
sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 1 of 229

Static Analysis Results Interchange
Format (SARIF) Version 2.1.0 Plus Errata
01

OASIS Standard incorporating Approved Errata

28 August 2023

This stage:
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.docx
(Authoritative)
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.pdf

Previous stage:
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.docx
(Authoritative)
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.pdf

Latest stage:
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.docx (Authoritative)
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.pdf

Technical Committee:
OASIS Static Analysis Results Interchange Format (SARIF) TC

Chairs:
David Keaton (dmk@dmk.com), Individual Member
Luke Cartey (lcartey@github.com), Microsoft

Editors:
Michael C. Fanning (mikefan@microsoft.com), Microsoft
Laurence J. Golding (v-lgold@microsoft.com), Microsoft

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

• Errata listing. Static Analysis Results Interchange Format (SARIF) Version 2.1.0 Errata 01. Edited by
Michael C. Fanning. 28 August 2023. OASIS Approved Errata. https://docs.oasis-
open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os.html.

• Change-marked (redlined) OASIS Standard document. Static Analysis Results Interchange Format
(SARIF) Version 2.1.0 Plus Errata01 (redlined). Edited by Michael C. Fanning and Laurence J.
Golding. 28 August 2023. OASIS Standard incorporating Approved Errata. https://docs.oasis-
open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-redlined.html.

• The SARIF schema: https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-
2.1.0.json.

• The SARIF External Property File schema: https://docs.oasis-
open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json.

https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.docx
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.pdf
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.docx
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/csd01/sarif-v2.1.0-errata01-csd01-complete.pdf
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.docx
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.pdf
https://www.oasis-open.org/committees/sarif/
mailto:dmk@dmk.com
mailto:lcartey@github.com
http://www.microsoft.com/
mailto:mikefan@microsoft.com
http://www.microsoft.com/
mailto:v-lgold@microsoft.com
http://www.microsoft.com/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-redlined.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-redlined.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 2 of 229

Related work:
This document incorporates approved Errata for:

• Static Analysis Results Interchange Format (SARIF) Version 2.1.0. Edited by Michael C. Fanning and
Laurence J. Golding. 27 March 2020. OASIS Standard. https://docs.oasis-
open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html.

Abstract:
This document defines a standard format for the output of static analysis tools. The format is referred to
as the “Static Analysis Results Interchange Format” and is abbreviated as SARIF.

Status:
This document was last revised or approved by the OASIS Static Analysis Results Interchange Format
(SARIF) TC on the above date. The level of approval is also listed above. Check the "Latest stage"
location noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=sarif#technical.

TC members should send comments on this document to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send
A Comment" button on the TC's web page at https://www.oasis-open.org/committees/sarif/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/sarif/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification, the following citation format should be used:

[SARIF-v2.1.0-Errata01]

Static Analysis Results Interchange Format (SARIF) Version 2.1.0 Plus Errata 01. Edited by Michael C.
Fanning and Laurence J. Golding. 28 August 2023. OASIS Standard incorporating Approved Errata.
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html. Latest
stage: https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html.

https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=sarif
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=sarif
https://www.oasis-open.org/committees/sarif/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/sarif/ipr.php
https://www.oasis-open.org/committees/sarif/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 3 of 229

Notices

Copyright © OASIS Open 2023. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website:
[https://www.oasis-open.org/policies-guidelines/ipr/].

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THIS
DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards
Final Deliverable documents (Committee Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS
TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims
in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable by a patent holder that is not willing to provide a license to such patent claims in a manner
consistent with the IPR Mode of the OASIS Technical Committee that produced this OASIS Standards
Final Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on
OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS
Technical Committee can be found on the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this document, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, documents, while reserving the right to enforce its marks against misleading
uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 4 of 229

Table of Contents

1 Introduction ... 16

1.1 IPR Policy ... 16

1.2 Terminology .. 16

1.3 Normative References .. 22

1.4 Non-Normative References .. 24

1.5 Trademarks ... 24

2 Conventions .. 25

2.1 General ... 25

2.2 Format examples .. 25

2.3 Property notation .. 25

2.4 Syntax notation ... 25

2.5 Commonly used objects ... 25

3 File format ... 27

3.1 General ... 27

3.2 SARIF file naming convention .. 27

3.3 artifactContent object .. 27

3.3.1 General .. 27

3.3.2 text property... 27

3.3.3 binary property... 27

3.3.4 rendered property .. 28

3.4 artifactLocation object ... 28

3.4.1 General .. 28

3.4.2 Constraints .. 28

3.4.3 uri property .. 29

3.4.4 uriBaseId property ... 29

3.4.5 index property .. 30

3.4.6 description property ... 31

3.4.7 Guidance on the use of artifactLocation objects ... 32

3.5 String properties ... 33

3.5.1 Localizable strings ... 33

3.5.2 Redactable strings ... 33

3.5.3 GUID-valued strings .. 33

3.5.4 Hierarchical strings .. 33
3.5.4.1 General .. 33
3.5.4.2 Versioned hierarchical strings .. 34

3.6 Object properties .. 34

3.7 Array properties .. 35

3.7.1 General .. 35

3.7.2 Default value.. 35

3.7.3 Array properties with unique values .. 35

3.7.4 Array indices .. 35

3.8 Property bags ... 35

3.8.1 General .. 35

3.8.2 Tags ... 35

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 5 of 229

3.8.2.1 General .. 35
3.8.2.2 Tag metadata ... 36

3.9 Date/time properties ... 37

3.10 URI-valued properties ... 38

3.10.1 General .. 38

3.10.2 Normalizing file scheme URIs ... 38

3.10.3 URIs that use the sarif scheme ... 40

3.10.4 Internationalized Resource Identifiers (IRIs) ... 40

3.11 message object ... 40

3.11.1 General .. 40

3.11.2 Constraints .. 40

3.11.3 Plain text messages .. 40

3.11.4 Formatted messages ... 41
3.11.4.1 General .. 41
3.11.4.2 Security implications .. 41

3.11.5 Messages with placeholders ... 41

3.11.6 Messages with embedded links .. 42

3.11.7 Message string lookup .. 44

3.11.8 text property... 45

3.11.9 markdown property .. 45

3.11.10 id property.. 45

3.11.11 arguments property ... 46

3.12 multiformatMessageString object ... 46

3.12.1 General .. 46

3.12.2 Localizable multiformatMessageStrings .. 46

3.12.3 text property... 46

3.12.4 markdown property .. 46

3.13 sarifLog object .. 46

3.13.1 General .. 46

3.13.2 version property ... 47

3.13.3 $schema property .. 47

3.13.4 runs property ... 47

3.13.5 inlineExternalProperties property .. 48

3.14 run object .. 49

3.14.1 General .. 49

3.14.2 externalPropertyFileReferences property ... 49

3.14.3 automationDetails property ... 49

3.14.4 runAggregates property ... 49

3.14.5 baselineGuid property ... 50

3.14.6 tool property... 50

3.14.7 language .. 50

3.14.8 taxonomies property .. 50

3.14.9 translations property .. 50

3.14.10 policies property .. 50

3.14.11 invocations property .. 50

3.14.12 conversion property ... 51

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 6 of 229

3.14.13 versionControlProvenance property .. 51

3.14.14 originalUriBaseIds property ... 51

3.14.15 artifacts property .. 54

3.14.16 specialLocations property.. 54

3.14.17 logicalLocations property ... 54

3.14.18 addresses property .. 55

3.14.19 threadFlowLocations property ... 55

3.14.20 graphs property ... 56

3.14.21 webRequests property .. 56

3.14.22 webResponses property .. 56

3.14.23 results property .. 56

3.14.24 defaultEncoding property .. 56

3.14.25 defaultSourceLanguage property .. 57

3.14.26 newlineSequences property .. 57

3.14.27 columnKind property ... 57

3.14.28 redactionTokens property.. 58

3.15 externalPropertyFileReferences object .. 59

3.15.1 General .. 59

3.15.2 Rationale ... 59

3.15.3 Properties .. 59

3.16 externalPropertyFileReference object .. 62

3.16.1 General .. 62

3.16.2 Constraints .. 62

3.16.3 location property .. 62

3.16.4 guid property.. 63

3.16.5 itemCount property .. 63

3.17 runAutomationDetails object ... 63

3.17.1 General .. 63

3.17.2 description property ... 64

3.17.3 id property.. 64

3.17.4 guid property.. 65

3.17.5 correlationGuid property .. 65

3.18 tool object.. 65

3.18.1 General .. 65

3.18.2 driver property ... 66

3.18.3 extensions property ... 66

3.19 toolComponent object ... 66

3.19.1 General .. 66

3.19.2 Constraints .. 67

3.19.3 Taxonomies ... 67

3.19.4 Translations ... 69

3.19.5 Policies .. 70

3.19.6 guid property.. 72

3.19.7 Product hierarchy properties ... 72

3.19.8 name property ... 72

3.19.9 fullName property .. 72

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 7 of 229

3.19.10 product property .. 72

3.19.11 productSuite property .. 72

3.19.12 semanticVersion property.. 72

3.19.13 version property ... 73

3.19.14 dottedQuadFileVersion property ... 73

3.19.15 releaseDateUtc property ... 73

3.19.16 downloadUri property .. 73

3.19.17 informationUri property .. 73

3.19.18 organization property ... 73

3.19.19 shortDescription property .. 74

3.19.20 fullDescription property .. 74

3.19.21 language property ... 74

3.19.22 globalMessageStrings property ... 74

3.19.23 rules property .. 75

3.19.24 notifications property ... 76

3.19.25 taxa property ... 76

3.19.26 supportedTaxonomies property... 77

3.19.27 translationMetadata property... 78

3.19.28 locations property .. 78

3.19.29 contents property ... 78

3.19.30 isComprehensive property .. 78

3.19.31 localizedDataSemanticVersion property ... 79

3.19.32 minimumRequiredLocalizedDataSemanticVersion property ... 79

3.19.33 associatedComponent property .. 80

3.20 invocation object ... 80

3.20.1 General .. 80

3.20.2 commandLine property .. 80

3.20.3 arguments property ... 81

3.20.4 responseFiles property .. 81

3.20.5 ruleConfigurationOverrides property ... 82

3.20.6 notificationConfigurationOverrides property .. 82

3.20.7 startTimeUtc property .. 82

3.20.8 endTimeUtc property ... 82

3.20.9 exitCode property .. 82

3.20.10 exitCodeDescription property .. 83

3.20.11 exitSignalName property ... 83

3.20.12 exitSignalNumber property .. 83

3.20.13 processStartFailureMessage property .. 83

3.20.14 executionSuccessful property ... 84

3.20.15 machine property ... 84

3.20.16 account property .. 84

3.20.17 processId property ... 84

3.20.18 executableLocation property ... 84

3.20.19 workingDirectory property ... 84

3.20.20 environmentVariables property ... 85

3.20.21 toolExecutionNotifications property ... 85

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 8 of 229

3.20.22 toolConfigurationNotifications property ... 86

3.20.23 stdin, stdout, stderr, and stdoutStderr properties .. 87

3.21 attachment object ... 87

3.21.1 General .. 87

3.21.2 description property ... 87

3.21.3 location property .. 87

3.21.4 regions property .. 88

3.21.5 rectangles property .. 88

3.22 conversion object .. 88

3.22.1 General .. 88

3.22.2 tool property... 88

3.22.3 invocation property .. 89

3.22.4 analysisToolLogFiles property... 89

3.23 versionControlDetails object ... 89

3.23.1 General .. 89

3.23.2 Constraints .. 89

3.23.3 repositoryUri property .. 89

3.23.4 revisionId property ... 89

3.23.5 branch property ... 90

3.23.6 revisionTag property .. 90

3.23.7 asOfTimeUtc property ... 90

3.23.8 mappedTo property ... 90

3.24 artifact object .. 92

3.24.1 General .. 92

3.24.2 location property .. 92

3.24.3 parentIndex property ... 93

3.24.4 offset property ... 93

3.24.5 length property .. 94

3.24.6 roles property... 94

3.24.7 mimeType property ... 95

3.24.8 contents property ... 95

3.24.9 encoding property .. 95

3.24.10 sourceLanguage property ... 96
3.24.10.1 General .. 96
3.24.10.2 Source language identifier conventions and practices ... 96

3.24.11 hashes property ... 97

3.24.12 lastModifiedTimeUtc property.. 98

3.24.13 description property ... 98

3.25 specialLocations object ... 98

3.25.1 General .. 98

3.25.2 displayBase property ... 98

3.26 translationMetadata object.. 100

3.26.1 General .. 100

3.26.2 name property ... 100

3.26.3 fullName property .. 100

3.26.4 shortDescription property .. 101

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 9 of 229

3.26.5 fullDescription property .. 101

3.26.6 downloadUri property .. 101

3.26.7 informationUri property .. 101

3.27 result object .. 101

3.27.1 General .. 101

3.27.2 Distinguishing logically identical from logically distinct results .. 101

3.27.3 guid property.. 102

3.27.4 correlationGuid property .. 102

3.27.5 ruleId property ... 102

3.27.6 ruleIndex property ... 103

3.27.7 rule property .. 104

3.27.8 taxa property.. 104

3.27.9 kind property .. 106

3.27.10 level property ... 107

3.27.11 message property .. 109

3.27.12 locations property .. 110

3.27.13 analysisTarget property ... 110

3.27.14 webRequest property .. 111

3.27.15 webResponse property ... 111

3.27.16 fingerprints property .. 111

3.27.17 partialFingerprints property ... 112

3.27.18 codeFlows property ... 114

3.27.19 graphs property ... 114

3.27.20 graphTraversals property .. 114

3.27.21 stacks property .. 114

3.27.22 relatedLocations property .. 115

3.27.23 suppressions property ... 116

3.27.24 baselineState property .. 116

3.27.25 rank property ... 117

3.27.26 attachments property ... 117

3.27.27 workItemUris property ... 117

3.27.28 hostedViewerUri property .. 118

3.27.29 provenance property ... 118

3.27.30 fixes property ... 118

3.27.31 occurrenceCount property ... 118

3.28 location object ... 118

3.28.1 General .. 118

3.28.2 id property.. 119

3.28.3 physicalLocation property .. 119

3.28.4 logicalLocations property ... 120

3.28.5 message property .. 120

3.28.6 annotations property .. 120

3.28.7 relationships property .. 120

3.29 physicalLocation object ... 121

3.29.1 General .. 121

3.29.2 Constraints .. 121

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 10 of 229

3.29.3 artifactLocation property .. 121

3.29.4 region property .. 121

3.29.5 contextRegion property ... 122

3.29.6 address property ... 122

3.30 region object ... 122

3.30.1 General .. 122

3.30.2 Text regions ... 123

3.30.3 Binary regions ... 125

3.30.4 Independence of text and binary regions .. 126

3.30.5 startLine property .. 126

3.30.6 startColumn property ... 126

3.30.7 endLine property ... 126

3.30.8 endColumn property .. 126

3.30.9 charOffset property .. 127

3.30.10 charLength property .. 127

3.30.11 byteOffset property .. 127

3.30.12 byteLength property .. 127

3.30.13 snippet property ... 127

3.30.14 message property .. 127

3.30.15 sourceLanguage property ... 128

3.31 rectangle object .. 128

3.31.1 General .. 128

3.31.2 top, left, bottom, and right properties .. 128

3.31.3 message property .. 128

3.32 address object .. 129

3.32.1 General .. 129

3.32.2 Parent-child relationships .. 129

3.32.3 Absolute address calculation... 129

3.32.4 Relative address calculation .. 130

3.32.5 index property .. 130

3.32.6 absoluteAddress property ... 131

3.32.7 relativeAddress property ... 131

3.32.8 offsetFromParent property .. 131

3.32.9 length property .. 131

3.32.10 name property ... 131

3.32.11 fullyQualifiedName property .. 132

3.32.12 kind property .. 132

3.32.13 parentIndex property ... 132

3.33 logicalLocation object ... 133

3.33.1 General .. 133

3.33.2 Logical location naming rules .. 133

3.33.3 index property .. 133

3.33.4 name property ... 134

3.33.5 fullyQualifiedName property .. 134

3.33.6 decoratedName property ... 136

3.33.7 kind property .. 136

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 11 of 229

3.33.8 parentIndex property ... 139

3.34 locationRelationship object ... 139

3.34.1 General .. 139

3.34.2 target property ... 141

3.34.3 kinds property .. 141

3.34.4 description property ... 141

3.35 suppression object .. 141

3.35.1 General .. 141

3.35.2 kind property .. 142

3.35.3 status property ... 142

3.35.4 location property .. 142

3.35.5 guid property.. 143

3.35.6 justification property .. 143

3.36 codeFlow object .. 143

3.36.1 General .. 143

3.36.2 message property .. 144

3.36.3 threadFlows property ... 144

3.37 threadFlow object ... 144

3.37.1 General .. 144

3.37.2 id property.. 144

3.37.3 message property .. 145

3.37.4 initialState property .. 145

3.37.5 immutableState property ... 145

3.37.6 locations property .. 145

3.38 threadFlowLocation object .. 145

3.38.1 General .. 145

3.38.2 index property .. 146

3.38.3 location property .. 147

3.38.4 module property .. 148

3.38.5 stack property .. 149

3.38.6 webRequest property .. 149

3.38.7 webResponse property ... 149

3.38.8 kinds property .. 149

3.38.9 state property... 150

3.38.10 nestingLevel property .. 151

3.38.11 executionOrder property .. 151

3.38.12 executionTimeUtc property ... 152

3.38.13 importance property .. 152

3.38.14 taxa property ... 152

3.39 graph object .. 154

3.39.1 General .. 154

3.39.2 description property ... 154

3.39.3 nodes property .. 154

3.39.4 edges property .. 154

3.40 node object ... 154

3.40.1 General .. 154

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 12 of 229

3.40.2 id property.. 154

3.40.3 label property ... 155

3.40.4 location property .. 155

3.40.5 children property .. 155

3.41 edge object ... 155

3.41.1 General .. 155

3.41.2 id property.. 155

3.41.3 label property ... 155

3.41.4 sourceNodeId property .. 155

3.41.5 targetNodeId property ... 156

3.42 graphTraversal object ... 156

3.42.1 General .. 156

3.42.2 Constraints .. 156

3.42.3 resultGraphIndex property ... 156

3.42.4 runGraphIndex property .. 156

3.42.5 description property ... 156

3.42.6 initialState property .. 157

3.42.7 immutableState property ... 157

3.42.8 edgeTraversals property ... 157

3.43 edgeTraversal object .. 159

3.43.1 General .. 159

3.43.2 edgeId property ... 159

3.43.3 message property .. 159

3.43.4 finalState property ... 159

3.43.5 stepOverEdgeCount property.. 159

3.44 stack object ... 161

3.44.1 General .. 161

3.44.2 message property .. 161

3.44.3 frames property ... 161

3.45 stackFrame object .. 161

3.45.1 General .. 161

3.45.2 location property .. 161

3.45.3 module property .. 161

3.45.4 threadId property ... 161

3.45.5 parameters property .. 162

3.46 webRequest object ... 162

3.46.1 General .. 162

3.46.2 index property .. 162

3.46.3 protocol property ... 162

3.46.4 version property ... 162

3.46.5 target property ... 163

3.46.6 method property .. 163

3.46.7 headers property ... 163

3.46.8 parameters property .. 163

3.46.9 body property... 163

3.47 webResponse object .. 163

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 13 of 229

3.47.1 General .. 163

3.47.2 index property .. 164

3.47.3 protocol property ... 164

3.47.4 version property ... 164

3.47.5 statusCode property .. 164

3.47.6 reasonPhrase property .. 164

3.47.7 headers property ... 165

3.47.8 body property... 165

3.47.9 noResponseReceived property ... 165

3.48 resultProvenance object ... 165

3.48.1 General .. 165

3.48.2 firstDetectionTimeUtc property .. 166

3.48.3 lastDetectionTimeUtc property .. 166

3.48.4 firstDetectionRunGuid property ... 166

3.48.5 lastDetectionRunGuid property ... 166

3.48.6 invocationIndex property ... 166

3.48.7 conversionSources property.. 167

3.49 reportingDescriptor object... 168

3.49.1 General .. 168

3.49.2 Constraints .. 168

3.49.3 id property.. 168

3.49.4 deprecatedIds property ... 169

3.49.5 guid property.. 171

3.49.6 deprecatedGuids property ... 171

3.49.7 name property ... 171

3.49.8 deprecatedNames property ... 171

3.49.9 shortDescription property .. 171

3.49.10 fullDescription property .. 171

3.49.11 messageStrings property .. 172

3.49.12 helpUri property ... 172

3.49.13 help property ... 173

3.49.14 defaultConfiguration property .. 173

3.49.15 relationships property .. 173

3.50 reportingConfiguration object ... 173

3.50.1 General .. 173

3.50.2 enabled property ... 174

3.50.3 level property ... 174

3.50.4 rank property ... 174

3.50.5 parameters property .. 174

3.51 configurationOverride object ... 175

3.51.1 General .. 175

3.51.2 descriptor property .. 176

3.51.3 configuration property .. 176

3.52 reportingDescriptorReference object .. 176

3.52.1 General .. 176

3.52.2 Constraints .. 177

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 14 of 229

3.52.3 reportingDescriptor lookup .. 177

3.52.4 id property.. 177

3.52.5 index property .. 178

3.52.6 guid property.. 179

3.52.7 toolComponent property .. 179

3.53 reportingDescriptorRelationship object ... 179

3.53.1 General .. 179

3.53.2 target property ... 181

3.53.3 kinds property .. 181

3.53.4 description property ... 181

3.54 toolComponentReference object .. 181

3.54.1 General .. 181

3.54.2 toolComponent lookup .. 182

3.54.3 name property ... 182

3.54.4 index property .. 182

3.54.5 guid property.. 182

3.55 fix object .. 182

3.55.1 General .. 182

3.55.2 description property ... 182

3.55.3 artifactChanges property ... 183

3.56 artifactChange object .. 184

3.56.1 General .. 184

3.56.2 artifactLocation property .. 185

3.56.3 replacements property ... 185

3.57 replacement object ... 185

3.57.1 General .. 185

3.57.2 Constraints .. 186

3.57.3 deletedRegion property ... 186

3.57.4 insertedContent property ... 187

3.58 notification object .. 187

3.58.1 General .. 187

3.58.2 descriptor property .. 187

3.58.3 associatedRule property .. 187

3.58.4 locations property .. 188

3.58.5 message property .. 188

3.58.6 level property ... 188

3.58.7 threadId property ... 189

3.58.8 timeUtc property .. 189

3.58.9 exception property ... 189

3.59 exception object .. 189

3.59.1 General .. 189

3.59.2 kind property .. 189

3.59.3 message property .. 189

3.59.4 stack property .. 190

3.59.5 innerExceptions property ... 190

4 External property file format ... 191

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 15 of 229

4.1 General ... 191

4.2 External property file naming convention ... 191

4.3 externalProperties object .. 191

4.3.1 General .. 191

4.3.2 $schema property .. 192

4.3.3 version property ... 192

4.3.4 guid property.. 192

4.3.5 runGuid property ... 192

4.3.6 The property value properties ... 193

5 Conformance .. 194

5.1 Conformance targets .. 194

5.2 Conformance Clause 1: SARIF log file ... 194

5.3 Conformance Clause 2: SARIF producer ... 194

5.4 Conformance Clause 3: Direct producer .. 194

5.5 Conformance Clause 4: Converter ... 194

5.6 Conformance Clause 5: SARIF post-processor ... 195

5.7 Conformance Clause 6: SARIF consumer ... 195

5.8 Conformance Clause 7: Viewer .. 195

5.9 Conformance Clause 8: Result management system .. 195

5.10 Conformance Clause 9: Engineering system ... 195

Appendix A. (Informative) Acknowledgments ... 196

Appendix B. (Normative) Use of fingerprints by result management systems ... 197

Appendix C. (Informative) Use of SARIF by log file viewers ... 198

Appendix D. (Normative) Production of SARIF by converters .. 199

Appendix E. (Informative) Locating rule and notification metadata .. 200

Appendix F. (Informative) Producing deterministic SARIF log files .. 201

F.1 General ... 201

F.2 Non-deterministic file format elements ... 201

F.3 Array and dictionary element ordering ... 202

F.4 Absolute paths .. 202

F.5 Inherently non-deterministic tools ... 203

F.6 Compensating for non-deterministic output .. 203

F.7 Interaction between determinism and baselining ... 203

Appendix G. (Informative) Guidance on fixes ... 205

Appendix H. (Informative) Diagnosing results in generated files .. 206

Appendix I. (Informative) Detecting incomplete result sets ... 210

Appendix J. (Informative) Sample sourceLanguage values ... 211

Appendix K. (Informative) Examples ... 212

K.1 Minimal valid SARIF log file .. 212

K.2 Minimal recommended SARIF log file with source information .. 212

K.3 Minimal recommended SARIF log file without source information ... 213

K.4 Comprehensive SARIF file ... 214

Appendix L. (Informative) Revision History ... 226

Appendix M. (Non-Normative) MIME Types and File Name Extensions .. 229

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 16 of 229

1 Introduction
Software developers use a variety of analysis tools to assess the quality of their programs. These tools
report results which can indicate problems related to program qualities such as correctness, security,
performance, compliance with contractual or legal requirements, compliance with stylistic standards,
understandability, and maintainability. To form an overall picture of program quality, developers often
need to aggregate the results produced by all of these tools. This aggregation is more difficult if each tool
produces output in a different format.

This document defines a standard format for the output of static analysis tools, called the Static Analysis
Results Interchange Format, or “SARIF”1. The goals of the format are:

• Comprehensively capture the range of data produced by commonly used static analysis tools.

• Be a useful format for analysis tools to emit directly, and also an effective interchange format into
which the output of any analysis tool can be converted.

• Be suitable for use in a variety of scenarios related to analysis result management and be
extensible for use in new scenarios.

• Reduce the cost and complexity of aggregating the results of various analysis tools into common
workflows.

• Capture information that is useful for assessing a project’s compliance with corporate policy or
certification standards.

• Adopt a widely used serialization format that can be parsed by readily available tools.

• Represent analysis results for all kinds of artifacts, including source code and object code.

Although most static analysis tools analyze files on disk, SARIF can represent results detected in any
URI-addressable artifact (for example, the text returned by an HTTP query). This specification uses the
term “artifact” to refer to any item that a tool might analyze. It uses the more restrictive term “file” when
referring specifically to a file on disk.

1.1 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/sarif/ipr.php).

1.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in “Key words for use in RFCs to Indicate Requirement Levels” [BCP14]
[RFC2119] and “Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words” [RFC8174] when, and
only when, they appear in all capitals, as shown here.

For purposes of this document, the following terms and definitions apply:

analysis target

artifact which an analysis tool is instructed to analyze

artifact

1 Pronounced 'sæ-rɪf (“a” as in “cat”, “i” as in “if”, emphasis on the first syllable).

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/sarif/ipr.php
https://www.oasis-open.org/committees/sarif/ipr.php

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 17 of 229

sequence of bytes addressable via a URI

Examples: A physical file in a file system such as a source file, an object file, a configuration file
or a data file; a specific version of a file in a version control system; a database table accessed
via an HTTP request; an arbitrary stream of bytes returned from an HTTP request.

baseline

set of results produced by a single run of a set of analysis tools on a set of artifacts

NOTE: A result management system can compare the results of a subsequent run to a
baseline produced by a baseline run to determine whether new results have been
introduced.

baseline run

run that produces a baseline to which subsequent runs can be compared

binary artifact

artifact considered as a sequence of bytes

binary region

region representing a contiguous range of zero or more bytes in a binary artifact

call stack

sequence of nested function calls

camelCase name

name that begins with a lowercase letter, in which each subsequent word begins with an
uppercase letter

Example: camelCase, version, fullName.

code flow

set of one or more thread flows which together specify a pattern of code execution relevant to
detecting a result

column (number)

1-based index of a character within a line

configuration file

file, typically textual, that configures the execution of an analysis tool or tool component

converter

SARIF producer that transforms the output of an analysis tool from its native output format into
the SARIF format

custom taxonomy

taxonomy defined by and intended for use with a particular analysis tool

direct producer

analysis tool which acts as a SARIF producer

driver

tool component containing an analysis tool’s or converter’s primary executable, which controls the
tool’s or converter’s execution, and which in the case of an analysis tool typically defines a set of
analysis rules

embedded link

syntactic construct which enables a message string to refer to a location within an artifact
mentioned in a result

engineering system

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 18 of 229

software development environment within which analysis tools execute

NOTE: An engineering system might include a build system, a source control system, a
result management system, a bug tracking system, a test execution system, and so on.

empty array

array that contains no elements, and so has a length of 0

empty object

object that contains no properties

empty string

string that contains no characters, and so has a length of 0

(end) user

person who uses the information in a log file to investigate, triage, or resolve results

extension

tool component other than the driver (for example, a plugin, a configuration file, or a taxonomy)

external property file

file containing the values of one or more externalized properties

externalizable property

property that can be contained in an external property file

externalized property

property stored outside of the SARIF log file to which it logically belongs

false positive

result which an end user decides does not actually represent a problem

fingerprint

stable value that can be used by a result management system to uniquely identify a result over
time, even if a relevant artifact is modified

formatted message

message string which contains formatting information such as Markdown formatting characters

fully qualified logical name

string that fully identifies the programmatic construct specified by a logical location, typically by
means of a hierarchical identifier.

Example: The fully qualified logical name of the C# method f(void) in class C in

namespace N is "N.C.f(void)". Its logical name is "f(void)".

hierarchical string

string in the format <component>{/<component>}*

line

contiguous sequence of characters, starting either at the beginning of an artifact or immediately
after a newline sequence, and ending at and including the nearest subsequent newline sequence,
if one is present, or else extending to the end of the artifact

line (number)

1-based index of a line within a file

NOTE: Abbreviated to “line” when there is no danger of ambiguity with “line” in the sense
of a sequence of characters.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 19 of 229

localizable

subject to being translated from one natural language to another

log file

output file produced by an analysis tool, which enumerates the results produced by the tool

(log file) viewer

SARIF consumer that reads a log file, displays a list of the results it contains, and allows an end
user to view each result in the context of the artifact in which it occurs

logical location

location specified by reference to a programmatic construct, without specifying the artifact within
which that construct occurs

Example: A class name, a method name, a namespace.

logical name

string that partially identifies the programmatic construct specified by a logical location by
specifying the most specific (often the rightmost) component of its fully qualified logical name.

Example: The logical name of the C# method f(void) in class C in namespace N is

"f(void)". Its fully qualified logical name is "N.C.f(void)".

message string

human-readable string that conveys information relevant to an element in a SARIF file

nested artifact

artifact that is contained within another artifact

nested logical location

logical location that is contained within another logical location

Example: A method within a class in C++

newline sequence

sequence of one or more characters representing the end of a line of text

NOTE: Some systems represent a newline sequence with a single newline character;
others represent it as a carriage return character followed by a newline character.

notification

reporting item that describes a condition encountered by a tool during its execution

opaque

neither human-readable nor machine-parseable into constituent parts

parent (artifact)

artifact which contains one or more nested artifacts

physical location

location specified by reference to an artifact, possibly together with a region within that artifact

plain text message

message string which does not contain any formatting information

plugin

tool component that defines additional rules

policy

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 20 of 229

set of rule configurations that specify how results that violate the rules defined by a particular tool
component are to be treated

problem

result which indicates a condition that has the potential to detract from the quality of the program

Example: A security vulnerability, a deviation from contractual or legal requirements, a
deviation from stylistic standards.

property

attribute of an object consisting of a name and a value associated with the name

property bag

object consisting of an unordered set of non-standardized properties with arbitrary camelCase
names

redactable property

property that potentially contains sensitive information that a SARIF direct producer or a SARIF
post-processor might wish to redact

region

contiguous portion of an artifact

reporting item

unit of output produced by a tool, either a result or a notification

reporting configuration

the subset of reporting metadata that a tool can configure at runtime, before performing its scan

Examples: severity level, rank

reporting descriptor

container for reporting metadata

reporting metadata

information that describes a class of related reporting items

Examples: id, description

repository

container for a related set of files in a version control system

response file

file containing arguments for a tool, which are interpreted as if they had appeared directly on the
command line

result

reporting item that describes a condition present in an artifact

result file

artifact in which an analysis tool detects a result

result management system

software system that consumes the log files produced by analysis tools, produces reports that
enable engineering teams to assess the quality of their software artifacts at a point in time and to
observe trends in the quality over time, and performs functions such as filing bugs and displaying
information about individual results

NOTE: A result management system can interact with a log file viewer to display
information about individual defects.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 21 of 229

result matching

process of determining whether two results are reporting the same condition in the code

root file

SARIF log file to which one or more external property files logically belong

rule

specific criterion for correctness verified by an analysis tool

NOTE 1: Many analysis tools associate a rule id with each result they report, but some do
not.

NOTE 2: Some rules verify generally accepted criteria for correctness; others verify
conventions in use in a particular team or organization.

Examples: “Variables must be initialized before use.”, “Class names must begin with an
uppercase letter.”.

rule configuration

reporting configuration that applies to a rule

rule id

stable value which an analysis tool associates with a rule

NOTE: A rule id is more likely to remain stable if it is a symbolic or numeric value, as
opposed to a descriptive string.

Example: CA2001

rule metadata

reporting metadata that describes a rule

run

1. invocation of a specified analysis tool on a specified version of a specified set of analysis
targets, with a specified set of runtime parameters

2. set of results produced by such an invocation

SARIF consumer

program that reads and interprets a SARIF log file

SARIF log file

log file in the format defined by this document

SARIF post-processor

SARIF producer that transforms an existing SARIF log file into a new SARIF log file, for example,
by removing or redacting security-sensitive elements.

SARIF producer

program that emits output in the SARIF format

stable value

value which, once established, never changes over time

standard taxonomy

taxonomy defined without reference to a particular analysis tool

(static analysis) tool

program that examines artifacts to detect problems, without executing the program

Example: Lint

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 22 of 229

taxon (pl. taxa)

one of a set of categories which together comprise a taxonomy

taxonomy

classification of analysis results into a set of categories

tag

string that conveys additional information about the SARIF log file element to which it applies

text artifact

artifact considered as a sequence of characters organized into lines and columns

text region

region representing a contiguous range of zero or more characters in a text artifact

thread flow

temporally ordered set of code locations specifying a possible execution path through the code,
which occur within a single thread of execution, such as an operating system thread or a fiber

tool component

component of an analysis tool or converter, either its driver or an extension, consisting of one or
more files

top-level artifact

artifact which is not contained within any other artifact

top-level logical location

logical location that is not nested within another logical location

Example: A global function in C++

translation

rendering of a tool component’s localizable strings into another language

triage

decide whether a result indicates a problem that needs to be corrected

user

see end user.

VCS

version control system

viewer

see log file viewer.

web analysis tool

analysis tool that models and analyzes the interaction between a web client and a server.

1.3 Normative References

[BCP14] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, March
1997, https://tools.ietf.org/html/bcp14.

[ECMA404] “The JSON Data Interchange Syntax”, ECMA-404, 2nd Edition, December, 2017,
https://www.ecma-international.org/wp-content/uploads/ECMA-
404_2nd_edition_december_2017.pdf.

[GFM] “GitHub-Flavored Markdown spec”, Version 0.28-gfm (2017-08-01),
https://github.github.com/gfm/.

https://tools.ietf.org/html/bcp14
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://github.github.com/gfm/

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 23 of 229

[IANA-ENC] Freed, Ned and Dürst, Martin, “Character Sets”, 2017-12-20,
https://www.iana.org/assignments/character-sets/character-sets.xhtml.

[IANA-HASH] “Hash Function Textual Names”, https://www.iana.org/assignments/hash-
function-text-names/hash-function-text-names.xhtml, July 4, 2017.

[ISO3166-1:2013] “Codes for the representation of names of countries and their subdivisions – Part
1: Country codes”, ISO 3166-1:2013, November, 2013,
https://www.iso.org/standard/63545.html.

[ISO639-1:2002] “Codes for the representation of names of languages – Part 1: Alpha-2 code”,
ISO 639-1:2002, July 2002, https://www.iso.org/standard/22109.html.

[ISO8601:2004] “Data elements and interchange formats -- Information interchange --
Representation of dates and times”, ISO 8601:2004, December 2004,
https://www.iso.org/standard/40874.html.

[ISO14977:1996] “Information technology – Syntactic metalanguage – Extended BNF”, ISO/IEC
14977:1996(E), December 1996, https://www.iso.org/standard/26153.html.

[JSCHEMA01] Wright, A., “JSON Schema: A Media Type for Describing JSON Documents”,
April 2017 (expires October 2017), http://json-schema.org/latest/json-schema-
core.html.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP
14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
http://www.ietf.org/rfc/rfc2119.txt.

[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies", RFC 2045, DOI 10.17487/RFC2045,
November 1996, http://www.rfc-editor.org/info/rfc2045.

[RFC2048] N. Freed, J. Klensin, J. Postel, Multipurpose Internet Mail Extensions (MIME)
Part Four: Registration Procedures, http://www.ietf.org/rfc/rfc2048.txt, IETF,
1996.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629,
DOI 10.17487/RFC3629, November 2003, http://www.rfc-editor.org/info/rfc3629.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January
2005, http://www.rfc-editor.org/info/rfc3986.

[RFC3987] Duerst, M. and Suignard, M., "Internationalized Resource Identifiers (IRIs)", RFC
3987, DOI 10.17487/RFC3987, January 2005, https://www.rfc-
editor.org/info/rfc3987.

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique IDentifier (UUID)
URN Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005,
http://www.rfc-editor.org/info/rfc4122.

[RFC5646] Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47,
RFC 5646, DOI 10.17487/RFC5646, September 2009, http://www.rfc-
editor.org/info/rfc5646.

[RFC6901] Bryan, P., Ed., Zyp, K., and Nottingham, M., Ed., "JavaScript Object Notation
(JSON) Pointer", RFC 6901, DOI 10.17487/RFC6901, April 2013, http://www.rfc-
editor.org/info/rfc6901.

[RFC7230] Fielding, R., Ed., and Reschke, J., Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
http://www.rfc-editor.org/info/rfc7230.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, http://www.rfc-
editor.org/info/rfc8174.

[RFC8089] Kerwin, M., "The "file" URI Scheme", RFC 8089, DOI 10.17487/RFC8089,
February 2017, http://www.rfc-editor.org/info/rfc8089.

[RFC8259] Bray, T., "The JavaScript Object Notation (JSON) Data Interchange Format",
RFC 8259, DOI 10.17487/RFC8259, December 2017, http://www.rfc-
editor.org/info/rfc8259.

https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iso.org/standard/63545.html
https://www.iso.org/standard/22109.html
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/26153.html
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.rfc-editor.org/info/rfc2045
http://www.ietf.org/rfc/rfc2048.txt
http://www.rfc-editor.org/info/rfc3629
http://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc3987
http://www.rfc-editor.org/info/rfc4122
http://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc6901
http://www.rfc-editor.org/info/rfc6901
http://www.rfc-editor.org/info/rfc7230
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8089
http://www.rfc-editor.org/info/rfc8259
http://www.rfc-editor.org/info/rfc8259

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 24 of 229

[SEMVER] “Semantic Versioning 2.0.0”, http://semver.org/.

[UNICODE12] Unicode 10.0, June 2017, http://www.unicode.org/versions/Unicode12.0.0.

1.4 Non-Normative References

[CMARK] “CommonMark Spec”, Version 0.28, (2017-08-01),
http://spec.commonmark.org/0.28/.

[CWE™] “Common Weakness Enumeration”, https://cwe.mitre.org.

[GFMCMARK] “GitHub's fork of cmark, a CommonMark parsing and rendering library and
program in C”, https://github.com/github/cmark.

[GFMENG] “GitHub Engineering: A formal spec for GitHub Flavored Markdown”,
https://githubengineering.com/a-formal-spec-for-github-markdown/.

[ISO9899:2011] “Information technology – Programming languages – C”, ISO/IEC 9899,
December 2011, https://www.iso.org/standard/57853.html.

[ISO14882:2017] “Information technology – Programming languages – C++”, ISO/IEC 14882,
December 2017, https://www.iso.org/standard/68564.html.

[ISO23270:2006] “Information technology – Programming languages – C#”, ISO/IEC 23270,
September 2006, https://www.iso.org/standard/42926.html.

[PE] “PE Format”, March 17, 2019, https://docs.microsoft.com/en-
us/windows/desktop/debug/pe-format.

[TAR] “GNU tar 1.32: Basic Tar Format”,
http://www.gnu.org/software/tar/manual/html_node/Standard.html.

[ZIP] “.ZIP File Format Specification, Version 6.3.6, Revised April 26, 2019”,
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT.

1.5 Trademarks

CWE™ is the trademark of a product supplied by The MITRE Corporation.

JavaScript™ is the trademark of Oracle America, Inc.

Linux® is the registered trademark of a product supplied by The Linux Foundation.

Visual Basic™ is the trademark of a product supplied by Microsoft Corporation.

UNIX® is the registered trademark of a product supplied by The Open Group.

Windows® is the registered trademark of a product supplied by Microsoft Corporation.

This information is given for the convenience of users of this document and does not constitute an
endorsement by OASIS of any of the products named. Equivalent products may be used if they can be
shown to lead to the same results.

http://semver.org/
http://www.unicode.org/versions/Unicode12.0.0
http://spec.commonmark.org/0.28/
https://cwe.mitre.org/
https://github.com/github/cmark
https://githubengineering.com/a-formal-spec-for-github-markdown/
https://www.iso.org/standard/57853.html
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/42926.html
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
http://www.gnu.org/software/tar/manual/html_node/Standard.html
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 25 of 229

2 Conventions

2.1 General

The following conventions are used within this document.

2.2 Format examples

This document contains several partial examples of the JSON serialization of the SARIF format. The
examples are formatted for clarity, as permitted by JSON [RFC8259], which allows “insignificant
whitespace” before or after any token; implementations do not need to follow the whitespace convention
used in these examples. The examples also employ typographical conventions that are not part of the
JSON or SARIF formats:

• An ellipsis (…) is used to indicate that portions of the log file text required by this document have
been omitted for brevity.

• A ‘#’ character introduces a comment that extends to the end of the line.

• When a JSON string is too long to fit on a line, it is broken into multiple lines.

• Some examples have italicized line numbers in the left margin.

2.3 Property notation

A SARIF object consists of a set of properties. The value of a property can itself be an object, allowing
arbitrary nesting. When necessary for clarity or to avoid ambiguity, we use the “dot” notation to refer to
nested values. For example, the physicalLocation object defines a property region whose value is

a region object, which in turn contains a charLength property. For clarity, we can refer to the

charLength property as physicalLocation.region.charLength.

2.4 Syntax notation

Where this document describes a syntactic construct, it uses the extended Backus-Naur form (EBNF)
[ISO14977:1996].

In all EBNF definitions in this spec:

• The following syntax rules are assumed:

decimal digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

non negative integer =

 "0"

 | decimal digit – '0', { decimal digit };

• The following “special sequence” (see EBNF [ISO14977:1996], §4.19 and §5.11) refers to any
character that can appear in a JSON string according to JSON [ECMA404]:

? JSON string character ?

2.5 Commonly used objects

This document uses the following notation for certain commonly used objects:

theSarifLog The root object of the SARIF log file.

theRun The run object (§3.14) containing the object under discussion.

theTool The value of theRun.tool (§3.14.6)

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 26 of 229

theDescriptor The reportingDescriptor object (§3.49) identified by the

reportingDescriptorReference object (§3.52) under

discussion.

theComponent The toolComponent object (§3.19) identified by the

toolComponentReference object (§3.54) under discussion.

theResult The result object (§3.27) containing the object under

discussion.

thisObject The object containing the property under discussion.

NOTE: Usually when the description of a property
refers to another property of the same object, the
other property is referred to by its unqualified
name. When necessary to avoid confusion, the
name of the other property is qualified with
"thisObject." to emphasize that it is a property

of the object under discussion. For an example,
see §3.27.7.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 27 of 229

3 File format

3.1 General

SARIF defines an object model, the top level of which is the sarifLog object (§3.13), which contains the

results of one or more analysis runs. The runs do not need to be produced by the same analysis tool.

A SARIF log file SHALL contain a serialization of the SARIF object model into the JSON format.

NOTE 1: In the future, other serializations might be defined.

The top-level value in the log file, representing the sarifLog object, SHALL conform to the JSON object

grammar; that is, it SHALL consist of a comma-separated sequence of name/value pairs, enclosed in
curly brackets, as specified by JSON [RFC8259].

A SARIF log file SHALL be encoded in UTF-8 [RFC3629].

NOTE 2: JSON [RFC8259] requires this encoding for any JSON text “exchanged
between systems that are not part of a closed ecosystem.”

3.2 SARIF file naming convention

The file name of a SARIF log file SHOULD end with the extension ".sarif".

EXAMPLE 1: output.sarif

The file name MAY end with the additional extension ".json".

EXAMPLE 2: output.sarif.json

3.3 artifactContent object

3.3.1 General

Certain properties in this document represent the contents of portions of artifacts external to the log file,
for example, artifacts that were scanned by an analysis tool. SARIF represents such content with an
artifactContent object. Depending on the circumstances, the SARIF log file might need to represent

this content as readable text, raw bytes, or both.

3.3.2 text property

If the external artifact is a text artifact, an artifactContent object SHOULD contain a property named

text whose value is a string containing the relevant text. Since SARIF log files are encoded in UTF-8

([RFC3629]; see §3.1), this means that if the external artifact is a text artifact in any encoding other than
UTF-8, the SARIF producer SHALL transcode the text to UTF-8 before assigning it to the text property.

The SARIF producer SHALL escape any characters that JSON [RFC8259] requires to be escaped.

Notwithstanding any necessary transcoding and escaping, the SARIF producer SHALL preserve the text
artifact’s line breaking convention (for example, "\n" or "\r\n").

If the external artifact is a binary artifact, the text property SHALL be absent.

3.3.3 binary property

If the external artifact is a binary artifact, or if the SARIF producer cannot determine whether the external
artifact is a text artifact or a binary artifact, an artifactContent object SHALL contain a property

named binary whose value is a string containing the MIME Base64 encoding [RFC2045] of the bytes in

the relevant portion of the artifact.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 28 of 229

If the external artifact is a text artifact in an encoding other than UTF-8, the binary property MAY be

present, in which case it SHALL contain the MIME Base64 encoding of the bytes representing the
relevant text in its original encoding.

If the external artifact is a UTF-8 text artifact, the binary property SHOULD be absent. If it is present, it

SHALL contain the MIME Base64 encoding of the UTF-8 bytes representing the relevant text.

3.3.4 rendered property

An artifactContent object MAY contain a property named rendered whose value is a

multiformatMessageString object (§3.12) that provides a rendered view of the contents.

EXAMPLE: In this example, a physicalLocation object (§3.29) denotes a memory

address. Its region.snippet.rendered property (§3.29.4, §3.30.13) offers a hex

view of the relevant address range. The markdown property (§3.12.4) emphasizes a byte

of particular interest.

{ # A physicalLocation object (§3.29).

 "address": { # See §3.29.6.

 "baseAddress": 4202880, # See §3.32.6.

 "offset": 64 # See §3.32.8.

 },

 "region": { # See §3.29.4.

 "snippet": { # An artifactContent object. See §3.30.13.

 "rendered": { # A multiformatMessageString object (§3.12).

 "text": "00 00 01 00 00 00 00 00",

 "markdown": "00 00 **01** 00 00 00 00 00"

 }

 }

 }

}

3.4 artifactLocation object

3.4.1 General

Certain properties in this document specify the location of an artifact. SARIF represents an artifact’s
location with an artifactLocation object. The most important member of an artifactLocation

object is its uri property (§3.4.3). If the uri property contains a relative reference (the term used in the

URI standard [RFC 3986] for what is commonly called a “relative URI”), the uriBaseId property (§3.4.4)

can sometimes be used to resolve the relative reference to an absolute URI.

3.4.2 Constraints

At least one of the uri property (§3.4.3) or the index property (§3.4.5) SHALL be present. In certain

circumstances (see §3.4.4 and §3.4.5), they MAY both be present.

NOTE: Providing both uri and index makes the log file more readable at the expense

of increased size. Providing only index reduces log file size but makes it less readable

to an end user, who has to determine the URI by locating the artifact object (§3.24) at

the index within theRun.artifacts (§3.14.15) specified by index.

If both uri and index are present, they SHALL both denote the same artifact. That is, let URI1 be the

fully resolved URI of the artifact specified by an artifactLocation object as determined by the

uriBaseId resolution procedure described in §3.4.4. Let URI2 be the fully resolved URI of the artifact

specified by the artifact object indicated by index, determined in the same way. Then URI1 and URI2

SHALL be equivalent in the sense described in §3.10.1.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 29 of 229

3.4.3 uri property

Depending on the circumstances, an artifactLocation object either SHALL, SHALL NOT, or MAY

contain a property named uri whose value is a string containing a URI [RFC3986] that specifies the

location of the artifact.

If thisObject describes a nested artifact whose location within its parent container can be expressed

by a path from the root of the container, then if uri is present, it SHALL specify a relative-path reference

per section 4.2 of [RFC3986] expressing that path. A relative reference SHALL NOT begin with two slash
characters (a ‘network-path’ reference per section 4.2 of [RFC3986]. A relative reference SHALL NOT
begin with a single slash character (an ‘absolute-path’ reference per section 4.2 of [RFC3986]) unless
doing so is required to distinguish between distinct items in archive formats, such as zip and tar.

NOTE 1: For example, "/a.txt" and "a.txt" can both exist as distinct files in the

same archive.

NOTE 2: A relative path is useful to reference any artifact with a fixed location relative to
a non-deterministic root, e.g., the relative version control path of a file as distinct from a
local enlistment root. The uriBaseId (3.4.4) property can be used to express the non-
deterministic absolute URI root. This approach assists in log file diffing and other
scenarios where a clear distinction between data that is consistent or not between scan
environments is helpful.

If the nested artifact is a member of an archive file (for example, zip [ZIP] or tar [TAR]), uri SHOULD

specify the member name or path as specified by the archive.

If thisObject occurs as the value of a “top-level” property in theRun.originalBaseIds (§3.14.14),

then uri MAY be absent. See §3.14.14 for an explanation and an example of this point. Otherwise:

If index (§3.4.5) is absent, uri SHALL be present.

NOTE 3: This ensures that there is a way to locate the artifact specified by the
artifactLocation object.

If thisObject represents a nested artifact whose location within its parent container can be expressed

only by means of a byte offset, then uri SHALL NOT be present.

NOTE 4: This implies that index will be present; see §3.4.5.

Otherwise, uri MAY be present.

3.4.4 uriBaseId property

If this artifactLocation object describes a top-level artifact and the value of its uri property (§3.4.3)

is a relative reference, the artifactLocation object SHOULD contain a property named uriBaseId

whose value is a string which indirectly specifies the absolute URI with respect to which that relative
reference is interpreted. If the uri property contains an absolute URI, the uriBaseId property SHALL

be absent. If this artifactLocation object describes a nested artifact, uriBaseId SHALL be absent.

If a SARIF consumer requires an absolute URI (for example, to display the specified artifact to a user),
then it needs to resolve uriBaseId to an absolute URI, which it can then combine with the relative

reference stored in the uri property.

A SARIF consumer SHALL use the following procedure to resolve a uriBaseId to an absolute URI:

1. If the end user has configured the SARIF consumer with a value for the uriBaseId (for

example, on the consumer’s command line or through a user interface prompt), then the
consumer SHALL use the configured value.

EXAMPLE 1: In this example the SARIF consumer’s command line specifies that any
uriBaseId property whose value is "SRCROOT" refers to the absolute URI

"file:///C:/browser/src/":

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 30 of 229

C:> SarifAnalyzer --input log.sarif --uriBaseId SRCROOT="file:///C:/browser/src/"

2. If uriBaseId is not yet resolved and theRun.originalUriBaseIds (§3.14.14) is present, the

consumer SHALL attempt to resolve the uriBaseId from the information in

originalUriBaseIds, in the manner specified in §3.14.14.

3. If uriBaseId is not yet resolved, the consumer MAY use other information or heuristics to locate

the artifact.

The uriBaseId property can be any string; it does not need to have any particular syntax or follow any

particular naming convention. In particular, it does not need to designate a machine environment variable
or similar value, although it might. The SARIF producer and any SARIF consumers need to agree on the
meanings of any values for the uriBaseId property that appear in the log file.

EXAMPLE 2: In this example, the analysis tool has set the uri property of an

artifactLocation object (§3.4) to a relative reference. The tool has also set the

uriBaseId property to "%srcroot%". The analysis tool and the SARIF consumers

have agreed upon a convention whereby this indicates that the relative reference is
expressed relative to the root of the source tree in which the file appears.

"artifactLocation": {

 "uri": "drivers/video/hidef/driver.c",

 "uriBaseId": "%srcroot%"

}

NOTE: There are various reasons for providing the uriBaseId property:

• Portability: A log file that contains relative references together with uriBaseId

properties can be interpreted on a machine where the files are located at a
different absolute location.

• Determinism: A log file that uses uriBaseId properties has a better chance of

being “deterministic”; that is, of being identical from run to run if none of its inputs
have changed, even if those runs occur on machines where the files are located
at different absolute locations. For more information on this point, see Appendix
F.

• Security: The use of uriBaseId properties avoids the persistence of absolute

path names in the log file. Absolute path names can reveal information that might
be sensitive.

• Semantics: Assuming the reader of the log file (an end user or another tool) has
the necessary context, they can understand the meaning of the location specified
by the uri property, for example, “this is a source file”.

For more guidance on the intended use of the uriBaseId property, see §3.4.7.

3.4.5 index property

Depending on the circumstances, an artifactLocation object either MAY, SHALL NOT, SHALL, or

SHOULD contain a property named index whose value is the array index (§3.7.4) within

theRun.artifacts (§3.14.15) of the artifact object (§3.24), if any, that describes the artifact

specified by this artifactLocation object.

If thisObject occurs as the location property (§3.24.2) of an artifact object in

theRun.artifacts, then index MAY be present. If present, it SHALL equal the array index within

theRun.artifacts of the containing artifact object.

Otherwise, if theRun.artifacts is absent or does not contain an element that describes the artifact

specified by thisObject, then index SHALL NOT be present.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 31 of 229

NOTE 1: index cannot be present in this case because there is no array element for it to

point to. But this implies that uri is present, because otherwise there would be no way to

locate the artifact specified by thisObject.

Otherwise, if the uri property (§3.4.3) is absent, then index SHALL be present.

NOTE 2: Again, this ensures that there is a way to locate the artifact specified by
thisObject.

Otherwise (that is, if uri is present but there is a relevant artifact object in theRun.artifacts),

index SHOULD be present.

NOTE 3: If index is absent, the SARIF consumer will not be able to locate the additional

information contained in the artifact object about the artifact specified by

thisObject.

EXAMPLE: In this example,
results[0].locations[0].physicalLocation.artifactLocation.index

specifies the artifact object located at artifacts[0].

{ # A run object (§3.14).

 "artifacts": [

 {

 "location": {

 "uri": "file:///C:/Code/main.c"

 },

 "sourceLanguage": "c",

 }

],

 "results": [

 {

 "ruleId": "CA2101",

 "level": "error",

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "file:///C:/Code/main.c",

 "index": 0

 },

 "region: {

 "startLine": 24,

 "startColumn": 9

 }

 }

 }

]

 }

]

}

3.4.6 description property

An artifactLocation object MAY have a property named description whose value is a message

object (§3.11) that describes this location.

EXAMPLE: In this example, the property values in run.originalUriBaseIds

(§3.14.14), which are artifactLocation objects, have description properties. This

allows a SARIF viewer to display helpful information when prompting a user to supply
values for the base id symbols.

{ # A run object (§3.14).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 32 of 229

 "originalUriBaseIds": { # See §3.14.14.

 "PROJROOT": {

 "uri": "file:///C:/browser/",

 "description": {

 "text": "The project root directory."

 }

 },

 "SRCROOT": {

 "uri": "file:///C:/browser/src/",

 "description": {

 "text": "The root of the source code tree."

 }

 },

 "BINROOT": {

 "uri": "file:///C:/browser/bin/",

 "description": {

 "text": "The build output directory."

 }

 }

 },

}

3.4.7 Guidance on the use of artifactLocation objects

Some URIs are “deterministic” in the sense that they will be the same from one run to the next and are
independent of machine-specific information such as volume names or drive letters. Internet addresses
are typically deterministic.

In contrast, file system paths are typically non-deterministic. For example, a source code enlistment might
exist at different paths on different machines.

artifactLocation objects MAY represent both deterministic and non-deterministic URIs. In either

case, the uri property (§3.4.3) SHOULD be deterministic, either because it is a deterministic relative

reference (for example, the relative path to a file from the root of the directory tree containing the
analyzed source code) or because it is an absolute URI. If the URI is non-deterministic, the uriBaseId

property (§3.4.4) SHOULD capture the non-deterministic portion of the URI, for example, the absolute
path to the root of the directory tree containing the analyzed source code.

EXAMPLE: In this example, the location of a result detected by a tool is specified by a
relative reference together with a uriBaseId that specifies the root of the source code

enlistment.

{ # A run object (§3.14).

 "originalUriBaseIds": { # See §3.14.14.

 "SRCROOT": {

 "uri": "file:///C:/browser/src/"

 }

 },

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "physicalLocation": { # See §3.28.3.

 "artifactLocation": { # An artifactLocation object.

 "uri": "ui/window.cpp",

 "uriBaseId": "SRCROOT"

 }

 }

 }

]

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 33 of 229

}

3.5 String properties

3.5.1 Localizable strings

Certain string-valued properties in this document, for example, toolComponent.name (§3.19.8), can be

translated into other languages. We describe these properties as being “localizable.” The description of
every localizable property will state that it is localizable.

3.5.2 Redactable strings

Certain string-valued properties in this document (for example, invocation.commandLine (§3.20.2))

might contain sensitive information that a SARIF producer or a SARIF post-processor might choose to
redact. We describe these properties as “redactable.” The description of every redactable property will
state that it is redactable.

If a SARIF producer or a SARIF post-processor chooses to redact sensitive information in a redactable
property, it SHALL replace the sensitive information with a string whose value is an element of
theRun.redactionTokens (§3.14.28).

3.5.3 GUID-valued strings

Certain string-valued properties in this document provide unique stable identifiers in the form of a GUID or
UUID [RFC4122]. This document uses the term “GUID”.

EXAMPLE: "f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

NOTE 1: The UUID standard [RFC4122] allows hex digits in either upper or lower case. It
does not permit delimiters such as curly braces ("{", "}") around the value.

The description of every GUID-valued property will state that it is GUID-valued.

NOTE 2: In the examples, the values shown for GUID-valued properties are valid GUIDs.
In some cases, they are illustrative values such as "11111111-1111-1111-8888-

111111111111" which are intended to make it easy to identify situations where two

GUIDs in the same example are required to be the same. In these illustrative values, the
third and fourth component are always "1111-8888", a sample value that conforms to

the restrictions on the values of those components.

3.5.4 Hierarchical strings

3.5.4.1 General

Certain string-valued properties and certain property names in this document (for example, the value of
the runAutomationDetails.id property (§3.17.3), and the property names in a property bag (§3.8))

are said to be “hierarchical.” This means that the string consists of a sequence of forward-slash-
separated components, with this syntax:

hierarchical string = component, { "/", component };

component = { component character };

component character = ? JSON string character ? - "/";

NOTE 1: The grammar prohibits a component from containing a forward slash. There is

no escape mechanism to allow a component to include a forward slash.

For examples, see §3.8.2 and §3.17.3.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 34 of 229

The description of every hierarchical string will state that it is hierarchical.

A SARIF consumer SHALL interpret the values of a hierarchical string as forming a logical hierarchy. The
first component represents the top level of the hierarchy, the second component represents the second
level, and so on.

NOTE 2: A hierarchical string does not need to include any forward slashes. The syntax
permits a single string of non-forward-slash characters. The purpose of this section is to
define the semantics of the forward slash character in those properties that respect it.

In string-valued properties and property names that are not described as hierarchical, the forward slash
character has no special meaning, and a SARIF consumer SHALL NOT interpret it as dividing the value
into hierarchical components.

3.5.4.2 Versioned hierarchical strings

Certain hierarchical strings in this document (for example, the property names in
result.fingerprints (§3.27.16) and result.partialFingerprints (§3.27.17)) are said to be

“versioned.” This means that if the last component of the string is of the form

version component = "v", non negative integer;

then a SARIF consumer SHALL consider that component to represent the version number of the entity
specified by the string.

The description of every versioned hierarchical string will state that it is versioned.

In string-valued properties and property names that are described as hierarchical but not as versioned, a
final component matching the syntax of version component has no special meaning, and a SARIF

consumer SHALL NOT interpret it as a version number.

NOTE 1: A versioned hierarchical string does not need to include a version component.
The syntax permits but does not require it.

A hierarchical string without a version component SHALL be considered older than any corresponding
string with a version component.

EXAMPLE: In this example, the partial fingerprint whose property name is
"prohibitedWordHash" is considered to have been computed with an older version of

the “prohibited word hash” algorithm than the partial fingerprint whose property name is
"prohibitedWordHash/v1".

{ # A result object (§3.27).

 "partialFingerprints": { # See §3.27.17.

 "prohibitedWordHash": "4efcc21977b55",

 "prohibitedWordHash/v2": "097886bc876fe"

 }

}

NOTE 2: When a previously unversioned string is later versioned, as in the example
above, it might be clearer to specify "v2" for the first explicitly versioned string.

3.6 Object properties

Certain properties in this document are defined to be objects whose property names satisfy certain
conditions. Examples are run.originalUriBaseIds (§3.14.14) and

reportingDescriptor.messageStrings (§3.49.11). Unless otherwise specified in the description of

a specific property, if any such object is empty, then either the property SHALL be represented as an
empty object {}, or it SHALL be absent.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 35 of 229

3.7 Array properties

3.7.1 General

Certain properties in this document are defined to be arrays. Examples are the
invocation.toolExecutionNotifications property (§3.20.21) and the property bag tags

property (§3.8.2).

3.7.2 Default value

If an array-valued property is absent, it SHALL default to an empty array unless the property’s description
specifies otherwise.

3.7.3 Array properties with unique values

Certain array-valued properties in this document are described as having “unique” elements. When a
property is so described, it means that no two elements of the array SHALL have equal values. For
purposes of this document, two array elements SHALL be considered equal when they satisfy the
condition for equality described in the JSON Schema standard [JSCHEMA01], §4.3, “Instance equality”.
In particular, two strings are considered equal when they consist of the same sequence of Unicode
[UNICODE12] code points.

3.7.4 Array indices

If any property in this document is described as an “array index,” it SHALL contain an integer that is a
zero-based index into the specified array. If any such property is absent, it SHALL default to -1, which
indicates that the value is unknown (not set), unless the property’s description specifies otherwise.

3.8 Property bags

3.8.1 General

Certain properties in this document are defined to be “property bags”. A property bag is an object (§3.6)
containing an unordered set of properties with arbitrary names.

The property names are hierarchical strings (§3.5.4). The components of the property names SHOULD
be camelCase strings, but see Appendix D for exceptions.

The property values MAY be of any JSON type, including strings, numbers, arrays, objects, Booleans,
and null. If a property value is a string, it MAY be an empty string.

In addition to those properties that are explicitly documented, every object defined in this document MAY
contain a property named properties whose value is a property bag. This allows SARIF producers to

include information about each object that is not explicitly specified in the SARIF format.

3.8.2 Tags

3.8.2.1 General

If a property bag contains a property named tags, the property value SHALL be an array of zero or more

unique (§3.7.3), hierarchical (§3.5.4) strings. Two strings SHALL be considered the same if they consist
of the same sequence of Unicode [UNICODE12] code points.

Tags SHOULD NOT be used to label a result or a rule as belonging to a category in a classification
system such as the Common Weakness Enumeration [CWE™] (for example, by adding a tag
"CWE/622"). Instead, taxonomies (§3.19.3) SHOULD be used for this purpose.

Even when defining a custom classification system used within an engineering team, taxonomies
SHOULD be used rather than tags when labeling a result or a rule.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 36 of 229

EXAMPLE 1: Rather than adding the tag "shipBlocking" to a result, consider defining

a taxonomy such as "Shipping Impact". This enables metadata such as a description and
a help URI to be associated with each taxonomic category.

EXAMPLE 2: In this example, the SARIF producer tags an artifact with the string
"openSource".

{ # A run object (§3.14).

 "artifacts": [# See §3.14.15.

 { # An artifact object (§3.24).

 "location": { # See §3.24.2.

 "uri": "http://www.example.com/libraries/jsonParser.js"

 },

 "properties": {

 "tags": [

 "openSource"

]

 }

]

 },

 ...

}

NOTE: Anything a tag expresses can also be expressed with a named property bag
entry, for example "openSource": true, but a tag is more concise.

3.8.2.2 Tag metadata

A SARIF log file MAY provide additional information about any tag value by including a property whose
name is the same as that tag value and whose value is any JSON value. If present, this property SHALL
be located by searching first in the property bag that contains the tag, and then in the property bag of the
containing run object (§3.14) theRun, if any.

EXAMPLE 1: Continuing the example from §3.8.2.1, suppose the tool wishes to provide
additional information about using open source code. It might provide that information
within the property bag containing the tag (the property bag belonging to the artifact

object):

{ # An artifact object (§3.24).

 "location": {

 "uri": "http://www.example.com/libraries/jsonParser.js"

 },

 "properties": {

 "tags": [

 "openSource"

],

 "openSource": {

 "informationUri":

 "http://www.example.com/procedures/usingOpenSource.html"

 }

 }

}

EXAMPLE 2: There might be several open source files. To avoid duplicating information,
the tool might choose to place the tag metadata in the property bag belonging to theRun:

{ # A run object (§3.14).

 "artifacts": [

 { # An artifact object (§3.24).

 "location": {

 "uri": "http://www.example.com/libraries/jsonParser.js"

 },

 "properties": {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 37 of 229

 "tags": [

 "openSource"

]

 }

 },

 ...

],

 ...

 "properties": { # The property bag of the containing run.

 "openSource": {

 "informationUri":

 "http://www.example.com/procedures/usingOpenSource.html"

 }

 }

}

3.9 Date/time properties

Certain properties in this document specify a date and time. The value of every such property, if present,
SHALL be a string in the following format, which is compatible with the ISO standard for date and time
formats [ISO8601:2004]:

date time = date, ["T", time, "Z"] (* UTC time *);

date = year, "-", month, "-", day;

year = 4 * decimal digit;

month = 2 * decimal digit (* from 01 to 12 *);

day = 2 * decimal digit (* from 01 to 31 *);

time = hour, ":", minute, [":", second, [".", fraction]];

hour = 2 * decimal digit (* from 00 to 24, to represent midnight at the

 end of a calendar day *);

minute = 2 * decimal digit (* from 00 to 59 *);

second = 2 * decimal digit (* from 00 to 60, to accommodate leap second *);

fraction = decimal digit, { decimal digit };

EXAMPLES:
2016-02-08

2016-02-08T16:08Z

2016-02-08T16:08:25Z
2016-02-08T16:08:25.943Z

The time component of every date/time-valued property SHALL be expressed in Coordinated Universal
Time (UTC).

NOTE 1: The name of every date/time-valued property ends in “Utc” to emphasize that
requirement.

The time components of date/time-valued properties in property bags (§3.8) SHOULD also be expressed
in UTC.

NOTE 2: This might not always be possible if the property comes from a source that does
not provide time zone information.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 38 of 229

A SARIF producer SHOULD NOT provide more digits in fraction than warranted by the precision of

the clock on the computer on which it runs.

A SARIF producer SHOULD express date/time properties, except for those that express product release
dates, to a precision of at least whole seconds.

3.10 URI-valued properties

3.10.1 General

Certain properties in this document specify either an absolute URI or a URI reference (the term used in
the URI standard [RFC3986] to describe either an absolute URI or a relative reference). The value of
every such property, if present, SHALL be a string in the format specified by the standard [RFC3986].

If a URI reference refers to a file stored in a version control system (VCS), its value SHALL include
sufficient information (for example, a commit id) to enable the correct version of the target file to be
retrieved from the VCS. If a URI reference refers to a file stored on a physical file system, it MAY be
specified as a relative reference that omits root information details (such as hard drive letter and an
arbitrarily named root directory associated with a source code enlistment).

NOTE 1: A URI reference (even a relative reference) might contain information that
represents unwanted information disclosure, particularly in cases where a tool is
analyzing files stored on a physical file system. For example, a file path might contain the
account name of a developer.

The URI SHALL specify the location of the artifact at the time the analysis was performed.

Two URI references SHALL be considered equivalent if their normalized forms are the same, as
described in the standard [RFC3986].

NOTE 2: Features of this normalized form include using upper-case hexadecimal digits
for percent-encoded characters and expressing the scheme component in lower-case.
For the full specification of the normalized URI form, see the standard [RFC3986].

For additional normalization requirements for URIs that use the "file" scheme, see §3.10.2.

When two URI references are not equivalent in this sense (that is, when their normalized forms are not
the same), we will say that they are “distinct.”

Aside from normalization, SARIF producers SHALL NOT make any other changes to the text of a URI
reference; for example, they SHALL NOT convert the path to upper case or to lower case.

NOTE 3: This is especially important when the same SARIF file might be consumed on
multiple platforms, for example, a platform such as Microsoft Windows®, whose NTFS
file system is case-insensitive but case-preserving, and a platform such as Linux®,
whose file system is case-sensitive. Consider a scenario where a tool runs on a
Windows® system using NTFS, and the tool decides to lower-case the file names in the
log. If the source files and the SARIF log were transferred to a Linux® system, the URI
references in the log file would not match the path names on the destination system.

3.10.2 Normalizing file scheme URIs

If a URI uses the "file" scheme [RFC8089] and the specified path is network-accessible, the SARIF

producer SHALL include the host name.

EXAMPLE 1: A file-based URI that references a network share.

file://build.example.com/drops/Build-2018-04-19.01/src

If a URI uses the "file" scheme and the specified path is not network-accessible, the SARIF producer

SHOULD NOT include the host name.

EXAMPLE 2: A file-based URI that references the local file system.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 39 of 229

file:///C:/src

A SARIF producer MAY choose to omit the hostname (authority) from a file URI, for example, for security
reasons. If it does so, then to maximize interoperability with previous versions of the URI specification, the
URI SHOULD start with "file:///", as in EXAMPLE 2. See the standard [RFC8089] for more

information on this point.

SARIF producers SHALL create "file" scheme URIs by means of the following procedure or any

procedure with the same result:

1. In the case of a direct producer, preserve the file system’s casing, even if the file system is case-
insensitive. In the case of a converter (which might not know the file system’s casing), preserve
the casing specified in the analysis tool’s native output file.

2. Remove "." path segments.

3. Remove empty path segments.
4. If the path contains ".." path segments, then in the case of a direct producer, resolve the path

to a canonical absolute path, using an appropriate algorithm for the operating system on which
the tool ran.

NOTE 1: This is necessary because, for example, the path /d1/../f naively converted

to a URI is file:///d1/../f, which resolves to file:///f according to the URI

standard [RFC3986]. But if /d1 is a symbolic link to the directory d2/d3, then the correct

URI is file:///d2/f.

NOTE 2: ".." path segments are dangerous because the semantics of the file system on
which the SARIF log file was produced might not match the semantics of the file system
on which it is consumed. For example, the presence of a symbolic link in the path might
redirect the consumer to an unpredictable location.

5. Create a URI from the resulting path.
6. Optionally, divide the resulting URI into a base URI and a relative URI (preserving case in both

parts), and create an entry for the base URI in theRun.originalUriBaseIds (§3.14.14).

NOTE 3: URI and path manipulation are complex topics. Many operating systems,
languages, and frameworks provide methods to perform these operations, which is
preferable to having every SARIF producer reimplement them. For example, in C#, the
operation can be performed as follows:

using System;

using System.IO;

...

string path = ...;

string fullPath = Path.GetFullPath(path);

var uri = new Uri(fullPath, UriKind.Absolute);

string uriString = uri.AbsoluteUri;

SARIF consumers SHALL NOT normalize ".." segments out of a path. A consumer SHOULD reject paths
that contain ".." segments, otherwise a consumer SHALL treat distinct portions of paths up to and
including the rightmost ".." segment as unique directories on the file system, even if [RFC3986]
normalization would produce identical paths.

EXAMPLE 3: Consider the following three URIs:

• file:///d1/../f1

• file:///d1/../f2

• file:///d1/d2/../../f3

A consumer would treat f1 and f2 as residing in the same directory. So, for example, if a

viewer prompted the user to supply the directory where f1 resides, it could search for f2

in the same directory, without prompting again. On the other hand, even though f3

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 40 of 229

appears to reside in the same directory as f1 and f2, the viewer would not assume that,

and would prompt the user to supply the directory where f3 resides.

3.10.3 URIs that use the sarif scheme

In certain circumstances, a URI can refer to an element of the current SARIF log file (for example, see
§3.16.3). Such a URI uses the sarif scheme. The sarif URI scheme consists of only a scheme (with

the value sarif) and a path component. The path component is interpreted as a JSON pointer

[RFC6901] into the SARIF document containing the URI. The authority, query and fragment URI
components SHALL NOT be present.

EXAMPLE: The URI "sarif:/inlineExternalProperties/0" refers to the 0th

element of the array contained in the inlineExternalProperties property (§3.13.5)

at the root of the log file.

3.10.4 Internationalized Resource Identifiers (IRIs)

If a URI-valued property refers to a resource identified by an Internationalized Resource Identifier (IRI)
[RFC3987], the SARIF producer SHALL first transform the IRI into a URI, using the mapping mechanism
specified in §3.1 of the standard [RFC3987], and then assign the transformed value to the property. The
string value of a URI-valued property SHALL NOT include Unicode characters such as "é"; such

characters are permitted in IRIs but are not permitted in URIs. §3.1 of the standard [RFC3987] describes
how to replace such characters with “percent-encoded” equivalents to produce a valid URI.

EXAMPLE: Suppose a URI-valued property needs to refer to a resource identified by the
string "http://www.example.com/hu/sör.txt". This string contains the character

"ö", so it is a valid IRI but not a valid URI. Following the procedure in §3.1 of the

standard [RFC3987], a SARIF producer would transform this string to the valid URI
"http://www.example.com/hu/s%C3%B6r.txt" before assigning it to the property.

3.11 message object

3.11.1 General

Certain objects in this document define messages intended to be viewed by a user. SARIF represents
such a message with a message object, which offers the following features:

• Message strings in plain text (“plain text messages”) (§3.11.3).

• Message strings that incorporate formatting information (“formatted messages”) in GitHub
Flavored Markdown [GFM] (§3.11.4).

• Message strings with placeholders for variable information (§3.11.5).

• Message strings with embedded links (§3.11.6).

3.11.2 Constraints

At least one of the text (§3.11.8) or id (§3.11.10) properties SHALL be present.

NOTE: This ensures that a SARIF consumer can locate the text of the message.

3.11.3 Plain text messages

A plain text message SHALL NOT contain formatting information, for example, HTML tags or white space
whose purpose is to provide indentation or suggest some structure to the message.

If a plain text message consists of multiple paragraphs, it MAY contain line breaks (for example, "\r\n"

or "\n", if the SARIF log file is serialized as JSON) to separate the paragraphs. Line breaks MAY follow

any convention (for example, "\n" or "\r\n"). A SARIF post-processor MAY normalize line breaks to

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 41 of 229

any desired convention, including escaping or removing the line breaks so that the entire message
renders on a single line.

The message string MAY contain placeholders (§3.11.5) and embedded links (§3.11.6).

If the message consists of more than one sentence, its first sentence SHOULD provide a useful summary
of the message, suitable for display in cases where UI space is limited.

NOTE 1: If a tool does not construct the message in this way, the initial portion of the
message that a viewer displays where UI space is limited might not be understandable.

NOTE 2: The rationale for these guidelines is that the SARIF format is intended to make
it feasible to merge the outputs of multiple tools into a single user experience. A uniform
approach to message authoring enhances the quality of that experience.

A SARIF post-processor SHOULD NOT modify line break sequences (except perhaps to adapt them to a
particular viewing environment).

3.11.4 Formatted messages

3.11.4.1 General

Formatted messages MAY be of arbitrary length and MAY contain formatting information. The message
string MAY also contain placeholders (§3.11.5) and embedded links (§3.11.6).

Formatted messages SHALL be expressed in GitHub-Flavored Markdown [GFM]. Since GFM is a
superset of CommonMark [CMARK], any CommonMark Markdown syntax is acceptable.

3.11.4.2 Security implications

For security reasons, SARIF producers and consumers SHALL adhere to the following:

• SARIF producers SHALL NOT emit messages that contain HTML, even though all variants of
Markdown permit it.

• Deeply nested markup can cause a stack overflow in the Markdown processor [GFMENG]. To
reduce this risk, SARIF consumers SHALL use a Markdown processor that is hardened against
such attacks.

NOTE: One example is the GitHub fork of the cmark Markdown processor [GFMCMARK].

• To reduce the risk posed by possibly malicious SARIF files that do contain arbitrary HTML
(including, for example, javascript: links), SARIF consumers SHALL either disable HTML

processing (for example, by using an option such as the --safe option in the cmark Markdown

processor) or run the resulting HTML through an HTML sanitizer.

SARIF consumers that are not prepared to deal with the security implications of formatted messages
SHALL NOT attempt to render them and SHALL instead fall back to the corresponding plain text
messages.

3.11.5 Messages with placeholders

A message string MAY include one or more “placeholders.” The syntax of a placeholder is:

placeholder = "{", index, "}";

index = non negative integer;

index represents a zero-based index into the array of strings contained in the arguments property

(§3.11.11).

When a SARIF consumer displays the message, it SHALL replace every occurrence of the placeholder
{n} with the string value at index n in the arguments array. Within both plain text and formatted

message strings, the characters “{” and “}” SHALL be represented by the character sequences “{{” and

“}}” respectively.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 42 of 229

Within a given message object:

• The plain text and formatted message strings MAY contain different numbers of placeholders.

• A given placeholder index SHALL have the same meaning in the plain text and formatted
message strings (so they can be replaced with the same element of the arguments array).

EXAMPLE 1: Suppose a message object’s text property (§3.11.8) contains this string:

"The variable \"{0}\" defined on line {1} is never used. Consider

removing \"{0}\"."

There are two distinct placeholders, {0} and {1} (although {0} occurs twice).

Therefore, the arguments array will have at least two elements, the first corresponding

to {0} and the second corresponding to {1}.

EXAMPLE 2: In this example, the SARIF consumer will replace the placeholder {0} in

message.text with the value "pBuffer" from the 0 element of

message.arguments.

{ # A run object (§3.14).

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "ruleId": "CA2101", # See §3.27.5.

 "message": { # See §3.27.11.

 "text": "Variable '{0}' is uninitialized.", # See §3.11.8.

 "arguments": ["pBuffer"] # See §3.11.11.

 }

 }

]

}

3.11.6 Messages with embedded links

A message string MAY include one or more links to locations within artifacts mentioned in the enclosing
result object (§3.27). We refer to these links as “embedded links”.

Within a formatted message (§3.11.4), an embedded link SHALL conform to the syntax of a GitHub
Flavored Markdown link (see [GFM], §6.6, “Links”).

NOTE 1: The GFM link syntax is very flexible. Since a SARIF viewer that renders
formatted messages will presumably rely on a full-featured GFM processor, there is no
need to restrict the embedded link syntax in SARIF formatted messages.

Within a plain text message (§3.11.3), an embedded link SHALL conform to the following syntax (which is
a greatly restricted subset of the GFM link syntax) before JSON encoding:

escaped link character = "\" | "[" | "]";

normal link character = ? JSON string character ? – escaped link character;

link character = normal link character | ("\", escaped link character);

link text = { link character };

link destination = ? Any valid URI ?;

embedded link = "[", link text, "](", link destination, ")";

link text is the message text visible to the user.

Literal square brackets ("[" and "]") in the link text of a plain text message SHALL be escaped with a

backslash ("\").

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 43 of 229

NOTE 2: When a SARIF log file is serialized as JSON, JSON encoding doubles the
backslash.

EXAMPLE 1: Consider this embedded link whose link text contains square brackets and
backslashes:

"message": {

 "text": "Prohibited term used in [para\\[0\\]\\\\spans\\[2\\](1)."

}

A SARIF viewer would render it as follows:

Prohibited term used in para[0]\spans[2].

Literal square brackets and (doubled) backslashes MAY appear anywhere else in a plain text message
without being escaped.

In both plain text and formatted messages, if link destination is a non-negative integer, it SHALL

refer to a location object (§3.28) whose id property (§3.28.2) equals the value of link

destination. In this case, theResult SHALL contain exactly one location object with that id.

NOTE 3: Negative values are forbidden because their use would suggest some non-
obvious semantic difference between positive and negative values.

EXAMPLE 2: In this example, a plain text message contains an embedded link to a
location with a file. The result object contains exactly one location object whose id

property matches the link destination.

{ # A result object (§3.27)

 "ruleId": "TNT0001",

 "message": {

 "text": "Tainted data was used. The data came from [here](3)."

 },

 "locations": [

 {

 "physicalLocation": {

 "uri": "file:///C:/code/main.c",

 "region": {

 "startLine": 15,

 "startColumn": 9

 }

 }

 }

],

 "relatedLocations": [

 {

 "id": 3,

 "physicalLocation": {

 "uri": "file:///C:/code/input.c",

 "region": {

 "startLine": 25,

 "startColumn": 19

 }

 }

 }

]

}

The link destination in embedded links in both plain text messages and formatted messages MAY

use the sarif URI scheme (§3.10.3). This allows a message to refer to any content elsewhere in the

SARIF log file.

EXAMPLE 1: A result.message (§3.27.11) can refer to another result in the same run

(or, for that matter, in another run within the same log file) as follows:

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 44 of 229

"There was [another result](sarif:/runs/0/results/42) found by

this code flow."

A SARIF viewer executing in an IDE might respond to a click on such a link by selecting
the target result in an error list window and navigating the editor to that result’s location.

Because the "sarif" URI scheme uses JSON pointer [RFC6901], which locates array elements by their

array index, these URIs are potentially fragile if the SARIF log file is transformed by a post-processor.

EXAMPLE 2: If a post-processor concatenates two runs into a single log file, the links
within the run at index 1 will be incorrect, and will need to be updated from
"sarif:/runs/0/…" to "sarif:/runs/1/…".

EXAMPLE 3: If a post-processor removes results from a run, any links that refer to
results at indices following the removed results will need to be adjusted. For example,
sarif:/runs/0/results/54 might need to be adjusted to

sarif:/runs/0/results/42.

When a tool displays on the console a result message containing an embedded link, it MAY reformat the
link (for example, by removing the square brackets around the link text). If the link destination

is an integer, and hence specifies a location object belonging to theResult, the tool SHOULD

replace the integer with a string representation of the specified location.

EXAMPLE 4: Suppose a tool chooses to display the result message from Example 3,
which contains an integer-valued link destination, on the console. The output might

be:

Tainted data was used. The data came from here:

C:\code\input.c(25, 19).

Note that in addition to providing a string representation of the location, the tool removed
the … link syntax and separated the link text from the location with a colon. Finally,

the tool recognized that the location’s URI used the file scheme and chose to display it

as a file system path rather than a URI.

3.11.7 Message string lookup

A message object can directly contain message strings in its text (§3.11.8) and markdown (§3.11.9)

properties. It can also indirectly refer to message strings through its id (§3.11.10) property.

When a SARIF consumer needs to locate a message string from a message object, it SHALL follow the

procedure specified in this section. The run object SHALL contain enough information for the procedure

to succeed.

The lookup SHALL occur entirely within the context of a single toolComponent object (§3.19) which we

refer to as theComponent. If the SARIF consumer is displaying messages in the language specified by

theRun.language (§3.14.7), then theComponent is the tool component that defines the message. If

the consumer is displaying messages in any other language – in which case a translation (§3.19.4) is in
use – then theComponent is the tool component that contains the translation.

In this procedure, we refer to the message object whose string is being looked up as theMessage.

At various points in this procedure, we state that the consumer uses an object’s “text property or

markdown property, as appropriate.” This means that if the consumer can render formatted messages, it

MAY use the markdown property, if present; otherwise it SHALL use the text property, but if the

consumer cannot render formatted messages, it SHALL use the text property.

The procedure is:

IF theMessage.text is present and the desired language is theRun.language THEN

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 45 of 229

 Use the text or markdown property of theMessage as appropriate.

IF the string has not yet been found THEN

 IF theMessage occurs as the value of result.message (§3.27.11) THEN

 LET theRule be the reportingDescriptor object (§3.49), an element of

theComponent.rules (§3.19.23), which defines the rule that was violated by this result.

 IF theRule exists AND theRule.messageStrings (§3.49.11) is present AND contains a

property whose name equals theMessage.id THEN

 LET theMFMS be the multiformatMessageString object (§3.12) that is the value of that

property.

 Use the text or markdown property of theMFMS as appropriate.

 ELSE IF theMessage occurs as the value of notification.message (§3.58.5) THEN

 LET theDescriptor be the reportingDescriptor object (§3.49), an element of

theComponent.notifications (§3.19.23), which describes this notification.

 IF theDescriptor exists AND theDescriptor.messageStrings is present AND contains a

property whose name equals theMessage.id THEN

 LET theMFMS be the multiformatMessageString object that is the value of that property.

 Use the text or markdown property of theMFMS as appropriate.

IF the string has not yet been found THEN

 IF theComponent.globalMessageStrings (§3.19.22) is present AND contains a property whose

name equals theMessage.id THEN

 LET theMFMS be the multiformatMessageString object that is the value of that property.

 Use the text or markdown property of theMFMS as appropriate.

IF the string has not yet been found THEN

 The lookup procedure fails (which means the SARIF log file is invalid).

3.11.8 text property

A message object MAY contain a property named text whose value is a non-empty string containing a

plain text message (§3.11.3).

3.11.9 markdown property

A message object MAY contain a property named markdown whose value is a non-empty string

containing a formatted message (§3.11.4) expressed in GitHub-Flavored Markdown [GFM].

If the markdown property is present, the text property (§3.11.8) SHALL also be present.

NOTE: This ensures that the message is viewable even in contexts that do not support
the rendering of formatted text.

SARIF consumers that cannot (or choose not to) render formatted text SHALL ignore the markdown

property and use the text property instead.

3.11.10 id property

A message object MAY contain a property named id whose value is a non-empty string containing the

identifier for the desired message. See §3.11.7 for details of the message string lookup procedure.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 46 of 229

3.11.11 arguments property

If the message string specified by any of the properties text (§3.11.8), markdown (§3.11.9), or id

(§3.11.10) contains any placeholders (§3.11.5), the message object SHALL contain a property named

arguments whose value is an array of strings. §3.11.5 specifies how a SARIF consumer combines the

contents of the arguments array with the message string to construct the message that it presents to the

end user, and provides an example.

If none of the properties text, markdown, or id contains any placeholders, then arguments MAY be

absent.

The arguments array SHALL contain as many elements as required by the maximum placeholder index

among all the message strings specified by the text, markdown, and id properties.

EXAMPLE: If the highest numbered placeholder in the text message string is {3} and

the highest numbered placeholder in the markdown message string is {5}, the

arguments array must contain at least 6 elements.

3.12 multiformatMessageString object

3.12.1 General

A multiformatMessageString object groups together all available textual formats for a message

string.

3.12.2 Localizable multiformatMessageStrings

Certain multiformatMessageString-valued properties in this document, for example,

reportingDescriptor.shortDescription (§3.49.9), can be translated into other languages. We

describe these properties as being “localizable.” The description of every localizable property will state
that it is localizable.

3.12.3 text property

A multiformatMessageString object SHALL contain a property named text whose value is a non-

empty string containing a plain text representation of the message.

NOTE: This property is required to ensure that the message is viewable even in contexts
that do not support the rendering of formatted text.

3.12.4 markdown property

A multiformatMessageString object MAY contain a property named markdown whose value is a

non-empty string containing a formatted message (§3.11.4) expressed in GitHub-Flavored Markdown
[GFM].

SARIF consumers that cannot (or choose not to) render formatted text SHALL ignore the markdown

property and use the text property (§3.12.3) instead.

3.13 sarifLog object

3.13.1 General

A sarifLog object specifies the version of the file format and contains the output from one or more runs.

EXAMPLE:

{

 "version": "2.1.0", # See §3.13.2.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 47 of 229

 "runs": [# See §3.13.4.

 {

 ... # A run object (§3.14)

 },

 ...

 {

 ... # Another run object

 }

]

}

3.13.2 version property

A sarifLog object SHALL contain a property named version whose value is a string designating the

version of the SARIF specification to which this log file conforms. This string SHALL have the value
"2.1.0".

Although the order in which properties appear in a JSON object value is not semantically significant, the
version property SHOULD appear first.

NOTE: This will make it easier for parsers to handle multiple versions of the SARIF
format if new versions are defined in the future.

3.13.3 $schema property

A sarifLog object MAY contain a property named $schema whose value is a string containing an

absolute URI from which a JSON schema document [JSCHEMA01] describing the version of the SARIF
format to which this log file conforms can be obtained.

If the $schema property is present, the JSON schema obtained from the specified URI SHALL describe

the version of the SARIF format specified by the version property (§3.13.2).

NOTE 1: The purpose of the $schema property is to allow JSON schema validation tools

to locate an appropriate schema against which to validate the log file. This is useful, for
example, for tool authors who wish to ensure that logs produced by their tools conform to
the SARIF format.

NOTE 2: The SARIF schema is available at https://docs.oasis-
open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json.

3.13.4 runs property

A sarifLog object SHALL contain a property named runs whose value is either null or an array of

zero or more run objects (§3.14).

The value of runs SHALL be an array with at least one element except in the following circumstances:

• If a SARIF producer finds no data with which to populate runs, then its value SHALL be an

empty array.

NOTE 1: This would happen if, for example, the log file were the output of a query on a
result management system, and the query did not match any runs stored in the result
management system.

• If a SARIF producer tries to populate runs but fails, then its value SHALL be null.

NOTE 2: This would happen if, for example, the log file were the output of a query on a
result management system, and the query was malformed.

https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 48 of 229

3.13.5 inlineExternalProperties property

A sarifLog object MAY contain a property named inlineExternalProperties whose value is an

array of zero or more unique (§3.7.3) externalProperties objects (§4.3).

NOTE: This property allows multiple runs to share large data sets in a single, self-
contained log file.

EXAMPLE: In this example, two tools analyze the same set of image files, stored in
sarifLog.inlineExternalProperties[0].artifacts. The first tool locates the

inline externalProperties object by means of a URI with the sarif scheme (see

§3.10.3). The second tool locates the object by means of its guid property (§4.3.4).

{

 "version": "2.1.0",

 "$schema": "https://docs.oasis-

open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-schema-2.1.0.json",

 "inlineExternalProperties": [

 {

 "guid": "00001111-2222-1111-8888-555566667777", # See §4.3.4.

 "artifacts": [# See §4.3.6.

 {

 "location": {

 "uri": "apple.png"

 },

 "mimeType": "image/png"

 },

 {

 "location": {

 "uri": "banana.png"

 },

 "mimeType": "image/png"

 }

]

 }

],

 "runs": [# See §3.13.4.

 { # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": {

 "name": "ImageAccessibilityScanner"

 }

 },

 "externalPropertyFileReferences": { # See §3.14.2.

 "artifacts": [

 {

 "location": {

 "uri": "sarif:/inlineExternalPropertyFiles/0"

 }

 }

]

 },

 "results": [

 ...

]

 },

 {

 "tool": {

 "driver": {

 "name": "ImageSuitabilityScanner"

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 49 of 229

 },

 "externalPropertyFileReferences": {

 "artifacts": [

 {

 "guid": "00001111-2222-1111-8888-555566667777"

 }

]

 },

 "results": [

 ...

]

 }

]

}

3.14 run object

3.14.1 General

A run object describes a single run of an analysis tool and contains the output of that run.

EXAMPLE:

{

 "tool": { # See §3.14.6.

 ... # A tool object (§3.18).

 },

 "results": [# See §3.14.23.

 {

 ... # A result object (§3.27).

 },

 ...

 {

 ... # Another result object.

 }

]

}

3.14.2 externalPropertyFileReferences property

A run object MAY contain a property named externalPropertyFileReferences whose value is an

externalPropertyFileReferences object (§3.15) that specifies the locations of the external

property files (see §3.15.2) associated with this log file.

3.14.3 automationDetails property

A run object MAY contain a property named automationDetails whose value is a

runAutomationDetails object (§3.17) that describes this run.

For an example, see §3.17.1.

3.14.4 runAggregates property

A run object MAY contain a property named runAggregates whose value is an array of zero or more

unique (§3.7.3) runAutomationDetails objects (§3.17) each of which describes an aggregate of runs

to which this run belongs.

For an example, see §3.17.1.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 50 of 229

3.14.5 baselineGuid property

A run object MAY contain a property named baselineGuid whose value is a GUID-valued string

(§3.5.3) which SHALL equal the automationDetails.guid property (§3.14.3, §3.17.4) of some

previous run.

NOTE: This ensures that only “similar” runs are compared.

If baselineGuid is present, the result.baselineState property (§3.27.24) of every result object

(§3.27) in theRun SHALL be computed with respect to the run specified by baselineGuid.

3.14.6 tool property

A run object SHALL contain a property named tool whose value is a tool object (§3.18) that

describes the analysis tool that was run.

3.14.7 language

A run object MAY contain a property named language whose value is a string specifying the language

of the localizable strings (§3.5.1) in theRun (except for localizable strings that occur within

theRun.translations (§3.14.9)), in the format specified by the language tags standard [RFC5646]. If

this property is absent, it SHALL default to "en-US".

EXAMPLE 1: The language is region-neutral English:

"language": "en"

EXAMPLE 2: The language is French as spoken in France:

"language": "fr-FR"

3.14.8 taxonomies property

A run object MAY contain a property named taxonomies whose value is an array of zero or more

unique (§3.7.3) toolComponent objects (§3.19) each of which represents a standard taxonomy

(§3.19.3).

NOTE: Analysis tools can define their own custom taxonomies; see §3.19.3 and
§3.19.25.

3.14.9 translations property

A run object MAY contain a property named translations whose value is an array of zero or more

unique (§3.7.3) toolComponent objects (§3.19) each of which represents a translation (§3.19.4).

3.14.10 policies property

A run object MAY contain a property named policies whose value is an array of zero or more unique

(§3.7.3) toolComponent objects (§3.19) each of which represents a policy (§3.19.5).

3.14.11 invocations property

A run object MAY contain a property named invocations whose value is an array of zero or more

invocation objects (§3.20) that together describe a single run of a single analysis tool.

NOTE: Normally, an analysis tool runs as a single process, and the invocations array

requires only one element. The invocations property is defined as an array, rather

than as a single invocation object, to accommodate tools which execute a sequence

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 51 of 229

of programs to produce results. For example, a tool might run one program to determine
the set of artifacts to analyze and another program to analyze those artifacts.

The elements of the invocations array SHOULD, as far as possible, be arranged in chronological

order according to the start time of each process. If some of the processes run in parallel, this might not
be possible.

3.14.12 conversion property

If a run object was produced by a converter, it MAY contain a property named conversion whose

value is a conversion object (§3.22) that describes how the converter transformed the analysis tool’s

native output format into the SARIF format.

A direct producer SHALL NOT emit the conversion property.

3.14.13 versionControlProvenance property

A run object MAY contain a property named versionControlProvenance whose value is an array of

zero or more unique (§3.7.3) versionControlDetails objects (§3.23). Each array entry specifies a

revision in a repository containing files that were scanned during the run.

NOTE 1: This property allows an engineering system to reproduce a scan by retrieving
the specified revision of the required files from each repository before repeating the
analysis run.

NOTE 2: This property is an array, rather than a single versionControlDetails

object, to support scenarios where a tool scans files from multiple repositories in a single
run.

NOTE 3: This document refers to a container for a related set of files in a VCS as a
“repository.” Different VCSs might use different terms.

NOTE 4: This document refers to a fixed revision of a set of files as a “revision”. Different
VCSs use different terms; for example, Git calls it a “commit”.

EXAMPLE: In this example, an analysis tool has scanned files from one repository: the
GitHub repository example/browser.

{ # A run object.

 "versionControlProvenance": [

 { # A versionControlDetails object (§3.23).

 "repositoryUri": "https://github.com/example/browser", # See §3.23.3.

 "revisionId": "1a0c6554caa37144459cb97cb15429b27831476e" # See §3.23.4.

 "branch": "master" # See §3.23.5.

 }

]

}

3.14.14 originalUriBaseIds property

A run object MAY contain a property named originalUriBaseIds whose value is an object (§3.6)

each of whose property names designates a URI base id (§3.4.4) and each of whose property values is
an artifactLocation object (§3.4) that specifies (in the manner described below) the absolute URI

[RFC3986] of that URI base id on the machine where the SARIF producer ran.

If the artifactLocation object’s uri property (§3.4.3) is a relative reference, its uriBaseId property

(§3.4.4) SHALL be present. Otherwise (that is, if uri is an absolute URI, or if it is absent), uriBaseId

SHALL be absent.

If the actual value of uri would have been an absolute URI, uri MAY be omitted.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 52 of 229

NOTE 1: A SARIF producer might omit such an absolute URI, or a SARIF postprocessor
might remove it, for various reasons:

• To avoid revealing sensitive information such as a user name in a URI, for example,
file:///C:/Users/Mary/code/TheProject/.

• To produce deterministic output (see Appendix F) by avoiding path names that differ
depending on the machine where the analysis tool runs.

EXAMPLE 1: In this example, the “top-level” property PROJECTROOT specifies a URI

containing a username:

"originalUriBaseIds": {

 "PROJECTROOT": {

 "uri": "file:///C:/Users/Mary/code/TheProject/",

 "description": {

 "text": "The root directory for all project files."

 }

 },

 "SRCROOT": {

 "uri": "src/",

 "uriBaseId": "PROJECTROOT",

 "description": {

 "text": "The root of the source tree."

 }

 }

}

A post-processor might remove uri to avoid revealing a username. The advantage of

this approach over removing the entire PROJECTROOT property is that it retains the

description property:

"originalUriBaseIds": {

 "PROJECTROOT": {

 "description": {

 "text": "The root directory for all project files."

 }

 },

 "SRCROOT": {

 "uri": "src/",

 "uriBaseId": "PROJECTROOT",

 "description": {

 "text": "The root of the source tree."

 }

 }

}

The values of the uriBaseId properties in the artifactLocation objects in originalUriBaseIds

SHALL NOT form a loop, in the sense described in the URI base id resolution procedure below.

The values of the uri properties in the artifactLocation objects in originalUriBaseIds:

• SHALL end with a single forward slash .

• SHALL NOT include a query or fragment component as defined in URI Generic Syntax
[RFC3986].

• SHALL NOT include ".." path segments.

NOTE 2: The rationale for these restrictions is to allow the uriBaseId resolution

procedure described below to work by simple concatenation of the uri properties in

originalUriBaseIds. The prohibition of ".." path segments ensures that the

resolution procedure works with file scheme URIs, without concern for the presence of

symbolic links. See §3.10.2 for more information on this point.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 53 of 229

This property allows SARIF consumers to resolve any relative references which appear in any
artifactLocation objects elsewhere in the run, as long as the consumer runs either on the same

machine as the producer, or on a machine with an identical file system layout. This is useful for individual
developers who wish to run analysis tools and examine the results in a viewer. It is also useful for teams
which share a convention for their file system layout.

A SARIF consumer SHALL use the following procedure to resolve a URI base id from the information in
originalUriBaseIds:

NOTE 3: This procedure is part of an overall URI base id resolution procedure described
in §3.4.4.

NOTE 4: In this procedure, we refer to the resolved URI value by the variable name
resolvedUri.

1. Set resolvedUri to an empty string.

2. Fetch the artifactLocation object whose property name within originalUriBaseIds is

the value of uriBaseId. If there is no such property, the resolution procedure fails.

3. Prepend artifactLocation.uri to resolvedUri.

4. If artifactLocation.uri is an absolute URI, resolvedUri is the final resolved URI, and the

procedure succeeds.

Otherwise:

5. If uriBaseId is absent, the resolution procedure fails.

NOTE 3: This would not occur in a valid SARIF file, but the file might not be valid.

6. If the value of uriBaseId has already been encountered during this resolution procedure (that

is, if there is a loop in the sequence of URI base ids), the resolution procedure fails.

NOTE 4: This would not occur in a valid SARIF file, but the file might not be valid.

7. Otherwise (that is, if uriBaseId is present and its value has not previously been encountered

during this resolution), return to Step 2.

EXAMPLE 2: In this example, the URI base id "SRCROOT" on the machine where the

SARIF producer ran was "file:///C:/code/MyProject/src/". The producer

detected a result in a file whose location relative to that URI base id was
"lib/memory.c". A viewer which wished to display that file would first attempt to

locate it on the local file system at "C:\code\MyProject\src\lib\memory.c".

If the file did not exist at that location, the viewer might prompt the user for the
location.

{ # A run object.

 "originalUriBaseIds": {

 "PROJECTROOT": {

 "uri": "file:///C:/code/TheProject/"

 },

 "SRCROOT": {

 "uri": " src/",

 "uriBaseId": "PROJECTROOT"

 }

 },

 "results": [

 { # A result object (§3.27).

 "ruleId": "CA1001",

 "locations": [

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 54 of 229

 { # A location object (§3.28).

 "physicalLocation": { # See §3.28.3.

 "artifactLocation": { # An artifactLocation object (§3.4).

 "uri": "lib/memory.c",

 "uriBaseId": "SRCROOT"

 }

 }

 }

]

 }

]

}

3.14.15 artifacts property

A run object MAY contain a property named artifacts whose value is an array of zero or more unique

(§3.7.3) artifact objects (§3.24) each of which represents an artifact relevant to the run.

The array SHOULD contain elements representing at least those artifacts in which results were detected,
but it MAY contain elements representing all artifacts examined by the tool (whether or not results were
detected in those artifacts), or any subset of those artifacts. It MAY also include other artifacts relevant to
the run, such as attachments (§3.27.26).

NOTE: artifact objects contain information that is useful for viewers. Viewers will be

able to provide the most information to users if the artifacts property is present and

contains information for every artifact in which results were detected.

EXAMPLE:

"artifacts": [

 {

 "location": {

 "uri": "file:///C:/Code/main.c"

 },

 "sourceLanguage": "c",

 "hashes": {

 "sha-256": "b13ce2678a8807ba0765ab94a0ecd394f869bc81"

 }

 }

}

In some cases, an artifact might be nested within another artifact (for example, a compressed container),
referred to as its “parent.” An artifact that is not nested within another artifact is referred to as a “top-level
artifact”. An artifact that is nested within another artifact is referred to as a “nested artifact”. Within the
artifacts array, an artifact object representing a nested artifact is linked to its parent via its

parentIndex property (§3.24.3). For an example, see §3.24.3.

If a nested artifact appears in the artifacts array, then the artifacts array SHALL also contain

elements describing each of its parents, up to and including the top-level artifact.

3.14.16 specialLocations property

A run object MAY contain a property named specialLocations whose value is a

specialLocations object (§3.25) that defines locations of special significance to SARIF consumers.

3.14.17 logicalLocations property

A run object MAY contain a property named logicalLocations whose value is an array of zero or

more unique (§3.7.3) logicalLocation objects (§3.33) each of which represents a logical location

relevant to one or more results detected during the run.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 55 of 229

In some cases, a logical location might be nested within another logical location (for example, a class
nested within a namespace), referred to as its “parent.” A logical location that is not nested within another
logical location is referred to as a “top-level logical location”. A logical location that is nested within
another logical location is referred to as a “nested logical location”. Within the logicalLocations array,

a logicalLocation object representing a nested logical location is linked to its parent via its

parentIndex property (§3.33.8).

If a nested logical location appears in the logicalLocations array, then the logicalLocations

array SHALL also contain elements describing each of its parents, up to and including the top-level
logical location.

EXAMPLE: In this example, a result was detected in the C++ class
namespaceA::namespaceB::classC. The logicalLocations array contains not

only an element describing the class, but also elements describing its containing
namespaces.

"logicalLocations": [

 {

 "name": "classC",

 "fullyQualifiedName": "namespaceA::namespaceB::classC",

 "kind": "type",

 "parentIndex": 1

 },

 {

 "name": "namespaceB",

 "fullyQualifiedName": "namespaceA::namespaceB",

 "kind": "namespace"

 "parentIndex": 2

 },

 {

 "fullyQualifiedName": "namespaceA",

 "kind": "namespace"

 }

]

NOTE: The detailed information in logicalLocations is useful, even though much of

it is captured in logicalLocation.fullyQualifiedName (§3.33.5), because it

allows results management systems and other SARIF consumers to organize analysis
results, for example, by asking questions such as “How many results were found in the
namespace namespaceA::namespaceB?”. Programs can ask these questions without

having to know how to parse the fullyQualifiedName string.

3.14.18 addresses property

A run object MAY contain a property named addresses whose value is an array of zero or more unique

(§3.7.3) address objects (§3.32) representing addresses that appear in physicalLocation objects

(§3.29) within theRun.

In some cases, an address might be nested within another address (for example, an offset within a table
within a section). An address that is nested within another address is referred to as a “nested address”.
Within the addresses array, an address object representing a nested address is linked to its parent via

its parentIndex property (§3.32.13).

If a nested address appears in the addresses array, then addresses SHALL also contain elements

describing each of its parents, up to and including the top-level address.

3.14.19 threadFlowLocations property

A run object MAY contain a property named threadFlowLocations whose value is an array of zero or

more unique (§3.7.3) threadFlowLocation objects (§3.38) representing locations that appear in

threadFlow objects (§3.37) within theRun.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 56 of 229

The threadFlowLocations array may contain all or any subset of the threadFlowLocation objects

in the run.

NOTE: Defining threadFlowLocation objects within run.threadFlowLocations

can reduce the size of the log file if certain locations occur frequently, either within a
single thread flow (for example, if the thread flow represents a loop) or across thread
flows (for example, if all thread flows start at the program entry point and share their first
few locations).

3.14.20 graphs property

A run object MAY contain a property named graphs whose value is an array of zero or more unique

(§3.7.3) graph objects (§3.39). A graph object represents a directed graph: a network of nodes and

directed edges that describes some aspect of the structure of the code (for example, a call graph).

A graph object defined at the run level MAY be referenced by a graphTraversal object (§3.42)

defined in the graphTraversals property (§3.27.20) of any result object (§3.27) in theRun.

3.14.21 webRequests property

A run object MAY contain a property named webRequests whose value is an array of zero or more

unique (§3.7.3) webRequest objects (§3.46) representing HTTP requests that appear in result objects

(§3.27) within theRun.

NOTE: This property is primarily useful to web analysis tools.

3.14.22 webResponses property

A run object MAY contain a property named webResponses whose value is an array of zero or more

unique (§3.7.3) webResponse objects (§3.47) representing HTTP responses that appear in result

objects (§3.27) within theRun.

NOTE: This property is primarily useful to web analysis tools.

3.14.23 results property

Depending on the circumstances, a run object either SHALL or MAY contain a property named

results whose value, again depending on circumstances, is either null or an array of zero or more

result objects (§3.27) each of which represents a single result detected in the course of the run.

NOTE: The results array is not defined to contain unique (§3.7.3) elements because

some tools report a line number but not a column number for a result’s location. Such a
tool might report the same result twice on the same line, in some cases producing
multiple identical result objects.

If the tool failed to start, and if the engineering system responsible for running the tool synthesized a
SARIF file to record the failure, then results MAY be present. If it is present, its value SHALL be null.

See §3.20.13, invocation.processStartFailureMessage, for more about this scenario.

If the tool started but failed to begin its analysis (for example, because its command line was invalid), then
again results MAY be present, and if present SHALL be null.

In all other circumstances, results SHALL be present and SHALL contain all results detected by the

tool. If the tool did not detect any results, results SHALL be an empty array.

If results is absent, it SHALL default to null.

3.14.24 defaultEncoding property

A run object MAY contain a property named defaultEncoding whose value is a case-sensitive string

that provides a default for the encoding property (§3.24.9) of any artifact object (§3.24) in

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 57 of 229

theRun.artifacts (§3.14.15) that refers to a text artifact. The string SHALL be one of the character

set names defined by IANA [IANA-ENC].

If this property is absent, it SHALL be interpreted as meaning that there is no default file encoding. In that
case, the encoding of any artifact object that does not contain an encoding property SHALL be

taken to be unknown.

For an example, see §3.24.9.

3.14.25 defaultSourceLanguage property

A run object MAY contain a property named defaultSourceLanguage whose value is a hierarchical

string (§3.5.4) that provides a default value for the sourceLanguage property (§3.24.10) of any

artifact object (§3.24) in theRun.artifacts (§3.14.15) which refers to a text artifact that contains

source code.

If defaultSourceLanguage is present, its value SHOULD conform to the conventions defined in

§3.24.10.2.

If defaultSourceLanguage is absent, it SHALL be taken to mean that there is no default source

language. In that case, the source language of any artifact object that does not contain a

sourceLanguage property SHALL be taken to be unknown. In that case, a SARIF viewer MAY use any

method or heuristic to determine the source language of each file, for example by examining the file’s file
name extension or MIME type, or by prompting the user.

3.14.26 newlineSequences property

A run object MAY contain a property named newlineSequences whose value is an array of one or

more unique (§3.7.3) strings each of which specifies a character sequence that the tool treated as a line
break during this run.

If this property is absent, it SHALL default to the array ["\r\n", "\n"].

The order of the elements in the array is significant. It SHALL mean that at potential line breaks, the tool
“greedily” attempted to match each element of the array in order.

EXAMPLE 1: If newlineSequences has the value ["\r\n", "\r", "\n"], the

character sequence "\r\n" counts as one line break, not two.

NOTE: This property is useful for SARIF consumers that are sensitive to the value of the
line number properties startLine (§3.30.5) and endLine (§3.30.7) in region objects

(§3.30). It ensures that the consumer counts lines in the same way as the producer. A
SARIF viewer might use this property when highlighting a region to ensure that it
highlights the correct lines. More critically, a tool that applies fixes (see §3.55), especially
one that applies them automatically, can use this property to ensure that it inserts and
removes content on the correct lines.

EXAMPLE 2: In this example, the SARIF producer accepts the Unicode characters NEXT
LINE (U+0085) and LINE SEPARATOR (U+2028) as line separators in addition to the
usual values.

{ # A run object (§3.14).

 ...

 "newlineSequences": ["\r\n", "\n", "\u0085", "\u2028"],

 ...

}

3.14.27 columnKind property

If a SARIF producer processes text artifacts and theRun.results (§3.14.23) is non-empty, the run

object SHALL contain a property named columnKind whose value is a string that specifies the unit in

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 58 of 229

which the analysis tool measures columns. If a SARIF producer processes text artifacts and
theRun.results is empty, columnKind MAY be present.

columnKind SHALL have one of the following values, with the specified meanings:

• "utf16CodeUnits": Each UTF-16 code unit is considered to occupy one column. This means

that a surrogate pair is considered to occupy two columns.

• "unicodeCodePoints": Each Unicode code point (abstract character) is considered to occupy

one column. This means that even a character that is represented in UTF-16 by a surrogate pair
is considered to occupy one column.

If the SARIF producer does not process text artifacts, columnKind SHALL be absent.

If a SARIF consumer uses a column measurement unit other than that specified by columnKind, and if

the consumer is required to interact with the artifact’s contents (for example, by displaying the artifact in
an editor and highlighting a region), the consumer SHALL recompute column numbers in its (the
consumer’s) native measurement unit.

3.14.28 redactionTokens property

If the value of any redactable property (§3.5.2) in theRun has been redacted, theRun SHALL contain a

property named redactionTokens whose value is an array of zero or more unique (§3.7.3) strings any

of which can be used to replace redacted text. If no text in theRun has been redacted,

redactionTokens SHALL be absent.

If redactionTokens contains a single element, that element SHOULD be the string "[REDACTED]"; if

it contains more than one, each additional element SHOULD be of the form "[REDACTED-n]" where n

is a positive integer.

NOTE 1: The rationale for recommending the alternate form only for the second and
subsequent tokens is that a tool might create one token and only later discover that
additional tokens are required. With this recommendation, the tool does not have to
rename the token it has already created.

NOTE 2: Redaction tokens have no special meaning in properties not specified as
“redactable.”

If for any reason different values are used, they MAY be any readily identifiable strings. An example of a
situation where a SARIF producer might choose a different redaction token is if the string "[REDACTED]"

occurs in the value of a redactable property in theRun.

EXAMPLE 1: In this example, the leading portion of a full path name has been redacted
from the redactable property invocation.commandLine to avoid revealing information

about the machine’s directory layout.

{ # A run object (§3.14).

 "redactionTokens": [

 "[REDACTED]"

],

 "invocation": {

 "commandLine": "SourceScanner --input [REDACTED]/src/ui"

 }

 ...

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 59 of 229

3.15 externalPropertyFileReferences object

3.15.1 General

An externalPropertyFileReferences object contains information that enables a SARIF consumer

to locate the external property files (see §3.15.2) that contain the values of all externalized properties
associated with theRun.

3.15.2 Rationale

In some engineering environments, a single tool run might analyze hundreds of thousands of files and
produce millions of results. This causes problems for both producers and consumers of such large SARIF
log files:

• The log file might be too large for a consumer to hold in memory and might take several minutes
to read.

• During production, some information (such as the complete set of artifacts that were analyzed,
the complete set of rules that were violated, or the end time of the run) cannot be known until the
run is complete. Therefore, it is likely to be serialized at the end of the log file. However,
consumers might need to access some of that information before reading the entire file. For
example, a SARIF viewer might need to display rule metadata along with each result it displays,
or to display the start and end times of a set of tool runs.

To mitigate these problems, SARIF allows certain properties of a run object and its sub-objects to be

stored in separate files. We refer to these files as “external property files”, and we refer to the file
containing the run object itself as the “root file”. We refer to a property that can be stored in an external

property file as an “externalizable property.” We refer to a property that has been stored in an external
property file as an “externalized property.”

The format of an external property file is described in §4.

A SARIF consumer SHALL treat the value of an object-valued property stored in an external property file
exactly as if it had appeared inline in the root file as the value of the corresponding property.

A SARIF consumer SHALL treat the value of an array-valued property stored in an external property file
exactly as if its elements had appeared inline in the root file, appended to the existing value, if any, of that
property.

NOTE: This allows a SARIF producer to begin writing the elements of an array-valued
property to the root file, and then, if the file grows too large, to “spill” the additional
elements into one or more external property files.

3.15.3 Properties

The following table lists all the externalizable properties together with their corresponding property names
in the externalPropertyFileReferences object:

Externalizable property Property name Type

run.addresses addresses array

run.artifacts artifacts array

run.conversion conversion object

run.graphs graphs array

run.invocations invocations array

run.logicalLocations logicalLocations array

run.policies policies array

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 60 of 229

run.properties externalizedProperties object

run.webRequests webRequests array

run.webResponses webResponses array

run.results results array

run.taxonomies taxonomies array

run.threadFlowLocations threadFlowLocations array

run.translations translations array

run.tool.driver driver object

run.tool.extensions extensions array

NOTE 1: run.properties is externalized under the property name

externalizedProperties to allow this object to have a property bag named

properties, consistent with all other objects in this document.

NOTE 2: Note that run.conversion.tool.driver and

run.conversion.tool.extensions are not separately externalizable. Rather, the

run.conversion property as a whole is externalizable.

Every externalizable property whose type is shown in the table as “object” SHALL, if externalized, be
stored in a single external property file. In that case, the value of the corresponding property in
externalPropertyFileReferences SHALL be an externalPropertyFileReference object

(§3.16) specifying the location of the external property file.

Every externalizable property whose type is shown in the table as “array” SHALL, if externalized, be
stored in one or more external property files. In that case, the value of the corresponding property in
externalPropertyFileReferences SHALL be an array of zero or more

externalPropertyFileReference objects specifying the locations of those external property files.

EXAMPLE 1: In this example, run.conversion is stored in the file

C:\logs\scantool.conversion.sarif-external-properties and

run.results is divided into the files C:\logs\scantools.results-1.sarif-

external-properties and C:\logs\scantools.results-2.sarif-external-

properties.

{ # A run object.

 "originalUriBaseIds": { # See §3.14.14.

 "LOGSDIR": {

 "uri": "file:///C:/logs/"

 }

 },

 "externalPropertyFileReferences": {

 "conversion": { # An externalPropertyFileReference object (§3.16).

 "location": { # See §3.16.3.

 "uri": "scantool.conversion.sarif-external-properties",

 "uriBaseId": "LOGSDIR"

 },

 "guid": "11111111-1111-1111-8888-111111111111" # See §3.16.4.

 },

 "results": [

 {

 "location": {

 "uri": "scantool.results-1.sarif-external-properties",

 "uriBaseId": "LOGSDIR"

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 61 of 229

 "guid": "22222222-2222-1111-8888-222222222222",

 "itemCount": 10000

 },

 {

 "location": {

 "uri": "scantool.results-2.sarif-external-properties",

 "uriBaseId": "LOGSDIR"

 },

 "guid": "33333333-3333-1111-8888-333333333333",

 "itemCount": 4277

 }

]

 }

 ...

}

With one exception described below, if a property appears inline in the root file, its name SHALL NOT
appear as one of the property names in externalPropertyFileReferences. Since an external

property file can contain multiple externalized properties, externalPropertyFileReference objects

belonging to distinct properties MAY denote the same external property file. However, if an array-valued
externalizable property is divided among multiple external property files, the
externalPropertyFileReference objects belonging to that property SHALL denote distinct external

property files.

EXAMPLE 2: In this example, theRun.conversion and theRun.properties are

stored in the same external property file.

{ # A run object (§3.14).

 "originalUriBaseIds": { # See §3.14.14.

 "LOGSDIR": {

 "uri": "file:///C:/logs/"

 }

 },

 "externalPropertyFileReferences": {

 "conversion": { # An externalPropertyFileReference object (see §3.16).

 "location": { # See §3.16.3.

 "uri": "scantool.sarif-external-properties",

 "uriBaseId": "LOGSDIR",

 "index": 0

 },

 "guid": "11111111-1111-1111-8888-111111111111" # See §3.16.4.

 },

 "externalizedProperties": {

 "location": {

 "uri": "scantool.sarif-external-properties",

 "uriBaseId": "LOGSDIR",

 "index": 0

 },

 "guid": "11111111-1111-1111-8888-111111111111"

 }

 }

 ...

}

EXAMPLE 3: This example represents invalid SARIF because both elements of the array
belonging to the results property denote the same external property file.

{ # A run object (§3.14).

 "originalUriBaseIds": { # See §3.14.14.

 "LOGSDIR": {

 "uri": "file:///C:/logs/"

 }

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 62 of 229

 "externalPropertyFileReferences": {

 "results": [

 { # An externalPropertyFileReference object (see §3.16).

 "location": {

 "uri": "scantool.results.sarif-external-properties",

 "uriBaseId": "LOGSDIR",

 "index": 0

 },

 "guid": "22222222-2222-1111-8888-222222222222"

 },

 { # INVALID: The two external property files are the same.

 "location": {

 "uri": "scantool.results.sarif-external-properties",

 "uriBaseId": "LOGSDIR",

 "index": 0

 },

 "guid": "22222222-2222-1111-8888-222222222222"

 }

]

 }

 ...

}

The exception is that if run.tool.driver is externalized, it SHALL still occur inline in the root file. The

inline driver property SHOULD contain only properties that identify the tool, such as name (§3.19.8)

and semanticVersion (§3.19.12); it SHOULD NOT contain properties such as

globalMessageStrings (§3.19.22), rules (§3.19.23), notifications (§3.19.24), and taxa

(§3.19.25), which take up a large amount of space.

NOTE 3: This makes it possible to identify the tool that produced the log file without
locating and opening the external property file, while still getting the benefit of
externalizing those properties that take up a large amount of space.

3.16 externalPropertyFileReference object

3.16.1 General

An externalPropertyFileReference object contains information that enables a SARIF consumer to

locate the external property file (see §3.15.2) that contains the value of an externalized property
associated with theRun.

3.16.2 Constraints

At least one of the location property (§3.16.3) or the guid property (§3.16.4) SHALL be present. If

both are present, they SHALL identify the same set of externalized properties (possibly located inline;
see §3.13.5).

NOTE: This constraint ensures that it is possible to locate the externalized properties.

3.16.3 location property

Depending on the circumstances, an externalPropertyFileReference object either SHALL or

MAY contain a property named location whose value is an artifactLocation object (§3.4) that

specifies the location of the external property file.

If the externalized properties are persisted in a separate file, location SHALL be present. In that case,

if the artifactLocation object’s uri property (§3.4.3) specifies a relative reference and its

uriBaseId property (§3.4.4) is absent, then uri SHALL be interpreted relative to the location of the root

file.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 63 of 229

Otherwise (that is, if the externalized properties are persisted as an element of
theSarifLog.inlineExternalProperties (§3.13.5)), then location MAY be present. If

location is present, its uri property SHALL resolve to an absolute URI using the sarif scheme

(§3.10.3). If location is absent, then a SARIF consumer that needs to locate the externalized properties

SHALL do so using the guid property (§3.16.4).

3.16.4 guid property

Depending on the circumstances, an externalPropertyFileReference object either SHALL or

MAY contain a property named guid whose value is a GUID-valued string (§3.5.3) which provides a

unique, stable identifier for the external property file.

If the externalized properties are persisted in an element of
theSarifLog.inlineExternalProperties (§3.13.5) and location (§3.16.3) is absent, then guid

SHALL be present.

Otherwise (that is, if the externalized properties are persisted in a separate file, in which case location

is required, or if the externalized properties are persisted in an element of
theSarifLog.inlineExternalProperties but location is present), guid MAY be present.

NOTE: The rationale for these constraints is to ensure that there is enough information to
locate the external properties. If the properties are in an external file, then location is

necessary but guid can still be present; if the properties are inline, either location or

guid suffices but both can be present.

If guid is present, it SHALL equal the guid property (§4.3.4) of the externalProperties object

(§4.3) identified by guid and/or location.

3.16.5 itemCount property

If an externalPropertyFileReference object specifies an external property file that contains all or a

portion of an array-valued property, it MAY contain a property named itemCount whose value is a non-

negative integer that specifies the number of items in the externalized property array in that file. If the
externalPropertyFileReference object specifies an external property file that contains an object-

valued property, itemCount SHALL be absent.

If itemCount is absent, it SHALL default to -1, which indicates that the value is unknown (not set).

NOTE: This information is useful to a SARIF consumer that needs to locate the item at a
specified array index in an externalized array-valued property. Without this information,
the consumer would have to open in turn each external property file belonging to that
property, counting the number of array elements in each, until it reached the file
containing the desired element.

EXAMPLE: In EXAMPLE 1 in §3.15.3, the array-valued property results is divided into

two files, the first containing 10,000 elements and the second containing 4,277 elements.
A SARIF consumer that needs to access element 12,000 knows immediately that it is
contained in the second file, at index 2,000.

3.17 runAutomationDetails object

3.17.1 General

A runAutomationDetails object contains information that specifies theRun’s identity and role within

an engineering system.

EXAMPLE: In this example, a run contains the results from one nightly execution of a
single security tool over a specified set of binaries. theRun.automationDetails

describes the run. Its id and guid properties both identify the run; the former in human-

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 64 of 229

readable form, the latter in a form that might be more useful in an engineering system’s
database. Its correlationGuid property specifies the set of runs identified by all but

the last component of id’s hierarchical string; that is, it identifies the set of runs

"Nightly CredScan run for sarif-sdk/master/x86/debug".

The run in this example is part of an aggregate of runs which together comprise the
nightly execution of the engineering system’s full suite of security tools.
theRun.runAggregates[0] describes that aggregate. Its id and guid properties

both identify the aggregate. Its correlationGuid property specifies the collection of

such aggregates identified by all but the last component of id’s hierarchical string; that

is, it identifies the collection of aggregates "Nightly security tools run for

sarif-sdk/master/x86/debug".

{ # A run object (§3.14).

 "automationDetails": { # See §3.14.3.

 "description": {

 "text": "This is the {0} nightly run of the Credential Scanner tool on

 all product binaries in the '{1}' branch of the '{2}' repo. The

 scanned binaries are architecture '{3}' and build type '{4}'.",

 "arguments": [

 "October 10, 2018",

 "master",

 "sarif-sdk",

 "x86",

 "debug"

]

 },

 "id": "Nightly CredScan run for sarif-sdk/master/x86/debug/2018-10-05",

 "guid": "11111111-1111-1111-8888-111111111111",

 "correlationGuid": "22222222-2222-1111-8888-222222222222"

 },

 "runAggregates": [# See §3.14.4.

 {

 "id":

 "Nightly security tools run for sarif-sdk/master/x86/debug/2018-10-05"

 "guid": "33333333-3333-1111-8888-333333333333",

 "correlationGuid": "44444444-4444-1111-8888-444444444444"

 }

]

}

3.17.2 description property

A runAutomationDetails object MAY contain a property named description whose value is a

message object (§3.11) that describes the role played within the engineering system by theRun.

3.17.3 id property

A runAutomationDetails object MAY contain a property named id whose value is a hierarchical

string (§3.5.4) that uniquely identifies theRun within the engineering system.

A result management system or other components of the engineering system MAY use
run.automationDetails.id to associate the information in the log with additional information not

provided by the analysis tool that produced it.

An engineering system MAY define any number of components and interpret them in any way desired.

NOTE: The intent is to use the components of id to group results from similar runs, such

as “all nightly Credential Scanner runs.” A SARIF viewer might display a set of runs in a
tree view, grouped by the components of id.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 65 of 229

EXAMPLE 1: A run whose id is "My Nightly Run/Debug/x64/2018-10-10"

belongs to the category "My Nightly Run/Debug/x64". Presumably, this is the run

from October 10, 2018.

The trailing component of id MAY be empty; note that the grammar for a hierarchical identifier (§3.5.4.1)

permits any component to be empty. This SHALL be taken to signify that the run belongs to the specified
category, but that the run itself has no unique identifier.

EXAMPLE 2: A run whose id is "My Nightly Run/Debug/x64/" belongs to the

category "My Nightly Run/Debug/x64" but is not distinguished from other runs in

that category.

id MAY consist of a single component. This SHALL be taken to specify a unique identifier for the run,

withough specifying any category that the run belongs to.

EXAMPLE 3: A run whose id is "My Nightly Run Debug x64 2018-10-10" has a

unique identifier but cannot be inferred to belong to any category.

3.17.4 guid property

A runAutomationDetails object MAY contain a property named guid whose value is a GUID-valued

string (§3.5.3) that provides a unique, stable identifier for theRun.

A result management system or other components of the engineering system MAY use
run.automationDetails.guid to associate the information in the log with additional information not

provided by the analysis tool that produced it.

3.17.5 correlationGuid property

A runAutomationDetails object MAY contain a property named correlationGuid whose value is

a GUID-valued string (§3.5.3) which is shared by all such runs of the same type, and differs between any
two runs of different types.

If id (§3.17.3) is present, correlationGuid SHALL identify the category of runs specified by all but

the last hierarchical component (which MAY be empty according to the grammar (§3.5.4.1) for
hierarchical strings) of id.

NOTE: Consider an engineering system that allows engineers to define “build definitions”,
and that assigns a GUID to each build definition. In such a system, the build definition’s
GUID could serve as run.automationDetails.correlationGuid. It would be the

same for all runs produced by the same build definition, and different between any two
runs produced by different build definitions.

3.18 tool object

3.18.1 General

A tool object describes the analysis tool or converter that was run. The tool object in run.tool

(§3.14.6) describes an analysis tool; the tool object in run.conversion.tool (§3.14.12, §3.22.2)

describes a converter.

A tool consists of one or more “tool components,” each of which consists of one or more files. We refer to
the component that contains the tool’s primary executable file as the “driver.” It controls the tool’s
execution and typically defines a set of analysis rules. We refer to all other tool components as
“extensions.” Extensions can include:

• Libraries of additional rules, which we refer to as “plugins.”

• Files that affect the behavior of the tool, which we refer to as “configuration files.”

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 66 of 229

NOTE: Configuration files that affect the analysis output are of particular interest in
compliance scenarios, where, for example, it is necessary to demonstrate that a
particular set of rules has been evaluated.

Each tool component is represented by a toolComponent object (§3.19).

If another tool post-processes the log file (for example, by removing certain results, or by adding
information that was not known to the analysis tool), the post-processing tool SHOULD NOT alter any
part of the tool object.

EXAMPLE:

{ # A tool object.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "fullName": "CodeScanner 1.1, Developer Preview (en-US)",

 "semanticVersion": "1.1.2-beta.12",

 "version": "1.1.2b12",

 ...

 },

 "extensions": [# See §3.18.3.

 {

 "name": "CodeScanner Security Rules",

 "version": "3.1",

 ...

 }

]

}

3.18.2 driver property

A tool object SHALL contain a property named driver whose value is a toolComponent object

(§3.19) that describes the component containing the tool’s primary executable file.

3.18.3 extensions property

If the tool used any extensions during the run, the tool object SHOULD contain a property named

extensions whose value is an array of one or more unique (§3.7.3) toolComponent objects (§3.19)

that describe those extensions. If the tool did not use any extensions during the run, then extensions

SHALL either be absent or an empty array.

3.19 toolComponent object

3.19.1 General

A toolComponent object represents one of the components which comprise an analysis tool or a

converter, either its driver or one of its extensions. For more information, see §3.18.1.

SARIF also uses toolComponent objects to represent other components that participate in the analysis,

including:

• Taxonomies (§3.19.3)

• Translations (§3.19.4)

• Policies (§3.19.5)

NOTE: SARIF makes this design choice because toolComponent objects contain

properties that are useful in all of these other types of components: properties that
represent the component’s identity, localizable properties (§3.5.1) that label the
component and describe its purpose, and properties that define rules and similar items
that participate in the analysis. Not every property is useful in every component type; for

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 67 of 229

example, translationMetadata (§3.19.27) is useful only in toolComponent objects

that represent translations.

3.19.2 Constraints

At least one of version (§3.19.13) and semanticVersion (§3.19.12) SHOULD be present.

3.19.3 Taxonomies

A taxonomy is a classification of results into a set of categories. Some taxonomies are defined publicly,
without reference to any particular tool; we refer to these as “standard taxonomies.” An example is the
Common Weakness Enumeration [CWE™]. A tool can also define its own classification (in addition to the
classification implied by its rule definitions); we refer to this as a “custom taxonomy.” We refer to a
category within a taxonomy as a “taxon” (pl. “taxa”).

A taxonomy is represented by a toolComponent object. Its taxa are stored in the taxa property

(§3.19.25).

A taxon is represented by a reportingDescriptor object (§3.49); hence toolComponent.taxa is

an array of reportingDescriptor objects. This is the same object that represents rules and

notifications, so a taxon can specify identity properties such as id (§3.49.3) and guid (§3.49.5),

localizable (§3.5.1) descriptive properties such as name (§3.49.7) and fullDescription (§3.49.10),

and configuration properties in defaultConfiguration (§3.49.14).

Standard taxonomies SHALL be stored in the run.taxonomies array (§3.14.8). Every

toolComponent object in this array SHALL contain a taxa property (§3.19.25), and SHALL NOT

contain rules (§3.19.23) or notifications (§3.19.24) properties.

A custom taxonomy is represented by providing a toolComponent object in tool.driver (§3.18.2) or

tool.extensions (§3.18.3) with a taxa property. Such a toolComponent object MAY still contain

rules and/or notifications as usual.

EXAMPLE: In this example, the tool driver supports the CWE™ taxonomy, and also
supports a custom taxonomy that it defines. Any result that violates the driver’s rule
"CA2101" falls into the "MemoryManagement" taxon of its custom taxonomy, as shown

by the "superset" relationship from the "MemoryManagement" taxon to the rule

(which is interpreted as “The MemoryManagement taxon is a superset of rule CA2101”).

For more information on relationships, see §3.49.15 and §3.53.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "semanticVersion": "3.3", # See §3.19.12.

 "guid": "11111111-1111-1111-8888-111111111111",

 ...

 "rules": [

 {

 "id": "CA2101",

 "shortDescription": {

 "text": "Failed to release dynamic memory."

 },

 "relationships": [# See §3.49.15.

 { # A reportingDescriptorRelationship object (§3.53).

 "target": { # See §3.53.2

 "id": "MemoryManagement",

 "guid": "66666666-6666-1111-8888-666666666666",

 "toolComponent": {

 "name": "CodeScanner",

 "guid": "11111111-1111-1111-8888-111111111111"

 }

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 68 of 229

 "kinds": [# See §3.53.3.

 "superset"

]

 }

]

 },

 ...

],

 "taxa": [

 {

 "id": "MemoryManagement",

 "guid": "66666666-6666-1111-8888-666666666666",

 "shortDescription": {

 "text": "Improper usage of dynamic memory."

 }

 },

 {

 "id": "Cryptography",

 "guid": "77777777-7777-1111-8888-777777777777",

 "shortDescription": {

 "text": "Insecure use of cryptography."

 }

 }

],

 "supportedTaxonomies": [

 {

 "name": "CodeScanner",

 "guid": "11111111-1111-1111-8888-111111111111"

 },

 {

 "name": "CWE",

 "index": 1,

 "guid": "33333333-0000-1111-8888-000000000000"

 }

]

 }

 },

 "taxonomies": [

 {

 "name": "CWE",

 "version": "3.2",

 "releaseDateUtc": "2019-01-03",

 "guid": "33333333-0000-1111-8888-000000000000",

 "informationUri": "https://cwe.mitre.org/data/published/cwe_v3.2.pdf/",

 "downloadUri": "https://cwe.mitre.org/data/xml/cwec_v3.2.xml.zip",

 "organization": "MITRE",

 "shortDescription": {

 "text": "The MITRE Common Weakness Enumeration"

 },

 "contents": [

 "localizedData",

 "nonLocalizedData"

],

 "isComprehensive": true,

 "minimumRequiredLocalizedDataSemanticVersion": "3.2",

 "taxa": [

 {

 "id": "327",

 "guid": "33333333-0000-1111-8888-111111111111",

 "name": "BrokenOrRiskyCryptographicAlgorithm",

 "shortDescription": {

 "text": "Use of a Broken or Risky Cryptographic Algorithm."

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 69 of 229

 "defaultConfiguration": {

 "level": "warning"

 }

 },

 {

 "id": "924",

 "guid": "33333333-0000-1111-8888-222222222222",

 "name": "TransmittedMessageIntegrity",

 "shortDescription": {

 "text": "Improper Enforcement of Message Integrity ..."

 },

 "defaultConfiguration": {

 "level": "warning"

 }

 },

 ...

]

 }

],

 ...

}

3.19.4 Translations

A translation is the rendering of a toolComponent object’s localizable strings (§3.5.1) into another

language.

A translation is itself represented by a toolComponent object whose localizable properties are the

translated versions of the corresponding properties in the component being translated. A translation
specifies the tool component to which it applies by way of its associatedComponent property

(§3.19.33).

Translations SHALL be stored in the run.translations array (§3.14.9).

A translation SHALL specify the component that it translates by way of its associatedComponent

property (§3.19.33). associatedComponent SHALL NOT refer to another translation.

A translation component SHALL contain the translations of every localizable string in the translated
component, even if the translated string is identical to the original string. It MAY contain additional strings
that do not appear in the translated component.

To some degree, translations and the components they translate can version independently. The
versioning relationship between a translation and the translated component is explained in the sections
describing localizedDataSemanticVersion (§3.19.31), populated by translations, and

requiredMinimumLocalizedDataSemanticVersion (§3.19.32), populated by translated

components.

A translation SHOULD include the value "localizedData" in its contents array (§3.19.29). It MAY

also include the value "nonLocalizedData".

To facilitate the identification of translations that are associated with a given component, a
toolComponent SHOULD populate its guid property (§3.19.6), and a translation for that component

SHOULD set its guid property to the same value.

In many cases, a new version of a toolComponent defines new localizable strings or requires changes

to existing ones (for example, when the tool defines new analysis rules). But in some cases, a new
version of a toolComponent can use existing translations (for example, in the case of a bug fix release).

To ensure that new translations are created only when necessary, a translation component SHOULD
populate localizedDataSemanticVersion (§3.19.31), and a translatable component SHOULD

populate minimumRequiredLocalizedDataSemanticVersion (§3.19.32). See the descriptions of

those two properties for an explanation of the interaction between them.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 70 of 229

EXAMPLE: In this example, a French translation is available. It translates localizable
component-level properties such as toolComponent.name (§3.19.8), as well as rule-

level properties such as reportingDescriptor.shortDescription (§3.49.9). The

translation can be used because its localizedDataSemanticVersion property

(§3.19.31) is compatible with the translated component’s
minimumRequiredLocalizedDataSemantic version property (§3.19.32).

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "semanticVersion": "3.3", # See §3.19.12.

 "minimumRequiredLocalizedDataSemanticVersion": "3.1",

 ...

 "rules": [

 {

 "id": "CA2101",

 "shortDescription": {

 "text": "Do not do dangerous things."

 }

 }

]

 }

 },

 "translations": [

 { # A toolComponent object.

 "language": "fr-FR",

 "semanticVersion": "3.1.3",

 "localizedDataSemanticVersion": "3.1.2",

 "contents": [

 "localizedData"

],

 "translationMetadata": {

 "name": "French translation for CodeScanner"

 },

 "name": "<The tool name 'CodeScanner' translated into French>",

 ...

 "rules": [

 {

 "id": "CA2101",

 "shortDescription": {

 "text": "<'Do not do dangerous things.' Translated into French>"

 }

 }

]

 }

],

 ...

}

3.19.5 Policies

A policy is a set of rule configurations that specify how results that violate the rules defined by a particular
tool component are to be treated.

A policy is represented by a toolComponent object. A policy specifies the tool component to which it

applies by way of its associatedComponent property (§3.19.33).

A policy SHALL contain a rules property (§3.19.23), each reportingDescriptor-valued (§3.49)

element of which in turn contains a defaultConfiguration property (§3.49.14). Each element of the

rules array SHALL correspond to a rule defined by the associated component. The rules array MAY

contain elements describing any or all of the rules defined by the associated component. The elements of

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 71 of 229

the rules array MAY alter rule properties such as level (§3.50.3), and MAY enable or disable rules. In

this way, the policy defines the code analysis standard that is expected of the engineering team.

Policies SHALL be stored in the run.policies array (§3.14.10).

A SARIF consumer MAY offer the user the option of treating results according to the associated
component’s default rule configuration (possibly modified by command line options stored in
theInvocation.ruleConfigurationOverrides (§3.20.5), by configuration files, by environment

variables, or by any other means), or according to the configuration defined by a selected element of
run.policies. If the user selects a policy, then for any result that violates a rule covered by that policy,

the SARIF consumer SHALL treat the result according to the policy, regardless of the associated
component’s default configuration, regardless of any configuration overrides, and regardless of whether
the result object (§3.27) itself specifies a configuration property such as level (§3.27.10).

NOTE: The rationale is that when a user asks to see how a policy views a set of results,
they want to see exactly what the policy has to say, regardless of any configuration
options that might have been selected when the log was created.

EXAMPLE: In this example, the tool driver defines rule CA2101 to be a warning and

disables rule CA2551 by default. However, the corporate security policy specifies that a

violation of rule CA2101 is an error and requires rule CA2551 to be run. The presence of

run.policies allows a SARIF viewer to display the results according to the tool’s view

or the policy’s view.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA2101",

 "defaultConfiguration" { # See §3.49.14.

 "level": "warning"

 }

 },

 {

 "id": "CA2551",

 "defaultConfiguration": {

 "level": "warning",

 "enabled": false

 }

 }

]

 }

 },

 "policies": [

 { # A toolComponent object (§3.19).

 "name": "Example Corp. Security Policy",

 "semanticVersion": "7.0",

 "rules": [

 {

 "id": "CA2101",

 "defaultConfiguration" {

 "level": "error"

 }

 },

 {

 "id": "CA2551",

 "defaultConfiguration" {

 "enabled": true

 }

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 72 of 229

 }

]

}

3.19.6 guid property

A toolComponent object MAY contain a property named guid whose value is a GUID-valued string

(§3.5.3) that provides a unique, stable identifier for the component. guid SHALL NOT vary between

versions of a given component.

3.19.7 Product hierarchy properties

The name (§3.19.8) or fullName (§3.19.9), product (§3.19.10), and productSuite (§3.19.11)

properties establish a hierarchy of related software: the tool component identified by name and/or

fullName is part of the product named by product, which in turn is part of the product suite identified

by productSuite.

3.19.8 name property

A toolComponent object SHALL contain a property named name whose value is a localizable string

(§3.5.1) containing the name of the tool component.

EXAMPLE 1: "CodeScanner"

EXAMPLE 2: "CodeScanner Security Rules Plugin"

EXAMPLE 3: "CodeScanner configuration file"

3.19.9 fullName property

A toolComponent object MAY contain a property named fullName whose value is a localizable string

(§3.5.1) containing the name of the tool component along with its version and any other useful identifying
information, such as its locale.

EXAMPLE: "CodeScanner 1.1, Developer Preview (en-US)"

3.19.10 product property

A toolComponent object MAY contain a property named product whose value is a localizable string

(§3.5.1) containing the name of the product to which the tool component belongs.

EXAMPLE: "product": "Example Software Corp. Security Scanner"

3.19.11 productSuite property

A toolComponent object MAY contain a property named productSuite whose value is a localizable

string (§3.5.1) containing the name of the suite of products to which the tool component belongs.

EXAMPLE: "productSuite": "Example Software Corp. Quality Tools"

3.19.12 semanticVersion property

A toolComponent object MAY contain a property named semanticVersion whose value is a string

containing the tool component’s version in a format that conforms to the syntax and semantics specified
by Semantic Versioning [SEMVER].

EXAMPLE: "semanticVersion": "1.1.2-beta.12"

NOTE 1: Semantic versions are sortable in chronological order of release. The presence
of the semanticVersion property allows results management systems to (for example)

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 73 of 229

restrict the results they display to versions newer than a specified version, or to restrict
the results to a particular major version.

Unless the author of the converter knows that the version number of the tool from which it converts is
intended to be interpreted according to Semantic Versioning [SEMVER], the converter SHALL NOT emit
the semanticVersion property in run.tool (§3.14.6), although of course it may emit its own

semanticVersion property (the one in run.conversion.tool (§3.22.2)).

3.19.13 version property

A toolComponent object MAY contain a property named version whose value is a string containing

the tool component’s version in whatever format the component natively provides.

NOTE: Plugins are often binary files whose version can be determined; configuration files
are typically text files with no embedded version information.

3.19.14 dottedQuadFileVersion property

If the operating system on which the tool runs provides a value for the file version of the tool component's
primary executable file, and if that value logically consists of an ordered set of four non-negative integers,
then the toolComponent object MAY contain a property named dottedQuadFileVersion whose

value is a string representation of that file version in this syntax:

dottedQuadFileVersion = non negative integer, 3*(".", non negative integer);

where the non negative integers follow the logical order of the components of the file version.

If the operating system does not provide such a value, the dottedQuadFileVersion property SHALL

be absent.

EXAMPLE: On the Microsoft Windows® platform, this information is available in the
FILEVERSION member of the VERSIONINFO structure.

3.19.15 releaseDateUtc property

A toolComponent object MAY contain a property named releaseDateUtc whose value is a string in

the format specified in §3.9, specifying the UTC date (and optionally, the time) of the component’s
release.

3.19.16 downloadUri property

A toolComponent object MAY contain a property named downloadUri whose value is a localizable

string (§3.5.1) containing the absolute URI [RFC3986] from which this version of the tool component can
be downloaded.

NOTE: This property is localizable to allow different language versions of a tool to be
downloaded from their own URIs.

3.19.17 informationUri property

A toolComponent object MAY contain a property named informationUri whose value is a

localizable string (§3.5.1) containing the absolute URI [RFC3986] at which information about this version
of the tool component can be found.

NOTE: This property is localizable to allow tool information in different languages to be
found at different URIs.

3.19.18 organization property

A toolComponent object MAY contain a property named organization whose value is a localizable

string (§3.5.1) containing the name of the company or organization that produced the tool component.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 74 of 229

EXAMPLE: "organization": "Example Software Corp."

3.19.19 shortDescription property

A toolComponent object MAY contain a property named shortDescription whose value is a

localizable multiformatMessageString object (§3.12, §3.12.2) containing a brief description of the

tool component.

The shortDescription property SHOULD be a single sentence that is understandable when visible

space is limited to a single line of text.

3.19.20 fullDescription property

A toolComponent object MAY contain a property named fullDescription whose value is a

localizable multiformatMessageString object (§3.12, §3.12.2) containing a comprehensive

description of the tool component.

The beginning of fullDescription (for example, its first sentence) SHOULD provide a concise

description of the tool component, suitable for display in cases where available space is limited. Tools
that construct fullDescription in this way do not need to provide a value for shortDescription

(§3.19.19). Tools that do not construct fullDescription in this way SHOULD provide a value for

shortDescription.

NOTE: The rationale for this guidance is that in the absence of shortDescription, a

viewer with limited display space might display a truncated version of
fullDescription, for example, the first sentence (if a sentence is identifiable), the first

paragraph, or the first 100 characters. If this guidance is not followed, that truncated
description might not be understandable.

3.19.21 language property

Depending on the circumstances, a toolComponent object either SHALL or MAY contain a property

named language whose value is a string specifying the language of the localizable strings (§3.5.1)

contained in the component (except for those in the translationMetadata property (§3.19.27)), in a

subset of the format specified by the language tags standard [RFC5646]. The subset consists of strings
conforming to the syntax

language value = language code, "-", country code;

language code = ? ISO 2-character language name [ISO639-1:2002] ?;

country code = ? ISO country code [ISO3166-1:2013] ?;

If this object represents a translation (see §3.19.4), language SHALL be present; otherwise it MAY be

present.

If this property is absent, it SHALL default to "en-US".

EXAMPLE 1: The language is region-neutral English:

"language": "en"

EXAMPLE 2: The language is French as spoken in France:

"language": "fr-FR"

3.19.22 globalMessageStrings property

A toolComponent object MAY contain a property named globalMessageStrings whose value is an

object (§3.6) each of whose property values is a localizable multiformatMessageString object

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 75 of 229

(§3.12, §3.12.2). The property names correspond to id properties (§3.11.10) within message objects

(§3.11).

EXAMPLE:

"driver": { # A toolComponent object (§3.19).

 "globalMessageStrings": {

 "call": { # A multiformatMessageString object (§3.12).

 "text": "Function call",

 "markdown": "Function **call**"

 },

 "return": {

 "text": "Function return",

 "markdown": "Function **return**"

 }

 }

}

NOTE: The message strings in this property are not associated with a single rule (hence
the “global” in the property name.

3.19.23 rules property

A toolComponent object MAY contain a property named rules whose value is an array of zero or

more unique (§3.7.3) reportingDescriptor objects (§3.49) each of which provides information about

an analysis rule supported by the tool component.

Some tools use the same identifier to refer to multiple distinct (although logically related) rules. Therefore,
the id properties (§3.49.3) of the reportingDescriptor objects do not need to be unique within the

array.

EXAMPLE: In this example, two distinct but related rules have the same rule id. They are
distinguished by their message strings.

"driver": { # A toolComponent object (§3.19).

 "name": "CodeScaner",

 "rules": [

 { # A reportingDescriptor object (§3.49).

 "id": "CA1711",

 "shortDescription": {

 "text": "Certain type name suffixes should not be used."

 },

 "messageStrings": {

 "default": {

 "text": "Rename type name {0} so that it does not end in '{1}'."

 }

 }

 },

 {

 "id": "CA1711",

 "shortDescription": {

 "text": "Certain type name suffixes have preferred alternatives."

 },

 "messageStrings": {

 "default": {

 "text": "Either replace the suffix '{0}' in member name '{1}' with

 the suggested numeric alternate or provide

 a more meaningful suffix."

 }

 }

 }

]

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 76 of 229

3.19.24 notifications property

A toolComponent object MAY contain a property named notifications whose value is an array of

zero or more unique (§3.7.3) reportingDescriptor objects (§3.49) each of which provides

information about a notification provided by the tool component.

A tool might use the same identifier to refer to multiple distinct (although logically related) notifications.
Therefore, the id properties (§3.49.3) of the reportingDescriptor objects do not need to be unique

within the array.

EXAMPLE: In this example, two distinct but related notifications have the same id. They
are distinguished by their descriptions and message strings.

"driver": # A toolComponent object (§3.19).

 "notifications": [

 { # A reportingDescriptor object (§3.49).

 "id": "ERR0001",

 "level": "error",

 "shortDescription": {

 "text": "A plugin could not be loaded because it does not exist."

 },

 "messageStrings": {

 "default": "Cannot load plugin '{0}' because it was not found."

 }

 },

 {

 "id": "ERR0001",

 "level": "error",

 "shortDescription": {

 "text": "A plugin could not be loaded because it is not signed."

 },

 "messageStrings": {

 "default": "Cannot load plugin '{0}' because it is not signed."

 }

 }

]

}

3.19.25 taxa property

A toolComponent object MAY contain a property named taxa whose value is an array of zero or more

unique (§3.7.3) reportingDescriptor objects (§3.49) each of which provides information about a

taxon defined by the component.

If the toolComponent describes a standard taxonomy (for example, the Common Weakness

Enumeration [CWE™]), it SHALL NOT contain rules (§3.19.23) or notifications (§3.19.24).

NOTE: Tool components representing standard taxonomies are stored in
run.taxonomies (§3.14.8), but will typically be persisted to external property files (see

§3.15.2).

If the toolComponent describes a tool driver or plugin that defines its own custom taxonomy, it MAY

contain all of rules, notifications, and taxa.

EXAMPLE: In this example, a toolComponent object represents the Common

Weakness Enumeration.

{ # A toolComponent object.

 "name": "CWE",

 "version": "3.2",

 "guid": "11111111-1111-1111-8888-111111111111",

 "releaseDateUtc": "2019-01-03",

 "informationUri": "https://cwe.mitre.org/data/published/cwe_v3.2.pdf/",

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 77 of 229

 "downloadUri": "https://cwe.mitre.org/data/xml/cwec_v3.2.xml.zip",

 "organization": "MITRE",

 "shortDescription": {

 "text": "The MITRE Common Weakness Enumeration"

 },

 "taxa": [

 {

 "id": "327",

 "name": "BrokenOrRiskyCryptographicAlgorithm",

 "shortDescription": {

 "text": "Use of a broken or risky cryptographic algorithm."

 },

 "defaultConfiguration": {

 "level": "warning"

 }

 },

 ...

]

}

3.19.26 supportedTaxonomies property

A toolComponent object MAY contain a property named supportedTaxonomies whose value is an

array of zero or more unique (§3.7.3) toolComponentReference objects (§3.54) each of which refers

to a taxonomy (§3.19.3) that the component uses to classify results.

A toolComponent object that contains a supportedTaxonomies property SHALL declare which taxa

(if any) each of its rules falls into by providing the relationships property (§3.49.15) as appropriate on

each reportingDescriptor object (§3.49) in its rules array (§3.19.23).

NOTE: A SARIF consumer could infer the set of taxonomies that a component supports
by examining the set of relationships properties of each element of

toolComponent.rules. The supportedTaxonomies property is a convenience,

intended to enable consumers to see this information at a glance.

If a toolComponent supports a custom taxonomy, it SHOULD include a reference to itself in

supportedTaxonomies.

EXAMPLE: In this example, a toolComponent claims to support the Common

Weakness Enumeration [CWE™], and also supports a custom taxonomy.

{ # A run object (§3.14)

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "guid": "22222222-2222-1111-8888-222222222222",

 "rules": [# See §3.19.23.

 ...

],

 "taxa": [# See §3.19.25. Here, defines a custom

 ... # taxonomy.

]

 "supportedTaxonomies": [

 { # A toolComponentReference object (§3.54).

 "name": "CWE", # Declares support for CWE.

 "index": 0,

 "guid": "11111111-1111-1111-8888-111111111111"

 },

 {

 "name": "CodeScanner", # Declares support for its custom taxonomy.

 "guid": "22222222-2222-1111-8888-222222222222"

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 78 of 229

 }

 },

 "taxonomies": [

 { # A toolComponentReference object.

 "name": "CWE",

 "version": "3.2",

 "guid": "11111111-1111-1111-8888-111111111111",

 ...

 "taxa": [

 ...

]

 }

],

 ...

}

3.19.27 translationMetadata property

If a toolComponent object represents a translation (§3.19.4), it SHALL contain a property named

translationMetadata whose value is a translationMetadata object (§3.26) that contains

descriptive information about the translation itself, as opposed to describing the component whose
localizable strings (§3.5.1) it translates. Otherwise, translationMetadata SHALL be absent.

3.19.28 locations property

A toolComponent object MAY contain a property named locations whose value is an array of zero or

more unique (§3.7.3) artifactLocation objects (§3.4) each of which specifies the location of one of

the files comprising this tool component.

3.19.29 contents property

A toolComponent object SHOULD contain a property named contents whose value is an array of

zero or more unique (§3.7.3) strings each of which is one of the following values with the specified
meanings:

• "localizedData": The component includes localizable strings (§3.5.1) such as rule messages.

• "nonLocalizedData": The component includes non-localizable properties such as rule

severity levels.

If contents is absent, it SHALL default to ["localizedData", "nonLocalizedData"].

NOTE: The purpose of this property is to help protect components from misuse. Within a
SARIF file, the component types are all stored in their own properties, so there is no
danger of mistaking, for example, a translation (stored in run.translations (§3.14.9))

for a policy (stored in run.policies (§3.14.10)). But components such as translations

and policies are typically authored independently from a tool and stored separately from
its log files. The author of a translation (which contains only "localizedData") can

help prevent its misuse as a policy (which requires "nonLocalizedData") by setting

contents to ["localizedData"].

For example, a user might specify the path to a policy file on a tool’s command line. If the
specified file does not claim to contain "nonLocalizedData", the tool could conclude

that the file does not contain a policy and warn the user.

3.19.30 isComprehensive property

A toolComponent object SHOULD contain a property named isComprehensive whose value is a

Boolean that is true if the component contains complete information for the content types specified by

contents (§3.19.29) and false otherwise.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 79 of 229

If isComprehensive is absent, it SHALL default to false.

NOTE: This property is useful because tools are permitted to emit rules (§3.19.23),

notifications (§3.19.24), or taxa (§3.19.25) properties that contain only those items

relevant to the current run. For example, a tool might define hundreds of rules, but if a
scan detects violations of only two of them, then the rules property (if it is present at all,

which it does not need to be) need only contain metadata for those two rules.

So, for example, the author of a translation (§3.19.4) would want to work from a log file
whose contents array includes "localizedData" and whose isComprehensive

property is set to true. Similarly, the author of a policy (§3.19.5) would want to work from

a log file whose contents array contains "nonLocalizedData" and whose

isComprehensive property is set to true.

3.19.31 localizedDataSemanticVersion property

If a toolComponent object represents a translation (§3.19.4), it SHOULD contain a property named

localizedDataSemanticVersion whose value is a string that specifies the semantic version

[SEMVER] of the translated strings. Otherwise, localizedDataSemanticVersion MAY be present, in

which case it represents the semantic version of the localizable strings (§3.5.1) that are present in this
component.

If localizedDataSemanticVersion is absent, it SHALL default to

thisObject.semanticVersion (§3.19.12).

NOTE 1: See the description of
minimumRequiredLocalizedDataSemanticVersion (§3.19.32) for an explanation

of how these two properties interact.

NOTE 2: In a translation, localizedDataSemanticVersion will usually be the same

as semanticVersion. They will differ only if it is necessary to revise the translation

component to correct an error unrelated to the translated strings, for example, an error in
its translationMetadata (§3.19.27). In that case, semanticVersion would be

incremented but localizedDataSemanticVersion would not.

3.19.32 minimumRequiredLocalizedDataSemanticVersion property

If a toolComponent object does not represent a translation (§3.19.4), it SHOULD contain a property

named minimumRequiredLocalizedDataSemanticVersion whose value is a string that specifies

the minumum semantic version [SEMVER] of the translated strings that it requires. Otherwise,
minimumRequiredLocalizedDataSemanticVersion SHALL be absent.

If minimumRequiredLocalizedDataSemanticVersion is absent, it SHALL default to

thisObject.semanticVersion (§3.19.12).

When a SARIF consumer is seeking a translation for this object, it SHALL only accept one whose
localizedDataSemanticVersion (§3.19.31) is greater than or equal to (in the SEMVER sense) but

has the same major version component as
thisObject.minimumRequiredLocalizedDataSemanticVersion.

NOTE: minimumRequiredocalizedDataSemanticVersion can differ from

semanticVersion for two reasons. First, successive versions of a translated

component (even versions whose minor version component is incremented) might be
able to use the same set of translated strings. Second, the translation itself might be
versioned if, for example, the translation author discovers a typo or decides to clarify a
message string.

EXAMPLE: In this example, the tool is at version 3.3, but it only requires strings at
version 3.1, because tool versions 3.2 and 3.3 didn’t affect any user-facing localizable

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 80 of 229

strings. Therefore, the translation at index 0 in theRun.translations (§3.14.9) is

acceptable.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "semanticVersion": "3.3", # See §3.19.12.

 "minimumRequiredLocalizedDataSemanticVersion": "3.1",

 ...

 }

 },

 "translations": [

 { # A toolComponent object.

 "language": "fr-FR",

 "localizedDataSemanticVersion": "3.1.2",

 ...

 }

],

 ...

}

3.19.33 associatedComponent property

If this toolComponent object represents a plugin (see §3.18.1), a taxonomy (§3.19.3), a translation

(§3.19.4), or a policy (§3.19.5), it MAY contain a property named associatedComponent whose value

is a toolComponentReference object (§3.54) which identifies the component (either

theTool.driver (§3.18.2) or an element of theTool.extensions (§3.18.3)) to which this plugin,

translation, or policy applies. If associatedComponent is absent, it SHALL default to a reference to

theTool.driver.

NOTE: The scenario for a taxonomy component to have an associatedComponent

property is when a party other than the tool vendor defines a custom taxonomy to
categorize the rules defined by a specific tool. In this case, associatedComponent

would specify the tool’s driver. A custom taxonomy defined by the tool vendor would be
defined in in the taxa property (§3.19.25) of the driver itself, so

associatedComponent would not be necessary.

The associated toolComponent object MAY itself contain an associatedComponent property; for

example, a translation might be associated with a plugin which in turn is associated with the driver (see
§3.18.1).

3.20 invocation object

3.20.1 General

An invocation object describes the invocation of the analysis tool that was run.

3.20.2 commandLine property

An invocation object MAY contain a property named commandLine whose value is a string containing

the completely specified command line used to invoke the tool, starting with the name of the tool's
executable or script file, optionally qualified by the relative or absolute path to the file.

NOTE 1: The information in the commandLine property helps to precisely repeat a run of

an analysis tool, and to verify that the results reported in the log file were generated by an
appropriate invocation of the tool.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 81 of 229

The commandLine property is redactable (§3.5.2) because it might contain information which it is not

appropriate to disclose, such as passwords, tokens, database connection strings, or in some
circumstances even the fully qualified path to the tool's executable or script file.

NOTE 2: Redacting sensitive information from commandLine makes it more difficult to

precisely reproduce an analysis run. The value of commandLine would have to be

combined with information from another source to allow the run to be repeated.

EXAMPLE 1: Suppose a tool is invoked with the command line

C:\Users\mary\Tools\DbScanner.exe /ConnectionString

 "Server=Corp;Db=Accounting;User=Admin;Password=S3cr#t"

 /input *.sql

Then commandLine might contain the redacted string

[REDACTED]\DbScanner.exe /connectionString=[REDACTED] /input=*.sql

The commandLine property might describe a command that would be harmful if it were executed. For

this reason, a SARIF consumer that receives a SARIF log file from an untrusted source SHOULD NOT
execute the command line without first examining it carefully. In particular, an automated SARIF
consumer SHALL NOT execute a command line in a SARIF log file from an untrusted source.

EXAMPLE 2: An example of a harmful command line:

 { # An invocation object

 "commandLine": "rm -rf /"

 }

3.20.3 arguments property

An invocation object MAY contain a property named arguments whose value is either null or an

array of zero or more strings, containing in order the command line arguments passed to the tool from the
operating system.

If arguments is absent, it SHALL default to null.

An empty array SHALL mean that the tool was invoked with no command line arguments. null SHALL

mean that the command line arguments, if any, are not known.

EXAMPLE: If the tool is implemented as a C# or Java program, arguments would

contain the contents of the args array passed to the entry point method.

NOTE: Although the commandLine property (§3.20.2) contains the same information,

parsing it is error prone even if one understands the command shell’s quoting and
escaping conventions. SARIF consumers might find the pre-parsed arguments property

easier to use.

3.20.4 responseFiles property

An invocation object MAY contain a property named responseFiles whose value is either null or

an array of zero or more unique (§3.7.3) artifactLocation objects (§3.4) each of which represents a

response file specified on the tool's command line.

If responseFiles is absent, it SHALL default to null.

An empty array SHALL mean that the tool was invoked with no command line arguments that specified
response files. null SHALL mean that it is not known whether any command line arguments specified a

response file.

A SARIF producer MAY embed the contents of a response file in the SARIF log file by mentioning the
response file in theRun.artifacts (§3.14.15) and providing a value for artifact.contents

(§3.24.8).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 82 of 229

EXAMPLE:

{ # An invocation object.

 "commandLine": "/quiet @analyzer.rsp @strict.rsp" @options.rsp,

 "responseFiles": [

 { # An artifactLocation object (§3.4).

 "uri": "analyzer.rsp",

 "uriBaseId": "RESPONSEFILEDIR"

 },

 {

 "uri": "strict.rsp",

 "uriBaseId": "RESPONSEFILEDIR"

 },

 {

 "uri": "options.rsp",

 "uriBaseId": "RESPONSEFILEDIR"

 }

 }

 ...

}

3.20.5 ruleConfigurationOverrides property

An invocation object MAY contain a property named ruleConfigurationOverrides whose value

is an array of zero or more unique (§3.7.3) configurationOverride objects (§3.51) each of which

overrides the defaultConfiguration property (§3.49.14) of a reportingDescriptor object

(§3.48.7) that describes a rule (that is, a reportingDescriptor object that is an array element of the

rules property (§3.19.23) of some toolComponent object (§3.19)).

3.20.6 notificationConfigurationOverrides property

An invocation object MAY contain a property named notificationConfigurationOverrides

whose value is an array of zero or more unique (§3.7.3) configurationOverride objects (§3.51) each

of which overrides the defaultConfiguration property (§3.49.14) of a reportingDescriptor

object (§3.49) that describes a notification (that is, a reportingDescriptor object that is an array

element of the notifications property (§3.19.24) of some toolComponent object (§3.19)).

3.20.7 startTimeUtc property

An invocation object MAY contain a property named startTimeUtc whose value is a string in the

format specified in §3.9, specifying the UTC date and time at which the invocation started.

3.20.8 endTimeUtc property

An invocation object MAY contain a property named endTimeUtc whose value is a string in the

format specified in §3.9, specifying the UTC date and time at which the invocation ended.

3.20.9 exitCode property

If the SARIF producer process did not exit due to a signal, an invocation object SHOULD contain a

property named exitCode whose value is an integer specifying the process exit code.

If the SARIF producer process exited due to a signal, the exitCode property SHALL be absent.

For examples, see §3.20.10.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 83 of 229

3.20.10 exitCodeDescription property

If the SARIF producer process did not exit due to a signal, an invocation object MAY contain a

property named exitCodeDescription whose value is a string describing the reason for the process

exit.

EXAMPLE 1:

{ # An invocation object

 "exitCode": 0,

 "exitCodeDescription": "Normal successful completion"

}

EXAMPLE 2:

{ # An invocation object

 "exitCode": 2,

 "exitCodeDescription": "File not found"

}

3.20.11 exitSignalName property

If the SARIF producer process exited due to a signal, an invocation object SHOULD contain a

property named exitSignalName whose value is a string containing the name of the signal that caused

the process to exit.

If the SARIF producer process did not exit due to a signal, the exitSignalName property SHALL be

absent.

For an example, see §3.20.12.

3.20.12 exitSignalNumber property

If the SARIF producer process exited due to a signal, an invocation object MAY contain a property

named exitSignalNumber whose value is an integer specifying the numeric value of the signal that

caused the process to exit.

If the SARIF producer process did not exit due to a signal, the exitSignalNumber property SHALL be

absent.

EXAMPLE:

{ # An invocation object

 "exitSignalNumber": 3,

 "exitSignalName": "SIGQUIT"

}

3.20.13 processStartFailureMessage property

If the analysis tool process failed to start, an invocation object MAY contain a property named

processStartFailureMessage whose value is a string containing the operating system’s message

describing the failure.

NOTE: In this case, the SARIF file would not be produced by the analysis tool (since it
failed to start), but rather by some other component of the user’s engineering system
which is responsible for monitoring the operation of the analysis tool.

If the analysis tool process started successfully (regardless of whether or how it subsequently failed), the
processStartFailureMessage property SHALL be absent.

EXAMPLE:

{ # An invocation object

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 84 of 229

 "processStartFailureMessage": "WebScan.exe is not recognized as a command."

}

3.20.14 executionSuccessful property

An invocation object SHALL contain a property named executionSuccessful whose value is a

Boolean that is true if the engineering system that started the process knows that the analysis tool

succeeded, and false if the engineering system knows that the tool failed.

NOTE: This property is needed because not all programs exit with an exit code of 0 on
success and non-0 on failure.

EXAMPLE:

{

 "exitCode": 1,

 "exitCodeDescription": "Scan successful; warnings detected.",

 "executionSuccessful": true

}

3.20.15 machine property

An invocation object MAY contain a property named machine whose value is a redactable (§3.5.2)

string containing the name of the machine on which the invocation occurred.

3.20.16 account property

An invocation object MAY contain a property named account whose value is a redactable (§3.5.2)

string containing the name of the account under which the invocation occurred.

3.20.17 processId property

An invocation object MAY contain a property named processId whose value is an integer containing

the id of the process in which the invocation occurred.

3.20.18 executableLocation property

An invocation object MAY contain a property named executableLocation whose value is an

artifactLocation object (§3.4) specifying the location of the primary executable file for the program

or script that was invoked.

NOTE 1: This property is defined in the invocation object rather than in the

toolComponent object (§3.19) because the identical tool might be invoked from

different paths on different machines.

NOTE 2: This property might duplicate information in the commandLine property

(§3.20.2). It is necessary because the command line might not explicitly specify the path
to the tool (for example, if the tool directory is on the execution path), and this information
is important for troubleshooting.

NOTE 3: Absolute path names can reveal information that might be sensitive.

3.20.19 workingDirectory property

An invocation object MAY contain a property named workingDirectory whose value is an

artifactLocation object (§3.4) specifying the fully qualified path name of the process’s working

directory (a directory that the operating system associates with the process, with respect to which the
operating system interprets relative file paths).

NOTE: Absolute path names can reveal information that might be sensitive.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 85 of 229

3.20.20 environmentVariables property

An invocation object MAY contain a property named environmentVariables whose value is an

object. The property names in this object SHALL contain the names of all the environment variables in
the tool's execution environment. The value of each property SHALL be a string containing the value of
the specified environment variable. If the value of the environment variable is an empty string, the
corresponding property value SHALL be an empty string.

NOTE 1: Environment variables might be useful to include in a log file because they
might affect the tool’s analysis output, for example, by specifying the location of a
directory containing plugins (see §3.18.1). However, environment variable names and
values are likely to reveal highly sensitive information. For example, on a machine
running Microsoft Windows®, environment variables reveal the directories on the
execution path, user account name, machine name, logon domain controller, etc.

NOTE 2: The result of setting an environment variable to an empty string is operating
system dependent. On Microsoft Windows®, it removes the variable from the
environment. In UNIX®, an environment variable can have an empty value.

Both the property names and their values are redactable (§3.5.2). A distinct redaction token (§3.14.28)
SHALL be used for each redacted property name.

NOTE 3: This is necessary to prevent the creation of an object with identical property
names, which is invalid in the JSON serialization.

3.20.21 toolExecutionNotifications property

An invocation object MAY contain a property named toolExecutionNotifications whose value

is an array of zero or more notification objects (§3.58). Each element of the array represents a

runtime condition detected by the invoked process, either by the tool’s driver or by one of its extensions.
The presence within this array of any notification object whose level property (§3.58.6) is "error"

SHALL mean that the run failed. A SARIF consumer SHALL NOT assume that a failed run contains a
complete set of analysis results.

NOTE: This is important in compliance scenarios, where, for example, a corporate policy
might require that a project’s entire code base be analyzed with a specified set of rules.

The information in toolExecutionNotifications is primarily intended for the developers of the

analysis tool, to aid them in diagnosing bugs in the tool. This contrasts with the information in results,

which is intended for the developers of the code being analyzed. However, viewers MAY still present tool
notifications to users, so users are aware of any tool problems. At a minimum, viewers SHOULD make
users aware of tool notifications whose level property is "error".

NOTE: Depending on the nature of the error, a tool that encounters a runtime error might
or might not be able to continue running.

If the error occurs in the course of evaluating a rule, the tool might report the error in
toolExecutionNotifications, disable the rule, and continue to execute the

remaining rules.

If the error occurs outside of the evaluation of a rule, the tool might report the error in
toolExecutionNotifications and then halt. If the tool exits abnormally, it might not

have the opportunity to report the error. But if the tool is running under the control of an
orchestration process that can detect the error, that process might add a notification for
the error to the log file, or even synthesize a log file to hold the error, if the tool did not
have the opportunity to create one.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 86 of 229

3.20.22 toolConfigurationNotifications property

An invocation object MAY contain a property named toolConfigurationNotifications whose

value is an array of zero or more notification objects (§3.58). Each element of the array represents a

condition relevant to the configuration of the tool's driver or one of its extensions. The presence within this
array of any notification object whose level property (§3.58.6) is "error" SHALL mean that the

run failed.

The information in toolConfigurationNotifications is primarily intended for the engineers who

configure the analysis tool, to aid them in diagnosing errors in the configuration. This contrasts with the
information in results, which is intended for the developers of the code being analyzed. However,

viewers MAY still present configuration notifications to users, so users are aware of any configuration
problems. At a minimum, viewers SHOULD make users aware of configuration notifications whose level

property is "error".

NOTE: Many tools can be parameterized with information about which rules to run, and
how those rules should be configured. In some cases, if the configuration information is
invalid, the tool can ignore the invalid information and continue to run.

EXAMPLE 1: A tool is invoked with a configuration file which specifies that the tool should
disable rule ABC0001, but there is no rule whose id is ABC0001. The tool reports the

problem in toolConfigurationNotifications. The tool might continue to run,

reporting results for the rules that are correctly configured.

"toolConfigurationNotifications": [

 { # A notification object (§3.58).

 "descriptor": {

 "id": "UnknownRule"

 },

 "associatedRule": {

 "ruleId": "ABC0001"

 },

 "level": "warning",

 "message": {

 "text": "Could not disable rule \"ABC0001\"

 because there is no rule with that id."

 }

]

EXAMPLE 2: A tool is invoked with an unknown command-line argument. The tool
reports the problem in toolConfigurationNotifications. The tool might report the

problem as a warning and continue to run, or it might report the problem as an error and
terminate.

"toolConfigurationNotifications": [

 { # A notification object (§3.58).

 "descriptor": {

 "id": "UnknownCommandLineArgument"

 },

 "level": "error",

 "message": {

 "text": "Command line argument \"/X\" is unknown."

 }

 }

]

EXAMPLE 3: A tool is invoked with a command-line argument that specifies the name of
a directory containing files to analyze, but the user who invoked the tool does not have
read access to that directory. The tool reports the problem as an error in
toolConfigurationNotifications and then terminates.

"toolConfigurationNotifications": [

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 87 of 229

 { # A notification object (§3.58).

 "descriptor": {

 "id": "AccessDenied"

 },

 "level": "error",

 "message": {

 "text": "Cannot read from directory \"C:\\code\"."

 }

 }

]

3.20.23 stdin, stdout, stderr, and stdoutStderr properties

An invocation object MAY contain any or all of the properties stdin, stdout, stderr, and

stdoutStderr, whose values are artifactLocation objects (§3.4) referring to files that contain the

input to and output from the SARIF producer process. stdin, stdout, and stderr refer, respectively,

to files containing the contents of the standard input, standard output, and standard error streams.
stdoutStderr refers to a file containing the interleaved contents of the standard output and standard

error streams. This is useful when the output of those two streams was written to the same file by means
of command shell redirection syntax such as "> output.txt 2>&1".

A SARIF producer MAY embed the stream contents in the log file by mentioning the corresponding file in
theRun.artifacts (§3.14.15) and providing a value for artifact.contents (§3.24.8).

3.21 attachment object

3.21.1 General

An attachment object describes an artifact relevant to the detection of a result (see §3.27.26).

A SARIF producer MAY embed the contents of an attachment in the log file by mentioning the attachment
in theRun.artifacts (§3.14.15) and providing a value for artifact.contents (§3.24.8).

EXAMPLE: In this example, image001.png is a screen shot of the program being

analyzed at the point where the result was detected. Note that this example is more
appropriate to a dynamic analysis tool than to a static analysis tool.

{ # A result object (§3.27).

 ...

 "attachments": [# See §3.27.26.

 { # An attachment object.

 "description": { # See §3.21.2.

 "text": "Screen shot"

 },

 "location": { # See §3.21.3.

 "uri": "file:///C:/ScanOutput/image001.png"

 }

 }

]

}

3.21.2 description property

An attachment object SHOULD contain a property named description whose value is a message

object (§3.11) describing the role played by the attachment.

3.21.3 location property

An attachment object SHALL contain a property named location whose value is an

artifactLocation object (§3.4) that specifies the location of the attachment.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 88 of 229

3.21.4 regions property

An attachment object MAY contain a property named regions whose value is an array of zero or

more unique (§3.7.3) region objects (§3.30) each of which SHALL specify a region of interest within the

attachment, and SHOULD contain a message property (§3.30.14) so a user can understand its

relevance.

3.21.5 rectangles property

An attachment object MAY contain a property named rectangles whose value is an array of zero or

more unique (§3.7.3) rectangle objects (§3.31). If the attachment is an image (for example .png or

.svg), each rectangle object SHALL specify an area of interest within the image, and SHOULD

contain a message property (§3.31.3) so a user can understand its relevance.

If the attachment is not an image, and rectangles is present, its value SHALL be an empty array.

3.22 conversion object

3.22.1 General

A conversion object describes how a converter transformed the output of an analysis tool from the

analysis tool’s native output format into the SARIF format.

EXAMPLE: In this example, a converter has converted an AndroidStudio output file into a
SARIF log file:

{

 ...

 "runs": [

 {

 "tool": {

 "driver": {

 "name": "AndroidStudio"

 }

 },

 "conversion": {

 "tool": { # see §3.22.2

 "driver": {

 "name": "SARIF SDK Multitool"

 }

 },

 # see §3.22.3

 "invocation":

 "Sarif.Multitool.exe convert -t AndroidStudio northwind.log"

 "analysisToolLogFileLocation": { # see §3.22.4

 "uri": "northwind.log",

 "uriBaseId": "LOG_DIR"

 }

 },

 "results": [

 ...

]

 }

]

}

3.22.2 tool property

A conversion object SHALL contain a property named tool whose value is a tool object (§3.18) that

describes the converter.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 89 of 229

3.22.3 invocation property

A conversion object MAY contain a property named invocation whose value is an invocation

object (§3.20) that describes the invocation of the converter.

3.22.4 analysisToolLogFiles property

Some analysis tools produce one or more output files that describe the analysis run as a whole; we refer
to these as “per-run” files. Some tools produce one or more output files for each result; we refer to these
as “per-result” files. Some tools produce both per-run and per-result files.

A conversion object MAY contain a property named analysisToolLogFiles whose value is an

array of zero or more unique (§3.7.3) artifactLocation objects (§3.4) that specify the locations of the

per-run files.

If the analysis tool did not produce any per-run files, and analysisToolLogFiles is present, its value

SHALL be an empty array.

Per-result files are handled by the resultProvenance.conversionSources property (§3.48.7).

3.23 versionControlDetails object

3.23.1 General

A versionControlDetails object specifies the information necessary to retrieve from a version

control system (VCS) the correct revision of the files that were scanned during the run.

For an example, see §3.14.13.

3.23.2 Constraints

A versionControlDetails object SHOULD contain sufficient information to uniquely and permanently

identify the revision of the files that were scanned.

NOTE: The required set of properties depends on the VCS and on the engineering
system within which it is used. Consider Git as an example. The revisionId property

(containing a commit id) would suffice. The branch property (§3.23.5) might not suffice

because a Git branch is a pointer to the latest commit along a line of development;
however, branch together with asOfTimeUtc (§3.23.7) might suffice (although that is

not an idiomatic use of Git). Similarly, revisionTag (§3.23.6) might not suffice because

a Git tag can be removed, but if the engineering system guaranteed that certain tags
(such as those specifying public releases) were stable, then revisionTag might suffice.

3.23.3 repositoryUri property

A versionControlDetails object SHALL contain a property named repositoryUri whose value is

a string containing an absolute URI [RFC3986] that specifies the location of the repository containing the
scanned files.

3.23.4 revisionId property

A versionControlDetails object SHOULD contain a property named revisionId whose value is a

redactable (§3.5.2) string that uniquely and permanently identifies the appropriate revision of the scanned
files.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 90 of 229

3.23.5 branch property

A versionControlDetails object MAY contain a property named branch whose value is a

redactable (§3.5.2) string containing the name of a branch containing the correct revision of the scanned
files.

3.23.6 revisionTag property

A versionControlDetails object MAY contain a property named revisionTag whose value is a

redactable (§3.5.2) string containing a tag that has been applied to the revision in the VCS.

NOTE 1: This document refers to an identifier for a revision in a VCS as a “tag”. Different
VCSs use different terms; for example, Visual Studio Team Services Version Control
calls it a “label”.

NOTE 2: Although VCSs generally allow a revision to have more than one tag, the
revisionTag property is not an array. The purpose of revisionTag is to aid in

identifying a revision so that a scan can be reproduced, not to exhaustively describe the
revision.

3.23.7 asOfTimeUtc property

A versionControlDetails object MAY contain a property named asOfTimeUtc whose value is a

string in the format specified in §3.9, specifying a UTC date and time that can be used to synchronize an
enlistment to the state of the repository as of that time.

NOTE: In some VCSs, the “synchronize by date” feature requires the time to be
expressed in the server’s time zone. In such a case, the SARIF producer would need to
know the server’s time zone to correctly populate asOfTimeUtc.

3.23.8 mappedTo property

A versionControlDetails object MAY contain a property named mappedTo whose value is an

artifactLocation object (§3.4) that specifies the location in the local file system to which the root of

the repository was mapped at the time of the analysis.

This property makes it possible to map any artifactLocation to the repository, if any, to which the file

belongs. The mapping algorithm SHALL be as follows, or any algorithm with the same result (a clarifying
example follows):

1. Resolve the artifactLocation as far as possible using the procedure specified in §3.14.14.

Denote the resolved artifactLocation by a.

2. For every versionControlDetails object vcd in theRun.versionControlProvenance

(§3.14.13), resolve the artifactLocation object specified by vcd.mappedTo, again using

the procedure specified in §3.14.14. Denote each such resolved artifactLocation object by

v.

3. Let S be the set of all versionControlDetails objects vcd for which v.uriBaseId equals

a.uriBaseId and v.uri is a prefix of a.uri.

4. If S is the empty set, then the file specified by artifactLocation does not belong to any

repository.
5. Otherwise, the file specified by artifactLocation belongs to the repository specified by the

member of S with the longest v.uri.

EXAMPLE: This example illustrates the mapping algorithm. Consider this SARIF file:

{

 "originalUriBaseIds": {

 "HOME": {

 "uri": "file:///home/user/"

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 91 of 229

 "PACKAGE_ROOT": {

 "uri": "package/",

 "uriBaseId": "HOME"

 },

 },

 "versionControlProvenance": [

 {

 "repositoryUri": "https://github.com/example-corp/package",

 "revisionId": "b87c4e9"

 "mappedTo": {

 "uriBaseId": "PACKAGE_ROOT"

 },

 },

 {

 "repositoryUri": "https://github.com/example-corp/plugin1",

 "revisionId": "cafdac7"

 "mappedTo": {

 "uriBaseId": "PACKAGE_ROOT"

 "uri": "plugin1",

 },

 {

 "repositoryUri": "https://github.com/example-corp/plugin2",

 "revisionId": "d0dc2c0"

 "mappedTo": {

 "uriBaseId": "PACKAGE_ROOT"

 "uri": "plugin2",

 }

],

 "results": [

 {

 "ruleId": "CA1000",

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "plugin1/x.c",

 "uriBaseId": "PACKAGE_ROOT"

 }

 }

 }

]

 }

]

}

The object is to determine to which repository, if any, the file plugin1/x.c specified by

the result location belongs. The algorithm proceeds as follows, using a simplified notation
(uriBaseId, uri) to denote an artifactLocation:

1. Use the information in originalUriBaseIds and the procedure specified in

§3.14.14 to calculate the “resolved artifact location” a:

(PACKAGE_ROOT, plugin1/x.c) → (HOME, package/plugin1/x.c) →

(null, file:///home/user/package/plugin1/x.c).

2. In the same way, calculate the resolved artifact location v from the mappedTo

property of each element vcd of the versionControlProvenance array:

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 92 of 229

o (PACKAGE_ROOT, null) → (HOME, package) → (null,
file:///home/user/package)

o (PACKAGE_ROOT, plugin1) → (HOME, package/plugin1) →
(null, file:///home/user/package/plugin1)

o (PACKAGE_ROOT, plugin2) → (HOME, package/plugin2) → (null,
file:///home/user/package/plugin2)

3. The set of vcd for which v.uriBaseId equals a.uriBaseId (which is null) and

for which v.uri is a prefix of a.uri (which is

file:///home/user/package/plugin1/x.c) contains the objects at indices 0

and 1. It does not contain the object at index 2 because
file:///home/user/package/plugin2 is not a prefix of

file:///home/user/package/plugin1/x.c.

4. The set is not empty (it contains indices 0 and 1).

5. The member of the set for with the longest v.uri is the object at index 1, because

file:///home/user/package/plugin1 is longer than

file:///home/user/package.

Therefore, the specified file belongs to the repository specified by the versionControlDetails object

at index 1, namely https://github.com/example-corp/plugin1.

3.24 artifact object

3.24.1 General

An artifact object represents a single artifact.

3.24.2 location property

Depending on the circumstances, an artifact object either SHALL, MAY, or SHALL NOT contain a

property named location whose value is an artifactLocation object (§3.4).

If the artifact object represents a top-level artifact, then location SHALL be present.

If the artifact object represents a nested artifact whose location relative to the root of its parent can be

expressed only by means of a path, then location SHALL be present, and the value of its uri property

SHALL be a relative reference [RFC3986] beginning with "/" expressing that path.

If the artifact object represents a nested artifact whose location within its parent can be expressed

only by a byte offset from the start of the parent, and not by means of a path, then location SHALL

NOT be present.

If the artifact object represents a nested artifact whose location within its parent can be expressed

either by means of a path or by means of a byte offset from the start of the parent, then location MAY

be present; if it is absent, then offset (§3.24.4) SHALL be present. If location is present, the value of

its uri property SHALL be a relative reference expressing the path of the nested artifact within the

parent.

For an example, see §3.24.3.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 93 of 229

3.24.3 parentIndex property

If this artifact object represents a nested artifact, then it SHALL contain a property named

parentIndex whose value is the array index (§3.7.4) of the parent artifact's artifact object within

theRun.artifacts (§3.14.15).

If this artifact object represents a top-level artifact, then parentIndex SHALL be absent.

NOTE: parentIndex makes it possible to navigate from the artifact object

representing a nested artifact to the artifact objects representing each of its parent

artifacts in turn, up to the top-level artifact.

EXAMPLE: This example demonstrates two levels of artifact nesting. The top-level
artifact is a ZIP archive represented by the artifact object at index 0 in the

artifacts array. The archive contains a word processing document at the specified

absolute path from its root; the document is represented by the artifact object at index

1. Finally, the document contains an embedded media object of the specified length at
the specified offset from its beginning; the media object is represented by the artifact

object at index 2. The media object’s parentIndex property refers to its parent

document; the document’s parentIndex property refers to its parent ZIP archive, and

the ZIP archive does not have a parentIndex property.

"artifacts": [

 {

 "location": {

 "uri": "file:///C:/Code/app.zip"

 },

 "mimeType": "application/zip",

 },

 {

 "location": {

 "uri": "/docs/intro.docx",

 },

 "mimeType":

 "application/vnd.openxmlformats-

officedocument.wordprocessingml.document",

 "parentIndex": 0

 },

 {

 "offset": 17522,

 "length": 4050,

 "mimeType": "application/x-contoso-animation",

 "parentIndex": 1

 }

}

3.24.4 offset property

Depending on the circumstances, an artifact object either SHALL, MAY, or SHALL NOT contain a

property named offset whose value is a non-negative integer.

If the artifact object represents a top-level artifact, then offset SHALL NOT be present.

If the artifact object represents a nested artifact whose location relative to its parent can be expressed

only by means of a byte offset from the start of its parent artifact, then offset SHALL be present, and its

value SHALL be that byte offset.

If the artifact object represents a nested artifact whose location within its parent can only be

expressed by means of a path, and not by means of a byte offset from the start of the parent, then
offset SHALL NOT be present.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 94 of 229

If the artifact object represents a nested artifact whose location within its parent can be expressed

either by means of a path or by means of a byte offset from the start of the parent, then offset MAY be

present; if it is absent, then location (§3.24.2) SHALL be present. If offset is present, its value

SHALL be that byte offset.

3.24.5 length property

An artifact object MAY contain a property named length whose value is a non-negative integer

specifying the length of the artifact in bytes.

If length is absent, it SHALL default to -1, which indicates that the value is unknown (not set).

3.24.6 roles property

An artifact object MAY contain a property named roles whose value is an array of zero or more

unique (§3.7.3) strings each of which specifies a role that this artifact played in the analysis.

Each array element SHALL have one of the following values, with the specified meanings:

• "analysisTarget": The analysis tool was instructed to scan this artifact.

• "attachment": The artifact is an attachment mentioned in result.attachments (§3.27.26).

• "conversionSource": The artifact is an output from an analysis tool in a non-SARIF format

that was converted to SARIF.

• "debugOutputFile": The artifact contains debug output from the tool.

• "directory": The artifact is a directory (a container for other files and directories) rather than a

file.

NOTE 1: URIs do not represent “directories” in the file system sense. Even if the URI
https://www.example.com/dir/file addresses a resource, the URI

https://www.example.com/dir might also address a resource. Nonetheless, if the

analysis tool knows that https://www.example.com/dir is not itself a resource, but

only a prefix for other URIs that are resources, it is appropriate for the tool to mark
https://www.example.com/dir with the "directory" role.

• "driver": The file belongs to the analysis tool’s driver (§3.18.2).

• "extension": The file belongs to one of the analysis tool’s extensions (§3.18.3).

• "externalPropertyFile": The artifact is an external property file (§4).

• "memoryContents": The artifact contains the contents of a portion of memory.

• "policy": The file belongs to a policy (§3.19.5).

• "referencedOnCommandLine": The artifact was referenced on the command line.

• "repositoryRoot": The artifact is the root directory of a source control repository containing

files that were analyzed

NOTE 2: A single run might analyze files from multiple repositories.

• "responseFile": The artifact contains command line arguments to a program, as specified in

invocation.responseFiles (§3.20.4).

• "resultFile": A result was detected in this artifact (which the analysis tool was not explicitly

instructed to scan).

NOTE 3: For example, a scanner might be configured to analyze a C source file and find
a result in a header file that it includes. The header file may be marked with the
"resultFile" role. The C file should be marked with the "analysisTarget" role,

however, as it was explicitly configured as a scan target.

• "standardStream": The artifact contains the contents of one of the standard input or output

streams, as specified in invocation.stdin, invocation.stdout, invocation.stderr,

or invocation.stdoutStderr (§3.20.23).

• "taxonomy": The file belongs to a taxonomy (§3.19.3).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 95 of 229

• "toolSpecifiedConfiguration": The artifact is a configuration file provided by the tool.

• "tracedFile": The analysis tool traced through this artifact while executing or simulating the

execution of the code under test.

• "translation": The file belongs to a translation (§3.19.4).

• "userSpecifiedConfiguration": The artifact is a configuration file provided by the user.

The following role values denote artifacts that have changed since some previous time which we refer
to as the “baseline time.”

A SARIF producer MAY determine the baseline time in any way. (For example, if
theRun.baselineGuid (§3.14.5) is present, the tool might use its start time as the baseline time.

Alternatively, the tool might use version control information, such as the time of some commit before
the one being analyzed.)

• "added": The artifact was added after the baseline time.

• "deleted": The artifact was deleted after the baseline time.

• "modified": The artifact was modified after the baseline time.

• "renamed": The artifact was renamed after the baseline time. In this case, the artifact object

specifies the new name.

• "uncontrolled": The artifact is not under version control.

• "unmodified": The artifact has not been modified since the baseline time.

NOTE 3: The information conveyed by these values could be extracted from a VCS.
These properties exist so SARIF consumers can have this information without needing
access to the VCS.

3.24.7 mimeType property

An artifact object MAY contain a property named mimeType whose value is a string that specifies the

artifact’s MIME type [RFC2045]. For information about the use of mimeType by SARIF viewers, see
Appendix C.

3.24.8 contents property

An artifact object MAY contain a property named contents whose value is an artifactContent

object (§3.3) representing the entire contents of the artifact.

3.24.9 encoding property

If an artifact object represents a text artifact, it MAY contain a property named encoding whose

value is a case-sensitive string that specifies the artifact’s text encoding. The string SHALL be one of the
character set names defined by IANA [IANA-ENC].

If the artifact object represents a text artifact and this property is absent, it SHALL default to the value

of theRun.defaultEncoding (§3.14.24), if that property is present; otherwise, the artifact’s encoding

SHALL be taken to be unknown.

If the artifact object represents a binary artifact, encoding SHALL be absent.

EXAMPLE: In this example, the encoding of output.txt is UTF-16BE (obtained from the
default), but the encoding of data.txt is UTF-16LE:

{ # A run object (§3.14)

 "defaultEncoding": "UTF-16BE", # See §3.14.24.

 "artifacts": [# See §3.14.15.

 {

 "location": {

 "uri": "output.txt"

 }

 # encoding property omitted

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 96 of 229

 },

 {

 "location": {

 "uri": "data.txt"

 },

 "encoding": "UTF-16LE"

 }

]

}

3.24.10 sourceLanguage property

3.24.10.1 General

If an artifact object represents a text artifact that contains source code, it MAY contain a property

named sourceLanguage whose value is a hierarchical string (§3.5.4) that specifies the programming

language in which the source code is written. If the artifact object does not represent a text artifact

containing source code, sourceLanguage SHALL be absent.

For the remainder of this section, we assume that the artifact object represents a text artifact that

contains source code.

NOTE 1: This property is intended to help SARIF viewers to render code snippets
(§3.30.13) with appropriate syntax coloring.

If the artifact contains source code in a mix of languages, and if it is possible to identify one of those
languages as the “primary” language of the artifact, then sourceLanguage SHALL specify that

language.

NOTE 2: Typically, this is the language implied by the file name extension.

EXAMPLE: In an HTML file that contains embedded JavaScript™, sourceLanguage

would be "html".

If it is not possible to identify a primary language, sourceLanguage MAY specify any language used in

the artifact, or it MAY be absent.

NOTE 3: In either case, it is possible to specify a source language for any region by using
region.sourceLanguage (see §3.30.15).

If sourceLanguage is absent, it SHALL default to the value of theRun.defaultSourceLanguage

(§3.14.25). If both artifact.sourceLanguage and theRun.defaultSourceLanguage are absent,

the artifact’s source language SHALL be taken to be unknown. In that case, a SARIF viewer MAY use
any method or heuristic to determine the artifact’s source language, for example, by examining its file
name extension or MIME type, or by prompting the user.

3.24.10.2 Source language identifier conventions and practices

To maximize interoperability, SARIF producers and consumers SHOULD conform to the following
conventions and practices with respect to the value of this property:

• Producers:
o Use only lower-case letters, and numbers (for example, "c" rather than "C").

o Spell out symbols (for example, "csharp" rather than "c#").

o To denote a language variant, use the hierarchical string mechanism (for example,
"csharp/7").

o Do not abbreviate (for example, "visualbasic"™ rather than "vb").

• Consumers
o Accept source language identifiers that conform to the above producer conventions.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 97 of 229

o In addition, accept a variety of common industry forms, for example, {"cplusplus",

"c++", "cpp"}, or {"javascript", "js"}.

o Compare source language identifiers case-insensitively.

Appendix I, “Sample sourceLanguage values,” provides sample values for common programming
languages.

3.24.11 hashes property

An artifact object MAY contain a property named hashes whose value is a non-empty object (§3.6)

each of whose property names specifies the name of a hash function, and each of whose property values
represents the value produced by that hash function.

EXAMPLE: In this example, each of the hash functions SHA-256 and SHA-512 were
used to compute hash values for the file.

{ # A file object.

 "hashes": {

 "sha-256": "...",

 "sha-512": "..."

 }

}

To maximize interoperability, the property names SHOULD appear in the IANA registry of hash function
textual names [IANA-HASH]. SARIF consumers that need to verify hash values SHOULD be able to
compute any hash function whose name appears in the IANA registry.

The object SHOULD contain a property named "sha-256". SARIF consumers that need to verify hash

values SHALL be able to compute a SHA-256 hash.

The object MAY contain properties whose names do not appear in the IANA registry, but at the expense
of interoperability. A SARIF consumer MAY implement any hash function, but it does not have to
implement any hash function that does not appear in the IANA registry.

If the hash function is one whose name appears in the IANA registry, the property name SHALL equal
the name as it appears in the registry (for example, "sha-256" rather than "sha256"); otherwise the

property name MAY be any suitable name, but it SHALL NOT equal any name defined in the IANA
registry.

SARIF consumers SHALL treat the property name as case insensitive (even when comparing to hash
function names in the IANA registry).

Each property value SHALL be a string representation of the hash digest of the artifact, computed by the
hash function specified by the property name. The string SHALL conform to the format produced by the
hash algorithm (for example, if the hash algorithm produces a string of hexadecimal digits, the producer
would not prepend "0x" to it).

NOTE 1: The value is represented as a string because hash values are typically
represented in hexadecimal notation, and JSON integer values must be decimal.

NOTE 2: A hash value for an analysis target can be useful when a log file is processed
by a result management system. The value can be used as a key when persisting results
in a database. This allows a build system to use cached results, rather than repeating the
analysis, when a target has not changed. A file hash can also be useful for validating
results in a policy compliance system, allowing an auditor to validate that rerunning
analysis against a target that hashes to a specific value reproduces the provided results.

The artifact object defines a set of hash values, rather than a single hash value, to

allow a log file to be consumed by multiple tool chains that might expect hash values
produced by differing hash function. Compliance systems, for example, will favor the use
of more secure hash functions (such as SHA-256) that minimize the possibility that two
different targets will produce the same hash (at the expense of speed to produce the
hash). In situations where compliance and security are not a concern, a system might

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 98 of 229

prefer to use a fast hash function (such as MD5 or SHA-1) even though they have known
weaknesses that allow adversaries to more easily generate hash collisions.

To populate the hashes property, an analysis tool needs the ability to produce hashes

for its analysis targets. Alternatively, the hashes could be added to the log file as a post-
processing step.

To make the best use of such an analysis tool, a user (such as a build engineer) would
determine what systems in their build environment will consume the log file. The user
would then configure the tool to produce hashes using the hash functions required by
those systems. Analysis tools that are configurable to produce hashes with a variety of
commonly used hash functions will interoperate most easily with such systems.

3.24.12 lastModifiedTimeUtc property

An artifact object MAY contain a property named lastModifiedTimeUtc whose value is a string in

the format specified in §3.9, specifying the UTC date and time at which the artifact was most recently
modified.

NOTE: In scenarios where a tool has analyzed files on a network file share or on a local
disk, an engineering system might use this property, rather than hashes (§3.24.11), as

the most lightweight mechanism to determine whether the analysis needs to be repeated.

3.24.13 description property

An artifact object MAY have a property named description whose value is a message object

(§3.11) that describes the artifact.

3.25 specialLocations object

3.25.1 General

A specialLocations object defines locations of special significance to SARIF consumers.

NOTE: This version of SARIF defines only one such location, displayBase (§3.25.2). In

the future, other specially treated locations might be defined.

3.25.2 displayBase property

A specialLocations object MAY contain a property named displayBase whose value is an

artifactLocation object (§3.4) which provides a suggestion to consumers to display file paths

relative to the specified location.

A consumer MAY act on this hint as follows:

1. Resolve displayBase to a URI (the “base URI”) by the procedure defined in §3.14.14 or any

procedure with the same result. If the result is not an absolute URI, the procedure fails.
2. Normalize the base URI and the displayed URI by the procedures defined in §3.10.1 and §3.10.2

or any procedures with the same result.
3. If the base URI and the displayed URI have the identical scheme, authority, and initial path

segments, then display only the remaining path segments of the displayed URI, or "." if there are
no remaining path segments.

4. Otherwise, render the displayed URI as an absolute URI (or in some other appropriate form, such
as a (uriBaseId, uri) pair.

EXAMPLE: Given the following:

{ # A run object (§3.14).

 "originalUriBaseIds": { # See §3.14.14.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 99 of 229

 "WEBHOST": {

 "uri": "http://www.example.com/"

 },

 "ROOT": {

 "uri": "file:///"

 },

 "HOME": {

 "uri": "/home/user/",

 "uriBaseId": "ROOT"

 },

 "PACKAGE": {

 "uri": "mySoftware/",

 "uriBaseId": "HOME"

 },

 "SRC": {

 "uri": "src/",

 "uriBaseId": "PACKAGE"

 }

 },

 "specialLocations": {

 "displayBase": { # An artifactLocation object (§3.4).

 "uri": "", # Empty string is valid relative reference.

 "uriBaseId": "PACKAGE"

 }

 }

}

These equivalent locations would display as src/f.c because the scheme, authority,

and initial path segments match:

{

 "uri": "f.c",

 "uriBaseId": "SRC"

}

{

 "uri": "src/f.c",

 "uriBaseId": "PACKAGE"

}

{

 "uri": "file:///home/user/mySoftware/src/f.c"

}

These equivalent locations would display as /usr/include/stdio.h because the

scheme and authority match, but not the path:

{

 "uri": "/usr/include/stdio.h",

 "uriBaseId": "ROOT"

}

{

 "uri": "file:///usr/include/stdio.h"

}

These equivalent locations would display as http://www.example.com/hello

because the scheme and authority do not match:

{

 "uri": "hello",

 "uriBaseId": "WEBHOST"

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 100 of 229

{

 "uri": "http://www.example.com/hello"

}

If displayBase were changed to

"displayBase": {

 "uri": "",

 "uriBaseId": "HOME"

}

the URIs displayed as src/f.c would instead be displayed as mySoftware/src/f.c.

All other display values would be unchanged.

3.26 translationMetadata object

3.26.1 General

A translationMetadata object describes a translation. It is necessary because in a toolComponent

object that represents a translation, the usual descriptive properties name (§3.19.8), fullName (§3.19.9),

etc. contain the translations of the corresponding strings in the toolComponent being translated;

therefore, they are not available to hold descriptive information for the translation itself.

Because they occur only in toolComponent objects that represent translations, the properties of a

translationMetadata object are not themselves localized (§3.5.1).

EXAMPLE:

{ # A toolComponent object (§3.19).

 "language": "fr-FR", # The language of the translation (see (§3.19.21).

 "translationMetadata": { # A translation metadata object.

 "name": "CodeScanner translation for fr-FR ",

 "fullName": "CodeScanner translation for fr-FR by Example Corp.",

 "shortDescription": {

 "text": "A good translation"

 },

 "fullDescription": {

 "text": "A good translation performed by native en-US speakers."

 }

 },

 "name": "(fr-FR translation of translated component’s name)",

 "fullName": "(fr-FR translation of translated component’s full name)",

 ...

}

3.26.2 name property

A translationMetadata object SHALL contain a property named name whose value is a string

containing a name for the translation.

3.26.3 fullName property

A translationMetadata object MAY contain a property named fullName whose value is a string

containing the name of the translation along with any other useful identifying information.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 101 of 229

3.26.4 shortDescription property

A translationMetadata object MAY contain a property named shortDescription whose value is

a multiformatMessageString object (§3.12) containing a brief description of the translation.

3.26.5 fullDescription property

A translationMetadata object MAY contain a property named fullDescription whose value is a

multiformatMessageString object (§3.12) containing a comprehensive description of the translation.

3.26.6 downloadUri property

A translationMetadata object MAY contain a property named downloadUri whose value is a string

containing the absolute URI [RFC3986] from which the translation can be downloaded.

3.26.7 informationUri property

A translationMetadata object MAY contain a property named informationUri whose value is a

string containing the absolute URI [RFC3986] at which information about the translation can be found.

3.27 result object

3.27.1 General

A result object describes a single result detected by an analysis tool.

Each result is produced by the evaluation of a rule. If theTool contains a reportingDescriptor

object (§3.49) that describes that rule, we refer to that object as theDescriptor, and we refer to the

toolComponent object (§3.19) that defines theDescriptor as theComponent.

3.27.2 Distinguishing logically identical from logically distinct results

Successive runs might detect the same condition in the code. When two result objects represent the

same condition, we say that the results are “logically identical;” when they represent different conditions,
we say that the results are “logically distinct.” Two results can be logically identical even if the result

objects are not identical. For example, if code is inserted into a file between runs, the same condition
might be reported on two different lines.

To avoid reporting the same condition repeatedly, result management systems typically group results into
equivalence classes such that results in any one class are logically identical and results in different
classes are logically distinct.

Some result management systems do this by calculating a “fingerprint” for each result and considering
results with the same fingerprint to be logically identical. A fingerprint is calculated from information
contained in the result and might contain readable information from the result.

Other result management systems group results into equivalence classes without associating a computed
fingerprint with each result, and they denote each equivalence class with an arbitrary unique identifier.
This identifier is opaque: it is not calculated from information stored in the result, and hence contains no
readable information about the result.

Still other result management systems compute a fingerprint, associate an arbitrary unique identifier with
the fingerprint, and use that identifier rather than the fingerprint to identify the equivalence class of results.

SARIF accommodates all these types of result management systems. Result management systems that
compute fingerprints SHOULD populate the fingerprints property (§3.27.16). Result management

systems that group results into equivalence classes based on an arbitrary unique identifier SHOULD
populate the correlationGuid property (§3.27.4), regardless of whether they also compute a

fingerprint.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 102 of 229

3.27.3 guid property

A result object MAY contain a property named guid whose value is a GUID-valued string (§3.5.3)

defining a unique, stable identifier for the result.

Direct SARIF producers and SARIF converters MAY but do not need to set this property. A result
management system SHOULD set this property when it ingests a SARIF log file. If it does so, then later,
when a SARIF consumer retrieves results in SARIF format from the result management system, the result
management system SHALL set this property to the value it assigned.

A result management system MAY store multiple results with identical fingerprints (see §3.27.16 and
Appendix B), but the guid properties for those results SHALL be distinct.

3.27.4 correlationGuid property

A result object MAY contain a property named correlationGuid whose value is a GUID-valued

string (§3.5.3) that is shared by all results that are considered logically identical, and that is different
between any two results that are considered logically distinct.

Direct SARIF producers and SARIF converters SHOULD NOT set this property. A result management
system MAY set this property when it ingests a SARIF log file. If it does so, then later, when a SARIF
consumer retrieves results in SARIF format from the result management system, the result management
system MAY set this property to the value it assigned.

NOTE: correlationGuid and fingerprints (§3.27.16) provide two different ways

for result management systems to associate results that are logically identical. See
§3.27.2 for more information.

3.27.5 ruleId property

Depending on the circumstances, a result object either SHALL, MAY, or SHALL NOT contain a

property named ruleId whose value is a hierarchical string (§3.5.4) whose leading components specify

the stable identifier of the rule that was evaluated to produce the result. In addition to being stable,
ruleId SHOULD be opaque.

NOTE: ruleId will usually consist entirely of the rule’s stable opaque identifier. In some

cases, it might be helpful to specify additional hierarchical components to more precisely
describe the rule violation.

A SARIF viewer or result management system MAY use the additional hierarchical components to allow a
user to suppress a subset of the violations of a given rule. A result management system MAY also use
the additional components to more precisely match results between runs.

EXAMPLE: In this example, the first result describes a violation of rule CA2101. Its

ruleId consists entirely of the rule’s identifier. The second and third results both

describe violations of rule CA5350. Each of their ruleIds specifies an additional

hierarchical component that more precisely describes the rule violation. Note that
rule.index (§3.27.7, §3.52.5) for both those results is 1; despite the additional

hierarchical components in ruleId, both results describe violations of the same rule.

A SARIF viewer or result management system might allow a user to suppress, for
example, only those violations of rule CA5350 which specify md5 as the second

hierarchical component of ruleId; that is, to allow the use of MD5 but still warn about

the uses of other weak cryptographic algorithms.

{

 "tool": {

 "driver": {

 "name": "CodeScanner",

 "rules": [

 {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 103 of 229

 "id": "CA2101",

 "shortDescription": {

 "text": "Specify marshaling for P/Invoke string arguments."

 }

 },

 {

 "id": "CA5350",

 "shortDescription": {

 "text": "Do not use weak cryptographic algorithms."

 }

 }

]

 }

 },

 "results": [

 {

 "ruleId": "CA2101",

 "rule": {

 "index": 0

 }

 },

 {

 "ruleId": "CA5350/md5",

 "rule": {

 "index": 1

 }

 },

 {

 "ruleId": "CA5350/sha-1",

 "rule": {

 "index": 1

 }

 }

]

]

Direct producers SHALL emit either or both of ruleId and rule.id (§3.27.7, §3.52.4). If rule.id is

absent, ruleId SHALL be present. If rule.id is present, ruleId MAY be present. If ruleId and

rule.id are both present, they SHALL be equal.

For an example of the interaction between ruleId and rule.id, see §3.52.4.

Not all existing analysis tools emit the equivalent of a ruleId in their output. A SARIF converter which

converts the output of such an analysis tool to the SARIF format SHOULD synthesize ruleId from other

information available in the analysis tool's output.

Each SARIF converter might synthesize ruleId in a different way. Therefore, a SARIF consumer

SHOULD NOT attempt to compare or combine the output from different converters for the same analysis
tool. See Appendix D for more information about production of SARIF by converters.

3.27.6 ruleIndex property

If theDescriptor exists (that is, if theTool contains a reportingDescriptor object (§3.49) that

describes the rule that was violated), a result object MAY contain a property named ruleIndex

whose value is the array index (§3.7.4) of theDescriptor within theComponent.ruleDescriptors

(§3.19.23). Otherwise, ruleIndex SHALL be absent.

The semantics of ruleIndex are identical to the semantics of

reportingDescriptorReference.index (§3.52.5), and are described there.

If ruleIndex and rule.index (§3.27.7, §3.52.5) are both present, they SHALL be equal.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 104 of 229

3.27.7 rule property

Depending on the circumstances, a result object either SHALL NOT, SHOULD, or MAY contain a

property named rule whose value is a reportingDescriptorReference object (§3.52) that

identifies theDescriptor. The procedure for looking up a reportingDescriptor from a

reportingDescriptorReference is described in §3.52.3.

If theDescriptor does not exist (that is, if theTool does not contain a reportingDescriptor

object (§3.49) that describes the rule that was violated), then rule SHALL NOT be present.

If theDescriptor occurs in theTool.extensions (§3.18.3), then rule SHOULD be present.

NOTE 1: If theDescriptor occurs in theTool.extensions and rule is absent, the

SARIF consumer will not be able to locate the rule metadata, even if ruleIndex

(§3.27.6) is present, because ruleIndex alone does not specify which extension

contains theDescriptor.

If theDescriptor occurs in theTool.driver (§3.18.2) and ruleIndex is absent, then again rule

SHOULD be present.

NOTE 2: If theDescriptor occurs in theTool.driver and ruleIndex is absent,

the SARIF consumer will not be able to locate the rule metadata within
theTool.driver.ruleDescriptors.

If theDescriptor occurs in theTool.driver and ruleIndex is present, then rule MAY be present.

NOTE 3: If theDescriptor occurs in theTool.driver, then ruleIndex suffices to

locate the rule metadata within theTool.driver.ruleDescriptors.

If rule.id (§3.52.4) is absent, it SHALL default to thisObject.ruleId. If rule.id and

thisObject.ruleId are both present, they SHALL be equal.

If rule.index (§3.52.5) is absent, it SHALL default to thisObject.ruleIndex. If rule.index and

thisObject.ruleIndex are both present, they SHALL be equal.

If rule is absent, it SHALL default to a reportingDescriptorReference object whose id property

is set to thisObject.ruleId and whose index property is set to thisObject.ruleIndex.

NOTE: If the relevant rule is defined by the driver (see §3.18.1), which is likely to be the
most common case, then ruleId and/or ruleIndex suffice to identify the rule, and take

up less space in the log file than rule.

3.27.8 taxa property

A result object MAY contain a property named taxa whose value is an array of zero or more unique

(§3.7.3) reportingDescriptorReference objects (§3.52) each of which refers to a taxon (see

§3.19.3) into which this result falls.

If the toolComponent object (§3.19) theComponent that defines the rule that was violated contains a

reportingDescriptor object (§3.49) theDescriptor (a member of toolComponent.rules

(§3.19.23)) that describes that rule, then thisObject.taxa SHALL contain elements corresponding to

those elements of theDescriptor.relationships (§3.49.15) that describe taxa into which this result

falls. thisObject.taxa does not need to contain elements which correspond to superset or equals

relationships; rather, the result SHALL implicitly be taken to fall into all the taxa described by those
relationships.

NOTE 1: See the example below for an illustration of this point. See §3.53.3 for
descriptions of the various types of relationships.

Otherwise (that is, if theDescriptor does not exist), thisObject.taxa SHALL contain elements that

describe all taxa into which the result falls.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 105 of 229

In either case, if there is no toolComponent that defines the taxonomy to which an element of

thisObject.taxa refers, then that element (a reportingDescriptorReference object) SHALL

NOT contain index (§3.52.5) or toolComponent.index (§3.52.7, §3.54.4).

NOTE 2: The rationale for this restriction is that toolComponent.index serves to

locate the toolComponent object defining the rule, and index serves to locate the rule

within that toolComponent. If there is no relevant toolComponent object, neither of

those properties is meaningful. On the other hand, properties such as id (§3.52.4), guid

(§3.52.6), toolComponent.name (§3.54.3), and toolComponent.guid (§3.54.5) are

useful for readability and for identification, even if the toolComponent itself is absent,

so they are permitted.

EXAMPLE: In this example, a tool defines a custom taxonomy (see §3.19.3) consisting of
three taxa with ids "SUP", "INC1", and "INC2". The tool emits a result that falls into the

taxa "SUP" and "INC2", but not into "INC1". According to relationships[0],

"SUP" is a superset of "CA2101"; that is, every result that violates "CA2101" falls into

the taxon "SUP". Therefore, it is not necessary to mention "SUP" in theResult.taxa.

On the other hand, according to relationships[2], "INC2" is incomparable to

"CA2101"; that is, the set of results that violate "CA2101" intersects with but is neither a

superset nor a subset of the set of results that fall into the taxon "INC2". Therefore, it is

necessary to mention "INC2" in theResult.taxa.

{ # A run object (§3.14).

 "tool": {

 "driver": {

 "name": "CodeScanner",

 ...

 "rules": [

 {

 "id": "CA2101",

 ...

 "relationships": [

 {

 "target": {

 "id": "SUP",

 "guid": "11111111-1111-1111-8888-111111111111"

 },

 "kinds": [

 "superset"

]

 },

 {

 "target": {

 "id": "INC1",

 "guid": "22222222-2222-1111-8888-222222222222"

 },

 "kinds": [

 "incomparable"

]

 },

 {

 "target": {

 "id": "INC2"

 "guid": "33333333-3333-1111-8888-333333333333"

 },

 "kinds": [

 "incomparable"

]

 }

]

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 106 of 229

],

 "taxa": [

 {

 "id": "SUP",

 "guid": "11111111-1111-1111-8888-111111111111",

 ...

 },

 {

 "id": "INC1",

 "guid": "22222222-2222-1111-8888-222222222222",

 ...

 },

 {

 "id": "INC2",

 "guid": "33333333-3333-1111-8888-333333333333",

 ...

 }

]

 }

 },

 "results": [

 {

 "ruleId": "CA2101",

 "rule": {

 "index": 0

 },

 "taxa": [

 {

 "id": "INC2",

 "guid": "33333333-3333-1111-8888-333333333333"

 }

]

 }

]

}

3.27.9 kind property

A result object MAY contain a property named kind whose value is one of a fixed set of strings that

specify the nature of the result.

If present, the kind property SHALL have one of the following values, with the specified meanings:

• "pass": The rule specified by ruleId (§3.27.5), ruleIndex (§3.27.6), and/or rule (§3.27.7)

was evaluated, and no problem was found.

• "open": The specified rule was evaluated, and the tool concluded that there was insufficient

information to decide whether a problem exists.

NOTE 1: This value is used by proof-based tools. Sometimes such a tool can prove that
there is no violation (kind = "pass"), sometimes it can prove that there is a violation

(kind = "fail"), and sometimes it does not detect a violation but is unable to prove

that there is none (kind = "open"). In such a tool, a kind value of "open" might be an

indication that the user should add additional assertions to enabe the tool to determine if
there is a violation.

• "informational": The specified rule was evaluated and produced a purely informational result

that does not indicate the presence of a problem. (See the example below.)

• "notApplicable": The rule specified by ruleId was not evaluated, because it does not apply

to the analysis target.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 107 of 229

EXAMPLE: In this example, a binary checker has a rule that applies to 32-bit binaries
only. It produces a "notApplicable" result if it is run on a 64-bit binary. It also has a

rule that checks the compiler version and produces an informational result:

"results": [

 {

 "ruleId": "ABC0001",

 "kind": "notApplicable",

 "message": {

 "text": "\"MyTool64.exe\" was not evaluated for rule ABC0001

 because it is not a 32-bit binary."

 },

 "locations": [

 {

 "physicalLocation": {

 "uri": "file://C:/bin/MyTool64.exe"

 }

 }

]

 },

 {

 "ruleId": "ABC0002",

 "kind": "informational",

 "message": {

 "text": "\"MyTool64.exe\" was compiled with Example Corporation

 Compiler version 10.2.2."

 },

 "locations": [

 {

 "physicalLocation": {

 "uri": "file://C:/bin/MyTool64.exe"

 }

 }

]

 }

]

• "review": The result requires review by a human user to decide if it represents a problem.

NOTE 2: This value is used by tools that are unable to check for certain conditions, but
that wish to bring to the user’s attention the possibility that there might be a problem. For
example, an accessibility checker might produce a result with the message "Do not use
color alone to highlight important information," with kind = "review". A user might

address this issue by visually inspecting the UI.

• "fail": The result represents a problem whose severity is specified by the level property

(§3.27.10).

If kind is absent, it SHALL default to "fail".

If level has any value other than "none" and kind is present, then kind SHALL have the value

"fail".

3.27.10 level property

A result object MAY contain a property named level whose value is one of a fixed set of strings that

specify the severity level of the result.

If present, the level property SHALL have one of the following values, with the specified meanings:

• "warning": The rule specified by ruleId was evaluated and a problem was found.

• "error": The rule specified by ruleId was evaluated and a serious problem was found.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 108 of 229

• "note": The rule specified by ruleId was evaluated and a minor problem or an opportunity to

improve the code was found.

• "none": The concept of “severity” does not apply to this result because the kind property

(§3.27.9) has a value other than "fail".

EXAMPLE: In this example, the tool reports an opportunity to improve the code.

"results": [

 {

 "ruleId": "ABC0003",

 "kind": "fail",

 "level": "note",

 "message": {

 "text": "Consider using 'nameof(start)' instead of hard-coding

 the parameter name 'start'."

 },

 "locations": [

 {

 "physicalLocation": {

 "uri": "file:///C:/code/a.cs",

 "region": {

 "startLine": 6

 }

 }

 }

]

 }

]

If kind (§3.27.9) has any value other than "fail", then if level is absent, it SHALL default to "none",

and if it is present, it SHALL have the value "none".

If kind has the value "fail" and level is absent, then level SHALL be determined by the following

procedure:

IF rule (§3.27.7) is present THEN

 LET theDescriptor be the reportingDescriptor object (§3.49) that it specifies.

 # Is there a configuration override for the level property?

 IF result.provenance.invocationIndex (§3.27.29, §3.48.6) is >= 0 THEN

 LET theInvocation be the invocation object (§3.20) that it specifies.

 IF theInvocation.ruleConfigurationOverrides (§3.20.5) is present

 AND it contains a configurationOverride object (§3.51) whose

 descriptor property (§3.51.2) specifies theDescriptor THEN

 LET theOverride be that configurationOverride object.

 IF theOverride.configuration.level (§3.51.3, §3.50.3) is present THEN

 Set level to theConfiguration.level.

 ELSE

 # There is no configuration override for level. Is there a default configuration for it?

 IF theDescriptor.defaultConfiguration.level (§3.49.14, §, §3.50.3) is present THEN

 SET level to theDescriptor.defaultConfiguration.level.

IF level has not yet been set THEN

 SET level to "warning".

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 109 of 229

3.27.11 message property

A result object SHALL contain a property named message whose value is a message object (§3.11)

that describes the result.

The message property SHOULD provide sufficient details to allow an end user to resolve any problem

that the result might indicate. In particular, it SHALL include all of the following information that is
available and relevant to the result:

• Information sufficient to identify the analysis target, and the location within the target where the
problem occurred.

• The condition within the analysis target that led to the problem being reported.

• The risks potentially associated with not fixing the problem.

• The full range of responses to the problem that the end user could take (including the definition of
conditions where it might be appropriate not to fix the problem, or to conclude that the result is a
false positive).

EXAMPLE 1: This is an example of a message:

"results": [

 {

 "message": {

 "text": "Deleting member 'x' of variable 'y' may compromise

 performance on subsequent accesses of 'y'. Consider

 setting object member 'x' to null instead, unless this

 object is a dictionary or if runtime semantics otherwise

 dictate that the existence of a null member is distinct

 from one that is not present at all. This violation can

 also be ignored for infrequently called code paths."

 }

 }

]

See §3.11.7 for the procedure for looking up a message string from a message object, in particular, for

the case where the message object occurs as the value of result.message.

EXAMPLE 2: In this example, message.id refers to the property named default

defined in the messageStrings property of the reportingDescriptor object

identified by "CA2101".

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA2101",

 "messageStrings": {

 "default": { # A multiformatMessageString object (§3.12).

 "text": "The default message for this rule.",

 "markdown": "The default message for *this* rule."

 },

 "special": {

 "text": "Another message, for special cases.",

 "markdown": "Another message, for *special* cases."

 }

 }

 }

]

 }

 },

 "results": [

 { # A result object (§3.27).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 110 of 229

 "ruleId": "CA2101",

 "rule": {

 "index": 0

 },

 "message": {

 "id": "default"

 },

 ...

 }

]

}

3.27.12 locations property

A result object SHOULD contain a property named locations whose value is an array of zero or

more location objects (§3.28) each of which specifies a location where the result occurred.

NOTE 1: In rare circumstances, it might not be possible to specify a location for a result.
However, the locations property contains very valuable information for anyone who

needs to diagnose and correct the condition described by the result, so the authors of
analysis tools should make every effort to provide it.

EXAMPLE 1: If a C++ analyzer detects that no file defines a global function main, then

that result cannot be associated with a file.

NOTE 2: The locations array is not defined to contain unique (§3.7.3) elements

because some tools report a line number but not a column number for a result’s location.
Such a tool might report the same result twice on the same line, in some cases producing
multiple identical location objects.

The locations array SHALL NOT contain more than one element unless the condition indicated by the

result, if any, can only be corrected by making a change at every location specified in the array.

EXAMPLE 2: In C#, which supports “partial” classes, portions of the declaration of a
single class can occur at multiple locations in the source code. If an analysis tool reports
that the name of such a class does not conform to a specified convention, then the
resulting log file might contain a single result object, which would contain a locations

array each of whose elements specifies a location in the source code where the class
name occurs.

The locations array SHALL NOT be used to specify distinct occurrences of the same result which can

be corrected independently.

EXAMPLE 3: Consider an analysis tool which locates misspelled words in
documentation, and suppose this tool scans a document in which the same word is
misspelled in two distinct locations. Then the resulting log file must contain two distinct
result objects each of which contains a locations array containing a single

location object specifying the location of one instance of the misspelled word.

EXAMPLE 4: In contrast, consider a tool which locates misspelled words in variable
names. If the tool detects a misspelled variable name, it might produce a single result

object whose locations array contains the location of every reference to the variable,

since fixing some but not all of the references would cause a compilation error.

3.27.13 analysisTarget property

If the analysis target differs from the result file, a result object SHOULD contain a property named

analysisTarget whose value is an artifactLocation object (§3.4) that specifies the analysis

target.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 111 of 229

If the analysis target and the result file are the same, the analysisTarget property SHOULD be

absent.

EXAMPLE: In this example, the tool’s analysis target was the file mouse.c. During the
scan, the tool detected a result in the included file mouse.h.

{ # A result object (§3.27).

 "analysisTarget": { # An artifactLocation object (§3.4).

 "uri": "input/mouse.c",

 "uriBaseId": "SRCROOT"

 },

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "physicalLocation": { # See §3.28.3.

 "artifactLocation": { # An artifactLocation object.

 "uri": "input/mouse.h",

 "uriBaseId": "SRCROOT"

 },

 "region": {

 "startLine": 42

 }

 }

 }

]

}

3.27.14 webRequest property

A result object MAY contain a property named webRequest whose value is a webRequest object

(§3.46) that describes the HTTP request which led to this result.

NOTE: This property is primarily useful to web analysis tools.

3.27.15 webResponse property

A result object MAY contain a property named webResponse whose value is a webResponse object

(§3.47) that describes the response to the HTTP request which led to this result.

NOTE: This property is primarily useful to web analysis tools.

3.27.16 fingerprints property

A result object MAY contain a property named fingerprints whose value is an object (§3.6).

Each property value in this object SHALL be a string that provides a stable identifier for the result. This
identifier SHALL, to the extent that it is feasible, be the same for all results that are logically identical, and
different for any two results that are logically distinct. This requirement is intended to ensure that a
fingerprint is resistant to changes that do not affect the logical identity of the result, such as the location of
the root of a source code enlistment, or the line number where a result appears in a source file.

Each property name in this object SHALL be a versioned hierarchical string (§3.5.4.2). A result
management system MAY use the property names to identify the method used to calculate the
fingerprint.

EXAMPLE 1: In this example, the producer has calculated a fingerprint using version 2 of
a fingerprinting method it refers to as "stableResultHash":

{

 "fingerprints": {

 "stableResultHash/v2": "097886bc876fe"

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 112 of 229

}

When a result management system uses fingerprint information to determine whether two results are
logically identical, it SHOULD use the latest version of the fingerprint available in both results.

EXAMPLE 2: In this example, one result has values for versions 1 and 2 of the “context
region hash” fingerprint. Another result has values for versions 2 and 3. A result
management system would use version 2 (the greatest common version) to compare the
two results.

{ # A run object (§3.14).

 "results": [# See §3.14.23.

 { # A result object.

 "fingerprints": {

 "stableResultHash/v1": "1234567900abc"

 "stableResultHash/v2": "234567900abcd"

 },

 {

 "fingerprints": {

 "stableResultHash/v2": "234567900abcd"

 "stableResultHash/v3": "34567900abcde"

 }

]

}

NOTE: This property is an array, rather than a single string, for two reasons:

• To allow a result management system to continue to support outdated
fingerprinting algorithms while upgrading to a newer, more reliable algorithm.

• Less likely but possible, to allow multiple result management systems to record
their final fingerprints.

A direct SARIF producer SHOULD NOT populate this property. A SARIF converter MAY populate this
property if the analysis tool’s native output format provides a value that qualifies as a fingerprint (a stable
identifier for the result). A result management system MAY populate this property when it ingests a SARIF
file. If it does so, then later, when a SARIF consumer retrieves results in SARIF format from the result
management system, the result management system MAY set this property to the value it assigned.

Appendix B provides requirements for how a result management system computes fingerprints.

NOTE: fingerprints and correlationGuid (§3.27.4) provide two different ways for

result management systems to associate results that are logically identical. See §3.27.2
for more information.

3.27.17 partialFingerprints property

A result object MAY contain a property named partialFingerprints whose value is an object

(§3.6).

Each property value in this object SHALL be a string that contributes to the stable, unique identity, or
“fingerprint,” of the result (see §3.27.16). Appendix B explains how a result management system can
compute these fingerprints.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 113 of 229

Each property name in this object SHALL be a versioned hierarchical string (§3.5.4.2). A SARIF producer
MAY use the property name to identify the nature of the information used to compute the partial
fingerprint.

EXAMPLE 1: In this example, the producer has calculated a partial fingerprint using
version 3 of a partial fingerprint value it refers to as "prohibitedWordHash":

{ # A result object (§3.27).

 "partialFingerprints": {

 "prohibitedWordHash/v3": "097886bc876fe"

 }

}

When a result management system uses partial fingerprint information to determine whether two results
are logically identical, it SHOULD use the latest version of the partial fingerprint available in both results.

EXAMPLE 2: In this example, one result has values for versions 1 and 2 of the
“prohibited word hash” partial fingerprint. Another result has values for versions 2 and 3.
A result management system would use version 2 (the greatest common version) to
compare the two results.

{ # A run object (§3.14).

 "results": [# See §3.14.23.

 { # A result object.

 "partialFingerprints": {

 "prohibitedWordHash/v1": "1234567900abc"

 "prohibitedWordHash/v2": "234567900abcd"

 },

 {

 "partialFingerprints": {

 "prohibitedWordHash/v2": "234567900abcd"

 "prohibitedWordHash/v3": "34567900abcde"

 }

]

}

A result management system MAY use any algorithm to combine the information contained in the various
partial fingerprints. (For example, it might decide that two results are logically identically if any one of their
partial fingerprints match, or only if a majority of them match, or only if all of them match.)

To make use of the information, if any, embodied in the property names, a result management system
requires knowledge of the naming convention used by the SARIF producer. A result management system
with that knowledge MAY use the property names to decide which partial fingerprints to include in its
fingerprint computation. A result management system lacking that knowledge SHOULD NOT attempt to
interpret the information embodied in the partial fingerprint names.

Because result management systems might come to depend on the choice of property names, SARIF
producers that use property names to identify the nature of the information used to compute the partial
fingerprint SHOULD adhere to the following guidelines:

• Choose meaningful property names that describe the information used to compute the partial
fingerprint.

• Document the property names.

• When introducing a partial fingerprint computed with a different approach, associate it with a new
property name.

• Avoid removing existing property names and partial fingerprints, since existing result
management systems might rely on them.

EXAMPLE 3: In this example, a SARIF-producing document checker has computed a
partial fingerprint that hashes a word that should not appear in a document together with
the document’s language.

{ # A result object.

 ...

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 114 of 229

 "partialFingerprints": {

 "wordPlusLangHash":

 "2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae"

 }

}

EXAMPLE 4. In this example, the SARIF producer has chosen an arbitrary value for the
property name.

{ # A result object

 ...

 "partialFingerprints": {

 "1": "56eaf900cc8f6"

 }

}

3.27.18 codeFlows property

A result object MAY contain a property named codeFlows whose value is an array of zero or more

codeFlow objects (§3.36). The codeFlows property is intended for use by analysis tools that provide

execution path details that illustrate a possible problem in the code.

NOTE: The SARIF file format allows multiple codeFlow objects within a single result

object to allow for the possibility that more than one code flow might be relevant to a
single result.

3.27.19 graphs property

A result object MAY contain a property named graphs whose value is an array of zero or more unique

(§3.7.3) graph objects (§3.39). A graph object represents a directed graph: a network of nodes and

directed edges that describes some aspect of the structure of the code (for example, a call graph).

A graph object defined at the result level SHALL be referenced only by graphTraversal objects

(§3.42) defined in the graphTraversals property (§3.27.20) of the result object in which it is defined.

This contrasts with graph objects defined at the run level (§3.14.20), which MAY be referenced by

graphTraversal objects defined in the graphTraversals property of any result object in theRun.

3.27.20 graphTraversals property

If a result object contains a graphs property (§3.27.19), or if theRun contains a graphs property

(§3.14.20), then the result object MAY contain a property named graphTraversals whose value is

an array of zero or more unique (§3.7.3) graphTraversal objects (§3.42). If neither the result object

nor theRun contains a graphs property, the graphTraversals property SHALL be absent. A graph

traversal is a path through the code that visits one or more nodes in a specified graph.

3.27.21 stacks property

A result object MAY contain a property named stacks whose value is an array of zero or more unique

(§3.7.3) stack objects (§3.44). The stacks property is intended for use by analysis tools that compute

or collect call stack information in the process of producing results.

NOTE: The SARIF file format allows multiple stack objects within a single result

object to allow for the possibility that more than one call stack might be relevant to a
single result.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 115 of 229

3.27.22 relatedLocations property

A result object MAY contain a property named relatedLocations whose value is an array of zero or

more unique (§3.7.3) location objects (§3.28) each of which represents a location relevant to

understanding the result.

EXAMPLE: Suppose that a tool for analyzing JavaScript™ has a rule that reports a
problem when a variable declared in an inner scope hides a variable with the same name
in an enclosing scope. The tool would report the problem on the line where the inner
variable is declared. The tool could choose to add an element to the
relatedLocations array, specifying the location where the outer variable was

declared.

The result might appear in the log file like this:

results: [

 {

 "ruleId": "JS3056",

 "level": "error",

 "message": {

 "text": "Name 'index' cannot be used in this scope because

 it would give a different meaning to 'index'

 ([declared here](0))."

 },

 "locations": [

 {

 "physicalLocation": {

 "uri": "file:///C:/Code/a.js",

 "region": {

 "startLine": "6",

 "startColumn": "10"

 }

 }

 }

],

 "relatedLocations": [# An array of location objects

 # (§3.28)

 { # A location object.

 "id": 0,

 "message": {

 "text": "The previous declaration of 'index' was here."

 },

 "physicalLocation": {

 "uri": "file:///C:/Code/a.js",

 "region": {

 "startLine": "2",

 "startColumn": "6"

 }

 }

 }

]

 },

 ...

]

The tool might write messages to the console like this:

C:\Code\a.js(6,10-10): error : JS3056: Name 'index' cannot be used in this

scope because it would give a different meaning to 'index'.

C:\Code\a.js(2,6-6): info : JS3056: The previous declaration of 'index' was

here.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 116 of 229

3.27.23 suppressions property

A result object MAY contain a property named suppressions whose value is an array of zero or

more unique (§3.7.3) suppression objects (§3.35) each of which describes a request to “suppress” a

result (that is, to exclude it from result lists, bug counts, etc.).

If suppressions is absent, it SHALL default to null.

The presence of an array value, whether or not the array is empty, SHALL mean that suppression
information is available for the result. In this case, if the array is empty, a consumer SHALL treat the
result as not suppressed. If the array is non-empty, a consumer that needs to determine the result’s
suppression state SHALL examine the status properties (§3.35.3) of the suppression objects in the

array.

The absence of an array value, or the presence of a null value, SHALL mean that suppression

information is not available for the result. A SARIF consumer SHALL treat such a result as not
suppressed.

The suppressions values for all result objects in theRun SHALL be either all null or all non-null.

NOTE: The rationale is that an engineering system will generally evaluate all results for
suppression, or none of them. Requiring that the suppressions values be either all

null or all non-null enables a consumer to determine whether suppression information

is available for the run by examining a single result object.

3.27.24 baselineState property

A result object MAY contain a property named baselineState whose value is a string that specifies

the state of this result with respect to some previous run, which we refer to as the “baseline run.”

If theRun.baselineGuid (§3.14.5) is present, its value SHALL specify the baseline run.

This property SHALL have one of the following values, with the specified meanings:

• "new": This result was detected in the current run but was not detected in the baseline run.

• "unchanged": This result was detected both in the current run and in the baseline run, and it did

not change between those two runs in any way that the tool considers significant.

• "updated": This result was detected both in the current run and in the baseline run, but it

changed between those two runs in a way that the tool considers significant.

• "absent": This result was detected in the baseline run but was not detected in the current run.

NOTE 1: The purpose of baselineState is to allow (for example) a measurement of

how many new results were introduced in the run, and how many previously existing
results no longer appear.

To assign a value to baselineState, a tool needs a way to determine whether a result

is logically “the same”, in some sense, as a result that appeared in the baseline.
Appendix B discusses how a result management system can assign a “fingerprint” to
each result. See also the description of the fingerprints (§3.27.16) and

partialFingerprints (§3.27.17) properties.

An analysis tool that works together with such a result management system can use the
fingerprint to determine whether two results are logically the same; two results with the
same fingerprint are considered logically the same.

NOTE 2: A result management system might respond to a “new” result by filing an issue
in a bug tracking system. It might respond to an “updated” result by editing the details of
an existing issue in the bug tracking system, or by attaching an updated SARIF log to the
issue. It might respond to an “absent” result by resolving the issue. It might take no action
at all for an “unchanged” issue, or it might simply update its internal information about the
range of runs that contained the result.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 117 of 229

If baselineState is present on any result object in theRun, it SHALL be present on every such

result object.

NOTE 3: The presence of baselineState on any result implies that the SARIF

producer performed a comprehensive comparison between the results in the current run
and those in some previous run. A SARIF consumer is entitled to expect that the
differencing operation produced a baselineState value for every result.

This is conceptually similar to a tool that compares two text files, and for every line,
concludes that it exists in the left-hand file, the right-hand file, or both. The tool must
provide this information for every line in both files; it cannot leave some lines
“undetermined.”

3.27.25 rank property

A result object MAY contain a property named rank whose value is a number between 0.0 and

100.0 inclusive, representing the priority or importance of the result. 0.0 is the lowest priority and 100.0

is the highest.

rank is only meaningful if kind (§3.27.9) has the value "fail".

If kind has the value "fail", then if rank is absent, it SHALL default to the value determined by the

procedure defined for level (§3.27.10), except throughout the procedure, replace "level" with

"rank" and replace "warning" with -1.0.

If kind has any other value, then rank SHALL be absent.

If rank is absent, it SHALL default to -1.0, which indicates that the value is unknown (not set).

NOTE: rank values produced by different tools are in general not commensurable. If

Tool A produces one result with rank 0.65 and a second result with rank 0.70, the

consumer is entitled to assume that the second result is of higher priority than the first.
But if Tool A produces a result with rank 0.65 and Tool B produces a result with rank

0.70, the result produced by Tool B might or might not be of higher priority than the

result produced by Tool A. In an engineering system that aggregates results from multiple
tools, rank values might need to be adjusted, either automatically or by end users, so that
rank values from different tools can be interleaved in a meaningful way.

3.27.26 attachments property

A result object MAY contain a property named attachments whose value is an array of zero or more

unique (§3.7.3) attachment objects (§3.21) each of which describes an artifact relevant to the detection

of the result.

3.27.27 workItemUris property

A result object MAY contain a property named workItemUris whose value is either null or an array

of zero or more unique (§3.7.3) strings each of which contains the absolute URI [RFC3986] of a work item
associated with this result.

If workItemUris is absent, it SHALL default to null.

An empty array SHALL mean that there are no work items associated with this result. null SHALL

mean that the set of work items associated with this result, if any, is not known.

The workItemUris values for all result objects in theRun SHALL be either all null or all non-null.

NOTE 1: The rationale is that an engineering system will generally track work item status
for all results or for none of them. Requiring that the workItemUris values be either all

null or all non-null enables a consumer to determine whether work item information is

available for the run by examining a single result object.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 118 of 229

NOTE 2: Result management systems are likely to generate work items from at least
some of the results in a SARIF log file. Depending on the engineering system, these work
items might take the form of Git issues, Jira tickets, TFS work items, or the equivalent in
other work item tracking systems.

3.27.28 hostedViewerUri property

A result object MAY contain a property named hostedViewerUri whose value is a string containing

an absolute URI [RFC3986] at which the result can be viewed. The URI SHALL be valid as of the time
the tool generated this result. It is not guaranteed to be valid at later times (for example, the hosting
environment might not keep results older than a specified age).

NOTE: This property can be used by tools that provide an online viewing experience for
the results they generate. This experience might be specifically designed to display the
results from that tool, as opposed to a generic SARIF viewer that displays results from
any tool that produces SARIF.

3.27.29 provenance property

A result object MAY contain a property named provenance whose value is a resultProvenance

object (§3.48) that contains information about how and when the result was detected.

3.27.30 fixes property

A result object MAY contain a property named fixes whose value is an array of zero or more unique

(§3.7.3) fix objects (§3.55).

3.27.31 occurrenceCount property

A result object MAY contain a property named occurrenceCount whose value is a positive integer

specifying the number of times a result with theResult.correlationGuid (§3.27.4) has been

observed.

NOTE: This property is intended for the scenario where multiple SARIF files are being
merged into a single SARIF file, with the intent that each logically distinct result (see
§3.27.2) occurs only once in the merged file. In that case, the system performing the
merge would select one occurrence of each logically distinct result to serve as the
exemplar for that class of results, and it would set occurrenceCount on that instance

to the number of times a result with that correlationGuid occurred in the input files.

This property can also be useful even in the context of a single log file. Consider an
accessibility checker that detects an accessibility problem at a particular location.
Suppose the checker has access to activity logs that trace user paths through the
application. The checker could use those logs to determine how many times users
encountered the location with the accessibility problem, and store that information in
occurrenceCount.

3.28 location object

3.28.1 General

A location object describes a location. Depending on the circumstances, a location object is

described by physical location (§3.29), a logical location (§3.33), both, or in rare circumstances, neither
(see below).

A logical location specifies a programmatic construct, for example, a class name or a function name,
without specifying the artifact within which that construct occurs.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 119 of 229

NOTE: Among the reasons for including logical locations in the SARIF format in addition
to physical locations are the following:

• In the absence of symbol information, binary analysis tools might not have
source code locations available, so information about line and column numbers
might not be present in the log file. In this case, code editors, other programs, or
end users can use logical location to navigate from a result to the correct source
code location.

• Logical location information is an important contributor to fingerprinting scenarios
because it is typically more resilient to changes in source code than are the line
numbers included in physical locations. See Appendix B for more information
about fingerprinting. The logicalLocation.fullyQualifiedName property

(§3.33.5) is particularly convenient for fingerprinting.

• In the analysis of structured data files such as XML or JSON, internal structural
information (such as an XML path like "/orders[2]/customers/lastName")

might be helpful.

In rare circumstances, there might be neither physical nor logical location information available for a
location object. See §3.38 for an example. In that case, the location object SHOULD contain a

message property (§3.28.5) explaining the significance of this “location.”

3.28.2 id property

A location object MAY contain a property named id whose value is a non-negative integer that is

unique among all location objects belonging to theResult. The value does not need to be unique

across all result objects (§3.27) in theRun.

If id is absent, it SHALL default to -1, which indicates that the value is unknown (not set).

NOTE: Negative values are forbidden because their use would suggest some non-
obvious semantic difference between positive and negative values.

EXAMPLE: Within a result object, the following property values (among others) are

location objects, and no two of them can have the same value for id:

result.relatedLocations[0]

result.codeFlows[0].threadFlows[0].locations[0].location

result.stacks[0].frames[0].location

The id property has two purposes: to enable an embedded link (§3.11.6) within a message object

(§3.11) to refer to thisObject, and to identify thisObject as the target of a

locationRelationship (§3.34). If no message object within theResult refers to thisObject via

an embedded link and no locationRelationship object within theResult specifies thisObject as

its target, the id property does not need to appear.

3.28.3 physicalLocation property

Depending on the circumstances, a location object either SHALL, MAY, or SHALL NOT contain a

property named physicalLocation whose value is a physicalLocation object (§3.29) that

identifies the file within which the location lies. If physical location information is available and the
logicalLocations property (§3.28.4) is absent or empty, physicalLocation SHALL be present. If

physical location is available and logicalLocations is present and non-empty, physicalLocation

MAY be present. If physical location information is not available, physicalLocation SHALL NOT be

present.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 120 of 229

3.28.4 logicalLocations property

Depending on the circumstances, a location object either SHALL, MAY, or SHALL NOT contain a

property named logicalLocations whose value is an array of zero or more unique (§3.7.3)

logicalLocation objects (§3.33) that identify the programmatic construct within which the location lies.

If logical location information is available and the physicalLocation property (§3.28.3) is absent,

logicalLocations SHALL be present and non-empty. If logical location information is available and

physicalLocation is present, logicalLocations MAY be present. If logical location information is

not available, logicalLocations SHALL NOT be present.

NOTE: logicalLocations is an array because some logical locations can be

expressed in more than one way. For example, the logical location of an element in an
HTML document might be expressed by an XML Path expression such as
/html/body/img[1] or by a CSS selector such as #logo.

3.28.5 message property

A location object MAY contain a property named message whose value is a message object (§3.11)

relevant to the location.

3.28.6 annotations property

A location object MAY contain a property named annotations whose value is an array of zero or

more unique (§3.7.3) region objects (§3.30) each of which describes a region within the artifact

specified by the location object that is relevant to the location. Each of these region objects SHOULD

contain a message property (§3.30.14) that explains the relevance of the region to the location.

EXAMPLE: Consider a location object which describes the declaration statement

int x = (y + z) * q;

If the analysis tool wanted to emphasize the expression (y + z), it might set the

annotations property to:

"annotations": [# An array of region objects.

 { # A region object (§3.30).

 "startLine": 12,

 "startColumn": 9,

 "endColumn": 16,

 "message": {

 "text": "(y + z) = 42"

 }

 }

]

3.28.7 relationships property

A location object MAY contain a property named relationships whose value is an array of zero or

more unique (§3.7.3) locationRelationship objects (§3.34) each of which declares one or more

directed relationship from thisObject to another location object, which we refer to as theTarget,

specified by locationRelationship.target (§3.34.2). The natures of the relationships between

thisObject and theTarget are specified by locationRelationship.kinds (§3.34.3).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 121 of 229

3.29 physicalLocation object

3.29.1 General

A physicalLocation object represents the physical location where a result was detected. A physical

location specifies a reference to an artifact together with a region within that artifact.

3.29.2 Constraints

Either the artifactLocation property (§3.29.3), the address property (§3.29.6), or both SHALL be

present.

If region.byteLength (§3.29.4, §3.30.12) and address.length (§3.29.6, §3.32.9) are both present,

then region.byteLength SHALL equal the absolute value of address.length.

3.29.3 artifactLocation property

A physicalLocation object MAY contain a property named artifactLocation whose value is an

artifactLocation object (§3.4) that represents the location of the artifact. If artifactLocation is

absent, then address (§3.29.6) SHALL be present.

3.29.4 region property

A physicalLocation object MAY contain a property named region whose value is a region object

(§3.30) that represents a relevant portion of the artifact. In particular, if the physicalLocation object

occurs within the locations property (§3.27.12) of a result object (§3.27), the region property SHALL

specify the region within the artifact where the result was detected.

EXAMPLE 1: In this example, a physicalLocation object specifies the location where

a result was detected. Its region property specifies the portion of the file where the

result was detected.

{ # A result object (§3.27).

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "physicalLocation": { # See §3.28.3.

 "artifactLocation": { # A artifactLocation object.

 "uri": "ui/window.c",

 "uriBaseId": "SRCROOT"

 },

 "region": { # The region specifies the portion of the file

 "startLine": 42 # where the result was detected.

 }

 }

 }

]

}

If the physicalLocation object specifies a location in a nested artifact, then the region property

SHALL specify the location with respect to the innermost nested artifact.

EXAMPLE 2: If a result occurs in a C++ file contained in a compressed archive, then the
region would represent the line and column number of the result with the C++ file. It
would not represent (for example) the offset of the C++ file from the start of the archive.

If the region property is absent, the physicalLocation object refers to the entire artifact.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 122 of 229

3.29.5 contextRegion property

If a physicalLocation object contains a region property (§3.29.4), it MAY also contain a property

named contextRegion whose value is a region object (§3.30) which specifies a region that is a

proper superset of the region specified by the region property. If region is absent, contextRegion

SHALL be absent.

NOTE: contextRegion enables a viewer to provide visual context when displaying a

portion of an artifact. It can also be used to improve result matching.

EXAMPLE In this example, an analysis tool detected a result on line 42. The tool
provides additional context for SARIF viewers by specifying a range of content
surrounding the result line.

{ # A result object (§3.27).

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "physicalLocation": { # A physicalLocation object (§3.29).

 "artifactLocation": { # An artifactLocation object (§3.4).

 "uri": "ui/window.c",

 "uriBaseId": "SRCROOT"

 },

 "region": { # See §3.29.4.

 "startLine": 42,

 "snippet": {

 "text": "int n = m + 1;"

 }

 },

 "contextRegion": {

 "startLine": 41,

 "endLine": 43,

 "snippet": {

 "text": "int m;\nint n = m + 1\n\n"

 }

 }

 }

 }

]

}

3.29.6 address property

A physicalLocation object MAY contain a property named address whose value is an address

object (§3.32) that represents the physical or virtual address of this location. If address is absent, then

artifactLocation (§3.29.3) SHALL be present.

3.30 region object

3.30.1 General

A region object represents a region, that is, a contiguous portion of an artifact.

The region object defines both “text properties” and “binary properties.” The text properties represent a

region as a contiguous range of zero or more characters (a “text region”). The binary properties represent
a region as a contiguous range of zero or more bytes (a “binary region”).

A region SHALL contain at least one of startLine, charOffset, or byteOffset.

If startLine (§3.30.5) > 0 or charOffset (§3.30.10) >= 0, this region object SHALL define a text

region. If byteOffset (§3.30.11) >= 0, this region object SHALL define a binary region. If a region

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 123 of 229

object defines both a text region and a binary region, the text region and the binary region SHALL specify
the identical range of bytes in the artifact, as determined by the artifact’s character encoding.

For regions in text artifacts, a region object SHOULD define a text region and MAY also define a binary

region; it SHALL define either a text region or a binary region or both.

For regions in binary artifacts, a region object SHALL define a binary region and SHALL NOT define a
text region.

If any text properties are present, enough text properties SHALL be present to fully specify a text region
(see §3.30.2). If any binary properties are present, then enough binary properties SHALL be present to
fully specify a binary region (see §3.30.3).

3.30.2 Text regions

NOTE 1: The examples in this section assume a text file with the following contents:

abcd\r\nefg\r\nhijk\r\nlmn\r\n

Breaking the lines for the sake of readability, the contents are:

abcd\r\n

efg\r\n

hijk\r\n

lmn\r\n

The file contains four lines, each of which ends with the two-character newline sequence
"\r\n", which is explicitly displayed for clarity.

The line number of the first line in a text artifact SHALL be 1. The column number of the first character in
each line SHALL be 1. The character offset of the first character in the artifact SHALL be 0.

The values of text properties SHALL NOT depend on the presence or absence of a byte order mark
(BOM) at the start of the artifact.

Column numbers are expressed in the measurement unit specified by theRun.columnKind (§3.14.27).

A SARIF viewer MAY choose to present column numbers that match the visual offset of each character
from the beginning of the line. These “visual” column numbers might not match the column numbers
contained in the SARIF file.

NOTE 2: Such a mismatch might occur if, for example, the line contains a tab character,
or an accented character represented by a base character plus a combining character.

A text artifact’s character encoding determines the number of bytes that represent each character, and
therefore determines the range of bytes represented by a text region. A SARIF consumer SHALL
consider an artifact to have the encoding specified by artifact.encoding (§3.24.9), if present, or else

by theRun.defaultEncoding (§3.14.24), if present. If neither is present, the consumer MAY use any

heuristic or procedure to determine the encoding, including (for example) prompting the user.

NOTE 3: If a consumer incorrectly determines an artifact’s encoding, it might not display
the artifact correctly. For example, when it attempts to highlight a region, it might highlight
an incorrect range of characters.

A text region MAY be specified in two ways:

• By means of the “line/column” properties startLine (§3.30.5), startColumn (§3.30.6),

endLine (§3.30.7), and endColumn (§3.30.8).

• By means of the “offset/length” properties charOffset (§3.30.9) and charLength (§3.30.10).

A text region SHALL specify both its start (the location of its first character) and its end (the location of its
last character).

NOTE 4: The end of a text region does not have to be specified explicitly if the default
values for endLine, endColumn, and/or charLength correctly describe the region.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 124 of 229

A text region does not include the character specified by endColumn (see §3.30.8).

EXAMPLE 1: The following regions (among others) all specify the range of characters
"bc".

{

 "startLine": 1,

 "startColumn": 2,

 "endLine": 1,

 "endColumn": 4 # The region excludes the character at endColumn.

}

{

 "charOffset": 1,

 "charLength": 2

}

{

 "startLine": 1,

 "startColumn": 2,

 "endLine": 1,

 "endColumn": 4,

 "charOffset": 1,

 "charLength": 2

}

EXAMPLE 2: The following region is invalid, even though it might appear to specify the
same range of characters "bc" as in EXAMPLE 1:

{

 "startLine": 1,

 "charOffset": 1, # Specifies the "b"

 "endColumn": 4 # Specifies the column one past the "c"

}

This is because the line/column properties and the offset/length properties, taken
independently, specify different regions:

• "startColumn" is absent, and so defaults to 1 (see §3.30.6).

• "endLine" is absent, and so defaults to "startLine", which in this example

is 1 (see §3.30.7).

• "charLength" is absent, and so defaults to 0 (see §3.30.10).

In summary, the above region is equivalent to the region

{

 "startLine": 1,

 "startColumn": 1,

 "endLine": 1,

 "endColumn": 4,

 "charOffset": 1,

 "charLength": 0

}

Now we can see that the line/column properties represent the range of characters
"abc", while the offset/length properties represent an insertion point before the character

"b" (see §3.30.10). Those two regions are not the same, and so the region is invalid.

If a region spans one or more lines, it SHALL include the newline sequences of all but the last line in the
region.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 125 of 229

NOTE 5: This is not an independent requirement; it is a consequence of the specification
for the default value of endColumn.

EXAMPLE 3: The region

{ "startLine": 2 }

includes the characters "efg".

EXAMPLE 4: The region

{ "startLine": 2, "endLine": 3 }

includes the characters "efg\r\nhijk".

To specify an entire line together with its trailing newline sequence, specify the region’s end point to be
column 1 on the next line.

NOTE 6: This is again a consequence of the specification of endColumn, which states

that it specifies the character one past the end of the region.

EXAMPLE 5: The region

{ "startLine": 2, "endLine": 3, "endColumn": 1 }

includes the characters "efg\r\n".

A region of length 0 is referred to as an “insertion point.” An insertion point MAY be specified either by
specifying charLength as 0, or by specifying the same values for startColumn and endColumn.

NOTE 7: Once more, this is again a consequence of the specification of endColumn.

EXAMPLE 6: These regions (among others) specify an insertion point before the "b" on

line 1.

{ "startLine": 1, "startColumn": 2, "endColumn": 2 }

{ "charOffset": 1, "charLength": 0 }

EXAMPLE 7: These regions (among others) specify an insertion point at the beginning of
the file:

{ "startLine": 1, "startColumn": 1, "endColumn": 1 }

{ "charOffset": 0, "charLength": 0 }

To specify an insertion point after the last character in an artifact, set endLine to the number of the last

line in the artifact, and set endColumn to a value one greater than the number of characters on the line,

including any trailing newline sequence.

EXAMPLE 8: These regions (among others) specify an insertion point at the very end of
the file. Note that the last line contains the five characters (including the newline
sequence) "lmn\r\n".

{ "startLine": 4, "startColumn": 6, "endColumn": 6 }

{ "charOffset": 22, "charLength": 0 }

3.30.3 Binary regions

The byte offset of the first byte in an artifact SHALL be 0.

To specify a byte region, at least byteOffset (§3.30.11) SHALL be present. byteLength (§3.30.12)

MAY also be present. byteOffset specifies the start of the region. byteLength specifies the region’s

length and thereby, indirectly, its end. A byteLength value of 0 represents an insertion point before the

byte specified by byteOffset.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 126 of 229

3.30.4 Independence of text and binary regions

The text-related and binary-related properties in a region object SHALL be treated independently. That

is, the value of a text-related property SHALL NOT be inferred from the value of any set of binary-related
properties, and vice versa.

EXAMPLE: This example is based on the sample text file shown in NOTE 1 of §3.30.2. It
represents invalid SARIF because the text-related and binary-related properties are
inconsistent. At first glance they appear to be consistent because the byte at offset 2 is
indeed on line 1:

{ "startLine": 1, "byteOffset": 2, "byteLength": 6 }

However, because the default values for the missing text-related properties are
determined entirely from the existing text-related properties, and independently of any
binary-related properties, this region is in fact equivalent to this one:

{

 "startLine": 1,

 "startColumn": 1, // Missing startColumn defaults to 1.

 "endLine": 1, // Missing endLine defaults to startLine.

 "endColumn": 5, // Missing endColumn defaults to (length of endLine + 1),

 // exclusive of newline sequence.

 "byteOffset": 2

 "byteLength": 6

}

This makes it clear that the text-related and binary-related properties represent different ranges of bytes,
and therefore the region is invalid.

3.30.5 startLine property

When a region object represents a text region specified by line/column properties, it SHALL contain a

property named startLine whose value is a positive integer equal to the line number of the line

containing the first character in the region.

3.30.6 startColumn property

When a region object represents a text region specified by line/column properties, it MAY contain a

property named startColumn whose value is a positive integer equal to the column number of the first

character in the region.

If startColumn is absent, it SHALL default to 1.

3.30.7 endLine property

When a region object represents a text region specified by line/column properties, it MAY contain a

property named endLine whose value is a positive integer equal to the line number of the line containing

the last character in the region.

If endLine is absent, its value SHALL default to startLine.

3.30.8 endColumn property

When a region object represents a text region specified by line/column properties, it MAY contain a

property named endColumn whose value is an integer whose value is one greater than the column

number of the last character in the region.

If endColumn is absent, it SHALL default to a value one greater than the column number of the last

character on the line, excluding any newline sequence.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 127 of 229

3.30.9 charOffset property

When a region object represents a text region specified by offset/length properties, it SHALL contain a

property named charOffset whose value is an integer equal to the zero-based character offset of the

first character in the region from the beginning of the artifact. If charOffset is absent, it SHALL default

to -1, which indicates that the value is unknown (not set).

3.30.10 charLength property

When a region object represents a text region specified by offset/length properties, it MAY contain a

property named charLength whose value is a non-negative integer equal to the number of characters in

the region.

If charLength is absent, it SHALL default to 0, which SHALL be interpreted as an insertion point at the

position specified by charOffset (§3.30.9)

The sum of charOffset and charLength SHALL be greater than or equal to 0 and less than or equal

to the number of characters in the artifact.

A region whose charOffset is equal to the number of characters in the artifact and whose charLength

is 0 is permitted and SHALL represent an insertion point at the end of the artifact.

3.30.11 byteOffset property

When a region object represents a binary region, it SHALL contain a property named byteOffset

whose value is an integer equal to the zero-based byte offset of the first byte in the region from the
beginning of the artifact. If byteOffset is absent, it SHALL default to -1, which indicates that the value

is unknown (not set).

3.30.12 byteLength property

When a region object represents a binary region, it MAY contain a property named byteLength whose

value is an integer equal to the number of bytes in the region. If byteLength is absent, it SHALL default

to 0, which SHALL be interpreted as an insertion point at the position specified by byteOffset

(§3.30.11).

The sum of byteOffset and byteLength SHALL be greater than or equal to 0 and less than or equal

to the number of bytes in the artifact.

A region object whose byteOffset equals the number of bytes in the artifact and whose byteLength

is 0 is permitted, and SHALL represent an insertion point at the end of the artifact.

3.30.13 snippet property

A region object MAY contain a property named snippet whose value is an artifactContent object

(§3.3) representing the portion of the artifact specified by the region object.

NOTE: The snippet property has various uses:

• It allows a SARIF viewer to present the contents of the region even if the artifact
from which it was taken is not available.

• It also allows an end user examining a SARIF log file to see the relevant content
without opening another file.

• It can be used to improve result matching.

3.30.14 message property

A region object MAY contain a property named message whose value is a message object (§3.11)

containing a message relevant to the region.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 128 of 229

A SARIF viewer MAY display this message when the user interacts with the region. (For example, if the
user hovers over the region with the mouse, the viewer might present the message as hover text.)

3.30.15 sourceLanguage property

If the region object represents a portion of a text artifact that contains source code, it MAY contain a

property named sourceLanguage whose value is a hierarchical string (§3.5.4) that specifies the

programming language in which this portion of the source code is written. If the region object does not

represent a portion of a text artifact containing source code, then sourceLanguage SHALL be absent.

For the remainder of this section, we assume that the region object represents a portion of a text artifact

that contains source code.

NOTE: This property is intended to help SARIF viewers to render code snippets
(§3.30.13) with appropriate syntax coloring. It is intended for use in mixed-language files,
such as HTML files that contain JavaScript™. For more information about this usage, see
§3.24.10.

if sourceLanguage is absent, it SHALL default to the value of the sourceLanguage property

(§3.24.10) of the artifact object (§3.24) which describes the artifact that contains the region.

artifact.sourceLanguage in turn defaults to theRun.defaultSourceLanguage (§3.14.25). If all

three of region.sourceLanguage, artifact.sourceLanguage, and

theRun.defaultSourceLanguage are absent, the source language of the region object SHALL be

taken to be unknown. In that case, a SARIF viewer MAY use any method or heuristic to determine the
region’s source language, for example, by examining the file’s file name extension or MIME type, or by
prompting the user.

For conventions and practices regarding the value of this property, see §3.24.10.2.

3.31 rectangle object

3.31.1 General

A rectangle object specifies a rectangular area within an image. When a SARIF viewer displays an

image, it MAY indicate the presence of these areas, for example, by highlighting them or surrounding
them with a border.

3.31.2 top, left, bottom, and right properties

A rectangle object SHALL contain properties named top, left, bottom, and right, each of which

contains a number (as defined by the JSON Schema standard [JSCHEMA01]) specifying one of the
coordinates of the rectangle within the image. These properties SHALL be measured in the image
format’s natural units (for example, pixels for raster-based image formats). These values MAY be positive
or negative, depending on the natural coordinate system of the image format. They MAY increase either
from left to right or from right to left, and either from top to bottom or from bottom to top, again depending
on the natural coordinate system of the image format.

NOTE: A number in JSON schema can take a variety of forms, including simple integers
(42) and floating-point numbers (3.14).

3.31.3 message property

A rectangle object SHOULD contain a property named message whose value is a message object

(§3.11) containing a message relevant to this area of the image.

A SARIF viewer MAY display this message when the user interacts with the area. For example, if the user
hovers over the area with the mouse, the viewer might present the message as hover text.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 129 of 229

3.32 address object

3.32.1 General

An address object describes a physical or virtual address, or a range of addresses, in an “addressable

region” (memory or a binary file).

3.32.2 Parent-child relationships

address objects can be linked by their parentIndex properties (§3.32.13) to form a chain in which

each address is specified as an offset from a “parent” object which we refer to as theParent.

EXAMPLE: In this example, the location of the Sections region of a Windows ® Portable
Executable file [PE] is expressed as an offset from the start of the module. The location
of the .text section is in turn expressed as an offset from Sections.

{ # A run object (§3.14).

 "addresses": [# See §3.14.18.

 {

 "name": "Multitool.exe", # See §3.32.10.

 "kind": "module", # See §3.32.12.

 "absoluteAddress": 1024 # See §3.32.6.

 },

 {

 "name": "Sections",

 "kind": "header",

 "parentIndex": 0, # See §3.32.13.

 "offsetFromParent": 376, # See §3.32.8.

 "absoluteAddress": 1400,

 "relativeAddress": 376 # See §3.32.7.

 },

 {

 "name": ".text",

 "kind": "section",

 "parentIndex": 1,

 "offsetFromParent": 136,

 "absoluteAddress": 1536,

 "relativeAddress": 512

 }

],

 ...

}

3.32.3 Absolute address calculation

Each address object has an associated value called its “absolute address” which is the offset of the

address from the start of the addressable region. The absolute address is calculated by executing the
function CalculateAbsoluteAddress defined below on thisObject or by any procedure with the

same result.

This procedure assumes that the offsetFromParent (§3.32.8) and parentIndex (§3.32.13)

properties are either both present or both absent; if this is not the case, the SARIF file is invalid.

FUNCTION CalculateAbsoluteAddress(addr)

 IF addr.absoluteAddress exists THEN

 RETURN addr.absoluteAddress

 ELSE IF addr.parentIndex exists THEN

 LET theParent = the parent object (see §3.32.2) of addr

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 130 of 229

 RETURN addr.offsetFromParent + CalculateAbsoluteAddress(theParent)

 ELSE

 ERROR "Absolute address cannot be determined".

If CalculateAbsoluteAddress(thisObject) or any of its recursive invocations encounters an

ERROR, the absolute address cannot be determined.

If both absoluteAddress and offsetFromParent exist, then absoluteAddress SHALL equal the

value that CalculateAbsoluteAddress would have returned if absoluteAddress were absent, if

CalculateAbsoluteAddress would have returned successfully in that circumstance.

3.32.4 Relative address calculation

Each address object has an associated value called its “relative address” which is the offset of the

address from the address of the top-most object in its parent chain. The relative address is calculated by
executing the function CalculateRelativeAddress defined below on thisObject or by any

procedure with the same result.

This procedure assumes that the offsetFromParent (§3.32.8) and parentIndex (§3.32.13)

properties are either both present or both absent; if this is not the case, the SARIF file is invalid.

FUNCTION CalculateRelativeAddress(addr)

 IF addr.relativeAddress exists THEN

 RETURN addr.relativeAddress

 ELSE IF addr.parentIndex exists THEN

 LET theParent = the parent object (see §3.32.2) of addr

 RETURN addr.offsetFromParent + CalculateRelativeAddress(theParent)

 ELSE

 RETURN 0

If CalculateRelativeAddress(thisObject) or any of its recursive invocations encounters an

ERROR, the relative address cannot be determined.

If both relativeAddress and offsetFromParent exist, then relativeAddress SHALL equal the

value that CalculateRelativeAddress would have returned if relativeAddress were absent, if

CalculateRelativeAddress would have returned successfully in that circumstance.

3.32.5 index property

Depending on the circumstances, an address object either MAY, SHALL NOT, or SHALL contain a

property named index whose value is the array index (§3.7.4) within theRun.addresses (§3.14.18) of

an address object that provides the properties for thisObject. We refer to the object in

theRun.addresses as the “cached object.”

If thisObject is an element of theRun.addresses, then index MAY be present. If present, its value

SHALL be the index of thisObject within theRun.addresses.

Otherwise, if theRun.addresses is absent, or if it does not contain a cached object for thisObject,

then index SHALL NOT be present.

Otherwise (that is, if thisObject belongs to a result, and theRun.addresses contains a cached

object for thisObject), then index SHALL be present, and its value SHALL be the array index within

theRun.addresses of the cached object.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 131 of 229

If index is present, thisObject SHALL take all properties present on the cached object. If

thisObject contains any properties other than index, they SHALL equal the corresponding properties

of the cached object.

NOTE 1: This allows a SARIF producer to reduce the size of the log file by reusing the
same address object in multiple results.

NOTE 2: For examples of the use of an index property to locate a cached object, see

§3.38.2.

3.32.6 absoluteAddress property

An address object MAY contain a property named absoluteAddress whose value is a non-negative

integer containing the absolute address (see §3.32.3) of thisObject.

If absoluteAddress is absent, it SHALL default to -1, which indicates that the value is unknown (not

set).

3.32.7 relativeAddress property

If parentIndex (§3.32.13) is present, an address object MAY contain a property named

relativeAddress whose value, if present, is an integer containing the relative address (see §3.32.4) of

thisObject.

If parentIndex is absent, relativeAddress SHALL be absent.

If relativeAddress is absent, it SHALL default to null, which indicates that the value is unknown (not

set).

3.32.8 offsetFromParent property

If parentIndex (§3.32.13) is present, an address object MAY contain a property named

offsetFromParent whose value, if present, is an integer containing the offset of this address from the

absolute address of theParent (see §3.32.2). This is the case even if the absolute address of the parent

cannot be determined by the procedure in §3.32.3.

NOTE 1: The rationale is that the absolute address always exists, even if the log file does
not contain enough information to determine it, so it is always sensible to talk about an
offset from that address.

If parentIndex is absent, offsetFromParent SHALL be absent.

If offsetFromParent is absent, it SHALL default to null, which indicates that the value is unknown

(not set).

3.32.9 length property

An address object MAY contain a property named length whose value, if present, is an integer whose

absolute value specifies the number of bytes in the range of addresses specified by this object.

A negative value for length SHALL mean that the data structure being described grows from higher

addresses towards lower addresses (as, for example, is often the case for a stack).

If length is absent, it SHALL default to null, which indicates that the value is unknown (not set).

3.32.10 name property

An address object MAY contain a property named name whose value is a string containing the name of

this address.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 132 of 229

3.32.11 fullyQualifiedName property

An address object MAY contain a property named fullyQualifiedName whose value is a string

containing the fully qualified name of this address.

EXAMPLE: "fullyQualifiedName": "MyDll.dll+0x47"

This name consists of two components. The first component is the name of the address
at which the module was loaded into memory. The second component represents an
offset from that address.

3.32.12 kind property

An address object MAY contain a property named kind whose value is a string that specifies the kind

of addressable region in which this address is located.

When possible, SARIF producers SHOULD use the following values, with the specified meanings.

• "data": An addressable location containing non-executable data.

• "header": A data structure that precedes one or more addressable regions and specifies the

layout and location of objects within the address space.

• "function": An addressable region, possibly named, containing a sequence of instructions that

perform a specified task.

• "instruction": An addressable location containing executable code.

• "page": An addressable region whose contents can be moved between primary and secondary

storage.

• "section": A named region of a file containing executable code or data, which in some

circumstances is loaded into memory.

• "segment": 1. A data structure in a binary that describes a region of memory, specifying its

addressing and permissions information, as well as information about which sections are to be
loaded into the segment. 2. A region of memory whose contents are specified by the information
in a segment defined in a binary, or by the operating system.

• "stack": An addressable region containing a call stack.

• "stackFrame": An addressable region containing a single frame from within a call stack.

• "module": The location at which a module was loaded.

• "table": An addressable region with a distinct purpose and a specified internal organization

The definitions of some of these "kind" values vary across operating systems. A SARIF producer

SHOULD use the term most appropriate for the target operating system.

Although a function does contain executable code, the value "function" SHOULD be used for the

address of the start of a function, because it is more specific. The value "instruction" SHOULD be

used for an address within the body of a function.

If none of these values are appropriate, a SARIF producer MAY use any value.

3.32.13 parentIndex property

If theParent exists (that is, if thisObject is expressed as an offset from some other address), then an

address object SHALL contain a property named parentIndex whose value is the array index (§3.7.4)

of theParent within theRun.addresses (§3.14.18).

If theParent does not exist, then parentIndex SHALL be absent.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 133 of 229

3.33 logicalLocation object

3.33.1 General

A logicalLocation object describes a logical location. A logical location is a location specified by a

programmatic construct such as a namespace, a type, or a method, without regard to the physical
location where the construct occurs.

logicalLocation objects occur in two places: as array elements of run.logicalLocations

(§3.14.17) and as array elements of location.logicalLocations (§3.28.4).

3.33.2 Logical location naming rules

Every logical location has a “fully qualified logical name” (more briefly, a “fully qualified name”) that fully
specifies the programmatic construct to which it refers. When programmatic constructs are nested (such
as a method within a class within a namespace), the fully qualified name is typically a hierarchical
identifier such as "N.C.F(void)" or "N::C::F(void)". We refer to the rightmost component of this

hierarchical identifier as the “logical name” (more briefly, the “name”) of the logical location.

Whenever possible, logical names and fully qualified logical names SHOULD conform to the syntax of the
programming language in which the programmatic construct specified by the logical location was
expressed.

EXAMPLE 1: The fully qualified logical name of the C++ method f(void) in class C in

namespace N is "N::C::f(void)". Its logical name is "f(void)".

This is not always possible, for two reasons:

• For certain values of logicalLocation.kind (§3.33.7), there is no language syntax to specify

the fully qualified name.

EXAMPLE 2: Suppose the logical location is the local variable pBuffer in the C++

method "N::C::f(void)". logicalLocation.kind is "variable". There is no

way to express the fully qualified name in C++. The SARIF producer might choose a fully
qualified name such as "N::C::f(void)?pBuffer".

• For other values of logicalLocation.kind, it is sometimes but not always possible to

express the logical location in language syntax.

EXAMPLE 3: Suppose the logical location is the anonymous callback function in this
JavaScript™ function:

function click_it() {

 $("button").click(function(){

 alert("Clicked");

 });

}

logicalLocation.kind is "function", for which it is sometimes possible to specify

a fully qualified name. But there is no language syntax to express the name of an
anonymous callback. The SARIF producer might choose a fully qualified name such as
"click_it?anon-1".

3.33.3 index property

Depending on the circumstances, a logicalLocation object either MAY, SHALL NOT, or SHALL

contain a property named index whose value is the array index (§3.7.4) within

theRun.logicalLocations (§3.14.17) of a logicalLocation object that provides the properties for

thisObject. We refer to the object in theRun.logicalLocations as the “cached object.”

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 134 of 229

If thisObject is an element of theRun.logicalLocations, then index MAY be present. If present,

its value SHALL be the index of thisObject within theRun.logicalLocations.

Otherwise, if theRun.logicalLocations is absent, or if it does not contain a cached object for

thisObject, then index SHALL NOT be present.

Otherwise (that is, if thisObject belongs to a result, and theRun.logicalLocations contains a

cached object for thisObject), then index SHALL be present, and its value SHALL be the array index

within theRun.logicalLocations of the cached object.

If index is present, thisObject SHALL take all properties present on the cached object. If

thisObject contains any properties other than index, they SHALL equal the corresponding properties

of the cached object.

NOTE 1: This allows a SARIF producer to reduce the size of the log file by reusing the
same logicalLocation object in multiple results.

NOTE 2: For examples of the use of an index property to locate a cached object, see

§3.38.2.

3.33.4 name property

A logicalLocation object SHOULD contain a property named name whose value is the logical name

of the programmatic construct specified by this object. For example, this property might contain the name
of a class or a method.

The name property SHALL be suitable for display and SHALL follow the naming rules for logical names

described in §3.33.2.

NOTE: A C++ analysis tool might have available both the source code form of a function
name and the compiler’s “decorated” function name (which encodes the function
signature in a manner that is compiler-dependent and not easily readable). The tool
would place the source code form of the function name in the name property, and the

decorated name in the decoratedName property (§3.33.6).

EXAMPLE: In this C++ example, the fully qualified name is "b::c(float)", so "name"

is the rightmost component, "c(float)".

{ # A logicalLocation object.

 "name": "c(float)",

 "fullyQualifiedName": "b::c(float)", # See §3.33.5.

 "kind": "function" # See §3.33.7

}

3.33.5 fullyQualifiedName property

Depending on the circumstances, a logicalLocation object either SHOULD or MAY contain a

property named fullyQualifiedName whose value is the fully qualified name of the logical location.

This name SHALL follow the naming rules for fully qualified names described in §3.33.2.

If this logicalLocation object represents a top-level logical location, then fullyQualifiedName

MAY be present. If present, it SHALL equal name; if absent, it SHALL default to name. If this object does

not represent a top-level logical location, fullyQualifiedName SHOULD be present.

It is possible for two or more distinct logical locations to have the same fully qualified name.

NOTE: This is an extremely rare corner case.

EXAMPLE: Suppose a tool analyzes two C++ source files:

// file1.cpp

namespace A {

 class B {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 135 of 229

 }

}

// file2.cpp

namespace A {

 namespace B {

 class C {

 }

 }

}

These could not coexist in the same compilation, but there is no reason two such source
files could not exist.

If the tool detected one result in class B in file1.cpp, and another result in namespace

B in file2.cpp, the fullyQualifiedName for both would be A::B. However, they would

be distinguished by their parentIndex properties:

"logicalLocations": [

 {

 "name": "B",

 "fullyQualifiedName": "A::B",

 "kind": "namespace",

 "parentIndex": 1

 },

 {

 "name": "A",

 "kind": "namespace"

 },

 {

 "name": "B",

 "fullyQualifiedName": "A::B",

 "kind": "type",

 "parentIndex": 3

 },

 {

 "name": "A",

 "kind": "namespace"

 }

]

NOTE: There are a few reasons the fullyQualifiedName property exists, even

though the information it contains can be reconstructed from the name properties of this

object and its parent objects in run.logicalLocations:

• run.logicalLocations might not be present.

• It allows a SARIF viewer to display the logical location in a way that is easily
understood by users.

• As mentioned in §3.28.1, fullyQualifiedName is also particularly convenient

for fingerprinting, although the more detailed information in
run.logicalLocations could be used instead.

• It relieves viewers from having to format the logical location from the more
detailed information in run.logicalLocations.

• It is useful for producing readable in-source suppressions (for example,
“suppress all instance of rule CA2101 in the class

NamespaceA.NamespaceB.ClassC”).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 136 of 229

3.33.6 decoratedName property

A logicalLocation object MAY contain a property named decoratedName whose value is a string

containing the compiler's internal representation of the logical location associated with this location

object.

NOTE: Some compilers refer to this representation as a “mangled name.” It typically
encodes the function’s name, signature, return type, and the class and namespace (if
any) to which it belongs.

EXAMPLE: In this example, the decoratedName property contains a “mangled” name

emitted by a C++ compiler:

{ # A logicalLocation object

 "name": "c(float)",

 "fullyQualifiedName": "b::c(float)",

 "decoratedName": "?c@b@@AAGXM@Z"

}

3.33.7 kind property

A logicalLocation object SHOULD contain a property named kind whose value is one of the

following strings, if any of those strings accurately describes the construct identified by this object.

Although the values suggested here are useful in the specified categories (for example, "member" is

useful in describing executable code), they MAY be used in other contexts as appropriate.

• Values for locations within executable code:
o "function"

o "member"

o "module"

o "namespace"

o "resource"

o "type"

o "returnType"

o "parameter"

o "variable"

• Values for locations within XML or HTML documents:
o "element"

o "attribute"

o "text"

o "comment"

o "processingInstruction"

o "dtd"

o "declaration"

EXAMPLE 1: Consider the following XML document:

1. <?xml version="1.0"?>

2. <orders>

3. <order number="">

4. <total>-$3.25</total>

5. </order>

6. </order>

Suppose that an analysis tool detects errors on line 3 (the order number is blank) and line
4 (the total is negative). It might represent the logical locations of these errors as XML
Paths (although this is not required), as follows:

{ # A run object (§3.14)

 "results": [# See §3.14.23.

 { # A result object (§3.27).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 137 of 229

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "logicalLocations": [# See §3.28.4.

 { # A logicalLocation object.

 "fullyQualifiedName": "/orders/order[1]/@number",

 "index": 2

 }

]

 }

],

 ...

 },

 {

 "locations": [

 {

 "logicalLocations": [

 {

 "fullyQualifiedName": "/orders/order[1]/total/text()",

 "index": 3

 }

]

 }

],

 ...

 }

],

 "logicalLocations": [# See §3.14.17.

 { # A logicalLocation object.

 "name": "orders",

 "fullyQualifiedName": "/orders",

 "kind": "element"

 },

 {

 "name": "order[1]",

 "fullyQualifiedName": "/orders/order[1]",

 "kind": "element",

 "parentIndex": 0

 },

 {

 "name": "number",

 "fullyQualifiedName": "/orders/order[1]/@number",

 "kind": "attribute",

 "parentIndex": 1

 },

 {

 "name": "text",

 "fullyQualifiedName": "/orders/order[1]/text()",

 "kind": "text",

 "parentIndex": 1

 }

]

}

• Values for locations within JSON documents:
o "object"

o "array"

o "property"

o "value"

EXAMPLE 2: Consider the following JSON document:

1. {

2. "orders": [

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 138 of 229

3. {

4. "productIds": ["A-101", "", "A-223"],

5. "total": "-$3.25"

6. }

7.]

8. }

Suppose that an analysis tool detects errors on line 4 (one of the product ids blank) and
line 5 (the total is negative). It might represent the logical locations of these errors as
JSON Pointers (although this is not required), as follows:

{ # A run object (§3.14)

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "logicalLocation": { # See §3.28.4.

 "fullyQualifiedName": "/orders/0/productIds/1",

 "index": 3

 }

 }

]

 },

 {

 "locations": [

 {

 "logicalLocation": {

 "fullyQualifiedName": "/orders/0/total",

 "index": 4

 }

 }

]

 }

],

 "logicalLocations": [# See §3.14.17.

 { # A logicalLocation object (§3.33).

 "name": "orders",

 "fullyQualifiedName": "/orders",

 "kind": "array"

 },

 {

 "name": "0",

 "fullyQualifiedName": "/orders/0",

 "kind": "object",

 "parentIndex": 0

 },

 {

 "name": "productIds",

 "fullyQualifiedName": "/orders/0/productIds",

 "kind": "array",

 "parentIndex": 1

 },

 {

 "name": "1",

 "fullyQualifiedName": "/orders/0/productIds/1",

 "kind": "value",

 "parentIndex": 2

 },

 {

 "name": "total",

 "fullyQualifiedName": "/orders/0/total",

 "kind": "property",

 "parentIndex": 1

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 139 of 229

 }

]

}

If none of those strings accurately describes the construct, kind MAY contain any value specified by the
analysis tool.

If a logical location is both a member and a type (for example, a nested class in C++ or C#), the value of
kind, if present, SHALL be "type".

NOTE: The purpose of this property is to help result management systems group results
that occur in the same logical location. If one result specifies the logical location
“namespace A”, and another result specifies the logical location “class A”, the difference
in the kind property between the two results tells the result management system to sort

them into different groups.

3.33.8 parentIndex property

If this logicalLocation object represents a nested logical location, then it SHALL contain a property

named parentIndex whose value is the array index (§3.7.4) of the parent logicalLocation object

within theRun.logicalLocations (§3.14.17).

If thisObject represents a top-level logical location, then parentIndex SHALL be absent.

NOTE: parentIndex makes it possible to navigate from the logicalLocation object

representing a nested logical location to the logicalLocation objects representing

each of its parent logical locations in turn, up to the top-level logical location.

EXAMPLE: In this example, the logical location n::f(void) is nested within the top-

level logical location n. The logicalLocation object representing n::f(void)

contains a parentIndex property that points to the object representing n; the object

representing n does not contain a parentIndex property.

{ # A run object (§3.14).

 "logicalLocations": [# See §3.14.17.

 {

 "name": "f(void)", # See §3.33.4.

 "fullyQualifiedName": "n::f(void)", # See §3.33.5.

 "kind": "function", # See §3.33.7.

 "parentIndex": 1

 },

 {

 "name": "n",

 "kind": "namespace"

 }

]

}

3.34 locationRelationship object

3.34.1 General

A locationRelationship object specifies one or more directed relationships from one location

object (§3.28), which we refer to as theSource, to another one, which we refer to as theTarget.

locationRelationship objects appear as elements of the location.relationships array

(§3.28.7). The location object containing this property is theSource.

EXAMPLE: In this example, the location relationships specify that the file f.h in which the
result was found is included by g.h, which is in turn included by g.c. Depending on the

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 140 of 229

circumstances, it might or might not be useful to include both the "includes" and

"isIncludedBy" relationships, as this example does for g.h.

{ # A result object (§3.27).

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "id": 0, # See §3.28.2.

 "physicalLocation": {

 "artifactLocation": {

 "uri": "f.h"

 },

 "region": {

 "startLine": 42

 }

 },

 "relationships": [# See §3.28.7

 { # A locationRelationship object.

 "target": 1, # See §3.34.2.

 "kinds": ["isIncludedBy"] # See §3.34.3.

 }

]

 }

],

 "relatedLocations": [# See §3.27.22.

 {

 "id": 1,

 "physicalLocation": {

 "artifactLocation": {

 "uri": "g.h"

 },

 "region": {

 "startLine": 17 # The line that includes f.h.

 }

 },

 "relationships": [

 {

 "target": 0,

 "kinds": ["includes"]

 },

 {

 "target": 2,

 "kinds": ["isIncludedBy"]

 }

]

 },

 {

 "id": 2

 "physicalLocation": {

 "artifactLocation": {

 "uri": "g.c"

 },

 "region": {

 "startLine": 8 # The line that includes g.h.

 }

 },

 "relationships": [

 {

 "target": 1,

 "kinds": ["includes"]

 }

]

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 141 of 229

}

3.34.2 target property

A locationRelationship object SHALL contain a property named target whose value is a non-

negative integer which identifies theTarget (see §3.34.1) among all location objects (§3.28) in

theResult by virtue of being equal to theTarget.id (§3.28.2).

NOTE: Negative values are forbidden because their use might suggest some non-
obvious semantic difference between positive and negative values.

3.34.3 kinds property

A locationRelationship object MAY contain a property named kinds whose value is an array of

one or more unique (§3.7.3) strings each of which specifies a relationship between theSource and

theTarget (see §3.34.1). If kinds is absent, it SHALL default to ["relevant"] (see below for the

meaning of "relevant").

When possible, SARIF producers SHOULD use the following values, with the specified meanings.

• "includes": The artifact identified by theSource includes the artifact identified by

theTarget.

• "isIncludedBy": The artifact identified by theSource is included by the artifact identified by

theTarget.

• "relevant": theTarget is relevant to theSource in a way not covered by other relationship

kinds.

If none of these values are appropriate, a SARIF producer MAY use any value.

NOTE: Although "relevant" is a catch-all for any relationship not described by the

other values, a producer might still wish to define its own more specific values.

In particular, the values defined for logicalLocation.kind (§3.33.7) and

threadFlowLocation.kinds (§3.38.8) might prove useful.

3.34.4 description property

A locationRelationship object MAY contain a property named description whose value is a

message object (§3.11) that describes the relationship.

3.35 suppression object

3.35.1 General

A suppression object describes a request to suppress a result.

NOTE 1: The suppression object is valuable in compliance scenarios, where teams

must show an auditor that they have looked at all results that corporate policy requires,
and either fixed them or explicitly decided not to fix them. The kind property (§3.35.2)

enables a review process that ensures that the engineering team agrees with the
suppression, and makes the agreement explicit in the log file.

NOTE 2: The treatment of suppressed results depends on the development environment
within which the log file is used, for example, a build system, an integrated development
environment (IDE), or a result management system. Typically, development
environments do not expose suppressed results to the user. For example, they do not
include them in build log files, display them in error lists, or include them in bug counts.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 142 of 229

3.35.2 kind property

A suppression object SHALL contain a property named kind whose value is a string with one of the

following values, with the specified meanings:

• "inSource": The result is suppressed by a syntactic construct offered by the programming

language.

EXAMPLE: The SuppressMessage attribute in the .NET Framework.

• "external": The result is suppressed in an external, persistent store.

EXAMPLE: A database containing historical information about the results from analysis
tools. Such a store might offer the ability to mark a result as “suppressed,” meaning that if
the result is encountered again, it is to be ignored.

3.35.3 status property

A suppression object MAY contain a property named status whose value is a string with one of the

following values, with the specified meanings:

• "accepted": The suppression is accepted.

• "underReview": The engineering team is discussing the result to decide if they will suppress it.

• "rejected": The engineering team decided not to suppress the result.

3.35.4 location property

A suppression object MAY contain a property named location whose value is a location object

(§3.28) that specifies the location where the suppression is persisted.

NOTE: In the common scenario, a suppression is represented by a source code
construct (which we will refer to as a “suppression construct”) such as an attribute or a
specially formatted comment at the location where the result was detected. In this
scenario, location is unnecessary, although it is permitted, because an end user who

navigates from the result to the source code location will see the suppression attribute or
comment near the relevant code.

Nevertheless, there are several scenarios where location is useful. Here are some

examples:

When the suppression construct is placed in a separate compiled source file, kind

(§3.35.2) is "inSource", and location.physicalLocation (§3.28.3) specifies the

location of the suppression attribute in that separate file.

Even when the suppression construct is adjacent to the result line,
location.physicalLocation can be useful because it allows you to include in the

log file a source code snippet containing the suppression construct, using
location.physicalLocation.region.snippet (§3.29.4, §3.30.13).

When a tool detects a result within a method, but the suppression construct is applied to
some higher-level construct such as the enclosing class, then kind is again

"inSource", location.logicalLocation (§3.28.4) can specify the construct to

which the suppression was applied, and location.physicalLocation can still

usefully specify the location of the suppression construct in the source file, since it is
distant from the result.

In a similar case, a binary analysis tool that detected the suppression within an
executable file’s metadata could provide location.logicalLocation even if it could

not provide location.physicalLocation.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 143 of 229

If a suppression is stored in a separate, non-compiled file, sometimes called a “sidecar
file,” kind is "external", and location.physicalLocation specifies the location

of the suppression within the sidecar file. The sidecar file might even be another SARIF
file.

If a suppression is stored in a database, kind is again "external", and

location.physicalLocation might specify the URI of a query that returns the

database information that describes the suppression.

3.35.5 guid property

A suppression object MAY contain a property named guid whose value is a GUID-valued string

(§3.5.3).

NOTE: This can be used, for example, to link a suppression object in a SARIF file to

suppression information in a result management system’s database.

3.35.6 justification property

A suppression object MAY contain a property named justification whose value is a user-supplied

string that explains why the result was suppressed.

This is one of the few properties that contain textual content supplied by a user rather than by a tool or
taxonomy (see §3.19.3) vendor. As such, it might contain undesirable content. Therefore, SARIF
consumers SHOULD exercise appropriate caution when displaying, sharing, or publishing this
information.

NOTE: This property exists because the information it contains is commonly made
available by existing suppression mechanisms such as the SuppressMessage attribute

in the .NET Framework.

3.36 codeFlow object

3.36.1 General

A codeFlow object describes the progress of one or more programs through one or more thread flows,

which together lead to the detection of a problem in the system being analyzed. We define a thread flow
as a temporally ordered sequence of code locations occurring within a single thread of execution, typically
an operating system thread or a fiber. The thread flows in a code flow MAY lie within a single process,
within multiple processes on the same machine, or within multiple processes on multiple machines.

EXAMPLE

{ # A result object (§3.27).

 "codeFlows": [# See §3.27.18.

 { # A codeFlow object.

 "message": { # See §3.36.2.

 "text": "..."

 },

 "threadFlows": [# See §3.36.3.

 { # A threadFlow object (§3.37).

 "id": "thread-123", # See §3.37.2.

 "message": { # See §3.37.3.

 "text": "..."

 },

 "locations": [# See §3.37.6.

 { # A threadFlowLocation object (§3.38).

 "location": { # See §3.38.3.

 "physicalLocation": { # See §3.28.3.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 144 of 229

 "artifactLocation": {

 "uri": "ui/window.c",

 "uriBaseId": "SRCROOT"

 },

 "region": {

 "startLine": 42

 }

 }

 },

 "state": { # See §3.38.9.

 "x": {

 "text": "42"

 },

 "y": {

 "text": "54"

 },

 "x + y": {

 "text": "96"

 }

 },

 "nestingLevel": 0, # See §3.38.10.

 "executionOrder": 2 # See §3.38.11.

 }

]

 }

]

 }

]

}

3.36.2 message property

A codeFlow object MAY contain a property named message whose value is a message object (§3.11)

relevant to the code flow.

3.36.3 threadFlows property

A codeFlow object SHALL contain a property named threadFlows whose value is an array of one or

more threadFlow objects (§3.37) each of which describes the progress of a program through a single

thread of execution such as an operating system thread or a fiber.

3.37 threadFlow object

3.37.1 General

A thread flow is a sequence of code locations that specify a possible path through a single thread of
execution such as an operating system thread or a fiber.

For an example, see §3.36.1.

3.37.2 id property

A threadFlow object MAY contain a property named id whose value is a string that uniquely identifies

this threadFlow within its containing codeFlow object (§3.36).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 145 of 229

NOTE: A tool might choose to use an operating system thread id for this purpose.
However, if thread ids are reused on a single machine, or if the code flow includes thread
flows from more than one machine, the thread id might not be unique.

3.37.3 message property

A threadFlow object MAY contain a property named message whose value is a message object

(§3.11) relevant to the thread flow.

3.37.4 initialState property

A threadFlow object MAY contain a property named initialState whose value is an object (§3.6)

each of whose property values is a multiformatMessageString object (§3.12) that represents the

initial value of a relevant item prior to the first location in the thread flow. This property, together with
threadFlowLocation.state (§3.38.9), enables a SARIF viewer to present a debugger-like “watch

window” experience as the user traverses a thread flow.

This property SHOULD NOT include items whose values remain constant throughout the thread flow.
Such items SHOULD be stored in the immutableState property (§3.37.5).

For details of how properties within a “state” object are represented, see EXAMPLE 1 in §3.38.9.

3.37.5 immutableState property

A threadFlow object MAY contain a property named immutableState whose value is an object (§3.6)

each of whose property values is a multiformatMessageString object (§3.12) that represents the

value of a relevant item that remains constant throughout the thread flow.

EXAMPLE: In this example, immutableState holds the value of a global variable that

remains constant throughout the thread flow.

{ # A threadFlow object.

 "immutableState": {

 "MaxFiles": {

 "text": "1000"

 }

 }

}

3.37.6 locations property

A threadFlow object SHALL contain a property named locations whose value is an array of one or

more threadFlowLocation objects (§3.38). Each element of the array SHALL represent a single

location visited by the tool in the course of producing the result. This array does not need to include every
location visited by the tool, but the elements that are present SHALL occur in the execution order that
demonstrates the problem. The elements do not need to be unique within the array.

NOTE: The locations array might include multiple identical elements if, for example, the
analysis tool simulated the execution of a loop in the course of producing the result.

3.38 threadFlowLocation object

3.38.1 General

A threadFlowLocation object represents a location visited by an analysis tool in the course of

simulating or monitoring the execution of a program.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 146 of 229

3.38.2 index property

Depending on the circumstances, a threadFlowLocation object either MAY, SHALL NOT, or SHALL

contain a property named index whose value is the array index (§3.7.4) within

theRun.threadFlowLocations (§3.14.19) of a threadFlowLocation object that provides the

properties for thisObject. We refer to the object in theRun.threadFlowLocations as the “cached

object.”

If thisObject is an element of theRun.threadFlowLocations, then index MAY be present. If

present, its value SHALL be the index of thisObject within theRun.threadFlowLocations.

Otherwise, if theRun.threadFlowLocations is absent, or if it does not contain a cached object for

thisObject, then index SHALL NOT be present.

Otherwise (that is, if thisObject belongs to a result, and theRun.threadFlowLocations contains a

cached object for thisObject), then index SHALL be present, and its value SHALL be the index

within theRun.threadFlowLocations of the cached object.

If index is present, thisObject SHALL take all properties present on the cached object. If

thisObject contains any properties other than index, they SHALL equal the corresponding properties

of the cached object.

NOTE 1: This allows a SARIF producer to reduce the size of the log file by reusing the
same threadFlowLocation object in multiple thread flows.

EXAMPLE 1: In this example, thisObject is an element of

theRun.threadFlowLocations. Its array index is known to be 1, so

thisObject.index does not need to be present, but since it is present, it equals the

array index, as required.

{ # A run object (§3.14).

 "threadFlowLocations": [# See §3.14.19.

 ...

 { # A threadFlowLocation object: thisObject.

 "index": 1, # Optional.

 "location": {

 ...

 }

 },

 ...

],

 ...

}

EXAMPLE 2: In this example, thisObject is not an element of

theRun.threadFlowLocations; rather, it is an element of

theResult.codeFlows[0].threadFlows[0].locations. There is no cached

object; that is, there is no object in theRun.threadFlowLocations that provides the

properties for thisObject. Therefore, thisObject.index is absent, as required.

{ # A run object (§3.14).

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "codeFlows": [# See §3.27.18.

 { # A codeFlow object (§3.36).

 "threadFlows": [# See §3.36.3.

 { # A threadFlow object (§3.37).

 "locations": [# See §3.37.6.

 { # A threadFlowLocation object (thisObject).

 "location": { # See §3.38.3.

 ...

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 147 of 229

 }

]

 }

]

 }

],

 ...

 }

],

 ...

 "threadFlowLocations": [# See §3.14.19.

 ...

],

}

EXAMPLE 3: In this example, thisObject is again an element of

theResult.codeFlows[0].threadFlows[0].locations, not an element of

theRun.threadFlowLocations. But in this example, there is a cached object, an

element of theRun.threadFlowLocations that provides the properties for

thisObject. Therefore, thisObject.index is present, as required.

{ # A run object (§3.14).

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "codeFlows": [# See §3.27.18.

 { # A codeFlow object (§3.36).

 "threadFlows": [# See §3.36.3.

 { # A threadFlow object (§3.37).

 "locations": [# See §3.37.6.

 { # An threadFlowLocation object: thisObject.

 "index": 0 # index is present so no other properties.

 }

]

 }

]

 }

],

 ...

 }

],

 ...

 "threadFlowLocations": [# See §3.14.19.

 { # The cached threadFlowLocation object.

 "location": { # See §3.38.3.

 ...

 }

 },

 ...

],

}

3.38.3 location property

If location information is available, a threadFlowLocation object SHALL contain a property named

location whose value is a location object (§3.28) that specifies the location to which the

threadFlowLocation object refers. If location information is not available, location SHALL be

absent.

There are analysis tools whose native output format includes the equivalent of a SARIF code flow, but
which do not provide location information for every step in the code flow. A SARIF converter for such a
format might not be able to populate location. However, if the native output format associates a human

readable message with such a step, the SARIF converter SHOULD create a location object and

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 148 of 229

populate only its message property (§3.28.5). A SARIF direct producer which creates such code flows

SHOULD populate location.message, even if no actual location information is available.

EXAMPLE: In this example, a file is locked by another program before a thread attempts
to write to it. The analysis tool has no location information for the other program; in fact,
the analysis tool might merely be simulating an execution sequence in which a
hypothetical external program locks the file. Nevertheless, it provides a helpful message.

Note the use of executionOrder (§3.38.11) to ensure that the location in the external

program executes before the location in the program being analyzed.

{ # A codeFlow object (§3.36).

 "threadFlows": [# See §3.36.3.

 { # A threadFlow object (§3.37).

 "message": { # See §3.37.3.

 "text": "An external program."

 },

 "locations": [# See §3.37.6.

 { # A threadFlowLocation object.

 "executionOrder": 1,

 "location": { # A location object with only a message.

 "message": {

 "text": "File is now locked."

 }

 }

 }

]

 },

 { # Another threadFlow object.

 "message": {

 "text": "The program being analyzed."

 },

 "locations": [

 ...

 {

 "executionOrder": 2,

 "location": {

 "message": {

 "text": "Attempt to write to the file."

 },

 "physicalLocation": {

 "artifactLocation": {

 "uri": "io/logger.c",

 "uriBaseId": "SRCROOT"

 },

 "region": {

 "startLine": 42,

 "snippet": {

 "text": " fprintf(fd, "test\\n");"

 }

 }

 }

 }

 }

]

 }

]

}

3.38.4 module property

A threadFlowLocation object MAY contain a property named module whose value is a string

containing the name of the module that contains the code location specified by this object.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 149 of 229

3.38.5 stack property

A threadFlowLocation object MAY contain a property named stack whose value is a stack object

(§3.44) that represents the call stack leading to this location.

3.38.6 webRequest property

A threadFlowLocation object MAY contain a property named webRequest whose value is a

webRequest object (§3.46) that describes an HTTP request sent from this location.

NOTE: This property is primarily useful to web analysis tools.

3.38.7 webResponse property

A threadFlowLocation object MAY contain a property named webResponse whose value is a

webResponse object (§3.47) that describes the response to the HTTP request sent from this location.

NOTE: This property is primarily useful to web analysis tools.

3.38.8 kinds property

A threadFlowLocation object MAY contain a property named kinds whose value is an array of

unique (§3.7.3) strings that describe the meaning of this location. The strings SHOULD be human-
readable (as opposed to, for example, GUIDs or hash values).

When possible, SARIF producers SHOULD use the following values, with the specified meanings.

Verbs:

• "acquire": Gain ownership of something.

• "release": Relinquish ownership of something.

• "enter": Entry point to a section of the program such as a function.

• "exit": Exit point from a section of the program such as a function.

• "call": Point of call into a section of the program such as a function.

• "return": Point of return from a section of the program such as a function.

• "branch": Conditional transfer of control.

NOTE 1: These values are typically combined with nouns from the list below, as in the
examples below.

Nouns:

• "taint": Value obtained from user input.

• "function": Section of a program that can be called into and returned from.

• "handler": Code invoked in response to an exception, signal, or event.

• "lock": Limits access to a resource.

• "memory": Portion of computer’s internal storage.

• "resource": Anything that can be acquired and released.

• "scope": Section of a program that limits the visibility of variables defined within it.

• "value": The value of a variable.

NOTE 2: "kinds": ["acquire", "value"] can be used to denote a variable

assignment or initialization.

Miscellaneous:

• "implicit": Code was invoked implicitly, for example by a garbage collector.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 150 of 229

• "false": A condition evaluated to false.

• "true": A condition evaluated to true.

• "caution": Execution of the code at this location in the current circumstance requires care.

• "danger": Execution of the code at this location in the current circumstance is dangerous.

• "unknown": The state of an item is not known.

• "unreachable": Code at this location is unreachable.

NOTE 3: Some analysis tools effectively “uncomment” unreachable code, allowing a
simulated execution to flow through it. If such a tool detected a problem in the
uncommented code, it could mark the threadFlowLocation as "unreachable". An

engineering team might then decide to treat this problem with lower priority.

If none of these values are appropriate, a SARIF producer MAY use any value.

The interpretations of values other than those above depends on the producer. A SARIF consumer that
wishes to act based on such values SHOULD examine theTool to determine if it (the consumer) knows

how to interpret them.

NOTE 4: This might not be necessary if, for example, the consumer has out of band
information telling it how to interpret the values.

A SARIF producer MAY provide additional kind-dependent information by populating
threadFlowLocation.properties with properties whose names and values depend on the kind. A

SARIF consumer that knows how to interpret kinds for this tool MAY use this additional information.

EXAMPLE 1: In this example, tainted data enters the system at this location.

"kinds": [

 "acquire",

 "taint"

]

EXAMPLE 2: In this example, the “taint” state of a data item at this location is unknown:

"kinds": [

 "taint",

 "unknown"

]

EXAMPLE 3: In this example, control leaves a function at this location.

"kinds": [

 "exit",

 "function"

]

3.38.9 state property

A threadFlowLocation object MAY contain a property named state whose value is an object (§3.6)

in which each property name represents an item relevant to the location in the context of the code flow,
and the corresponding property value is a multiformatMessageString object (§3.12) that specifies

either the value of or a constraint on that item.

NOTE: This property enables a SARIF viewer to present a debugger-like “watch window”
experience as the user navigates through a code flow.

A SARIF viewer SHALL NOT assume that expressions mentioned in previous steps but not mentioned in
the current step are still present with unchanged values.

EXAMPLE 1: In this example, the state property captures the values of the expressions

"x", "y", and "x + y", and a constraint on the expression "y – x".

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 151 of 229

{ # A threadFlowLocation object.

 "state": {

 "x": {

 "text": "42"

 },

 "y": {

 "text": "54"

 },

 "x + y": {

 "text": "96"

 },

 "y – x": {

 "text": "{expr} > 0"

 }

 }

}

EXAMPLE 2: In C++, a property name within the state object might be:

• A variable name such as "index".

• An array element reference such as "names[index]".

• An object property reference such as "names[index]->first".

• Any other expression that produces a value.

EXAMPLE 3: In C++, a property value within the state object might be:

• An integer such as "42" (note that the property value is a string).

• A string such as "\"John\"" (the double quotes are escaped as they would be

in a JSON serialization; other serializations might represent the double quotes
differently).

• A Boolean such as "true".

In a property value that represents a constraint, the item being constrained SHALL BE represented by
the string "{expr}". (See EXAMPLE 1 above, which shows a constraint on the expression "y – x".)

A constraint which expresses the equality of "{expr}" with a literal value SHALL be considered

equivalent to that literal value.

EXAMPLE 4: In a language where == denotes value equality, the property value

"{expr} == 42", which represents a constraint, is identical in meaning to the property

value "42", which represents a value.

3.38.10 nestingLevel property

A threadFlowLocation object MAY contain a property named nestingLevel whose value is a non-

negative integer that represents any type of logical containment hierarchy among the
threadFlowLocation objects in the threadFlow. Typically, it represents function call depth.

A viewer that renders a threadFlow SHOULD provide a visual representation of the value of

nestingLevel. Typically, this would be an indentation indicating the depth of each location in the call

tree.

3.38.11 executionOrder property

A threadFlowLocation object MAY contain a property named executionOrder whose value is a

non-negative integer that represents the temporal order in which execution reached this location, across
all threadFlowLocation objects within all threadFlow objects belonging to a single codeFlow

(§3.36). executionOrder values are assigned in increasing order of time; for example, execution

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 152 of 229

reaches a threadFlowLocation whose executionOrder is 2 occurs before it reaches a

threadFlowLocation whose executionOrder is 3. If two threadFlowLocations in different

threadFlow objects within the same codeFlow have the same value for executionOrder, it means

that execution reached both of those locations simultaneously. For that reason, values of
executionOrder within a single threadFlow SHALL be unique.

It is only necessary to assign a value to executionOrder when the temporal ordering of a

threadFlowLocation relative to a location in a different threadFlow is significant to the detection of

a result.

If executionOrder is absent, it SHALL default to -1, which indicates that the value is unknown (not

set).

NOTE: Negative values are forbidden because their use would suggest some non-
obvious semantic difference between positive and negative values.

3.38.12 executionTimeUtc property

A threadFlowLocation object MAY contain a property named executionTimeUtc whose value is a

string in the format specified in §3.9, specifying the UTC date and time at which the thread of execution
through the code reached this location.

3.38.13 importance property

A threadFlowLocation MAY contain a property named importance whose value is a string that

specifies the importance of this threadFlowLocation in understanding the code flow.

The importance property SHALL have one of the following values, with the specified meanings:

• "important": this location is important for understanding the code flow.

• "essential": this location is essential for understanding the code flow.

• "unimportant": this location contributes to a more detailed understanding of the code flow but

is not normally needed.

If this property is absent, it SHALL be considered to have the value "important".

NOTE: A viewer might use this property to offer the user three options for viewing a
lengthy code flow:

• A “normal view,” which omits locations whose importance property is

"unimportant".

• An “abbreviated view,” which displays only those locations whose importance

property is "essential".

• A “verbose view,” which displays all the locations in the code flow.

3.38.14 taxa property

A threadFlowLocation MAY contain a property named taxa whose value is an array of zero or more

unique (§3.7.3) reportingDescriptorReference objects each of which specifies a category into

which this threadFlowLocation falls.

NOTE: The motivation for this property is an analysis tool that uses a set of rules to guide
its analysis as it traces tainted data from a source to a sink. For example, at one location,
the tool might apply a rule that says: “If the input to String.Substr is tainted, then so is

the return value.” Such a tool can represent these “helper rules” as a custom taxonomy
(§3.19.3), an array of reportingDescriptor objects (§3.49). Each member of

threadFlowLocation.taxa can reference one of these helper rules.

EXAMPLE: This example illustrates the scenario in the above note.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 153 of 229

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": {

 "name": "TaintDetector",

 "rules": [

 {

 "id": "TD0001",

 "name": "UntrustedDataStoredInDatabase",

 "shortDescription": {

 "text": "Data from an untrusted source was stored in a database."

 }

 },

 ...

],

 "taxa": [# Custom taxonomy (§3.19.3) for helper rules.

 { # A reportingDescriptor object (§3.49).

 "id": "HR0001",

 "name": "SubstrPropogatesTaint",

 "shortDescription": {

 "text": "If the input to String.Substr is tainted,

 so is the return value."

 }

 },

 ...

]

 }

 },

 "results": [# See §3.14.23.

 { # A result object §3.27.

 "ruleId": "TD0001",

 ...

 "codeFlows": [# See §3.27.18.

 { # A codeFlow object (§3.36).

 "threadFlows": [# See §3.36.3.

 { # A threadFlow object (§3.37).

 "locations": [# See §3.37.6.

 ...

 { # A threadFlowLocation object.

 "location": { # See §3.38.3.

 "physicalLocation": {

 "artifactLocation": {

 "uri": "io/input.c",

 "uriBaseId": "SRCROOT"

 },

 "region": {

 "startLine": 32

 }

 }

 },

 "taxa": [

 { # A reportingDescriptorReference object (§3.52).

 "id": "HR0001",

 "index": 0

 }

]

 },

 ...

]

 }

]

 }

]

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 154 of 229

]

}

3.39 graph object

3.39.1 General

A graph object represents a directed graph, a network of nodes and directed edges that describes some

aspect of the structure of the code (for example, a call graph). graph objects MAY be defined both at the

run level in run.graphs (§3.14.20) and at the result level in result.graphs (§3.27.19).

A path through a graph, called a “graph traversal,” is represented by a graphTraversal object (§3.42).

3.39.2 description property

A graph object MAY contain a property named description whose value is a message object (§3.11)

that describes the graph.

3.39.3 nodes property

A graph object MAY contain a property named nodes whose value is an array of zero or more unique

(§3.7.3) node objects (§3.40) which represent the nodes of the graph.

3.39.4 edges property

A graph object MAY contain a property named edges whose value is an array of zero or more unique

(§3.7.3) edge objects (§3.41) which represent the edges of the graph.

3.40 node object

3.40.1 General

A node object represents a node in the graph represented by the containing graph object (§3.39), which

we refer to as theGraph.

3.40.2 id property

A node object SHALL contain a property named id whose value is a string that uniquely identifies the

node within theGraph. id SHALL be unique among all nodes in theGraph, regardless of nesting (see

§3.40.5).

EXAMPLE: This graph is invalid because two nodes have the same id, even though the

nodes are within unrelated nested graphs.

{ # A graph object (§3.39).

 "nodes": [# See §3.39.3.

 { # A node object.

 "id": "n1",

 "children": [# See §3.40.5.

 {

 "id": "n3"

 }

]

 },

 {

 "id": "n2",

 "children": [

 {

 "id": "n3" # INVALID: duplicate id.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 155 of 229

 }

]

 }

],

 ...

}

3.40.3 label property

A node object MAY contain a property named label whose value is a message object (§3.11) that

provides a short description of the node.

3.40.4 location property

A node object SHOULD have a property named location whose value is a location object (§3.28)

that specifies the location associated with the node.

3.40.5 children property

A node object MAY contain a property named children whose value is an array of zero or more unique

(§3.7.3) node objects, referred to as “child nodes.”

Child nodes are logically subordinate to their containing node, and form a “nested graph” within that node.

3.41 edge object

3.41.1 General

An edge object represents a directed edge in the graph represented by theGraph.

3.41.2 id property

An edge object SHALL contain a property named id whose value is a string that uniquely identifies the

edge within theGraph.

3.41.3 label property

An edge object MAY contain a property named label whose value is a message object (§3.11) that

provides a short description of the edge.

3.41.4 sourceNodeId property

An edge object SHALL contain a property named sourceNodeId whose value is a string that identifies

the source node (the node at which the edge starts). It SHALL equal the id property (§3.40.2) of one of

the node objects (§3.40) in theGraph. It MAY equal the id of any node within theGraph, regardless of

nesting (see §3.40.5).

EXAMPLE: In this example, an edge connects two nodes defined in unrelated nested
graphs.

{ # A graph object (§3.39).

 "nodes": [# See §3.39.3.

 { # A node object.

 "id": "n1",

 "children": [# See §3.40.5.

 {

 "id": "n3"

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 156 of 229

 },

 {

 "id": "n2",

 "children": [

 {

 "id": "n4"

 }

]

 }

],

 "edges": [# See §3.39.4.

 {

 "sourceNodeId": "n3", # Source node and target node are in separate

 "targetNodeId": "n4" # nested graphs: ok.

 }

],

 ...

}

3.41.5 targetNodeId property

An edge object SHALL contain a property named targetNodeId whose value is a string that identifies

the target node (the node at which the edge ends). It SHALL equal the id property (§3.40.2) of one of the

node objects (§3.40) in theGraph. It MAY equal sourceNodeId (§3.41.4).

3.42 graphTraversal object

3.42.1 General

A graphTraversal object represents a “graph traversal,” that is, a path through a graph specified by a

sequence of connected “edge traversals,” each of which is represented by an edgeTraversal object

(§3.43). For an example, see §3.42.8.

3.42.2 Constraints

Exactly one of the resultGraphIndex property (§3.42.3) and the runGraphIndex property (§3.42.4)

SHALL be present.

3.42.3 resultGraphIndex property

If a graphTraversal object represents the traversal of a graph object (§3.39) that resides in

theResult.graphs (§3.27.19), the graphTraversal object SHALL contain a property named

resultGraphIndex whose value is the array index (§3.7.4) within theResult.graphs of that graph

object.

3.42.4 runGraphIndex property

If a graphTraversal object represents the traversal of a graph object (§3.39) that resides in

theRun.graphs (§3.14.20), the graphTraversal object SHALL contain a property named

runGraphIndex whose value is the array index (§3.7.4) within theRun.graphs of that graph object.

3.42.5 description property

A graphTraversal object MAY contain a property named description whose value is a message

object (§3.11) that describes the graph traversal.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 157 of 229

3.42.6 initialState property

A graphTraversal object MAY contain a property named initialState whose value is an object

(§3.6) each of whose properties is a multiformatMessageString object (§3.12) that represents the

value of a relevant item at the point of entry to the graph. This property, together with
edgeTraversal.finalState (§3.43.4), enables a SARIF viewer to present a debugger-like “watch

window” experience as the user traverses a graph.

This property SHOULD NOT include items whose value remains constant throughout the traversal. Such
items SHOULD be stored in the immutableState property (§3.42.7).

For details of how properties within a “state” object are represented, see EXAMPLE 1 in §3.38.9.

3.42.7 immutableState property

A graphTraversal object MAY contain a property named immutableState whose value is an object

(§3.6) each of whose properties is a multiformatMessageString object (§3.12) that represents the

value of a relevant item that remains constant throughout the traversal.

EXAMPLE: In this example, immutableState holds the value of a global variable that

remains constant throughout the traversal.

{ # A graphTraversal object.

 "immutableState": {

 "MaxFiles": {

 "text": "1000"

 }

 }

}

3.42.8 edgeTraversals property

A graphTraversal object MAY contain a property named edgeTraversals whose value is an array

of zero or more edgeTraversal objects (§3.43) which together represent the sequence of edges

traversed during this graph traversal.

The edgeTraversal objects SHALL be connected end to end; that is, the target node of every

traversed edge except the last SHALL equal the source node of the next edge.

EXAMPLE: In this example, the graphTraversal contains two edgeTraversal

objects. The id of the first traversed edge is "e1", which connects node "n1" to node

"n2". The id of the second traversed edge is "e3", which connects node "n2" to node

"n4". This is a valid graph traversal because the target node of each traversed edge is

the source node of the next.

This example also demonstrates the usage of graphTraversal.initialState

(§3.42.6) and edgeTraversal.finalState (§3.43.4).

{ # A result object (§3.27).

 "graphs": [# See §3.27.19.

 { # A graph object (§3.39).

 "nodes": [# See §3.39.3.

 { "id": "n1" }, # A node object (§3.40).

 { "id": "n2" },

 { "id": "n3" },

 { "id": "n4" }

],

 "edges": [# See §3.39.4.

 { # An edge object (§3.41).

 "id": "e1", # See §3.41.2.

 "sourceNodeId": "n1", # See §3.41.4.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 158 of 229

 "targetNodeId": "n2" # See §3.41.5.

 },

 {

 "id": "e2",

 "sourceNodeId": "n2",

 "targetNodeId": "n3"

 },

 {

 "id": "e3",

 "sourceNodeId": "n2",

 "targetNodeId": "n4"

 }

]

 }

],

 "graphTraversals": [# See §3.27.20.

 { # A graphTraversal object (§3.42).

 "resultGraphIndex": 0, # See §3.42.3.

 "initialState": { # See §3.42.6.

 "x": {

 "text": "1"

 },

 "y": {

 "text": "2"

 },

 "x + y": {

 "text": "3"

 }

 },

 "edgeTraversals": [# See §3.42.8.

 { # An edgeTraversal object (§3.43).

 "edgeId": "e1", # See §3.43.2.

 "finalState": { # See §3.43.4.

 "x": {

 "text": "4"

 },

 "y": {

 "text": "2"

 },

 "x + y": {

 "text": "6"

 }

 }

 },

 {

 "edgeId": "e3",

 "finalState": {

 "x": {

 "text": "4"

 },

 "y": {

 "text": "7"

 },

 "x + y": {

 "text": "11"

 }

 }

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 159 of 229

 }

]

}

3.43 edgeTraversal object

3.43.1 General

An edgeTraversal object represents the traversal of a single edge during a graph traversal.

3.43.2 edgeId property

An edgeTraversal object SHALL contain a property named edgeId whose value is a string which

equals the id property (§3.41.2) of one of the edge objects (§3.41) in the graph identified by the

resultGraphIndex property (§3.42.3) or the runGraphIndex property (§3.42.4) of the containing

graphTraversal object (§3.42).

3.43.3 message property

An edgeTraversal object MAY contain a property named message whose value is a message object

(§3.11) that contains a message to display to the user as the edge is traversed.

3.43.4 finalState property

An edgeTraversal object MAY contain a property named finalState whose value is an object (§3.6)

each of whose properties is a multiformatMessageString object (§3.12) that represents the value of

a relevant item after the edge has been traversed.

NOTE: This property, together with graphTraversal.initialState (§3.42.6),

enables a viewer to present a debugger-like “watch window” experience as the user
traverses a graph.

A SARIF viewer SHALL display only those properties that are explicitly present in the finalState

property of the current edgeTraversal. It SHALL NOT assume that properties present in previous

steps are still present with unchanged values.

For details of how properties within a “state” object are represented, see §3.38.9.

3.43.5 stepOverEdgeCount property

An edgeTraversal object MAY contain a property named stepOverEdgeCount whose value is a non-

negative integer specifying the number of edges a user can step over.

This property is intended to enable a viewing experience in which the user can either step over or step
into the traversal of a nested graph (§3.40.5). Therefore, this property SHOULD be specified only on an
edge that leads from a node to one of its child nodes, and its value SHOULD be the number of edges the
user would need to traverse to return to the current nesting level.

If this property is present, a SARIF viewer MAY provide a visual cue informing the user that they have the
option of either stepping over the current edge and into the nested graph, or of stepping over the entire
traversal of the nested graph.

EXAMPLE: This example defines a graph containing two nested graphs, the first
representing code locations in function A and the second representing locations in

function B. Node na2 in function A represents a call to function B.

The example defines a graph traversal consisting of a set of edge traversals which start
at node "na1" in function A, call into function B, and ultimately return to and continue

execution in function A.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 160 of 229

Suppose the user executes the first edge traversal, which traverses edge ea1.The next

edge traversal has a stepOverEdgeCount property value of 4. Therefore, the SARIF

viewer informs her that she can now choose to either step into function B by traversing

edge "eab", or step over the function call by traversing 4 edges, the last of which (edge

"eba") returns to function A at node "na3".

If she chooses to enter the nested graph, she will visit the following nodes, in this order:

[na1, na2, nb1, nb2, nb3, na3, na4]

If she chooses not to enter the nested graph, the traversal of the edges

[eab, eb1, eb2, eba]

will be collapsed into a single “step over.” As a result, she will visit the following nodes, in
this order:

[na1, na2, na3, na4]

{ # A result object (§3.27).

 "graphs": [# See §3.27.19.

 { # A graph object (§3.39).

 "nodes": [

 {

 "id": "functionA",

 "children": [

 { "id": "na1" },

 { "id": "na2", "label": "Call functionB" },

 { "id": "na3" },

 { "id": "na4" }

]

 },

 {

 "id": "functionB",

 "nodes": [

 { "id": "nb1" },

 { "id": "nb2" },

 { "id": "nb3" }

],

 }

]

 "edges": [

 { "id": "ea1", "sourceNodeId": "na1", "targetNodeId": "na2" },

 { "id": "ea2", "sourceNodeId": "na2", "targetNodeId": "na3" },

 { "id": "eab", "sourceNodeId": "na2", "targetNodeId": "nb1" },

 { "id": "ea3", "sourceNodeId": "na3", "targetNodeId": "na4" },

 { "id": "eb1", "sourceNodeId": "nb1", "targetNodeId": "nb2" },

 { "id": "eb2", "sourceNodeId": "nb2", "targetNodeId": "nb3" },

 { "id": "eba", "sourceNodeId": "nb3", "targetNodeId": "na3" }

]

 }

],

 "graphTraversals": [# See §3.27.20.

 { # A graphTraversal object (§3.42).

 "resultGraphIndex": 0, # The graph being traversed.

 "edgeTraversals": [

 { "edgeId": "ea1" },

 {

 "edgeId": "eab",

 "stepOverEdgeCount": 4

 },

 { "edgeId": "eb1" },

 { "edgeId": "eb2" },

 { "edgeId": "eba" },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 161 of 229

 { "edgeId": "ea3" }

]

 }

]

}

3.44 stack object

3.44.1 General

A stack object describes a single call stack. A call stack is a sequence of nested function calls, each of

which is referred to as a stack frame.

3.44.2 message property

A stack object MAY contain a property named message whose value is message object (§3.11)

relevant to this call stack.

3.44.3 frames property

A stack object SHALL contain a property named frames whose value is an array of zero or more

stackFrame objects (§3.45). This array SHALL include every function call in the stack for which the tool

has information, and the entries that are present SHALL occur in chronological order with the most recent
(innermost) call first and the least recent (outermost) call last. The entries in this array do not need to be
unique within the array.

NOTE 1: It is possible for the same frame to occur multiple times if the call stack includes
a recursion.

NOTE 2: It is possible that the analysis tool will not have location information for every
frame in the call stack. This might happen if, for example, application code for which
location information is available calls into operating system code for which location
information is not available, which in turn calls back into application code.

3.45 stackFrame object

3.45.1 General

A stackFrame object describes a single stack frame within a call stack (§3.44).

3.45.2 location property

A stackFrame object MAY contain a property named location whose value is a location object

(§3.28) specifying the location to which this stack frame refers.

If location information is unavailable (as it might be, for example, when stepping from application code
into library code or operating system code), location SHOULD be present and SHOULD contain a

message property (§3.28) (for example, with a message string "Call into external code").

3.45.3 module property

A stackFrame object MAY contain a property named module whose value is a string containing the

name of the module that contains the location to which this stack frame refers.

3.45.4 threadId property

A stackFrame object MAY contain a property named threadId whose value is an integer which

identifies the thread on which the code at the location specified by this object was executed.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 162 of 229

3.45.5 parameters property

A stackFrame object MAY contain a property named parameters whose value is an array of zero or

more strings representing the parameters of the function call represented by this stack frame.

3.46 webRequest object

3.46.1 General

A webRequest object describes an HTTP request [RFC7230]. The response to the request is described

by a webResponse object (§3.47).

NOTE 1: This object is primarily useful to web analysis tools.

A webRequest object does not need to represent a valid HTTP request.

NOTE 2: This allows an analysis tool that intentionally sends invalid HTTP requests to
use the webRequest object.

3.46.2 index property

Depending on the circumstances, a webRequest object either MAY, SHALL NOT, or SHALL contain a

property named index whose value is the array index (§3.7.4) within theRun.webRequests (§3.14.21)

of a webRequest object that provides the properties for thisObject. We refer to the object in

theRun.webRequests as the “cached object.”

If thisObject is an element of theRun.webRequests, then index MAY be present. If present, its

value SHALL be the index of thisObject within theRun.webRequests.

Otherwise, if theRun.webRequests is absent, or if it does not contain a cached object for

thisObject, then index SHALL NOT be present.

Otherwise (that is, if thisObject belongs to a result, and theRun.webRequests contains a cached

object for thisObject), then index SHALL be present, and its value SHALL be the array index within

theRun.webRequests of the cached object.

If index is present, thisObject SHALL take all properties present on the cached object. If

thisObject contains any properties other than index, they SHALL equal the corresponding properties

of the cached object.

NOTE 1: This allows a SARIF producer to reduce the size of the log file by reusing the
same webRequest object in multiple results.

NOTE 2: For examples of the use of an index property to locate a cached object, see

§3.38.2.

3.46.3 protocol property

A webRequest object SHOULD contain a property named protocol whose value is a string containing

the name of the web protocol used in the request, found on the HTTP request line.

EXAMPLE: "protocol": "HTTP"

3.46.4 version property

A webRequest object SHOULD contain a property named version whose value is a string containing

the version of the web protocol used in the request, found on the HTTP request line.

EXAMPLE: "version": "1.1"

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 163 of 229

3.46.5 target property

A webRequest object SHOULD contain a property named target whose value is a string containing the

target of the request, found on the HTTP request line, in the form defined by §5.3 (“Request Target”) of
the HTTP standard [RFC7230].

3.46.6 method property

A webRequest object SHOULD contain a property named method whose value is a string containing the

HTTP method used in the request, found on the HTTP request line. The string SHOULD be one of the
values "GET", "PUT", "POST", "DELETE", "PATCH", "HEAD", "OPTIONS", "TRACE", or "CONNECT".

3.46.7 headers property

A webRequest object SHOULD contain a property named headers whose value is an object (§3.6)

whose property names are the names of the HTTP headers in the request (for example, "Content-

Type") and whose corresponding values are the header values (for example, "text/plain;

charset=ascii").

3.46.8 parameters property

A webRequest object MAY contain a property named parameters whose value is an object (§3.6)

whose property names are the names of the parameters in the request and whose corresponding values
are the values of those parameters.

NOTE: The parameters property exists as a convenience for the log file consumer. If it

is absent, the consumer can parse the parameters from body (§3.46.9), in the case of a

forms post, or from the query portion of uri (§3.46.5).

3.46.9 body property

A webRequest object MAY contain a property named body whose value is an artifactContent

object (§3.3) containing the body of the request.

If the request body is entirely textual, body.text (§3.3.2) SHOULD be present. If present, it SHALL

contain the request body, transcoded to UTF-8 if necessary.

NOTE 1: The transcoding is required because all textual content in a SARIF log file is
represented in UTF-8 (see §3.1).

NOTE 2: If necessary, the character encoding actually used in the request can be
deduced from the value of the Content-Type header (see §3.46.7), for example,

"text/plain; charset=ascii".

If the request body is entirely textual, body.binary (§3.3.3) MAY be present. If present, it SHALL

contain the MIME Base64 encoding [RFC2045] of the body as it was actually transmitted.

If the request body consists partially or entirely of binary data, body.binary SHALL be present and

SHALL contain the MIME Base64 encoding of the body. In this situation, body.text SHALL be absent.

3.47 webResponse object

3.47.1 General

A webResponse object describes the response to an HTTP request [RFC7230]. The request itself is

described by a webRequest object (§3.46).

NOTE: This object is primarily useful to web analysis tools.

A webResponse object does not need to represent a valid HTTP response.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 164 of 229

NOTE 2: This allows an analysis tool to describe a situation where a server produces an
invalid response.

3.47.2 index property

Depending on the circumstances, a webResponse object either MAY, SHALL NOT, or SHALL contain a

property named index whose value is the array index (§3.7.4) within theRun.webResponses

(§3.14.22) of a webResponse object that provides additional properties for thisObject. We refer to the

object in theRun.webResponses as the “cached object.”

If thisObject is an element of theRun.webResponses, then index MAY be present. If present, its

value SHALL be the index of thisObject within theRun.webResponses.

Otherwise, if theRun.webResponses is absent, or if it does not contain a cached object for

thisObject, then index SHALL NOT be present.

Otherwise (that is, if thisObject belongs to a result, and theRun.webResponses contains a cached

object for thisObject), then index SHALL be present, and its value SHALL be the array index within

theRun.webResponses of the cached object.

If index is present, thisObject SHALL take all properties present on the cached object. If

thisObject contains any properties other than index, they SHALL equal the corresponding properties

of the cached object.

NOTE 1: This allows a SARIF producer to reduce the size of the log file by reusing the
same webResponse object in multiple results.

NOTE 2: For examples of the use of an index property to locate a cached object, see

§3.38.2.

3.47.3 protocol property

A webResponse object SHOULD contain a property named protocol whose value is a string

containing the name of the web protocol used in the response, found on the HTTP status line.

EXAMPLE: "protocol": "HTTP"

3.47.4 version property

A webResponse object SHOULD contain a property named version whose value is a string containing

the version of the web protocol used in the response, found on the HTTP status line.

EXAMPLE: "version": "1.1"

3.47.5 statusCode property

A webResponse object SHOULD contain a property named statusCode whose value is an integer

containing the status code that describes the result of the request, found on the HTTP status line.

EXAMPLE: "statusCode": 200

3.47.6 reasonPhrase property

A webResponse object SHOULD contain a property named reasonPhrase whose value is a string

containing the textual description of the statusCode (§3.47.5) found on the HTTP status line.

EXAMPLE: "reasonPhrase": "OK"

If noResponseReceived (§3.47.9) is true, then reasonPhrase SHOULD instead contain a string

describing the reason that no response was received.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 165 of 229

3.47.7 headers property

A webResponse object SHOULD contain a property named headers whose value is an object (§3.6)

whose property names are the names of the HTTP headers in the response (for example, "Content-

Type") and whose corresponding values are the header values (for example, "text/plain;

charset=ascii").

3.47.8 body property

A webResponse object MAY contain a property named body whose value is an artifactContent

object (§3.3) containing the body of the response.

If the response body is entirely textual, body.text (§3.3.2) SHOULD be present. If present, it SHALL

contain the response body, transcoded to UTF-8 if necessary.

NOTE 1: The transcoding is required because all textual content in a SARIF log file is
represented in UTF-8 (see §3.1).

NOTE 2: If necessary, the character encoding actually used in the response can be
deduced from the value of the Content-Type header (see §3.47.7), for example,

"text/plain; charset=ascii".

If the response body is entirely textual, body.binary (§3.3.3) MAY be present. If present, it SHALL

contain the MIME Base64 encoding [RFC2045] of the body as it was actually transmitted.

If the response body consists partially or entirely of binary data, body.binary SHALL be present and

SHALL contain the MIME Base64 encoding of the body. In this situation, body.text SHALL be absent.

3.47.9 noResponseReceived property

If no response to the HTTP request was received (for example, because of a network failure), the
webResponse object SHALL contain a property named noResponseReceived whose value is a

Boolean true. If a response was received, noResponseReceived SHALL either be present with the

value false, or absent, in which case it defaults to false.

If noResponseReceived is true, then reasonPhrase (§3.47.6), which normally contains the reason

phrase from the HTTP response line, SHOULD instead contain a string describing the reason that no
response was received.

3.48 resultProvenance object

3.48.1 General

A resultProvenance object contains information about the how and when theResult was detected.

NOTE: This information is useful to various human and automated participants in an
engineering system. For example:

• A build engineer might use the information to understand the specific tool
invocation that produced the result, for example, if the violated rule should not
have been configured to run at all.

• A developer reviewing results might use the information to determine how long
an issue has existed in the code.

• A result management system might be responsible for associating logically
identical results from one run to the next, making it possible for the developer to
determine how long the result has existed. Such a result management system
might populate this information.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 166 of 229

3.48.2 firstDetectionTimeUtc property

A resultProvenance object MAY contain a property named firstDetectionTimeUtc whose value

is a string in the format specified in §3.9, specifying the UTC date and time at which the result was first
detected. It SHOULD specify the start time of the run in which the result was first detected, as opposed
to, for example, the time within the run at which the result was actually generated.

NOTE: Using the run’s start time makes it possible to group together results that were
first detected in the same run.

3.48.3 lastDetectionTimeUtc property

A resultProvenance object MAY contain a property named lastDetectionTimeUtc whose value is

a string in the format specified in §3.9, specifying the UTC date and time at which the result was most
recently detected. It SHOULD specify the start time of the run in which the result was most recently
detected, as opposed to, for example, the time within the run at which the result was actually generated.

NOTE: Using the run’s start time makes it possible to group together results that were
detected in the same run.

If lastDetectionTimeUtc is absent, its default value SHALL be determined as follows:

1. If run.invocations is present, and if the startTimeUtc property (§3.20.7) is present on any

of the invocation objects (§3.20) in that array, then the default is the earliest of those times.

2. Otherwise, there is no default.

3.48.4 firstDetectionRunGuid property

A resultProvenance object MAY contain a property named firstDetectionRunGuid whose value

is a GUID-valued string (§3.5.3) which SHALL equal the automationDetails.guid property (§3.14.3,

§3.17.4) of the run in which theResult was first detected (either the current run or some previous run).

3.48.5 lastDetectionRunGuid property

A resultProvenance object MAY contain a property named lastDetectionRunGuid whose value is

a GUID-valued string (§3.5.3) which SHALL equal the automationDetails.guid property (§3.14.3,

§3.17.4) of the run in which theResult was most recently detected (either the current run or some

previous run).

3.48.6 invocationIndex property

If theRun.invocations (§3.14.11) is present, a resultProvenance object MAY contain a property

named invocationIndex whose value is the array index (§3.7.4) within the invocations property of

the invocation object (§3.20) that describes the tool invocation as a result of which theResult was

detected.

If theRun.invocations is absent, invocationIndex SHALL be absent.

NOTE 1: The purpose of this property is to allow a result to be associated with the tool
invocation that produced it.

If invocationIndex is absent and theRun.invocations is present and contains a single element, it

SHALL default to 0; otherwise it SHALL default to -1, which indicates that the value is unknown (not set).

NOTE 2: This provides a sensible default in the common case where there is only a
single tool invocation in the run.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 167 of 229

3.48.7 conversionSources property

Some analysis tools produce output files that describe the analysis run as a whole; we refer to these as
“per-run” files. Some tools produce one or more output files for each result; we refer to these as “per-
result” files. Some tools produce both per-run and per-result files.

A resultProvenance object MAY contain a property named conversionSources whose value is an

array of zero or more unique (§3.7.3) physicalLocation objects (§3.29).

If theResult was produced by a converter, and if the analysis tool whose output was converted to

SARIF produced any per-result files for this result, then the physicalLocation objects in the array

SHALL specify the relevant portions of the per-result files for this result.

Otherwise (that is, if the run object was not produced by a converter, or if there were no per-run files for

this result), then if conversionSources is present, its value SHALL be an empty array.

Per-run files are handled by the conversion.analysisToolLogFiles property (§3.22.4).

NOTE: This property is intended to be useful to developers of converters, to help them
debug the conversion from the analysis tool’s native output format to the SARIF format.

EXAMPLE: Given this analysis tool’s output file:

<?xml version="1.0" encoding="UTF-8"?>

<problems>

 <problem>

 <file></file>

 <line>242</line>

 ...

 <problem_class ...>Assertions</problem_class>

 ...

 <description>Assertions are unreliable. ...</description>

 </problem>

</problems>

a SARIF converter might transform it into the following SARIF log file:

{

 ...

 "runs": [

 {

 "tool": {

 "driver": {

 "name": "CodeScanner"

 }

 },

 "conversion": { # A conversion object (see §3.22).

 ...

 },

 "results": [

 {

 "ruleId": "Assertions",

 "message": {

 "text": "Assertions are unreliable. ..."

 },

 ...

 "provenance": { # See §3.27.29.

 "conversionSources": [# An array of physicalLocation objects

 { # (§3.29).

 "artifactLocation": { # See §3.29.3.

 "uri": "CodeScanner.log",

 "uriBaseId": "$LOGSROOT"

 },

 "region": { # See §3.29.4.

 "startLine": 3,

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 168 of 229

 "startColumn": 3,

 "endLine": 12,

 "endColumn": 13,

 "snippet": {

 "text": "<problem>\n ... \n </problem>"

 }

 }

 }

],

 ...

 }

 }

]

 }

]

}

3.49 reportingDescriptor object

3.49.1 General

A reportingDescriptor object contains information that describes a “reporting item” generated by a

tool. A reporting item is either a result produced by the tool’s analysis (see §3.27), or a notification of a
condition encountered by the tool (§3.58). We refer to this descriptive information as “reporting item
metadata.” When referring to the metadata that describes a result, we use the more specific term “rule
metadata.”

Some of the properties of the reportingDescriptor object are interpreted differently depending on

whether the object represents a rule or a notification. The description of each property will specify any
such differences.

3.49.2 Constraints

Either the shortDescription property (§3.49.9) or the fullDescription property (§3.49.10) or both

SHOULD be present.

3.49.3 id property

A reportingDescriptor object SHALL contain a property named id whose value is a string. In the

case of a rule, id SHALL contain a stable identifier for the rule and SHOULD be opaque. In the case of a

notification, id does not need be a stable, opaque identifier; it MAY be a user-readable identifier.

EXAMPLE: "id": "CA2101"

NOTE 1: Rule identifiers must be stable for two reasons:

• So build automation scripts can refer to specific checks, for example, to disable them,
without the risk of a script breaking if a rule id changes.

• So result management systems can compare results from one run to the next, without
erroneously designating results as “new” because a rule id has changed.

Rule identifiers should be opaque – that is, they should not convey information to a user –
because a rule's implementation might change over time. Suppose a rule id is "DoNotDoXOrY",

suppose circumstances change so that “Y” is now acceptable, and suppose the implementation
of the rule changes accordingly. Because the rule id must not change, the string
"DoNotDoXOrY" will continue to be persisted to logs, where it will convey outdated guidance to

users in a way that an opaque identifier such as "CA2101" would not.

NOTE 2: Despite the fact that the result.ruleId property (§3.27.5) is permitted to be a

hierarchical string (§3.5.4) whose trailing components denote a subset of the specified rule,

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 169 of 229

SARIF does not support separate metadata for such “sub-rules”. The id property of a

reportingDescriptor object always specifies an entire rule (or notification), not a subset of

one.

3.49.4 deprecatedIds property

A reportingDescriptor object MAY contain a property named deprecatedIds whose value is an

array of zero or more unique (§3.7.3) strings each of which contains an id (see §3.49.3) by which this
reporting item was known in some previous version of the analysis tool.

NOTE: This property is most useful for rules. It addresses the scenario where rule ids
change from one version of a tool to the next. For example, a tool developer might decide
that a rule is too general, covering too many concepts. In the next version of the tool, the
tool developer might break this rule into a set of more specific rules.

Now the result management system has the problem of matching results between the
newer and the older versions of the tool. deprecatedIds solves this problem.

EXAMPLE: In this example, version 1 of an analysis tool defines rule CA1000. A run of

this tool finds two results. The result management system decides that neither result was
previously detected, so it marks them as with "baselineState": "new" (§3.27.24),

producing this log:

{

 "tool": {

 "driver": {

 "name": "CodeScanner",

 "version": "1",

 "rules": [

 {

 "id": "CA1000",

 ...

 }

]

 }

 },

 "results": [

 {

 "ruleId": "CA1000",

 "rule": {

 "index": 0

 },

 "baselineState": "new",

 ...

 },

 {

 "ruleId": "CA1000",

 "rule": {

 "index": 0

 },

 "baselineState": "new",

 ...

 }

]

}

The engineering team decides that these results are false positive, so they add in-source
suppressions, for example (in C#):

[SuppressMessage("CA1000", ...)]

...

[SuppressMessage("CA1000", ...)]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 170 of 229

Now the tool developers decide that rule CA1000 is too broad, so in version 2 of the tool,

they divide it into two new rules, CA1001 and CA1002. The engineering team runs the

new tool, and the result management system performs result matching, producing this
log:

{

 "tool": {

 "driver": {

 "name": "CodeScanner",

 "version": "2",

 "rules": [

 {

 "id": "CA1001",

 "deprecatedIds": [

 "CA1000"

],

 ...

 },

 {

 "id": "CA1002",

 "deprecatedIds": [

 "CA1000"

],

 ...

 }

]

 }

 },

 "results": [

 {

 "ruleId": "CA1001",

 "rule": {

 "index": 0

 },

 "baselineState": "unchanged",

 "suppressions": [

 {

 "kind": "inSource"

 }

],

 ...

 },

 {

 "ruleId": "CA1002",

 "rule": {

 "index": 1

 },

 "baselineState": "updated",

 "suppressions": [

 {

 "kind": "inSource"

 }

],

 ...

 }

]

}

There are a few things to notice:

• In tool.driver.rules, each of the new rules is associated with its id from the

previous tool version.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 171 of 229

• As a result, the analysis tool can determine that the in-source suppressions still
apply, even though the rule ids have changed, so it correctly marks each result
with "kind": "inSource".

• Furthermore, the result management system can determine that these are the same
results it saw in the previous run, so it correctly marks them with "baselineState":

"unchanged" or "updated" as appropriate (see §3.27.24).

3.49.5 guid property

A reportingDescriptor object MAY contain a property named guid whose value is a GUID-valued

string (§3.5.3) that uniquely identifies the descriptor.

3.49.6 deprecatedGuids property

A reportingDescriptor object MAY contain a property named deprecatedGuids whose value is

an array of zero or more unique (§3.7.3) GUID-valued strings (§3.5.3) each of which was used by a
previous version of the tool as the value of the guid property (§3.49.5) for this object.

3.49.7 name property

A reportingDescriptor object MAY contain a property named name whose value is a localizable

string (§3.5.1) containing an identifier that is understandable to an end user. If the name of a rule contains

implementation details that change over time, a tool author might alter a rule's name (while leaving the
stable id property (§3.49.3) unchanged).

NOTE: A rule name is suitable in contexts where a readable identifier is preferable and
where the lack of stability is not a concern.

EXAMPLE: "name": "SpecifyMarshalingForPInvokeStringArguments"

3.49.8 deprecatedNames property

A reportingDescriptor object MAY contain a property named deprecatedNames whose value is

an array of zero or more unique (§3.7.3) localizable (§3.5.1) strings each of which was used by a previous
version of the tool as the value of the name property (§3.49.7) for this object.

The array elements SHALL occur in the same order in every translation (§3.19.3).

3.49.9 shortDescription property

A reportingDescriptor object MAY contain a property named shortDescription whose value is

a localizable multiformatMessageString object (§3.12, §3.12.2) that provides a concise description

of the reporting item. The shortDescription property SHOULD be a single sentence that is

understandable when visible space is limited to a single line of text.

EXAMPLE:

{ # A reportingDescriptor object

 "shortDescription": {

 "text": "Specify marshaling for P/Invoke string arguments."

 }

}

3.49.10 fullDescription property

A reportingDescriptor object SHOULD contain a property named fullDescription whose value

is a localizable multiformatMessageString object (§3.12, §3.12.2) that comprehensively describes

the reporting item.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 172 of 229

The fullDescription property SHOULD, as far as possible, provide details sufficient to enable

resolution of any problem indicated by the reporting item.

The beginning of fullDescription (for example, its first sentence) SHOULD provide a concise

description of the reporting item, suitable for display in cases where available space is limited. Tools that
construct fullDescription in this way do not need to provide a value for shortDescription

(§3.49.9). Tools that do not construct fullDescription in this way SHOULD provide a value for

shortDescription.

NOTE:The rationale for this guidance is that in the absence of shortDescription, a

viewer with limited display space might display a truncated version of
fullDescription, for example, the first sentence (if a sentence is identifiable), the first

paragraph, or the first 100 characters. If this guidance is not followed, that truncated
version might not be understandable.

3.49.11 messageStrings property

A reportingDescriptor object MAY contain a property named messageStrings whose value is an

object (§3.6) consisting of a set of properties with arbitrary names, each of whose values is a localizable
multiformatMessageString object (§3.12, §3.12.2).

If the reportingDescriptor object defines a rule, the set of property names appearing in the

messageStrings property SHALL contain at least the set of strings which occur as values of

result.message.id properties (§3.27.11, §3.11.10) in the current run object. The messageStrings

property MAY contain additional properties whose names do not appear as the value of the
result.message.id property for any result object in the run.

If the reportingDescriptor object describes a notification, the set of property names appearing in the

messageStrings property SHALL contain at least the set of strings which occur as values of

notification.message.id for any notification object in the run.

NOTE: Additional properties are permitted in the messageStrings property for the

convenience of tool vendors, who might find it easier to emit the entire set of messages
defined in the reporting metadata, rather than restricting it to those messages that
happen to appear in the log file.

EXAMPLE:

{ # A reportingDescriptor object for a rule.

 "messageStrings": {

 "objectCreation": { # A multiformatMessageString object (§3.12).

 "text": "{0} creates a new instance of {1} which is never used.

 Pass the instance as an argument to another method,

 assign the instance to a variable,

 or remove the object creation if it is unnecessary."

 },

 "stringReturnValue": {

 "text": "{0} calls {1} but does not use the new string

 instance that the method returns.

 Pass the instance as an argument to another method,

 assign the instance to a variable,

 or remove the call if it is unnecessary."

 }

 }

}

3.49.12 helpUri property

A reportingDescriptor object MAY contain a property named helpUri whose value is a localizable

string (§3.5.1) containing the absolute URI [RFC3986] of the primary documentation for the reporting
item.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 173 of 229

NOTE 1: The documentation might include examples, contact information for the authors,
and links to additional information.

NOTE 2: This property is localizable so that help information in different languages can
be viewed at different URIs.

3.49.13 help property

A reportingDescriptor object MAY contain a property named help whose value is a localizable

multiformatMessageString object (§3.12, §3.12.2) which provides the primary documentation for

the reporting item.

NOTE: This property is useful when help information is not available at a URI, for
example, in the case of a custom rule written by a developer, as opposed to one supplied
by the tool vendor.

3.49.14 defaultConfiguration property

A reportingDescriptor object MAY contain a property named defaultConfiguration whose

value is a reportingConfiguration object (§3.50).

If this property is absent, it SHALL be taken to be present, and its properties SHALL be taken to have the
default values specified in §3.50.

The rule- or notification-specific configuration parameters for a reportingDescriptor, if any, SHALL

NOT be stored in its property bag (§3.8) Rather, they SHALL be stored in
defaultConfiguration.parameters (§3.50.5).

3.49.15 relationships property

A reportingDescriptor object MAY contain a property named relationships whose value is an

array of zero or more unique (§3.7.3) reportingDescriptorRelationship objects (§3.53) each of

which declares one or more directed relationships from thisObject to another

reportingDescriptor object, which we refer to as theTarget, specified by

reportingDescriptorRelationship.target (§3.53.2). The natures of the relationships between

thisObject and theTarget are specified by reportingDescriptorRelationship.kinds

(§3.53.3).

3.50 reportingConfiguration object

3.50.1 General

A reportingConfiguration object contains the information in a reportingDescriptor (§3.49)

that a SARIF producer can modify at runtime, before executing its scan. We refer to the
reportingDescriptor object whose configuration is established or modified by a

reportingConfiguration object as theDescriptor.

When a reportingConfiguration object appears as the value of

theDescriptor.defaultConfiguration (§3.49.14), it specifies theReportingDescriptor’s

default configuration. When a reportingConfiguration object appears as the value of

configurationOverride.configuration (§3.51.3), it overrides the default values in the

reportingDescriptor identified by configurationOverride.descriptor (§3.51.2).

For an example, see §3.50.5.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 174 of 229

3.50.2 enabled property

A reportingConfiguration object MAY contain a property named enabled whose value is a

Boolean that specifies whether the condition described by theDescriptor was checked for during the

scan.

If this property is absent, it SHALL default to true.

EXAMPLE: In this example, a tool allows the user to enable or disable rules or
notifications:

SecurityScanner --disable "SEC4002,SEC4003" --enable SEC6012

3.50.3 level property

A reportingConfiguration object MAY contain a property named level whose value is one of the

strings "warning", "error", "note", or "none", with the same meanings as when those strings

appear as the value of result.level (§3.27.10) or notification.level (§3.58.6).

If level is absent, it SHALL default to "warning".

If theDescriptor describes a rule, then if level is present, it SHALL provide the value for the level

property of any result object (§3.27) whose ruleIndex (§3.27.6) or rule property (§3.27.7), either

explicitly supplied or inferred from its default, identifies theDescriptor and which does not itself specify

a level property. For details of the configuration property resolution procedure, see §3.27.10 (which

illustrates the procedure for the specific case of the result.level property).

If theDescriptor describes a notification, then if level is present, it SHALL provide the value for the

level property of any notification object (§3.58) whose descriptor property (§3.58.2) identifies

theDescriptor and which does not itself specify a level property.

EXAMPLE: In this example, a tool allows the user to override a rule or notification’s
default level:

WebScanner --level "WEB1002:error,WEB1005:warning"

3.50.4 rank property

A reportingConfiguration object MAY contain a property named rank whose value is a number

between 0.0 and 100.0 inclusive, with the same interpretation as the value of the result.rank

(§3.27.25).

If rank is absent, it SHALL default to -1.0, which indicates that the value is unknown (not set).

If theDescriptor describes a rule, then if rank is present, it SHALL provide the value for the rank

property of any result object (§3.27) whose ruleIndex (§3.27.6) or rule property (§3.27.7), either

explicitly supplied or inferred from its default, identifies theDescriptor and which does not itself specify

a rank property.

rank is not applicable to notifications.

3.50.5 parameters property

A reportingConfiguration object MAY contain a property named parameters whose value is a

property bag (§3.8). This allows a reportingDescriptor object (§3.49) to define configuration

information that is specific to that descriptor.

EXAMPLE: In this example, a rule that specifies the maximum permitted source line
length is parameterized by the maximum length.

{ # A reportingDescriptor object (§3.49).

 "id": "SA2707",

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 175 of 229

 "name": {

 "text": "LimitSourceLineLength"

 },

 "shortDescription": {

 "text": "Limit source line length for readability."

 },

 "defaultConfiguration": {

 "enabled": true,

 "level": "warning",

 "parameters": {

 "maxLength": 120

 }

 }

}

The rule provides a default value, but the tool allows the user to override it:

StyleScanner *.c --rule-config "SA2707:maxLength=80"

3.51 configurationOverride object

3.51.1 General

A configurationOverride object modifies the effective runtime configuration of a specified

reportingDescriptor object (§3.49), which we refer to as theDescriptor.

NOTE: Together with toolComponent.rules (§3.19.23), the

configurationOverride object allows the SARIF consumer to determine exactly how

the tool’s analysis rules were configured during the run. This is useful in compliance
scenarios where, for example, an auditor might want to confirm that a particular rule was
reconfigured from a warning to an error. It might also be useful for reproducing a run.

The configurationOverride object’s descriptor property (§3.51.2) identifies theDescriptor. Its

configuration property (§3.51.3) overrides the values specified in

theDescriptor.defaultConfiguration (§3.49.14).

EXAMPLE: In this example, rule CA2101 is treated as a warning rather than an error.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object

 "id": "CA2101", # (§3.49).

 "defaultConfiguration": {

 "level": "error"

 }

 }

]

 }

 },

 "invocations": [# See §3.14.11.

 { # An invocation object (§3.20).

 "ruleConfigurationOverrides": [# See §3.20.5.

 { # A configurationOverride object

 # (§3.51).

 "descriptor": { # See §3.51.2.

 "index": 0

 },

 "configuration": { # See §3.51.3.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 176 of 229

 "level": "warning"

 }

 }

],

 ...

 }

]

}

3.51.2 descriptor property

A configurationOverride object SHALL contain a property named descriptor whose value is a

reportingDescriptorReference object (§3.52) that identifies the reportingDescriptor (§3.49)

whose runtime configuration is to be modified, which we refer to as theDescriptor.

3.51.3 configuration property

A configurationOverride object SHALL contain a property named configuration whose value is

a reportingConfiguration object (§3.50) each of whose properties overrides the corresponding

property in theDescriptor.defaultConfiguration (§3.49.14). If any property of configuration

is absent, the corresponding property of theDescriptor.defaultConfiguration is respected.

3.52 reportingDescriptorReference object

3.52.1 General

A reportingDescriptorReference object identifies a particular reportingDescriptor object

(§3.49), which we refer to as theDescriptor, among all reportingDescriptor objects defined by

theTool, including those defined by theTool.driver (§3.18.2) and theTool.extensions

(§3.18.3).

In some cases, there is no reportingDescriptor object associated with a

reportingDescriptorReference object. In that case, the reportingDescriptorReference

object SHALL contain only the id property (§3.52.4), and theDescriptor does not exist.

EXAMPLE: In this example, a tool emits a tool execution notification that refers to a rule.
The tool does not provide rule metadata. Therefore, associatedRule (§3.58.3)

contains only an id property, whose value is the id of the rule that failed. Similarly, the

tool does not provide metadata about its notifications, so "descriptor" (§3.58.2)

contains only the id of the notification.

{ # An invocation object (§3.20).

 "toolExecutionNotifications": [# See §3.20.21.

 { # A notification object (§3.58).

 "descriptor": { # See §3.58.2.

 "id": "CTN9999"

 },

 "associatedRule": { # See §.3.58.3

 "id": "C2001"

 },

 "level": "error",

 "message": {

 "text": "Exception evaluating rule 'C2001'. Rule disabled;

 run continues."

 }

 }

]

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 177 of 229

3.52.2 Constraints

If metadata is present, at least one of index (§3.52.5) and guid (§3.52.6) SHALL be present. If both are

present, they SHALL identify the same reportingDescriptor object (§3.49).

3.52.3 reportingDescriptor lookup

theDescriptor SHALL be located within the toolComponent object (§3.19) identified by the

toolComponent property (§3.52.7), which we refer to as theComponent. The procedure for looking up

a toolComponent from a toolComponentReference is described in §3.54.2.

theDescriptor SHALL be located either within theComponent.rules (§3.19.23) or

theComponent.notifications (§3.19.24), according to this table:

If the reportingDescriptorReference

occurs in:

… then theDescriptor is

an element of:

invocation.ruleConfigurationOverrides (§3.20.5) rules

invocation.notificationConfigurationOverrides (§3.20.6) notifications

result.rule (§3.27.7) rules

notification.descriptor (§3.58.2) notifications

notification.associatedRule (§3.58.3) rules

3.52.4 id property

A reportingDescriptorReference object MAY contain a property named id whose value is a

hierarchical string (§3.5.4) that either equals theDescriptor.id (§3.49.3) or equals

theDescriptor.id plus one additional hierarchical component.

NOTE: This property does not participate in the lookup, but its presence improves the
readability of the log file at the expense of increased file size.

If id is absent and theResult.ruleId (§3.27.5) is present, then id SHALL default to

theResult.ruleId. If both are present, they SHALL be equal.

For more information about the semantics of id when theDescriptor is a rule, in particular the usage

of the hierarchical components of id, see the description of result.ruleId (§3.27.5).

EXAMPLE: In this example, the first result object is valid because rule.id (inherited

from ruleId) equals theDescriptor.id. The second result object is also valid

because rule.id (this time specified directly) equals theDescriptor.id plus one

additional hierarchical component ("ghi"). The third result object is invalid because

theDescriptor.id is not a “component-wise” prefix of rule.id. The fourth result

object is invalid because ruleId does not equal rule.id.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "abc/def", # See §3.49.3.

 ...

 },

 ...

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 178 of 229

 }

 },

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "ruleId": "abc/def", # See §3.27.5.

 "rule": {

 "index": 0

 },

 },

 {

 "rule": {

 "id": "abc/def/ghi",

 "index": 0

 }

 },

 {

 "rule": {

 "id": "abc/defg", # INVALID: theDescriptor.id is not a

 "index": 0 # "component-wise" prefix of id.

 }

 },

 {

 "ruleId": "abc/def",

 "rule": {

 "id": "abc/defg/hij", # INVALID: Not equal to ruleId.

 "index": 0

 }

]

}

3.52.5 index property

A reportingDescriptorReference object MAY contain a property named index whose value is the

array index (§3.7.4) into theComponent.rules (§3.19.23) or theComponent.notifications

(§3.19.24), according to the table in §3.52.3.

EXAMPLE 1: In this example, there is more than one rule with id CA1711. index

uniquely specifies the relevant rule, whether or not there are multiple rules with the same
id.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA1711", # See §3.49.3.

 ...

 },

 { # Another reportingDescriptor with the same id.

 "id": "CA1711", # rule.index points to this one.

 ...

 }

]

 }

 },

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "ruleId": "CA1711", # See §3.27.5.

 # A reportingDescriptorReference object.

 "rule": {

 "index": 1

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 179 of 229

 }

 }

]

}

If index is absent and theResult.ruleIndex (§3.27.6) is present, index SHALL default to

theResult.ruleIndex. If both are present, they SHALL be equal.

3.52.6 guid property

A reportingDescriptorReference object MAY contain a property named guid whose value is a

GUID-valued string (§3.5.3) equal to theDescriptor.guid (§3.49.5).

3.52.7 toolComponent property

A reportingDescriptorReference object MAY contain a property named toolComponent whose

value is a toolComponentReference object (§3.54) that identifies theComponent.

If toolComponent is absent, theComponent shall be taken to be theTool.driver (§3.18.2).

3.53 reportingDescriptorRelationship object

3.53.1 General

A reportingDescriptorRelationship object specifies one or more directed relationships from one

reportingDescriptor object (§3.49), which we refer to as theSource, to another one, which we

refer to as theTarget.

reportingDescriptorRelationship objects appear as elements of the

reportingDescriptor.relationships array (§3.49.15). The reportingDescriptor object

containing this property is theSource.

reportingDescriptorRelationship objects are useful in various scenarios:

1. In relating analysis rules to taxonomic categories (“taxa”; see §3.19.3).

EXAMPLE 1: In this example, the definition of rule CA1000 states that every result that

violates this rule falls into the taxonomic category (“taxon”) specified by ID 327 of the
Common Weakness Enumeration [CWE™]:

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA1000",

 "relationships": [

 { # A reportingDescriptorRelationship object.

 "target": { # See §3.53.2.

 "id": "327",

 "guid": "33333333-0000-1111-8888-111111111111",

 "toolComponent": {

 "name": "CWE",

 "guid": "33333333-0000-1111-8888-000000000000",

 }

 },

 "kinds": [

 "superset"

]

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 180 of 229

 }

]

 }

 },

 "taxonomies": [

 {

 "name": "CWE",

 "guid": "33333333-0000-1111-8888-000000000000",

 ...

 "taxa": [

 {

 "id": "327",

 "guid": "33333333-0000-1111-8888-111111111111",

 "name": "BrokenOrRiskyCryptographicAlgorithm",

 ...

 },

 ...

]

 }

],

 ...

}

2. In relating one analysis rule to another.

EXAMPLE 2: In this example, the definition of rule CA1000 states that every violation of

this rule will lead to a violation of rule CA2000.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA1000",

 "guid": "11111111-0000-1111-8888-000000000001"

 "relationships": [

 { # A reportingDescriptor object.

 "target": { # See §3.53.2.

 "id": "CA2000",

 "guid": "11111111-0000-1111-8888-000000000002",

 },

 "kinds": [

 "willFollow"

]

 }

]

 },

 {

 "id": "CA2000",

 "guid": "11111111-0000-1111-8888-000000000002"

 ...

 }

]

 }

 },

 ...

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 181 of 229

3.53.2 target property

A reportingDescriptorRelationship object SHALL contain a property named target whose

value is a reportingDescriptorReference object which identifies theTarget (see §3.53.1).

3.53.3 kinds property

A reportingDescriptorRelationship object MAY contain a property named kinds whose value is

an array of one or more unique (§3.7.3) strings each of which specifies a relationship between
theSource and theTarget (see §3.53.1). If kinds is absent, it SHALL default to ["relevant"]

(see below for the meaning of "relevant").

When possible, SARIF producers SHOULD use the following values, with the specified meanings.

• "equal": theTarget identifies essentially the same set of items as does theSource (for

example, a taxonomic category that identifies the same set of results as this rule).

• "superset": theTarget identifies a superset of the items identified by theSource (for

example, a taxonomic category that identifies a superset of the results identified by this rule).

• "subset": theTarget identifies a subset of the items identified by theSource (for example, a

taxonomic category that identifies a subset of the results identified by this rule)

• "disjoint": The sets of items identified by theTarget does not intersect with the set of items

identified by theSource.

• "incomparable": The sets of items identified by theTarget intersects with the set of items

identified by theSource but is neither a superset nor a subset.

• "canFollow": Items identified by theTarget can be caused by, or occur downstream of, items

identified by theSource.

• "canPrecede": Items identified by theSource can be caused by, or occur downstream of,

items identified by theTarget.

• "willFollow": Items identified by theTarget will be caused by, or occur downstream of,

items identified by theSource.

• "willPrecede": Items identified by theSource will be caused by, or occur downstream of,

items identified by theTarget.

• "relevant": theTarget is relevant to theSource in a way not covered by other relationship

kinds.

If none of these values are appropriate, a SARIF producer MAY use any value.

NOTE 1: Although "relevant" is a catch-all for any relationship not described by the

other values, a producer might still wish to define its own more specific values.

NOTE 2: The values "equal" and "superset" are special in that they allow certain

elements of result.taxa (§3.27.8) to be elided. See §3.27.8, paragraph 2, for more

information on this point.

3.53.4 description property

A reportingDescriptorRelationship object MAY contain a property named description whose

value is a message object (§3.11) that describes the relationship.

3.54 toolComponentReference object

3.54.1 General

A toolComponentReference object identifies a particular toolComponent object (§3.19), either

theTool.driver (§3.18.2) or an element of theTool.extensions (§3.18.3). We refer to the

identified toolComponent object as theComponent.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 182 of 229

3.54.2 toolComponent lookup

If neither index (§3.54.4) nor guid (§3.54.5) is present, theComponent SHALL be theTool.driver

(§3.18.2).

If index is present, theComponent SHALL be the object at array index index within

theTool.extensions (§3.18.3).

If index is absent and guid is present, theComponent SHALL be either theTool.driver or an

element of theTool.extensions, whichever one has a matching guid property.

3.54.3 name property

A toolComponentReference object MAY contain a property named name whose value is a string

equal to theComponent.name (§3.19.8).

NOTE: This property does not participate in the lookup, but its presence improves the
readability of the log file at the expense of increased file size.

3.54.4 index property

If theComponent is an element of theTool.extensions (§3.18.3), a toolComponentReference

object MAY contain a property named index whose value is the array index (§3.7.4) of that element.

Otherwise, index SHALL be absent.

3.54.5 guid property

A toolComponentReference object MAY contain a property named guid whose value is a GUID-

valued string (§3.5.3) equal to theComponent.guid (§3.19.6).

3.55 fix object

3.55.1 General

A fix object represents a proposed fix for the problem indicated by theResult. It specifies a set of

artifacts to modify. For each artifact, it specifies regions to remove, and provides new content to insert.

EXAMPLE:

{ # A result object (§3.27).

 "fixes": [# See §3.27.30.

 { # A fix object.

 "description": { # See §3.55.2.

 "text": "Private member names begin with '_'"

 },

 "artifactChanges": [# See §3.55.3.

 { # An artifactChange object (§3.56).

 ...

 }

]

 }

],

 ...

}

3.55.2 description property

A fix object SHOULD contain a property named description whose value is a message object

(§3.11) that describes the proposed fix.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 183 of 229

NOTE: The purpose of the description property is to enable a SARIF viewer to

present the proposed fix to the end user.

EXAMPLE:

"fix": {

 "description": {

 "text": "Combine declaration and initialization of variable 'x'."

 },

 ...

}

3.55.3 artifactChanges property

A fix object SHALL contain a property named artifactChanges whose value is an array of one or

more unique (§3.7.3) artifactChange objects (§3.56) each of which describes the changes to a single

artifact that are necessary to effect the fix.

NOTE: artifactChanges is an array because a fix might require changes to multiple

artifacts.

The array elements SHALL refer to distinct artifacts.

EXAMPLE 1: In this example, two artifactChange objects make identical changes

(commenting out the first line) in two distinct C-language files, src/a.c and src/b.c.

{ # A fix object.

 "artifactChanges": [

 { # An artifactChange object (§3.56).

 "artifactLocation": { # See §3.56.2.

 "uri": "src/a.c"

 },

 "replacements": [# See §3.56.3.

 { # A replacement object (§3.57).

 "deletedRegion": { # See §3.57.3.

 "startLine": 1,

 "startColumn": 1,

 "endColumn": 1

 },

 "insertedContent": { # See §3.57.4.

 "text": "// "

 }

 }

 }

 },

 {

 "artifactLocation": {

 "uri": "src/b.c"

 },

 "replacements": [

 {

 "deletedRegion": {

 "startLine": 1,

 "startColumn": 1,

 "endColumn": 1

 },

 "insertedContent": {

 "text": "// "

 }

 }

 }

 }

]

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 184 of 229

}

EXAMPLE 2: This example represents invalid SARIF because the two
artifactChange objects refer to the same file, src/a.c. It is invalid even though the

artifactChange objects are distinguished by their replacements properties.

{ # A fix object.

 "artifactChanges": [

 { # An artifactChange object (§3.56).

 "artifactLocation": { # See §3.56.2.

 "uri": "src/a.c"

 },

 "replacements": [# See §3.56.3.

 { # A replacement object (§3.57).

 "deletedRegion": { # See §3.57.3.

 "startLine": 1,

 "startColumn": 1,

 "endColumn": 1

 },

 "insertedContent": { # See §3.57.4.

 "text": "// "

 }

 }

 }

 },

 {

 "artifactLocation": {

 "uri": "src/a.c" # Invalid: refers to the same file.

 },

 "replacements": [

 {

 "deletedRegion": {

 "startLine": 2, # Invalid even though it affects a

 "startColumn": 1, # different line.

 "endColumn": 1

 },

 "insertedContent": {

 "text": "// "

 }

 }

 }

 }

]

}

3.56 artifactChange object

3.56.1 General

An artifactChange object represents a change to a single artifact.

EXAMPLE:

{ # A fix object (§3.55).

 "artifactChanges": [# See §3.55.3.

 {

 "artifactLocation": { # See §3.56.2.

 "uri": "a.h"

 },

 "replacements": [# See §3.56.3.

 { # A replacement object (§3.57).

 ...

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 185 of 229

 { # Another replacement object.

 ...

 }

]

 }

]

}

3.56.2 artifactLocation property

An artifactChange object SHALL contain a property named artifactLocation whose value is an

artifactLocation object (§3.4) that represents the location of the artifact.

3.56.3 replacements property

An artifactChange object SHALL contain a property named replacements whose value is an array

of one or more replacement objects (§3.57) each of which represents the replacement of a single

region of the artifact specified by the artifactLocation property (§3.56.2).

3.57 replacement object

3.57.1 General

A replacement object represents the replacement of a single region of an artifact. If the region’s length

is zero, it represents an insertion point.

If a replacement object specifies both the removal of a region by means of the deletedRegion property

(§3.57.3) and the insertion of new content by means of the insertedContent property (§3.57.4), then

the effect of the replacement SHALL be as if the removal were performed before the insertion.

If a single artifactChange object (§3.56) specifies more than one replacement, then the effect of the

replacements SHALL be as if they were performed in the order they appear in the replacements array

(§3.56.3). The deletedRegion property of each replacement object SHALL specify the location of

the replacement in the unmodified artifact.

EXAMPLE 1: Suppose an artifactChange object contains a replacements property

whose value is the following array of replacement objects:

"artifactChanges": [

 {

 "deletedRegion": {

 "byteOffset": 12,

 "byteLength": 5

 },

 "insertedContent": {

 "binary": "ZXhhbXBsZQ=="

 }

 },

 {

 "deletedRegion": {

 "byteOffset": 20,

 "byteLength": 3

 }

 },

 {

 "deletedRegion": {

 "byteOffset": 312,

 "byteLength": 0

 },

 "insertedContent": {

 "binary": "ZXhhbXBsZQ=="

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 186 of 229

 }

 }

]

The first replacement object removes 5 bytes starting at offset 12; that is, it removes

bytes 12–16. Then it inserts the 7 bytes specified by the MIME Base64-encoded string in
the insertedContent.binary property at the same offset.

The second replacement object removes 3 bytes starting at offset 20 with respect to

the unmodified file. Since 5 bytes were removed and 7 bytes inserted before byte 20, the
3 bytes removed actually start at byte 22 of the contents after the first change. Since the
insertedContent property is absent, no content is inserted in place of the deleted

bytes.

In the third replacement object, the length of the region specified by the

deletedRegion property is zero, so the region represents an insertion point. The 7

bytes specified by the insertedContent.binary property are inserted at offset 312

with respect to the unmodified artifact.

A replacement object can represent either a textual replacement or a binary replacement, depending

on whether the deletedRegion property (§3.57.3) specifies a text region (§3.30.2) or a binary region

(§3.30.3).

EXAMPLE 2: In this example, the replacements property specifies a replacement in a

text file.

"replacements": [

 {

 "deletedRegion": { # The region object represents a text region (§3.30.2).

 "startLine": 12,

 "startColumn": 5,

 "endColumn": 9

 },

 "insertedContent": {

 "text": "example" # The insertedContent property contains a text

 } # property instead of a binary property.

 }

]

When performing a replacement in a text artifact, the SARIF producer SHOULD specify a text
replacement rather than a binary replacement. This allows the SARIF producer to specify the region
without regard to whether the artifact starts with a byte order mark (BOM).

3.57.2 Constraints

If the deletedRegion property (§3.57.3) specifies a text region (§3.30.2) and the insertedContent

property (§3.57.4) is present, then the insertedContent property SHOULD contain a text property

(§3.3.2).

If the deletedRegion property specifies a binary region (§3.30.3) and the insertedContent property

is present, then the insertedContent property SHALL contain a binary property (§3.3.3).

Although it is possible to construct a replacement object that neither removes nor adds any content, a

replacement object SHOULD have a material effect on the target artifact, either because

deletedRegion denotes a non-empty region to delete, or because insertedContent specifies non-

empty content to insert, or both.

3.57.3 deletedRegion property

A replacement object SHALL contain a property named deletedRegion whose value is a region

object (§3.30) specifying the region to delete.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 187 of 229

If the length of the region specified by deletedRegion is zero, then deletedRegion specifies an

insertion point, and the SARIF consumer performing the replacement SHALL NOT remove any content.

3.57.4 insertedContent property

A replacement object MAY contain a property named insertedContent whose value is an

artifactContent object (§3.3) that specifies the content to insert in place of the region specified by

the deletedRegion property (or at the point specified by deletedRegion, if deletedRegion has a

length of zero and therefore specifies an insertion point).

If the inserted content is specified as text, the text SHALL be transcoded from UTF-8 (the encoding of all
text in all SARIF log files) to the encoding of the target artifact before being inserted.

NOTE: This implies that a text fix cannot be safely applied unless the target artifact’s
encoding is known.

If insertedContent is absent or its properties specify content whose length is zero, the SARIF

consumer performing the replacement SHALL NOT insert any content.

3.58 notification object

3.58.1 General

A notification object describes a condition encountered during the execution of an analysis tool

which is relevant to the operation of the tool itself, as opposed to being relevant to an artifact being
analyzed by the tool. Conditions relevant to artifacts being analyzed by a tool are represented by result

objects (§3.27).

3.58.2 descriptor property

A notification object SHOULD contain a property named descriptor whose value is a

reportingDescriptorReference object (§3.52) that identifies this notification.

If the reportingDescriptor object (§3.49) theDescriptor to which descriptor refers exists (that

is, if theTool contains a reportingDescriptor object that describes this notification), then

descriptor SHOULD refer to theDescriptor.

NOTE: If theDescriptor exists but descriptor does not refer to it, a SARIF

consumer will not be able to locate the metadata for this notification.

3.58.3 associatedRule property

If the condition described by the notification object is relevant to a particular analysis rule, the

notification object SHOULD contain a property named associatedRule whose value is a

reportingDescriptorReference object (§3.52) that identifies the rule.

EXAMPLE: In this example, there is more than one rule with id CA1711.

associatedRule.index uniquely specifies the relevant rule.

{ # A run object (§3.14).

 "tool": { # See §3.14.6.

 "driver": { # See §3.18.2.

 "name": "CodeScanner",

 "rules": [# See §3.19.23.

 { # A reportingDescriptor object (§3.49).

 "id": "CA1711",

 ...

 },

 { # Another reportingDescriptor object

 "id": "CA1711", # with the same id. associatedRule.id

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 188 of 229

 ... # identifies this one.

 }

]

 }

 },

 "invocations": [# See §3.14.11.

 { # An invocation object (§3.20).

 "toolConfigurationNotifications": [# See §3.20.22.

 { # A notification object (§3.58).

 "descriptor": {

 "id": "CFG0001"

 },

 "message": {

 "text": "Rule configuration is missing."

 },

 "associatedRule": {

 "id": "CA1711",

 "index": 1

 }

 }

],

 ...

 }

]

}

3.58.4 locations property

If the condition described by the notification object is relevant to one or more locations, the

notification object MAY contain a property named locations whose value is an array of zero or

more unique (§3.7.3) location objects (§3.28) that identify those locations.

3.58.5 message property

A notification object SHALL contain a property named message whose value is a message object

(§3.11) that describes the condition that was encountered. See §3.11.7 for the procedure for looking up a
message string from a message object, in particular, for the case where the message object occurs as

the value of notification.message.

3.58.6 level property

A notification object MAY contain a property named level whose value is one of a fixed set of

strings that specify the severity level of the notification.

If present, the level property SHALL have one of the following values, with the specified meanings:

• "error": A serious problem was found. The condition encountered by the tool resulted in the

analysis being halted or caused the results to be incorrect or incomplete.

• "warning": A problem that is not considered serious was found. The condition encountered by

the tool is such that it is uncertain whether a problem occurred, or is such that the analysis might
be incomplete but the results that were generated are probably valid.

• "note": The notification is purely informational. There is no required action.

• "none": This is a trace notification (typically, debug output from the tool).

If level is absent, it SHALL default to the value determined by the procedure defined for

result.level (§3.27.10), except throughout the procedure, replace ruleConfigurationOverrides

with notificationConfigurationOverrides.

Analysis tools SHOULD treat notifications whose level property is "error" as failures and treat the

entire run as having failed (for example, by settings the exit code to the value that the tool uses to indicate
failure, typically a non-zero value).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 189 of 229

Because a notification whose level property is "error" describes a failed run, an analysis tool SHALL

NOT override the severity of such a notification.

3.58.7 threadId property

A notification object MAY contain a property named threadId whose value is an integer which

identifies the thread associated with this notification.

3.58.8 timeUtc property

A notification object MAY contain a property named timeUtc whose value is a string in the format

specified §3.9, specifying the UTC date and time at which the analysis tool generated the notification.

3.58.9 exception property

If the notification is a result of a runtime exception, the notification object MAY contain a property

named exception whose value is an exception object (§3.59).

If the notification is not the result of a runtime exception, the exception property SHALL be absent.

3.59 exception object

3.59.1 General

An exception object describes a runtime exception encountered during the execution of an analysis

tool. This includes signals in POSIX-conforming operating systems

3.59.2 kind property

An exception object SHOULD contain a property named kind whose value is a string describing the

exception.

If the exception represents a thrown object, kind SHALL be the fully qualified type name of the object

that was thrown, if that information is available.

EXAMPLE 1: C#: "System.ArgumentNullException"

If the exception represents a POSIX signal, kind SHALL be the symbolic name of the signal as specified

in <signal.h>.

EXAMPLE 2: POSIX: "SIGFPE"

If the tool does not have access to information about the object that was thrown, the kind property

SHALL be absent.

3.59.3 message property

An exception object SHOULD contain a property named message whose value is a string that

describes the exception.

If the tool does not have access to an appropriate property of the thrown object, the message property

SHALL be absent.

EXAMPLE 1: C++: The tool might populate message with the string returned from the

what() method of any object derived from std::exception.

EXAMPLE 2: C#: The tool might populate message with the value returned from the

ToString() method of the System.Exception object, or (less informatively) from that

object’s Message property.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 190 of 229

3.59.4 stack property

An exception object MAY contain a property named stack whose value is a stack object (§3.44) that

describes the sequence of function calls leading to the exception.

3.59.5 innerExceptions property

An exception object MAY contain a property named innerExceptions whose value is an array of

zero or more exception objects each of which is considered a cause of the containing exception.

NOTE: There is commonly no more than one inner exception. This property is an array to
accommodate platforms that provide a mechanism for aggregating exceptions, such as
the System.AggregateException class from the .NET Framework.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 191 of 229

4 External property file format

4.1 General

External property files (see §3.15.2) conform to a schema distinct from that of the root file. External
property files contain information that makes it possible for a consumer to determine which properties are
contained in the file, to parse their contents, and to associate the external properties with the run to which
they belong.

An external property file SHALL contain one or more externalized properties. A SARIF consumer SHALL
treat the value of an externalized property exactly as if it had appeared inline in the root file as the value
of the corresponding property.

4.2 External property file naming convention

The file name of an external property file SHOULD end with the extension ".sarif-external-

properties".

EXAMPLE 1: scan-results.sarif-external-properties

The file name MAY end with the additional extension ".json".

EXAMPLE 2: scan-results.sarif-external-properties.json

4.3 externalProperties object

4.3.1 General

The top-level element of an external property file SHALL be an object which we refer to as an
externalProperties object.

EXAMPLE: In this example, run.artifacts and run.properties have been

externalized to a file with these contents. Note that run.properties has been

externalized under the property name externalizedProperties, as explained in

§3.15.3.

{ # An externalProperties object

 "version": "2.1.0", # See §4.3.3.

 "$schema": # See §4.3.2.

 "https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-

external-property-file-schema-2.1.0.json",

 # See §4.3.4.

 "guid": "00001111-2222-1111-8888-555566667777",

 # See §4.3.5.

 "runGuid": "88889999-AAAA-1111-8888-DDDDEEEEFFFF",

 "artifacts": { # See §4.3.6.

 {

 "location": {

 "uri": "apple.png"

 },

 "mimeType": "image/png"

 },

 {

 "location": {

 "uri": "banana.png"

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 192 of 229

 "mimeType": "image/png"

 }

 },

 "externalizedProperties": {

 "team": "Security Assurance Team"

 }

}

4.3.2 $schema property

An externalProperties object MAY contain a property named $schema whose value is a string

containing an absolute URI from which a JSON schema document describing the version of the external
property file format to which this external property file conforms can be obtained.

If the $schema property is present, the JSON schema obtained from the specified URI SHALL describe

the version of the external property file format corresponding to the SARIF version specified by the
version property (§4.3.3).

NOTE 1: The purpose of the $schema property is to allow JSON schema validation tools

to locate an appropriate schema against which to validate the external property file. This
is useful, for example, for tool authors who wish to ensure that external property files
produced by their tools conform to the external property file format.

NOTE 2: The SARIF external property file schema is available at https://docs.oasis-
open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-
2.1.0.json.

4.3.3 version property

Depending on the circumstances, an externalProperties object either SHALL or MAY contain a

property named version whose value is a string designating the version of the SARIF specification to

which this external property file conforms. If present, this string SHALL have the value "2.1.0".

If this externalProperties object is the root element of an external property file (see §3.15.2), then

version SHALL be present.

Otherwise (that is, if this externalProperties object is an element of

theSarifLog.inlineExternalProperties (§3.13.5)), then version MAY be present. If absent, it

SHALL default to the value of theSarifLog.version (§3.13.2).

Although the order in which properties appear in a JSON object value is not semantically significant, the
version property SHOULD appear first.

NOTE: This will make it easier for parsers to handle multiple versions of the external
property file format if new versions are defined in the future.

4.3.4 guid property

An externalProperties object SHOULD contain a property named guid whose value is a GUID-

valued string (§3.5.3) that equals the guid property (§3.16.4) of the corresponding

externalPropertyFileReference object (§3.16) in the run.externalPropertyFiles property

(§3.14.2) in the root file.

4.3.5 runGuid property

If the externalized properties contained in this externalProperties object are associated with a single

run object (§3.14) theRun, and if theRun contains an automationDetails.guid property (§3.14.3,

§3.17.4), the externalProperties object MAY contain a property named runGuid whose value is a

GUID-valued string (§3.5.3) that equals theRun.automationDetails.guid. Otherwise (that is, if this

https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-external-property-file-schema-2.1.0.json

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 193 of 229

externalProperties object is associated with more than one run object, or if theRun does not

define automationDetails.guid), then runGuid SHALL be absent.

4.3.6 The property value properties

An externalProperties object SHALL contain zero or more externalized properties. The property

names in this object, and the names of the corresponding externalized properties, are given in the table in
§3.15.3.

The corresponding property values are the values of the externalized properties, exactly as they would
have appeared had they occurred inline in the root file.

NOTE 2: See the EXAMPLE in §4.3.1, where the externalized properties are
run.artifacts and run.properties, the externalized value of run.artifacts is

stored in a property named artifacts, and the externalized value of

run.properties is stored in a property named externalizedProperties.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 194 of 229

5 Conformance

5.1 Conformance targets

This document defines requirements for the SARIF file format and for certain software components that
interact with it. The entities (“conformance targets”) for which this document defines requirements are:

• SARIF log file: A log file in the format defined by this document.

• SARIF producer: A program which emits output in the SARIF format.

• Direct producer: An analysis tool which acts as a SARIF producer.

• Converter: A SARIF producer that transforms the output of an analysis tool from its native output
format into the SARIF format.

• SARIF post-processor: A SARIF producer that transforms an existing SARIF log file into a new
SARIF log file, for example, by removing or redacting security-sensitive elements.

• SARIF consumer: A program that reads and interprets a SARIF log file.

• Viewer: A SARIF consumer that reads a SARIF log file, displays a list of the results it contains,
and allows an end user to view each result in the context of the artifact in which it occurs.

• Result management system: a software system that consumes the log files produced by
analysis tools, produces reports that enable engineering teams to assess the quality of their
software artifacts at a point in time and to observe trends in the quality over time, and performs
functions such as filing bugs and displaying information about individual results.

• Engineering system: a software development environment within which analysis tools execute.
It might include a build system, a source control system, a result management system, a bug
tracking system, a test execution system, and so on.

The normative content in this document defines requirements for SARIF log files, except for those
normative requirements that are explicitly designated as defining the behavior of another conformance
target.

5.2 Conformance Clause 1: SARIF log file

A text file satisfies the “SARIF log file” conformance profile if:

• It conforms to the syntax and semantics defined in §3.

5.3 Conformance Clause 2: SARIF producer

A program satisfies the “SARIF producer” conformance profile if:

• It produces output in the SARIF format, according to the semantics defined in §3.

• It satisfies those normative requirements in §3 that are designated as applying to SARIF
producers.

5.4 Conformance Clause 3: Direct producer

An analysis tool satisfies the “Direct producer” conformance profile if:

• It satisfies the “SARIF producer” conformance profile.

• It additionally satisfies those normative requirements in §3 that are designated as applying to
“direct producers” or to “analysis tools”.

• It does not emit any objects, properties, or values which, according to §3, are intended to be
produced only by converters.

5.5 Conformance Clause 4: Converter

A converter satisfies the “Converter” conformance profile if:

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 195 of 229

• It satisfies the “SARIF producer” conformance profile.

• It additionally satisfies those normative requirements in §3 that are designated as applying to
converters.

• It does not emit any objects, properties, or values which, according to §3, are intended to be
produced only by direct producers.

5.6 Conformance Clause 5: SARIF post-processor

A SARIF post-processor satisfies the “SARIF post-processor” conformance profile if:

• It satisfies the “SARIF consumer” conformance profile.

• It satisfies the “SARIF producer” conformance profile.

• It additionally satisfies those normative requirements in §3 that are designated as applying to
post-processors.

5.7 Conformance Clause 6: SARIF consumer

A consumer satisfies the “SARIF consumer” conformance profile if:

• It reads SARIF log files and interprets them according to the semantics defined in §3.

• It satisfies those normative requirements in §3 that are designated as applying to SARIF
consumers.

5.8 Conformance Clause 7: Viewer

A viewer satisfies the “viewer” conformance profile if:

• It satisfies the “SARIF consumer” conformance profile.

• It additionally satisfies the normative requirements in §3 that are designated as applying to
viewers.

5.9 Conformance Clause 8: Result management system

A result management system satisfies the “result management system” conformance profile if:

• It satisfies the “SARIF consumer” conformance profile.

• It additionally satisfies the normative requirements in §3 and Appendix B (“Use of fingerprints by
result management systems”) that are designated as applying to result management systems.

5.10 Conformance Clause 9: Engineering system

An engineering system satisfies the “engineering system” conformance profile if:

• It satisfies the normative requirements in §3 that are designated as applying to engineering
systems.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 196 of 229

Appendix A. (Informative) Acknowledgments

The following individuals have participated in the creation of this document and are gratefully
acknowledged:

Participants:
Andrew Pardoe, Microsoft
Chris Meyer, Microsoft
Chris Wysopal, CA Technologies
David Keaton, Individual
Douglas Smith, Kestrel Technology
Duncan Sparrell, sFractal Consulting LLC
Everett Maus, Microsoft (participated on behalf of Microsoft; now at Google)
Harleen Kaur Kohli, Microsoft
Hendrik Buchwald, RIPS Technologies
Henny Sipma, Kestrel Technology
James A. Kupsch, SWAMP Project, University of Wisconsin
Jordyn Puryear, Microsoft
Joseph Feiman, CA Technologies
Ken Prole, Code Dx, Inc.
Kevin Greene, Mitre Corporation
Larry Hines, Micro Focus
Laurence J. Golding, Individual
Luke Cartey, Semmle
Mel Llaguno, Synopsys
Michael Fanning, Microsoft
Nikolai Mansourov, Object Management Group
Paul Anderson, GrammaTech, Inc.
Paul Brookes, Microsoft
Paul Patrick, FireEye, Inc.
Philip Royer, Splunk Inc.
Pooya Mehregan, Security Compass
Ram Jeyaraman, Microsoft
Ryley Taketa, Microsoft
Scott Louvau, Microsoft
Sean Barnum, FireEye, Inc.
Stefan Hagen, Individual
Sunny Chatterjee, Microsoft
Tim Hudson, Cryptsoft Pty Ltd.
Trey Darley, New Context Services, Inc.
Vamshi Basupalli, SWAMP Project, University of Wisconsin
Yekaterina O'Neil, Micro Focus

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 197 of 229

Appendix B. (Normative) Use of fingerprints by result
management systems

On large software projects, a single run of a set of analysis tools can produce hundreds of thousands of
results or more. To deal with so many results, some engineering teams adopt a strategy whereby they
first prevent the introduction of new problems into their code, and then work to address the existing
problems.

To prevent the introduction of new problems, it is necessary first to record the results from a designated
run. We refer to this as a baseline. It is then necessary to compare the results from a subsequent run with
the baseline.

To determine whether a result from a subsequent run is logically the same as a result from the baseline,
there must be a way to use information contained in the result to construct a stable identifier for the result.
We refer to this identifier as a fingerprint.

A result management system SHOULD construct a fingerprint by using information contained in the
SARIF file such as

• the name of the tool that produced the result.

• the rule id.

• the file system path to the analysis target.

There are situations where information that would be helpful in uniquely identifying a result is not easily
detectable by the result management system. For example, consider a tool which checks documentation
for words that are culturally or politically sensitive. The word would most likely occur only in
result.message, for example: "The word xxx should not be used in documentation."

The SARIF format provides the partialFingerprints property to allow analysis tools and other

components in the SARIF ecosystem to provide additional information which a result management
system can incorporate into the fingerprint that it constructs for each result. In this example, the tool might
set the value of a property in the partialFingerprints object to the prohibited word. A result

management system SHOULD include the information in partialFingerprints in its fingerprint

computation. See §3.27.17 for more requirements on how a result management system decides which
partial fingerprints to use.

An analysis tool SHOULD NOT include in partialFingerprints information that a result

management system could deduce from other information in the SARIF file, for example, file hashes.
Rather, the result management would use such information, along with partialFingerprints, in its

computation of fingerprints.

Some information contained in the result is not useful in constructing a fingerprint. For example, suppose
the fingerprint were to include the line number where the result was located, and suppose that after the
baseline was constructed, a developer inserted additional lines of code above that location. Then in the
next run, the result would occur on a different line, the computed fingerprint would change, and the result
management system would erroneously report it as a new result.

A result management system SHOULD NOT include an absolute line number (or an absolute byte
location in a binary artifact) in its fingerprint computation.

NOTE: The inclusion of non-deterministic file format elements (Appendix F, §F.2) or non-
deterministic absolute URIs (Appendix F, §F.4) in the fingerprint computation will
compromise the usefulness of fingerprints for distinguishing logically identical from
logically distinct results.

It is difficult to devise an algorithm that constructs a truly stable fingerprint for a result. Fortunately, for
practical purposes, the fingerprint does not need to be absolutely stable; it only needs to be stable
enough to reduce the number of results that are erroneously reported as “new” to a low enough level that
the development team can manage the erroneously reported results without too much effort.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 198 of 229

Appendix C. (Informative) Use of SARIF by log file
viewers

It is frequently useful for an end user to view the results produced by an analysis tool in the context of the
artifacts in which they occur. A log file viewer is a program that allows an end user to do this.

Typically, the user opens a log file in the viewer, which presents a list of the results in the log file. When
the user selects a result from the list, the viewer displays the source code from the file specified in the
result, and displays information about the result in the vicinity of the region where the result occurred. For
example, the viewer might interleave result information between lines of source code.

There are various reasons why a viewer might need to know the type of information contained in a source
file that it displays:

• If the viewer knows the programming language, it can provide services such as syntax
highlighting.

• If the result occurs in a source file that is nested within (for example) a compressed container file,
then the viewer needs to know the file type of the container so that it can extract the source file.

There are various ways that a viewer might obtain file type information. In the SARIF format, the
mimeType (§3.24.7) and sourceLanguage (§3.24.10) properties of the artifact object (§3.24)

provides this information. In the absence of these properties, a viewer can fall back to examining the
filename extension, for example “.c”.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 199 of 229

Appendix D. (Normative) Production of SARIF by
converters

There are two broad categories of tools that can produce output in the SARIF format. Analysis tools
produce SARIF as a result of performing a scan on a set of analysis targets. Converters translate existing
data from a non-SARIF format into the SARIF format. That data might come from an analysis tool that
produces output in a non-SARIF format, from a bug database, or from any other source.

A converter SHOULD populate those elements of the SARIF format for which a direct equivalent exists in
the input data.

If the input data includes information for which there is no SARIF equivalent, a converter MAY use it to
populate the various property bags (§3.8) and tag lists (§3.8.2) defined by the SARIF format, or they MAY
simply omit it from the output. When populating a property bag with such information, a converter
SHOULD use a property name that matches the name of that piece of information in the native tool
format, even if that name does not conform to the camelCase convention used in the rest of this
document.

NOTE: This makes it easier to match these properties with the source data in the native
tool format.

When serializing SARIF as JSON, a converter SHALL replace any characters in string-valued properties
that cannot occur in a JSON string with the appropriate escape sequence as defined by JSON
[RFC8259].

If the input data does not include an equivalent for any SARIF element, a converter MAY attempt to
synthesize that element. (For example, a converter might heuristically extract a rule id from the text of an
unstructured error message.)

Since each converter might synthesize SARIF elements differently (notably the rule id; see §3.27.5), a
SARIF consumer SHOULD NOT attempt to combine results produced by different converters for the
same tool.

A converter SHOULD populate its own semantic version [SEMVER] property
theRun.conversion.tool.driver.semanticVersion (§3.19.12). If it does, and if a subsequent

version of the converter synthesizes SARIF elements in a sematically incompatible way, it SHALL
increment the major version component of its semantic version.

Notwithstanding this general guidance recommending that a converter synthesize SARIF elements where
possible:

• A converter that knows which artifact a result was detected in, but not which artifact the analysis
tool was originally instructed to scan, SHOULD populate result.locations (§3.27.12), but

SHOULD NOT attempt to populate result.analysisTarget (§3.27.13).

• A converter SHOULD NOT populate the analysis tool’s toolComponent.semanticVersion

(§3.19.12) unless it knows that the tool component's version string is intended to be interpreted
as a semantic version [SEMVER] version string.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 200 of 229

Appendix E. (Informative) Locating rule and
notification metadata

The SARIF format allows rule and notification metadata to be included in a SARIF log file (see §3.19.23
and §3.19.24). A SARIF log file does not need to include any metadata. This raises the questions of when
metadata should be included in a log file, and how to locate the metadata if it is not included in the log file.

Metadata should be included in a log file in the following circumstances:

• The log file is intended to be viewed in a tool such as a log file viewer that needs to display
metadata related to each result or notification even when the tool is not connected to a network.

• The log file is intended to be uploaded to a result management system which requires information
about every rule specified by every result, and which might not have prior knowledge of the rules
specified by the results in this log file.

• Neither of the above applies, but the increased log file size due to the metadata is not considered
significant.

If metadata is not included in the log file, and if external property files (see §3.15.2) are not used, this
document does not specify a mechanism for locating the metadata. If the SARIF log file is produced in the
context of an engineering system that provides a service from which metadata can be obtained (for
example, a result management system, or a web service dedicated to metadata), then tooling can be
created to merge a log file with the relevant metadata when required (for example, when presenting the
results in a log file viewer).

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 201 of 229

Appendix F. (Informative) Producing deterministic
SARIF log files

F.1 General

In certain circumstances, it is desirable for an analysis tool to produce deterministic output; that is, for it to
produce identical output when run repeatedly with identical inputs.

For example, this is useful in a build system that caches the output from each build step. If the build is
rerun and the inputs to a given step are identical (which the build system might determine, for example,
by comparing timestamps, or by computing a hash of the inputs to the step and storing it along with the
output from the step), then the build system can save time by not re-running the step, and simply using
the existing outputs.

Consider this sequence of build steps:

1. A binary analysis tool analyzes A.dll and produces A.sarif.
2. A bug database ingestion tool reads A.sarif and files bugs for any new results.

If A.sarif has not changed between this build and the previous one, the build system does not have to
execute Step 2.

Authors of analysis tools are encouraged to provide a mechanism (for example, a command line option
such as --deterministic) which instructs the tool to produce deterministic output.

There are several issues to consider when producing deterministic output:

• Avoiding elements of the SARIF file format whose values are non-deterministic.

• Emitting array and dictionary elements in a deterministic order.

• Avoiding absolute paths.

• Handling baseline information

F.2 Non-deterministic file format elements

Certain optional elements of the SARIF format are non-deterministic in most situations. A log file that
includes these elements will not be deterministic except under special circumstances. For example:

• If a build system always runs on the same machine under the same account,
invocation.machine and invocation.account is deterministic.

• If a binary analysis tool runs in an environment that guarantees the same memory layout from
run to run (for example, an environment that allows a binary to be loaded at a fixed address and
that does not use address space layout randomization (ASLR)), then
physicalLocation.address and run.addresses are deterministic.

Authors of analysis tools are encouraged to provide a mechanism (for example, a command line option
such as --known-deterministic-properties:<property name>…) which allows the tool to emit

specified properties even when producing deterministic output.

Avoiding these elements, in conjunction with the techniques described in subsequent sections of this
Appendix, makes it more likely that the analysis tool will produce deterministic output:

• Non-deterministic elements in property bag properties.

• Non-deterministic elements in user-facing messages, for example, a timestamp in a result
message.

• The trailing component of run.automationDetails.id

• run.automationDetails.guid

• run.baselineGuid

• run.originalUriBaseIds

• run.addresses, because security measures such as address space layout randomization

(ASLR) might place the same code at different addresses from run to run.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 202 of 229

• invocation.commandLine, because it might specify non-deterministic absolute file paths or

other non-deterministic elements.

• invocation.arguments, for the same reason.

• invocation.processId

• invocation.startTimeUtc

• invocation.endTimeUtc

• invocation.machine

• invocation.account

• invocation.workingDirectory, because the tool might be launched from different

directories on different machines.

• invocation.environmentVariables

• invocation.stdin, stdout, stderr, or stdoutStderr, because the tool’s console output

might include non-deterministic elements such as timestamps.

• versionControlDetails.revisionId

• versionControlDetails.asOfTimeUtc

• versionControlDetails.mappedTo, because a repository might be downloaded to different

directories on different machines.

• threadFlow.threadId

• threadFlowLocation.executionTimeUtc

• notification.threadId

• notification.timeUtc

• result.guid

• stackFrame.threadId

• physicalLocation.address, for the same reason as run.addresses.

F.3 Array and dictionary element ordering

One obstacle to determinism in SARIF log files is the ordering of array elements and object properties.

For some arrays, SARIF requires a specific ordering. For example, within stack.frames, SARIF

requires the location object representing the most deeply nested function call to appear first.

For other arrays, for example properties.tags, SARIF does not require a specific ordering. For such

arrays, a tool can ensure the order by sorting the array elements before writing them to the log file. For
example, it might sort the tags in locale-insensitive alphabetical order.

The array of result objects in the run.results array presents more of a problem. A multi-threaded

analysis tool analyzing multiple artifacts in parallel might produce results in any order, and there is no
natural order for the results. A tool might choose to order them, for example, first alphabetically by
analysis target URI, then numerically by line number, then by column number, then alphabetically by rule
id.

For dictionaries such as the artifact.hashes object, a tool might order the property names

alphabetically, using a locale-insensitive ordering.

F.4 Absolute paths

Another obstacle to determinism is the use of absolute paths which might differ from machine to machine.
For example:

• Different build machines might be configured to use different source directories.

• A single build machine might use a different directory for each build.

Tools can avoid the use of absolute file paths by emitting URIs that are relative to one or more root
directories (for example, a source root directory and an output root directory), and accompanying each
artifactLocation.uri property with the corresponding artifactLocation.uriBaseId property.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 203 of 229

F.5 Inherently non-deterministic tools

The algorithms used by some tools are inherently non-deterministic because, for example, they perform
random sampling or random traversals of the graphs that represent the code. Generally, these tools
produce mostly the same result set, but there might be small differences between runs.

Such tools can avoid this source of non-determinism by, for example, providing a command-line
argument to specify the random number generator seed.

F.6 Compensating for non-deterministic output

If an analysis tool does not produce deterministic output, a build system can add additional processing
steps to compensate.

There are two scenarios to consider:

• Log equality is determined by a simple comparison of file contents, or by comparing file hashes.

• Log equality is determined by an “intelligent” comparison.

In the first scenario, a post-processing step could produce deterministic output by creating a new file that
omits non-deterministic elements, reorders array elements and object properties, removes file path
prefixes, and introduces artifactLocation.uriBaseId properties.

In the second scenario, a post-processing step could intelligently compare the newly produced log to the
log from a previous build by ignoring non-deterministic elements, ensuring that arrays have the same
elements regardless of order, and ignoring file path prefixes.

F.7 Interaction between determinism and baselining

SARIF's baselining feature poses a particular challenge for determinism. We illustrate the problem with
the following scenario:

On a particular date, a project's nightly build runs an analysis tool ToolX, which produces a log file, say,
log_20170914.sarif. The next day, a developer modifies one of the files scanned by the tool in a way

that introduces a new problem. That night, the nightly build tool runs again, this time producing a log file
which compares the current set of results to those that appeared in the previous run:

ToolX --input a.c b.c --baseline log_20170914.sarif --output log_20170915.sarif

Because a new problem has been introduced, log_20170614.sarif will contain a result object whose

baselineState is "new". The next night, without any further changes to the source files, the tool is run

yet again:

ToolX --input a.c b.c --baseline log_20170915.sarif --output log_20170916.sarif

The result object that first appeared in log_20160615.sarif still appears in log_20160616.sarif,

but since it existed in the baseline, its baselineState will now be "unchanged" or "updated" as

appropriate (see §3.27.24).

The result is that even though none of the analysis target files have changed, the log file has changed, or
at least, a simple file comparison (such as comparing the hash of the new log with the hash of the
baseline) will report that it has changed.

Strictly speaking, this does not violate determinism. After all, the baseline file has changed, and the
baseline file is one of the inputs to the analysis. But from a practical standpoint, this is still a problem,
albeit a small one.

If the build uses a simple mechanism such as hash value comparison to determine if a file has changed,
then on those occasions when the only difference between the newest log and the baseline is that some
results that were previously "new" are now "unchanged", subsequent build steps which consume the
SARIF log file will run, even if they might not actually be necessary. For example, a build step which
automatically files bugs for new results will run, even though the log contains no new results. Or a build
step which tracks the number of open issues will run, even though the number of open issues has not
actually changed.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 204 of 229

If the build engineers for a project wish to absolutely minimize the execution of unnecessary build steps,
they have various options. They might perform an “intelligent” comparison between the baseline and the
new log, treating "new" results in the baseline as equivalent to "unchanged" results. Or they might rewrite
the baseline (marking all "new" results as "unchanged") before performing the comparison. Of course,
there is no guarantee that such an “intelligent” comparison or baseline rewriting process will actually take
less time than the unnecessary build steps it is intended to avoid.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 205 of 229

Appendix G. (Informative) Guidance on fixes

Tools that produce SARIF files which include fix objects should take care to structure those fixes in such

a way as to affect a minimal range of content. This maximizes the likelihood that an automated tool can
safely apply multiple fixes to the same artifact.

The following example will clarify what this means and why it is important. Consider an XML file
containing the following element:

 <lineItem partNumber=A3101 />

Suppose that a (domain-specific) XML scanning tool reported two results:

• The value of the partNumber attribute is not enclosed in quotes.

• The part numbering scheme has changed, and part numbers beginning with “A” now begin with

“AA”.

Fixing only result #1 would produce the element

 <lineItem partNumber="A3101" />

Fixing only result #2 would produce the element

 <lineItem partNumber=AA3101 />

Fixing both results should produce the element

 <lineItem partNumber="AA3101" />

The fix for result #1 might be specified in various ways, for example:

1. As a single replacement:

• Replace the characters A3101 with the characters "A3101".

2. As a sequence of two replacements:
a. Insert a quotation mark before A3101.

b. Insert a quotation mark after A3101.

The fix for result #2 is most simply specified as a single replacement:

• Replace the characters A3101 with the characters AA3101.

Suppose there exists an automated tool which reads a SARIF file containing fix objects and applies as

many of the specified fixes as possible to the source files.

If the fix for result #1 were structured as a single replacement, then after applying the fix, the tool would
not be able to fix result #2, because the range of characters specified by the fix for result #2 would have
been replaced. On the other hand, if the fix for result #1 were structured as two replacements (with a
separate insertion for each quotation mark), the tool would still be able to apply the fix for result #2,
because the targeted range of characters would still exist.

Therefore, structuring fixes as sequences of minimal, disjoint replacements maximizes the amount of
work that can be done by automated fixup tools.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 206 of 229

Appendix H. (Informative) Diagnosing results in
generated files

Sometimes it is desirable to analyze files generated by the build. These files are usually not under source
control, and the build might even overwrite them multiple times. This Appendix offers guidance on how to
persist enough information in a SARIF log file to facilitate the diagnosis of results in these files.

In what follows, we will refer to files that are generated only once as “singly generated,” and files that are
generated multiple times as “multiply generated.”

It can be difficult to diagnose results in generated files for the following reasons:

• The file might not be available to the engineer who diagnoses the result (for example, the
engineer might not have a build environment).

• If the file is multiply generated, then at best only the last version is available, but results might
have been found in previous versions.

• It might be difficult to tell which instance of a multiply generated file contained the result.

For both singly and multiply generated files, there are two options (which can be used together):

1. Use the physicalLocation object’s (§3.29) region (§3.29.4) and contextRegion (§3.29.5)

properties to store enough of the generated file’s contents to facilitate diagnosis. The region

object’s (§3.30) snippet property (§3.30.13) holds the relevant portion of the file contents.

2. Use the artifact object’s (§3.24) contents (§3.24.8) property to persist the entire contents of

the file in theRun.artifacts (§3.14.15).

The first option is more compact; the second allows a SARIF viewer to present results with greater
context.

EXAMPLE 1: In this example, the analysis tool populates region.snippet and

contextRegion.snippet, allowing a SARIF viewer to display just enough context

(one hopes) to diagnose the result.

{ # A run object (§3.14).

 "originalUriBaseIds": { # See §3.14.14

 "GENERATED": {

 "uri": "file:///C:/code/browser/obj/"

 }

 },

 "results": [# See §3.14.23.

 { # A result object (§3.27).

 "ruleId": "CS6789", # See §3.27.5.

 "message": { # See §3.27.11.

 "text": "Division by 0"

 },

 "locations": [# See §3.27.12.

 { # A location object (§3.28).

 "physicalLocation": { # See §3.28.3.

 "artifactLocation": {

 "uri": "ui/window.g.cs", # A generated file (".g").

 "uriBaseId": "GENERATED"

 },

 "region": {

 "startLine": 42,

 "snippet": {

 "text": " int z = x / y;\r\n"

 }

 },

 "contextRegion": {

 "startLine": 40,

 "endLine": 42,

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 207 of 229

 "snippet": {

 "text":

 " int x = 54;\r\n int y = 0;\r\n int z = x / y;\r\n"

 }

 }

 }

 }

]

 }

],

 ...

}

EXAMPLE 2: In this example, the analysis tool populates artifact.contents,

allowing a SARIF viewer to present the result in a larger context at the expense of a
larger log file.

{

 "originalUriBaseIds": {

 "GENERATED": {

 "uri": "file:///dev-1.example.com/code/browser/obj/"

 }

 },

 "results": [

 {

 "ruleId": "CS6789",

 "message": {

 "text": "Division by 0"

 },

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "ui/window.g.cs",

 "uriBaseId": "GENERATED",

 "index": 0

 },

 "region": {

 "startLine": 42

 },

 "contextRegion": {

 "startLine": 40,

 "endLine": 42

 }

 }

 }

]

 }

],

 "artifacts": [# See §3.14.15.

 { # An artifact object (§3.24).

 "location": { # See §3.24.2.

 "uri": "ui/window.g.cs",

 "uriBaseId": "GENERATED"

 },

 "contents": { # See §3.24.8.

 "text": "..." # See §3.3.2.

 }

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 208 of 229

]

}

Multiply generated files are treated similarly, but they present an additional problem: if more than one
version of a given multiply generated file appears in theRun.artifacts – either because the analysis

tool wishes to persist the file contents, or for any other reason – then there must be a way to distinguish
them.

The recommended solution is for the analysis tool to create a new entry in theRun.artifacts for each

version of the generated files. The result might look like the following example.

EXAMPLE 3: In this example, "ui/window.g.cs" is multiply generated. The analysis

tool creates distinct entries in theRun.artifacts to distinguish the two versions.

{

 "originalUriBaseIds": {

 "GENERATED": {

 "uri": "file:///dev-1.example.com/code/browser/obj/"

 }

 },

 "results": [

 {

 "ruleId": "CS6789",

 "message": {

 "text": "Division by 0"

 },

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "ui/window.g.cs",

 "uriBaseId": "GENERATED",

 "index": 0 # Points to the appropriate instance

 }, # of the generated file.

 "region": {

 "startLine": 42

 },

 "contextRegion": {

 "startLine": 40,

 "endLine": 42

 }

 }

 }

]

 }

],

 "artifacts": [

 {

 "location": {

 "uri": "ui/window.g.cs",

 "uriBaseId": "GENERATED",

 },

 "lastModifiedTimeUtc": "2019-04-13T11:45:23.477",

 "contents": {

 "text": "..."

 }

 },

 {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 209 of 229

 "location": {

 "uri": ui/window.g.cs",

 "uriBaseId": "GENERATED",

 },

 "lastModifiedTimeUtc": "2019-04-13T11:46:27.013",

 "contents": {

 "text": "..."

 }

 }

]

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 210 of 229

Appendix I. (Informative) Detecting incomplete result
sets

This document describes three conditions that inform the SARIF consumer that the tool has failed to
produce a comprehensive set of results. For convenience, this Appendix gathers those conditions
together in one place:

• If any invocation object (§3.20) in theRun.invocations (§3.14.11) has a value of false

for its executionSuccessful property (§3.20.14), the tool either failed to start, terminated with

an exit code that denotes failure, or terminated with an unhandled exception or signal.

• If any notification object (§3.58) in invocation.toolExecutionNotifications

(§3.20.21) or toolConfigurationNotifications (§3.20.22) has a value of "error" for its

level property (§3.58.6), it is possible that the tool was unable to execute every analysis rule on

every analysis target. Therefore, the results cannot be assumed to be complete.

• If theRun.results (§3.14.23) is null, the tool either failed to start or failed to begin its

analysis.

These conditions apply separately to each run in the log file.

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 211 of 229

Appendix J. (Informative) Sample sourceLanguage
values

This Appendix contains a list of sample values for the artifact.sourceLanguage property (§3.24.10)

for some common programming languages. The purpose of this Appendix is to promote interoperability
by encouraging SARIF producers to use the same identifiers for these languages.

The names of some of the languages in this list are the trademarks of their respective owners.

• abap

• actionscript

• ada

• apex

• c

• clojure

• cobol

• coldfusion

• cplusplus

• csharp

• css

• d

• erlang

• fsharp

• fortran

• go

• groovy

• haskell

• java

• javascript

• json

• jsp

• julia

• lisp

• lua

• markdown (variants: markdown/gfm,

markdown/cmark)

• objectivec

• objectpascal

• ocaml

• perl

• php

• prolog

• python

• r

• razor

• ruby

• rust

• scala

• scheme

• sql (variants: sql/tsql, sql/psql).

• swift

• typescript

• visualbasic

• visualbasicdotnet

• yaml

• Markup languages:
o html

o sgml

o xml

• Typesetting languages:
o latex

o nroff

o roff

o tex

o troff

• UNIX® shell languages:
o bash

o csh

o ksh

o sh

o tcsh

• Windows® shell languages:
o cmd

o powershell

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 212 of 229

Appendix K. (Informative) Examples

This Appendix contains examples of complete, valid SARIF files, to complement the fragments shown in
examples throughout this document.

K.1 Minimal valid SARIF log file

This is a minimal valid SARIF log file. It contains only those elements required by this document
(elements which the document states SHALL be present).

The file contains a single run object (§3.14) with an empty results array (§3.14.23), as would happen if

the tool detected no issues in any of the artifacts it scanned.

{

 "version": "2.1.0",

 "runs": [

 {

 "tool": {

 "driver": {

 "name": "CodeScanner"

 }

 },

 "results": [

]

 }

]

}

K.2 Minimal recommended SARIF log file with source information

This is a minimal recommended SARIF log file for the case where an analysis tool produced results and
source location information is available.

The file contains those elements recommended by this document (elements which the document states
“SHOULD” be present), in addition to the required elements.

The file contains a single run object (§3.14) with a results array (§3.14.23). The results array contains

a single result object (§3.27) so the recommended elements of the result object can be shown.

Its run.artifacts property (§3.14.15) specifies only those artifacts in which the tool detected a result.

It does not contain a run.logicalLocations property (§3.14.17), because when physical location

information is available, that property is optional (it “MAY” be present).

This example also includes a toolComponent.rules property (§3.19.23) containing rule metadata,

even though rule metadata is optional, to show how a SARIF log file can be self-contained, in the sense
of containing all the information necessary to interpret the results.

{

 "version": "2.1.0",

 "runs": [

 {

 "tool": {

 "driver": {

 "name": "CodeScanner",

 "rules": [

 {

 "id": "C2001",

 "fullDescription": {

 "text": "A variable was used without being initialized. This can result

 in runtime errors such as null reference exceptions."

 },

 "messageStrings": {

 "default": {

 "text": "Variable \"{0}\" was used without being initialized."

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 213 of 229

 }

 }

 }

]

 }

 },

 "artifacts": [

 {

 "location": {

 "uri": "src/collections/list.cpp",

 "uriBaseId": "SRCROOT"

 },

 "sourceLanguage": "c"

 }

],

 "results": [

 {

 "ruleId": "C2001",

 "ruleIndex": 0,

 "message": {

 "id": "default",

 "arguments": [

 "count"

]

 },

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "src/collections/list.cpp",

 "uriBaseId": "SRCROOT",

 "index": 0

 },

 "region": {

 "startLine": 15

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add"

 }

]

 }

]

 }

]

 }

]

}

K.3 Minimal recommended SARIF log file without source information

This is a minimal recommended SARIF file for the case where an analysis tool produced results and
source location information is not available.

The file contains those elements recommended by this document (elements which the document states
“SHOULD” be present), in addition to the required elements.

The file contains a single run object (§3.14) with a results array (§3.14.23). The results array contains

a single result object (§3.27) so the recommended elements of the result object can be shown.

Its run.artifacts property (§3.14.15) specifies only those artifacts in which the tool detected a result.

It contains a run.logicalLocations property (§3.14.17), because when physical location information

is not available, that property is recommended.

{

 "version": "2.1.0",

 "runs": [

 {

 "tool": {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 214 of 229

 "driver": {

 "name": "BinaryScanner"

 }

 },

 "artifacts": [

 {

 "location": {

 "uri": "bin/example",

 "uriBaseId": "BINROOT"

 }

 }

],

 "logicalLocations": [

 {

 "name": "Example",

 "kind": "namespace"

 },

 {

 "name": "Worker",

 "fullyQualifiedName": "Example.Worker",

 "kind": "type",

 "parentIndex": 0

 },

 {

 "name": "DoWork",

 "fullyQualifiedName": "Example.Worker.DoWork",

 "kind": "function",

 "parentIndex": 1

 }

],

 "results": [

 {

 "ruleId": "B6412",

 "message": {

 "text": "The insecure method \"Crypto.Sha1.Encrypt\" should not be used."

 },

 "level": "warning",

 "locations": [

 {

 "logicalLocations": [

 {

 "fullyQualifiedName": "Example.Worker.DoWork",

 "index": 2

 }

]

 }

]

 }

]

 }

]

}

K.4 Comprehensive SARIF file

The purpose of this example is to demonstrate the usage of as many SARIF elements as possible. Not all
elements are shown, because some are mutually exclusive.

Because the purpose is to present as many elements as possible, the file as a whole does not represent
best practices for SARIF usage, nor does it represent the output of a single, coherent analysis. For
example, the result presented in the file involves a runtime exception, but at the same time it is marked as
suppressed (to demonstrate the result.suppressions property), which is unrealistic.

{

 "version": "2.1.0",

 "$schema": "https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/schemas/sarif-

schema-2.1.0.json",

 "runs": [

 {

 "automationDetails": {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 215 of 229

 "guid": "BC650830-A9FE-44CB-8818-AD6C387279A0",

 "id": "Nightly code scan/2018-10-08"

 },

 "baselineGuid": "0A106451-C9B1-4309-A7EE-06988B95F723",

 "runAggregates": [

 {

 "id": "Build/14.0.1.2/Release/20160716-13:22:18",

 "correlationGuid": "26F138B6-6014-4D3D-B174-6E1ACE9439F3"

 }

],

 "tool": {

 "driver": {

 "name": "CodeScanner",

 "fullName": "CodeScanner 1.1 for Microsoft Windows (R) (en-US)",

 "version": "2.1",

 "semanticVersion": "2.1.0",

 "dottedQuadFileVersion": "2.1.0.0",

 "releaseDateUtc": "2019-03-17",

 "organization": "Example Corporation",

 "product": "Code Scanner",

 "productSuite": "Code Quality Tools",

 "shortDescription": {

 "text": "A scanner for code."

 },

 "fullDescription": {

 "text": "A really great scanner for all your code."

 },

 "informationUri": "https://www.examplecorp.com/products/codescanner",

 "properties": {

 "copyright": "Copyright (c) 2017 by Example Corporation."

 },

 "globalMessageStrings": {

 "variableDeclared": {

 "text": "Variable \"{0}\" was declared here.",

 "markdown": " Variable `{0}` was declared here."

 }

 },

 "rules": [

 {

 "id": "C2001",

 "deprecatedIds": [

 "CA2000"

],

 "defaultConfiguration": {

 "level": "error",

 "rank": 95

 },

 "shortDescription": {

 "text": "A variable was used without being initialized."

 },

 "fullDescription": {

 "text": "A variable was used without being initialized. This can result

 in runtime errors such as null reference exceptions."

 },

 "messageStrings": {

 "default": {

 "text": "Variable \"{0}\" was used without being initialized.

 It was declared [here]({1}).",

 "markdown": "Variable `{0}` was used without being initialized.

 It was declared [here]({1})."

 }

 }

 }

],

 "notifications": [

 {

 "id": "start",

 "shortDescription": {

 "text": "The run started."

 },

 "messageStrings": {

 "default": {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 216 of 229

 "text": "Run started."

 }

 }

 },

 {

 "id": "end",

 "shortDescription": {

 "text": "The run ended."

 },

 "messageStrings": {

 "default": {

 "text": "Run ended."

 }

 }

 }

],

 "language": "en-US"

 },

 "extensions": [

 {

 "name": "CodeScanner Security Rules",

 "version": "3.1",

 "rules": [

 {

 "id": "S0001",

 "defaultConfiguration": {

 "level": "error"

 },

 "shortDescription": {

 "text": "Do not use weak cryptographic algorithms."

 },

 "messageStrings": {

 "default": {

 "text": "The cryptographic algorithm '{0}' should not be used."

 }

 }

 }

]

 }

]

 },

 "language": "en-US",

 "versionControlProvenance": [

 {

 "repositoryUri": "https://github.com/example-corp/browser",

 "revisionId": "5da53fbb2a0aaa12d648b73984acc9aac2e11c2a",

 "mappedTo": {

 "uriBaseId": "PROJECTROOT"

 }

 }

],

 "originalUriBaseIds": {

 "PROJECTROOT": {

 "uri": "file://build.example.com/work/"

 },

 "SRCROOT": {

 "uri": "src/",

 "uriBaseId": "PROJECTROOT"

 },

 "BINROOT": {

 "uri": "bin/",

 "uriBaseId": "PROJECTROOT"

 }

 },

 "invocations": [

 {

 "commandLine": "CodeScanner @build/collections.rsp",

 "responseFiles": [

 {

 "uri": "build/collections.rsp",

 "uriBaseId": "SRCROOT",

 "index": 0

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 217 of 229

 }

],

 "startTimeUtc": "2016-07-16T14:18:25Z",

 "endTimeUtc": "2016-07-16T14:19:01Z",

 "machine": "BLD01",

 "account": "buildAgent",

 "processId": 1218,

 "workingDirectory": {

 "uri": "file:///home/buildAgent/src"

 },

 "environmentVariables": {

 "PATH": "/usr/local/bin:/bin:/bin/tools:/home/buildAgent/bin",

 "HOME": "/home/buildAgent",

 "TZ": "EST"

 },

 "toolConfigurationNotifications": [

 {

 "descriptor": {

 "id": "UnknownRule"

 },

 "associatedRule": {

 "ruleId": "ABC0001"

 },

 "level": "warning",

 "message": {

 "text": "Could not disable rule \"ABC0001\" because

 there is no rule with that id."

 }

 }

],

 "toolExecutionNotifications": [

 {

 "descriptor": {

 "id": "CTN0001"

 },

 "level": "note",

 "message": {

 "text": "Run started."

 }

 },

 {

 "descriptor": {

 "id": "CTN9999"

 },

 "associatedRule": {

 "id": "C2001",

 "index": 0,

 },

 "level": "error",

 "message": {

 "text": "Exception evaluating rule \"C2001\". Rule disabled;

 run continues."

 },

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "crypto/hash.cpp",

 "uriBaseId": "SRCROOT",

 "index": 4

 }

 }

 }

],

 "threadId": 52,

 "timeUtc": "2016-07-16T14:18:43.119Z",

 "exception": {

 "kind": "ExecutionEngine.RuleFailureException",

 "message": "Unhandled exception during rule evaluation.",

 "stack": {

 "frames": [

 {

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 218 of 229

 "location": {

 "message": {

 "text": "Exception thrown"

 },

 "logicalLocations": [

 {

 "fullyQualifiedName":

 "Rules.SecureHashAlgorithmRule.Evaluate"

 }

],

 "physicalLocation": {

 "address": {

 "offsetFromParent": 4244988

 }

 }

 },

 "module": "RuleLibrary",

 "threadId": 52

 },

 {

 "location": {

 "logicalLocations": [

 {

 "fullyQualifiedName":

 "ExecutionEngine.Engine.EvaluateRule"

 }

],

 "physicalLocation": {

 "address": {

 "offsetFromParent": 4245514

 }

 }

 },

 "module": "ExecutionEngine",

 "threadId": 52

 }

]

 },

 "innerExceptions": [

 {

 "kind": "System.ArgumentException",

 "message": "length is < 0"

 }

]

 }

 },

 {

 "descriptor": {

 "id": "CTN0002"

 },

 "level": "note",

 "message": {

 "text": "Run ended."

 }

 }

],

 "exitCode": 0,

 "executionSuccessful": true

 }

],

 "artifacts": [

 {

 "location": {

 "uri": "build/collections.rsp",

 "uriBaseId": "SRCROOT"

 },

 "mimeType": "text/plain",

 "length": 81,

 "contents": {

 "text": "-input src/collections/*.cpp -log out/collections.sarif -rules all

-disable C9999"

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 219 of 229

 },

 {

 "location": {

 "uri": "application/main.cpp",

 "uriBaseId": "SRCROOT"

 },

 "sourceLanguage": "cplusplus",

 "length": 1742,

 "hashes": {

 "sha-256": "cc8e6a99f3eff00adc649fee132ba80fe333ea5a"

 }

 },

 {

 "location": {

 "uri": "collections/list.cpp",

 "uriBaseId": "SRCROOT"

 },

 "sourceLanguage": "cplusplus",

 "length": 980,

 "hashes": {

 "sha-256": "b13ce2678a8807ba0765ab94a0ecd394f869bc81"

 }

 },

 {

 "location": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT"

 },

 "sourceLanguage": "cplusplus",

 "length": 24656,

 "hashes": {

 "sha-256": "849be119aaba4e9f88921a99e3036fb6c2a8144a"

 }

 },

 {

 "location": {

 "uri": "crypto/hash.cpp",

 "uriBaseId": "SRCROOT"

 },

 "sourceLanguage": "cplusplus",

 "length": 1424,

 "hashes": {

 "sha-256": "3ffe2b77dz255cdf95f97d986d7a6ad8f287eaed"

 }

 },

 {

 "location": {

 "uri": "app.zip",

 "uriBaseId": "BINROOT"

 },

 "mimeType": "application/zip",

 "length": 310450,

 "hashes": {

 "sha-256": "df18a5e74b6b46ddaa23ad7271ee2b7c5731cbe1"

 }

 },

 {

 "location": {

 "uri": "docs/intro.docx"

 },

 "mimeType":

 "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

 "parentIndex": 5,

 "offset": 17522,

 "length": 4050

 }

],

 "logicalLocations": [

 {

 "name": "add",

 "fullyQualifiedName": "collections::list::add",

 "decoratedName": "?add@list@collections@@QAEXH@Z",

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 220 of 229

 "kind": "function",

 "parentIndex": 1

 },

 {

 "name": "list",

 "fullyQualifiedName": "collections::list",

 "kind": "type",

 "parentIndex": 2

 },

 {

 "name": "collections",

 "kind": "namespace"

 },

 {

 "name": "add_core",

 "fullyQualifiedName": "collections::list::add_core",

 "decoratedName": "?add_core@list@collections@@QAEXH@Z",

 "kind": "function",

 "parentIndex": 1

 },

 {

 "fullyQualifiedName": "main",

 "kind": "function"

 }

],

 "results": [

 {

 "ruleId": "C2001",

 "ruleIndex": 0,

 "kind": "fail",

 "level": "error",

 "message": {

 "id": "default",

 "arguments": [

 "ptr",

 "0"

]

 },

 "suppressions": [

 {

 "kind": "external",

 "status": "accepted"

 }

],

 "baselineState": "unchanged",

 "rank": 95,

 "analysisTarget": {

 "uri": "collections/list.cpp",

 "uriBaseId": "SRCROOT",

 "index": 2

 },

 "locations": [

 {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 15,

 "startColumn": 9,

 "endLine": 15,

 "endColumn": 10,

 "charLength": 1,

 "charOffset": 254,

 "snippet": {

 "text": "add_core(ptr, offset, val);\n return;"

 }

 }

 },

 "logicalLocations": [

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 221 of 229

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

 }

]

 }

],

 "relatedLocations": [

 {

 "id": 0,

 "message": {

 "id": "variableDeclared",

 "arguments": [

 "ptr"

]

 },

 "physicalLocation": {

 "artifactLocation": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 8,

 "startColumn": 5

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

 }

]

 }

],

 "codeFlows": [

 {

 "message": {

 "text": "Path from declaration to usage"

 },

 "threadFlows": [

 {

 "id": "thread-52",

 "locations": [

 {

 "importance": "essential",

 "location": {

 "message": {

 "text": "Variable \"ptr\" declared.",

 "markdown": "Variable `ptr` declared."

 },

 "physicalLocation": {

 "artifactLocation": {

 "uri":"collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 15,

 "snippet": {

 "text": "int *ptr;"

 }

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

 }

]

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 222 of 229

 "module": "platform"

 },

 {

 "state": {

 "y": {

 "text": "2"

 },

 "z": {

 "text": "4"

 },

 "y + z": {

 "text": "6"

 },

 "q": {

 "text": "7"

 }

 },

 "importance": "unimportant",

 "location": {

 "physicalLocation": {

 "artifactLocation": {

 "uri":"collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 15,

 "snippet": {

 "text": "offset = (y + z) * q + 1;"

 }

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

 }

],

 "annotations": [

 {

 "startLine": 15,

 "startColumn": 13,

 "endColumn": 19,

 "message": {

 "text": "(y + z) = 42",

 "markdown": "`(y + z) = 42`"

 }

 }

],

 },

 "module": "platform"

 },

 {

 "importance": "essential",

 "location": {

 "message": {

 "text": "Uninitialized variable \"ptr\" passed to

 method \"add_core\".",

 "markdown": "Uninitialized variable `ptr` passed to

 method `add_core`."

 },

 "physicalLocation": {

 "artifactLocation": {

 "uri":"collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 25,

 "snippet": {

 "text": "add_core(ptr, offset, val)"

 }

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 223 of 229

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

 }

]

 },

 "module": "platform"

 }

]

 }

]

 }

],

 "stacks": [

 {

 "message": {

 "text": "Call stack resulting from usage of uninitialized variable."

 },

 "frames": [

 {

 "location": {

 "message": {

 "text": "Exception thrown."

 },

 "physicalLocation": {

 "artifactLocation": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 110,

 "startColumn": 15

 },

 "address": {

 "offsetFromParent": 4229178

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add_core",

 "index": 0

 }

],

 },

 "module": "platform",

 "threadId": 52,

 "parameters": ["null", "0", "14"]

 },

 {

 "location": {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "region": {

 "startLine": 43,

 "startColumn": 15

 },

 "address": {

 "offsetFromParent": 4229268

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "collections::list::add",

 "index": 0

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 224 of 229

 }

]

 },

 "module": "platform",

 "threadId": 52,

 "parameters": ["14"]

 },

 {

 "location": {

 "physicalLocation": {

 "artifactLocation": {

 "uri": "application/main.cpp",

 "uriBaseId": "SRCROOT",

 "index": 1

 },

 "region": {

 "startLine": 28,

 "startColumn": 9

 },

 "address": {

 "offsetFromParent": 4229836

 }

 },

 "logicalLocations": [

 {

 "fullyQualifiedName": "main",

 "index": 4

 }

]

 },

 "module": "application",

 "threadId": 52

 }

]

 }

],

 "addresses": [

 {

 "baseAddress": 4194304,

 "fullyQualifiedName": "collections.dll",

 "kind": "module",

 "section": ".text"

 },

 {

 "offset": 100,

 "fullyQualifiedName": "collections.dll!collections::list::add",

 "kind": "function",

 "parentIndex": 0

 },

 {

 "offset": 22,

 "fullyQualifiedName": "collections.dll!collections::list::add+0x16",

 "parentIndex": 1

 }

],

 "fixes": [

 {

 "description": {

 "text": "Initialize the variable to null"

 },

 "artifactChanges": [

 {

 "artifactLocation": {

 "uri": "collections/list.h",

 "uriBaseId": "SRCROOT",

 "index": 3

 },

 "replacements": [

 {

 "deletedRegion": {

 "startLine": 42

 },

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 225 of 229

 "insertedContent": {

 "text": "A different line\n"

 }

 }

]

 }

]

 }

],

 "hostedViewerUri":

 "https://www.example.com/viewer/3918d370-c636-40d8-bf23-8c176043a2df",

 "workItemUris": [

 "https://github.com/example/project/issues/42",

 "https://github.com/example/project/issues/54"

],

 "provenance": {

 "firstDetectionTimeUtc": "2016-07-15T14:20:42Z",

 "firstDetectionRunGuid": "8F62D8A0-C14F-4516-9959-1A663BA6FB99",

 "lastDetectionTimeUtc": "2016-07-16T14:20:42Z",

 "lastDetectionRunGuid": "BC650830-A9FE-44CB-8818-AD6C387279A0",

 "invocationIndex": 0

 }

 }

]

 }

]

}

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 226 of 229

Appendix L. (Informative) Revision History

Revision Date Editor Changes Made

01 2017/09/22 Laurence J. Golding Initial version, transcribed from contribution
with minor corrections.

02 2017/11/29 Laurence J. Golding Incorporated changes for GitHub issues #25,
#27, and #56.

03 2018/01/10 Laurence J. Golding Incorporated changes for GitHub issues #33,
#61, #69, and #72. Made several minor
editorial changes and a few changes to
correct inaccuracies.

04 2018/01/11 Laurence J. Golding Incorporated changes for GitHub issue #73.

05 2018/01/15 Laurence J. Golding Incorporated changes for GitHub issue #79.

06 2018/01/16 Laurence J. Golding Two minor editorial changes.

07 2018/01/17 Laurence J. Golding Incorporated changes for GitHub issue #65.

08 2018/02/19 Laurence J. Golding Incorporated changes for GitHub issues #66,
#74, #81, #88.

09 2018/02/28 Laurence J. Golding Incorporate changes for GitHub issues #82,
#83, #89, #90, #91, #92, #94, and #104.

10 2018/03/16 Laurence J. Golding Incorporate changes for GitHub issues #10,
#15, #23, #29, #63, #64, #84, #102, #110.

11 2018/03/28 Laurence J Golding Incorporate changes for GitHub issues #75,
#80, #86, #95, #96, and #133.

12 2018/04/18 Laurence J. Golding Incorporate changes for GitHub issues #46,
#98, #99, #107, #108, #113, #119, #120,
#125, and #130.

13 2018/05/03 Laurence J. Golding Incorporate changes for GitHub issues #122,
#126, #134, #136, #137, #139, #145, #147,
#154, and #155.

Editorial change in result.ruleMessageId.

14 2018/05/08 Laurence J. Golding Address GitHub issue #156: editorial

15 2018/05/17 Laurence J. Golding Incorporate changes for GitHub issues #103,
#138, #141, #143, #153, #157, #159, #160,
#161, #162, #163, #165, #166, #167, and
#170.

Editorial change for “occurs” vs. “contains”.

16 2018/05/30 Laurence J. Golding Incorporate changes for GitHub issues #93,
#149, #160 (revised), #171, #176, #181, and
#187 (editorial).

Editorial change: Remove “semanticVersion”
from all but “Comprehensive” example in
Appendix I.

https://github.com/oasis-tcs/sarif-spec/issues/25
https://github.com/oasis-tcs/sarif-spec/issues/27
https://github.com/oasis-tcs/sarif-spec/issues/56
https://github.com/oasis-tcs/sarif-spec/issues/33
https://github.com/oasis-tcs/sarif-spec/issues/61
https://github.com/oasis-tcs/sarif-spec/issues/69
https://github.com/oasis-tcs/sarif-spec/issues/72
https://github.com/oasis-tcs/sarif-spec/issues/73
https://github.com/oasis-tcs/sarif-spec/issues/79
https://github.com/oasis-tcs/sarif-spec/issues/65
https://github.com/oasis-tcs/sarif-spec/issues/66
https://github.com/oasis-tcs/sarif-spec/issues/74
https://github.com/oasis-tcs/sarif-spec/issues/81
https://github.com/oasis-tcs/sarif-spec/issues/88
https://github.com/oasis-tcs/sarif-spec/issues/82
https://github.com/oasis-tcs/sarif-spec/issues/83
https://github.com/oasis-tcs/sarif-spec/issues/89
https://github.com/oasis-tcs/sarif-spec/issues/90
https://github.com/oasis-tcs/sarif-spec/issues/91
https://github.com/oasis-tcs/sarif-spec/issues/92
https://github.com/oasis-tcs/sarif-spec/issues/94
https://github.com/oasis-tcs/sarif-spec/issues/104
https://github.com/oasis-tcs/sarif-spec/issues/10
https://github.com/oasis-tcs/sarif-spec/issues/15
https://github.com/oasis-tcs/sarif-spec/issues/23
https://github.com/oasis-tcs/sarif-spec/issues/29
https://github.com/oasis-tcs/sarif-spec/issues/63
https://github.com/oasis-tcs/sarif-spec/issues/64
https://github.com/oasis-tcs/sarif-spec/issues/84
https://github.com/oasis-tcs/sarif-spec/issues/102
https://github.com/oasis-tcs/sarif-spec/issues/110
https://github.com/oasis-tcs/sarif-spec/issues/75
https://github.com/oasis-tcs/sarif-spec/issues/80
https://github.com/oasis-tcs/sarif-spec/issues/86
https://github.com/oasis-tcs/sarif-spec/issues/95
https://github.com/oasis-tcs/sarif-spec/issues/96
https://github.com/oasis-tcs/sarif-spec/issues/133
https://github.com/oasis-tcs/sarif-spec/issues/46
https://github.com/oasis-tcs/sarif-spec/issues/98
https://github.com/oasis-tcs/sarif-spec/issues/99
https://github.com/oasis-tcs/sarif-spec/issues/107
https://github.com/oasis-tcs/sarif-spec/issues/108
https://github.com/oasis-tcs/sarif-spec/issues/113
https://github.com/oasis-tcs/sarif-spec/issues/119
https://github.com/oasis-tcs/sarif-spec/issues/120
https://github.com/oasis-tcs/sarif-spec/issues/125
https://github.com/oasis-tcs/sarif-spec/issues/130
https://github.com/oasis-tcs/sarif-spec/issues/122
https://github.com/oasis-tcs/sarif-spec/issues/126
https://github.com/oasis-tcs/sarif-spec/issues/134
https://github.com/oasis-tcs/sarif-spec/issues/136
https://github.com/oasis-tcs/sarif-spec/issues/137
https://github.com/oasis-tcs/sarif-spec/issues/139
https://github.com/oasis-tcs/sarif-spec/issues/145
https://github.com/oasis-tcs/sarif-spec/issues/147
https://github.com/oasis-tcs/sarif-spec/issues/154
https://github.com/oasis-tcs/sarif-spec/issues/155
https://github.com/oasis-tcs/sarif-spec/issues/156
https://github.com/oasis-tcs/sarif-spec/issues/103
https://github.com/oasis-tcs/sarif-spec/issues/138
https://github.com/oasis-tcs/sarif-spec/issues/141
https://github.com/oasis-tcs/sarif-spec/issues/143
https://github.com/oasis-tcs/sarif-spec/issues/153
https://github.com/oasis-tcs/sarif-spec/issues/157
https://github.com/oasis-tcs/sarif-spec/issues/159
https://github.com/oasis-tcs/sarif-spec/issues/160
https://github.com/oasis-tcs/sarif-spec/issues/161
https://github.com/oasis-tcs/sarif-spec/issues/162
https://github.com/oasis-tcs/sarif-spec/issues/163
https://github.com/oasis-tcs/sarif-spec/issues/165
https://github.com/oasis-tcs/sarif-spec/issues/166
https://github.com/oasis-tcs/sarif-spec/issues/167
https://github.com/oasis-tcs/sarif-spec/issues/170
https://github.com/oasis-tcs/sarif-spec/issues/93
https://github.com/oasis-tcs/sarif-spec/issues/149
https://github.com/oasis-tcs/sarif-spec/issues/160
https://github.com/oasis-tcs/sarif-spec/issues/171
https://github.com/oasis-tcs/sarif-spec/issues/176
https://github.com/oasis-tcs/sarif-spec/issues/181
https://github.com/oasis-tcs/sarif-spec/issues/187

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 227 of 229

Editorial change: Improve language for default
values.

17 2018/06/06 Laurence J. Golding Incorporate changes for GitHub issues #158,
#164, #172, #175, #178, and #186.

18 2018/06/08 Laurence J. Golding Incorporate changes for GitHub issues #189
and #191.

19 2018/11/14 Laurence J. Golding Incorporate changes for GitHub issues #169,
#256, #269, #272, and #275.

20 2018/11/29 Laurence J. Golding Incorporate changes for GitHub issues #186,
#188, #274, #279, #280, #284, #285, and
#288.

21 2018/12/13 Laurence J. Golding Incorporate changes for GitHub issues #248,
#270, #287, #292, #293, and #297.

22 2019/01/10 Laurence J. Golding Incorporate changes for GitHub issues #286,
#291, #303, and #304.

23 2019/02/20 Laurence J. Golding Incorporate changes for GitHub issues #146,
#312, #317, and #322.

24 2019/03/15 Laurence J. Golding Incorporate changes for GitHub issues #168,
#291, #309, #320, #321, #326, #330, #335,
#340, and #341.

25 2019/03/16 Laurence J. Golding Incorporate changes for GitHub issues #179,
#319, and #337.

26 2019/03/28 Laurence J. Golding Incorporate changes for GitHub issues #202,
#302, #311, #314, #315, #318, #324, #325,
#327, #338, #344, #346, #347, #348, and
#350.

27 2019/04/01 Laurence J. Golding Incorporate editorial changes for GitHub
issues #106, #117, #301, and #342.

28 2019/04/17 Laurence J. Golding Incorporate changes for GitHub issues #266,
#323, #349, #353, #354, #355, #356, #357,
#358, #359, #361, #362, #363, #364, #365,
#366, #367, #368, #369, #370, #371, #372,
#373, #374, #376, and #379. Address issues
from Henny Sipma and Paul Anderson.

29 2019/04/29 Laurence J. Golding Incorporate changes from GitHub issue #375,
#376 (tail), #378, #380, #381, #382, #383,
#387, #389, #390, #391, #392, #393, #396,
#397, #399, #401, #402, #403, and #404.

30 2019/05/10 Laurence J. Golding Incorporate changes from GitHub issue #405
(post-CSD.2 ballot, non-substantive editorial
changes).

31 2019/05/15 Laurence J. Golding Incorporate changes for GitHub issues #398,
#406, #407, #408, #410, #411, #414, #415,
#416, #417, and #418.

https://github.com/oasis-tcs/sarif-spec/issues/158
https://github.com/oasis-tcs/sarif-spec/issues/164
https://github.com/oasis-tcs/sarif-spec/issues/172
https://github.com/oasis-tcs/sarif-spec/issues/175
https://github.com/oasis-tcs/sarif-spec/issues/178
https://github.com/oasis-tcs/sarif-spec/issues/186
https://github.com/oasis-tcs/sarif-spec/issues/191
https://github.com/oasis-tcs/sarif-spec/issues/169
https://github.com/oasis-tcs/sarif-spec/issues/256
https://github.com/oasis-tcs/sarif-spec/issues/269
https://github.com/oasis-tcs/sarif-spec/issues/272
https://github.com/oasis-tcs/sarif-spec/issues/275
https://github.com/oasis-tcs/sarif-spec/issues/186
https://github.com/oasis-tcs/sarif-spec/issues/188
https://github.com/oasis-tcs/sarif-spec/issues/274
https://github.com/oasis-tcs/sarif-spec/issues/279
https://github.com/oasis-tcs/sarif-spec/issues/280
https://github.com/oasis-tcs/sarif-spec/issues/284
https://github.com/oasis-tcs/sarif-spec/issues/285
https://github.com/oasis-tcs/sarif-spec/issues/288
https://github.com/oasis-tcs/sarif-spec/issues/248
https://github.com/oasis-tcs/sarif-spec/issues/270
https://github.com/oasis-tcs/sarif-spec/issues/287
https://github.com/oasis-tcs/sarif-spec/issues/292
https://github.com/oasis-tcs/sarif-spec/issues/293
https://github.com/oasis-tcs/sarif-spec/issues/297
https://github.com/oasis-tcs/sarif-spec/issues/286
https://github.com/oasis-tcs/sarif-spec/issues/291
https://github.com/oasis-tcs/sarif-spec/issues/303
https://github.com/oasis-tcs/sarif-spec/issues/304
https://github.com/oasis-tcs/sarif-spec/issues/146
https://github.com/oasis-tcs/sarif-spec/issues/312
https://github.com/oasis-tcs/sarif-spec/issues/317
https://github.com/oasis-tcs/sarif-spec/issues/322
https://github.com/oasis-tcs/sarif-spec/issues/168
https://github.com/oasis-tcs/sarif-spec/issues/291
https://github.com/oasis-tcs/sarif-spec/issues/309
https://github.com/oasis-tcs/sarif-spec/issues/320
https://github.com/oasis-tcs/sarif-spec/issues/321
https://github.com/oasis-tcs/sarif-spec/issues/326
https://github.com/oasis-tcs/sarif-spec/issues/330
https://github.com/oasis-tcs/sarif-spec/issues/335
https://github.com/oasis-tcs/sarif-spec/issues/340
https://github.com/oasis-tcs/sarif-spec/issues/341
https://github.com/oasis-tcs/sarif-spec/issues/179
https://github.com/oasis-tcs/sarif-spec/issues/319
https://github.com/oasis-tcs/sarif-spec/issues/337
https://github.com/oasis-tcs/sarif-spec/issues/202
https://github.com/oasis-tcs/sarif-spec/issues/302
https://github.com/oasis-tcs/sarif-spec/issues/311
https://github.com/oasis-tcs/sarif-spec/issues/314
https://github.com/oasis-tcs/sarif-spec/issues/315
https://github.com/oasis-tcs/sarif-spec/issues/318
https://github.com/oasis-tcs/sarif-spec/issues/324
https://github.com/oasis-tcs/sarif-spec/issues/325
https://github.com/oasis-tcs/sarif-spec/issues/327
https://github.com/oasis-tcs/sarif-spec/issues/338
https://github.com/oasis-tcs/sarif-spec/issues/344
https://github.com/oasis-tcs/sarif-spec/issues/346
https://github.com/oasis-tcs/sarif-spec/issues/347
https://github.com/oasis-tcs/sarif-spec/issues/348
https://github.com/oasis-tcs/sarif-spec/issues/350
https://github.com/oasis-tcs/sarif-spec/issues/106
https://github.com/oasis-tcs/sarif-spec/issues/117
https://github.com/oasis-tcs/sarif-spec/issues/301
https://github.com/oasis-tcs/sarif-spec/issues/342
https://github.com/oasis-tcs/sarif-spec/issues/266
https://github.com/oasis-tcs/sarif-spec/issues/323
https://github.com/oasis-tcs/sarif-spec/issues/349
https://github.com/oasis-tcs/sarif-spec/issues/353
https://github.com/oasis-tcs/sarif-spec/issues/354
https://github.com/oasis-tcs/sarif-spec/issues/355
https://github.com/oasis-tcs/sarif-spec/issues/356
https://github.com/oasis-tcs/sarif-spec/issues/357
https://github.com/oasis-tcs/sarif-spec/issues/358
https://github.com/oasis-tcs/sarif-spec/issues/359
https://github.com/oasis-tcs/sarif-spec/issues/361
https://github.com/oasis-tcs/sarif-spec/issues/362
https://github.com/oasis-tcs/sarif-spec/issues/363
https://github.com/oasis-tcs/sarif-spec/issues/364
https://github.com/oasis-tcs/sarif-spec/issues/365
https://github.com/oasis-tcs/sarif-spec/issues/366
https://github.com/oasis-tcs/sarif-spec/issues/367
https://github.com/oasis-tcs/sarif-spec/issues/368
https://github.com/oasis-tcs/sarif-spec/issues/369
https://github.com/oasis-tcs/sarif-spec/issues/370
https://github.com/oasis-tcs/sarif-spec/issues/371
https://github.com/oasis-tcs/sarif-spec/issues/372
https://github.com/oasis-tcs/sarif-spec/issues/373
https://github.com/oasis-tcs/sarif-spec/issues/374
https://github.com/oasis-tcs/sarif-spec/issues/376
https://github.com/oasis-tcs/sarif-spec/issues/379
https://github.com/oasis-tcs/sarif-spec/issues/375
https://github.com/oasis-tcs/sarif-spec/issues/376
https://github.com/oasis-tcs/sarif-spec/issues/378
https://github.com/oasis-tcs/sarif-spec/issues/380
https://github.com/oasis-tcs/sarif-spec/issues/381
https://github.com/oasis-tcs/sarif-spec/issues/382
https://github.com/oasis-tcs/sarif-spec/issues/383
https://github.com/oasis-tcs/sarif-spec/issues/387
https://github.com/oasis-tcs/sarif-spec/issues/389
https://github.com/oasis-tcs/sarif-spec/issues/390
https://github.com/oasis-tcs/sarif-spec/issues/391
https://github.com/oasis-tcs/sarif-spec/issues/392
https://github.com/oasis-tcs/sarif-spec/issues/393
https://github.com/oasis-tcs/sarif-spec/issues/396
https://github.com/oasis-tcs/sarif-spec/issues/397
https://github.com/oasis-tcs/sarif-spec/issues/399
https://github.com/oasis-tcs/sarif-spec/issues/401
https://github.com/oasis-tcs/sarif-spec/issues/402
https://github.com/oasis-tcs/sarif-spec/issues/403
https://github.com/oasis-tcs/sarif-spec/issues/404
https://github.com/oasis-tcs/sarif-spec/issues/405
https://github.com/oasis-tcs/sarif-spec/issues/398
https://github.com/oasis-tcs/sarif-spec/issues/406
https://github.com/oasis-tcs/sarif-spec/issues/407
https://github.com/oasis-tcs/sarif-spec/issues/408
https://github.com/oasis-tcs/sarif-spec/issues/410
https://github.com/oasis-tcs/sarif-spec/issues/411
https://github.com/oasis-tcs/sarif-spec/issues/414
https://github.com/oasis-tcs/sarif-spec/issues/415
https://github.com/oasis-tcs/sarif-spec/issues/416
https://github.com/oasis-tcs/sarif-spec/issues/417
https://github.com/oasis-tcs/sarif-spec/issues/418

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 228 of 229

32 2019/07/07 Laurence J. Golding Incorporate changes for non-substantive
GitHub issues arising from the public comment
period for the Committee Specification: #420,
#421, #422, #423, #425, #426. #427, #429.

33 2020/02/21 Laurence J. Golding Incorporate changes for non-substantive
GitHub issues arising from the public comment
period for the Candidate OASIS Specification:
#422, #430, #431, #432, #434, #435, #436,
#437, #440, #444, #445, #446, #449, #450,
#451.

34 2023/06/22 Michael Fanning,
Courtney Lawton,
Craig Schlaman,
Chris Meyer, David
Keaton

Apply Errata 01

https://github.com/oasis-tcs/sarif-spec/issues/420
https://github.com/oasis-tcs/sarif-spec/issues/421
https://github.com/oasis-tcs/sarif-spec/issues/422
https://github.com/oasis-tcs/sarif-spec/issues/423
https://github.com/oasis-tcs/sarif-spec/issues/425
https://github.com/oasis-tcs/sarif-spec/issues/426
https://github.com/oasis-tcs/sarif-spec/issues/427
https://github.com/oasis-tcs/sarif-spec/issues/429
https://github.com/oasis-tcs/sarif-spec/issues/422
https://github.com/oasis-tcs/sarif-spec/issues/430
https://github.com/oasis-tcs/sarif-spec/issues/431
https://github.com/oasis-tcs/sarif-spec/issues/432
https://github.com/oasis-tcs/sarif-spec/issues/434
https://github.com/oasis-tcs/sarif-spec/issues/435
https://github.com/oasis-tcs/sarif-spec/issues/436
https://github.com/oasis-tcs/sarif-spec/issues/437
https://github.com/oasis-tcs/sarif-spec/issues/440
https://github.com/oasis-tcs/sarif-spec/issues/444
https://github.com/oasis-tcs/sarif-spec/issues/445
https://github.com/oasis-tcs/sarif-spec/issues/446
https://github.com/oasis-tcs/sarif-spec/issues/449
https://github.com/oasis-tcs/sarif-spec/issues/450
https://github.com/oasis-tcs/sarif-spec/issues/451

sarif-v2.1.0-errata01-os-complete 28 August 2023
Standards Track Work Product Copyright © OASIS Open 2023. All Rights Reserved. Page 229 of 229

Appendix M. (Non-Normative) MIME Types and File
Name Extensions

The following is a list of MIME types and file extensions for files that conform to this specification,
registered according to [RFC2048].

MIME type Extension Description

application/sarif+json .sarif,

.sarif.json

SARIF log files
(§3).

application/sarif-external-
properties+json

.sarif-external-properties,

.sarif-external-properties.json
SARIF external
property files
(§4).

