirement of the "software2" node, then the rest of the "service"
requirements of the substituted node are mapped again to the "service" requirement of the "software1" node:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [3, UNBOUNDED]

 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, UNBOUNDED]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]

 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute

 software2:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 192 of 211

15.6 Interface Mapping

An interface mapping allows an interface operation on the substituted node to be mapped to workflow in the
substituting service template.

The grammar of an interface mapping is as follows:

tosca_definitions_version: tosca_2_0

imports:
- types.yaml

node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [3, UNBOUNDED]

 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, UNBOUNDED]

 Compute:
 capabilities:
 host:
 type: Host

service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - [service, UNBOUNDED]: [software1, service]

node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute

 software2:
 type: ClientSoftware
 requirements:
 - host: compute

 compute:
 type: Compute

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 193 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<interface_name>: represents the name of the interface as it appears in the node type definition for the node type
(name) that is declared as the value for on the substitution_mappings' node_type key.

<operation_name>: represents the name of the operation as it appears in the interface type definition for
<interface_name>.

<workflow_name>: represents the name of a workflow defined in the substituting service template to which to map
the specified interface operation.

16 Groups and Policies
A group is a logical grouping of nodes for purposes of uniform application of policies to collections of nodes.
Conceptually, group definitions allow the creation of logical membership relationships to nodes in a service template
that are not a part of the application's explicit requirement dependencies in the topology template (i.e. those required
to actually get the application deployed and running).

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

16.1 Group Type

As with most TOSCA entities, groups are typed. A group type definition is a type of TOSCA type definition and as a
result supports the common keynames listed in the section Common Keynames in Type Definitions . In addition, the
group type definition has the following recognized keynames:

Keyname Mandatory Type Description

properties no map of property
definitions

An optional map of property definitions for the group type.

attributes no map of attribute
definitions

An optional map of attribute definitions for the group type.

members no seq of strs An optional list of one or more names of node types that are valid
(allowed) as members of the group type.

Group types have the following grammar:

<interface_name>:
 <operation_name>: <workflow_name>

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 194 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<group_type_name>: represents the mandatory symbolic name of the Group Type being declared as a string.

<parent_group_type_name>: represents the name (string) of the group type this group type definition derives from
(i.e. its "parent" type).

<attribute_def_*>: represents the optional map of attribute definitions for the group type.

<property_def_*>: represents the optional map of property definitions for the group type.

<valid_member_type_*>: represents the optional list of TOSCA Node Types that are valid member types for being
added to (i.e. members of) the group type; if the members keyname is not defined then there are no restrictions
to the member types;

note that the members of a group ultimately resolve to nodes, the types here just restrict which nodes can
be defined as members in a group definition.

A node type is matched if it is the specified type or is derived from the node type

During group type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.

attributes: existing attribute definitions may be refined; new attribute definitions may be added.

members: if the members keyname is defined in the parent type, each element in this list must either be in the
parent type list or derived from an element in the parent type list; if the members keyname is not defined in the
parent type then no restrictions are applied to the definition.

The following represents an example group type definition:

16.2 Group Definition

Collections of nodes in a service template may be grouped together using a group definition in that same service
template. A group definition defines a logical grouping of node templates for purposes of uniform application of

<group_type_name>:
 derived_from: <parent_group_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <group_description>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 attributes:
 <attribute_def_1>
 <attribute_def_2>
 ...
 members: [<valid_member_type_1>, <valid_member_type_1>, ...]

group_types:
 Placement:
 description: My company's group type for placing nodes of type Software
 members: [Software]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 195 of 211

policies.

The following is the list of recognized keynames for a group definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the group type the group definition is
based upon.

description no str The optional description for the group definition.

metadata no map of metadata Defines a section used to declare additional information.

properties no map of property
assignments

An optional map of property value assignments for the group
definition.

attributes no map of attribute
assignments

An optional map of attribute value assignments for the group
definition.

members no seq of strs The optional list of one or more node template names that are
members of this group definition.

Group definitions have one the following grammars:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<group_name>: represents the mandatory symbolic name of the group as a string.

<group_type_name>: represents the name of the group type the definition is based upon.

<property_assignment_*>: represents the optional map of property assignments for the group definition that provide
values for properties defined in its declared group type.

<attribute_assigment_*>: represents the optional map of attribute assignments for the group definition that provide
values for attributes defined in its declared group type.

<node_template_*>: contains the mandatory list of one or more node template names or group symbolic names
(within the same service template) that are members of this logical group

if the members keyname was defined (by specifying a <valid_member_type_*>) in the group type of this group
then the nodes listed here must be compatible (i.e. be of that type or of type that is derived from) with the
node types in the <valid_member_type_*>

<group_name>:
 type: <group_type_name>
 description: <group_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 attributes:
 <attribute_assignment_1>
 <attribute_assignment_2>
 ...
 members: [<node_template_1>, <node_template_2>, ...]

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 196 of 211

The following represents a group definition:

16.3 Policy Type

A policy type defines a type of a policy that affects or governs an application or service's topology at some stage of
its lifecycle but is not explicitly part of the topology itself (i.e., it does not prevent the application or service from being
deployed or run if it did not exist).

A policy type definition is a type of TOSCA type definition and as a result supports the common keynames listed in
the section Common Keynames in Type Definitions . In addition, the policy type definition has the following
recognized keynames:

Keyname Mandatory Type Description

properties no map of property
definitions

An optional map of property definitions for the policy type.

targets no seq of strs An optional list of valid node types or group types the policy type
can be applied to.

triggers no map of trigger
definitions

An optional map of policy triggers for the policy type.

Policy types have the following grammar:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<policy_type_name>: represents the mandatory symbolic name of the policy type being declared as a string.

<parent_policy_type_name>: represents the name (string) of the policy type this policy type definition derives from
(i.e., its "parent" type).

<property_def_*>: represents the optional map of property definitions for the policy type.

groups:
 my-app-placement:
 type: Placement
 description: My application's logical component grouping for placement
 members: [my-web-server, my-sql-database]

<policy_type_name>:
 derived_from: <parent_policy_type_name>
 version: <version_number>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 description: <policy_description>
 properties:
 <property_def_1>
 <property_def_2>
 ...
 targets: [<valid_target_type_1>, <valid_target_type_2>, ...]
 triggers:
 <trigger_def_1>
 <trigger_def_2>
 ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 197 of 211

<valid_target_type_*>: represents the optional list of TOSCA types (i.e. group or node types) that are valid targets
for this policy type; if the targets keyname is not defined then there are no restrictions to the targets' types.

<trigger_def_*>: represents the optional map of trigger definitions for the policy.

During policy type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be added.

targets: if the targets keyname is defined in the parent type, each element in this list must either be in the parent
type list or derived from an element in the parent type list; if the targets keyname is not defined in the parent type
then no restrictions are applied to this definition.

triggers: existing trigger definitions may not be changed; new trigger definitions may be added.

The following represents a policy type definition:

16.4 Policy Definition

A policy definition defines a policy that can be associated with a TOSCA service or top-level entity definition (e.g.,
group definition, node template, etc.).

The following is the list of recognized keynames for a TOSCA policy definition:

Keyname Mandatory Type Description

type yes str The mandatory name of the policy type the policy definition is based
upon.

description no str The optional description for the policy definition.

metadata no map of
metadata

Defines a section used to declare additional information.

properties no map of
property
assignments

An optional map of property value assignments for the policy definition.

targets no seq of strs An optional list of valid node templates or Groups the Policy can be
applied to.

triggers no map of
trigger
definitions

An optional map of trigger definitions to invoke when the policy is applied
by an orchestrator against the associated TOSCA entity. These triggers
apply in addition to the triggers defined in the policy type.

Policy definitions have the following grammar:

policy_types:
 Placement.Container.Linux:
 description: My company's placement policy for linux

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 198 of 211

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<policy_name>: represents the mandatory symbolic name of the policy as a string.

<policy_type_name>: represents the name of the policy the definition is based upon.

<property_assignment_*>: represents the optional map of property assignments for the policy definition that provide
values for properties defined in its declared policy type.

<policy_target_*>: represents the optional list of names of node templates or groups that the policy is to applied to.

if the targets keyname was defined (by specifying a <valid_target_type_*>) in the policy type of this policy then
the targets listed here must be compatible (i.e. be of that type or of type that is derived from) with the
types (of nodes or groups) in the <valid_target_type_*>.

<trigger_def_*>: represents the optional map of trigger definitions for the policy; these triggers apply in addition to
the triggers defined in the policy type.

The following represents a policy definition:

16.5 Trigger Definition

A trigger definition defines an event, condition, action tuple associated with a policy.

The following is the list of recognized keynames for a TOSCA trigger definition:

Keyname Mandatory Type Description

description no str The optional description string for the trigger.

event yes str The mandatory name of the event that activates the trigger's action.

condition no condition
clause

The optional condition that must evaluate to true in order for the trigger's
action to be performed. Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

<policy_name>:
 type: <policy_type_name>
 description: <policy_description>
 metadata:
 <metadata_name_1>: <metadata_value_1>
 <metadata_name_2>: <metadata_value_2>
 ...
 properties:
 <property_assignment_1>
 <property_assignment_2>
 ...
 targets: [<policy_target_1>, <policy_target_2>, ...]
 triggers:
 <trigger_def_1>
 <trigger_def_2>
 ...

- my-compute-placement:
 type: Placement
 description: Apply my placement policy to my application's servers
 targets: [my_server_1, my_server_2]
 # remainder of policy definition omitted for brevity

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 199 of 211

action yes seq of
activity
definitions

The list of sequential activities to be performed when the event is triggered,
and the condition is met (i.e., evaluates to true).

Keyname Mandatory Type Description

Trigger definitions have the following grammars:

In the above grammar, the placeholders that appear in angle brackets have the following meaning:

<trigger_name>: represents the mandatory symbolic name of the trigger as a string.

<event_name>: represents the mandatory name of an event associated with an interface notification on the
identified resource (node).

<condition_clause>: an optional Boolean expression that can be evaluated within the context of the service with
which the policy is associated and that must evaluate to true in order for the trigger's action to be performed.
Note that the arguments to the condition clause function can in turn be other TOSCA functions. If no condition
clause is specified, the trigger event will always result in the trigger's action being taken.

<activity_def_*>: represents the list of activities that are performed in response to the event if the (optional)
condition is met.

17 Cloud Service Archive (CSAR) Format
This section defines the metadata of a cloud service archive as well as its overall structure.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

17.1 Overall Structure of a CSAR

A CSAR is a package of files containing at least TOSCA definitions as well as accompanying artifacts (e.g. scripts,
binaries, configuration files) that can be delivered together as a single unit.

CSARs can be used to package service templates and/or profiles.

The service template or profile root TOSCA YAML file can be specified in one of two ways:

If a TOSCA.meta file is present (see below) it may specify the root TOSCA YAML file. The TOSCA.meta file may be
located either at the root of the archive or inside a "TOSCA-Metadata" directory. The CSAR may contain only
one TOSCA.meta file.

Otherwise, if a single valid TOSCA YAML file (named with a ".yaml" or ".yml" extension) is located at the root of
the archive, it will be used as the root TOSCA YAML file.

The CSAR file may contain other directories and files with arbitrary names and content.

<trigger_name>:
 description: <trigger_description>
 event: <event_name>
 condition: <condition_clause>
 action:
 - <activity_def_1>
 - <activity_def_2>
 - ...

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 200 of 211

17.1.1 CSAR Archiving Formats

While any archiving method that maintains a file and directory structure can be used, two formats are specifically
supported, tarballs and Zip files.

17.1.1.1 Tarballs

These are optionally compressed streams generated by the "tar" (tape archive) command available on most
operating systems. TOSCA at minimum supports uncompressed tarballs (named with a ".tar" extension) as well
tarballs compressed with Gzip (named with a ".tar.gz" or ".tgz" extension). Other compression algorithms may also
be optional supported.

Because tarballs are organized sequentially, their contents can be efficiently streamed from a filesystem or a network
server with minimal buffering and no need to store data local storage. For example, if only a single file in the tarball is
needed, a client can skip other entries and read only that file.

The supported tar format is UStar, as specified in POSIX IEEE P1003.1. Gzip 4.3 is specified in IETF RFC-1952.

17.1.1.2 Zip Files

These are optionally compressed files relying on random access to entries. Files should be named with a ".zip" or a
".csar" extension.

Note that the ".csar" extension has been used in previous versions of TOSCA to refer exclusively to Zip files. It is
recommended to use the ".zip" extension instead in order to clarify and differentiate the archiving formats.

Because Zip files require random access, the archive must be accessible in its entirety by clients, usually in a local
file system. If it necessary to support clients with no access to local storage, tarballs may be preferred instead.

The Zip format supported by TOSCA is specified in ISO/IEC 21320-1 "Document Container File — Part 1: Core".

17.2 TOSCA.meta File

A TOSCA.meta file consists of keyname/value pairs. The keyname of a keyname/value pair is followed by a colon,
followed by a space, followed by the value of the keyname/value pair. The keyname MUST NOT contain a colon.
Values that represent binary data MUST be base64 encoded. Values that extend beyond one line can be spread over
multiple lines if each subsequent line starts with at least one space. Such spaces are then collapsed when the value
string is read.

<keyname>: <value>

Each keyname/value pair is in a separate line. A list of related keyname/value pairs, i.e. a list of consecutive
keyname/value pairs is called a block. Blocks are separated by an empty line. The first block, called "block_0",
contains metadata about the CSAR itself and is further defined below. Other blocks may be used to represent
custom generic metadata or metadata pertaining to files in the CSAR. A TOSCA.meta file is only required to include
"block_0".

17.2.1 Block 0 Keynames in the TOSCA.meta File

The structure of "block_0" in the TOSCA.meta file is as follows:

CSAR-Version: digit.digit
Created-By: string
Entry-Definitions: string
Other-Definitions: string

The keyname/value pairs are as follows:

CSAR-Version: This is the version number of the CSAR specification. It defines the structure of the CSAR and the

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 201 of 211

https://archive.org/details/mac_Internet_File_Formats_1995/page/n201/mode/2up
https://datatracker.ietf.org/doc/html/rfc1952
https://www.iso.org/standard/60101.html

format of the TOSCA.meta file. The value MUST be "2.0" for this version of the CSAR specification.

Created-By: The person or organization that created the CSAR.

Entry-Definitions: This references the TOSCA definitions file that SHOULD be used as entry point for processing
the contents of the CSAR (e.g. the main TOSCA service template).

Other-Definitions: This references an unambiguous set of files containing substitution templates that can be used
to implement nodes defined in the main template (i.e. the file declared in Entry-Definitions). Thus, all the service
templates defined in files listed under the Other-Definitions key are to be used only as substitution templates, and
not as standalone services. If such a service template cannot act as a substitution template, it will be ignored by
the orchestrator. The value of the Other-Definitions key is a string containing a list of filenames (relative to the root
of the CSAR archive) delimited by a blank space. If the filenames contain blank spaces, the filename should be
enclosed by double quotation marks (").

Note that any further TOSCA definitions files required by the definitions specified by Entry-Definitions or Other-Definitions
can be found by a TOSCA orchestrator by processing respective imports keynames. Note also that artifact files (e.g.
scripts, binaries, configuration files) used by the TOSCA definitions and included in the CSAR are fully described and
referred via relative path names in artifact definitions in the respective TOSCA definitions files contained in the
CSAR.

The following listing represents a valid TOSCA.meta file according to this TOSCA specification.

CSAR-Version: 2.0
Created-By: OASIS TOSCA TC
Entry-Definitions: tosca_elk.yaml
Other-Definitions: definitions/tosca_moose.yaml definitions/tosca_deer.yaml

This TOSCA.meta file indicates its structure (as well as the overall CSAR structure) by means of the CSAR-Version
keyname with value "2.0". The Entry-Definitions keyname points to a TOSCA definitions YAML file with the name
"tosca_elk.yaml" which is contained in the root of the CSAR file. Additionally, it specifies that substitution templates
can be found in the files "tosca_moose.yaml" and "tosca_deer.yaml" found in the directory called "definitions" in the
root of the CSAR file.

17.2.2 Custom Keynames in the TOSCA.meta File

Users can populate other blocks than "block_0" in the TOSCA.meta file with custom name/value pairs that follow the
entry syntax defined above and have names that are different from the normative keynames (e.g. CSAR-Version,
Created-By, Entry-Definitions, Other-Definitions). These custom name/value pairs are outside the scope of the TOSCA
specification. Nevertheless, future versions of the TOSCA specification may add definitions of new keynames to be
used in the TOSCA.meta file. In case of a keyname collision (with a custom keyname) the TOSCA specification
definitions take precedence.

To minimize such keyname collisions the specification reserves the use of keynames prefixed with "TOSCA" and
"tosca". It is recommended as a good practice to use a specific prefix (e.g. identifying the organization, scope, etc.)
when using custom keynames.

17.3 CSAR Without a TOSCA.meta File

In case the archive doesn't contains a TOSCA.meta file the archive is required to contains a single YAML file at the root
of the archive (other templates may exist in sub-directories).

TOSCA processors should recognize this file as being the CSAR Entry-Definitions file. The CSAR-Version is inferred
from the tosca_definitions_version keyname in the Entry-Definitions file. For tosca_definitions_version: tosca_2_0 and onwards, the
corresponding CSAR-Version is "2.0" unless further defined.

Note that in a CSAR without a TOSCA.meta file it is not possible to unambiguously include definitions for substitution
templates as we can have only one service template defined in a YAML file.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 202 of 211

The following represents a valid TOSCA template file acting as the CSAR Entry-Definitions file in an archive without a
TOSCA.meta file.

tosca_definitions_version: tosca_2_0

metadata:
 template_name: my_template
 template_author: OASIS TOSCA TC
 template_version: '1.0'

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 203 of 211

18 Conformance
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

18.1 Conformance Targets

The implementations subject to conformance are listed here:

TOSCA file

TOSCA processor

TOSCA orchestrator

TOSCA generator

TOSCA archive

18.2 Conformance Clause 1: TOSCA File

A document conforms to this specification as a TOSCA file if it satisfies all the statements below:

1. It is valid according to the grammar, rules and requirements defined in TOSCA File Definition.

2. When using functions defined in TOSCA Functions, it is valid according to the grammar specified for these
functions.

3. When defining entities that use data types, artifact types, capability types, interface types, node types,
relationship types, group types, or policy types, these entity definitions are valid according to the definitions
given in:

Node Type
Relationship Type
Capability Type
Data Type
Interface Type
Artifact Type
Group Type
Policy Type

18.3 Conformance Clause 2: TOSCA Processor

A processor or program conforms to this specification as TOSCA processor if it satisfies all the statements below:

1. It can parse and recognize the elements of any conforming TOSCA file and generates errors for those
documents that fail to conform as a TOSCA file while clearly intending to.

2. It implements the requirements and semantics associated with the definitions and grammar in Sections 5
through 16, including those listed in the additional requirements paragraphs.

3. It resolves the imports as described in Import Definitions

4. It generates errors as required in error cases described in Namespaces, TOSCA Built-In Types and the type
specific definitions in

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 204 of 211

Node Type
Relationship Type
Capability Type
Data Type
Interface Type
Artifact Type
Group Type
Policy Type

18.4 Conformance Clause 3: TOSCA Orchestrator

A processor or program conforms to this specification as a TOSCA orchestrator if it satisfies all the statements below:

1. It can process TOSCA archives as intended in Cloud Service Archive (CSAR) Format and other related
normative sections.

2. It is conforming as a TOSCA Processor as defined in Conformance Clause 2: TOSCA Processor.

3. It can understand and process the functions defined in TOSCA Functions according to their rules and
semantics.

4. It can fulfill dangling requirements as defined in Requirement Assignment, including requirement assignments
created automatically for mandatory requirements. It can properly apply node filters as defined in Node Filter
Definition to select appropriate target node candidates for fulfulling requirements.

5. It can generate substituting services for substitutable nodes as defined in Substitution. It can properly apply
substitution filters as defined in Substitution Mapping to select valid substituting service template candidates
based on which to create the substituting service.

6. It can process artifacts used as operation implementations as described in Operation Assignment.
Orchestrators are expected to process implementing artifacts based on their type as defined in Artifact Type.

18.5 Conformance Clause 4: TOSCA Generator

A processor or program conforms to this specification as a TOSCA generator if it satisfies at least one of the
statements below:

1. When requested to generate a TOSCA file, it always produces a conforming TOSCA file as defined in
Conformance Clause 1: TOSCA File.

2. When requested to generate a TOSCA archive, it always produces a conforming TOSCA archive as defined in
Conformance Clause 5: TOSCA Archive

18.6 Conformance Clause 5: TOSCA Archive

A package artifact conforms to this specification as TOSCA archive if it satisfies all the statements below:

1. It is valid according to the structure and rules defined in Cloud Service Archive (CSAR) Format.

Appendix A. References
This appendix contains the normative and informative references that are used in this document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their
long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of their content constitutes requirements of

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 205 of 211

this document.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

[YAML-1.2]

YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy döt Net

A.2 Informative References
[Maven-Version]

Apache Maven version policy draft: https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI
10.17487/RFC3552, July 2003, https://www.rfc-editor.org/info/rfc3552.

[File Extensions for Media Types]

File extensions for media types some registered as described in RFC 4288
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

[TOSCA Discussion]

tosca-community-contributions github repository. https://github.com/oasis-open/tosca-community-contributions

[RFC3339]

G. Klyne and C, Newman "Date and Time on the Internet: Timestamps" July 2002, https://tools.ietf.org/html/rfc3339

[SI Units]

"SI Brochure: The International System of Units (SI) [8th edition, 2006; updated in 2014]",
http://www.bipm.org/en/publications/si-brochure/

Appendix B. Safety, Security and Privacy Considerations
This document defines a language for automating lifecycle management of systems and services. The language itself
has no security impact. However, implementations that use the TOSCA language may need to address a number of
security considerations:

Authenticity Checks: Service designers who publish TOSCA files or CSAR archives may need to guarantee the
authenticity of their archives, files, and/or artifacts by digitally signing them.

Integrity Checks: Unauthorized modification of TOSCA files, CSAR files, or associated artifacts can lead to
security vulnerabilities. TOSCA implementations may need to provide integrity checks for those entities.

Credentials Exposure: TOSCA Orchestrators may need credentials to authenticate with and gain access to
external implementations used by the services being orchestrated. Such credentials must not be stored in
TOSCA service templates. Instead, Orchestrator implementations must provide mechanisms to store such
credentials securely and keep them private.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 206 of 211

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
https://www.rfc-editor.org/info/rfc3552
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
https://github.com/oasis-open/tosca-community-contributions
https://tools.ietf.org/html/rfc3339
http://www.bipm.org/en/publications/si-brochure/

Confidential Information Exposure: Several TOSCA modeling constructs, including artifacts, can be associated
with confidential information, making them vulnerable to unauthorized access or exposure.

Node Types Vulnerabilities: Security requirements need to be enforced at the level of Node Types, indicating
that vulnerabilities can arise from misconfigured or insecure Node Types in TOSCA modeling.

Policy Attachment Risks: The attachment of security policies to TOSCA entities introduces potential risks if the
policies are not correctly defined or enforced, which could lead to security breaches.

Artifact Management: Artifacts in TOSCA can be manipulated or mismanaged, which may compromise the
security of the modeled application files.

CSAR Disassembly Risks: During the import and export of CSAR files, there is a risk that sensitive information
may be exposed if proper security measures are not implemented.

Separation of Entities: While separating TOSCA entities can ease reusability, it also creates potential attack
vectors if the semantics and relationships among these entities are not well-defined or secured.

This list is by no means intended to be comprehensive, and other security challenges may exist. Solutions for
addressing security considerations are implementation-specific and beyond the scope of this specification.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 207 of 211

Appendix C. Acknowledgments
C.1 Special Thanks

The editors would like to gratefully acknowledge the work of Paul Lipton, Chair-Emeritus of the OASIS TOSCA TC,
who recognized the need for extending the scope of the TOSCA language and initiated the work on TOSCA Version
2.0.

C.2 Participants

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

First Name Last Name Company

Calin Curescu Ericsson

Chris Lauwers Individual Member

Oliver Kopp Individual Member

Paul Jordan Individual Member

Peter Bruun Hewlett Packard Enterprise

Tal Liron Google

The following individuals have contributed to previous versions of the TOSCA specification or have otherwise
provided expertise or assistance:

Adam Souzis
Alex Vul
Anatoly Katzman
Arturo Martin De Nicolas
Avi Vachnis
Claude Noshpitz
Derek Palma
Dmytro Gassanov
Frank Leymann
Gábor Marton
Gerd Breiter
Hemal Surti
Ifat Afek
Idan Moyal
Jacques Durand
Jin Qin
Jeremy Hess
John Crandall
Juergen Meynert
Kapil Thangavelu
Karsten Beins
Kevin Wilson
Krishna Raman
Luc Boutier
Luca Gioppo

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 208 of 211

Matej Artač
Matt Rutkowski
Moshe Elisha
Nate Finch
Nikunj Nemani
Philippe Merle
Priya TG
Richard Probst
Sahdev Zala
Shitao Li
Simeon Monov
Sivan Barzily
Sridhar Ramaswamy
Stephane Maes
Steve Baillargeon
Thinh Nguyenphu
Thomas Spatzier
Ton Ngo
Travis Tripp
Vahid Hashemian
Wayne Witzel
Yaron Parasol

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 209 of 211

Appendix D. Revision History
Revision Date Editor Changes Made

TOSCA-
v2.0-
csd01

23 April
2020

Chris
Lauwers and
Calin
Curescu

Remove Simple Profile type definitions from the TOSCA specification.

TOSCA-
v2.0-
csd02

25 June
2020

Chris
Lauwers and
Calin
Curescu

Introduce refinement and augmentation rules.

TOSCA-
v2.0-
csd03

28
October
2020

Chris
Lauwers and
Calin
Curescu

Introduce support for user-defined profiles. Formalize support for TOSCA
namespaces.

TOSCA-
v2.0-
csd04

16 June
2022

Chris
Lauwers and
Calin
Curescu

Introduce TOSCA Operational Model. Formalize TOSCA Path syntax.

TOSCA-
v2.0-
csd05

19
January
2023

Chris
Lauwers and
Calin
Curescu

Formalize function syntax and introduce support for user-defined
functions. Harmonize constraint syntax, filter syntax, and condition syntax
using boolean functions.

TOSCA-
v2.0-
csd06

12 July
2024

Chris
Lauwers and
Calin
Curescu

Extend operational model with support for updating and upgrading
running services. Enhance and formalize Substitution Mapping syntax.

TOSCA-
v2.0-
csd07

9 October
2024

Chris
Lauwers and
Calin
Curescu

Edits for consistency and completeness.

TOSCA-
v2.0-
cs01

5
December
2024

Chris
Lauwers and
Calin
Curescu

Edits for publication.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 210 of 211

Appendix E. Notices
Copyright © OASIS Open 2024. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property
Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this section are included on all such
copies and derivative works. However, this document itself may not be modified in any way, including by removing
the copyright notice or references to OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth
in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final
Deliverable documents (Committee Specification, Candidate OASIS Standard, OASIS Standard, or Approved
Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be
infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and
provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the
IPR Mode of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent
claims that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this OASIS Standards Final Deliverable. OASIS may include such claims
on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this OASIS Standards Final
Deliverable or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to
rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this OASIS Standards Final Deliverable, can be obtained from the OASIS TC
Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only
to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-
open.org/policies-guidelines/trademark/ for above guidance.

Non-Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. 05 December 2024 - Page 211 of 211

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

