
 [image: image1.png]OASIS)

Solution Deployment Descriptor Specification 1.0
Committee Draft 4
8 April 2008
Specification URIs:

This Version:

http://docs.oasis-open.org/sdd/v1.0/cd04/sdd-spec-v1.0-cd04.html
http://docs.oasis-open.org/sdd/v1.0/cd04/sdd-spec-v1.0-cd04.doc
http://docs.oasis-open.org/sdd/v1.0/cd04/sdd-spec-v1.0-cd04.pdf
Previous Version:

http://docs.oasis-open.org/sdd/v1.0/pr01/sdd-spec-v1.0-pr01.html
http://docs.oasis-open.org/sdd/v1.0/pr01/sdd-spec-v1.0-pr01.doc
http://docs.oasis-open.org/sdd/v1.0/pr01/sdd-spec-v1.0-pr01.pdf
Latest Version:

http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.html
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.doc
http://docs.oasis-open.org/sdd/v1.0/sdd-spec-v1.0.pdf
Technical Committee:

OASIS Solution Deployment Descriptor (SDD) TC
Chair(s):

Brent Miller, IBM Corporation
Editor(s):

Julia McCarthy, IBM Corporation

Robert Dickau, Macrovision Corporation

Merri Jensen, SAS Institute, Inc.

Related work:

None
Declared XML Namespace(s):

sdd-common=http://docs.oasis-open.org/sdd/ns/common
sdd-pd=http://docs.oasis-open.org/sdd/ns/packageDescriptor
sdd-dd=http://docs.oasis-open.org/sdd/ns/deploymentDescriptor
Abstract:

This specification defines schema for two XML document types: Package Descriptors and Deployment Descriptors. Package Descriptors define characteristics of a package used to deploy a solution. Deployment Descriptors define characteristics of the content of a solution package, including the requirements that are relevant for creation, configuration and maintenance of the solution content. The semantics of the descriptors are fully defined, allowing software implementations to precisely understand the intent of the descriptor authors and to use the information provided in the descriptors to support solution deployment.
Status:

This document was last revised or approved by the OASIS Solution Deployment Descriptor (SDD) Technical Committee on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/sdd/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/sdd/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/sdd/.

Notices
Copyright © OASIS® 2007, 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS", is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents

3Notices

4Table of Contents

91
Introduction

91.1 Terminology

91.2 Purpose

101.3 Scope

101.4 Audience

101.5 How to Read this Document

101.6 Motivation

111.7 Requirements

131.8 XML Namespaces

131.9 Notational Conventions

131.10 General Document Conventions

131.11 Diagram Conventions

151.12 Normative References

151.13 Non-Normative References

162
Solution Deployment Descriptor Overview

162.1 Package and Deployment Descriptors

162.2 Topology

162.3 Content and Artifacts

172.4 Resulting and Changed Resources

172.5 Base, Selectable and Localization Content Hierarchies

182.6 Constraints

182.7 Requirements

182.8 Conditions

182.9 Variables

193
Package Descriptor

193.1 PackageDescriptor

193.1.1 PackageDescriptor Property Summary

193.1.2 PackageDescriptor Property Usage Notes

203.2 DescriptorInfoGroup

203.2.1 DescriptorInfoGroup Property Usage Notes

223.3 PackageIdentityType

223.3.1 PackageIdentityType Property Summary

223.3.2 PackageIdentityType Property Usage Notes

243.4 IdentityType

243.4.1 IdentityType Property Summary

253.4.2 IdentityType Property Usage Notes

263.5 MaintenanceInformationType

263.5.1 MaintenanceInformationType Property Summary

263.5.2 MaintenanceInformationType Property Usage Notes

273.6 FixIdentityType

273.6.1 FixIdentityType Property Summary

273.6.2 FixIdentityType Property Usage Notes

273.7 BuildInformationType

283.7.1 BuildInformationType Property Summary

283.7.2 BuildInformationType Property Usage Notes

283.8 ManufacturerType

283.8.1 ManufacturerType Property Summary

283.8.2 ManufacturerType Property Usage Notes

293.9 LocationType

293.9.1 LocationType Property Summary

293.9.2 LocationType Property Usage Notes

293.10 VersionType

293.11 ContentsType

293.11.1 ContentsType Property Summary

303.11.2 ContentsType Property Usage Notes

303.12 ContentType

303.12.1 ContentType Property Summary

303.12.2 ContentType Property Usage Notes

313.13 DigestInfoGroup

313.13.1 DigestInfoGroup Property Usage Notes

324
Deployment Descriptor

324.1 DeploymentDescriptor

334.1.1 DeploymentDescriptor Property Summary

334.1.2 DeploymentDescriptor Property Usage Notes

344.2 Topology

354.2.1 TopologyType

364.2.2 ResourceType

394.2.3 PropertyType

394.2.4 ResultingPropertyType

404.3 Atomic Content Elements

414.3.1 InstallableUnitType

444.3.2 ConfigurationUnitType

464.3.3 ArtifactType

494.3.4 InstallationArtifactsType

504.3.5 ConfigurationArtifactsType

504.3.6 OperationListType

504.3.7 OperationType

514.3.8 ArgumentListType

514.3.9 ArgumentType

524.3.10 OutputVariableListType

534.3.11 OutputVariableType

534.3.12 AdditionalContentType

544.3.13 SubstitutionType

554.3.14 CompletionType

564.4 Constraints

574.4.1 CapacityConstraintType

584.4.2 CapacityValueType

594.4.3 ConsumptionConstraintType

604.4.4 ConsumptionConstraintValueType

614.4.5 PropertyConstraintType

614.4.6 PropertyValueListType

624.4.7 VersionConstraintType

634.4.8 VersionConstraintValueType

634.4.9 VersionValueType

644.4.10 VersionRangeType

654.4.11 MaxVersionType

654.4.12 UniquenessConstraintType

664.4.13 RelationshipConstraintType

674.5 Conditions

674.5.1 ConditionType

694.5.2 AlternativeConditionalType

704.5.3 ConditionalResourceConstraintType

724.5.4 ConditionalPropertyConstraintType

734.6 Variables

734.6.1 VariableExpressionType

744.6.2 BaseVariableType

754.6.3 VariablesType

764.6.4 ParametersType

774.6.5 BaseParameterType

784.6.6 IntegerParameterType

794.6.7 BoundaryType

804.6.8 StringParameterType

814.6.9 StringCaseType

814.6.10 BooleanParameterType

814.6.11 URIParameterType

824.6.12 ResourcePropertyType

834.6.13 DerivedVariableType

834.6.14 ConditionalDerivedVariableExpressionType

844.7 Requirements

844.7.1 RequirementsType

854.7.2 RequirementType

874.7.3 AlternativeRequirementType

884.7.4 ResourceConstraintGroup

904.7.5 RequirementResourceConstraintType

914.7.6 InternalDependencyType

924.7.7 DependencyType

934.7.8 RequiredBaseType

944.7.9 RequiredBaseConstraintType

964.7.10 AlternativeRequiredBaseConstraintType

974.8 Resulting and Changed Resources

974.8.1 ResultingResourceType

994.8.2 ResultingChangeType

1014.8.3 RelationshipType

1014.9 Composite Content Elements

1034.9.1 CompositeInstallableType

1064.9.2 CompositeUnitType

1084.10 Aggregation

1124.10.1 ReferencedPackageType

1154.10.2 ResourceMapType

1164.10.3 ResultingResourceMapType

1184.10.4 ResultingChangeMapType

1194.10.5 RequisitesType

1204.11 Base Content

1204.11.1 BaseContentType

1214.12 Content Selectability

1214.12.1 SelectableContentType

1224.12.2 GroupsType

1234.12.3 GroupType

1244.12.4 FeaturesType

1254.12.5 FeatureType

1264.12.6 NestedFeatureType

1294.12.7 MultiplicityType

1304.12.8 FeatureReferenceType

1304.12.9 ContentElementReferenceType

1314.12.10 PackageFeatureReferenceType

1314.12.11 ConstrainedResourceType

1324.12.12 MultiplicityConstraintType

1324.12.13 RequiredContentSelectionType

1334.12.14 ContentSelectionFeatureType

1344.12.15 MultiSelectType

1344.13 Localization

1354.13.1 LocalizationContentType

1364.13.2 LocalizationUnitType

1394.13.3 CompositeLocalizationUnitType

1424.13.4 LanguageSelectionsType

1424.13.5 OptionalLanguagesType

1434.13.6 LanguagesType

1434.13.7 LanguageType

1444.13.8 LanguageSetType

1454.14 Display Information

1454.14.1 DescriptionGroup

1454.14.2 DisplayElementGroup

1464.14.3 DisplayTextType

1475
Conformance

1475.1 General Conformance Statements

1475.2 Conformance Levels

1475.2.1 CL Capabilities

1485.2.2 Conformance Level Differences

1505.3 Profiles

1505.3.1 Profile Creation

1505.3.2 Profile Publication

1515.3.3 Profile Applicability

1515.4 Compatibility Statements

1515.5 Conformance Clause

1515.5.1 Conformance for Users of This Specification

1515.5.2 Conformance for This Specification Itself

153A.
Schema File List

154B.
Acknowledgements

1 Introduction

The Solution Deployment Descriptor (SDD) specification defines a standard, in the form of a schema for XML documents, called Solution Deployment Descriptors, or SDDs. SDDs define metadata that describes the packaging and deployment characteristics of resources that are relevant for their lifecycle management, including creation, configuration and maintenance.

A.1 Terminology

The following terms are used in this specification in a specialized sense that might differ from definitions elsewhere.

Artifact

Zero or more files and/or metadata used to perform a deployment lifecycle operation on a resource.

Deployment lifecycle
The stages marking maturation of a solution: develop, package, integrate, manufacture, install, configure, evaluate, deploy into production, upgrade and/or update, uninstall.
Host Resource

A resource that provides the execution environment for another resource.

Package

A set of artifacts used to perform deployment lifecycle operations on a group of related resources that make up a solution.
Resource

A particular element of a computing environment, such as a computer system, an operating system, a Web server, a software application, or a complex solution.
Solution

One or more interrelated resources on which deployment lifecycle operations can be performed.

Target Resource
A resource that processes artifacts to perform deployment lifecycle operations on another resource. The host resource often serves as the target resource.
Topology

The physical or logical layout of a solution’s resources.
Update (n.)

A package that replaces a limited set of the resources in a solution instance. An update does not require migration.

Upgrade (n.)

A package that replaces all, or a significant portion of, the resources used in a solution. An upgrade might or might not require migration.
1.1 Purpose

The purpose of this document is to provide the normative specification of the SDD, including concepts, structure, syntax, semantics and usage.

1.2 Scope

This document is the specification for the SDD. It consists of both normative and non-normative prose, diagrams, schema and examples. The document is intended to facilitate an understanding of the SDD concepts, structure, syntax, semantics and usage. This document is not intended to be a tutorial.

This document is the full SDD specification, but it also is augmented with other documents produced by the SDD TC, including the SDD XML Schema and Examples (see Appendix [A]), [SDDP], [SDDSP] and the set of SDD profiles (see section [5.3]), as well as documents produced by others (see section [5.3.1]).

1.3 Audience

This document is intended to assist those who require an understanding of the nature and details of the SDD. This includes architects, developers, solution integrators and service/support personnel who generate, consume, or otherwise use SDDs, as well as those who develop tooling and applications for constructing and deploying SDDs.
1.4 How to Read this Document

The various audiences of this specification might have different objectives and purposes when reading the document. You might wish to generally understand the SDD, or learn the details of the SDD to create or consume SDDs, or use the document as a reference.
· If your purpose is to understand the major capabilities and characteristics of the SDD and how they fit together, start by reading the Introductions to the major sections: [3], [4] and [4.1]–[4.14].

· If your purpose is to understand the major elements of the SDD and how they work together to accomplish the goals of this specification, read in addition to the above, the introductions to each of the type sections [3.1]–[3.13] and the type subsections within sections [4.2]–[4.14].

· If your purpose is to understand the syntax of the SDD, look at the tables in each of the Property Summary sections.

· If your purpose is to understand the semantics of the elements and attributes of the SDD, read the Property Usage Notes sections.

· If your purpose is to understand only the package descriptor, subset the above suggestions to focus on the sub-sections within section [3].

· If your purpose is to understand only the deployment descriptor, subset the above suggestions to focus on the sub-sections within section [4].

1.5 Motivation

The motivation for producing this specification is best expressed in this excerpt from the SDD Technical Committee’s charter:

Deployment and lifecycle management of a set of interrelated software, hereinafter referred to as a solution, is a predominantly manual operation because there is currently no standardized way to express installation packaging for a multi-platform environment. Each hosting platform or operating system has its own format for expressing packaging of a single installable unit but, even on these homogeneous platforms, there is no standardized way to combine packages into a single aggregated unit without significant re-creation of the dependency and installation instructions. The problem is compounded when the solution is to be deployed across multiple, heterogeneous, platforms. A standard for describing the packaging and mechanism to express dependencies and various lifecycle management operations within the package would alleviate these problems and subsequently enable automation of these highly manual and error-prone tasks.

The purpose of this Technical Committee is to define XML schema to describe the characteristics of an installable unit (IU) of software that are relevant for core aspects of its deployment, configuration and maintenance. This document will be referred to as the Solution Deployment Descriptor (SDD).
SDDs will benefit member companies and the industry in general by providing a consistent model and semantics to address the needs of all aspects of the IT industry dealing with software deployment, configuration and lifecycle management. The benefits of this work include:

· ability to describe software solution packages for both single and multi-platform heterogeneous environments.

· ability to describe software solution packages independent of the software installation technology or supplier.

· ability to provide information necessary to permit full lifecycle maintenance of software solutions.

1.6 Requirements

A summary of requirements satisfied by this SDD specification follows. Detailed requirements that support approved use cases are available at the SDD TC Web page, http://www.oasis-open.org/committees/sdd.

Solution lifecycle management

The SDD must provide information to support the complete lifecycle of a software solution. Certain key requirements are applicable to all phases of deployment lifecycle operation: planning, installation, configuration, maintenance, upgrade, migration and uninstallation.

Solution requirements for environment to perform lifecycle management tasks

A deployment lifecycle operation on a target resource is often dependent on a certain set of conditions that must exist on the target. This set of pre-existing conditions is known as the environment. If successful deployment lifecycle operations are dependent on a certain set of pre-existing conditions (environment), then the SDD specification must support the ability to specify the required environment.

Projected changes to environment

The SDD specification must support the definition of environment changes that become effective once the lifecycle operation is complete.

Solution instance variability

The SDD specification must support the definition of the appropriate information for a runtime to vary the ways in which the solution can be deployed. This information is also needed to enable an integrator to control the variability according to the needs of their higher-level solution.

This variability includes the information to control (1) the subset of capability that can be deployed; (2) setting the initial configuration of the solution; and (3) varying the topology in which the solution can be deployed.

Solution composition

The SDD specification must support the ability for the author to compose solution packages from multiple components, products, or solutions.

Solution and packaging identity

The SDD specification must support the definition of identity information for the solution package, resources that make up the solution, and solution itself to support use cases including asset management, license management, support/update entitlement, component reuse during development, reports and queries from a package repository, identifying associated documentation, solution lifecycle management, traceability to build/development environment and problem management systems, correlation into the hosting environment, component reuse, and maintenance history. Also, the SDD specification must support the definition of the identity description information used by a runtime to assist a user in making correct decisions about solution installation. The SDD specification must support the definition of the information that uniquely identifies the SDD descriptor and the ability to identify the version of the SDD. The customer should be able to identify the solution packages with consistent names.

Physical packaging

Physical packaging information should be contained in a separate media descriptor. The deployment model for a solution should be decoupled from the details of physical packaging. The format and structure of the physical packaging is outside the scope of SDD v1.0.
Interoperability with existing software packaging technologies

The SDD specification must support the ability for the author to compose solutions from existing software packages that do not have an SDD. This means that the SDD should be able to describe existing software packages.

Conform to external standards

The SDD specification must provide for alternative descriptive text to be defined for any images, animations, or audio information contained in the descriptor.

Decision support

Requirements to perform lifecycle management operations within various target environments may not be satisfied in the target’s current state but might be able to be satisfied with additional operations. For example, successful deployment of a set of Java™
 components is dependent on the existence of a Java runtime environment that is not included with the solution. The SDD should have the ability to specify information that will assist lifecycle management tools in planning for, accessing and installing these external requirements.

Specification organization

The SDD specification must provide the semantic behavior expected by producers and consumers of SDDs. This information allows for the producers to ensure that the consumers of their SDDs will provide the support intended.

Solution metadata

The SDD metadata may not encompass all of the information about the solution in all contexts in which the solution can be deployed. Additional metadata that is outside of the scope of the SDD is available at the SDD TC Web page, http://www.oasis-open.org/committees/sdd.

Globalization

For all content in the SDD that would be displayed to a user, the specification must support the definition of strings for multiple locales; for example, this content must be localizable.

Align with other standards bodies

Satisfying all the requirements listed here calls for extensive standardization in specific areas. The requirements should thus be aligned with other appropriate standards bodies. The SDD reuses existing OASIS and other standards where appropriate and aligns with other standards bodies (for example, [OGF-ACS]) that are developing standards in the same domain as SDD.

1.7 XML Namespaces

The XML namespaces defined as part of this specification are:

· sdd-pd: stands for the package descriptor portion of the SDD namespace.

· sdd-dd: stands for the deployment descriptor portion of the SDD namespace.

· sdd-common: stands for the common (shared) types, elements and groups of the SDD namespace.

For XML namespaces not defined as part of this specification, conventional XML namespace prefixes are used as follows, regardless of whether a namespace declaration is present in the example:

· The prefix xsd: stands for the W3C XML Schema namespace [XSD].

· The prefix ds: stands for the digital signature namespace [XMLDSIG-CORE].

1.8 Notational Conventions

Everything in the specification, including the Appendices, is considered normative except for the abstract, examples and any sections or other material marked as non-normative.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
These keywords are capitalized when used unambiguously to specify requirements or application features and behavior. When these words are not capitalized, they are meant in their natural-language sense.

1.9 General Document Conventions

In describing XML elements and attributes of the SDD schema, this document contains many cross-references. Such references appear as the referenced section number inside square brackets, for example, [4.5]. In electronic versions of this specification, the cross-references can act as links the target section.

The following property naming convention is used in the schema: Element and type names begin with an uppercase letter and attribute names begin with a lowercase letter.
Italics are used to identify element and attribute names, type names and enumerated values defined by an SDD type.
In describing the XML schema, each section typically contains the following subsections:

· A diagram illustrating the element, group, or type that is specified in the section.

· Property Summary: A table listing the schema elements and attributes, along with the data type, cardinality and description for each one.
When specified, extension points are listed in the tables with no name and a type of xsd:any for element extensions and xsd:anyAttribute for attribute extensions. Cardinality is also provided.
When a type is an extension of another type, the extended type is listed in the table with no name and prefixed with [extends]. The extended type’s properties can be referenced from the appropriate section listed in the description column.
When the schema specifies a default or fixed attribute value, that value is prefixed with two asterisks, as in **default value=“true”.

· Property Usage Notes: A list of the elements and attributes, along with more detailed prose descriptions of the properties and how they fit into the schema as a whole.

· Not all sections contain every one of the preceding subsections.

1.10 Diagram Conventions

Sections 3 and 4 of this specification contain diagrams that illustrate the structure of elements, data types and groups used throughout the SDD schema. Figure 1 is an example of this type of diagram.

[image: image2.png](O PackageDescriptorType)| Packageldentity

Conterts

R
0.1

B s common Descriptorlnfocraup,

Figure 1: Sample XML structure diagram.

Elements are represented by the element name inside a rectangle. A rectangle with a solid border denotes an element.
Where appropriate, the cardinality of an element is indicated by a rectangle with the cardinality listed underneath, using the form “min..max”. For example, “1..∞” indicates a minimum of one occurrence of the element and an unbounded upper limit:

 [image: image3.png]SelectedFeature.

T

References to global elements are denoted by a small arrow in the lower right corner of the element’s rectangle:

 [image: image4.png]ds:Signature,
01

Attributes are denoted by a “@” symbol followed by the attribute name, inside a dashed rectangle.

 [image: image5.png]@ type

Complex types are denoted by a rectangle with all the corners truncated and a white square followed by the element name:

 [image: image6.png]O ArtfactType

Simple types are denoted by a rectangle with all the corners truncated and a white triangle followed by the element name:

 [image: image7.png][7_DependzncyType

Groups are denoted by a rectangle with three small squares followed by the group name: black squares and a solid rectangle indicate element groups and white squares with a dashed rectangle indicate attribute groups:

 [image: image8.png]DisplayElementGroup

A plus sign on the right border of a component indicates hidden child elements or attributes. When hidden, the child elements are usually described in a separate section.

There are two connectors (or compositors) used in the SDD schema diagrams to combine elements:

· A sequence of elements is indicated by the following symbol: [image: image9.png]

· A choice among elements is indicated by the following symbol: [image: image10.png]

A large yellow box indicates a data type that is referenced.
Blue shading appearing in a figure has no significance; it simply indicates that a component was currently selected in the XML editor.

The XSD schema figures were created with <oXygen/>.

1.11 Normative References

[CL2_Schema]
Solution Deployment Descriptor Schema

See Appendix [A] for location.

[CONFORM]
OASIS, OASIS Conformance Requirements for Specifications 1.0, http://www.oasis-open.org/committees/download.php/305/conformance_requirements-v1.pdf.
[IANA-CHARSET]
Internet Assigned Numbers Authority, Character Sets, http://www.iana.org/assignments/character-sets, modified December 2006.
[IETF-UUID]
Internet Engineering Task Force Draft Specification, http://www.ietf.org/rfc/rfc4122.txt.
[ISO639.2]
Library of Congress, Codes for the Representation of Names of Languages, http://www.loc.gov/standards/iso639-2/englangn.html.

[ISO3166]
International Organization for Standardization, English Country Names and Code Elements, http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html.
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[RFC3066]
H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995, http://www.ietf.org/rfc/rfc3066.txt.
[UNIT]
Bureau International des Poids et Mesures, http://www.bipm.fr.

[XMLDSIG-CORE]
Bartel et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, W3C Recommendation, February 2002.

[XSD]
W3C Schema Working Group, XML Schema, http://www.w3.org/TR/xmlschema-1/, W3C Recommendation, October 2004.
1.12 Non-Normative References

[CL1_Schema]
Solution Deployment Descriptor Conformance Level 1 Schema

See Appendix [A] for location.

[CIM]
Distributed Management Task Force, Inc., Common Information Model (CIM) http://www.dmtf.org/standards/cim/.
[OGF-ACS]
Open Grid Forum, Application Contents Service WG (ACS-WG), http://www.ogf.org/gf/group_info/view.php?group=acs-wg.

[SDDP]
Solution Deployment Descriptor Primer
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.doc
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.pdf
http://docs.oasis-open.org/sdd/v1.0/sdd-primer-v1.0.html
[SDDSP]
Solution Deployment Descriptor Starter Profile
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.doc
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.pdf
http://docs.oasis-open.org/sdd/v1.0/sdd-starter-profile-v1.0.html
2 Solution Deployment Descriptor Overview
2.1 Package and Deployment Descriptors

The package descriptor defines package content which includes artifacts whose processing results in deployment of the software package. The deployment descriptor defines metadata associated with those artifacts. The SDD package descriptor defines the package identity, the package content and various other attributes of the package. Each SDD consists of exactly one deployment descriptor and one package descriptor. The deployment descriptor is where the topology, selectability, inputs, requirements and conditions of the deployment are described.
2.2 Topology
The SDD’s topology describes all the resources that may be required, created or modified when any of the deployment operations supported by the SDD are performed.

Primary identifying characteristics of the resources can be defined in topology. The topology includes identification of hosts–hosted by relationships between resources. It is usual that only a subset of the resources described in topology will play a role in any particular deployment. This is determined by the selection of content elements for the particular deployment. The resources that are required, created or modified by the content elements in scope for the deployment are the ones that will participate in the deployment and so will be associated with resources in the deployment environment.

At deployment time, definitions of the resources that participate in that particular deployment are associated with actual resource instances in the deployment environment. The mechanism for associating resource definitions with resource instances is not defined by the SDD.

The only resource definitions in the SDD are in topology. All other mention of resources in the SDD are references to the resource definitions in the topology.
2.3 Content and Artifacts
Metadata throughout the deployment descriptor is associated with package content in the definition of atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and LocalizationUnit. These are the only content elements that define Artifacts elements.

Artifact elements identify an artifact file or set of files defined in package content whose processing will perform all or a portion of the deployment for a particular deployment lifecycle operation. Artifact elements define the inputs and outputs, substitution values and types associated with the artifact files. The content element’s target resource, identified by targetResourceRef, processes the artifact files with the defined inputs to perform deployment operations. Examples of artifact types include zip files, rpm files and executable install files. Artifact types are not defined by this specification. The artifact types defined in the SDD need to be understood by software that processes the SDD. Profiles are used to communicate the artifact types that an implementation is capable of processing [5.3].

Composite content elements organize the content of an SDD but do not define artifacts used to deploy SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit and CompositeLocalizationUnit.

CompositeInstallable is used any time that more than one content element is defined in support of one operation on the package; any time aggregation of SDDs is needed; or any time the package includes selectable content. CompositeInstallable is the root of a content hierarchy that supports a single deployment lifecycle operation. It can define a base content hierarchy, a localization content hierarchy and a selectable content hierarchy that includes selection criteria. One SDD can have more than one CompositeInstallable–each supporting a different operation.

CompositeUnit is used to organize content elements within the base or selectable content hierarchies. CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other CompositeUnits. Requirements, conditions and variables that are common to all content elements defined by the CompositeUnit can be defined in the CompositeUnit to avoid repetition. Within the selectable content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content elements by a feature.
CompositeLocalizationUnit serves the same purposes as CompositeUnit within the LocalizatonContent hierarchy.

SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage elements are a content element that can be defined anywhere in the base and selectable content hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in the aggregating SDD. They are not content of the SDD package. The type of all three of these elements is ReferencedPackageType. The term “referenced package” is used in this specification when referring to these elements as a group. The term “referenced SDD” is used when referring to any aggregated SDD.

Each referenced package element can further constrain the deployment of the referenced SDD by defining additional requirements; by mapping resources defined in the aggregating SDD to those defined in the referenced SDD; and by determining feature selections for deployment of the referenced SDD.

2.4 Resulting and Changed Resources

Deployment of an SDD package creates or modifies software resources. These resources are included in the topology definition and described in more detail in ResultingResource and ResultingChange elements.

The SDD author can choose to model resulting and modified resources at a very granular level, at a very coarse level; at any level in between, or not at all. An example of modeling resulting resources at a granular level would be modeling every file created by the deployment as a resulting resource. An example of modeling resulting resources at a very coarse level would be modeling the software product created by deployment as a single resulting resource. The choice depends on the needs of the solution deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no conditions can be based on it and no variables can be set from values of its properties. It cannot play any of the roles described for resources in the ResourceType section of this document [4.2.2].

2.5 Base, Selectable and Localization Content Hierarchies
Each CompositeInstallable element can define three types of content hierarchies. Base content is the default content for the deployment lifecycle operation associated with the CompositeInstallable. This is content that will be deployed whenever the associated operation is performed on the SDD package. Base content may be conditioned on characteristics of the deployment environment but it is not selectable by the deployer.

The SDD author can define selectable subsets of optional content in the selectable content hierarchy. The selection criteria include features and groups of features that select content from the selectable content hierarchy. Selectability, as used in the SDD, is a characteristic of the deployment lifecycle operation and the package. For example, the decision to provide selectability for one operation in one package has no semantic relationship to the selectability provided in another package related to the same software. It also has no semantic relationship to the selectability provided for a different operation within the same package.

Localization content is the third type of content hierarchy. Localization refers to enabling a particular piece of software for support for one or more languages. Anything that needs to be deployed to provide support for a particular language in that software is considered localization content. Translated materials are a primary, but not the only, example of localization content.

Localization content is similar in many ways to other content, but there are important differences in how localization content is selected for deployment that lead to the need for a separate content hierarchy and separate types. There are two criteria for determining that localization content is in scope for a particular deployment.

· The first criterion has to do with the language or languages supported by the localization content. At least one of the languages must be in scope for the content to be selected.

· The second criterion has to do with the availability of the resources to be localized–the localization base. The localization base may be a resource deployed by base or selectable content, or it may be a resource previously deployed and found in the deployment environment.
2.6 Constraints

The SDD author needs to communicate constraints on resources for a variety of purposes.

· Some constraints must be met for the requirements of a content element to be met.

· Other constraints must be met for a resource to serve as the required base for an update.

· Still others must be met to satisfy a condition that determines the applicability of a content element or completion action.

The Constraint types are:

· CapacityConstraint

· ConsumptionConstraint

· PropertyConstraint

· VersionConstraint

· UniquenessConstraint

· RelationshipConstraint

2.7 Requirements

Requirements are defined by content elements. A requirement consists of resource constraints that the SDD author states MUST be met prior to successful deployment or use of the software described by the SDD package. Each requirement definition lists one or more deployment lifecycle operations to which the requirement applies. When the requirement is specified in an atomic content element, the operation associates the requirement with artifacts within the atomic content element

When a requirement can be satisfied in more than one way, alternatives can be defined within a requirement. A requirement is considered met when any one of the alternatives is satisfied.

2.8 Conditions

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are used to indicate when particular elements of the SDD are applicable, or when they should be ignored. Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means the conditioned element should be ignored. Conditions are used to:

· determine if a content element is applicable

· choose from among values for a variable

· determine when a feature is applicable

· determine when a particular result is applicable

· determine if a particular completion action is necessary.

Because conditions are always based on the characteristics of resources, they are expressed using resource constraints.
2.9 Variables

Variables provide a way to associate user inputs, resource property values, fixed strings and values derived from these with input arguments for artifacts and with constraints on resources.

3 Package Descriptor
A package descriptor is an XML document that provides information about the identity and the contents of a software package. A software package is a bundle of one or several content elements that deploy or remove computer software; add features to existing software; or apply maintenance to existing software. Each package descriptor is associated with a deployment descriptor.
3.1 PackageDescriptor
[image: image11.png](O PackageDescriptorType)| Packageldentity

Conterts

R
0.1

B s common Descriptorlnfocraup,

Figure 2: PackageDescriptor structure.
The root element of a package descriptor XML document is PackageDescriptor. PackageDescriptor includes elements that describe the package identity and the contents that make up the package. The PackageDescriptor includes the associated deployment descriptor XML document by defining a Content element with a purpose attribute set to deploymentDescriptor.

3.1.1 PackageDescriptor Property Summary

	Name
	Data Type
	*
	Description

	PackageIdentity
	PackageIdentityType
	1
	Human-understandable identity information for the software package.

	Contents
	ContentsType
	1
	A list of package contents.

	ds:Signature
	ds:SignatureType
	0..1
	A signature for the package descriptor.

	schemaVersion
	xsd:string
	1
	The descriptor complies with this version of the Solution Deployment Descriptor Specification.

**fixed value=“1.0”

	descriptorID
	UUIDType
	1
	Identifier of a particular package’s descriptor.

	lastModified
	xsd:dateTime
	1
	The time the descriptor was last modified.

	descriptorLanguageBundle
	xsd:token
	0..1
	The root name of language bundle files containing translations for display text elements in the PackageDescriptor.

	
	xsd:anyAttribute
	0..*
	

3.1.2 PackageDescriptor Property Usage Notes
· PackageIdentity: The PackageIdentity element provides identity information about the software package that can be used by the consumer of the package for deployment planning or aggregation of the package into a larger solution.
See the PackageIdentityType section for structure and additional usage details [3.3].
· Contents: The Contents element defines a list of one or more Content elements describing all the files that are part of the package. All files in the package MUST be defined in Contents.
See the ContentsType section for structure and additional usage details [3.11].
· ds:Signature: The package descriptor and each file in the package MAY be digitally signed. It is RECOMMENDED that they be digitally signed by using an XML-Signature [XMLDSIG-CORE].

The signature element is an enveloped signature over the SDD package. Note that each Content element included in the package is digitally signed indirectly via this digest. Files can also be individually signed in the Content element.
· schemaVersion, descriptorID, lastModified, descriptorLanguageBundle: See the DescriptorInfoGroup section for structure and additional usage details [3.2].
3.2 DescriptorInfoGroup

[image: image12.png]8o DesctiptorinfoGroup {EH—; @ schemstersion

@ deseriptorin

@ Tastindfied

(@ descriptorlangusgebundie

e e

Figure 3: DescriptorInfoGroup structure.

The attributes defined by DescriptorInfoGroup are included in both PackageDescriptor and DeploymentDescriptor.
3.2.1 DescriptorInfoGroup Property Usage Notes

· schemaVersion: The schemaVersion attribute identifies the Solution Deployment Descriptor specification version to which the descriptor conforms. It MUST have a fixed value of “1.0”.

· descriptorID: The descriptorID attribute, combined with the lastModified attribute value, provides a unique identifier for the descriptor. The descriptorID value MUST be unique within the scope of use of the deployment descriptor or package descriptor. The descriptorID attribute is an instance of UUIDType, which is based on xsd:hexBinary with length 16. This enables use of a 128-bit UUID [IETF-UUID]. The descriptorID value supports descriptor updates by allowing updated descriptors to be correctly associated with an earlier version of the same descriptor.
For example, if a descriptor contains errors, it may be replaced by an error-free version using the same descriptorID value but a different lastModified value.

· lastModified: The lastModified value can be used to differentiate between different versions of the same descriptor, for example, the descriptor for one particular package. Comparison of lastModified values can be used to determine which descriptor is newer.
The lastModified attribute MUST be defined as a value that conforms to the xsd:dateTime type as defined in [XSD] and MUST match the following lexical representation: [-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]. This is a combination of a complete date and time of day, where the time zone can be specified as Z (UTC) or (+|-)hh:mm.

For example, the following are valid values for the lastModified attribute:
· 2001-10-26T21:32:52
· 2001-10-26T21:32:52+02:00
· 2001-10-26T19:32:52Z
· 2001-10-26T19:32:52+00:00
· -2001-10-26T21:32:52
· 2001-10-26T21:32:52.12679
However, the following values would be invalid:
· 2001-10-26
· 2001-10-26T21:32
· 01-10-26T21:32
· 2001-10-26T25:32:52+02:00
The first three invalid examples do not specify all the required parts, and the fourth includes an out of range hours part, “25”.

· descriptorLanguageBundle: Language translations for elements of DisplayTextType in the descriptor MAY be included in the solution package. Note that these are not translations for the software deployed by the package, but rather translations only for the text in the descriptors themselves. The root name of the files containing these translations can be specified in the descriptorLanguageBundle attribute, which is an instance of xsd:token. Language bundles are associated with specific locales at run time using Java-style resource bundle resolution; that is, the bundle file names SHOULD take the form languageBundle_locale, where locale consists of optional language, location (country) and variant codes, separated by an underscore character. Language codes consist of two lowercase letters [ISO639.2] and location codes consist of two uppercase letters [ISO3166].
For example, “SampleStrings_en_US” refers to the United States English version of the SampleStrings bundle and “SampleStrings_ja” identifies the Japanese version of the same bundle.
See the DisplayTextType section for structure and additional usage details [4.14.3].

3.3 PackageIdentityType

[image: image13.png]@ packageType

(O PackageldentityType)|

L > E——{ 4D extends: sdd-common:Identity Type)

@ antentrype

@ el

(O entiyyee)

Description
01

ShartDescription
01

ame
01

Verson
01

Waintenancelnformation
01

Buldinformation
01

WanFacturer
01

“Fo sranr

T-

@ Saftwareln

e e

Figure 4: PackageIdentityType structure.
The software package described by the SDD can be identified for humans and package management software using the properties in PackageIdentity. The PackageIdentity is not to be confused with the identity of the deployed software, which is described in the resulting resource elements of the deployment descriptor; see the ResultingResourceType section [4.8.1].
3.3.1 PackageIdentityType Property Summary

	Name
	Data Type
	*
	Description

	
	[extends] IdentityType
	
	See the IdentityType section for additional properties [3.4].

	packageType
	PackageTypeType
	0..1
	The type of the package, for example, “baseInstall” or “maintenance”.

**default value=“baseInstall”.

	contentType
	xsd:QName
	0..1
	The type of content provided by this package, for example, BIOS.

	label
	xsd:NCName
	0..1
	A programmatic label for this package.

	
	xsd:anyAttribute
	0..*
	

3.3.2 PackageIdentityType Property Usage Notes
See the IdentityType section for details of the inherited attributes and elements [3.4].
· packageType: The package type is provided to aid consumer understanding of the type of content contained in the package. A package can contain more than one type of content. In this case, a single packageType value should be selected that represents the primary content type as determined by the SDD author. The SDD defines a set of enumeration values in PackageTypeType which are extendable by the SDD author.
The enumerated types defined by the SDD are as follows:
· baseInstall: The value baseInstall indicates that the package provides a complete installation of the solution. This package type is associated with deployment descriptors that contain installable units with installation artifacts that install the primary solution resources.
When packageType is not specified, this is the default value.

· baseUninstall: The value baseUninstall indicates that the package provides a complete uninstallation of the solution. This package type is associated with deployment descriptors that contain installable units with uninstall artifacts that remove the primary solution resources.
· configuration: The value configuration indicates that the package configures the solution. This package type is associated with deployment descriptors that contain configuration units with configuration artifacts that configure the solution.
· maintenance: The value maintenance indicates that the package fixes one or more problems in the solution. This package type is associated with deployment descriptors that contain installable units with update artifacts.
· modification: The value modification indicates that the package modifies the function of the solution in some way such as by adding new function. This package type is associated with deployment descriptors that contain installable units with update artifacts.
· replacement: The value replacement indicates that the package installs a solution that replaces a previous version of the solution. Replacement MAY be associated with migration of data into the new solution and/or with deletion of the replaced solution. When associated with migration of data, installation or configuration artifacts within the solution package would perform the migration. When associated with deletion of the replaced solution, uninstall artifacts within the solution package would perform the deletion. This package type is associated with deployment descriptors that contain installable units with installation artifacts that deploy a set of resources that replace the set of resources associated with a previous version of the solution.
· localization: The value localization indicates that the package contains materials that localize deployed software for one or more languages.
· contentType: The value of contentType is determined by the SDD manufacturer to communicate a characteristic of the package that MAY be used in the manufacturer’s package management system or other manufacturer-specific tools that use the SDD. The SDD author chooses the values; they are not defined in this specification.
· label: The label MAY be used as an index in a package management system. The SDD author chooses the values; they are not defined in this specification.
3.4 IdentityType

[image: image14.png](O tentiyType)

Description

0.1

ShartDescription

0.1

ame

0.1

Verson

0.1

Waintenancelnformation

0.1

Buldinformation

0.1

@ Saftwareld

e e

WanuFacturer

0.1

F<> wraer

e

Figure 5: IdentityType structure.

This complex type provides identity information for the package as a whole, as well as for content elements, which are portions of the package. Content elements are the InstallableUnit, LocalizationUnit, ConfigurationUnit, CompositeUnit and CompositeInstallable elements defined in the deployment descriptor.
3.4.1 IdentityType Property Summary

	Name
	Data Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A verbose description of the package or content element.

	ShortDescription
	DisplayTextType
	0..1
	A limited description of the package or content element.

	Name
	DisplayTextType
	0..1
	A human-readable, translatable, name for the package or content element.

	Version
	VersionType
	0..1
	The package or content element version.

	MaintenanceInformation
	MaintenanceInformationType
	0..1
	Information about package or content element content used when the package contains maintenance.

	BuildInformation
	BuildInformationType
	0..1
	A manufacturer identifier for the build of this package or content element. This property can be extended with additional manufacturer-specific information about the build.

	Manufacturer
	ManufacturerType
	0..1
	Information about the manufacturer of the package or content element.

	
	xsd:any
	0..*
	

	softwareID
	xsd:string
	0..1
	A manufacturer’s identification number for the software created or updated by the package or content element.

	
	xsd:anyAttribute
	0..*
	

3.4.2 IdentityType Property Usage Notes
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the package.

The Description element MUST be defined if the ShortDescription element is defined.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Name: When the manufacturer of the SDD has a package management system, Name in PackageIdentity should correspond to the name of the package as known in the package management system. Name in a content element’s Identity should correspond to the name of the unit of packaging, if it is known in the package management system.
When the PackageIdentity element is defined, Name MUST be defined.
Software packages that create software often have the same name as the deployed software. Software packages that update software often have a name that reflects the fact that the package is a maintenance package, differentiating it from the base deployed software. The author of the software package that is described by PackageIdentity determines whether the Name is the same as or different from the Name of the deployed software.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Version: This is a packaging version. In PackageIdentity, it is the version of the package as a whole. In content element identities, this is the version of the unit of packaging represented by the content element. In either case, the SDD author MAY choose to make this version correspond to the version of a resulting or changed resource, but it should not be confused with resource versions.
In the case of a base install, version MAY be the same as the top level resulting resource. In the case of a configuration package, version SHOULD NOT be the same as the top level resulting resource.
See the VersionType section for structure and additional usage details [3.10].
· MaintenanceInformation: This is used when the package or content element describes the deployment of maintenance.
See the MaintenanceInformationType section for structure and additional usage details [3.5].

· BuildInformation: In PackageIdentity, this describes the build of the package as a whole. In content element Identity, this describes the build of the artifact(s) and the content element describing the artifact.

See the BuildInformationType section for structure and additional usage details [3.7].

· Manufacturer: See the ManufacturerType section for structure and additional usage details [3.8].
· softwareID: The software identified by softwareID is the software whose deployment is described by the SDD. When the manufacturer maintains software identifiers within a sales and distribution system, the softwareID SHOULD correspond to an identifier for the software within that system. If a format for software identifiers is not pre-existing within the manufacturer’s systems, a UUID SHOULD be used for softwareID. When a UUID is used, it MUST be unique within the domain in which the described software is used.
3.5 MaintenanceInformationType

[image: image15.png](O MaintenancelnformationType)+

Severity

0.1

Cotegory

e

Supersedes

e

Fix

e

F<> wraer

Do

Figure 6: MaintenanceInformationType structure.

If the package provides maintenance for deployed software, MaintenanceInformation declares information about the fix or fixes provided. If the package content is a single fix, MaintenanceInformation describes the information about that one fix. If the content is a collection of fixes—for example, a fix pack—MaintenanceInformation describes each of the fixes provided by the fix pack.

3.5.1 MaintenanceInformationType Property Summary

	Name
	Data Type
	*
	Description

	Severity
	DisplayTextType
	0..1
	Severity of the maintenance content.

	Category
	DisplayTextType
	0..*
	Category of the maintenance content.

	Supersedes
	MaintenanceInformationType
	0..*
	A previously released fix that is superseded by application of this maintenance.

	Fix
	FixIdentityType
	0..*
	An included fix.

	
	xsd:any
	0..*
	

3.5.2 MaintenanceInformationType Property Usage Notes

· Severity: This value SHOULD correspond to a severity value used within the SDD provider’s support system. It serves as a hint to the deployer about the urgency of applying the described maintenance.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Category: These values SHOULD correspond to maintenance categories within the SDD provider’s support system.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Supersedes: Superseded fixes are ones that fix a problem also fixed by the superseding maintenance package or content element and therefore need not be applied.
This element does not indicate whether or not the superseded fix needs to be removed. To indicate that the previous fix must be removed before the superseding maintenance can be applied successfully; the SDD author can create a requirement stating that the fix must not be present.

Superseded fixes MAY include all the information defined in MaintenanceInformationType. At a minimum, a superseded fix MUST include at least one Fix element with the name of the superseded fix defined.

· Fix: Fix elements provide information about individual fixes provided by the maintenance content.
See the FixIdentityType section for structure and additional usage details [3.6].

3.6 FixIdentityType

[image: image16.png](O FixtdentityTyps)&+

Name

Description

ShartDescription

0.1

Symptom

e

F<> wraer

Do

Figure 7: FixIdentityType structure.

Elements of FixIdentityType describe fixes that will be applied when the package is deployed or the content element is applied.

3.6.1 FixIdentityType Property Summary

	Name
	Type
	*
	Description

	Name
	xsd:NMTOKEN
	1
	A name for the fix which is, at a minimum, unique within the scope of the resource fixed.

	Description
	DisplayTextType
	1
	A complete description of the fix.

	ShortDescription
	DisplayTextType
	0..1
	An abbreviated description of the fix.

	Symptom
	DisplayTextType
	0..*
	A symptom of the problem fixed.

	
	xsd:any
	0..*
	

3.6.2 FixIdentityType Property Usage Notes

· Name: The Name element MUST provide a value that uniquely identifies a fix within a scope defined by the manufacturer. This is a name provided by the manufacturer that corresponds to the fix name as understood in the deployment environment.

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the fix.

The Description element MUST be defined if the ShortDescription element is defined.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Symptom: Symptom strings can be used to correlate a fix with one or more experienced problems.
See the DisplayTextType section for structure and additional usage details [4.14.3].
3.7 BuildInformationType

[image: image17.png][BuidinformationType BE @ buldp

& s

Figure 8: BuildInformationType structure.

BuildInformationType provides the type definition for the BuildInformation element in package and content element identity. BuildInformation provides information about the creation of the package and its parts.

3.7.1 BuildInformationType Property Summary

	Name
	Type
	*
	Description

	buildID
	xsd:token
	1
	Identifies the build of the package or package element.

	
	xsd:anyAttribute
	0..*
	

3.7.2 BuildInformationType Property Usage Notes

· buildID: The buildID attribute is an identifier provided by the manufacturer and meaningful to developers that can be used to identify a build of the defining element. This information MUST correspond with information known in the manufacturer’s build environment. It is traditionally used during problem determination to allow maintainers of the software to determine the specifics of package creation. Inclusion of buildID in the SDD allows the end user to provide this information to package maintainers, enabling them to correlate the deployed software with a particular known build of the software.

3.8 ManufacturerType

[image: image18.png](O ManfacturerType)

Name

Location

0.1

Contactinformatian

0.1

F<> wraer

Do

Figure 9: ManufacturerType structure.
The SDD author can include information about the package manufacturer that includes name, location and contact information such as the address of the manufacturer’s Web site or telephone number.

3.8.1 ManufacturerType Property Summary

	Name
	Type
	*
	Description

	Name
	DisplayTextType
	1
	A translatable name for the manufacturer.

	Location
	LocationType
	0..1
	The address and country of the manufacturer.

	ContactInformation
	DisplayTextType
	0..1
	Contact information for the manufacturer.

	
	xsd:any
	0..*
	

3.8.2 ManufacturerType Property Usage Notes

· Name: The value provided in the Name element MUST be an identifiable name of the manufacturer of the SDD.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Location: See the LocationType section for structure and additional usage details [3.9].
· ContactInformation: This element MAY provide additional contact information for the named manufacturer, such as a support Web site address or a technical support telephone number.
See the DisplayTextType section for structure and additional usage details [4.14.3].
3.9 LocationType

[image: image19.png](O LocationType)&+

Address.

0.1

Country

ol

Figure 10: LocationType structure.

LocationType supports inclusion of the manufacturer’s address and country in package and content element identity.

3.9.1 LocationType Property Summary

	Name
	Type
	*
	Description

	Address
	DisplayTextType
	0..1
	The manufacturer’s address.

	Country
	DisplayTextType
	0..1
	The manufacturer’s country.

3.9.2 LocationType Property Usage Notes

· Address: This is the mailing address or the physical address.
See the DisplayTextType section for structure and additional usage details [4.14.3].
· Country: Recording the manufacturer’s country in the SDD provides information that may be of interest in relation to import and export of software.
See the DisplayTextType section for structure and additional usage details [4.14.3].
3.10 VersionType

VersionType provides the type definition for version elements in the package descriptor and deployment descriptor. It is a simple type that is based on xsd:string with no further restrictions. This means that versions in the SDD are represented simply as strings. Because resource versions exist in the deployment environment, their formats and semantics vary widely. For this reason, the format and semantics of versions are not defined by this specification.

3.11 ContentsType

[image: image20.png](O ContentsType)Er

)]

Content

T

Figure 11: Contents structure.

ContentsType is used in PackageDescriptor to provide a list of one or more Content elements.

3.11.1 ContentsType Property Summary

	Name
	Type
	*
	Description

	Content
	ContentType
	1..*
	Describes the physical contents of the software package.

3.11.2 ContentsType Property Usage Notes

· Content: A PackageDescriptor MUST contain a Contents element that is a list of one or more Content elements.
See the ContentType section for structure and additional usage details [3.12].

3.12 ContentType
[image: image21.png](O ContentTyps JEH

sdd-pdDigestInfoGroup,
0.1

— @ pathname

@ purpose

@ charkncoding

@ length

e e

Figure 12: ContentType structure.
A software package includes one or more content files. ContentType defines the properties of a content file included in the package descriptor. Content defined in the package descriptor as part of the software package does not need to be physically co-located. Each element MUST be in a location that can be identified by a URI. The pathname attribute of each content file defines a URI for accessing the file. Characteristics of the content files—such as their length, purpose and character encoding—MAY be declared in the package descriptor.

3.12.1 ContentType Property Summary

	Name
	Data Type
	*
	Description

	ds:DigestMethod
	ds:DigestMethodType
	0..1
	Specifies the digest method applied to the file.

	ds:DigestValue
	ds:DigestValueType
	0..1
	Specifies the Base64-encoded value of the digest of the file.

	id
	xsd:ID
	1
	An identifier used in deployment descriptors to refer to the file definition in the associated package descriptor.

	pathname
	xsd:anyURI
	1
	The absolute or relative path of the content file including the file name.

	purpose
	ContentPurposeType
	0..1
	Associates a purpose classification with a file.
**default value=“content”

	charEncoding
	xsd:string
	0..1
	Specifies the character encoding of the contents of the file.

	length
	xsd:nonNegativeInteger
	0..1
	Specifies the size of the file in bytes.

	
	xsd:anyAttribute
	0..*
	

3.12.2 ContentType Property Usage Notes
· ds:DigestMethod, ds:DigestValue: These values MAY be used to assist with file verification.

See the DigestInfoGroup section for structure and additional usage details [3.13].

· id: This is the identifier for the content that is used as a reference in artifact elements in the deployment descriptor.
The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· pathname: pathname is used to access content in the package. The path of the file MUST be a URI that specifies an absolute path or a path relative to the location of the package descriptor. It MUST include the file name.
· purpose: The purpose attribute enables the PackageDescriptor author to associate a classification with a file. The classification identifies the file as having a specific purpose. ContentPurposeType defines a union of SDDContentPurposeType with xsd:NCName. The purpose value MAY be chosen from one of the following values enumerated in SDDContentPurposeType or be a valid NCName value provided by the SDD author. If purpose is not specified, the default value is content.
Enumerated values for purpose are:
· readMe: A file with information about the package. An implementation may choose to display this to a user as part of the deployment process.
· endUserLicenseAgreement: A file containing an end user license agreement. An implementation may choose to display this to a user as part of the deployment process.
· responseFile: A file that contains input values for an operation.
· deploymentDescriptor: An XML file containing the DeploymentDescriptor definition associated with the PackageDescriptor. A valid PackageDescriptor MUST have exactly one Content element with a purpose value of deploymentDescriptor.
· packageDescriptor: Supports aggregation of packages. This is used to reference a packageDescriptor of an aggregated package.
· descriptorLanguageBundle: A file containing translations of text defined directly in the package descriptor or its associated deployment descriptor.
· content: A file used during deployment of solution content. This is the default value for purpose.
· charEncoding: This attribute need only be used for files that a run-time is required to render. Common charEncoding values include “ASCII”, “UTF-8”, “UTF-16” and “Shift_JIS”. For an extensive list of character encodings, see [IANA-CHARSET].
· length: The file length MAY be used for simple file verification.

3.13 DigestInfoGroup

[image: image22.png]DigestinfoGroup

wja.[ds: questmemadé,.
dsDigestialue 1@

Figure 13: DigestInfoGroup structure.

When digest information is used to sign a content file, both the digest method and the digest value MUST be provided.
3.13.1 DigestInfoGroup Property Usage Notes

· ds:DigestMethod, ds:DigestValue: ds:digestMethod and ds:digestValue MAY be used to digitally sign individual files. If files are signed, the digest value MUST be calculated over the whole of each file.

See [XMLDSIG-CORE] for details on the usage of ds:DigestMethod and ds:DigestValue.

4 Deployment Descriptor
A solution package contains a deployment descriptor in addition to a package descriptor. The deployment descriptor describes the topology, selectability, inputs, requirements and conditions of the deployment. The deployment descriptor is associated with a package descriptor and refers to content files in that package descriptor.

4.1 DeploymentDescriptor
[image: image23.png](O DeploymentDescriptorType)&+ Topology
nstlabieLt
=]
Confguratonlnt
{ Localaationtint
e Compostelnstalitle
T
Requistes
o1
“Fo s

e

B s common DescriptorinfoGrauy

Figure 14: DeploymentDescriptor structure.
DeploymentDescriptor is the top level element of a deployment descriptor. The DeploymentDescriptor defines the information required to support deployment of the package contents. This includes the Topology, which declares all of the resources that may participate in deployment. It also includes one atomic content element or one or more CompositeInstallable content elements. Atomic content elements are InstallableUnit, ConfigurationUnit, or LocalizationUnit. Atomic content elements define artifacts that can be processed to deploy software resources. They are atomic because they cannot aggregate other content elements. A CompositeInstallable element is the root of a content element hierarchy that defines content that performs the one deployment operation supported by the CompositeInstallable. A CompositeInstallable can define base, selectable and localization content as well as the aggregation of other content elements.
4.1.1 DeploymentDescriptor Property Summary

	Name
	Data Type
	*
	Description

	Topology
	TopologyType
	1
	Defines resources that are required, created or modified by deployment.

	InstallableUnit
	InstallableUnitType
	0..1
	Defines content that installs, updates and/or uninstalls resources. When an InstallableUnit is defined, no ConfigurationUnit, LocalizationUnit or CompositeInstallable elements can be defined.

	ConfigurationUnit
	ConfigurationUnitType
	0..1
	Defines content that configures resources. When a ConfigurationUnit is defined, no InstallableUnit, LocalizationUnit or CompositeInstallable elements can be defined.

	LocalizationUnit
	LocalizationUnitType
	0..1
	Defines content that installs, updates and/or uninstalls translated materials. When a LocalizationUnit is defined, no InstallableUnit, ConfigurationUnit or CompositeInstallable elements can be defined.

	CompositeInstallable
	CompositeInstallableType
	0..*
	Defines a hierarchy of base, selectable and/or localization content used to perform one deployment lifecycle operation. When one or more CompositeInstallable elements are defined, no InstallableUnit, ConfigurationUnit or LocalizationUnit elements can be defined.

	Requisites
	RequisitesType
	0..1
	A list of references to SDD packages that can optionally be deployed to satisfy deployment requirements of the defining SDD.

	
	xsd:any
	0..*
	

	schemaVersion
	xsd:string
	1
	The descriptor complies with this version of the Solution Deployment Descriptor Specification.

**fixed value=“1.0”

	descriptorID
	UUIDType
	1
	Identifier of the deployment descriptor for a particular set of deployable content.

	lastModified
	xsd:dateTime
	1
	The time the descriptor was last modified.

	descriptorLanguageBundle
	xsd:token
	0..1
	The root name of language bundle files containing translations for display text elements in the deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.1.2 DeploymentDescriptor Property Usage Notes

· Topology: Topology provides a logical view of all resources that may participate in any particular deployment. A resource can participate by being required, created or modified by the deployment. A required resource MAY also play the role of target resource, meaning that it can process artifacts to perform some portion of the deployment. The resources that actually participate in a particular deployment are determined by the user inputs, selections and resource bindings provided during that deployment.

See the TopologyType section for structure and additional usage details [4.2.1].

· InstallableUnit, ConfigurationUnit, LocalizationUnit, CompositeInstallable: A simple software deployment that uses a single artifact for each supported deployment operation MAY be described using an SDD that defines a single atomic content element–InstallableUnit, ConfigurationUnit or LocalizationUnit.
A software deployment that requires multiple artifacts, aggregates other deployment packages or has selectable content MAY be described using an SDD that defines one or more CompositeInstallable elements. Each CompositeInstallable MUST describe one deployment lifecycle operation for the package.
See the respective sections (InstallableUnitType [4.3.1], ConfigurationUnitType [4.3.2], LocalizationUnitType [4.13.2] and CompositeInstallableType [4.9.1]) for structure and additional usage details.

· Requisites: When the package author chooses to provide deployment packages for required software, those packages are described by Requisite elements in Requisites.
Including requisite packages in the SDD package MAY provide a convenient way for the deployer to satisfy one or more SDD requirements.

See the RequisitesType section for structure and additional usage details [4.10.5].

· schemaVersion, descriptorID, lastModified, descriptorLanguageBundle: These attributes can be useful to tooling that manages, creates or modifies deployment descriptors and to tooling and deployment software that displays information from the deployment descriptor to humans.

See the DescriptorInfoGroup section for structure and additional usage details [3.2].

4.2 Topology

The SDD’s topology describes all the resources that may be required, created or modified when any of the deployment operations supported by the SDD are performed.
Primary identifying characteristics of the resources can be defined in topology. Constraints beyond these primary characteristics are not defined in topology; they are defined in content elements that reference the resource definitions in topology.

The topology includes identification of hosts–hostedBy relationships between resources. When both resources in that relationship participate in a particular deployment, the relationship is considered a requirement for that deployment.

It is possible that only a subset of the resources described in topology will play a role in a particular deployment. This is determined by the selection of content elements for the particular deployment. The resources that are required, created or modified by the content elements in scope for the deployment are the ones that will participate in the deployment and so are associated with resources in the deployment environment.
At deployment time, definitions of the resources that participate in that particular deployment are associated with actual resource instances in the deployment environment. The mechanisms for associating resource definitions with resource instances are not described by the SDD. The SDD metadata describes the characteristics of the participating resources. Whether associations of resource instances with matching characteristics are made by user choice or entirely by software does not affect the success of the deployment. Resource characteristics used when making this association include those defined in topology plus all those defined in constraints on the resource in the content elements that are in scope for the particular deployment.

Some topologies are variable. That is, a particular set of logical resources of the same type in the topology might be associated with different physical resource instances or the same physical resource during deployment. In this case, a separate logical resource definition is created in topology for each possible physical resource instance. Uniqueness constraints can then be used to describe the conditions under which the separate resources can be associated with a single resource.
All resource definitions in the SDD are in topology. All other descriptions of resources in the SDD are references to the resource definitions in the topology.

4.2.1 TopologyType
[image: image24.png]Resource.

T

(O _TopologyType)Er .“.)E,[

T<> rromer

Do

Figure 15: TopologyType structure.
The Topology element defines one or more hierarchies of resource specifications that describe the resources that MAY play a role in the deployment of the contents of the solution package. These resource specifications do not identify specific resource instances in a specific deployment environment. Instead, they are logical specifications of resources that can be associated with specific resource instances in the deployment environment for a particular deployment based on the described resource identity characteristics. These resources have a role in a particular solution deployment only when they are required, created or modified by a content element, or referred to by a variable, in that particular solution deployment.
4.2.1.1 TopologyType Property Summary

	Name
	Type
	*
	Description

	Resource
	ResourceType
	1..*
	The root of a tree of resources that play a role in the solution.

	
	xsd:any
	0..*
	

4.2.1.2 TopologyType Property Usage Notes
· Resource: The SDD author’s decision to model a resource in the deployment environment as a resource in the SDD depends on the need to know about that resource when planning for deployment, aggregating, deploying and managing the resource lifecycle using the SDD. All resources required by the solution SHOULD be included. For all Requirements declared in the SDD, resources MUST be specified. Resources referred to by ResultingResource or ResultingChange elements MUST also be included. The more complete the SDD is, the more useful it will be in guiding successful deployment.
See the ResourceType section for structure and additional usage details [4.2.2].
4.2.2 ResourceType

[image: image25.png](O ResourceType)

a sdd-dd:DescriptionGroup,
0.1

ame
0.1

Property

e

HostedResaurce.

e

F<> wraer

e

e

@ e

e e

Figure 16: ResourceType structure.
Elements of ResourceType—both the top level Resource elements and the HostedResource elements within the resource hierarchy—make up the topology of an SDD. Each Resource element declares, at a minimum, the type of the resource. Values for resource type are not defined by this specification. A core assumption of this specification is that an understanding of specific resource types and resource characteristics are shared by the deployment descriptor author and the deployment software. Therefore, if the deployment descriptor author declares a new resource type, then deployment software operating on the SDD needs to understand how to handle that resource type.
In addition to defining type, the resource elements MAY specify a name and other identity properties that can be used to identify instances of the resource in the deployment environment. The resource identity elements, Name and Property, are optional and MAY be specified in content elements rather than in topology. Identity properties used in the resource specification in topology MUST be those that do not change during deployment, even when the resource is updated. Because resource versions can often change during an update, there is no version element in resource specifications in Topology. Values can be defined for resource name and resource properties that help to identify the resource. These represent the basic identity of the resource and are true for all uses of the resource in the solution.

ResourceType provides the type definition for the Resource and HostedResource elements defined in Topology. All resources MAY nest resource definitions for resources that they host. To host a resource means to provide the execution environment for that resource.
For example, an operating system provides the execution environment for software, and a database engine provides the execution environment for a database table. The operating system hosts the software and the database engine hosts the database table.
Each resource in these hierarchies may play a role in solution deployment.
Content elements determine a resource’s participation and role(s) in a particular solution deployment. Content elements can refer to resources in Topology in several ways. A resource can be identified via xsd:IDREF:
· as the target of the content element’s artifacts. A target resource is a resource that is capable of processing a particular artifact. A target resource is often, but not always, the host of the resources created by the artifacts it processes.
For example, an operating system may be the target of an artifact that is a zip file. When the files are unzipped, the file system resource is the host of those files.

See the targetResourceRef attribute in the InstallableUnitType [4.3.1], ConfigurationUnitType [4.3.2] and LocalizationUnitType [4.13.2] sections.
· as the required base for an update applied by the artifact referenced by the content element.
See the RequiredBaseType section [4.7.8].
· as the resource that will be created by deploying the artifact referenced by the content element.

See the ResultingResourceType section [4.8.1].

· as the resource that will be changed by deploying the artifact referenced by the content element.
See the ResultingChangeType section [4.8.2].
· as the localization base for translated materials. The localization base is the resource that is localized by deploying the translated materials.
See the LocalizationBase element in the LocalizationUnitType section [4.13.2].
· as a required resource named in the content element’s Requirements.
See the RequirementsType section [4.7.1].
· to establish a variable value from a resource property.
See the ResourcePropertyType section [4.6.12].
One resource MAY be referred to by any number of content elements and can be identified to play any or all of the roles just listed. When a content element participates in a particular solution deployment, the resources it references participate in that solution deployment and are associated with resource instances in the deployment environment.
4.2.2.1 ResourceType Property Summary

	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the resource and its role in the solution described by the SDD.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the resource and its role.

	Name
	VariableExpressionType
	0..1
	The name of the resource as known in the deployment environment.

	Property
	PropertyType
	0..*
	An identity property of the resource.

	HostedResource
	ResourceType
	0..*
	A resource that participates in the solution and that is hosted by the defining resource.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier of the resource scoped to the descriptor.

	type
	ResourceTypeNameType
	1
	A well-known resource type.

	
	xsd:anyAttribute
	0..*
	

4.2.2.2 ResourceType Property Usage Notes
· Description, ShortDescription: If used, these elements MUST provide a human-readable description of the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].
· Name: The resource name is an identifying characteristic of the resource that correlates with a name for the resource in the deployment environment.
The type of the Name element, VariableExpressionType, allows the resource name to be expressed as a simple string or in terms of a user input parameter or other variable.
An example of a good use of a variable expression in Resource.Name is to make sure that the installation directory is hosted on a file system that has sufficient space available for deployment. In this example, the file system resource element would define a HostedResource element for the directory. The Name of the directory would be expressed as a variable expression that refers to a user input parameter for installation location. Content elements that use the installation directory would express a requirement on the directory and on the file system with the additional constraint that the file system have a certain amount of available space (to satisfy the consumption constraints). The fact that both resources are required and that they are defined with a hosts–hostedBy relationship in Topology, means that the directory that is used must be the installation directory and it must be hosted by a file system that meets the consumption constraint for available space.
Only the Variable elements defined in a top level content element can be used to define a resource Name, because these are the only variables visible within Topology.

If the name of a resource is changed during deployment, for example, during an update, then the resource name SHOULD NOT be included in the resource specification. Instead, the pre-update resource name SHOULD be specified in the RequiredBase element of the installable unit that provides the update, and the post-update name SHOULD be specified in the ResultingResource element of the same installable unit.
See the VariableExpressionType section for structure and additional usage details [4.6.1].
· Property: Property elements SHOULD be used when Name alone is not sufficient to identify the resource. The property used represents an identifying characteristic of a resource.
See the PropertyType section for structure and additional usage details [4.2.3].
· HostedResource: A Resource MAY define HostedResource elements. Each HostedResource element is an instance of ResourceType. When both the host and the hosted resource participate in a particular solution deployment, the associated resource instances selected for use during that deployment must have a hosts relationship.
For example, a Web application declared to be hosted on a Web server must be hosted on the instance of the Web server that is selected for use during the deployment.
If only the host resource is identified by the DeploymentDescriptor’s content elements as participating in the solution, then there is no assumption that the hosted resource exists.

· id: The id attribute uniquely identifies the resource element within the DeploymentDescriptor. This id value is used by other elements in the DeploymentDescriptor to refer to this resource. This value is created by the descriptor author.
The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· type: The type attribute defines the class of resource. The value of type correlates with the resource type known for the resource in the deployment environment. ResourceTypeNameType restricts type to valid xsd:QNames. The values for type are not defined by this specification. Creators of DeploymentDescriptors rely on knowledge of resource types that are understood by supporting infrastructure in the target environment. To honor the descriptor author’s intent, the deploying infrastructure must be able to discover the existence of resources of the types defined in the SDD; the values of the resource’s properties; and the existence and type of resource relationships. The deploying infrastructure also needs to understand how to use the artifact types associated with the resource type to create, modify and delete the resource.

4.2.3 PropertyType

[image: image26.png](O PropertyType e+ L

Vae

& s

Figure 17: PropertyType structure.

PropertyType provides the type definition for elements used to declare an identity property of a resource, namely, the Property elements of Resource and HostedResource in Topology. It also provides the type definition for Property elements in Relationship and RelationshipConstraint.
4.2.3.1 PropertyType Property Summary

	Name
	Type
	*
	Description

	PropertyName
	xsd:QName
	1
	The property name.

	Value
	VariableExpressionType
	1
	The property value.

	
	xsd:anyAttribute
	0..*
	

4.2.3.2 PropertyType Property Usage Notes

· PropertyName: The PropertyName MAY be used to provide additional identification for the resource in the deployment environment.
The PropertyName MAY be used to provide constraints on the configuration of a resource.
· Value: Evaluation of the Value expression provides the value of the property.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

4.2.4 ResultingPropertyType

[image: image27.png]Propertyhiame.

o Rempmpe,w;ejet

Ve

& s

Figure 18: ResultingPropertyType structure.

ResultingPropertyType provides the type definition for elements used to declare an identity property of a resulting resource or to declare a configuration change to a resource property which results from deployment of an artifact.

4.2.4.1 ResultingPropertyType Property Summary

	Name
	Type
	*
	Description

	PropertyName
	xsd:string
	1
	The resulting property name.

	Value
	VariableExpressionType
	1
	The resulting property value.

	
	xsd:anyAttribute
	0..*
	Additional attributes of the resulting property.

4.2.4.2 ResultingPropertyType Property Usage Notes

· PropertyName: The PropertyName MAY be used to provide additional identification for the resource in the deployment environment.
The PropertyName MAY be used to declare a configuration change to a resource.

· Value: Evaluation of the Value expression provides the value of the resulting property.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
4.3 Atomic Content Elements

The package descriptor defines package content that includes artifacts whose processing results in deployment of the software package. The deployment descriptor defines metadata associated with those artifacts. The metadata includes conditions, requirements, results, inputs, outputs and completion actions. Metadata throughout the deployment descriptor is associated with package content in the definition of atomic content elements. The atomic content elements are InstallableUnit, ConfigurationUnit and LocalizationUnit. These are the only content elements that define Artifacts elements.
Artifact elements identify an artifact file or set of files defined in package content whose processing will perform all or a portion of the deployment for a particular deployment lifecycle operation. The name of the artifact element indicates the operation supported by the artifact. Names of the artifact elements are created by prefixing “Artifacts” with the operation name. The artifacts defined for use in the SDD are InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact and ConfigArtifact.

Artifact elements define the inputs and outputs, substitution values and types associated with the artifact files. The content element’s target resource, identified by targetResourceRef, processes the artifact files with the defined inputs to perform deployment operations. Examples of artifact types include zip files, rpm files and executable install files. Artifact types are not defined by this specification. The artifact types defined in the SDD need to be understood by software that processes the SDD.

There MAY be multiple atomic content elements within a composite installable that describe the deployment of multiple resources as part of a single software deployment or there MAY be a single atomic content element (singleton) in the deployment descriptor that describes the entirety of a simple deployment
. When an atomic content element is used in a CompositeInstallable, it MUST define exactly one artifact. When an atomic content element is a singleton, it MUST define at least one artifact element and MAY define one of each type of artifact element allowed for its type. The inclusion of an artifact element in a singleton atomic content element implies support for the associated operation.
For example, a singleton ConfigurationUnit that defines a ConfigArtifact associates a configure operation with the ConfigArtifact. Similarly, an SDD with a singleton InstallableUnit that defines an InstallArtifact and an UpdateArtifact associates an install operation with the InstallArtifact and an update operation with the UpdateArtifact.
When an atomic content element is defined within a CompositeInstallable hierarchy, its one artifact MUST support the single top level operation associated with the CompositeInstallable. The single artifact defined need not be an artifact for the operation defined for the CompositeInstallable.
For example, in a CompositeInstallable that defines metadata for an update operation, there may be one InstallableUnit that defines an InstallArtifact element and another InstallableUnit that defines an UpdateArtifact element. Both of these artifacts are used when performing the overall update operation defined for the CompositeInstallable.

4.3.1 InstallableUnitType
[image: image28.png](O InstalableLinitType)

Identity

0.1

Condtian

0.1

Variables

0.1

RequredBase

0.1

Requrements

0.1

Languages

0.1

Completion

e

ResutingResource.

e

ResultingChange

e

e

— @ targetResourceRef

e e

Artfacts

F<> wraer

e

Figure 19: InstallableUnitType structure.
The InstallableUnit element is an atomic content element that defines artifacts that install or update software and defines requirements for applying those artifacts. It may also define artifacts that undo an update or that uninstall or repair existing software.
4.3.1.1 InstallableUnitType Property Summary

	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the InstallableUnit.

	Condition
	ConditionType
	0..1
	A condition that determines if the content element is relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables for use within the InstallableUnit’s requirements and artifact definitions.

	RequiredBase
	RequiredBaseType
	0..1
	A resource that will be updated when the InstallableUnit’s UpdateArtifact is processed.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met prior to successful processing of the InstallableUnit’s artifacts.

	Languages
	LanguagesType
	0..1
	Languages supported by the InstallableUnit.

	Completion
	CompletionType
	0..*
	Describes completion actions such as restart and the conditions under which the action is applied.

	ResultingResource
	ResultingResourceType
	0..*
	A resource that will be installed or updated by processing the InstallableUnit’s artifacts.

	ResultingChange
	ResultingChangeType
	0..*
	A resource that will be configured by processing the InstallableUnit’s artifacts.

	Artifacts
	InstallationArtifactsType
	1
	The set of artifacts associated with the InstallableUnit.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier for the InstallableUnit scoped to the deployment descriptor.

	targetResourceRef
	xsd:IDREF
	1
	Reference to the resource that can process the InstallableUnit’s artifacts.

	
	xsd:anyAttribute
	0..*
	

4.3.1.2 InstallableUnitType Property Usage Notes

· Identity: The InstallableUnit’s Identity element defines human-understandable information that reflects the identity of the solution as understood by the end user of the solution.
If the InstallableUnit defines a resulting resource, the Identity of the InstallableUnit SHOULD reflect the identity of the resulting resource.
When the InstallableUnit is the only content element in the deployment descriptor, its Identity MAY define values that are the same as the corresponding PackageIdentity element values.
This would be useful, for example, in a case where the package is known by the same name as the resource created by the InstallableUnit.
See the IdentityType section for structure and additional usage details [3.4].
· Condition: A Condition is used when the InstallableUnit’s content should be deployed only when certain conditions exist in the deployment environment.
For example, one InstallableUnit may be applicable only when the operating system resource is resolved to a Linux®
 operating system during deployment. The InstallableUnit would define a Condition stating that the type of the operating system must be Linux for the InstallableUnit to be considered in scope for a particular deployment.
See the ConditionType section for structure and additional usage details [4.5.1].

· Variables: An InstallableUnit’s Variables element defines variables that are used in the definition of the InstallableUnit’s requirements and in parameters and properties passed to the InstallableUnit’s target resource.
When the deployment descriptor defines a single InstallableUnit at the top level, that is, not inside a CompositeInstallable, the variables it defines MAY be referred to by any element under Topology.
See the VariablesType section for structure and additional usage details [4.6.3].

· Languages: When translated materials are deployed by the InstallableUnit’s artifacts, the languages of the translations are listed in Languages.
See the LanguagesType section for structure and additional usage details [4.13.6].
· RequiredBase: When an InstallableUnit can be used to update resources, the RequiredBase element identifies the resources that can be updated.
See the RequiredBaseType section for structure and additional usage details [4.7.8].
· Requirements: Requirements specified in an InstallableUnit identify requirements that must be met prior to successful processing of the InstallableUnit’s artifacts.
See the RequirementsType section for structure and additional usage details [4.7.1].

· Completion: A Completion element MUST be included if the artifact being processed requires a system operation such as a reboot or logoff to occur to function successfully after deployment or if the artifact executes a system operation to complete deployment of the contents of the artifact.

There MUST be an artifact associated with the operation defined by a Completion element.

For example, if there is a Completion element for the install operation, the InstallableUnit must define an InstallArtifact.
See the CompletionType section for structure and additional usage details [4.3.14].

· ResultingResource: An InstallableUnit’s ResultingResource element identifies the resources in Topology that will be installed or updated when the InstallableUnit’s artifacts are processed.

See the ResultingResourceType section for structure and additional usage details [4.8.1].

· ResultingChange: Multiple content elements within the SDD MAY specify the same resource in their ResultingChange elements. In this case each content element is capable of modifying the configuration of that resource.

An example use of the ResultingChange element is to understand whether or not one content element can satisfy the requirements specified in another content element.

See the ResultingChangeType section for structure and additional usage details [4.8.2].
· Artifacts: When the InstallableUnit is a singleton defined outside of a CompositeInstallable, it MUST define at least one artifact element and MAY define one of each type of artifact element allowed for its type. The inclusion of an artifact element in a singleton InstallableUnit implies support for the associated operation.

When the InstallableUnit is defined within a CompositeInstallable, it MUST define exactly one artifact. The artifact defined MAY be any artifact allowed in an InstallableUnit and it MUST support the single top level operation defined by the CompositeInstallable. This does not mean the operation associated with the artifact has to be the same as the one defined by the CompositeInstallable.
For example, an update of a resource may be required to support an install of the overall solution, in which case the InstallableUnit would define an UpdateArtifact to support the top level install operation.

See the InstallationArtifactsType section for structure and additional usage details [4.3.4].
· id: The id attribute is referenced in features to identify an InstallableUnit selected by the feature and Dependency elements to indicate a dependency on processing of the content element.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· targetResourceRef: The targetResourceRef attribute identifies the resource that will process the InstallableUnit’s artifacts.

The resources created or modified by artifact processing are frequently, but not necessarily, hosted by the target resource.

This value MUST match an id of a resource element in Topology.

The target may be a resource that has not yet been created. In this case, there is a dependency on the complete installation of the target resource prior to applying the InstallableUnit. This dependency MUST be represented in a Dependency element within Requirements that apply to the InstallableUnit.
4.3.2 ConfigurationUnitType
[image: image29.png]Identity

(O ConfigurationnitType)

0.1

Condtian
0.1

Variables
0.1

Requrements
0.1

Completion

e

ResultingChange

e

Artfacts

“Fo s

e

e

— @ targetResourceRef

e e

Figure 20: ConfigurationUnitType structure.
The ConfigurationUnit element defines artifacts that configure one or more existing resources. It also defines the requirements for applying those artifacts. It MUST NOT install, update, or uninstall resources.

4.3.2.1 ConfigurationUnitType Property Summary

	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the ConfigurationUnit.

	Condition
	ConditionType
	0..1
	A condition that determines if the content element is relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables for use within the ConfigurationUnit’s requirement and artifact definitions.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met prior to successful processing of the ConfigurationUnit’s artifacts.

	Completion
	CompletionType
	0..*
	Describes completion actions such as restart and the conditions under which the action is applied.

	ResultingChange
	ResultingChangeType
	0..*
	A definition of changes made to a resource that is configured by processing the ConfigurationUnit’s ConfigArtifact.

	Artifacts
	ConfigurationArtifactsType
	1
	The artifact associated with the ConfigurationUnit.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier for the ConfigurationUnit scoped to the deployment descriptor.

	targetResourceRef
	xsd:IDREF
	1
	Reference to the resource that can process the ConfigurationUnit’s artifacts.

	
	xsd:anyAttribute
	0..*
	

4.3.2.2 ConfigurationUnitType Property Usage Notes

· Identity: The ConfigurationUnit’s Identity element defines human-understandable information that reflects the identity of the provided configuration as understood by the end user of the solution. Identity has elements that are common with elements in the corresponding PackageDescriptor’s PackageIdentity element, for example, Name and Version. The values of these common elements SHOULD be the same as the corresponding PackageIdentity element values.
See the IdentityType section for structure and additional usage details [3.4].
· Condition: A Condition is used when the deployment of configuration content is dependent on the existence of certain conditions in the deployment environment.
For example, a package that has one configuration artifact that creates a database table for one database product and a different artifact that creates a table for a different database product would have two configuration units, each with a condition on the associated database product.

See the ConditionType section for structure and additional usage details [4.5.1].

· Variables: A ConfigurationUnit’s Variables element defines variables that are used in the definition of requirements and artifact parameters.
When the deployment descriptor defines a single ConfigurationUnit at the top level, that is, not inside a CompositeInstallable, the variables it defines MAY be referred to by any element under Topology.

See the VariablesType section for structure and additional usage details [4.6.3].

· Requirements: Requirements specified in a ConfigurationUnit identify requirements that MUST be met prior to successful processing of the ConfigurationUnit’s artifacts.
See the RequirementsType section for structure and additional usage details [4.7.1].
· Completion: A Completion element MUST be included if the artifact being processed requires a system operation such as a reboot or logoff to occur to function successfully after deployment or if the artifact executes a system operation to complete deployment of the contents of the artifact.

There MUST be an artifact associated with the operation defined by a Completion element.

For example, if there is a Completion element for the configure operation, the ConfigurationUnit must define a ConfigArtifact.
See the CompletionType section for the structure and additional usage details [4.3.14].
· ResultingChange: Configuration changes made when the configuration artifact is processed SHOULD be declared here. This information may be necessary when the SDD is aggregated into another SDD and the resulting change satisfies a constraint in the aggregation. The information declared here can be compared with resource constraints to determine if application of the ConfigurationUnit will satisfy the constraint.

See the ResultingChangeType section for structure and additional usage details [4.8.2].

· Artifacts: When the ConfigurationUnit is a singleton defined outside of a CompositeInstallable, it MUST define at least one artifact element. The inclusion of an artifact element in a singleton ConfigurationUnit implies support for the associated operation.

When the ConfigurationUnit is defined within a CompositeInstallable, it MUST define exactly one artifact. The artifact defined MUST be a ConfigArtifact and it MUST support the single top level operation defined by the CompositeInstallable.

See the ConfigurationArtifactsType section for structure and additional usage details [4.3.5].
· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· targetResourceRef: The targetResourceRef attribute identifies the resource in Topology that will process the ConfigurationUnit’s artifacts to configure the resources identified by the ConfigurationUnit’s ResultingChange definition.
This value MUST match an id of a resource element in Topology.
4.3.3 ArtifactType

[image: image30.png](O ArifactType)&

Arquments

0.1

Outputiariables

0.1

AddtionalCantent,

e

F<> wraer

@ contentRet

{'@ resourcerer

@ type

@ weight

& s

e

Figure 21: ArtifactType structure.

ArtifactType elements define the files, arguments and other information required to perform a particular deployment operation. Every artifact that can be defined in a content element is an instance of ArtifactType. These are InstallArtifact, UpdateArtifact, UndoArtifact, UninstallArtifact, RepairArtifact and ConfigArtifact.

4.3.3.1 ArtifactType Property Summary

	Name
	Type
	*
	Description

	Arguments
	ArgumentListType
	0..1
	Arguments used during processing of the artifact.

	OutputVariables
	OutputVariableListType
	0..1
	Variables whose values are set during processing of the artifact.

	AdditionalContent
	AdditionalContentType
	0..*
	Additional content files that are part of the artifact.

	
	xsd:any
	0..*
	

	contentRef
	xsd:token
	0..1
	The primary artifact file. Not used if resourceRef is used.

	resourceRef
	xsd:IDREF
	0..1
	The resulting resource representing the artifact file. Not used if contentRef is used.

	type
	ArtifactTypeNameType
	0..1
	Type of the primary artifact file.

	weight
	xsd:positiveInteger
	0..1
	The time required to process this artifact relative to all other artifacts in the SDD.

	
	xsd:anyAttribute
	0..*
	

4.3.3.2 ArtifactType Property Usage Notes

· Arguments: Inputs to the processing of the artifact MUST be specified by defining an Arguments element. All required inputs MUST be included in the arguments list. There are no implied arguments.
For example, there is no implication that the selected required resource instances will be passed with an InstallArtifact on the install operation. If knowledge of those selections is required, instance identifiers should be passed as arguments.

When one Argument refers to the OutputVariable of another artifact, the output value must be available at the time of processing the dependent artifact.
For example, an artifact in a content element that is conditioned on the operating system being Linux should not refer to the output of an artifact in a content element conditioned on the operating system being Windows™
.

A Dependency requirement MUST be defined between the content elements to indicate that the artifact that defines the output variable is a pre-requisite of the content element with the dependent artifact.
See the ArgumentListType section for structure and additional usage details [4.3.8].

· OutputVariables: OutputVariables are variables whose values are set by artifact processing.

OutputVariables can also be useful in log and trace messages.
See the OutputVariableListType section for structure and additional usage details [4.3.10].

· AdditionalContent: AdditionalContent elements MUST be defined when supporting files are needed by the artifact for this operation. The content file reference is specified via the contentRef attribute of AdditionalContent.

See the AdditionalContentType section for structure and additional usage details [4.3.12].

· contentRef: The value MUST be a reference to the id of the primary artifact file defined in a Content element in the package descriptor.

Note that it is valid to have no artifact file and drive the operation from arguments alone.

When more than one artifact file is needed, contentRef points to the primary artifact file and AdditionalContent.contentRef points to any other files used during application of the content element.

When resourceRef is defined, contentRef MUST NOT be defined.

· resourceRef: Sometimes, artifact files are created during a deployment rather than being contained in the package.
For example, some install programs create an uninstall program when the software is deployed. The uninstall program is the artifact file that is needed by the UninstallArtifact, but is created by, but not contained in, the package. In this case, the created artifact file is represented as a ResultingResource.
An Artifact element that defines resourceRef identifies the resulting resource as its artifact file.
When contentRef is defined, resourceRef MUST NOT be defined.

The value MUST reference the id of a resource element in Topology.
· type: The type attribute identifies the format of the artifact file or files. When there is no artifact file identified, type MAY be left undefined. If there is an artifact file or additional files defined, type MUST be defined.

Values for this attribute are not defined by this specification. ArtifactTypeNameType restricts type to valid xsd:QNames.

· weight: Defining weights for all artifacts and referenced packages in an SDD provides useful information to software that manages deployment. The weight of the artifact refers to the relative time taken to deploy the artifact with respect to other artifacts and referenced packages in this SDD.

For example, if the artifact takes three times as long to deploy as another artifact whose weight is “2”, then the weight would be “6”. The weight numbers have no meaning in isolation and do not describe actual time elapsed. They simply provide an estimate of relative time.
4.3.4 InstallationArtifactsType

[image: image31.png](O mnstaltionartfactsType)+

Installartifact

0.1

UpdateArtiact

0.1

Undoartfact

0.1

UninstalirtFact

0.1

Repairrtfact

0.1

F<> wraer

Do

Figure 22: InstallationArtifactsType structure.

InstallationArtifactsType provides the type definition for the Artifacts element of InstallableUnit and LocalizationUnit. At least one Artifact element MUST be defined. Within a CompositeInstallable definition, exactly one Artifact element MUST be defined.

4.3.4.1 InstallationArtifactsType Property Summary

	Name
	Type
	*
	Description

	InstallArtifact
	ArtifactType
	0..1
	Artifact for install operation.

	UpdateArtifact
	ArtifactType
	0..1
	Artifact for update operation.

	UndoArtifact
	ArtifactType
	0..1
	Artifact for undo operation.

	UninstallArtifact
	ArtifactType
	0..1
	Artifact for uninstall operation.

	RepairArtifact
	ArtifactType
	0..1
	Artifact for repair operation.

	
	xsd:any
	0..*
	

4.3.4.2 InstallationArtifactsType Property Usage Notes
· InstallArtifact: The InstallArtifact element declares deployment information sufficient to enable the target resource to perform an install using the named artifact files. The ResultingResource and ResultingChange elements describe the characteristics of the new or modified resource(s).
See the ArtifactType section for structure and additional usage details [4.3.3].

· UpdateArtifact: The UpdateArtifact element declares deployment information sufficient to enable the target resource to perform an update using the named artifact files. The RequiredBase element defines the resource(s) that can be updated. The ResultingResource and ResultingChange elements describe the updated characteristics of the resource(s).
See the ArtifactType section for structure and additional usage details [4.3.3].

· UndoArtifact: The UndoArtifact element declares deployment information sufficient to enable the target resource to undo an update. This undo will put the resource back to a previous level.
The update that can be undone is described in the RequiredBase element. The ResultingResource definition can be used to describe the state of the resource(s) after the undo completes.

See the ArtifactType section for structure and additional usage details [4.3.3].

· UninstallArtifact: The UninstallArtifact element declares deployment information sufficient to enable the target resource to perform an uninstall.
If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the resource(s) that will be uninstalled.

When an UninstallArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST be defined to declare the resource(s) that will be uninstalled. The ResultingResource element MUST be left blank because the result of the uninstall is that the resource(s) are removed.
See the ArtifactType section for structure and additional usage details [4.3.3].
· RepairArtifact: The RepairArtifact element declares deployment information sufficient to enable the target resource to repair an installation.

If an InstallArtifact is defined in the same InstallableUnit, the ResultingResource element defines the resource(s) that will be repaired.

When a RepairArtifact is the only artifact defined for an InstallableUnit, the RequiredBase MUST be defined to declare the resource(s) that will be repaired.
See the ArtifactType section for structure and additional usage details [4.3.3].
4.3.5 ConfigurationArtifactsType

[image: image32.png](O ConfigurationatFactsType)+

ConfigArtiact

0.1

F<> wraer

Do

Figure 23: ConfigurationArtifactsType structure.

ConfigurationArtifactsType provides the type definition for the Artifacts element of ConfigurationUnit.
4.3.5.1 ConfigurationArtifactsType Property Summary

	Name
	Type
	*
	Description

	ConfigArtifact
	ArtifactType
	0..1
	Artifact for configure operation.

	
	xsd:any
	0..*
	

4.3.5.2 ConfigurationArtifactsType Property Usage Notes

· ConfigArtifact: The ConfigArtifact element declares deployment information sufficient to allow the target resource to configure the resources identified in the content element’s ResultingChange elements.
See the ArtifactType section for structure and additional usage details [4.3.3].
4.3.6 OperationListType
This simple type extends the xsd:list type as defined in [XSD], and adds the restriction that each value in the list must be one of the operations from the enumeration defined by OperationType [4.3.7].
4.3.7 OperationType
Operations are used in the SDD to associate requirements and completion actions with particular artifacts.
For example, when a requirement defines an operation attribute with value undo, it is a statement that the requirement must be met prior to processing of the undo artifact.
OperationType enumerates the basic resource lifecycle operations that use the content and information defined in the SDD to change the state of the resources being installed, updated, or configured.
4.3.7.1 OperationType Property Usage Notes

Elements and attributes of OperationType MUST be set to one of the following values:
· configure: Uses the ConfigArtifact to perform configuration actions on a resource.

· install: Uses the InstallArtifact to install resources.

· repair: Uses the RepairArtifact to repair an installation.

· undo: Uses the UndoArtifact to restore a resource to the state before the most recent update was applied.

· update: Uses the UpdateArtifact to update an existing instance of a resource, as specified by the required base.

· use: Associates a requirement or completion action with use of the deployed software resources. Setting the operation attribute to use indicates that the requirement or completion action is not associated with an artifact.
· uninstall: Uses the UninstallArtifact to uninstall a resource.
4.3.8 ArgumentListType

[image: image33.png](O ArgumentiistType)

)]

Argument.

T

Figure 24: ArgumentListType structure.

Each artifact MAY optionally include an Arguments element whose type is provided by ArgumentListType. This simply defines a list of Argument elements.

4.3.8.1 ArgumentListType Property Summary

	Name
	Type
	*
	Description

	Argument
	ArgumentType
	1..*
	An input to artifact processing.

4.3.8.2 ArgumentListType Property Usage Notes

· Argument: An argument value is a variable expression used to define a fixed value for the argument or to define a value in terms of one of the variables visible to the artifact.

See the ArgumentType section for structure and additional usage details [4.3.9].
4.3.9 ArgumentType

[image: image34.png]O ArgumentType)&

@ name
@ value
@ required

& s

Figure 25: ArgumentType structure.

ArgumentType provides the type definition for Argument elements in artifacts [4.3.3]. This complex type is used to declare the argument name and optionally include a value for that argument.

4.3.9.1 ArgumentType Property Summary

	Name
	Type
	*
	Description

	name
	VariableExpressionType
	1
	The argument name.

	value
	VariableExpressionType
	0..1
	The argument value.

	required
	xsd:boolean
	0..1
	Indicates that the argument value must result in a valid expression for each particular deployment.
**default value=“true”

	
	xsd:anyAttribute
	0..*
	

4.3.9.2 ArgumentType Property Usage Notes

· name: Evaluation of the name expression produces the name of the argument. This can be useful for arguments with only a name, for example, those that are not name-value pairs.

When the argument name alone is sufficient to communicate its meaning, the argument value SHOULD be omitted.
See the VariableExpressionType section for structure and additional usage details [4.6.1].
· value: Evaluation of the value expression provides the value of the argument.
The variable expression MAY be used to define a fixed value for the argument or to define a value in terms of one of the variables visible to the artifact.
See the VariableExpressionType section for structure and additional usage details [4.6.1].
· required: In cases where the argument should be ignored when the value expression is not valid for a particular deployment, set required to "false".
4.3.10 OutputVariableListType
[image: image35.png](O outputarisbelistType)Er

)]

Outputiariable

T

Figure 26: OutputVariableListType structure.

An artifact can set variables. The variables set by the artifact are defined in the artifact’s OutputVariables.

4.3.10.1 OutputVariableListType Property Summary

	Name
	Type
	*
	Description

	OutputVariable
	OutputVariableType
	1..*
	An output from artifact processing.

4.3.10.2 OutputVariableListType Property Usage Notes
· OutputVariable: This is the definition of the variable, not a reference to a variable defined elsewhere.

See the OutputVariableType section for structure and additional usage details [4.3.11].

4.3.11 OutputVariableType

[image: image36.png](O OutputvarisbleType)Er EplE 4D extends: sdd-dd:BasevariableType JE— @ outputParameteriiame

b o wter

|

sdd-dd DescriptionGrouy
01

(T swmioones e

e

@ Sensitve

Figure 27: OutputVariableType structure.

Output variables are variables whose value is set by artifact processing. OutputVariableType extends BaseVariableType and so has all of the attributes defined there, including an id attribute that is used to refer to the output variable within the SDD. Output variables can be useful in log and trace messages.

4.3.11.1 OutputVariableType Property Summary

	Name
	Type
	*
	Description

	
	[extends] BaseVariableType
	
	See the BaseVariableType section for additional properties [4.6.2].

	outputParameterName
	xsd:NCName
	0..1
	An output from artifact processing.

	
	xsd:anyAttribute
	0..*
	

4.3.11.2 OutputVariableType Property Usage Notes
See the BaseVariableType section for details of the inherited attributes and elements [4.6.2].
· outputParameterName: This is the name of the output variable as understood within the artifact processing environment. The output value is associated with the output variable’s id. The SDD author uses this id within the SDD to refer to this output value.

4.3.12 AdditionalContentType

[image: image37.png](O_AddtionaiContentType) EH—{ ==-s-s)

Substitution

@ cantentRef

@ e

e e

e

F<> wraer

e

Figure 28: AdditionalContentType structure.

When artifact processing requires more than a single file, the artifact declaration includes information about the additional files needed. AdditionalContentType provides the type definition. Additional content MAY include input files that need to be edited to include values received as input to a particular solution deployment. In this case, the additional file can include a Substitution element.

4.3.12.1 AdditionalContentType Property Summary

	Name
	Type
	*
	Description

	Substitution
	SubstitutionType
	0..*
	A value to substitute into the file.

	
	xsd:any
	0..*
	

	contentRef
	xsd:token
	1
	A reference to the content element’s id defined in the package descriptor.

	type
	ArtifactTypeNameType
	0..1
	Type of the additional artifact file.

	
	xsd:anyAttribute
	0..*
	

4.3.12.2 AdditionalContentType Property Usage Notes

· Substitution: The Substitution element supports the use of files that require some editing before they can be used in artifact processing. The definitions in this element support placement of values determined during a particular deployment into the file identified by the contentRef attribute.

See the SubstitutionType section for structure and additional usage details [4.3.13].

· contentRef: The contentRef attribute points back to the package descriptor for information about the physical file. This value MUST match an id of a content element in the package descriptor.

· type: The type attribute identifies the format of the additional file. Values for this attribute are not defined by this specification. ArtifactTypeNameType restricts values of type to valid xsd:QNames.

4.3.13 SubstitutionType

[image: image38.png]Pattern

(O sbstiutionType)iy

Vae

@ reauired

e e

Figure 29: SubstitutionType structure.

SubstitutionType provides the type definition for the Substitution element in AdditionalContent declarations. It enables declaration of patterns in the file and the values that should replace the patterns before the file is used in artifact processing.

4.3.13.1 SubstitutionType Property Summary

	Name
	Type
	*
	Description

	Pattern
	xsd:string
	1
	The search pattern in the file that needs to be substituted.

	Value
	VariableExpressionType
	1
	The value to be substituted in the file.

	limit
	xsd:positiveInteger
	0..1
	The number of substitutions that should be made.

	required
	xsd:boolean
	0..1
	Indicates that substitution's value must result in a valid expression for each particular deployment.
**default value=“true”

	
	xsd:anyAttribute
	0..*
	

4.3.13.2 SubstitutionType Property Usage Notes
· Pattern: This is the string that will be replaced with the value when found in the file.

· Value: Evaluation of the variable expression results in the value that will be substituted for the pattern.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· limit: If limit is not defined, there is no limit and all instances of the pattern found in the file will be replaced.

· required: In cases where the substitution should be ignored when the value expression is not valid for a particular deployment, set required to “false”.
4.3.14 CompletionType

[image: image39.png](O CompletionType)E—{ weee) ‘sdd-dd:DisplayElementGrouy
o1
Condition
o1
“Fo s
T
@ e

(-

@ vesaurceRef
@ operation

& s

Figure 30: CompletionType structure.

For some deployments certain completion actions such as restart and logoff are required before a deployment operation using a particular content element can be considered complete. The CompletionType elements enable the SDD author to indicate either that one of these actions is required or that one of these actions will be performed by the associated artifact.

4.3.14.1 CompletionType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the completion action.

	Description
	DisplayTextType
	0..1
	Description of the completion action.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the completion action.

	Condition
	ConditionType
	0..1
	Conditions that determine when the completion action will be used.

	
	xsd:any
	0..*
	

	type
	CompletionTypeNamesType
	1
	The type of the completion action.

	resourceRef
	xsd:IDREF
	1
	The resource where the completion action will be executed.

	operation
	OperationListType
	1
	Associates a completion action with the processing of a particular artifact.

	
	xsd:anyAttribute
	0..*
	

4.3.14.2 CompletionType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the Completion element.
See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the Completion element.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Condition: Conditions specified on resource characteristics determine if the completion action applies. If the conditions are met, the action applies. If not met, then the action is not needed. Unmet conditions are not considered a failure. When no conditions are defined, the action always applies.

See the ConditionType section for structure and additional usage details [4.5.1].

· type: This is the completion action that applies when conditions defined in ResourceConstraint are met. Allowed values defined in CompletionTypeNameType are:

· restartRequiredImmediately: A system restart is required before the deployment operation is considered complete and the artifact associated with the operation does not perform the restart. The restart MUST happen before further deployment actions are taken.
· restartRequiredBeforeUse: A system restart is required before the deployment operation is considered complete and the artifact associated with the operation does not perform this action. The restart MUST happen before the associated resources are used.
· restartOccurs: The artifact associated with the lifecycle operation will initiate a system restart.
· logoffRequired: A logoff and logon to the user account is required before the deployment operation is considered complete and the artifact associated with the operation does not perform this action. The logoff and logon MUST happen before the operation can be considered complete.
· resourceRef: This will often be the resource named as the target resource for the defining content element.
The value MUST reference the id of a resource element in Topology.

· operation: A completion action is associated with the processing of one artifact by setting operation to the operation associated with that artifact. The element that defines the Completion MUST also define an artifact associated with the operation defined for the Completion element.

See the OperationListType section for operation enumerations and their meaning [4.3.6].

4.4 Constraints
The SDD author needs to communicate constraints on resources for a variety of purposes.

· Some constraints must be met for the requirements of a content element to be met. See the RequirementsType section [4.7.1].

· Other constraints must be met for a resource to serve as the required base for an update. See the RequiredBaseType section [4.7.8].

· Still others must be met for to satisfy a condition that determines the applicability of a content element or completion action. See the ConditionType section [4.5.1] and the CompletionType section [4.3.14].

The Constraint types described in this section support identification of resource constraints in these various contexts. These types are:

· CapacityConstraint

· ConsumptionConstraint

· PropertyConstraint

· VersionConstraint

· UniquenessConstraint

· RelationshipConstraint

All of these constraint types are constraints on a property of a resource. There are different constraint types because there are distinct semantics for different types of resource properties. Examples of these varying semantics include constraints that the property value be:

· within a certain range;

· one of a set of values;

· all of a set of values;

· equal to a certain value;

· no more than or no less than a certain value;

· no more than or no less than a certain value when all constraints of that type are added together.

In all cases, deployment software must be able to discover the property’s value to honor the SDD author’s intent.
4.4.1 CapacityConstraintType

[image: image40.png]sd-ddDescriptionGrouy
0.1

(O CapatityConstraintType)&

Propertyliame

] value

Figure 31: CapacityConstraintType structure.

CapacityConstraintType provides the type definition of the Capacity elements of RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the capacity of a particular resource property such as memory available from an operating system. Capacity is shared: multiple capacity constraints expressed on the same property are evaluated individually without assuming any change to the available quantity of the property.

4.4.1.1 CapacityConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the capacity constraint. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the capacity constraint.

	PropertyName
	xsd:QName
	1
	Name of the constrained property.

	Value
	CapacityValueType
	1
	Bounds on the value of the constrained property.

4.4.1.2 CapacityConstraintType Property Usage Notes
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the capacity constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].
· PropertyName: This name corresponds to the name of the constrained resource property in the environment. This name may be specified in profiles [5.3].
· Value: Value specifies the bound and optional recommended bound on the resource property identified in the PropertyName element.
See the CapacityValueType section for structure and additional usage details [4.4.2].
4.4.2 CapacityValueType
[image: image41.png]Minimum
0.1

(O Capatity¥alueType)

Waxinm
0.1

WinimumRecommended
0.1

WaximumRecommended
0.1

@ it

e e

Figure 32: CapacityValueType structure.

Capacity value is expressed in terms of a minimum or maximum capacity. CapacityValueType provides the elements that support this expression. It also supports expression of a recommended minimum or maximum capacity.
4.4.2.1 CapacityValueType Property Summary
	Name
	Type
	*
	Description

	Minimum
	VariableExpressionType
	0..1
	Minimum capacity.

	Maximum
	VariableExpressionType
	0..1
	Maximum capacity.

	MinimumRecommended
	VariableExpressionType
	0..1
	Minimum recommended capacity.

	MaximumRecommended
	VariableExpressionType
	0..1
	Maximum recommended capacity.

	unit
	xsd:string
	0..1
	Unit of measure used to interpret the capacity value.

	
	xsd:anyAttribute
	0..*
	

4.4.2.2 CapacityValueType Property Usage Notes
· Minimum: There will usually be either a minimum value or a maximum value defined, but not both. When minimum is specified, the actual value of the capacity property MUST be equal to or greater than the minimum value.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· Maximum: When specified, the actual value of the capacity property MUST be less than or equal to the defined maximum.

If Minimum and Maximum are both defined, Minimum MUST be less than or equal to Maximum.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

· MinimumRecommended: The SDD author can indicate a preferred, but not required, minimum by defining a value for this element.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· MaximumRecommended: The SDD author can indicate a preferred, but not required, maximum by defining a value for this element.

If MinimumRecommended and MaximumRecommended are both defined, MinimumRecommended MUST be less than or equal to MaximumRecommended.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· unit: Values for unit SHOULD be well-known units of measure from the International System of Units [UNIT]. A unit of measure SHOULD be specified for all properties that are measured in any kind of unit.
4.4.3 ConsumptionConstraintType

[image: image42.png]2. sdd-dd:DescriptionGroup
0.1

(O ConsumptionConstraintType)

Propertyliame

] value

Figure 33: ConsumptionConstraintType structure.

ConsumptionConstraintType provides the type definition of the Consumption elements of RequirementResourceConstraintType [4.7.5]. These elements are used to express a requirement on the available quantity of a particular resource property such as disk space on a file system. ConsumptionConstraints represent exclusive use of the defined quantity of the resource property. In other words, consumption constraints are additive, with each consumption constraint specified in the SDD adding to the total requirement for the specified resource(s). A consumption constraint is assumed to alter the available quantity such that the portion of the property used to satisfy one constraint is not available to satisfy another consumption constraint on the same property.

For example, suppose that the target file system has 80 megabytes available. The application of a content element’s InstallArtifact results in installation of files that use 5 megabytes of file space
. The application of a second InstallArtifact results in installation of files that use 2 megabytes of file space. Consumption constraints are additive, so the total space used for this content element is 7 megabytes, leaving 73 (80–7) megabytes available on the target file system.
4.4.3.1 ConsumptionConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the consumption constraint. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the consumption constraint.

	PropertyName
	xsd:QName
	1
	Names the resource property to test.

	Value
	ConsumptionConstraintValueType
	1
	A variable expression defining the minimum available quantity.

4.4.3.2 ConsumptionConstraintType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the consumption constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· PropertyName: The property name can be used to find the property value in the deployment environment. This name may be specified in profiles [5.3].

· Value: The result of evaluating this variable expression represents the minimum quantity of the named resource property that MUST be available for successful deployment of the defining content element’s artifacts. This quantity will be consumed by application of the associated artifact.

See the ConsumptionConstraintValueType section for structure and additional usage details [4.4.4].
4.4.4 ConsumptionConstraintValueType
[image: image43.png](O ConsumptionConstraintValueType)&+ P > extends: sdd-dd:VariableExpressionType JEH— @ unit

b o wter

|

Figure 34: ConsumptionConstraintValueType structure.
A consumption value is defined using a variable expression. ConsumptionConstraintValueType provides the variable expression by extending VariableExpressionType.
4.4.4.1 ConsumptionConstraintValueType Property Summary
	Name
	Type
	*
	Description

	
	[extends] VariableExpressionType
	
	See the VariableExpressionType section for additional properties [4.6.1].

	unit
	xsd:string
	0..1
	Unit of measure used to interpret the consumption value.

	
	xsd:anyAttribute
	0..*
	

4.4.4.2 ConsumptionConstraintValueType Property Usage Notes

See the VariableExpressionType section for details of the inherited attributes and elements [4.6.1].
· unit: Values for unit SHOULD be well-known units of measure from International System of Units [UNIT]. A unit of measure SHOULD be specified for all properties which are measured in any kind of unit.

4.4.5 PropertyConstraintType

[image: image44.png]2. sdd-dd:DescriptionGroup
0.1

(O PropertyConstraintType)

Propertyliame

D=

Lstofvalues

Figure 35: PropertyConstraintType structure.

PropertyConstraintType provides the type definition of the Property elements of RequirementResourceConstraintType [4.7.5]. It supports definition of a required value or set of acceptable values for a particular resource property.

4.4.5.1 PropertyConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the property constraint. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the property constraint.

	PropertyName
	xsd:QName
	1
	Name of the constrained property.

	Value
	VariableExpressionType
	0..1
	Required property value.

	ListOfValues
	PropertyValueListType
	0..1
	List of required property values.

4.4.5.2 PropertyConstraintType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the property constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· PropertyName: The property name can be used to find the property value in the deployment environment. This name may be specified in profiles [5.3].

· Value: The result of evaluating this variable expression represents the required value of the named resource property.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· ListOfValues: A list of required values can be defined in place of a single required value.

See the PropertyValueListType section for structure and additional usage details [4.4.6].
4.4.6 PropertyValueListType
[image: image45.png](O _PropertyValuetistType)E—{(==as JE-— Value

T

@ match

e e

Figure 36: PropertyValueListType structure.

A property value list is expressed as one or more strings representing valid values for the property.
4.4.6.1 PropertyValueListType Property Summary
	Name
	Type
	*
	Description

	Value
	VariableExpressionType
	1..*
	A property value.

	match
	PropertyMatchType
	0..1
	Determines whether the actual property value must match any or all of the listed values.

**default value=“any”

	
	xsd:anyAttribute
	0..*
	

4.4.6.2 PropertyValueListType Property Usage Notes
· Value: The result of this variable expression represents one possible required value of the named resource property.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· match: The value or values of the property found in the deployment environment are compared to the value or values listed in the property constraint. PropertyMatchType defines two enumerated values: any and all. When match is set to any, the property constraint is considered met when any one of the found property values matches any one of the declared property values. When match is set to all, the constraint is considered met when all of the declared property values match values found for the property.

4.4.7 VersionConstraintType

[image: image46.png](O VersionConstraintType)E+

sdd-ddDescriptionGroup,

Supported

L

Certfied

ol

0.1

Figure 37: VersionConstraintType structure.

VersionConstraintType provides the type definition of the VersionConstraint elements of RequirementResourceConstraintType [4.7.5]. A VersionConstraint can define a set of individual versions or ranges of versions that are supported and a similar set that are certified.
4.4.7.1 VersionConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the version constraint. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the version constraint.

	Supported
	VersionConstraintValueType
	1
	A supported version or set of versions.

	Certified
	VersionConstraintValueType
	0..1
	A subset of the supported versions that are certified as tested.

4.4.7.2 VersionConstraintType Property Usage Notes
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the version constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· Supported: If the resource version is in the Supported set, it meets the requirements.
See the VersionConstraintValueType section for structure and additional usage details [4.4.8].
· Certified: In some cases the set of required versions may be different from the set of versions that are certified by the manufacturer as thoroughly tested.

See the VersionConstraintValueType section for structure and additional usage details [4.4.8].
4.4.8 VersionConstraintValueType
[image: image47.png]Value

e

(O YersionConstraintValueType)E+ ..,.)E,[

Renge

Do

Figure 38: VersionConstraintValueType structure.

A version constraint can be specified using any number of individual version values in combination with any number of version ranges.
4.4.8.1 VersionConstraintValueType Property Summary
	Name
	Type
	*
	Description

	Value
	VersionValueType
	0..*
	A version value with associated fixes specified.

	Range
	VersionRangeType
	0..*
	A range of version values with associated fixes specified for each range.

4.4.8.2 VersionConstraintValueType Property Usage Notes
· Value: Discrete version values can be defined when the set of required versions includes versions that do not fall within a range. There is no assumption by this specification that version values are numerically comparable. The method of comparing version values may be resource-specific.

See the VersionValueType section for structure and additional usage details [4.4.9].
· Range: See the VersionRangeType section for structure and additional usage details [4.4.10].

4.4.9 VersionValueType
[image: image48.png](O YersiontalueType)Er ..,.)E,.[

Figure 39: VersionValueType structure.

A version value includes a version and a list of required fixes associated with that version.
4.4.9.1 VersionValueType Property Summary
	Name
	Type
	*
	Description

	Version
	VersionType
	1
	An allowable version value.

	FixName
	xsd:string
	0..*
	The name of a fix.

4.4.9.2 VersionValueType Property Usage Notes
· Version: A string containing a single, exact version value. This is compared with the version value of specific resource instances. Only equal values satisfy this part of the constraint.

See the VersionType section for structure and additional usage details [3.10].
· FixName: Any number of FixName elements can be defined, identifying fixes that must be discovered to be applied for the version constraint to be considered met.
4.4.10 VersionRangeType
[image: image49.png](O VersionRangeType B+

B

Minversion

0.1

Waxversion

0.1

L

Fixiame

Do

Figure 40: VersionRangeType structure.

A VersionRange is specified with a minimum and maximum version value and a list of required fixes associated with that range. The method of comparing version strings in a version range is resource-specific.
4.4.10.1 VersionRangeType Property Summary
	Name
	Type
	*
	Description

	MinVersion
	VersionType
	0..1
	The least allowable version value.

	MaxVersion
	MaxVersionType
	0..1
	The greatest allowable version value.

	FixName
	xsd:string
	0..*
	The name of a fix.

4.4.10.2 VersionRangeType Property Usage Notes
· MinVersion: This is the lower bound of a version range. If MinVersion is defined but MaxVersion is not, there is no upper bound. A version that is equal to MinVersion is within the defined range.
See the VersionType section for structure and additional usage details [3.10].
· MaxVersion: This is the upper bound of a version range. If MaxVersion is defined but MinVersion is not, there is no lower bound. A version that is equal to MaxVersion may be within the defined range depending on the value specified for the inclusive attribute.
See the MaxVersionType section for structure and additional usage details [4.4.11].

· FixName: Any number of FixNames can be defined identifying fixes that must be found to be applied for the version constraint is to be considered satisfied. This is true for all versions within the defined range.

When FixName is defined, either a MinVersion or a MaxVersion element MUST also be defined.
4.4.11 MaxVersionType
[image: image50.png](O MaxtersionType) — @ inclusive

17 >E—— D> extends: sdd-common:versionType

b o wter

7 versonype JE—{] restrits: string

|

Figure 41: MaxVersionType structure.

A maximum version can be inclusive or exclusive.
4.4.11.1 MaxVersionType Property Summary
	Name
	Type
	*
	Description

	
	[extends] VersionType
	
	See the VersionType section for additional properties [3.10].

	inclusive
	xsd:boolean
	0..1
	Indicates whether the max version value is included in the supported range of versions.

**default value=“false”

	
	xsd:any
	0..*
	

4.4.11.2 MaxVersionType Property Usage Notes

See the VersionType section for details of the inherited attributes and elements [3.10].
· inclusive: The inclusive attribute allows the SDD author to choose the semantics of maximum version. Supported ranges are often everything equal to or greater than the minimum version and up to, but not including, the maximum version. Sometimes it is more convenient for the range to include the maximum version.

4.4.12 UniquenessConstraintType

[image: image51.png](O UniquenessConstraintType)

a sdd-dd:DescriptionGroup,
0.1

@ distinciResourceRef

Figure 42: UniquenessConstraintType structure.

A UniquenessConstraint is used to indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource instance during a particular deployment. A UniquenessConstraint indicates that the two resources MUST NOT be the same when it is defined in a ResourceConstraint element with testValue=“true”. A UniquenessConstraint indicates that the two resources MUST be the same when defined in a ResourceConstraint with testValue=“false”.

When no UniquenessConstraint is in scope for a particular pair of resources, the two resources MAY resolve to the same resource when their identifying characteristics are the same and when all in-scope constraints on both resources are satisfied.

The first of the pair of resources is identified in the resourceRef attribute of the ResourceConstraint element that defines the UniquenessConstraint. The second of the pair is identified in the distinctResourceRef attribute of the UniquenessConstraint.
4.4.12.1 UniquenessConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the uniqueness constraint, for example what must or must not be unique and why.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the uniqueness constraint.

	distinctResourceRef
	xsd:IDREF
	1
	One of the pair of resources referred to by the constraint.

4.4.12.2 UniquenessConstraintType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the uniqueness constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· distinctResourceRef: The second resource in the pair of resources.
The value MUST reference the id of a resource element in Topology.

4.4.13 RelationshipConstraintType

[image: image52.png](O RelationshipConstraintType) E—{(==-=s)

sdd-ddDescriptionGroup,
0.1

Property

e

[@ reiatedresourceRet

@ e

e e

Figure 43: RelationshipConstraintType structure.

A RelationshipConstraint identifies a particular relationship between two resources that is constrained in some way by the SDD. The value of the testValue attribute of the ResourceConstraint that contains the RelationshipConstraint determines whether the constraint MUST be satisfied or MUST NOT be satisfied.

The first resource of the pair is defined by the resourceRef attribute of the ResourceConstraint containing the RelationshipConstraint.
4.4.13.1 RelationshipConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the relationship and its purpose in the overall solution.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the relationship.

	Property
	PropertyType
	0..*
	A property constraint that further constrains the relationship.

	relatedResourceRef
	xsd:IDREF
	0..1
	The second resource in the relationship.

	type
	xsd:QName
	1
	The type of the relationship.

	
	xsd:anyAttribute
	0..*
	

4.4.13.2 RelationshipConstraintType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the relationship constraint on the resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· Property: This element MAY be used to provide additional constraints on the relationship.

For example, a connectivity relationship might specify additional information such as the specific protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, port number).

See the PropertyType section for structure and additional usage details [4.2.3].

· relatedResourceRef: Naming the second resource is optional. When it is not named, the relationship constraint is satisfied if the first resource has the defined relationship with any other resource.
When it is named, the value MUST reference the id of a resource element in Topology.

· type: Values for relationship type are not defined by the SDD specification.

4.5 Conditions

Conditions are expressed on characteristics of resources in the deployment environment. Conditions are used to indicate when particular elements of the SDD are applicable, or when they should be ignored. Conditions are not requirements. Failure to satisfy a condition does not indicate a failure; it simply means the conditioned element should be ignored. Conditions are used to:

· determine if a content element is applicable

· choose from among values for a variable

· determine when a feature is applicable

· determine when a particular result is applicable

· determine if a particular completion action is necessary.

Because conditions are always based on the characteristics of resources, they are expressed using resource constraints.
4.5.1 ConditionType
[image: image53.png](O CondtionType)&

2. sdd-dd:DisplayElementGroup,

— @ operation

e e

0.1

4)

Aternative

ResowrceCanstraint

T

F<> wraer

e

Figure 44: ConditionType structure.

ConditionType allows expression of the particular resource characteristics that must be true for the condition to be considered met. These are resource characteristics that may vary from one particular deployment to another.
For example, one deployment using the SDD might use one version of an application server and a different deployment might use a different version. The differences in the version might be great enough to:

· select among content elements.

For example, one content element has an artifact for a Web application that works in a particular version and a different content element has an artifact for a later version of the same Web application.

· select among variable values.

For example, the default installation path on one operating system may be different from the default install path on another operating system.

· select among completion actions.

For example, a reboot may be required when deploying on one operating system but not another.

4.5.1.1 ConditionType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the condition.

	Description
	DisplayTextType
	0..1
	Description of the condition.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the condition.

	Alternative
	AlternativeConditionalType
	0..*
	An alternative set of resource constraints.

	ResourceConstraint
	ConditionalResourceConstraintType
	0..*
	A set of constraints on one resource.

	
	xsd:any
	0..*
	

	operation
	OperationListType
	0..1
	The condition applies only when processing the artifact associated with this operation.

	
	xsd:anyAttribute
	0..*
	

4.5.1.2 ConditionType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the condition.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the condition.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Alternative: When a condition can be satisfied in multiple ways, two or more Alternative elements are defined.
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. This is semantically identical to directly defining ResourceConstraints.
To meet a condition, at least one of the specified Alternatives must be satisfied.

See the AlternativeConditionalType section for structure and additional usage details [4.5.2].
· ResourceConstraint: When a condition can be satisfied in only one way, constraints MAY be defined directly under Condition or in a single Alternative element.

Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence must be met for the condition to be met.
See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3].

· operation: In a singleton atomic content element, a condition MAY be associated with application of one or more artifacts. The association is made by setting the operation attribute to the operations associated with those artifacts.

Conditions defined for CompositeInstallable and for atomic content elements defined within a CompositeInstallable SHOULD NOT define operation. If the operation is defined for a CompositeInstallable Condition, it MUST be set to the operation defined in the CompositeInstallable’s operation attribute. If operation is defined for an atomic content element’s Condition, it MUST be set to the operation associated with the single artifact defined by the atomic content element.

When operation is not specified, the condition applies to the processing of all artifacts.

See the OperationListType section for operation enumerations and their meaning [4.3.6].
4.5.2 AlternativeConditionalType
[image: image54.png](O AkemativeCondtionaiType)+

sdd-dd:DisplayElementGroup,
0.1

ResowrceCanstraint

T

“Fo s
o

e

e e

Figure 45: AlternativeConditionalType structure.
When a condition can be met in more than one way, alternative sets of conditional resource constraints can be defined. AlternativeConditionalType provides the type definition for these elements.

4.5.2.1 AlternativeConditionalType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the alternative.

	Description
	DisplayTextType
	0..1
	Description for the alternative.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the alternative.

	ResourceConstraint
	ConditionalResourceConstraintType
	1..*
	 A set of constraints on one resource.

	
	xsd:any
	0..*
	

	id
	xsd:IDREF
	1
	Identifier for the alternative that is unique within the deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.5.2.2 AlternativeConditionalType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the alternative condition.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the alternative condition.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· ResourceConstraint: All constraints defined in the individual Alternative MUST be met for the Alternative condition to evaluate to true.

See the ConditionalResourceConstraintType section for structure and additional usage details [4.5.3].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
4.5.3 ConditionalResourceConstraintType
[image: image55.png](O _CondtionaResourceConstraintType)+ 2a sdd-dd:DisplayElementGroup

0.1

ame
0.1

VersonConstrait
0.1

PropertyConstraint

e

UniquenessConstraint

e

RelationshipConstraint

e

“Fo s

e

@ vesaurceRef

@ testvae

e e

Figure 46: ConditionalResourceConstraintType structure.
ConditionalResourceConstraintType provides the type definitions for the ResourceConstraint elements used in conditions. These constraints do not represent requirements for deployment. They identify the resource characteristics associated with a condition. Name, version, property and the existence or absence of the resource can be specified with a resource constraint used in a condition.
4.5.3.1 ConditionalResourceConstraintType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the resource constraint.

	Description
	DisplayTextType
	0..1
	Description for the resource constraint.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the resource constraint.

	Name
	VariableExpressionType
	0..1
	Name of the resource constraint.

	VersionConstraint
	VersionConstraintValueType
	0..1
	A resource version set.

	PropertyConstraint
	ConditionalPropertyConstraintType
	0..*
	A resource property name and required value.

	UniquenessConstraint
	UniquenessConstraintType
	0..*
	A required mapping of two resources in the topology to unique instances in the deployment environment.

	RelationshipConstraint
	RelationshipConstraintType
	0..*
	A required relationship between the resource identified in the resourceRef and another resource in the topology.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Identifier for the resource constraint that is unique within the deployment descriptor.

	resourceRef
	xsd:IDREF
	1
	The resource to which the conditions apply.

	testValue
	xsd:boolean
	0..1
	The result of evaluating the contained constraints, which will result in the ResourceConstraint being met.

**default value=“true”

	
	xsd:anyAttribute
	0..*
	

4.5.3.2 ConditionalResourceConstraintType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the resource constraint.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the resource constraint.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Name: The name of the resource identified by resourceRef. If the resource name is defined in topology it SHOULD NOT be defined here. If it is defined in both places, the one defined in the condition is used when evaluating the condition.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· VersionConstraint: The actual version of the resource MUST be one of the set of versions defined here for the version condition to be considered met.

See the VersionConstraintValueType section for structure and additional usage details [4.4.8].

· PropertyConstraint: The actual value of the property MUST match the value defined here for the condition to be considered met.

See the ConditionalPropertyConstraintType section for structure and additional usage details [4.5.4].

· UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource instance during a particular deployment.
See the UniquenessConstraintType section for structure and additional usage details [4.4.12].

· RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to indicate a constraint on a particular relationship between resources.
See the RelationshipConstraintType section for structure and additional usage details [4.4.13].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· resourceRef: The version and property constraints defined here all apply to the one resource specification in topology identified by this attribute.
The value MUST reference the id of that resource element in Topology.

· testValue: When the result of evaluating Name and all of the constraints defined in the ResourceConstraint matches the value of testValue, the ResourceConstraint is considered met.

When no name, version or property constraints are defined, and testValue is “true”, the constraint is met if the resource exists as defined in topology.

When no name, version or property constraints are defined, and testValue is “false”, the constraint is met if the resource, as defined in topology, does not exist.

4.5.4 ConditionalPropertyConstraintType

[image: image56.png](O _CondtionalPropertyConstraintType)

2. sdd-dd:DescriptionGroup
0.1

Propertyliame

D=

Lstofvalues

Figure 47: ConditionalPropertyConstraintType structure.

ConditionalPropertyConstraintType provides the type definition for a PropertyConstraint included within Alternatives specified in Condition elements. The ConditionalPropertyConstraintType is very similar to the PropertyConstraintType; the only difference is that the Value element defined in the ConditionalPropertyConstraintType is of type xsd:string which is less restrictive than the Value element defined in the PropertyConstraintType which is of VariableExpressionType.
4.5.4.1 ConditionalPropertyConstraintType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A description of the property constraint. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the property constraint.

	PropertyName
	xsd:QName
	1
	Name of the constrained property.

	Value
	xsd:string
	0..1
	Required property value.

	ListOfValues
	PropertyValueListType
	0..1
	List of required property values.

4.5.4.2 ConditionalPropertyConstraintType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the PropertyConstraint element.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· PropertyName: The property name can be used to find the property value in the deployment environment. The name may be defined in a profile [5.3].

· Value: In a condition, the value used in a property constraint is a string rather than a variable expression.

· ListOfValues: A list of required values can be defined in place of a single required value.

See the PropertyValueListType section for structure and additional usage details [4.4.6].
4.6 Variables
Variables provide a means to associate user inputs, resource property values, fixed strings and values derived from these with input arguments for artifacts and with constraints on resources.
4.6.1 VariableExpressionType

[image: image57.png]([7_VarizbleExpressionType)& X restricts: takenjB-[pattern : (4TI ($1a-2A-2_1+[0-9a-28-2 TP

Figure 48: VariableExpressionType structure.

Variable expressions are used in many places in the SDD. They allow the value of a variable to be used as all, or part of, the value of some other SDD element. A variable expression is a string that can include a reference to a variable. The string is evaluated by replacing all references to variables with the value of the variable. A variable reference is a variable id placed inside parentheses preceded by a dollar sign.

For example, the variable expression “C:\Program Files\$(InstallDirectory)” resolves to “C:\Program Files\Acme Software Product” if the value of the variable with the id “InstallDirectory” has the value “Acme Software Product”.

The value of a variable that is replaced into a variable expression can itself have a variable reference. This reference is resolved before using the value. This nesting of variable expressions is unlimited. Any number of variable references can be used in a variable expression. If a variable expression string does not contain a variable reference, it is used as is.

A variable is considered defined if it has a value provided, even if that value is the empty string. A variable expression is considered valid if it contains no variable references, or if all contained variable references are defined.

Specifically, a ResourceProperty variable is undefined when the resource does not participate in the particular deployment or when the specified property has no value. A Parameter variable is undefined when it has no default value and has no value provided by the deployer. A DerivedVariable that uses ConditionalExpression elements is undefined when none of its conditions evaluates to true, or the selected condition's value expression is not valid. A DerivedVariable that uses an unconditioned Expression is undefined when its value expression is undefined.
To avoid an undefined Parameter variable, default parameter values may be used. To avoid an undefined ResourceProperty variable, replace references to the ResourceProperty variable with references to a DerivedVariable defined to provide a default value in cases where the ResourceProperty is undefined. This DerivedVariable would define one expression, conditioned on the resource, that refers to the ResourceProperty variable and another, low priority, catch-all expression that defines the desired “default” value. Note that the default value in either of these cases MAY be an empty string, for example, “”. An empty string acts just like any other defined variable value. When the provided value of a variable is an empty string, the variable reference in a variable expression is replaced by an empty string.
4.6.2 BaseVariableType

[image: image58.png]sd-ddDescriptionGrouy
0.1

(O BasevariableType)it

e

@ et

Figure 49: BaseVariableType structure.

BaseVariableType is the base type of the DerivedVariable and ResourceProperty elements defined by VariablesType [4.6.3]. It provides the id attribute, which is used to reference the variable in a variable expression.
4.6.2.1 BaseVariableType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	Description of the variable.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the variable.

	id
	xsd:ID
	1
	Identifier used for referencing the variable within the descriptor.

	sensitive
	xsd:boolean
	0..1
	A “true” value indicates the variable contains sensitive data.

**default value=“false”

4.6.2.2 BaseVariableType Property Usage Notes
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the variable.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· id: Variables may be referenced in deployment descriptor elements of type VariableExpression within the scope of the variable. The scope of the variable includes the content element where defined and all nested content elements. Variables defined in the top level content element are also visible in Topology. The Variable is referenced by placing the variable id within parentheses preceded by a dollar sign.

For example, a variable with id value “InstallLocation” is referenced with the string “$(InstallLocation)”.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely to be considered sensitive. User name and password are examples of data that may be considered sensitive.
For example, sensitive data typically would not be displayed in a user interface, written to a log file, stored without protection, or in any way made visible except to authorized users.

The default value is “false”.
4.6.3 VariablesType

[image: image59.png](O variablesType.]a_wa

Parameters

=y

ResourceProperty

Derivedvariable

F<> wraer

Do

Figure 50: VariablesType structure.

There are three types of variables that can be defined in a content element: input parameter variables, variables that take the value of a resource property, and variables whose value is derived from a variable expression.

A variable is in scope for a particular deployment when the content element that defines the variable is in scope for that deployment.

4.6.3.1 VariablesType Property Summary
	Name
	Type
	*
	Description

	Parameters
	ParametersType
	0..*
	A list of variables whose values can be supplied as input to the deployment process.

	ResourceProperty
	ResourcePropertyType
	0..*
	A variable whose value is set from the value of a resource property.

	DerivedVariable
	DerivedVariableType
	0..*
	A set of expressions with optional associated conditions. The DerivedVariable’s value is determined by evaluating the conditions and then setting the variable value to the result of the top priority expression from the set of expressions whose conditions evaluate to true.

	
	xsd:any
	0..*
	

4.6.3.2 VariablesType Property Usage Notes
· Parameters: See the ParametersType section for structure and additional usage details [4.6.4].

· ResourceProperty: See the ResourcePropertyType section for structure and additional usage details [4.6.12].

· DerivedVariable: See the DerivedVariableType section for structure and additional usage details [4.6.13].
4.6.4 ParametersType

[image: image60.png](O ParametersType]a_wa

IntegerParameter

=y

Stringparameter

BooleanParameter

URIParameter

F<> wraer

Do

Figure 51: ParametersType structure.

Parameters are variables whose value is expected to be received as input to the deployment process. The SDD author can specify multiple specific types of parameters, including validation rules for the values of the parameters.
4.6.4.1 ParametersType Property Summary
	Name
	Type
	*
	Description

	IntegerParameter
	IntegerParameterType
	0..*
	An integer input parameter.

	StringParameter
	StringParameterType
	0..*
	A string input parameter.

	BooleanParameter
	BooleanParameterType
	0..*
	A boolean input parameter.

	URIParameter
	URIParameterType
	0..*
	A Universal Resource Identifier input parameter.

	
	xsd:any
	0..*
	

4.6.4.2 ParametersType Property Usage Notes
· IntegerParameter: See the IntegerParameterType section for structure and additional usage details [4.6.6].

· StringParameter: See the StringParameterType section for structure and additional usage details [4.6.8].

· BooleanParameter: See the BooleanParameterType section for structure and additional usage details [4.6.10].

· URIParameter: See the URIParameterType section for structure and additional usage details [4.6.11].

4.6.5 BaseParameterType

[image: image61.png](O BassParameterType)y

sdd-dd:DisplayElementGroup,

defaultiaiue

Senstive

required

operation

0.1

Figure 52: BaseParameterType structure.

BaseParameterType provides a default value, along with other attributes used by all parameter types. It also provides the id attribute, which is used to reference the parameter in variable expressions.
4.6.5.1 BaseParameterType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the parameter.

	Description
	DisplayTextType
	0..1
	Description of the parameter.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the parameter.

	id
	xsd:ID
	1
	Identifier used for referencing the variable within the descriptor.

	defaultValue
	VariableExpressionType
	0..1
	Default value for the parameter.

	sensitive
	xsd:boolean
	0..1
	A “true” value indicates the variable contains sensitive data.

**default value=“false”

	required
	xsd:boolean
	0..1
	A “true” value indicates that a value for the parameter must be provided.

**default value=“true”

	operation
	OperationListType
	0..1
	The parameter is used when the specified operation(s) is (are) performed.

4.6.5.2 BaseParameterType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the parameter.
See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the parameter.
These elements may be used to assist the deployer in understanding the purpose and expected values for the parameters.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· id: Parameters may be referenced in DeploymentDescriptor elements of type VariableExpression within the scope of the parameter variable. The scope of the variable includes the content element where the variable is defined and all nested content elements. Variables defined in the top level content element are also visible in Topology. The Variable is referenced by placing the variable id within parentheses preceded by a dollar sign.

For example, a variable with id value “InstallLocation” is referenced with the string “$(InstallLocation)”.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· defaultValue: The defaultValue is used if no other value is provided as input to the deployment process.

The value is interpreted based on the type of the defining parameter.

For example, the defaultValue for a BooleanParameter must be either “true” or “false”; the defaultValue for a StringParameter must be a string; etc.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

· sensitive: The sensitive attribute provides an indication of whether the data within a variable is likely to be considered sensitive. User name and password are examples of data that may be considered sensitive.
For example, sensitive data typically would not be displayed in a user interface, written to a log file, stored without protection, or in any way made visible except to authorized users.

· required: A “true” value for required indicates that a value for the parameter must be provided when the parameter is in scope for a particular deployment.
In cases where the parameter should be ignored when the value expression is not valid for a particular deployment, set required to "false".
A “false” value for the required attribute has no effect when defaultValue is set.

· operation: This attribute enables unique parameters to be defined per operation. Note that the use of a parameter for a particular operation is determined by a reference to the parameter in a variable expression or artifact argument used when performing that operation. The operation(s) associated with a parameter’s use can be determined by examining its use in the SDD. The operation attribute provides a quick way to know which operation(s) will use the parameter without having to examine the use of the parameter.

All parameters defined within a CompositeInstallable are associated with the single operation supported by the CompositeInstallalbe. The operation attribute SHOULD NOT be set in this situation.
See the OperationListType section for operation enumerations and their meaning [4.3.6].

4.6.6 IntegerParameterType

[image: image62.png](O IntegerarameterType)i

(&)

=}

D> extends: sdd-dd:BaseParameterType)EF

Bounds.

|

e

& s

(O w3,

sdd-dd DisplayElementGroup,

01

@ defaitvaiue

@ Sensitve

@ reauired

@ operation

Figure 53: IntegerParameterType structure.

IntegerParameterType defines upper and lower bounds that can be used to validate the input received for that parameter.
4.6.6.1 IntegerParameterType Property Summary
	Name
	Type
	*
	Description

	
	[extends] BaseParameterType
	
	See the BaseParameterType section for additional properties [4.6.5].

	Bounds
	BoundaryType
	0..*
	Specifies the boundaries for the value of the parameter.

	
	xsd:anyAttribute
	0..*
	

4.6.6.2 IntegerParameterType Property Usage Notes

See the BaseParameterType section for details of the inherited attributes and elements [4.6.5].
· Bounds: If there are restrictions on the range of values that are valid for a parameter, those restrictions MUST be specified in Bounds.
See the BoundaryType section for structure and additional usage details [4.6.7].

4.6.7 BoundaryType

[image: image63.png]LowerBound

0.1

(O BoundaryType)&+ .“.)E,[

UpperBound

ol

Figure 54: BoundaryType structure.

BoundaryType defines upper and lower bounds that can be used to validate the input received for that parameter.
4.6.7.1 BoundaryType Property Summary
	Name
	Type
	*
	Description

	LowerBound
	VariableExpressionType
	0..1
	Lowest valid value for the parameter.

	UpperBound
	VariableExpressionType
	0..1
	Highest valid value for the parameter.

4.6.7.2 BoundaryType Property Usage Notes
· LowerBound: This variable expression MUST resolve to an integer.

If no LowerBound is specified, no integer value is too low.

A LowerBound of “0” restricts the integer parameter to positive integer values.
See the VariableExpressionType section for structure and additional usage details [4.6.1].

· UpperBound: This variable expression MUST resolve to an integer.

If no UpperBound is specified, no integer value is too high.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

4.6.8 StringParameterType

[image: image64.png](O StringParameterTyps)&+ CH > E——(4D extends: sdd-dd:BaseParameterType)Ty Walidvalue

e

@ minLengih

@ maxengih

@ e

b o wter

sdd-dd DisplayElementaro
01

(T sorwmaaine o,

@ defaitvaiue

@ Sensitve

@ reauired

@ operation

Figure 55: StringParameterType structure.

StringParameterType supports definition of minimum and maximum lengths that can be used to validate the input received for the string parameter. It also supports definition of a list of valid input values.
4.6.8.1 StringParameterType Property Summary
	Name
	Type
	*
	Description

	
	[extends] BaseParameterType
	
	See the BaseParameterType section for additional properties [4.6.5].

	ValidValue
	xsd:string
	0..*
	A string representing one valid value for the parameter.

	minLength
	xsd:positiveInteger
	0..1
	Minimum length of the parameter value.

	maxLength
	xsd:positiveInteger
	0..1
	Maximum length of the parameter value.

	case
	StringCaseType
	0..1
	The case of the string–“upper”, “lower” or “mixed”.

**default value=“mixed”

	
	xsd:anyAttribute
	0..*
	

4.6.8.2 StringParameterType Property Usage Notes

See the BaseParameterType section for details of the inherited attributes and elements [4.6.5].
· ValidValue: Any number of valid values for the parameter can be listed using ValidValue elements.
When both defaultValue and one or more ValidValues are specified, defaultValue MUST match one of the ValidValues.

ValidValues should be in the correct case as identified in the case attribute.
· minLength: When no minimum length is specified, no string is too short, including an empty string.

· maxLength: When no maximum length is specified, no string is too long.

· case: Used when the case of the string is restricted. Defaults to mixed if not defined.

See the StringCaseType section for enumeration values and their meaning [4.6.9].

4.6.9 StringCaseType
StringCaseType defines the enumeration values for specifying case restrictions on a string parameter.
4.6.9.1 StringCaseType Property Usage Notes
· lower: The string MUST be lower case.

· upper: The string MUST be upper case.

· mixed: The string SHOULD be mixed case.

4.6.10 BooleanParameterType

[image: image65.png](O BooleanParamsterType)&+ P > extends: sdd-dd: BasePavametevaejE—E §@ #other

sdd-dd DisplayElementGroup,
01

(O w3,

@ defaitvaiue

@ Sensitve

@ reauired

@ operation

Figure 56: BooleanParameterType structure.

BooleanParameterType extends BaseParameterType without adding any additional attributes or elements. When the defaultValue attribute is defined for a boolean parameter, its value MUST be either “true” or “false”. See the BaseParameterType section for details of the inherited attributes and elements [4.6.5].
4.6.10.1 BooleanParameterType Property Summary
	Name
	Type
	*
	Description

	
	[extends] BaseParameterType
	
	See the BaseParameterType section for additional properties [4.6.5].

	
	xsd:anyAttribute
	0..*
	

4.6.11 URIParameterType

[image: image66.png](O URIParameterType)

P > B D> extends: sdd-dd: BasePavametevaejB—E §@ #other

(O sasearametertype)

. sod-ad:DisplayElementGrou
01

@ defaitvaiue

@ Sensitve

@ reauired

@ operation

Figure 57: URIParameterType structure.

When the default value attribute is specified for a URI parameter, its value MUST be a valid Uniform Resource Identifier. See the BaseParameterType section for details of the inherited attributes and elements [4.6.5].
4.6.11.1 URIParameterType Property Summary

	Name
	Type
	*
	Description

	
	[extends] BaseParameterType
	
	See the BaseParameterType section for additional properties [4.6.5].

	
	xsd:anyAttribute
	0..*
	

4.6.12 ResourcePropertyType

[image: image67.png](O ResourcePropertyType e+ (Epl=; 4D extends: sdd-dd:BasevariableType) { @ resourceRef

@ ropertytiame

b o wter

sdd-dd DescriptionGrouy
01

(O sasevarislerype)iy

e

@ Sensitve

Figure 58: ResourcePropertyType structure.

ResourcePropertyType provides the type definition for the ResourceProperty element of VariablesType [4.6.3]. ResourceProperty is a variable whose value is set from the property of a specific instance of a resource during a particular solution deployment. All content elements can define ResourceProperty elements.
4.6.12.1 ResourcePropertyType Property Summary
	Name
	Type
	*
	Description

	
	[extends] BaseVariableType
	
	See the BaseVariableType section for additional properties [4.6.2].

	resourceRef
	xsd:IDREF
	1
	The resource in Topology that owns the property.

	propertyName
	xsd:QName
	1
	Name of the property whose value provides the variable’s values.

	
	xsd:anyAttribute
	0..*
	

4.6.12.2 ResourcePropertyType Property Usage Notes

See the BaseVariableType section for details of the inherited attributes and elements [4.6.2].
· resourceRef: The resourceRef attribute MUST identify the resource in Topology that owns the property and will provide the value for ResourceProperty.

· propertyName: The propertyName attribute identifies the name of the resource property whose value is to be used as the value of ResourceProperty.

4.6.13 DerivedVariableType

[image: image68.png](O DerivedvariableType)& CH > E——{ D extends: sdd-dd:BaseVariableType) JE a-[Expression

CondiionalExpression

T

sdd-dd DescriptionGrouy
01

(O sasevarislerype)iy

e

@ Sensitve

Figure 59: DerivedVariableType structure.

A DerivedVariable defines a series of expressions with optional conditions. The value of the variable is determined by evaluating the boolean conditions and then setting the variable to the result of the top priority expression from the set of expressions whose conditions evaluate to true. This restriction does not apply to variables of the same name in different descriptors. The SDD author MUST create DerivedVariables in a way that makes the selection of the expression unambiguous.
4.6.13.1 DerivedVariableType Property Summary
	Name
	Type
	*
	Description

	
	[extends] BaseVariableType
	
	See the BaseVariableType section for additional properties [4.6.2].

	Expression
	VariableExpressionType
	1
	An expression whose results become the value of the variable.

	ConditionalExpression
	ConditionalDerivedVariableExpressionType
	1..*
	An expression and an associated condition.

4.6.13.2 DerivedVariableType Property Usage Notes

See the BaseVariableType section for details of the inherited attributes and elements [4.6.2].
· Expression: When the DerivedVariable is used to define one variable whose value is not conditional, the SDD author can include one variable expression defined in one Expression element.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

· ConditionalExpression: When the variable will take one of a number of possible values depending on the characteristics of the resources that participate in the particular deployment, then one ConditionalExpression element is defined for each value-condition pair.

See the ConditionalDerivedVariableExpressionType section for structure and additional usage details [4.6.14].
4.6.14 ConditionalDerivedVariableExpressionType
[image: image69.png]Condition

(u] cand‘t‘ana\De,‘veMmﬁeExmessMe)EL

@ prorty

ge

Expression

Figure 60: ConditionalDerivedVariableExpressionType structure.

ConditionalDerivedVariableExpressionType is the type of the ConditionalExpression elements in derived variables. These elements associate a condition with a variable expression.
4.6.14.1 ConditionalDerivedVariableExpressionType Property Summary
	Name
	Type
	*
	Description

	Condition
	ConditionType
	1
	A set of resource characteristics that are evaluated to determine if the associated expression is a candidate for determining the value of the derived variable.

	Expression
	VariableExpressionType
	1
	Evaluation of this expression produces a candidate value for the derived variable.

	priority
	xsd:positiveInteger
	0..1
	A priority used as a tie-breaker when multiple expressions are available to determine the value of the variable.

**default value=“1”

4.6.14.2 ConditionalDerivedVariableExpressionType Property Usage Notes
· Condition: Selection of conditioned expressions is based on the characteristics of one or more resources that participate in a particular solution deployment. These characteristics are defined in the Condition element.

See the ConditionType section for structure and additional usage details [4.5.1].

· Expression: The Expression element contains the expressions that evaluate to a potential value of the DerivedVariable. Only one expression will be selected for use in a particular solution deployment.
See the VariableExpressionType section for structure and additional usage details [4.6.1].

· priority: When multiple conditions evaluate to true for a particular deployment, the expression chosen is determined by the priority value. A higher priority is indicated by a lower value. “1” is the highest priority.

4.7 Requirements

Requirements are defined by content elements. A Requirement consists of resource constraints that the SDD author states MUST be met prior to successful deployment or use of the software described by the SDD package. Each Requirement definition lists one or more deployment lifecycle operations to which the Requirement applies. When the Requirement is specified in an atomic content element, the operation associates the Requirement with artifacts within the atomic content element. (See the OperationType section for the mapping between operations and artifacts [4.3.7]. Note that the use operation indicates that the Requirement is associated with running of the software after deployment and not with content element artifacts.) When the Requirement is specified in a CompositeUnit or CompositeInstallable, the operation value MUST either be use or be the same top level operation as defined in the CompositeInstallable element. When the Requirement is specified for a ReferencedPackage, the operation associates the Requirement with a top level operation within the referenced SDD.

All Requirements specified for content elements that are in scope for a particular deployment MUST be met.

When a Requirement can be satisfied in more than one way, Alternatives can be defined within a Requirement. A Requirement is considered met when any one of the Alternatives is satisfied.
4.7.1 RequirementsType
[image: image70.png](O ReauirsmentsType JE+

)]

Requirement.

T

Figure 61: RequirementsType structure.

RequirementsType provides the type definition for Requirements in InstallableUnit and LocalizationUnit elements. It defines a list of Requirement elements.
4.7.1.1 RequirementsType Property Summary

	Name
	Type
	*
	Description

	Requirement
	RequirementType
	1..*
	A requirement that must be met prior to processing the defining content element’s artifacts.

4.7.1.2 RequirementsType Property Usage Notes

· Requirement: The Requirements element contains a sequence of Requirement elements. The Requirement elements define requirements that MUST be met prior to successful processing of the content element’s artifacts.
See the RequirementType section for structure and additional usage details [4.7.2].
4.7.2 RequirementType

[image: image71.png](O ReguirementType)

2. sdd-dd:DisplayElementGroup,
0.1

=

=
4
=

Dependency

L

F<> wraer

e

— @ operation

e e

Figure 62: RequirementType structure.

A Requirement either directly defines a single set of resource constraints that MUST be met or defines one or more alternative sets of resource constraints, only one of which MUST be met.
When multiple Requirement elements are declared for the same operation, all MUST be met prior to processing the associated artifact.

The association is made between a requirement and an artifact via the operation attribute.
4.7.2.1 RequirementType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the requirement.

	Description
	DisplayTextType
	0..1
	Description of the requirement.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the requirement.

	Alternative
	AlternativeRequirementType
	0..*
	An alternative that can satisfy the requirement.

	ResourceConstraint
	RequirementResourceConstraintType
	0..*
	A set of constraints on one resource.

	Dependency
	InternalDependencyType
	0..*
	A dependency on another content element.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Identifier for requirement scoped to the deployment descriptor.

	operation
	OperationListType
	1
	Requirement must be met before this operation is performed.

	
	xsd:anyAttribute
	0..*
	

4.7.2.2 RequirementType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the requirement.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the requirement.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Alternative: Alternative elements are used when a requirement can be satisfied in multiple ways.
As a convenience for tooling that produces SDDs, it is also possible to define a single Alternative. This is semantically identical to directly defining ResourceConstraints under Requirements.
To satisfy a requirement, at least one of the specified alternatives MUST be satisfied.

See the AlternativeRequirementType section for structure and additional usage details [4.7.3].
· ResourceConstraint: When a requirement can be satisfied in only one way, constraints MAY be defined directly under Requirement or in a single Alternative element.

Constraints are defined using a sequence of ResourceConstraints. Every constraint in the sequence MUST be met for the requirement to be met.
See the RequirementResourceConstraintType section for structure and additional usage details [4.7.5].

· Dependency: When one content element must be processed before another for any reason, a pre-req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of an output variable from one artifact as an argument to another; the deployment of a resource before it is configured; and the configuration of a resource before deployment of another resource that depends on it.

See the InternalDependencyType section for structure and additional usage details [4.7.6].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· operation: A Requirement is associated with application of one or more operations by setting its operation attribute value to one of the enumerated values defined in OperationListType [4.3.6].
If the Requirement is not a pre-requisite for application of an operation, but rather is required before the resulting resources are considered usable, then the value SHOULD be set to use. (Note that a completion action may also be required before a resulting resource is considered usable. See the CompletionType section [4.3.14].)
The value of operation for a Requirement defined in an atomic content element MUST be set either to use or to an operation that is associated with an artifact element defined in the content element’s Artifacts. The operation value(s) associate the Requirement with one or more artifact(s).
When the Requirement is specified in a CompositeUnit or CompositeInstallable, the operation value MUST be set either to use or be the same top level operation as defined in the CompositeInstallable element.

There is no default value for operation. The SDD author must define it explicitly.

See the OperationType section for enumeration values and their meaning [4.3.7].
4.7.3 AlternativeRequirementType
[image: image72.png](O AternativeRequrementType) B 2a sdd-dd:DisplayElementGroup
o1
ResouceConstrant
i1y
e Dependency

“Fo s

e

@ prioity

e e

Figure 63: AlternativeRequirementType structure.

AlternativeRequirementType provides the type definition for Alternative elements used within requirements to define alternative sets of resource constraints that will satisfy the requirement.
4.7.3.1 AlternativeRequirementType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the alternative.

	Description
	DisplayTextType
	0..1
	Description of the alternative.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the alternative.

	ResourceConstraint
	RequirementResourceConstraintType
	1..*
	A set of requirements on one resource.

	Dependency
	InternalDependencyType
	0..*
	A dependency on another content element.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Identifier for the alternative scoped to the deployment descriptor.

	priority
	xsd:positiveInteger
	0..1
	Assists in determining alternative selected when multiple alternatives evaluate to true.

**default value=“1”

	
	xsd:anyAttribute
	0..*
	

4.7.3.2 AlternativeRequirementType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the alternative requirement.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the alternative requirement.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· ResourceConstraint: Every ResourceConstraint defined in a single Alternative MUST be met for the alternative requirement to be considered satisfied.
See the RequirementResourceConstraintType section for structure and additional usage details [4.7.5].

· Dependency: When one content element must be processed before another for any reason, a pre-req type Dependency MUST be defined. Reasons for a pre-requisite dependency include the use of an output variable from one artifact as an argument to another; the deployment of a resource before it is configured; and the configuration of a resource before deployment of another resource that depends on it.

See the InternalDependencyType section for structure and additional usage details [4.7.6].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of the alternatives. A lower number represents a higher priority with “1” representing the highest priority. Other inputs may also be used to select an alternative. The criteria for making this selection are outside of the scope of the SDD.
4.7.4 ResourceConstraintGroup

[image: image73.png]ResourceConstraintGroup a_wa CapacityConstraint

ConsumptionConstraint

PropertyConstraint

VersonConstrait

UniquenessConstraint

RelationshipConstraint

“Fo s

Do

Figure 64: ResourceConstraintGroup structure.

The elements of ResourceConstraintGroup are used when defining content element requirements on resources. The ResourceConstraint element is used to group one or more constraints on a single resource.
4.7.4.1 ResourceConstraintGroup Property Summary

	Name
	Type
	*
	Description

	CapacityConstraint
	CapacityConstraintType
	0..1
	A bound on a quantifiable property of a resource.

	ConsumptionConstraint
	ConsumptionConstraintType
	0..1
	A required quantity of a property of a resource in any state.

	PropertyConstraint
	PropertyConstraintType
	0..1
	A required value or set of values of a property.

	VersionConstraint
	VersionConstraintType
	0..1
	A required value or set of values of a version property.

	UniquenessConstraint
	UniquenessConstraintType
	0..1
	A required mapping of two resources in the topology to unique instances in the deployment environment.

	RelationshipConstraint
	RelationshipConstraintType
	0..1
	A required relationship between the resource identified in the resourceRef and another resource in the topology.

	
	xsd:any
	0..*
	

4.7.4.2 ResourceConstraintGroup Property Usage Notes

· CapacityConstraint: CapacityConstraint elements are used in ResourceConstraints to express constraints on the available capacity of a particular property of a particular resource.
A CapacityConstraint tests a numeric value representing a bound on a quantifiable property of a resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) bound. This constraint differs from a ConsumptionConstraint in that it is comparative, not cumulative.
When multiple CapacityConstraint elements are defined by content elements participating in a particular solution deployment apply to the same property of the same resource, the most restrictive constraint applies.
See the CapacityConstraintType section for structure and additional usage details [4.4.1].

· ConsumptionConstraint: ConsumptionConstraint elements are used in ResourceConstraints to express constraints on the quantity of a particular property of a specific resource that is available for consumption.
A ConsumptionConstraint defines a required quantity of a consumable resource property. The ConsumptionConstraint is cumulative rather than comparative.
An example of a consumable resource property is the disk space property of a file system resource.
When multiple ConsumptionConstraint elements are defined for the same resource by content elements participating in a particular solution deployment, the sum of all the expressed consumption constraints must be met by the resource.
See the ConsumptionConstraintType section for structure and additional usage details [4.4.3].

· PropertyConstraint: PropertyConstraint elements are used in ResourceConstraints to indicate that specific resource properties must have a specific value or set of values.
See the PropertyConstraintType section for structure and additional usage details [4.4.5].

· VersionConstraint: VersionConstraint elements are used in ResourceConstraints to express a constraint on the version of a specific resource.
A VersionConstraint defines a required resource version or a range of versions. It MAY include a certified version or range of versions representing a more restrictive set of versions whose use carries a higher degree of confidence.

Version formats and comparison rules vary greatly. The SDD does not provide information on how to interpret version strings.

See the VersionConstraintType section for structure and additional usage details [4.4.7].
· UniquenessConstraint: UniquenessConstraint elements are used in ResourceConstraints to indicate when two resources defined in topology MUST or MUST NOT resolve to the same resource instance during a particular deployment.

See the UniquenessConstraintType section for structure and additional usage details [4.4.12].
· RelationshipConstraint: RelationshipConstraint elements are used in ResourceConstraints to indicate a constraint on a particular relationship between resources.
See the RelationshipConstraintType section for structure and additional usage details [4.4.13].
4.7.5 RequirementResourceConstraintType
[image: image74.png](O ReguirementResourceConstraintType)|

w_sdd-dd:DisplayElementGroup,

{@ teatvaiue

@ vesaurceRef

& s

ame

0.1

0.1

dResourceCanstrantGroup

e

Figure 65: RequirementResourceConstraintType structure.

ResourceConstraintType provides the Type section for the ResourceConstraint element in content element Requirements. A ResourceConstraint is a set of zero or more constraints on one resource.
4.7.5.1 RequirementResourceConstraintType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name for the resource constraint.

	Description
	DisplayTextType
	0..1
	Description of the resource constraint.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the resource constraint.

	Name
	VariableExpressionType
	0..1
	The name of the resource.

	CapacityConstraint
	CapacityConstraintType
	0..1
	A capacity constraint that applies to the resource identified in resourceRef.

	ConsumptionConstraint
	ConsumptionConstraintType
	0..1
	A consumption constraint that applies to the resource identified in resourceRef.

	PropertyConstraint
	PropertyConstraintType
	0..1
	A property constraint that applies to the resource identified in resourceRef.

	VersionConstraint
	VersionConstraintType
	0..1
	A version constraint that applies to the resource identified in resourceRef.

	UniquenessConstraint
	UniquenessConstraintType
	0..1
	A required mapping of two resources in the topology to unique instances in the deployment environment.

	RelationshipConstraint
	RelationshipConstraintType
	0..1
	A required relationship between the resource identified in the resourceRef and another resource in the topology.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Identifier for the ResourceConstraint scoped to the deployment descriptor.

	resourceRef
	xsd:IDREF
	1
	Reference to a resource specification in topology.

	testValue
	xsd:boolean
	0..1
	Indicates whether the ResourceConstraint must evaluate to true or to false.

**default value=“true”.

	
	xsd:anyAttribute
	0..*
	

4.7.5.2 RequirementResourceConstraintType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the resource constraint.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the resource constraint.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Name: This name is used to identify the resource in the deployment environment. If the resource identified by resourceRef does not have the name defined here, then the constraint is not met.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· CapacityConstraint, ConsumptionConstraint, PropertyConstraint, VersionConstraint, UniquenessConstraint, RelationshipConstraint: See the ResourceConstraintGroup section for structure and additional usage of the individual constraints [4.7.4].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· resourceRef: This is the resource to which the constraints apply.
This reference MUST refer to the id of a resource in Topology.

· testValue: When the result of evaluating Name and all of the constraints defined in the ResourceConstraint matches the value of testValue, the ResourceConstraint is considered met.

When no Name or constraints are defined, and testValue is “true”, the constraint is met if the resource exists as defined in topology.

When no Name or constraints are defined, and testValue is “false”, the constraint is met if the resource, as defined in topology, does not exist.
4.7.6 InternalDependencyType

 [image: image75.png](O InternalbependencyType)ty

sdd-ddDescriptionGroup,

@ e

@ cartenteiementref

[@ cartenteementraf

e e

0.1

Operation

Figure 66: InternalDependencyType structure.

InternalDependencyType provides the type definition for Dependency elements defined in all types of content elements. Dependency elements allow the expression of dependence on the application of a particular operation to a content element defined in the deployment descriptor before application of a particular operation on the defining content element. The dependency is associated with an operation on the defining content element by the operation attribute in the Requirement defining the Dependency element. The dependency is associated with an operation on the depended on content element by the contentRefOperation attribute in the Dependency. There are three types of dependencies: pre-requisites, co-requisites and ex-requisites.
4.7.6.1 InternalDependencyType Property Summary
	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	A human-understandable description of the dependency.

	ShortDescription
	DisplayTextType
	0..1
	A short human-understandable description of the dependency.

	type
	DependencyType
	0..1
	Type can be “pre-req”, “co-req”, or “ex-req”.

**default value=“pre-req”

	contentElementRef
	xsd:IDREF
	1
	A reference to the content element which is depended on.

	contentElementRefOperation
	OperationListType
	0..1
	The dependency is on application of this operation to the content element identified in contentRef.

	
	xsd:anyAttribute
	0..*
	

4.7.6.2 InternalDependencyType Property Usage Notes
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the dependency.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· type: See the DependencyType section for an explanation of the semantics of each of the possible dependency types [4.7.7].
· contentElementRef: The contentElementRef value is the id of the content element that is depended on.
The value MUST reference the id of a content element.

· contentElementRefOperation: When the depended-on content element is an atomic content element, the operation defined here effectively identifies the artifact that must be processed for a pre-requisite or co-requisite or not processed for an ex-requisite.

When the depended-on content element is a CompositeUnit, the operation defined in contentElementRefOperation MUST be the top level operation defined by the containing CompositeInstallable.

See the OperationListType section for structure and additional usage details [4.3.6].
4.7.7 DependencyType

The DependencyType enumeration provides the value for the type attribute in Dependency elements.
4.7.7.1 DependencyType Property Usage Notes
· pre-req: A pre-req dependency is satisfied if the other content element is in scope for the deployment. The pre-req indicates that the other content element MUST be processed before the content element that defines the pre-req.

The dependency is not met if the other content element is not in scope.

· co-req: A co-req dependency is satisfied if the other content element is in scope for the deployment. There is no dependence on order of processing.

The dependency is not met if the other content element is not in scope.

· ex-req: An ex-req dependency indicates that the other content element MUST NOT be in scope.
The dependency is not met if the other content element is in scope.

4.7.8 RequiredBaseType

[image: image76.png](O ReauiredsaseType)+

sdd-ddDisplayElementGrouy

& s

0.1

4)

Aternative

ResowrceCanstraint

T

F<> wraer

e

Figure 67: RequiredBaseType structure.

RequiredBaseType provides the type definition for the RequiredBase element of InstallableUnit and LocalizationUnit elements and the LocalizationBase element of LocalizationUnits. These elements declare the identity characteristics of one or more resources that will be modified or localized by applying of the content element’s artifacts. Definition of a RequiredBase element represents a requirement that a resource matching the declared characteristic exists. Definition of a LocalizationBase element represents a condition on the existence of a resource that matches the declared characteristics.
4.7.8.1 RequiredBaseType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Display name for the requirement on a resource to serve as the base of an update or localization.

	Description
	DisplayTextType
	0..1
	Description of the requirement. Required if ShortDescription is defined.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the requirement.

	Alternative
	AlternativeRequiredBaseConstraintType
	0..*
	Alternative set of constraints on a required base resource.

	ResourceConstraint
	RequiredBaseConstraintType
	1..*
	Constraints on the required base resource.

	
	xsd:any
	0..*
	

	
	xsd:anyAttribute
	0..*
	

4.7.8.2 RequiredBaseType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the required base element.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the required base for this content element.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Alternative: When more than one resource can be used as the update or localization base, two or more Alternative elements are defined to describe the choices. As a convenience for tooling that produces SDDs, a single Alternative can be defined in place of a ResourceConstraint.

See the AlternativeRequiredBaseConstraintType section for structure and additional usage details [4.7.10].
· ResourceConstraint: ResourceConstraints defined here identify one or more particular resources that can serve as the update or localization base. If ResourceConstraints are defined for multiple resources, they are all updated or localized by application of the content element.

See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9].
4.7.9 RequiredBaseConstraintType
[image: image77.png](O ReauiredaseConstraintType)EF

sdd-dd:DisplayElementGroup,

(-

0.1
ame

0.1
VersonConstrait

0.1

F<> wraer

e

@

@ vesaurceRef

@ testvale

& s

Figure 68: RequiredBaseConstraintType structure.

RequiredBaseConstraintType provides the type definition for the ResourceConstraint elements used in RequiredBase and LocalizationBase elements. A required base definition differs from a requirement definition in the limited nature of the constraints that can be specified. The purpose of constraints within a required base is to identify resource instances that can be correctly updated or localized by the content element. Only constraints related to the basic identity characteristics of the resource are allowed.
4.7.9.1 RequiredBaseConstraintType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the constraint.

	Description
	DisplayTextType
	0..1
	Description of the constraint.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the constraint.

	Name
	VariableExpressionType
	0..1
	Name of the required base resource as understood in the deployment environment.

	VersionConstraint
	VersionConstraintType
	0..1
	Allowed versions for the required base resource.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Constraint identifier scoped to the deployment descriptor.

	resourceRef
	xsd:IDREF
	1
	Reference to the resource representing the required base for an update operation.

	testValue
	xsd:boolean
	0..1
	Defines the desired result of the required base constraint
**default value=“true”

	
	xsd:anyAttribute
	0..*
	

4.7.9.2 RequiredBaseConstraintType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the constraint.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the constraint on the required base.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Name: The Name element provides the name by which the resource is known in the deployment environment. The value of Name is compared to resource names found in the deployment environment as part of constraint evaluation.

If the resource name is declared in the referenced resource definition, it SHOULD NOT be declared here. If the resource name is changed by application of the update, the original name SHOULD be declared here and the updated name SHOULD be declared in ResultingResource. The name declared here is always the one that represents the required value for the required base.

See the VariableExpressionType section for structure and additional usage details [4.6.1].
· VersionConstraint: The VersionConstraint element defines the set of versions that can serve as a base for the update.

See the VersionConstraintType section for structure and additional usage details [4.4.7].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· resourceRef: The resourceRef attribute value MUST reference the id of the resource element in Topology to which this constraint refers.

· testValue: The required base constraint is met when the boolean result of comparing the declared name and/or version to the actual name and/or version is equal to the boolean value specified in testValue.
Because the purpose of a required base constraint is to positively identify one or more resources that can serve as the base for an update or localization, there MUST always be one ResourceConstraint that has testValue set to “true”.

Additional ResourceConstraints can be defined with testValue set to “false”. These constraints identify characteristics of the same required base resource that must not be true for that resource to serve as the base.

4.7.10 AlternativeRequiredBaseConstraintType
[image: image78.png](O AernativeRequiredBaseConstraintType)|

sdd-dd:DisplayElementGroup,

o1
ResoureComstant
s
“Fo s
o
.y
F & iy

e e

Figure 69: AlternativeRequiredBaseConstraintType structure.

AlternativeRequiredBaseConstraintType provides the type definition for the Alternative elements used in RequiredBase and LocalizationBase elements.
4.7.10.1 AlternativeRequiredBaseConstraintType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	Name of the constraint.

	Description
	DisplayTextType
	0..1
	Description of the constraint.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the constraint.

	ResourceConstraint
	RequiredBaseConstraintType
	1..*
	A set of requirements on one resource.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Constraint identifier scoped to the deployment descriptor.

	priority
	xsd:positiveInteger
	0..1
	Assists in determining alternative selected when multiple alternatives evaluate to true.
**default value=“1”

	
	xsd:anyAttribute
	0..*
	

4.7.10.2 AlternativeRequiredBaseConstraintType Property Usage Notes
· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the alternative.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the alternative.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· ResourceConstraint: ResourceConstraints defined here identify one or more particular resources that can serve as the update or localization base. If ResourceConstraints are defined for multiple resources, they are all updated or localized by application of the content element.

See the RequiredBaseConstraintType section for structure and additional usage details [4.7.9].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· priority: If there are multiple satisfied alternatives during a particular solution deployment, one of the alternatives must be selected. The priority attribute communicates the SDD author’s prioritization of the alternatives. A lower number represents a higher priority with “1” representing the highest priority. Other inputs may also be used to select an alternative. The criteria for making this selection are outside of the scope of the SDD.
4.8 Resulting and Changed Resources

Deployment of an SDD package creates or modifies software resources. These resources are included in the Topology definition and described in more detail in ResultingResource and ResultingChange elements.

The SDD author can choose to model resulting and modified resources at a very granular level, at a very coarse level; at any level in between, or not at all. An example of modeling resulting resources at a granular level would be modeling every file created by the deployment as a resulting resource. An example of modeling resulting resources at a very coarse level would be modeling the software product created by deployment as a single resulting resource. The choice depends on the needs of the solution deployment. If a resource is not modeled in the SDD, no requirements can be expressed on it, no conditions can be based on it and no variables can be set from values of its properties. It cannot play any of the roles described for resources in the ResourceType section of this document [4.2.2].

4.8.1 ResultingResourceType

[image: image79.png](O ResutingResourceType)|

a sdd-dd:DescriptionGroup,
0.1

Condtian
0.1

ame
0.1

Verson
0.1

Fixame

e

Property

e

| Relationshin

e

“Fo s

e

[@ vesoucsrat

e e

Figure 70: ResultingResourceType structure.

InstallableUnit and LocalizationUnit content elements can include zero or more ResultingResource elements that describe the key resources installed or updated when the content element’s artifacts are processed. The type definition for these elements is provided by ResultingResourceType. ResultingResource elements refer to resources in topology and define characteristics of those resources that will become true when the artifact is applied. The deployment descriptor author MAY omit the ResultingResource element from the content element and the definition of the resource from Topology when no knowledge of their existence is required for deployment of the solution or for aggregation of the solution. Characteristics that exist in ResultingResource and elsewhere, such as Topology or ResultingChange, MUST NOT conflict.
For example, if Topology specifies a property that indicates that a file must be writable, it would be incorrect for ResultingResource to specify that the resulting file resource is read-only.
Example uses of the ResultingResource element are to:

· determine whether potentially resulting resources will actually be installed or updated;

· identify the resource associated with a content element that may be subsequently uninstalled using the uninstall information in this SDD;

· discover the components of a logical solution resource previously installed using this SDD;

· check whether or not a content element has already been installed.

4.8.1.1 ResultingResourceType Property Summary

	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	Description of the effect of the content element on the resulting resource.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the effect of the content element on the resulting resource.

	Condition
	ConditionType
	0..1
	A condition that determines if the resulting resource definition is relevant to a particular deployment.

	Name
	VariableExpressionType
	0..1
	Name of the resulting resource as known in the deployment environment.

	Version
	VersionType
	0..1
	Version of the resulting resource.

	FixName
	xsd:string
	0..*
	Name of a resulting fix.

	Property
	ResultingPropertyType
	0..*
	A resulting property setting of the resulting resource.

	Relationship
	RelationshipType
	0..*
	A relationship that will exist after creating or updating the resource.

	
	xsd:any
	0..*
	

	resourceRef
	xsd:IDREF
	1
	Reference to a resource in topology.

	
	xsd:anyAttribute
	0..*
	

4.8.1.2 ResultingResourceType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the effect of the content element on the resulting resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].

· Condition: A Condition is used when the resulting resource will be created by the content element only when certain conditions exist in the deployment environment.

See the ConditionType section for structure and additional usage details [4.5.1].

· Name: The name of the resulting resource SHOULD be defined in the ResultingResource element and not in Topology when the content element installs the resulting resource. The resource name comes into existence when the resulting resource is created. When the content element updates the resulting resource without changing the resource name, Name SHOULD be defined in Topology. Name SHOULD NOT be defined in both places. If a resource name is defined in both Topology and ResultingResource, the values MUST match.
See the VariableExpressionType section for structure and additional usage details [4.6.1].
· Version: This is the version of the resource after processing the content element’s artifacts. Version SHOULD be defined for all resulting resources.
For example, when update artifacts are processed, this version describes the resource after the update is complete.
See the VersionType section for structure and additional usage details [3.10].
· FixName: Multiple FixName elements MAY be included to identify the resulting resource fixes that will exist once the content element is applied. The FixName SHOULD match the names of fixes that can be detected on the system.
· Property: Property elements SHOULD be included to identify property values of the resulting resource that will exist after applying the content element.

Properties of the resulting resource SHOULD be defined in the ResultingResource element and not in Topology. They SHOULD NOT be defined in both places. If a property is defined in both Topology and ResultingResource, the values MUST match.

See the ResultingPropertyType section for structure and additional usage details [4.2.4].

· Relationship: Relationship elements SHOULD be included to identify relationships that will exist after applying the content element.

See the RelationshipType section for structure and additional usage details [4.8.3].

· resourceRef: The resourceRef attribute MUST identify the resource in Topology that will be installed or updated when the defining content element is applied.

4.8.2 ResultingChangeType

[image: image80.png](O ResutingchangeType)

sdd-ddDescriptionGroup,

0.1

Condtian

0.1

ame

0.1

Property

e

[@ vesoucsrat

e e

Relationship

e

F<> wraer

e

Figure 71: ResultingChangeType structure.

InstallableUnit and ConfigurationUnit content elements can include zero or more ResultingChange elements that describe the key resources whose configuration is modified when the content element’s artifacts are processed. ResultingChange elements refer to resources in Topology and define characteristics of those resources that will become true when the content element is applied.

4.8.2.1 ResultingChangeType Property Summary

	Name
	Type
	*
	Description

	Description
	DisplayTextType
	0..1
	Description of the effect of the content element on the changing resource.

	ShortDescription
	DisplayTextType
	0..1
	Short description of the effect of the content element on the changing resource.

	Condition
	ConditionType
	0..1
	A condition that determines if the resulting change definition is relevant to a particular deployment.

	Name
	VariableExpressionType
	0..1
	Name of the resulting resource as known in the deployment environment.

	Property
	ResultingPropertyType
	0..*
	A resulting property setting of the changing resource.

	Relationship
	RelationshipType
	0..*
	Specifies a relationship(s) with another resource that will result from this deployment.

	
	xsd:any
	0..*
	

	resourceRef
	xsd:IDREF
	1
	Reference to the resource in topology that will be changed by application of the content element.

	
	xsd:anyAttribute
	0..*
	

4.8.2.2 ResultingChangeType Property Usage Notes

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the effect of the content element on the changing resource.

The Description element MUST be defined if the ShortDescription element is defined.

See the DescriptionGroup section for structure and additional usage details [4.14.1].
· Condition: A Condition is used when the resulting change will be performed by applying the content element only when certain conditions exist in the deployment environment.

See the ConditionType section for structure and additional usage details [4.5.1].
· Name: The Name corresponds with the name of the changed resource as known in the deployment environment. Name SHOULD be defined in Topology and not in ResultingChange, because the name is not changed by processing the content elements artifacts. If Name is defined in both places, the values MUST match.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

· Property: Property elements MAY be included to identify property values of the identified resource as they will exist after applying the content element.
Properties defined in ResultingChange MUST be properties that are modified by processing the content element’s artifacts.
See the ResultingPropertyType section for structure and additional usage details [4.2.4].
· Relationship: When application of the content element results in the creation or modification of relationships, the Relationship elements SHOULD be included to identify relationships as they will exist after application of the content element.

See the RelationshipType section for structure and additional usage details [4.8.3].
· resourceRef: The resourceRef attribute MUST identify the resource whose configuration will be modified when the defining content element is applied.
The value MUST reference the id of a resource specified in Topology.

4.8.3 RelationshipType

[image: image81.png](O RelstionshipType)iy

Froperty

@ e

e e

e

F<> wraer

[@ reiatedresourceRet

e

Figure 72: RelationshipType structure.

4.8.3.1 RelationshipType Property Summary

	Name
	Type
	*
	Description

	Property
	PropertyType
	0..*
	A property definition that further constrains the relationship.

	
	xsd:any
	0..*
	

	relatedResourceRef
	xsd:IDREF
	1
	The second resource in the relationship.

	type
	xsd:QName
	1
	The type of the relationship.

	
	xsd:anyAttribute
	0..*
	

4.8.3.2 RelationshipType Property Usage Notes

· Property: This element MAY be used to provide additional information about the relationship.
For example, a connectivity relationship might specify additional information such as the specific protocol used (for instance, TCP/IP) and/or particular characteristics of a protocol (for instance, port number).
See the PropertyType section for structure and additional usage details [4.2.3].
· relatedResourceRef: There are two resources in any relationship. The first is the resource defined in the resourceRef of the ResultingResource or RelationshipConstraint element that defines the Relationship element. The second resource is the one identified by relatedResourceRef.
The value MUST reference the id of a resource specified in Topology.

· type: Values for relationship type are not defined by the SDD specification. This type may be specified in profiles [5.3].
4.9 Composite Content Elements

Composite content elements organize the content of an SDD but do not define artifacts used to deploy SDD content. There are three types of composite content elements: CompositeInstallable, CompositeUnit and CompositeLocalizationUnit.

CompositeInstallable is used any time that more than one content element is defined in support of one operation on the package; any time aggregation of SDDs is needed or any time the package includes selectable content.
CompositeInstallable is the root of a content hierarchy that supports a single deployment lifecycle operation. It can define a base content hierarchy, a localization content hierarchy, and/or a selectable content hierarchy and selection criteria. Base content defines content that is deployed by default. Selectable content defines content that can be selected or not by the deployer. Localization content defines content that provides language support. One SDD can have more than one CompositeInstallable–each supporting a different operation.

CompositeUnit is used to organize content elements within the base or selectable content hierarchies. CompositeUnits can define InstallableUnits, ConfigurationUnits, ContainedPackages and other CompositeUnits. Requirements, conditions and variables that are common to all content elements defined by the CompositeUnit can be defined on the CompositeUnit to avoid repetition. Within the selectable content hierarchy, a CompositeUnit can provide an efficient means for selection of a set of related content elements by a Feature.
CompositeLocalizationUnit is described in the Localization section [4.13].

4.9.1 CompositeInstallableType

[image: image82.png]Identity
0.1

(O ComposkelnstallableType)+

Condtian
0.1

Variables
0.1

RequredBase
0.1

Requrements
0.1

Languages
0.1

ResutingResource.

e

ResultingChange

e

BaseContent
0.1

SelectableContent
0.1

] LocalizationContent

0.1

e

— @ operation

e e

Figure 73: CompositeInstallableType structure.

A CompositeInstallable supports the definition of metadata about package content for one deployment lifecycle operation. One CompositeInstallable can be defined for each operation supported by the software package. When more than one CompositeInstallable is defined in an SDD, there MUST NOT be more than one CompositeInstallable in scope for a particular deployment defined for any one operation.

4.9.1.1 CompositeInstallableType Property Summary

	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the CompositeInstallable.

	Condition
	ConditionType
	0..1
	A condition that determines if the content of the CompositeInstallable is relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables for use anywhere below the CompositeInstallable and in Topology.

	RequiredBase
	RequiredBaseType
	0..1
	Resource or resources that can be updated by the CompositeInstallable.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met before successful application of the CompositeInstallable.

	Languages
	LanguageSelectionsType
	0..1
	Defines required and selectable languages and groups of languages.

	ResultingResource
	ResultingResourceType
	0..*
	Resources that result from applying the CompositeInstallable.

	ResultingChange
	ResultingChangeType
	0..*
	Configuration changes that result from applying the CompositeInstallable.

	BaseContent
	BaseContentType
	0..1
	Defines content describing the deployment of core resources.

	SelectableContent
	SelectableContentType
	0..1
	Defines content describing the deployment of selectable resources.

	LocalizationContent
	LocalizationContentType
	0..1
	Defines content whose sole purpose is to provide language support.

	id
	xsd:ID
	1
	A unique identifier for the CompositeInstallable element.

	operation
	OperationType
	1
	The deployment lifecycle operation described by the CompositeInstallable definition.

	
	xsd:anyAttribute
	0..*
	

4.9.1.2 CompositeInstallableType Property Usage Notes

· Identity: This identity MAY have values in common with the identity of a resulting resource created when artifacts defined by content of the composite are processed.
If the unit of packaging described by the CompositeInstallable is known to a package management system, the Identity elements SHOULD correspond to values associated with that package in the package management system.

See the IdentityType section for structure and additional usage details [3.4].

· Condition: When the condition defined in the CompositeInstallable is not met for a particular deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are out of scope for that particular deployment.

See the ConditionType section for structure and additional usage details [4.5.1].

· Variables: Variables defined here are visible throughout the CompositeInstallable and in Topology.

See the VariablesType section for structure and additional usage details [4.6.3].

· RequiredBase: When a resource or resources corresponding to the overall software will be modified during deployment, that resource or those resources MAY be defined in the RequiredBase element. The RequiredBase definition represents a requirement that the described resource be available for modification to apply the single operation defined by the CompositeInstallable. When RequiredBase is defined, the operation defined by CompositeInstallable MUST be one of the following: update, undo, uninstall, or repair. By specifying the required base separately from other requirements, it is possible for consumers of the SDD to easily determine if the base is available before processing other requirements.

See the RequiredBaseType section for structure and additional usage details [4.7.8].

· Requirements: These are requirements that must be met regardless of what content is selected for deployment and which conditions within the content hierarchy evaluates to true.

Requirements that apply only to a portion of the content SHOULD be defined at the point in the content hierarchy where they apply.

All requirements specified on content elements that are in scope for a particular deployment MUST be met. This represents a logical “AND” of the requirements. Care should be taken by the SDD author to ensure that conflicting requirements cannot be in scope for the same deployment.

See the RequirementsType section for structure and additional usage details [4.7.1].

· Languages: When the SDD contains language support, the Languages element can be defined to describe the languages supported; which languages are required and which are selectable; and how language selections are grouped.

Languages defined in the Mandatory element under Languages are always in scope. Languages defined in the Optional element under Languages are in scope if selected by the deployer.

The Languages element is used to declare the mandatory and optional language support available in the package. Languages whose support is deployed by LocalizationUnits in LocalizationContent MUST be defined as either a mandatory language or an optional language. In addition, languages whose support is deployed along with other content by InstallableUnits in BaseContent or SelectableContent SHOULD be defined as a mandatory language.

See the LanguageSelectionsType section for structure and additional usage details [4.13.4].

· ResultingResource: The software whose deployment is described by the SDD can be described in the CompositeInstallable’s ResultingResource element. This software may consist of many resources that are described in the ResultingResource elements of the InstallableUnits and/or LocalizationUnits defined within the CompositeInstallable.

See the ResultingResourceType section for structure and additional usage details [4.8.1].

· ResultingChange: Configuration changes that result from deployment regardless of selected content or condition evaluation can be described in the CompositeInstallable’s ResultingChange element.

Note that a ResultingChange is a change that is made to an existing resource. This is in contrast with ResultingResource, which describes newly created resources.

See the ResultingChangeType section for structure and additional usage details [4.8.2].

· BaseContent: The base content hierarchy defines content elements that are in scope by default. These content elements MAY be conditioned out based on characteristics of the deployment environment, but are not optional from the deployer’s perspective.

See the BaseContentType section for structure and additional usage details [4.11.1].

· SelectableContent: Content that is selected by feature MUST be defined in the selectable content hierarchy. Groups and Features that select this content are also defined within SelectableContent.

See the SelectableContentType section for structure and additional usage details [4.12.1].

· LocalizationContent: All LocalizationUnits and ContainedLocalizationPackages MUST be defined in the LocalizationContent hierarchy. Each LocalizationUnit contains information about the languages it supports and the resources it localizes. This information is evaluated to determine if the LocalizationUnit is in scope for a particular deployment.

Each LocalizationUnit and ContainedLocalizationPackage defined in LocalizationContent MAY support any combination of Mandatory and Optional languages and can localize any combination of base and selectable resources, as well as resources already deployed.

Some language support may be deployed incidentally by artifacts in an InstallableUnit along with deployment of other solution content. LocalizationContent holds only content elements whose sole purpose is to provide language support.

LocalizationContent supports advanced management of language support, including definition of mandatory and optional languages and support of localization materials with a lifecycle that is somewhat independent of the resources localized. When an SDD author has no need for advanced management of language support, all language support MAY be delivered with other content in InstallableUnits.

See the LocalizationContentType section for structure and additional usage details [4.13.1].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· operation: This is the operation that may be applied to the SDD package whose metadata is described by the CompositeInstallable.

See the OperationType section for enumeration values and their meaning [4.3.7].

4.9.2 CompositeUnitType

[image: image83.png](O CompostelinitTyps)&+

Identity

0.1

Condtian
0.1

Variables
0.1

Requrements
0.1

£ saadcomeniagron 1
R)

e

e e

ContentlistGroup

InstalableLint

-»-)Eh_wa

oo

Cofigurationtnit

Composienit

ContanedPackage

F<> wraer

T-

Figure 74: CompositeUnitType structure.

The CompositeUnit element is used to organize content elements within the base or selectable content hierarchies. It can define any number of InstallableUnits, ConfigurationUnits, ContainedPackages and other CompositeUnits. Composite units assist in organizing the deployment package. A composite unit can provide a convenient way to specify variables, requirements, conditions and other information that applies to every content element defined below the composite unit. Within the selectable content hierarchy, composite units can be used to group content elements that are selected by feature sets or groups. When a feature containing a composite unit is selected, all its child content elements are selected by association. Organization of content within a composite unit does not imply any relationships among the resources that result from deployment of the composite content.

4.9.2.1 CompositeUnitType Property Summary

	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the CompositeUnit.

	Condition
	ConditionType
	0..1
	A condition that determines if the CompositeUnit and its child content elements are relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables for use within the CompositeUnit’s and its child content elements’ requirement and artifact definitions.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met prior to successful processing of any of the CompositeUnit’s content.

	InstallableUnit
	InstallableUnitType
	0..*
	An InstallableUnit that is part of the composite content.

	ConfigurationUnit
	ConfigurationUnitType
	0..*
	A ConfigurationUnit that is part of the composite content.

	CompositeUnit
	CompositeUnitType
	0..*
	A CompositeUnit that organizes a subset of the composite’s content.

	ContainedPackage
	ReferencedPackageType
	0..*
	A ContainedPackage that is part of the composite content.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier for the CompositeUnit scoped to the deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.9.2.2 CompositeUnitType Property Usage Notes

· Identity: This identity MAY have values in common with the identity of a resulting resource created when artifacts defined by content of the composite are processed.

If the unit of packaging described by the CompositeUnit is known to a package management system, some of the identity elements MAY correspond to values associated with that package in the package management system.

 See the IdentityType section for structure and additional usage details [3.4].

· Condition: When the condition defined in the CompositeInstallable is not met for a particular deployment, the CompositeUnit and all the content elements defined below the CompositeUnit are out of scope for that particular deployment.

See the ConditionType section for structure and additional usage details [4.5.1].

· Variables: Variables defined here are visible within the CompositeUnit and every content element defined below the CompositeUnit.

These variables are in scope for a particular deployment only if the CompositeUnit is in scope for that deployment.

See the VariablesType section for structure and additional usage details [4.6.3].

· Requirements: These are requirements that must be met before any of the artifacts in the CompositeUnit hierarchy can be processed.

These requirements are in scope for a particular deployment only if the CompositeUnit is in scope for that deployment.

The operation defined for a Requirement defined in a CompositeUnit MUST be the same as the operation defined by the CompositeInstallable containing the CompositeUnit.

See the RequirementsType section for structure and additional usage details [4.7.1].

· InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1].

· ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details [4.3.2].

· CompositeUnit: A CompositeUnit element MAY contain child CompositeUnits.
· ContainedPackage: See the ReferencedPackageType section for structure and additional usage details [4.10.1].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

4.10 Aggregation

SDD packages can aggregate other SDD packages. Metadata about the aggregation is defined in ContainedPackage, ContainedLocalizationPackage and Requisite elements. ContainedPackage elements are content elements that can be defined anywhere in the base and selectable content hierarchies. ContainedLocalizationPackages are content elements that can be defined in the localization content hierarchy. Requisites are packages that can be deployed, if necessary, to satisfy requirements in the aggregating SDD. They are not content of the SDD package. The type of all three of these elements is ReferencedPackageType. The term referenced package is used in this specification when referring to these elements as a group. The term referenced SDD is used when referring to any aggregated SDD.

When an SDD aggregates other SDDs, the package descriptors of the aggregated SDDs are included in the Contents list in the package descriptor of the aggregating SDD (see Figure 75). The referenced package elements in the deployment descriptor identify a referenced SDD package by referencing its package descriptor definition in Contents. Each referenced package element can further constrain the deployment of the referenced SDD by defining additional requirements; by mapping resources defined in the aggregating SDD to those defined in the referenced SDD; and by determining feature selections for deployment of the referenced SDD.
[image: image84.png]Aggregating SDD:

Package Descriptor

Contents List

Package Descriptor

- URI of Aggregated SDD

Deployment Descriptor
Topology
Resource

Resource
Resource

ContainedPackage

contentRef.
resource maps

Referenced SDD;

Package Descriptor

Deployment Descriptor

Topology

Resource
Resource
Resource

Figure 75: The aggregating SDD identifies the package descriptor of the aggregated SDD and maps resource definitions in the aggregating SDD to resource definitions in the aggregated SDD.
Referenced packages can create and modify software resources that may be required by the aggregating SDD or other SDDs in the aggregation. These resources are mapped to the associated resource definitions in the aggregating SDD by using the ResultingResourceMap, the ResultingChangeMap and the RequiredResourceMap elements of a referenced package element. The characteristics of these resources that other SDDs in the aggregation depend on in some way MUST be exposed in the ResultingResourceMap, the ResultingChangeMap and the RequiredResourceMap elements of the aggregating SDD (see Figure 76). These exposed characteristics are mapped to requirements, conditions and resource variables in the SDDs to determine if requirements are satisfied, conditions are met and to set the values of resource property variables (see Figure 77).

[image: image85.png]Aggregating SDD:

Deployment Descriptor

Topology
Resourc:

Resource
Resource

ContainedPackage or Requisite

ResultingResourceMap
ResultingChangeMap
equiredResourceMap

Resources are required,
resulting or changed
because of how they are
used in Requirement,
ResultingResource and
ResultingChange elements.
The resource definitions in
Topology do not provide
this information. For
example, a resulting
resource is one that is
referenced from a
ResultingResource element
somewhere in the
referenced SDD.

Deployment Descriptor /

Topology c/
(resulting) Resour

> (changed) Resourc:
(required) Resource

The name of the map
element refers to the role
the resource plays in the
referenced SDD. For
example, a mapping
defined in a
ResultingResourceMap
element maps a resource
playing any role in the
aggregating SDD to a
resulting resource in the
referenced SDD.

Figure 76: The list of resource maps is segmented by the role the resource plays in the referenced SDD.
[image: image86.png]Aggregating SDD:

Deployment Descriptor

Variables
Parameter
ResourceProperty
DerivedVariable

ContainedPackage or Requisite

Arguments
OutputVariable

Arguments map any type of
variable in the aggregating
SDD to parameters in the
referenced SDD.

Output variables map

any type of variable in
the aggregated SDD to
an output variable in
the aggregating SDD.

Refegenced SDD:

Deployment Descriptor

|Variables
Parameter

Artifact, ContainedPackage or Requisite
OutputVariable

Figure 77: Arguments and OutputVariables of ReferencedPackageType map variables in the aggregating SDD to variables in the referenced SDD.
4.10.1 ReferencedPackageType

[image: image87.png]Condition
0.1

(O ReferencedpackageType)+

RequredContentselection
0.1

arguments
0.1

Outputiariables
0.1

Requrements
0.1

ResulingResourceliap

e

ResulingChangetip

e

RequredResourcetap

e

Languages
0.1

“Fo s

e

e

@ cantentRef

@ weight

— @ operation

e e

Figure 78: ReferencedPackageType structure.

A referenced package identifies an aggregated SDD and describes the conditions of its aggregation. ReferencedPackageType provides the type definition for ContainedPackage and Requisite elements. ContainedPackage elements identify an SDD package that is treated like a content element of the defining SDD. Requisite elements identify an SDD package that can be deployed, if necessary, to satisfy resource constraints.

4.10.1.1 ReferencedPackageType Property Summary

	Name
	Type
	*
	Description

	Condition
	ConditionType
	0..1
	 A condition that determines if the referenced package is relevant to a particular deployment.

	RequiredContentSelection
	RequiredContentSelectionType
	0..1
	A list of groups and features that MUST be selected when the referenced package is deployed.

	Arguments
	ArgumentListType
	0..1
	Inputs to the reference package.

	OutputVariables
	OutputVariableListType
	0..1
	Outputs from the referenced package.

	Requirements
	RequirementsType
	0..1
	Additional requirements for deploying the referenced package as part of the aggregation.

	ResultingResourceMap
	ResultingResourceMapType
	0..*
	Maps resulting resources in the referenced package to resources in the referencing package and exposes properties of the resulting resource.

	ResultingChangeMap
	ResultingChangeMapType
	0..*
	Maps changed resources defined in the referenced package to resources in the referencing package and exposes changed properties of the resource.

	RequiredResourceMap
	ResourceMapType
	0..*
	Maps required resources in the referenced package to resources in the referencing package.

	Languages
	LanguagesType
	0..1
	Languages supported by the referenced package.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Identifier for the referenced package element that is unique within the deployment descriptor.

	contentRef
	xsd:token
	1
	Reference to the identifier of the package Content defined in the package descriptor which identifies the package descriptor of the referenced package.

	weight
	xsd:positiveInteger
	0..1
	The time required to process the referenced package relative to all artifacts and other referenced packages in the SDD.

	operation
	OperationType
	0..1
	Specifies which operation in the referenced SDD is performed.

	
	xsd:anyAttribute
	0..*
	

4.10.1.2 ReferencedPackageType Property Usage Notes

· Condition: A Condition is used when the ReferencedPackage’s content should only be deployed when certain conditions exist in the deployment environment.
See the ConditionType section for structure and additional usage details [4.5.1].
· RequiredContentSelection: Certain Groups or Features may need to be selected when deploying the referenced package. These can be identified in the RequiredContentSelection element.

If one particular aggregated SDD requires the selection of different groups or features, depending on other choices made during a particular deployment, different Requisite or ContainedPackage elements can be defined in a way that will cause the correct combination of Groups and Features to be used in each situation.

See the RequiredContentSelectionType section for structure and additional usage details [4.12.13].

· Arguments: Arguments are used to provide values for input variables defined in the deployment descriptor of the referenced package. The argument name specified MUST reference the id of a parameter in the referenced package.

See the ArgumentListType section for structure and additional usage details [4.3.8].

· OutputVariables: The output variable mapping can be used to set variables to outputs created by processing the referenced SDD. The output variables in the referenced package are mapped to output variables in the aggregating SDD.
Each output variable value specified MUST reference the id of an output variable in the referenced package. This can be an output variable from an artifact or an output variable from a referenced package defined within the referenced SDD.
See the OutputVariableListType section for structure and additional usage details [4.3.10].

· Requirements: When the aggregating SDD has stricter requirements for the use of the referenced SDD than are defined by the referenced SDD itself, those requirements can be defined in Requirements. This is not intended to repeat requirements expressed in the referenced SDD, but rather to add additional stricter requirements.

Requirements expressed in the referenced SDD need to be satisfied, in addition to the requirements expressed in the Requisite or ContainedPackage element of the aggregating SDD.

Requirements expressed in the aggregating SDD MUST NOT conflict with requirements expressed in the referenced SDD. The requirements specified MUST further constrain the referenced package.

See the RequirementsType section for structure and additional usage details [4.7.1].

· ResultingResourceMap: Resources created by the referenced package may be resources that are defined in the aggregating SDD. The ResultingResourceMap is used to identify the correspondence between resource definitions in the aggregating SDD and resulting resource definitions in the aggregated SDD.

Characteristics of the resulting resources MAY be exposed in the ResultingResourceMap element. ResourceConstraints defined on those resources anywhere in the aggregation are mapped to the resource properties exposed in the resulting maps of the referenced package to determine if the referenced package will satisfy the constraints. Each individual constraint is considered met by the referenced package if a property exposed in the resulting resource map that is in scope for the particular deployment satisfies the constraint.

For example, a property constraint in a ResourceConstraint element states that the property named “FileAttributes” has the value “Writeable”.
The resourceRef in the ResourceConstraint identifies a resource defined in Topology that is also identified in the ResultingResourceMap of a Requisite or ContainedPackage element that is in scope for the particular deployment. If the ResultingResourceMap element contains a statement that the property named “FileAttributes” has the value “Writeable”, then the ResourceConstraint is met when the Requisite or ContainedPackage is deployed.
This same logic applies to ResourceConstraints in aggregated packages. If the SDD in the preceding example also aggregates another SDD and maps the same resource to a required resource in that aggregated SDD, then all ResourceConstraints in the aggregated SDD are met only if the ResultingResourceMap of the referenced SDD that creates that resource contains a Name, Version or Property definition that satisfies the constraint.

See the ResultingResourceMapType section for structure and additional usage details [4.10.3].

· ResultingChangeMap: Resources configured by the referenced package may be resources that are defined in the aggregating SDD. The ResultingChangeMap is used to identify the correspondence between resource definitions in the aggregating SDD and changed resources defined in ResultingChange elements of the aggregated SDD.

Characteristics of resources that are changed by the referenced SDD MAY be exposed in the ResultingChangeMap. These are correlated with ResourceConstraints on the changed resource in the same manner as the exposed characteristics of a resulting resource. See the property usage notes for ResultingResourceMap above.

See the ResultingChangeMapType section for structure and additional usage details [4.10.4].

· RequiredResourceMap: When a resource required by the aggregated SDD is a resource also defined in the aggregating SDD, the RequiredResourceMap is used to identify the correspondence. This element is a simple mapping of a resource in one SDD to a resource in another. There is no need to expose characteristics of the resource because it is not created or modified by the referenced package.

One resource MAY be required, resulting, changed, all three or any combination of these within one SDD. When a resource in the referenced SDD plays more than one role, the mapping MUST be repeated everywhere it applies. This allows exposure of all the created or modified properties in the ResultingChangeMap and ResultingResourceMap. In this situation–when one resource in the referenced SDD plays more than one of the roles identified earlier (required, resulting or changed)–all mappings MUST be to the same resource in the aggregating SDD. Only the exposed resulting and changed properties differ.
See the ResourceMapType section for structure and additional usage details [4.10.2].

· Languages: Languages supported by the referenced package MAY be identified here. This list does not identify mandatory versus optional languages; it is for informational purposes only. The SDD author is not limiting use of the referenced package to deployments where all in-scope languages are found in this list. There may be cases where aggregated packages are deployed even though they cannot support all of the languages supported by the aggregation as a whole.

Each language specified MUST match a language in the referenced package.

See the LanguagesType section for structure and additional usage details [4.13.6].

· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· contentRef: The package descriptor of an SDD that aggregates other SDDs, either through ContainedPackage elements or Requisite elements, will list the package descriptor files of the aggregated SDDs in its content list. The contentRef attribute of a referenced package element MUST be a reference to the id of a Content element in the aggregating SDD’s package descriptor that defines the aggregated package descriptor.
· weight: Defining weights for all artifacts and referenced packages in an SDD provides useful information to software that manages deployment. The weight of the referenced package refers to the relative time taken to deploy the referenced package with respect to other packages in this SDD.

For example, if the referenced package takes twice as long to deploy as a particular install artifact whose weight is “4”, then the weight of the referenced package would be “8”. The weight numbers have no meaning in isolation and do not describe actual time elapsed. They simply provide an estimate of relative time.

· operation: The referenced SDD may support more than one deployment lifecycle operation. The operation attribute MUST include the operations that are applicable when this is the case.

See the OperationType section for enumeration values and their meaning [4.3.7].

4.10.2 ResourceMapType

[image: image88.png](O ety)7 — @ resmuiatet

@ foreianid

e e

Figure 79: ResourceMapType structure.

ResourceMapType is used in the definition of elements that map resources in an SDD to resources in a referenced SDD. The purpose of a resource map is to identify when two resources in separate SDDs MUST resolve to the same resource instance during any particular deployment. The characteristics of a mapped resource that are defined in the topology sections of the two SDDs MUST NOT conflict.

For example, if a Name is defined for the resource in both topologies, it MUST be the same in both definitions and if a Property definition is included for the same property in both places, the value MUST be the same.
Additional characteristics of a mapped resource may be constrained by Requirements or Conditions in either SDD. All constraints on a mapped resource that are in scope for a particular deployment MUST NOT conflict.

Resources that are not mapped between the two SDDs MAY resolve to the same instance when their characteristics defined in topology do not conflict and when the constraints in scope for any particular deployment do not conflict.

The RequiredResourceMap, ResultingResourceMap and ResultingChangeMap elements all use ResourceMapType, either directly or as a base type that is extended.

4.10.2.1 ResourceMapType Property Summary

	Name
	Type
	*
	Description

	resourceRef
	xsd:IDREF
	1
	Reference to a resource defined in the deployment descriptor.

	foreignID
	xsd:NCName
	0..1
	Reference to a resource defined in a referenced deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.10.2.2 ResourceMapType Property Usage Notes

· resourceRef: The value of the resourceRef MUST be set to the id of the resource in the SDD to be mapped to a resource in a referenced SDD.

· foreignID: The value MUST reference the id of a resource in the referenced package. This is the resource in the referenced SDD that MUST resolve to the same resource instance as the resource identified in resourceRef.

4.10.3 ResultingResourceMapType

[image: image89.png]Condition
0.1

(O ResutingResourcettapType)EF (Epl=; 4D extends: sdd-dd:ResourcebapType)

ame
0.1

Verson
0.1

Fixame

e

Property

e

Relationship

e

“Fo s

e

@ Foreianid

|

e e

Figure 80: ResultingResourceMapType structure.

ResultingResourceMapType defines an element type that maps resources that result from deployment of the referenced SDD to a resource in the referencing SDD. In addition to identifying the two resources that MUST resolve to the same resource instance, the resulting resource map allows characteristics of the resulting resource to be exposed. There may be constraints defined on the mapped resource in the referencing SDD or any referenced SDD in the hierarchy of SDDs. These constraints can be evaluated by comparing the constraint to the exposed characteristics defined in the resulting resource map. The resulting resource map MUST expose sufficient characteristics of the resulting resource to support successful evaluation of constraints on that resource.
For example, say that the SDD defines a resource with id=”Database” in its topology. The solution can work with Database Product A or Database Product B. Database Product A is created by a referenced SDD defined in a Requisites element. The SDD will contain Requirements and/or Conditions that have alternatives for each of the database products. All constraints on the Database resource that apply to Database Product A must be satisfied by a resource characteristic exposed in the ResultingResourceMap element of the Requisite element that points to the SDD that deploys Database Product A.

4.10.3.1 ResultingResourceMapType Property Summary

	Name
	Type
	*
	Description

	
	[extends] ResourceMapType
	
	See the ResourceMapType section for additional properties [4.10.2].

	Condition
	ConditionType
	0..1
	A condition that determines if the resulting resource definition is relevant to a particular deployment.

	Name
	VariableExpressionType
	0..1
	The name of the resource created or updated by the referenced SDD.

	Version
	VersionType
	0..1
	The version of the resource created or updated by the referenced SDD.

	FixName
	xsd:string
	0..*
	Names of fixes to the mapped resource that are created by the referenced SDD.

	Property
	ResultingPropertyType
	0..*
	Properties set when the mapped resource is created or updated by the referenced SDD.

	Relationship
	RelationshipType
	0..*
	Relationship that will exist after creating or updating the resource.

	
	xsd:any
	0..*
	

4.10.3.2 ResultingResourceMapType Property Usage Notes
See the ResourceMapType section for details of the inherited attributes and elements [4.10.2].
· Condition: A Condition is used when the resulting resource will be created by the referenced package only when certain conditions exist in the deployment environment.

See the ConditionType section for structure and additional usage details [4.5.1].

· Name: The Name of the resulting resource created or updated by the referenced SDD MUST be defined if it is not defined elsewhere and there are constraints on this resource that contain a Name element. “Defined elsewhere” means defined in the topology of the referencing SDD or in the topology of any other referenced SDD for a resource that is also mapped to the same resource. “Constraints on this resource” means a constraint that applies to the particular instantiation of the resource that is created or updated by the referenced SDD, for example a constraint that needs to successfully map to the referenced SDD for the referenced SDD to be used in a particular deployment.

See the VariableExpressionType section for structure and additional usage details [4.6.1].

· Version: The Version of the resulting resource created or updated by the referenced SDD MUST be defined if it is not defined elsewhere and there are version constraints defined on this resource. (See the usage note for Name above for a definition of “defined elsewhere”.)

See the VersionType section for structure and additional usage details [3.10].

· FixName: One or more names of fixes to the resulting resource created or updated by the referenced SDD MUST be defined if they are not defined elsewhere and there are version constraints defined on this resource that include fix names. (See the usage note for Name above for a definition of “defined elsewhere”.)

· Property: A Property of the resulting resource created or updated by the referenced SDD MUST be defined if it is not defined elsewhere and there are property constraints on this property. (See the usage note for Name above for a definition of “defined elsewhere”.)

See the ResultingPropertyType section for structure and additional usage details [4.2.4].

· Relationship: Any number of Relationship elements can be included to identify relationships that will exist after applying the referenced package.

See the RelationshipType section for structure and additional usage details [4.8.3].

4.10.4 ResultingChangeMapType

[image: image90.png](O ResutingChangeMapType)&+ LH > E——{ D extends: sdd-dd:ResourceMapType JE- Condition

0.1

ame
0.1

Praperty

e

Relationship

e

“Fo s

e

@ Foreianid

e e

Figure 81: ResultingChangeMapType structure.

ResultingChangeMapType is very similar to ResultingResourceMapType. It defines an element type that maps resources that are changed by deployment of the referenced SDD to a resource in the referencing SDD. In addition to identifying the two resources that MUST resolve to the same resource instance, the resulting change map allows characteristics of the modified resource to be exposed. There may be constraints defined on the mapped resource in the referencing SDD or any referenced SDD in the hierarchy of SDDs. These constraints can be evaluated by comparing the constraint to the exposed characteristics defined in the resulting change map. The resulting change map MUST expose sufficient characteristics of the resulting change to support successful evaluation of constraints on that resource.
For example, say that the SDD defines a resource with id=”OS” in its topology. The solution can work with Windows or Linux. Linux is configured by a referenced SDD defined in a Requisites element. The SDD will contain Requirements and/or Conditions that have alternatives for Windows and for Linux. All constraints on the modified characteristics of Linux must be satisfied by a resource characteristic exposed in the ResultingChangeMap element of the Requisite element that points to the SDD that configures Linux.

4.10.4.1 ResultingChangeMapType Property Summary

	Name
	Type
	*
	Description

	
	[extends] ResourceMapType
	
	See the ResourceMapType section for additional properties [4.10.2].

	Condition
	ConditionType
	0..1
	A condition that determines if the resulting change definition is relevant to a particular deployment.

	Name
	VariableExpressionType
	0..1
	The name of the modified resource.

	Property
	ResultingPropertyType
	0..*
	A modified property of the resource.

	Relationship
	RelationshipType
	0..*
	Relationship that will exist after the change is applied to the resource.

	
	xsd:any
	0..*
	

4.10.4.2 ResultingChangeMapType Property Usage Notes
See the ResourceMapType section for details of the inherited attributes and elements [4.10.2].
· Condition: A Condition is used when the resource mapped from the external package will be changed only when certain conditions exist in the deployment environment.
See the ConditionType section for structure and additional usage details [4.5.1].
· Name: The Name of the resource that is modified by the referenced SDD is defined here to assist with identifying the resource instance that is changed. It is not an indication that the resource name itself is modified by the referenced SDD. If resource characteristics defined in the topology of any SDD defining a resource mapped to the changed resource are sufficient to identify the resource, then Name SHOULD NOT be defined in the ResultingChangeMap.
See the VariableExpressionType section for structure and additional usage details [4.6.1].

· Property: A modified property MUST be exposed in a ResultingChangeMap if it is not defined elsewhere and there are property constraints on the modified property. “Defined elsewhere” means defined in the topology of the referencing SDD or in the topology of any other referenced SDD for a resource that is also mapped to the same resource. “Constraints on the modified property” means a property constraint that applies to the particular instantiation of the resource that is modified by the referenced SDD, for example a constraint that needs to successfully map to the referenced SDD for the referenced SDD to be used in a particular deployment.

See the ResultingPropertyType section for structure and additional usage details [4.2.4].

· Relationship: Relationship elements SHOULD be included to identify relationships that will exist after the application of the referenced package.
Relationships that need to be known by the aggregate MUST be mapped. Relationships need to be known when they are referred to in one or more resource constraints.
See the RelationshipType section for structure and additional usage details [4.8.3].
4.10.5 RequisitesType

[image: image91.png](O ReuistesType)

)]

ReferencedPackage

T

Figure 82: RequisitesType structure.

The Requisites element contains a list of references to SDD packages that can be used to satisfy one or more of the requirements defined by content elements. The definition of a requisite does not imply that it must be used; only that it is available for use if needed.

Requisite definitions can map values and resources defined in the SDD to inputs and resources defined in the requisite SDD.

4.10.5.1 RequisitesType Property Summary

	Name
	Type
	*
	Description

	ReferencedPackage
	ReferencedPackageType
	1..*
	An SDD package that can, but is not required to, be deployed to satisfy a requirement.

4.10.5.2 RequisitesType Property Usage Notes

· ReferencedPackage: See the ReferencedPackageType section for structure and additional usage details [4.10.1].

4.11 Base Content

Base content is the default content for the deployment lifecycle operation associated with the CompositeInstallable that contains the base content. This is content that is deployed whenever the associated operation is performed on the SDD package. Base content may be conditioned on characteristics of the deployment environment but it is not selectable by the deployer.

Resources associated with base content for one operation may be different from resources associated with base content for a different operation in the same SDD package.
For example, base content in the CompositeInstallable for the configuration operation may configure resources that were created by selectable content in the CompositeInstallable for the install operation. In this example, the configuration is in base content because it must be done if the resource exists. It is not selectable by the deployer during the configuration operation.

4.11.1 BaseContentType

[image: image92.png](O BassContentType)Er

sdd-dd:ContentlistGroup I
o

ContentlistGroup

)

InstalableLint

4 e

oo

Cofigurationtnit

Composienit

ContanedPackage

F<> wraer

T-

Figure 83: BaseContentType structure.

The BaseContent hierarchy defines the default content for the deployment operation described by the CompositeInstallable. This content MAY be conditioned.

4.11.1.1 BaseContentType Property Summary

	Name
	Type
	*
	Description

	InstallableUnit
	InstallableUnitType
	0..*
	An InstallableUnit that defines base content.

	ConfigurationUnit
	ConfigurationUnitType
	0..*
	A ConfigurationUnit that defines base configuration content.

	CompositeUnit
	CompositeUnitType
	0..*
	A CompositeUnit that organizes base content.

	ContainedPackage
	ReferencedPackageType
	0..*
	An SDD whose content is considered to be base content in the context of this aggregation.

	
	xsd:any
	0..*
	

4.11.1.2 BaseContentType Property Usage Notes

· InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1].

· ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details [4.3.2].

· CompositeUnit: See the CompositeUnitType section for structure and additional usage details [4.9.2].

· ContainedPackage: See the ReferencedPackageType section for structure and additional usage details [4.10.1].

4.12 Content Selectability

The SDD author MAY define selectable subsets of content using Groups and Features. Selectability, as used in the SDD, is a characteristic of the deployment lifecycle operation and the package. The decision to provide selectability for one operation in one package has no semantic relationship to the selectability provided in another package related to the same software. It also has no semantic relationship to the selectability provided for a different operation within the same package.
For example, when the SDD author chooses to create a feature in a maintenance package, that feature is designed to allow selectable application of the maintenance, not to reflect the original set of features for the base content.

4.12.1 SelectableContentType

[image: image93.png](O selectableContentType)Er

Groups

0.1

Features

0.1

. sod-ad:ContentListGroup 1=
by

2. ContentLitaroun

&

)

InstalableLint

4 e

oo

Cofigurationtnit

Composienit

ContanedPackage

F<> wraer

T-

Figure 84: SelectableContentType structure.

Content elements defined here make up the selectable content hierarchy. These elements are selected via Groups and Features also defined under SelectableContent.

4.12.1.1 SelectableContentType Property Summary

	Name
	Type
	*
	Description

	Groups
	GroupsType
	0..1
	Groups of features that can be selected as a unit.

	Features
	FeaturesType
	0..1
	A definition of user-selectable content.

	InstallableUnit
	InstallableUnitType
	0..*
	An InstallableUnit that defines selectable content.

	ConfigurationUnit
	ConfigurationUnitType
	0..*
	A ConfigurationUnit that defines selectable configuration.

	CompositeUnit
	CompositeUnitType
	0..*
	A CompositeUnit that organizes content elements that define selectable content.

	ContainedPackage
	ReferencedPackageType
	0..*
	An SDD package whose content is selectable in the context of the aggregating SDD.

	
	xsd:any
	0..*
	

4.12.1.2 SelectableContentType Property Usage Notes

· Groups: Groups can be used by the SDD author to define a convenient way for deployers to select a group of features.
“Typical” and “Custom” are examples of groups that are commonly presented in installation interfaces.

See the GroupsType section for structure and additional usage details [4.12.2].

· Features: Features can be used to organize optional functionality into meaningful selections. Features should be meaningful from the deployer’s point of view.

See the FeaturesType section for structure and additional usage details [4.12.4].

· InstallableUnit: See the InstallableUnitType section for structure and additional usage details [4.3.1].

· ConfigurationUnit: See the ConfigurationUnitType section for structure and additional usage details [4.3.2].

· CompositeUnit: See the CompositeUnitType section for structure and additional usage details [4.9.2].

· ContainedPackage: See the ReferencedPackageType section for structure and additional usage details [4.10.1].

4.12.2 GroupsType

[image: image94.png](O GrowpsType)&

)]

Group

T

Figure 85: Groups structure.

GroupsType is used in SelectableContent to provide a list of one or more Group elements.

4.12.2.1 GroupsType Property Summary

	Name
	Type
	*
	Description

	Group
	GroupType
	1..*
	A group of features that can be selected together.

4.12.2.2 GroupsType Property Usage Notes

· Group: Associating features in a Group is based on the characteristics of the package and the ways in which the SDD author chooses to expose function variability to the deployer.
One example is a “Typical” group that allows easy selection of the most common grouping of features, along with a “Custom” group that allows an advanced user to select from among all features. Another example is a “Client” group that selects features that deploy the client software for an application, along with a “Server” group that selects features that deploy the server software for the same application.

If alternative sets of selections are desired, Groups MUST be used to define these sets. Zero or one set can be selected for any particular deployment
See the GroupType section for structure and additional usage details [4.12.3].

4.12.3 GroupType

[image: image95.png](O GrowpType)&

sdd-ddDisplayElementGrouy
0.1

Selectedreature.

T

“Fo s

e

e

@ defauit

e e

Figure 86: GroupType structure.

GroupType provides the type definition for each Group element in SelectableContent’s list of Groups. For a particular deployment, zero or one groups may be selected by the deployer.

4.12.3.1 GroupType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	A human-readable name for the group.

	Description
	DisplayTextType
	0..1
	A human-readable description of the group.

	ShortDescription
	DisplayTextType
	0..1
	A human-readable short description of the group.

	SelectedFeature
	FeatureReferenceType
	1..*
	A feature that is part of the group.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier of the group that is unique within the descriptor.

	default
	xsd:boolean
	0..1
	Indicates that the group is selected by default when no selections are provided by the deployer.

**default value=“false”

	
	xsd:anyAttribute
	0..*
	

4.12.3.2 GroupType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the group.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the group.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· SelectedFeature: Each SelectedFeature is considered selected if inputs identify the group as selected.

Selection of a nested feature causes its parent feature to be selected.
See the FeatureReferenceType section for structure and additional usage details [4.12.8].

· id: The group’s id may be used to refer to the group when aggregating the SDD into another SDD.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· default: Multiple default Groups MUST NOT be defined.

4.12.4 FeaturesType

[image: image96.png](O FeaturesTyps)&+

B

Feature

L

T

MiSelect

e

F<> wraer

Do

Figure 87: FeaturesType structure.

FeaturesType provides the type definition for the single, optional, Features element in SelectableContent. Features defined directly under the Features element in SelectableContent are the top level features. A Features element may also include a MultiSelect element that refers to features whose selections are interdependent.

4.12.4.1 FeaturesType Property Summary

	Name
	Type
	*
	Description

	Feature
	FeatureType
	1..*
	A top level feature in the hierarchy of features defined in SelectableContent.

	MultiSelect
	MultiSelectType
	0..*
	A list of feature references whose selection is controlled as a multi-select list with defined minimum and maximum selections.

	
	xsd:any
	0..*
	

4.12.4.2 FeaturesType Property Usage Notes

· Feature: Each top level Feature can define NestedFeatures. All features can define required relationships with other features that cause the required feature to be selected.
See the FeatureType section for structure and additional usage details [4.12.5].

· MultiSelect: The MultiSelect element MUST refer to Feature or NestedFeature elements.

See the MultiSelectType section for structure and additional usage details [4.12.15].

4.12.5 FeatureType

[image: image97.png](O FeatureType)& EplE > extends: sdd-dd: NestedFeatuveWpe)B—E @ required

(O vesteckeatureType)i 2. sdd-dd:DisplayElementGroup,
o1
Condton
o1
tplcty
01
Languages
o1
NestzdFeatire
&y
=t ContentElement
PockageFeatureReference
RequredFesture
] variable
“Fo sranr
o
e
@ addon

e e

Figure 88: FeatureType structure.

FeatureType provides the type definition for each feature defined directly below SelectableContent. A Feature can define NestedFeatures and identify ContentElements and other features that will be selected when the feature is selected. A feature can also be defined to be available for selection only under certain conditions.

4.12.5.1 FeatureType Property Summary

	Name
	Type
	*
	Description

	
	[extends] NestedFeatureType
	
	See the NestedFeatureType section for additional properties [4.12.6].

	required
	xsd:boolean
	0..1
	Indicates the feature must be selected.

**default value=“false”

4.12.5.2 FeatureType Property Usage Notes
See the NestedFeatureType section for details of the inherited attributes and elements [4.12.6].
· required: A top level Feature MUST be selected when the value of the required attribute is “true”. In this case, the user cannot choose to deselect this top level Feature.
In Features that define Multiplicity, the SDD author can state a minimum number of instances of the Feature. This minimum applies only if the Feature is selected. The required attribute can be used to indicate that the Feature is always selected and so the minimum number of instances applies.

The required attribute SHOULD be used only when Multiplicity is applied to the Feature.

4.12.6 NestedFeatureType

[image: image98.png](O NestedreatureType)Er sdd-dd:DisplayElementGroup,
o1
Condition
o1
tplcty
01
Languages
01
NestzdFeatire
=]
= ContertElement
PockageFeatureReference
RequredFesture
] variable
“Fo s
T
e
@ addon

e e

Figure 89: NestedFeatureType structure.

NestedFeatureType is identical to FeatureType except that NestedFeatureType does not define a required attribute. All features other than those defined directly below SelectableContent use the NestedFeatureType.

4.12.6.1 NestedFeatureType Property Summary

	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	A human-readable name for the feature.

	Description
	DisplayTextType
	0..1
	A human-readable description of the feature.

	ShortDescription
	DisplayTextType
	0..1
	A human-readable short description of the feature.

	Condition
	ConditionType
	0..1
	A condition that determines if the feature is relevant to a particular deployment.

	Multiplicity
	MultiplicityType
	0..1
	Both an indication that multiple instances of the feature can be selected and the specification of their constraints.

	Languages
	LanguageSelectionsType
	0..1
	A list of language support available for the feature’s content.

	NestedFeature
	NestedFeatureType
	0..*
	A nested feature.

	ContentElement
	ContentElementReferenceType
	0..*
	A reference to a content element to be deployed when the feature is selected.

	PackageFeatureReference
	PackageFeatureReferenceType
	0..*
	A reference to a feature to be selected in a ContainedPackage defined in either the BaseContent or SelectableContent hierarchies.

	RequiredFeature
	FeatureReferenceType
	0..*
	A reference to a feature that is required when the defining feature is selected and so is selected automatically.

	Variable
	DerivedVariableType
	0..*
	The definition of a variable that can be used anywhere in any variable expression in the SDD.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	Used within the SDD to refer to the feature.

	addOn
	xsd:boolean
	0..1
	A “true” value indicates that the feature can be added to a deployed instance of the solution.

**default value=“false”

	
	xsd:anyAttribute
	0..*
	

4.12.6.2 NestedFeatureType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the nested feature.
See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the nested feature.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].

· Condition: If the features and its nested features are only applicable in certain environments, a Condition can be defined. When the Condition is not met, the feature and its nested features are not in scope.
For example, some features may be available only on a Linux operating system, even though the software can be applied on other operating systems. In this case, a Condition can be defined to cause the feature to be ignored when the operating system is not Linux.

See the ConditionType section for structure and additional usage details [4.5.1].

· Multiplicity: When multiple instances of a feature can be selected, a Multiplicity element MUST be defined.
For example, a solution that includes a server and a client may allow the deployment of multiple clients. In this situation, a feature that defines a Multiplicity element would select the content elements that deploy the client software.

See the MultiplicityType section for structure and usage details [4.12.7].

· Languages: Sometimes language support for a feature is different than that available for the overall solution. This is especially likely when features are implemented by aggregation of packages provided by different teams. When language support differs, the Languages element of the feature MUST be defined to state which languages are supported for the feature.

When Languages is defined in a feature, it overrides the global declaration of supported languages and MUST declare the complete set of language support available for that feature.

If Languages is not defined, the global declaration of supported languages in CompositeInstallable applies for the feature.

See the LanguageSelectionsType section for structure and additional usage details [4.13.4].

· NestedFeature: A NestedFeature must be explicitly selected. It is not assumed to be selected when the parent feature is selected. Selection of a nested feature causes its parent feature to be selected, but not vice-versa. The definition of a NestedFeature indicates that application of the NestedFeature is dependent on application of the parent feature.

· ContentElement: The ContentElement referred to MUST be in the selectable content hierarchy defined by the SelectableContent element.

When the content reference is to a CompositeUnit, the composite and all content elements below it in the content hierarchy are considered to be in scope when the feature is selected. Ease of referencing a group of content from a feature can be one reason for using a composite in the content hierarchy.

See the ContentElementReferenceType section for structure and additional usage details [4.12.9].

· PackageFeatureReference: Selection of a feature may result in selection of an aggregated package’s feature identified by a ContainedPackage element anywhere in the BaseContent or SelectableContent hierarchies. A PackageFeatureReference identifies both the ContainedPackage and the applicable features to be selected in that package.
See the PackageFeatureReferenceType section for structure and additional usage details [4.12.10].

· RequiredFeature: When the selection of one feature requires the selection of another feature, the RequiredFeature can be used to specify this requirement.
When two features identify each other as required features, they are always selected together.

The selection of the defining feature MUST cause the required feature to be selected.

See the FeatureReferenceType section for structure and additional usage details [4.12.8].

· Variable: Variables defined in features are useful when inputs to an artifact need to vary based on which features are selected for a particular deployment. Artifact arguments can be defined in terms of feature Variables to allow for this variation. When an artifact deploys selectable content, inputs to the artifact that indicate the selections for a particular deployment can be associated with feature selection in the SDD via feature Variables.
For example, a Feature that deploys a trace facility might define a Variable called “TraceSettings”. The value of an argument to a base content artifact might define its value as “$(TraceSettings)”. If the feature is selected, this argument would be used and its value would be taken from the feature Variable. If the feature is not selected, the argument would be ignored.
A Variable defined in a feature differs from Variable elements defined in content elements in one important way. A reference to an undefined feature Variable is treated as an empty string and is considered to be defined.
See the DerivedVariableType section for structure and additional usage details [4.6.13].

· id: Provides the means to reference a feature from other features.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.

· addOn: When a solution and the artifacts that deploy the various parts of the solution are designed in a way that supports the addition of a particular feature at a later time (after the deployment of the base solution), the addOn attribute is set to “true”.

4.12.7 MultiplicityType

[image: image99.png](O MutiplcityType)&+ ConstrainedFeature

e

ConstranedResaurce.

e

“Fo s

e

@ muiplesalowed

| @ minselections

@ maxsslections

e e

Figure 90: MultiplicityType structure.

Some solutions allow multiple instances of some portion of the solution’s resources to be deployed as part of the solution.
For example, a solution that includes a server and a client may allow the deployment of multiple clients. The deployment of each client may involve content elements that represent several different resulting resources, features that control optional functionality of the client and configuration elements that configure the client. All of these can be defined within a “Client” feature that declares a Multiplicity element that indicates that multiple clients are allowed. Each selection or “instance” of the feature results in the deployment of a client.
The phrase “feature instance” is used to refer to the set of instances of all resources deployed when the feature is selected. It does not imply that features themselves are represented as having lifecycle or that features in the SDD correspond with feature instances in the deployment environment.

4.12.7.1 MultiplicityType Property Summary

	Name
	Type
	*
	Description

	ConstrainedFeature
	FeatureReferenceType
	0..*
	A nested feature whose selection must be the same for all instances of the defining feature in a particular deployment.

	ConstrainedResource
	ConstrainedResourceType
	0..*
	A resource that must resolve to the same resource instance for all instances of the feature in a particular deployment.

	
	xsd:any
	0..*
	

	multiplesAllowed
	xsd:boolean
	1
	Indicates that multiple instances of the feature are allowed.

**fixed value=“true”

	minSelections
	xsd:positiveInteger
	0..1
	The minimum number of instances of the feature that must be selected if the feature is selected at all.

**default value=“1”

	maxSelections
	xsd:positiveInteger
	0..1
	That maximum number of instances of the feature that can be selected.

	
	xsd:anyAttribute
	0..*
	

4.12.7.2 MultiplicityType Property Usage Notes

· ConstrainedFeature: A feature with multiplicity may contain NestedFeature elements. When a NestedFeature is identified in a ConstrainedFeature, then all instances of the defining Feature MUST make the same selection choice for that NestedFeature.

See the FeatureReferenceType section for structure and additional usage details [4.12.8].

· ConstrainedResource: The content elements selected by a feature may express constraints on resources. When the resource constraints for each instance of a feature must resolve to the same resource instance, or when all must resolve to unique resource instances, the resource is referred to and the constraint type is identified in the ConstrainedResource element.
See the ConstrainedResourceType section for structure and additional usage details [4.12.11].

· multiplesAllowed: This is an attribute with a fixed value of “true”. It is included because all other elements and attributes of MultiplicityType are optional. A feature that allows multiples but has no need to define constraints on resources, features or number of instances would define a Multiplicity element that had only the multiplesAllowed attribute.

· minSelections: When a feature is selected, if more than one instance of the feature is required, minSelections MUST be specified.

· maxSelections: When a feature is selected, if there is a limit on the number of instances of the feature that can be selected, maxSelections MUST be specified. If maxSelections is defined, it MUST be equal to or greater than minSelections.

4.12.8 FeatureReferenceType

[image: image100.png]& s

Figure 91: FeatureReferenceType structure.

FeatureReferenceType provides a way to reference a feature defined in the SDD from within the SDD.

4.12.8.1 FeatureReferenceType Property Summary

	Name
	Type
	*
	Description

	featureRef
	xsd:IDREF
	1
	Reference to a feature defined in the deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.12.8.2 FeatureReferenceType Property Usage Notes

· featureRef: The value MUST reference the id of a feature in the deployment descriptor.

4.12.9 ContentElementReferenceType

[image: image101.png]& s

Figure 92: ContentElementReferenceType structure.

ContentElementReferenceType provides a way to reference a content element defined in the SDD from within a feature.

4.12.9.1 ContentElementReferenceType Property Summary

	Name
	Type
	*
	Description

	contentElementRef
	xsd:IDREF
	1
	Reference to a content element in the deployment descriptor’s selectable content.

	
	xsd:anyAttribute
	0..*
	

4.12.9.2 ContentElementReferenceType Property Usage Notes

· contentElementRef: The value MUST reference the id of a content element in the deployment descriptor.

4.12.10 PackageFeatureReferenceType

[image: image102.png](@ parkageFcaiirerel

e e

Figure 93: PackageFeatureReferenceType structure.

PackageFeatureReferenceType provides a way to reference a feature defined in a referenced SDD. It identifies the ContainedPackage element that references the SDD and the feature in the referenced SDD.

4.12.10.1 PackageFeatureReferenceType Property Summary

	Name
	Type
	*
	Description

	contentElementRef
	xsd:IDREF
	1
	Reference to a content element in the deployment descriptor.

	packageFeatureRef
	xsd:NCName
	1
	The feature’s id as defined in the referenced package’s deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.12.10.2 PackageFeatureReferenceType Property Usage Notes

· contentElementRef: This value MUST reference the id of a ContainedPackage element in SelectableContent or BaseContent. This reference does not cause the ContainedPackage to be in scope.
· packageFeatureRef: Specifies the value of the id of a feature element from the SDD of the ContainedPackage identified in contentElementRef. This feature reference is ignored when the ContainedPackage identified in contentElementRef is not in scope for a particular deployment.
4.12.11 ConstrainedResourceType

[image: image103.png](O consranediesauiatype) B @ resaucenel

@ canstrantType

e e

Figure 94: ConstrainedResourceType structure.

A resource may be required during deployment of the content selected by a Feature instance. The requirement may exist because the resource is used in a Requirement statement, referred to in a Variable whose value is in scope for the particular deployment or referred to in a constraint in a Condition that is satisfied for the particular deployment. This is an in-scope, required resource for the particular deployment. The SDD author may wish to constrain in-scope, required resources to resolve to the same resource instance for all Feature instances or to resolve to unique resource instances for each Feature instance. This is done using a ConstrainedResource element.

4.12.11.1 ConstrainedResourceType Property Summary

	Name
	Type
	*
	Description

	resourceRef
	xsd:IDREF
	1
	A reference to the constrained resource.

	constraintType
	MultiplicityConstraintType
	0..1
	Indicates whether the constraint requires every instance of the resource to be the same or requires every instance to be different.

**default value=“same”

	
	xsd:anyAttribute
	0..*
	

4.12.11.2 ConstrainedResourceType Property Usage Notes

· resourceRef: The value MUST reference the id of a resource element in Topology.

· constraintType: If there is a constraint, constraintType indicates that all resource instances be unique or that all resource instances be the same.
For example, all clients for a particular solution may need to connect to the same database. In this case, constraintType would be set to same. In other cases, each of the deployed resources might need to use its own unique instance of a required resource. If there could be only one client per operating system, a constraint on the operating system resource would set constraintType to unique.
See the MultiplicityConstraintType section for the enumeration values for constraintType [4.12.12].
4.12.12 MultiplicityConstraintType

This is a simple type that is used to indicate how resources declared in the Multiplicity element should be treated. Enumeration values are same, unique, or if a value is not specified, the SDD author is indicating that it doesn’t matter.
4.12.12.1 MultiplicityConstraintType Property Usage Notes

· same: The value same is used to indicate that the constraint requires all resource instances MUST be the same.
· unique: The value unique is used to indicate that each resource instance MUST be unique.
4.12.13 RequiredContentSelectionType

[image: image104.png](O ReauiredContentselectionType)EF

Group

0.1

Feature

Do

Figure 95: RequiredContentSelectionType structure.

When one SDD aggregates another, there needs to be an indication of which Groups and/or Features in the aggregated SDD should be selected. The RequiredContentSelection of the referenced package element identifies which elements MUST be selected when the defining package is selected.

4.12.13.1 RequiredContentSelectionType Property Summary

	Name
	Type
	*
	Description

	Group
	xsd:token
	0..1
	A reference to the group to be selected.

	Feature
	ContentSelectionFeatureType
	0..*
	A reference to a feature to be selected.

4.12.13.2 RequiredContentSelectionType Property Usage Notes

· Group: The Group value is the identifier of a Group in the aggregated SDD. This value MUST reference the id of a Group element in the deployment descriptor denoted by the referenced package.
· Feature: The Feature element value is the identifier of the feature in the aggregated SDD. Attributes indicating the number of selections to be made can be included. The feature value MUST be the id of a feature element in the deployment descriptor denoted by the referenced package.

If Group is also defined, Feature SHOULD be a feature that is not selected by the Group.

See the ContentSelectionFeatureType section for structure and additional usage details [4.12.14].

4.12.14 ContentSelectionFeatureType

[image: image105.png](O ContentSelectionFeatureType)E+ P > extends: xsd: mkenjat @ selections

T

Figure 96: ContentSelectionFeatureType structure.

The ContentSelectionFeatureType allows for the definition of the number of times a feature can be referenced if that feature includes a Multiplicity element.
For example, a software package has a server and client; the server can be deployed only on one machine, but the client can be deployed on multiple machines and configured to reference the one server. The server, for performance reasons, is limited to 10 client connections. To limit the number of times the client can be deployed, the selections attribute should be set to “10”.
4.12.14.1 ContentSelectionFeatureType Property Summary

	Name
	Type
	*
	Description

	
	[extends] xsd:token
	
	See the xsd:token definition in [XSD].

	selections
	VariableExpressionType
	0..1
	The number of times a feature with Multiplicity in the referenced package should be deployed.

4.12.14.2 ContentSelectionFeatureType Property Usage Notes

See the xsd:token definition in [XSD] for inherited attributes and elements.
· selections:
The value of selections MUST be, or resolve to, a positive integer that is within the bounds of the minSelections and maxSelections attributes defined in the Multiplicity element of the referenced feature.
See the VariableExpressionType section for structure and additional usage details [4.6.1].

4.12.15 MultiSelectType

[image: image106.png](O MuliselectType)

=

Feature

B

| @ minselections

@ maxsslections

Figure 97: MultiSelectType structure.

MultiSelectType defines a way to associate features with a defined minimum and maximum number of selections allowed. A MultiSelect element MAY be used to support identification of mutually exclusive features.

4.12.15.1 MultiSelectType Property Summary

	Name
	Type
	*
	Description

	Feature
	FeatureReferenceType
	2..*
	A reference to a feature in the list of features defined in the MultiSelect element.

	minSelections
	xsd:nonNegativeInteger
	0..1
	Minimum number of features that must be selected.

**default value=“0”

	maxSelections
	xsd:positiveInteger
	0..1
	Maximum number of features that can be selected.

4.12.15.2 MultiSelectType Property Usage Notes

· Feature: The value MUST reference the id of a feature element.

See the FeatureReferenceType section for structure and additional usage details [4.12.8].

· minSelections, maxSelections: When it is not necessary that any of the features in the MultiSelect list be selected, the default of “0” can be used.

Mutually exclusive features can be defined using a MultiSelect element with two features, minSelections set to “0” and maxSelections set to “1”.

If multiple instances of a single feature are selected via multiplicity, the set of multiple instances count only once toward the minimum and maximum. In other words, the count is based solely on the features selected, not on how many instances of each feature are selected.
When maxSelections is not defined, all of the features in the MultiSelect MAY be selected for a particular deployment.
If defined, the maxSelections value MUST be greater than or equal to the minSelections value and MUST be less than or equal to the number of referenced features.
4.13 Localization

Localization refers to enabling a particular piece of software to support one or more languages. Anything that needs to be deployed to provide support for a particular language in that software is considered localization content. Translated materials are a primary, but not the only, example of localization content.

Localization content is similar in many ways to other content, but there are important differences in how localization content is selected for deployment that lead to the need for a separate content hierarchy and separate types. Two criteria determine whether or not localization content is in scope for a particular deployment:

· The first criterion has to do with the language or languages supported by the localization content. At least one of the languages must be in scope for the content to be selected.

· The second criterion has to do with the availability of the resources to be localized–the localization base. The localization base may be a resource deployed by base or selectable content, or it may be a resource previously deployed and found in the deployment environment.

The types described in this section support definition of metadata describing the criteria for determining when localization content is in scope.
4.13.1 LocalizationContentType

[image: image107.png]LocalizationUnit

(O LocazationContentType)EF uuja‘_wa

ContanedLacalzatiorPackage

CompostelocaleationUnit

Figure 98: LocalizationContentType structure.

The LocalizationContent tree contains all content created specifically to provide localization by deploying language-specific materials for a particular location. The localization support provided can be for content defined in the SDD or it can be for resources in the deployment environment that are not created or modified by deployment of the SDD. Each element defined in the LocalizationContent hierarchy is in scope for a particular deployment when it supports a language that is in scope for that deployment and when its localization base, if any, is available.

4.13.1.1 LocalizationContentType Property Summary

	Name
	Type
	*
	Description

	LocalizationUnit
	LocalizationUnitType
	0..*
	Contains artifacts that create, modify or delete language support.

	ContainedLocalizationPackage
	ReferencedPackageType
	0..*
	Identifies an SDD whose contents are aggregated to create, modify or delete language support.

	CompositeLocalizationUnit
	CompositeLocalizationUnitType
	0..*
	An organizational element that groups localization content and defines metadata common to all the grouped content.

4.13.1.2 LocalizationContentType Property Usage Notes

· LocalizationUnit: When there is no need to group a LocalizationUnit with other units that have common metadata, the LocalizationUnit is defined at the top level of the hierarchy. A LocalizationUnit defined at the top level of the LocalizationContent hierarchy is in scope for a particular deployment when its Condition and LocalizationBase, if any, evaluate to true and its Languages element, if any, defines a language that is in scope for the deployment.

See the LocalizationUnitType section for structure and additional usage details [4.13.2].

· ContainedLocalizationPackage: ContainedLocalizationPackage definitions include a list of languages supported by the contained package. The package need not be processed if none of those languages is in scope for a particular deployment.

See the ReferencedPackageType section for structure and additional usage details [4.10.1].
· CompositeLocalizationUnit: CompositeLocalizationUnit is a construct that allows organization of localization content in a way that is meaningful to the SDD author.
One example use of a CompositeLocalizationUnit is to group a set of LocalizationUnits that provide support for a variety of languages for the same resource. This eliminates the need to define identical LocalizationBase elements in every LocalizationUnit. It can be defined once in the CompositeLocalizationUnit.

If evaluation of the CompositeLocalizationUnit's Condition, Languages and LocalizationBase determines that it is not selected for deployment, none of the content elements defined below it in the hierarchy are selected.

Requirements, Variables, Conditions and Completion elements common to all child content elements MAY be defined once in the CompositeLocalizationUnit rather than once in each nested element.

See the CompositeLocalizationUnitType section for structure and additional usage details [4.13.3].

4.13.2 LocalizationUnitType

[image: image108.png](O LocalzstiontritType)Er

Identity
0.1

Condtian
0.1

Variables
0.1

RequredBase
0.1

Requrements
0.1

Languages
0.1

Completion

e

LocalzatiorBase
0.1

ResutingResource.

e

Artfacts

“Fo s

e

e

— @ targetResourceRef

e e

Figure 99: LocalizationUnitType structure.

The LocalizationUnit element defines artifacts that deploy localization content for one group of resources whose translations are packaged together. Localization content consists of materials that have been translated into one or more languages.

4.13.2.1 LocalizationUnitType Property Summary
	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the LocalizationUnit.

	Condition
	ConditionType
	0..1
	A condition that determines if the content element is relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables that can be referenced in the LocalizationUnit’s requirement and artifact definitions.

	RequiredBase
	RequiredBaseType
	0..1
	A resource that will be updated when the LocalizationUnit’s UpdateArtifact is processed.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met prior to successful processing of the LocalizationUnit’s artifacts.

	Languages
	LanguagesType
	0..1
	The LocalizationUnit’s artifacts contain materials translated into these languages.

	Completion
	CompletionType
	0..*
	Describes completion actions such as restart and the conditions under which the action is applied.

	LocalizationBase
	RequiredBaseType
	0..1
	A resource whose translatable characteristics will be localized by processing the LocalizationUnit’s InstallArtifact.

	ResultingResource
	ResultingResourceType
	0..*
	A resource that will be installed or updated by processing the LocalizationUnit’s artifacts.

	Artifacts
	InstallationArtifactsType
	1
	The set of artifacts associated with the LocalizationUnit.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier for the LocalizationUnit scoped to the deployment descriptor.

	targetResourceRef
	xsd:IDREF
	1
	Reference to the resource that can process the LocalizationUnit’s artifacts.

	
	xsd:anyAttribute
	0..*
	

4.13.2.2 LocalizationUnitType Property Usage Notes
· Identity: The Identity element defines human-understandable information that reflects the identity of the provided localization resources as understood by the end user of the solution. Identity has elements that are common with elements in the corresponding PackageDescriptor’s PackageIdentity element, for example, Name and Version. The values of these common elements SHOULD be the same as the corresponding PackageIdentity element values.
See the IdentityType section for structure and additional usage details [3.4].
· Condition: A Condition is used when the LocalizationUnit’s content should be deployed only when certain conditions exist in the deployment environment.
For example, for a package that has one artifact that should be processed when the operating system is Linux and another artifact that should be processed when the operating system is Windows, the LocalizationUnit defining metadata for the Linux artifact would have a condition on the operating system being Linux. The LocalizationUnit defining metadata for the Windows artifact would have a condition on the operating system being Windows.

Conditions should not be used to identify the resource that will be localized by the LocalizationUnit. The LocalizationBase element is used for that purpose. A LocalizationUnit can have both a Condition and a LocalizationBase.

See the ConditionType section for structure and additional usage details [4.5.1].
· Variables: A Variables element defines variables that can be used in the definition of requirements and artifact parameters.
When the deployment descriptor defines a single LocalizationUnit at the top level, that is, not inside a CompositeInstallable, the variables it defines can also be referred to in any element under Topology.
See the VariablesType section for structure and additional usage details [4.6.3].

· RequiredBase: RequiredBase identifies the resource that must exist prior to applying the LocalizationUnit’s update artifact.

See the RequiredBaseType section for structure and additional usage details [4.7.8].

· Requirements: Requirements MUST be met prior to processing the LocalizationUnit’s artifacts.

See the RequirementsType section for structure and additional usage details [4.7.1].

· Languages: Languages lists the languages of the translated material deployed by the LocalizationUnit.
See the LanguagesType section for structure and additional usage details [4.13.6].
· Completion: A Completion element MUST be included if the artifact being processed requires a system operation such as a reboot or logoff to occur to function successfully after deployment or if the artifact executes a system operation to complete deployment of the contents of the artifact.

There MUST be an artifact associated with the operation defined by a Completion element.
For example, if there is a Completion element for the install operation, the LocalizationUnit must define an InstallArtifact.

See the CompletionType section for structure and additional usage details [4.3.14].
· LocalizationBase: LocalizationBase identifies the resource or resources that can be localized by processing the LocalizationUnit. A resource that satisfies the constraints defined in the LocalizationBase is one that can be localized by applying the LocalizationUnit.

If no resource is found that meets the constraints defined in LocalizationBase during a particular deployment, then the LocalizationUnit is not considered to be in scope for that deployment. This does not represent an error.

Translations created or modified by the LocalizationUnit are for human-readable text included with the LocalizationBase resources.
See the RequiredBaseType section for structure and additional usage details [4.7.8].

· ResultingResource: The ResultingResources for a LocalizationUnit MUST NOT identify resources other than localization resources.

See the ResultingResourceType section for structure and additional usage details [4.8.1].
· Artifacts: When the LocalizationUnit is a singleton defined outside of a CompositeInstallable, it MUST define at least one artifact element and MAY define one of each type of artifact element allowed for its type. The inclusion of an artifact element in a singleton LocalizationUnit implies support for the associated operation.

When the LocalizationUnit is defined within a CompositeInstallable, it MUST define exactly one artifact. The artifact defined MAY be any artifact allowed in a LocalizationUnit and it MUST support the single top level operation defined by the CompositeInstallable. This does not mean the operation associated with the artifact has to be the same as the one defined by the CompositeInstallable.

For example, an install of a localization resource may be required during the update of the overall solution, in which case the LocalizationUnit would define an InstallArtifact to support the top level update operation.

See the InstallationArtifactsType section for structure and additional usage details [4.3.4].
· id: The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages.
· targetResourceRef: The targetResourceRef attribute MUST reference the id of a resource element in Topology that will process the LocalizationUnit’s artifacts to create or modify the localization resources identified in the LocalizationUnit’s ResultingResource elements.
4.13.3 CompositeLocalizationUnitType

[image: image109.png](O CompostelocaizationtntType)|

Identity

0.1

Condtian

0.1

Variables

0.1

RequredBase

0.1

Requrements

0.1

Languages

0.1

Completion

e

LocalzatiorBase

0.1

ResutingResource.

e

e

e e

ContanedLacalzatiorPackage

- ComposteLocaeationnt

A
=

F<> wraer

e

Figure 100: CompositeLocalizationUnitType structure

CompositeLocalizationUnitType provides the type definition for all CompositeLocalizationUnit elements in the LocalizationContent hierarchy. CompositeLocalizationUnit elements define nested localization content elements and metadata that applies to all of the nested elements.

4.13.3.1 CompositeLocalizationUnitType Property Summary
	Name
	Type
	*
	Description

	Identity
	IdentityType
	0..1
	Human-understandable identity information about the CompositeLocalizationUnit.

	Condition
	ConditionType
	0..1
	A condition that determines if the CompositeLocalizationUnit is relevant to a particular deployment.

	Variables
	VariablesType
	0..1
	Variables for use within the CompositeLocalizationUnit and content elements nested beneath it in the hierarchy.

	RequiredBase
	RequiredBaseType
	0..1
	A resource that will be updated when the nested elements are processed.

	Requirements
	RequirementsType
	0..1
	Requirements that must be met prior to successful processing of the nested content elements.

	Languages
	LanguagesType
	0..1
	Localization elements defined within CompositeLocalizationUnit contain materials translated into these languages.

	Completion
	CompletionType
	0..*
	Describes completion actions such as restart and the conditions under which the action is applied.

	LocalizationBase
	RequiredBaseType
	0..1
	A resource whose translatable characteristics will be localized by processing the nested content elements.

	ResultingResource
	ResultingResourceType
	0..*
	A localization resource that will be installed or updated by processing the nested content elements.

	LocalizationUnit
	LocalizationUnitType
	0..*
	Contains artifacts that will create, modify or delete language support.

	ContainedLocalizationPackage
	ReferencedPackageType
	0..*
	Identifies an SDD whose contents are aggregated to create, modify or delete language support.

	CompositeLocalizationUnit
	CompositeLocalizationUnitType
	0..*
	An organizational element that groups localization content and defines metadata common to all the grouped content.

	
	xsd:any
	0..*
	

	id
	xsd:ID
	1
	An identifier for the CompositeLocalizationUnit that is unique within the deployment descriptor.

	
	xsd:anyAttribute
	0..*
	

4.13.3.2 CompositeLocalizationUnitType Property Usage Notes

· Identity: The CompositeLocalizationUnit, like all content elements, is a unit of packaging. Its identity is the identity of a unit of packaging and may be useful to package management tools. The identity MAY be similar or identical to the identity of the ResultingResource(s).

See the IdentityType section for structure and additional usage details [3.4].

· Condition: If the composite and the elements nested beneath it are applicable only in certain environments, a Condition can be defined. When the Condition is not met, the composite and its nested elements are not in scope.

See the ConditionType section for structure and additional usage details [4.5.1].

· Variables: Variables used by more than one nested element can be defined in the CompositeLocalizationUnit for efficiency both in composing and processing the SDD. Variables are visible to all nested content elements.

See the VariablesType section for structure and additional usage details [4.6.3].

· RequiredBase: If the processing of all the update artifacts in the nested content elements results in a single resource being updated, that resource can be defined in the CompositeLocalizationUnit’s RequiredBase element.

See the RequiredBaseType section for structure and additional usage details [4.7.8].

· Requirements: When a CompositeLocalizationUnit is in scope for a particular deployment–as determined by evaluation of its LocalizationBase and Languages properties–then its requirements MUST be met.

See the RequirementsType section for structure and additional usage details [4.7.1].

· Languages: The Languages element in the CompositeLocalizationUnit MUST NOT be defined or MUST define the union of all languages supported by the nested content elements. For nested content elements to be evaluated to determine if they are in scope, the CompositeLocalizationUnit must be in scope. When Languages is present in the CompositeLocalizationUnit, it must define one of the languages in scope for the particular deployment if any of the nested elements are to be evaluated. If Languages is not present in a CompositeLocalizationUnit, evaluation of all the child elements still is required, as long as the other elements of CompositeLocalizationUnit have evaluated to true. When the Languages and/or the LocalizationBase element in a CompositeLocalizationUnit is not defined, the nested content elements must be evaluated to determine if they are in scope.

See the LanguagesType section for structure and additional usage details [4.13.6].

· Completion: When a particular completion action applies to all nested elements and should be performed only once for the entire group, it can be defined in the CompositeLocalizationUnit rather than in each individual element.

See the CompletionType section for structure and additional usage details [4.3.14].

· LocalizationBase: A LocalizationBase element evaluates to true when the resource identified in the base is created by a content element that is in scope for the deployment or it already exists in the deployment environment.

When the LocalizationBase is defined it must evaluate to true for any of the nested content elements to be evaluated. If it evaluates to false, none of the nested content elements are in scope. If it evaluates to true, the nested content elements may be in scope.

When the LocalizationBase and/or the Languages element in a CompositeLocalizationUnit is not defined, the nested content elements must be evaluated to determine if they are in scope.

See the RequiredBaseType section for structure and additional usage details [4.7.8].

· ResultingResource: If there are one or more resources that will be created when the nested content elements are processed, they can be defined here.

See the ResultingResourceType section for structure and additional usage details [4.8.1].

· LocalizationUnit: LocalizationUnits defined within the composite typically have common metadata. Metadata defined in the composite does not need to be repeated in the nested element. Definitions in the nested LocalizationUnit are additions to those defined in the composite.

See the LocalizationUnitType section for structure and additional usage details [4.13.2].

· ContainedLocalizationPackage: A ContainedLocalizationPackage is defined in a CompositeLocalizationUnit for the same reasons that a LocalizationUnit is–because it has metadata in common with other elements defined in the composite.
See the ReferencedPackageType section for structure and additional usage details [4.10.1].

· CompositeLocalizationUnit: A CompositeLocalizationUnit can be nested inside another CompositeLocalizationUnit when some of the metadata is shared only by a subset of the elements nested in the higher level composite.
For example, the higher level composite might contain operating system requirements that apply to all localization content and nested composites might group localization content by localization base.

· id: This id is not referred to by any other element in the deployment descriptor.

The id attribute may be useful to software that processes the SDD, for example, for use in creating log and trace messages. It also may be useful for associating custom discovery logic with the CompositeLocalizationUnit’s resource-related elements.
4.13.4 LanguageSelectionsType

[image: image110.png]Mandatory

0.1

(O LanguageSelectionsTyps)&+ .“.)E,[

Optional

ol

Figure 101: LanguageSelectionsType structure.

LanguageSelectionsType provides the type definition for the Languages element in CompositeInstallable that describes the languages supported by the SDD as a whole. It also provides the type definition for the Languages element in features that allows a feature to override the SDD-wide definitions.

4.13.4.1 LanguageSelectionsType Property Summary
	Name
	Type
	*
	Description

	Mandatory
	LanguagesType
	0..1
	The set of languages that will be deployed.

	Optional
	OptionalLanguagesType
	0..1
	The set of language selections available to the deployer.

4.13.4.2 LanguageSelectionsType Property Usage Notes

· Mandatory: The deployer has no ability to determine if a mandatory language will be deployed.

See the LanguagesType section for structure and additional usage details [4.13.6].

· Optional: Each language group in the list of optional languages defines a list of one or more languages that can be selected together.

Language groups defined in LanguageSelections MAY be used to allow the deployer to select individual languages or to allow selection of multiple languages as a single choice.

See the OptionalLanguagesType section for structure and additional usage details [4.13.5].
4.13.5 OptionalLanguagesType

[image: image111.png]Language

o ovtmnmnguagempe)w o

Languageset

Figure 102: OptionalLanguagesType structure

OptionalLanguagesType supports definition of a language or sets of languages that the deployer can optionally choose for deployment. This type is used to define the global set of optional languages in CompositeInstallable as well as any Feature-specific set that overrides the global set for a particular Feature.

4.13.5.1 OptionalLanguagesType Property Summary

	Name
	Type
	*
	Description

	Language
	LanguageType
	1..*
	A single language that can be chosen individually.

	LanguageSet
	LanguageSetType
	1..*
	A set of languages that can be chosen together.

4.13.5.2 OptionalLanguagesType Property Usage Notes

· Language: When the SDD author allows the deployer to individually select a language for deployment, it is defined in a Language element within OptionalLanguages.

See the LanguageType section for structure and usage details [4.13.7].

· LanguageSet: When the SDD author allows the deployer to select languages for deployment as a set, it is defined in a LanguageSet element within OptionalLanguages.
One example of a reason to define optional languages in a set rather than individually is for a group of languages that are packaged together and whose deployment cannot be separated.

See the LanguageSetType section for structure and additional usage details [4.13.8].
4.13.6 LanguagesType

[image: image112.png](O LangusgesType)&+

)]

Language

T

Figure 103: LanguagesType structure.

LanguagesType supports expression of a list of languages. It is used in the Languages elements of content elements to list languages supported by that content element. It is also used as the type of the Mandatory element that lists languages that are deployed by default.

4.13.6.1 LanguagesType Property Summary
	Name
	Type
	*
	Description

	Language
	LanguageType
	1..*
	A single language definition.

4.13.6.2 LanguagesType Property Usage Notes

· Language: Each language definition MAY include display information as well as the language code that identifies the language.

See the LanguageType section for structure and additional usage details [4.13.7].
4.13.7 LanguageType

[image: image113.png]sdd-dd:DisplayElementGroup,
0.1

(O LanguageType)

Figure 104: LanguageType structure.

LanguageType supports the definition of display information and the language code for one language. It is used everywhere a language is defined in the SDD.

4.13.7.1 LanguageType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	A name for the language.

	Description
	DisplayTextType
	0..1
	A description of the language.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the language.

	type
	xsd:language
	1
	The locale code for the language.

4.13.7.2 LanguageType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the language.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the language.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· type: The type attribute MUST be defined as a value that conforms to the set of language codes defined by [RFC3066].

For example, “de” is a locale code for German and “en-US” is the locale code for English in the United States.
4.13.8 LanguageSetType
[image: image114.png](O LanguageetType JB—(=+=)

sdd-dd:DisplayElementGroup,
0.1

Language

T

Figure 105: LanguageSetType structure.

LanguageSetType provides the type definition for the OptionalLanguages elements of CompositeInstallable and Feature. It defines a set of languages that can be selected together.

4.13.8.1 LanguageSetType Property Summary
	Name
	Type
	*
	Description

	DisplayName
	DisplayTextType
	0..1
	A name for the set of languages.

	Description
	DisplayTextType
	0..1
	A description of the set of languages.

	ShortDescription
	DisplayTextType
	0..1
	A short description of the set of languages.

	Language
	LanguageType
	1..*
	A set of one or more language codes.

4.13.8.2 LanguageSetType Property Usage Notes

· DisplayName: This element MAY be used to provide human-understandable information. If used, it MUST provide a label for the set of languages.

For example, “Eastern European Languages” or “French, English and German”.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Description, ShortDescription: These elements MAY be used to provide human-understandable information. If used, they MUST provide a description of the set of languages.

The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayElementGroup section for structure and additional usage details [4.14.2].
· Language: The languages defined in this element MUST be selected together.

See the LanguageType section for structure and additional usage details [4.13.7].

4.14 Display Information

There are many places throughout the SDD where translatable information intended for display to humans MAY be defined. All display information definitions can include a translationKey that can be used as an index into a file containing translations.
4.14.1 DescriptionGroup

[image: image115.png]DescriptionGroup

Description

ShartDescription

ol

Figure 106: DescriptionGroup structure.

The DescriptionGroup type is used throughout the SDD to provide human-readable, translatable, descriptive-text elements.

4.14.1.1 DescriptionGroup Property Usage Notes

· Description: This is a description of the defining element unless usage notes for that element state otherwise. It can be as long as necessary to provide a useful description.
The Description element MUST be defined if the ShortDescription element is defined.

See the DisplayTextType section for details about associating this text with translated text [4.14.3].

· ShortDescription: This is a short description of the defining element unless usage notes for that element state that it refers to something else. It SHOULD provide a limited description that can be used by tools where limited text is allowed, for example, fly-over help.
See the DisplayTextType section for details about associating this text with translated text [4.14.3].

4.14.2 DisplayElementGroup
[image: image116.png]DisplayElementGroup

Displayhame

0.1

B

DescriptionGroup,
ol

Figure 107: DisplayElementGroup structure.

The DisplayElementGroup is used throughout the package descriptor and deployment descriptor to provide human-readable, translatable names, descriptions and/or short descriptions for a variety of elements.
4.14.2.1 DisplayElementGroup Property Usage Notes

· DisplayName: This is a label for the defining element unless usage notes for that element state otherwise.
See the DisplayTextType section for details about associating this text with translated text [4.14.3].
4.14.3 DisplayTextType
[image: image117.png](O DisplayTextTyps)&+ P D extends: smngjat @ translstionkey {1

(D

X restricts: xsianySimpleType)EF—

whitespace : preserve

Figure 108: DisplayTextType Structure.

Elements of DisplayTextType define translatable strings and an optional key to translated text in language bundle files. DisplayTextType extends the xsd:string type with an optional translationKey attribute.

4.14.3.1 DisplayTextType Property Usage Notes
· translationKey: The translationKey attribute is a value that can be used as an index into a file containing translations of DisplayTextType elements in the DeploymentDescriptor and/or PackageDescriptor. The value of the translationKey MUST match an entry in the message bundle referenced by the descriptorLanguageBundle attribute in the package descriptor.
5 Conformance

5.1 General Conformance Statements

An implementation MAY claim conformance to the entirety of the SDD specification (including all conformance levels) or one or more particular conformance levels, and/or one or more particular profiles (SDD conformance levels and profiles are detailed next).

5.2 Conformance Levels

An SDD conformance level (CL) is defined, consistent with [CONFORM], as a subset of the schema intended to enable a certain set of capabilities to be achieved, based on SDDs that restrict their content to the particular CL. The purpose of conformance levels is to allow subsets of the full set of capabilities that can be expressed using an SDD to be implemented. The proper subsets are expected to be easier to implement, but still offer features, value and interoperability that make it worthwhile to implement a particular CL in certain circumstances.

SDD conformance levels are designated as CL1 and CL2. CL1 is a proper subset of the schema; CL2 represents the full schema. CL1 is the minimal set or core of the specification that shall be implemented by all products. CL2 includes all of CL1 and consists of the entire specification.
The following sections describe the defined CLs for SDD.

5.2.1 CL Capabilities

Table 1 expresses the capabilities for each defined CL.

	

	Conformance Level 1
	Conformance Level 2

	Description
	Single target, simple package.
	Multi-target, aggregated packages; full deployment capabilities with all functions enabled by the SDD schema.

	Objective
	Serve as the “on-ramp” for SDD adoption. Deploy pre-prepared content that needs limited customization (basic parameters). Descriptors serve as contract between assembly and operations. Exemplary use case is “wrappering” existing packages in SDD.

	Serve as the expected level for newly-authored non-legacy SDDs. Deploy newly-prepared content that has related components in a solution, with various topologies. Most robust specification (and corresponding run-time implementations) of SDD. Exemplary use case is non-trivial, non-legacy solution deployment.

	Included Schema Functions
	· Solution package with single component (singleton IU, CU, or LU; no composite) and single target topology

· Solution package dependency checking for given environment

· base installations and maintenance

· Simple uninstall (based on information in single descriptor)

· Ability to deploy existing artifact formats appropriate for the target environment

· Some localization possible (localization of the units that are supplied)

	All functions, including:
· Aggregation (composites)

· Features

· Selectable features

· Conditional content

· Variable-target topology

· Robust localization

	Excluded Functions
	· Features

· Selectable content

· Requisites

· Aggregation

· Multi-target topology

· Robust localization

· Replacements and modifications that change base resource/solution composition (including obsolescence)

· Backwards compatibility, range enforcement

· Verification of installation and configuration
	None

Table 1: SDD conformance level capabilities summary.
5.2.2 Conformance Level Differences

CL1 SDDs can be used to describe the inputs, requirements and results of processing a single deployment artifact. This artifact could be one that deploys, updates, configures or localizes software resources. This is useful for simple deployments that require only a single artifact. CL2 SDDs add support for aggregation of multiple artifacts and SDDs into solutions; definition of features that optionally select content; and requisite software that can be deployed if needed to satisfy requirements. CL1 SDDs can be aggregated by CL2 SDDs.

For example, CL2 SDDs can describe a solution that consists of a Web server, an application server, a database and one or more applications, in which each of these components is described by its own individual SDD and an aggregating CL2 SDD aggregates them into the composite solution.
The differences between CL1 and CL2 that are summarized in Table 1 are detailed next. These make use of the information that is in the SDD schema; see [CL1_Schema] for the CL1 schema files, and [CL2_Schema] for the CL2 schema files. The differences between the CL1 and CL2 schema files are isolated to the “sdd-dd” namespace. The “sdd-common” and “sdd-pd” namespaces contain identical schema files for each namespace with respect to CL1 and CL2.

5.2.2.1 Type Definitions Modified in CL2

A few SDD types used in CL1 have additional elements added in CL2. The types listed in the left column of Table 2 exist in both CL1 and CL2 with different definitions. The elements in the right column are the sub-elements added to the type definitions in CL2.

	Type Name
	CL2 Sub-Element Names

	DeploymentDescriptorType
	Requisites

CompositeInstallable

	InstallationArtifactsType
	RepairArtifact

	ResultingResourceType
	Relationship

	ResultingChangeType
	Relationship

	ResourceConstraintGroup
	UniquenessConstraint

RelationshipConstraint

	ConditionalResourceConstraintType
	UniquenessConstraint

RelationshipConstraint

	RequirementType
	Dependency

	AlternativeRequirementType
	Dependency

Table 2. Modified Types.

5.2.2.2 Type Structures Modified in CL2

Several SDD types have altered structure between CL1 and CL2. The types listed in the left column of Table 3 are valid for both CL1 and CL2; however, valid structure for these types differs between CL1 and CL2, as shown in the center and right columns.

	Type
	CL1 Structure
	CL2 Structure

	DeploymentDescriptorType
	Choice of one of the following: InstallableUnit, ConfigurationUnit, or LocalizationUnit
	Choice of one of the following: InstallableUnit, ConfigurationUnit, or LocalizationUnit;

or one or more

CompositeInstallable elements

	RequirementType
	Sequence of ResourceConstraint elements
	Unbounded choice of ResourceConstraint elements and Dependency elements

	AlternativeRequirementType
	Sequence of ResourceConstraint elements
	Unbounded choice of ResourceConstraint elements and Dependency elements

Table 3. Altered types in CL2.
5.2.2.3 SDD Types Introduced in CL2

As seen in Table 2, CL2 adds two new elements to DeploymentDescriptor. The CompositeInstallable element provides the definition of an aggregate deployment. CompositeInstallable is a complex element with many sub-elements. The second element added to DeploymentDescriptor is Requisites. Requisites is a list of references to SDDs that can be used, if needed, to satisfy deployment requirements defined in the CompositeInstallable.

Table 4 includes the CL2 types that are introduced in support CompositeInstallable and Requisites
	BaseContentType
	FeatureType
	PackageFeatureReferenceType

	CompositeInstallableType
	GroupsType
	ReferencedPackageType

	CompositeLocalizationType
	GroupType
	RelationshipConstraintType

	CompositeUnitType
	InternalDependencyType
	RelationshipType

	ConstrainedResourceType
	LanguageSelectionType
	RequiredContentSelectionType

	ContentElementReferenceType
	LocalizationContentType
	RequisitesType

	ContentListGroup
	MultiplicityConstraintType
	ResourceMapType

	ContentSelectionFeatureType
	MultiplicityType
	ResultingChangeMapType

	DependencyType
	MultiSelectType
	ResultingResourceMapType

	FeatureReferenceType
	NestedFeatureType
	SelectableContentType

	FeaturesType
	OptionalLanguagesType
	UniquenessConstraintType

Table 4 SDD types introduced in CL2.

5.2.2.4 Extended Enumeration Value in CL2

One SDD type has an additional enumeration value that is valid only for CL2-based implementations. The type listed in the left column of Table 5 is valid for both CL1 and CL2; however, the value in the right column is valid only for CL2.

	Type
	CL2 Enumeration Value

	OperationType
	repair

Table 5 Extended enumeration value in CL2.
5.3 Profiles

Profiles are intended to specify detailed information that can be used in an SDD to promote interoperability. An SDD profile is defined consistent with [CONFORM], to identify the functionality, parameters, options and/or implementation requirements necessary to satisfy the requirements of a particular community of users. SDD profiles are intended to enable a specific set of use cases, typically in a particular domain. Profiles are considered largely orthogonal to CLs; whereas a CL is a subset of the schema, a profile specifies the usage of the schema, including appropriate conventions and content values, to accomplish a particular set of use cases (typically in a particular domain).

A starter profile is initially defined with version 1.0 of this specification and is published separately. This starter profile defines terms and patterns that can be used to generate other specific profiles and addresses the content values that are required to support the SDD XML examples that also are published separately.
The starter profile is not intended to be a complete vocabulary for all SDDs, but rather to illustrate the format and provide example content so that additional profiles can be generated in the future. The starter profile leverages and extends the CIM standard [CIM] for many content values, but other profiles MAY use other content values.
Other profiles MAY be published by the TC in the future, and new profiles can be created as specified in 5.3.1.

An implementation MAY claim conformance to one or more particular profiles.

5.3.1 Profile Creation

The SDD TC has created a starter profile as described in 5.3. The SDD TC MAY create additional profiles in the future.

Others MAY create SDD profiles for use cases, domains, or user communities that are not addressed by the currently available profiles from the SDD TC. When creating new profiles, it is RECOMMENDED that profile creators follow the model of the starter profile and any existing profiles and reuse content from existing standards where possible. It is also RECOMMENDED that implementations publish the profile(s) that they support.

5.3.2 Profile Publication

The SDD TC publishes the starter profile and MAY publish any other profiles created by the SDD TC.

Profiles created by the SDD TC SHALL be made available by the SDD TC.

Profiles created by others MAY be published and made available by those parties and/or submitted to the SDD TC for consideration for publication by the SDD TC, according to the OASIS policies and procedures, including intellectual property rights. The SDD TC MAY publish and make available the new profiles through majority vote of the TC.

5.3.3 Profile Applicability

Profiles are applicable to particular usage models, domains and/or user communities. An implementation MAY claim conformance to one or more particular profiles.

5.4 Compatibility Statements

Versions of the specification use the version value defined in the schemaVersion attribute described in section 3.2. New versions of the specification MAY update the conformance level contents.

Profiles also use the schemaVersion attribute described in section 3.2. New versions of profiles MAY update the profile contents.

Minor version updates of the schema, specification and profiles SHALL be backward-compatible with proceeding major versions (for example, all “1.x” versions are backward-compatible with version “1.0”).

Moreover, minor version updates of the schema, specification and profiles SHALL be backward-compatible with proceeding minor versions of the same major version (for example, version “1.4” is backward-compatible with versions “1.3”, “1.2”, “1.1” and “1.0”).

Major version updates of the schema, specification and profiles are NOT REQUIRED to be backward-compatible with previous versions and MAY NOT be backward-compatible with previous versions. For example, if non-backward-compatible changes occur in version “1.x”, the new version is “2.0”. Although new major versions MAY have substantial backward compatibility, backward compatibility is not guaranteed for all aspects of the schema across major versions.

5.5 Conformance Clause

5.5.1 Conformance for Users of This Specification

An SDD conforms to this specification if it conforms to the SDD schema and follows the syntax and semantics defined in the normative portions of this specification. An SDD MAY conform to conformance levels CL1 or CL2.

An implementation conforms to this specification if it conforms to, at minimum, conformance level CL1 of the SDD schema; supports at least one SDD profile; and follows the syntax and semantics defined in the normative portions of this specification. An implementation MAY support conformance levels CL1 or CL2 and MAY support additional SDD profiles.

5.5.2 Conformance for This Specification Itself

This section is the conformance claim for how this document conforms to [CONFORM]. The conformance issues in section 8 of [CONFORM] apply to this document as follows:

1. This document is applicable to SDDs as defined in this specification. To claim conformance to this document, all the requirements in section 5.5.1 SHALL be met.

2. This document MAY be implemented in its entirety or in defined conformance levels CL1 and CL2. This document does not define profiles, but the SDD TC MAY define profiles that MAY be implemented.

3. This document allows extensions. Each implementation SHALL fully support all required functionality of the specification exactly as specified. The use of extensions SHALL NOT contradict nor cause the non-conformance of functionality defined in the specification.
4. This document contains no discretionary items.

5. This document’s normative language is English. Translation into other languages is permitted.

B. Schema File List

The SDD schema is implemented by multiple schema files. Types defined in each file are identified by a specific namespace prefix, as indicated in the following list:

· cd04-sdd-common-1.0.xsd (prefix: sdd-common)
Contains definitions of common types used in the SDD specification, including identity and fix-identity types, UUID and version types, and the display text type.
http://docs.oasis-open.org/sdd/v1.0/cd04/CL1Schema/cd04-sdd-common-1.0.xsd

http://docs.oasis-open.org/sdd/v1.0/cd04/FullSchema/cd04-sdd-common-1.0.xsd
· cd04-sdd-deploymentDescriptor-1.0.xsd (prefix: sdd-dd)
Contains the deployment descriptor specification, including various content types.
http://docs.oasis-open.org/sdd/v1.0cd04/CL1Schema/cd04-sdd-deploymentDescriptor-1.0.xsd
http://docs.oasis-open.org/sdd/v1.0/cd04/FullSchema/cd04-sdd-deploymentDescriptor-1.0.xsd
· cd04-sdd-packageDescriptor-1.0.xsd (prefix: sdd-pd)
Contains the package descriptor specification, including types related to packages and files.
http://docs.oasis-open.org/sdd/v1.0/cd04/CL1Schema/cd04-sdd-packageDescriptor-1.0.xsd
http://docs.oasis-open.org/sdd/v1.0/cd04/FullSchema/cd04-sdd-packageDescriptor-1.0.xsd
Example SDDs showing the use of the schema can be found at the following address.

 http://docs.oasis-open.org/sdd/v1.0/sdd-examples-v1.0.zip

C. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Dr. Howard Abrams, CA

Mr. Joshua Allen, Macrovision Corporation

Mr. Rich Aquino, Macrovision Corporation

Mr. Lazar Borissov, SAP AG

Ms. Debra Danielson, CA

Mr. Robert DeMason, SAS Institute, Inc.

Mr. Robert Dickau, Macrovision Corporation

Mr. Quenio dos Santos, Macrovision Corporation

Mrs. Christine Draper, IBM

Mr. Adrian Dunston, SAS Institute, Inc.

Mr. James Falkner, Sun Microsystems

Mr. Keisuke Fukui, Fujitsu Limited

Mr. Randy George, IBM

Mr. Nico Groh, SAP AG

Mr. Frank Heine, SAP AG

Ms. Merri Jensen, SAS Institute, Inc.

Dr. Hiro Kishimoto, Fujitsu Limited

Mr. Thomas Klink, SAP AG

Mr. Jason Losh, SAS Institute, Inc.

Ms. Julia McCarthy, IBM

Mr. Art Middlekauff, Macrovision Corporation

Mr. Brent Miller, IBM

Mr. Ed Overton, SAS Institute, Inc.

Mr. Chris Robsahm, SAP AG

Dr. David Snelling, Fujitsu Limited

Mr. Thomas Studwell, Dell

Dr. Weijia (John) Zhang, Dell

� Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.

� Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

� Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 150
sdd-spec-v1.0-cd04

8 April 2008
Copyright © OASIS® 2007, 2008. All Rights Reserved.

Page 22 of 154

