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[bookmark: _Toc148962026][bookmark: _Ref177392434][bookmark: _Toc195693048]Introduction
This document describes the basic PKCS #11 token interface and token behavior.
The PKCS #11 standard specifies an application programming interface (API), called “Cryptoki,” for devices that hold cryptographic information and perform cryptographic functions. Cryptoki follows a simple object based approach, addressing the goals of technology independence (any kind of device) and resource sharing (multiple applications accessing multiple devices), presenting to applications a common, logical view of the device called a “cryptographic token”.
This document specifies the data types and functions available to an application requiring cryptographic services using the ANSI C programming language. The supplier of a Cryptoki library implementation typically provides these data types and functions via ANSI C header files. Generic ANSI C header files for Cryptoki are available from the PKCS #11 web page. This document and up-to-date errata for Cryptoki will also be available from the same place.
This document also specifies details of cryptographic mechanisms (algorithms).
Additional documents may provide a generic, language-independent Cryptoki interface and/or bindings between Cryptoki and other programming languages.
Cryptoki isolates an application from the details of the cryptographic device. The application does not have to change to interface to a different type of device or to run in a different environment; thus, the application is portable. How Cryptoki provides this isolation is beyond the scope of this document, although some conventions for the support of multiple types of device will be addressed here and possibly in a separate document.
1.1 [bookmark: _Toc370633961][bookmark: _Toc391468755][bookmark: _Toc395183751][bookmark: _Toc7432263][bookmark: _Toc29976533][bookmark: _Toc90376198][bookmark: _Toc111203183][bookmark: _Toc148962027][bookmark: _Toc195693049]Definitions
For the purposes of this standard, the following definitions apply:
	AES	Advanced Encryption Standard, as defined in FIPS PUB 197.
	API	Application programming interface.
	Application	Any computer program that calls the Cryptoki interface.
	ASN.1	Abstract Syntax Notation One, as defined in X.680.
	Attribute	A characteristic of an object.
	BER	Basic Encoding Rules, as defined in X.690.
	BLOWFISH	The Blowfish Encryption Algorithm of Bruce Schneier, www.schneier.com.
	CAMELLIA	The Camellia encryption algorithm, as defined in [RFC 3713].
	CBC	Cipher-Block Chaining mode, as defined in [FIPS PUB 81].
	Certificate	A signed message binding a subject name and a public key, or a subject name and a set of attributes.
	CDMF	Commercial Data Masking Facility, a block encipherment method specified by International Business Machines Corporation and based on DES.
	CMAC	Cipher-based Message Authenticate Code as defined in [NIST SP800-38B] and [RFC 4493].
	CMS	Cryptographic Message Syntax (see [RFC 5652])
	Cryptographic Device	A device storing cryptographic information and possibly performing cryptographic functions. May be implemented as a smart card, smart disk, PCMCIA card, or with some other technology, including software-only.
	Cryptoki	The Cryptographic Token Interface defined in this standard.
	Cryptoki library	A library that implements the functions specified in this standard.
	CT-KIP	Cryptographic Token Key Initialization Protocol (as defined in [CT-KIP])
	DER	Distinguished Encoding Rules, as defined in X.690.
	DES	Data Encryption Standard, as defined in [FIPS PUB 46-3].
	DSA	Digital Signature Algorithm, as defined in [FIPS PUB 186-4].
	EC	Elliptic Curve
	ECB	Electronic Codebook mode, as defined in [FIPS PUB 81].
	ECDH	Elliptic Curve Diffie-Hellman.
	ECDSA	Elliptic Curve DSA, as in [ANSI X9.62].
	ECMQV	Elliptic Curve Menezes-Qu-Vanstone
	GOST 28147-89	The encryption algorithm, as defined in Part 2 [GOST 28147-89] and [RFC 4357] [RFC 4490], and RFC [4491].
	GOST R 34.11-94	Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357], [RFC 4490], and [RFC 4491].
	GOST R 34.10-2001	The digital signature algorithm, as defined in [GOST R 34.10-2001] and [RFC 4357], [RFC 4490], and [RFC 4491].
	IV	Initialization Vector.
	KEM	Key Encapsulation Mechanism.
	MAC	Message Authentication Code.
	Mechanism	A process for implementing a cryptographic operation.
	MQV	Menezes-Qu-Vanstone
	OAEP	Optimal Asymmetric Encryption Padding for RSA.
	Object	An item that is stored on a token. May be data, a certificate, or a key.
	PIN	Personal Identification Number.
	PKCS	Public-Key Cryptography Standards.
	PRF	Pseudo random function.
	PTD	Personal Trusted Device, as defined in [MeT-PTD]
	RSA	The RSA public-key cryptosystem.
	Reader	The means by which information is exchanged with a device.
	Session	A logical connection between an application and a token.
	SHA-1	The (revised) Secure Hash Algorithm with a 160-bit message digest, as defined in [FIPS PUB 180-4].
	SHA-224	The Secure Hash Algorithm with a 224-bit message digest, as defined in [FIPS PUB 180-4].
	SHA-256	The Secure Hash Algorithm with a 256-bit message digest, as defined in [FIPS PUB 180-4].
	SHA-384	The Secure Hash Algorithm with a 384-bit message digest, as defined in [FIPS PUB 180-4].
	SHA-512	The Secure Hash Algorithm with a 512-bit message digest, as defined in [FIPS PUB 180-4].
	Slot	A logical reader that potentially contains a token.
	SSL	The Secure Sockets Layer 3.0 protocol.
	Subject Name	The X.500 distinguished name of the entity to which a key is assigned.
	SO	A Security Officer user.
	TLS	Transport Layer Security.
	Token	The logical view of a cryptographic device defined by Cryptoki.
	User	The person using an application that interfaces to Cryptoki.
	UTF-8	Universal Character Set (UCS) transformation format (UTF) that represents ISO 10646 and UNICODE strings with a variable number of octets.
	WTLS	Wireless Transport Layer Security.
1.2 [bookmark: _Toc319287635][bookmark: _Toc319313476][bookmark: _Toc319313669][bookmark: _Toc319315662][bookmark: _Ref320327683][bookmark: _Toc322855259][bookmark: _Toc322945055][bookmark: _Toc323000668][bookmark: _Toc323024028][bookmark: _Toc323205359][bookmark: _Toc323610788][bookmark: _Toc383864799][bookmark: _Toc385057786][bookmark: _Toc405794607][bookmark: _Toc72655990][bookmark: _Toc235002204][bookmark: _Toc370633962][bookmark: _Toc391468756][bookmark: _Toc395183752][bookmark: _Toc7432264][bookmark: _Toc29976534][bookmark: _Toc90376199][bookmark: _Toc111203184][bookmark: _Toc148962028][bookmark: _Toc195693050]Symbols and abbreviations
The following symbols are used in this standard:
[bookmark: _Toc405794963][bookmark: _Toc225305933]Table 1, Symbols
	Symbol
	Definition

	N/A
	Not applicable

	R/O
	Read-only

	R/W
	Read/write


The following prefixes are used in this standard:
[bookmark: _Toc405794964][bookmark: _Toc225305934]Table 2, Prefixes
	Prefix
	Description

	C_
	Function

	CK_
	Data type or general constant

	CKA_
	Attribute

	CKC_
	Certificate type

	CKD_
	Key derivation function

	CKF_
	Bit flag

	CKG_
	Mask generation function

	CKH_
	Hardware feature type

	CKK_
	Key type

	CKM_
	Mechanism type

	CKN_
	Notification

	CKO_
	Object class

	CKP_
	Pseudo-random function

	CKS_
	Session state

	CKR_
	Return value

	CKU_
	User type

	CKZ_
	Salt/Encoding parameter source

	h
	a handle

	ul
	a CK_ULONG

	p
	a pointer

	pb
	a pointer to a CK_BYTE

	ph
	a pointer to a handle

	pul
	a pointer to a CK_ULONG



[bookmark: CK_BYTE]Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK_BYTE CK_CHAR;

/* an 8-bit UTF-8 character */
typedef CK_BYTE CK_UTF8CHAR;

/* a BYTE-sized Boolean flag */
typedef CK_BYTE CK_BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK_ULONG;

/* a signed value, the same size as a CK_ULONG */
typedef long int CK_LONG;

/* at least 32 bits; each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type void, which are implementation-dependent. These pointer types are:
CK_BYTE_PTR      /* Pointer to a CK_BYTE */
CK_CHAR_PTR      /* Pointer to a CK_CHAR */
CK_UTF8CHAR_PTR  /* Pointer to a CK_UTF8CHAR */ 
CK_ULONG_PTR     /* Pointer to a CK_ULONG */
CK_VOID_PTR      /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-dependent:
CK_VOID_PTR_PTR  /* Pointer to a CK_VOID_PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid pointer:
NULL_PTR         /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However, these details should not affect an application, assuming it is compiled with Cryptoki header files consistent with the Cryptoki library to which the application is linked.
All numbers and values expressed in this document are decimal, unless they are preceded by “0x”, in which case they are hexadecimal values.
The CK_CHAR data type holds characters from the following table, taken from [ANSI C]:
[bookmark: _Ref383947636][bookmark: _Ref320504353][bookmark: _Toc323204874][bookmark: _Toc383864504][bookmark: _Toc405794965][bookmark: _Toc225305935]Table 3, Character Set
	Category
	Characters

	Letters
	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z

	Numbers
	0 1 2 3 4 5 6 7 8 9

	Graphic characters
	! “ # % & ‘ ( ) * + , - . / : ; < = > ? [ \ ] ^ _ { | } ~

	Blank character
	‘ ‘


The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in [RFC 2279]. UTF-8 allows internationalization while maintaining backward compatibility with the Local string definition of PKCS #11 version 2.01. 
In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A zero value means false, and a nonzero value means true. Similarly, an individual bit flag, CKF_..., can also be set (true) or unset (false). For convenience, Cryptoki defines the following macros for use with values of type CK_BBOOL:
#define CK_FALSE 0
#define CK_TRUE  1

For backwards compatibility, header files for this version of Cryptoki also define TRUE and FALSE as (CK_DISABLE_TRUE_FALSE may be set by the application vendor):
#ifndef CK_DISABLE_TRUE_FALSE
#ifndef FALSE
#define FALSE CK_FALSE
#endif

#ifndef TRUE
#define TRUE CK_TRUE
#endif
#endif

2 [bookmark: _Ref406237056][bookmark: _Toc72656010][bookmark: _Toc235002225][bookmark: _Toc370633965][bookmark: _Toc391468759][bookmark: _Toc395183755][bookmark: _Toc7432267][bookmark: _Toc29976537][bookmark: _Toc90376202][bookmark: _Toc111203187][bookmark: _Toc148962029][bookmark: _Toc195693051][bookmark: _Toc319287648][bookmark: _Toc319313489][bookmark: _Toc319313682][bookmark: _Toc319315675][bookmark: _Toc322855271][bookmark: _Toc322945097][bookmark: _Toc323000680][bookmark: _Toc323024040][bookmark: _Toc323205371][bookmark: _Toc323610800][bookmark: _Toc383864814][bookmark: _Toc385057803][bookmark: _Toc405794626]Platform- and compiler-dependent directives for C or C++
There is a large array of Cryptoki-related data types that are defined in the Cryptoki header files. Certain packing and pointer-related aspects of these types are platform and compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or compiler-by-compiler) basis outside of the Cryptoki header files by means of preprocessor directives.
This means that when writing C or C++ code, certain preprocessor directives MUST be issued before including a Cryptoki header file. These directives are described in the remainder of this section.
Plattform specific implementation hints can be found in the pkcs11.h header file.
2.1 [bookmark: _Toc72656011][bookmark: _Toc235002226][bookmark: _Toc370633966][bookmark: _Toc391468760][bookmark: _Toc395183756][bookmark: _Toc7432268][bookmark: _Toc29976538][bookmark: _Toc90376203][bookmark: _Toc111203188][bookmark: _Toc148962030][bookmark: _Toc195693052]Structure packing
Cryptoki structures are packed to occupy as little space as is possible. Cryptoki structures SHALL be packed with 1-byte alignment.
2.2 [bookmark: _Toc72656012][bookmark: _Toc235002227][bookmark: _Toc370633967][bookmark: _Toc391468761][bookmark: _Toc395183757][bookmark: _Toc7432269][bookmark: _Toc29976539][bookmark: _Toc90376204][bookmark: _Toc111203189][bookmark: _Toc148962031][bookmark: _Toc195693053]Pointer-related macros
Because different platforms and compilers have different ways of dealing with different types of pointers, the following 6 macros SHALL be set outside the scope of Cryptoki:
· [bookmark: _Toc72656013][bookmark: _Toc235002228]CK_PTR
CK_PTR is the “indirection string” a given platform and compiler uses to make a pointer to an object. It is used in the following fashion:
typedef CK_BYTE CK_PTR CK_BYTE_PTR;
· CK_DECLARE_FUNCTION
CK_DECLARE_FUNCTION(returnType, name), when followed by a parentheses-enclosed list of arguments and a semicolon, declares a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its name. It SHALL be used in the following fashion:
CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
  CK_VOID_PTR pReserved
);
· [bookmark: _Toc72656016][bookmark: _Toc235002231]CK_DECLARE_FUNCTION_POINTER
CK_DECLARE_FUNCTION_POINTER(returnType, name), when followed by a parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its name. It SHALL be used in either of the following fashions to define a function pointer variable, myC_Initialize, which can point to a C_Initialize function in a Cryptoki library (note that neither of the following code snippets actually assigns a value to myC_Initialize):
CK_DECLARE_FUNCTION_POINTER(CK_RV, myC_Initialize)(
  CK_VOID_PTR pReserved
);

or:
typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, myC_InitializeType)(
  CK_VOID_PTR pReserved
);
myC_InitializeType myC_Initialize;
· [bookmark: _Toc72656017][bookmark: _Toc235002232]CK_CALLBACK_FUNCTION
CK_CALLBACK_FUNCTION(returnType, name), when followed by a parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to an application callback function that can be used by a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its name. It SHALL be used in either of the following fashions to define a function pointer variable, myCallback, which can point to an application callback which takes arguments args and returns a CK_RV (note that neither of the following code snippets actually assigns a value to myCallback):
CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);

or:
typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
myCallbackType myCallback;
· [bookmark: _Toc72656018][bookmark: _Toc235002233]NULL_PTR
NULL_PTR is the value of a NULL pointer. In any ANSI C environment—and in many others as well—NULL_PTR SHALL be defined simply as 0.
3 [bookmark: _Toc72656023][bookmark: _Toc235002238][bookmark: _Toc370633971][bookmark: _Toc391468762][bookmark: _Toc395183758][bookmark: _Toc7432270][bookmark: _Toc29976540][bookmark: _Toc90376205][bookmark: _Toc111203190][bookmark: _Toc148962032][bookmark: _Toc195693054]General data types
The general Cryptoki data types are described in the following subsections. The data types for holding parameters for various mechanisms, and the pointers to those parameters, are not described here; these types are described with the information on the mechanisms themselves, in Section 6.
A C or C++ source file in a Cryptoki application or library can define all these types (the types described here and the types that are specifically used for particular mechanism parameters) by including the top-level Cryptoki include file, pkcs11.h. pkcs11.h, in turn, includes the other Cryptoki include files, pkcs11t.h and pkcs11f.h. A source file can also include just pkcs11t.h (instead of pkcs11.h); this defines most (but not all) of the types specified here.
When including either of these header files, a source file MUST specify the preprocessor directives indicated in Section 2.
3.1 [bookmark: _Toc319287649][bookmark: _Toc319313490][bookmark: _Toc319313683][bookmark: _Toc319315676][bookmark: _Toc322855272][bookmark: _Toc322945098][bookmark: _Toc323000681][bookmark: _Toc323024041][bookmark: _Toc323205372][bookmark: _Toc323610801][bookmark: _Toc383864815][bookmark: _Toc385057804][bookmark: _Toc405794627][bookmark: _Toc72656024][bookmark: _Toc235002239][bookmark: _Toc370633972][bookmark: _Toc391468763][bookmark: _Toc395183759][bookmark: _Toc7432271][bookmark: _Toc29976541][bookmark: _Toc90376206][bookmark: _Toc111203191][bookmark: _Toc148962033][bookmark: _Toc195693055]General information
Cryptoki represents general information with the following types:
· [bookmark: _Toc323024042][bookmark: _Toc323205373][bookmark: _Toc323610802][bookmark: _Toc383864816][bookmark: _Toc385057805][bookmark: _Toc405794628][bookmark: _Toc72656025][bookmark: _Toc235002240]CK_VERSION; CK_VERSION_PTR
CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library, or an SSL or TLS implementation, or the hardware or firmware version of a slot or token. It is defined as follows:
typedef struct CK_VERSION {
  CK_BYTE major;
  CK_BYTE minor;
} CK_VERSION;

The fields of the structure have the following meanings:
	major	major version number (the integer portion of the version)
	minor	minor version number (the hundredths portion of the version)
Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and minor = 10. Table 4 below lists the major and minor version values for the officially published Cryptoki specifications. 
[bookmark: _Ref514351075][bookmark: _Toc225305941]Table 4, Major and minor version values for published Cryptoki specifications
	Version
	major
	minor

	1.0
	0x01
	0x00

	2.01
	0x02
	0x01

	2.10
	0x02
	0x0a

	2.11
	0x02
	0x0b

	2.20
	0x02
	0x14

	2.30
	0x02
	0x1e

	2.40
	0x02
	0x28

	3.0
	0x03
	0x00

	3.1
	0x03
	0x01

	3.2
	0x03
	0x02


Minor revisions of the Cryptoki standard are always upwardly compatible within the same major version number.
CK_VERSION_PTR is a pointer to a CK_VERSION.
· [bookmark: _Toc323024043][bookmark: _Toc323205374][bookmark: _Toc323610803][bookmark: _Toc383864817][bookmark: _Toc385057807][bookmark: _Toc405794629][bookmark: _Toc72656026][bookmark: _Toc235002241]CK_INFO; CK_INFO_PTR
CK_INFO provides general information about Cryptoki. It is defined as follows:
typedef struct CK_INFO {
  CK_VERSION cryptokiVersion;
  CK_UTF8CHAR manufacturerID[32];
  CK_FLAGS flags;
  CK_UTF8CHAR libraryDescription[32];
  CK_VERSION libraryVersion;
} CK_INFO;

The fields of the structure have the following meanings:
	cryptokiVersion	Cryptoki interface version number, for compatibility with future revisions of this interface
	manufacturerID	ID of the Cryptoki library manufacturer. MUST be padded with the blank character (‘ ‘). Should not be null-terminated.
	flags	bit flags reserved for future versions. MUST be zero for this version
	libraryDescription	character-string description of the library. MUST be padded with the blank character (‘ ‘). Should not be null-terminated.
	libraryVersion	Cryptoki library version number
For libraries written to this document, the value of cryptokiVersion should match the version of this specification; the value of libraryVersion is the version number of the library software itself.
CK_INFO_PTR is a pointer to a CK_INFO.
· [bookmark: _Toc323024045][bookmark: _Toc323205376][bookmark: _Toc323610805][bookmark: _Toc383864819][bookmark: _Toc385057809][bookmark: _Toc405794630][bookmark: _Toc72656027][bookmark: _Toc235002242]CK_NOTIFICATION
CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It is defined as follows:
typedef CK_ULONG CK_NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:
CKN_SURRENDER

The notifications have the following meanings:
	CKN_SURRENDER	Cryptoki is surrendering the execution of a function executing in a session so that the application may perform other operations. After performing any desired operations, the application should indicate to Cryptoki whether to continue or cancel the function (see Section 5.22.1).
3.2 [bookmark: _Toc72656028][bookmark: _Toc235002243][bookmark: _Toc370633973][bookmark: _Toc391468764][bookmark: _Toc395183760][bookmark: _Toc7432272][bookmark: _Toc29976542][bookmark: _Toc90376207][bookmark: _Toc111203192][bookmark: _Toc148962034][bookmark: _Toc195693056]Slot and token types
Cryptoki represents slot and token information with the following types:
· [bookmark: _Toc323024047][bookmark: _Toc323205378][bookmark: _Toc323610807][bookmark: _Toc383864821][bookmark: _Toc385057811][bookmark: _Toc405794632][bookmark: _Toc72656029][bookmark: _Toc235002244]CK_SLOT_ID; CK_SLOT_ID_PTR
CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows:
typedef CK_ULONG CK_SLOT_ID;

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of CK_SLOT_ID can be a valid slot identifier—in particular, a system may have a slot identified by the value 0. It need not have such a slot, however.
CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.
· [bookmark: _Toc323024049][bookmark: _Toc323205380][bookmark: _Toc323610809][bookmark: _Toc383864823][bookmark: _Toc385057813][bookmark: _Toc405794633][bookmark: _Toc72656030][bookmark: _Toc235002245]CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT_INFO provides information about a slot. It is defined as follows:
typedef struct CK_SLOT_INFO {
  CK_UTF8CHAR slotDescription[64];
  CK_UTF8CHAR manufacturerID[32];
  CK_FLAGS flags;
  CK_VERSION hardwareVersion;
  CK_VERSION firmwareVersion;
} CK_SLOT_INFO;

The fields of the structure have the following meanings:
	slotDescription	character-string description of the slot. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	manufacturerID	ID of the slot manufacturer. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	flags	bits flags that provide capabilities of the slot. The flags are defined below
	hardwareVersion	version number of the slot’s hardware
	firmwareVersion	version number of the slot’s firmware
The following table defines the flags field:
[bookmark: _Toc383864510][bookmark: _Toc405794971][bookmark: _Toc225305942]Table 5, Slot Information Flags
	Bit Flag
	Mask
	Meaning

	CKF_TOKEN_PRESENT
	0x00000001
	True if a token is present in the slot (e.g., a device is in the reader)

	CKF_REMOVABLE_DEVICE
	0x00000002
	True if the reader supports removable devices

	CKF_HW_SLOT
	0x00000004
	True if the slot is a hardware slot, as opposed to a software slot implementing a “soft token”


Implementations should not imply an interpretation about the security properties based on the CKF_HW_SLOT. The flag is intended purely as an indicator that the slot is a physical realisation. How the implementation that offers the physical slot implements mechanisms (software/firmware/hardware) is unrelated to this flag.
For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes. In addition, if this flag is not set for a given slot, then the CKF_TOKEN_PRESENT flag for that slot is always set. That is, if a slot does not support a removable device, then that slot always has a token in it.
CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.
· [bookmark: _Toc323024051][bookmark: _Toc323205382][bookmark: _Toc323610811][bookmark: _Toc383864825][bookmark: _Toc385057815][bookmark: _Toc405794634][bookmark: _Toc72656031][bookmark: _Toc235002246]CK_TOKEN_INFO; CK_TOKEN_INFO_PTR
CK_TOKEN_INFO provides information about a token. It is defined as follows:
typedef struct CK_TOKEN_INFO {
  CK_UTF8CHAR label[32];
  CK_UTF8CHAR manufacturerID[32];
  CK_UTF8CHAR model[16];
  CK_CHAR serialNumber[16];
  CK_FLAGS flags;
  CK_ULONG ulMaxSessionCount;
  CK_ULONG ulSessionCount;
  CK_ULONG ulMaxRwSessionCount;
  CK_ULONG ulRwSessionCount;
  CK_ULONG ulMaxPinLen;
  CK_ULONG ulMinPinLen;
  CK_ULONG ulTotalPublicMemory;
  CK_ULONG ulFreePublicMemory;
  CK_ULONG ulTotalPrivateMemory;
  CK_ULONG ulFreePrivateMemory;
  CK_VERSION hardwareVersion;
  CK_VERSION firmwareVersion;
  CK_CHAR utcTime[16];
} CK_TOKEN_INFO;

The fields of the structure have the following meanings:
	label	application-defined label, assigned during token initialization. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	manufacturerID	ID of the device manufacturer. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	model	model of the device. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	serialNumber	character-string serial number of the device. MUST be padded with the blank character (‘ ‘). MUST NOT be null-terminated.
	flags	bit flags indicating capabilities and status of the device as defined below
	ulMaxSessionCount	maximum number of sessions that can be opened with the token at one time by a single application (see CK_TOKEN_INFO Note below)
	ulSessionCount	number of sessions that this application currently has open with the token (see CK_TOKEN_INFO Note below)
	ulMaxRwSessionCount	maximum number of read/write sessions that can be opened with the token at one time by a single application (see CK_TOKEN_INFO Note below)
	ulRwSessionCount	number of read/write sessions that this application currently has open with the token (see CK_TOKEN_INFO Note below)
	ulMaxPinLen	maximum length in bytes of the PIN
	ulMinPinLen	minimum length in bytes of the PIN
	ulTotalPublicMemory	the total amount of memory on the token in bytes in which public objects may be stored (see CK_TOKEN_INFO Note below)
	ulFreePublicMemory	the amount of free (unused) memory on the token in bytes for public objects (see CK_TOKEN_INFO Note below)
	ulTotalPrivateMemory	the total amount of memory on the token in bytes in which private objects may be stored (see CK_TOKEN_INFO Note below)
	ulFreePrivateMemory	the amount of free (unused) memory on the token in bytes for private objects (see CK_TOKEN_INFO Note below)
	hardwareVersion	version number of hardware
	firmwareVersion	version number of firmware
	utcTime	current time as a character-string of length 16, represented in the format YYYYMMDDhhmmssxx (4 characters for the year;  2 characters each for the month, the day, the hour, the minute, and the second; and 2 additional reserved ‘0’ characters). The value of this field only makes sense for tokens equipped with a clock, as indicated in the token information flags (see below)
The following table defines the flags field:
[bookmark: _Ref398089151][bookmark: _Toc383864511][bookmark: _Toc405794972][bookmark: _Toc225305943][bookmark: _Ref177391896]Table 6, Token Information Flags
	Bit Flag
	Mask
	Meaning

	CKF_RNG
	0x00000001
	True if the token has its own random number generator

	CKF_WRITE_PROTECTED
	0x00000002
	True if the token is write-protected (see below)

	CKF_LOGIN_REQUIRED
	0x00000004
	True if there are some cryptographic functions that a user MUST be logged in to perform

	CKF_USER_PIN_INITIALIZED
	0x00000008
	True if the normal user’s PIN has been initialized

	CKF_RESTORE_KEY_NOT_NEEDED
	0x00000020
	True if a successful save of a session’s cryptographic operations state always contains all keys needed to restore the state of the session

	CKF_CLOCK_ON_TOKEN
	0x00000040
	True if token has its own hardware clock

	CKF_PROTECTED_AUTHENTICATION_PATH
	0x00000100
	True if token has a “protected authentication path”, whereby a user can log into the token without passing a PIN through the Cryptoki library

	CKF_DUAL_CRYPTO_OPERATIONS
	0x00000200
	True if a single session with the token can perform dual cryptographic operations (see Section 5.17)

	CKF_TOKEN_INITIALIZED
	0x00000400
	True if the token has been initialized using C_InitToken or an equivalent mechanism outside the scope of this standard. Calling C_InitToken when this flag is set will cause the token to be reinitialized.

	CKF_SECONDARY_AUTHENTICATION
	0x00000800
	True if the token supports secondary authentication for private key objects. (Deprecated; new implementations MUST NOT set this flag)

	CKF_USER_PIN_COUNT_LOW
	0x00010000
	True if an incorrect user login PIN has been entered at least once since the last successful authentication.

	CKF_USER_PIN_FINAL_TRY
	0x00020000
	True if supplying an incorrect user PIN will cause it to become locked.

	CKF_USER_PIN_LOCKED
	0x00040000
	True if the user PIN has been locked. User login to the token is not possible.

	CKF_USER_PIN_TO_BE_CHANGED
	0x00080000
	True if the user PIN value is the default value set by token initialization or manufacturing, or the PIN has been expired by the card. 

	CKF_SO_PIN_COUNT_LOW
	0x00100000
	True if an incorrect SO login PIN has been entered at least once since the last successful authentication.

	CKF_SO_PIN_FINAL_TRY
	0x00200000
	True if supplying an incorrect SO PIN will cause it to become locked.

	CKF_SO_PIN_LOCKED
	0x00400000
	True if the SO PIN has been locked. SO login to the token is not possible.

	CKF_SO_PIN_TO_BE_CHANGED
	0x00800000
	True if the SO PIN value is the default value set by token initialization or manufacturing, or the PIN has been expired by the card. 

	CKF_ERROR_STATE
	0x01000000
	True if the token failed a FIPS 140-2 self-test and entered an error state.

	CKF_SEED_RANDOM_REQUIRED
	0x02000000
	True if the token’s random number generator must be seeded or re-seeded using C_SeedRandom.

	CKF_ASYNC_SESSION_SUPPORTED
	0x04000000
	True if the token supports asynchronous sessions (see Section 5.21).


It is not specified in Cryptoki which type of random number generator, i.e., a true/physical or pseudo/deterministic or hybrid random number generator, the token has when CKF_RNG is true.
Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An application may be unable to perform certain actions on a write-protected token; these actions can include any of the following, among others:
· Creating/modifying/deleting any object on the token.
· Creating/modifying/deleting a token object on the token.
· Changing the SO’s PIN.
· Changing the normal user’s PIN.
The token may change the value of the CKF_WRITE_PROTECTED flag depending on the session state to implement its object management policy. For instance, the token may set the CKF_WRITE_PROTECTED flag unless the session state is R/W SO or R/W User to implement a policy that does not allow any objects, public or private, to be created, modified, or deleted unless the user has successfully called C_Login.
The CKF_USER_PIN_COUNT_LOW, CKF_SO_PIN_COUNT_LOW, CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may always be set to false if the token does not support the functionality or will not reveal the information because of its security policy.
The CKF_USER_PIN_TO_BE_CHANGED and CKF_SO_PIN_TO_BE_CHANGED flags may always be set to false if the token does not support the functionality. If a PIN is set to the default value, or has expired, the appropriate CKF_USER_PIN_TO_BE_CHANGED or CKF_SO_PIN_TO_BE_CHANGED flag is set to true. When either of these flags are true, logging in with the corresponding PIN will succeed, but only the C_SetPIN function can be called. Calling any other function that required the user to be logged in will cause CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.
CK_TOKEN_INFO Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount, ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and ulFreePrivateMemory can have the special value CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is unable or unwilling to provide that information. In addition, the fields ulMaxSessionCount and ulMaxRwSessionCount can have the special value CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the number of sessions (resp. R/W sessions) an application can have open with the token.
It is important to check these fields for these special values. This is particularly true for CK_EFFECTIVELY_INFINITE, since an application seeing this value in the ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it can’t open any sessions with the token, which is far from being the case.
The upshot of all this is that the correct way to interpret (for example) the ulMaxSessionCount field is something along the lines of the following:
CK_TOKEN_INFO info;
.
.
if ((CK_LONG) info.ulMaxSessionCount
    == CK_UNAVAILABLE_INFORMATION) {
  /* Token refuses to give value of ulMaxSessionCount */
  .
  .
} else if (info.ulMaxSessionCount == CK_EFFECTIVELY_INFINITE) {
  /* Application can open as many sessions as it wants */
  .
  .
} else {
  /* ulMaxSessionCount really does contain what it should */
  .
  .
}

[bookmark: _Toc319287652][bookmark: _Toc319313493][bookmark: _Toc319313686][bookmark: _Toc319315679][bookmark: _Toc322855274][bookmark: _Toc322945100][bookmark: _Toc323000683][bookmark: _Toc323024053][bookmark: _Toc323205384][bookmark: _Toc323610813][bookmark: _Toc383864827][bookmark: _Toc385057817][bookmark: _Toc405794635][bookmark: _Toc72656032][bookmark: _Toc235002247][bookmark: _Toc370633974][bookmark: _Toc391468765][bookmark: _Toc395183761]CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.
3.3 [bookmark: _Toc7432273][bookmark: _Toc29976543][bookmark: _Toc90376208][bookmark: _Toc111203193][bookmark: _Toc148962035][bookmark: _Toc195693057]Session types
Cryptoki represents session information with the following types:
· [bookmark: _Toc323024054][bookmark: _Toc323205385][bookmark: _Toc323610814][bookmark: _Toc383864828][bookmark: _Toc385057818][bookmark: _Toc405794636][bookmark: _Toc72656033][bookmark: _Toc235002248]CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR
CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as follows:
typedef CK_ULONG CK_SESSION_HANDLE;

[bookmark: _Toc323024055][bookmark: _Toc323205386][bookmark: _Toc323610815][bookmark: _Toc383864829][bookmark: _Toc385057819]Valid session handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki defines the following symbolic value:
CK_INVALID_HANDLE

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.
· [bookmark: _Toc323024057][bookmark: _Toc323205387][bookmark: _Toc323610816][bookmark: _Toc383864830][bookmark: _Toc385057820][bookmark: _Toc405794637][bookmark: _Toc72656034][bookmark: _Toc235002249]CK_USER_TYPE
CK_USER_TYPE holds the types of Cryptoki users described in [PKCS11-UG] and, in addition, a context-specific type described in Section 4.10. It is defined as follows:
typedef CK_ULONG CK_USER_TYPE;

For this version of Cryptoki, the following types of users are defined:
CKU_SO
CKU_USER
CKU_CONTEXT_SPECIFIC
· [bookmark: _Toc323024056][bookmark: _Toc323205388][bookmark: _Toc323610817][bookmark: _Toc383864831][bookmark: _Toc385057821][bookmark: _Toc405794638][bookmark: _Toc72656035][bookmark: _Toc235002250][bookmark: _Toc323024058]CK_STATE
CK_STATE holds the session state, as described in [PKCS11-UG]. It is defined as follows:
typedef CK_ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:
CKS_RO_PUBLIC_SESSION
CKS_RO_USER_FUNCTIONS
CKS_RW_PUBLIC_SESSION
CKS_RW_USER_FUNCTIONS
CKS_RW_SO_FUNCTIONS  
· [bookmark: _Toc323205389][bookmark: _Toc323610818][bookmark: _Toc383864832][bookmark: _Toc385057822][bookmark: _Toc405794639][bookmark: _Toc72656036][bookmark: _Toc235002251]CK_SESSION_INFO; CK_SESSION_INFO_PTR
CK_SESSION_INFO provides information about a session. It is defined as follows:
typedef struct CK_SESSION_INFO {
  CK_SLOT_ID slotID;
  CK_STATE state;
  CK_FLAGS flags;
  CK_ULONG ulDeviceError;
} CK_SESSION_INFO;


The fields of the structure have the following meanings:
	slotID	ID of the slot that interfaces with the token
	state	the state of the session
	flags	bit flags that define the type of session; the flags are defined below
	ulDeviceError	an error code defined by the cryptographic device. Used for errors not covered by Cryptoki.
The following table defines the flags field:
[bookmark: _Toc383864512][bookmark: _Toc405794973][bookmark: _Toc225305944]Table 7, Session Information Flags
	[bookmark: _Toc319287653][bookmark: _Toc319313494][bookmark: _Toc319313687][bookmark: _Toc319315680]Bit Flag
	Mask
	Meaning

	CKF_RW_SESSION
	0x00000002
	True if the session is read/write; false if the session is read-only

	CKF_SERIAL_SESSION
	0x00000004
	This flag is provided for backward compatibility, and should always be set to true

	CKF_ASYNC_SESSION
	0x00000008
	True if the session is asynchronous; false if the session is synchronous (see Section 5.21)


[bookmark: _Toc323024059][bookmark: _Toc323205390][bookmark: _Toc323610819][bookmark: _Toc383864833][bookmark: _Toc385057823]CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.
3.4 [bookmark: _Toc322855275][bookmark: _Toc322945101][bookmark: _Toc323000684][bookmark: _Toc323024060][bookmark: _Toc323205391][bookmark: _Toc323610820][bookmark: _Toc383864834][bookmark: _Toc385057824][bookmark: _Toc405794640][bookmark: _Ref26861179][bookmark: _Toc72656037][bookmark: _Toc235002252][bookmark: _Toc370633975][bookmark: _Toc391468766][bookmark: _Toc395183762][bookmark: _Toc7432274][bookmark: _Toc29976544][bookmark: _Toc90376209][bookmark: _Toc111203194][bookmark: _Toc148962036][bookmark: _Toc195693058]Object types
Cryptoki represents object information with the following types:
· [bookmark: _Toc323024061][bookmark: _Toc323205392][bookmark: _Toc323610821][bookmark: _Toc383864835][bookmark: _Toc385057825][bookmark: _Toc405794641][bookmark: _Toc72656038][bookmark: _Toc235002253]CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR
CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:
typedef CK_ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an object handle for that application’s sessions to use to access it. A particular object on a token does not necessarily have a handle which is fixed for the lifetime of the object; however, if a particular session can use a particular handle to access a particular object, then that session will continue to be able to use that handle to access that object as long as the session continues to exist, the object continues to exist, and the object continues to be accessible to the session.
[bookmark: _Toc323024062][bookmark: _Toc323205393][bookmark: _Toc323610822][bookmark: _Toc383864836][bookmark: _Toc385057826]Valid object handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki defines the following symbolic value:
CK_INVALID_HANDLE

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.
· [bookmark: _Toc323024063][bookmark: _Toc323205394][bookmark: _Toc323610823][bookmark: _Toc383864837][bookmark: _Toc385057827][bookmark: _Toc405794642][bookmark: _Toc72656039][bookmark: _Toc235002254]CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTR
CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki recognizes. It is defined as follows:
typedef CK_ULONG CK_OBJECT_CLASS;

Object classes are defined with the objects that use them. The type is specified on an object through the CKA_CLASS attribute of the object.
Vendor defined values for this type may also be specified.
CKO_VENDOR_DEFINED   

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their object classes through the PKCS process.
CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.
· [bookmark: _Toc72656040][bookmark: _Toc235002255]CK_HW_FEATURE_TYPE
CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a device. It is defined as follows:
typedef CK_ULONG CK_HW_FEATURE_TYPE;

Hardware feature types are defined with the objects that use them. The type is specified on an object through the CKA_HW_FEATURE_TYPE attribute of the object.
Vendor defined values for this type may also be specified.
CKH_VENDOR_DEFINED    

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their feature types through the PKCS process.
· [bookmark: _Toc323610825][bookmark: _Toc383864839][bookmark: _Toc385057829][bookmark: _Toc405794643][bookmark: _Toc72656041][bookmark: _Toc235002256][bookmark: _Toc323024065][bookmark: _Toc323205396]CK_KEY_TYPE
CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:
typedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is specified on an object through the CKA_KEY_TYPE attribute of the object.
Vendor defined values for this type may also be specified.
CKK_VENDOR_DEFINED  

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their key types through the PKCS process.
· [bookmark: _Toc323610826][bookmark: _Toc383864840][bookmark: _Toc385057830][bookmark: _Toc405794644][bookmark: _Toc72656042][bookmark: _Toc235002257]CK_CERTIFICATE_TYPE
CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:
typedef CK_ULONG CK_CERTIFICATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The certificate type is specified on an object through the CKA_CERTIFICATE_TYPE attribute of the object.
Vendor defined values for this type may also be specified.
CKC_VENDOR_DEFINED

[bookmark: _Toc323024066]Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their certificate types through the PKCS process.
· CK_CERTIFICATE_CATEGORY
CK_CERTIFICATE_CATEGORY is a value that identifies a certificate category. It is defined as follows:
typedef CK_ULONG CK_CERTIFICATE_CATEGORY;

For this version of Cryptoki, the following certificate categories are defined:
Table 8, Certificate category values
	Constant
	Value
	Meaning

	CK_CERTIFICATE_CATEGORY_UNSPECIFIED
	0x00000000UL
	No category specified

	CK_CERTIFICATE_CATEGORY_TOKEN_USER
	0x00000001UL
	Certificate belongs to owner of the token

	CK_CERTIFICATE_CATEGORY_AUTHORITY
	0x00000002UL
	Certificate belongs to a certificate authority

	CK_CERTIFICATE_CATEGORY_OTHER_ENTITY
	0x00000003UL
	Certificate belongs to an end entity (i.e.: not a CA)


· [bookmark: _Toc323205397][bookmark: _Toc323610827][bookmark: _Toc383864841][bookmark: _Toc385057831][bookmark: _Toc405794645][bookmark: _Toc72656043][bookmark: _Toc235002258]CK_ATTRIBUTE_TYPE 
CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:
typedef CK_ULONG CK_ATTRIBUTE_TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are specified on an object as a list of type, length value items. These are often specified as an attribute template.
Vendor defined values for this type may also be specified.
CKA_VENDOR_DEFINED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their attribute types through the PKCS process.
· [bookmark: _Toc323024067][bookmark: _Toc323205398][bookmark: _Toc323610828][bookmark: _Toc383864842][bookmark: _Toc385057832][bookmark: _Toc405794646][bookmark: _Toc72656044][bookmark: _Toc235002259]CK_ATTRIBUTE; CK_ATTRIBUTE_PTR
CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. It is defined as follows:
typedef struct CK_ATTRIBUTE {
  CK_ATTRIBUTE_TYPE type;
  CK_VOID_PTR pValue;
  CK_ULONG ulValueLen;
} CK_ATTRIBUTE;

The fields of the structure have the following meanings:
	type	the attribute type
	pValue	pointer to the value of the attribute
	ulValueLen	length in bytes of the value
If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant. An array of CK_ATTRIBUTEs is called a “template” and is used for creating, manipulating and searching for objects. The order of the attributes in a template never matters, even if the template contains vendor-specific attributes. Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the application and Cryptoki library MUST ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).

The constant CK_UNAVAILABLE_INFORMATION is used in the ulValueLen field to denote an invalid or unavailable value. See C_GetAttributeValue for further details.

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.
· [bookmark: _Toc323024069][bookmark: _Toc323205400][bookmark: _Toc323610830][bookmark: _Toc383864844][bookmark: _Toc385057834][bookmark: _Toc405794647][bookmark: _Toc72656045][bookmark: _Toc235002260][bookmark: _Toc319287654][bookmark: _Toc319313495][bookmark: _Toc319313688][bookmark: _Toc319315681][bookmark: _Toc322855276]CK_DATE
CK_DATE is a structure that defines a date. It is defined as follows:
typedef struct CK_DATE {
  CK_CHAR year[4];
  CK_CHAR month[2];
  CK_CHAR day[2];
} CK_DATE;

The fields of the structure have the following meanings:
	year	the year (“1900” - “9999”)
	month	the month (“01” - “12”)
	day	the day (“01” - “31”)
[bookmark: _Toc322945102][bookmark: _Toc323000685][bookmark: _Toc323024070]The fields hold numeric characters from the character set in Table 3, not the literal byte values.
When a Cryptoki object carries an attribute of this type, and the default value of the attribute is specified to be "empty," then Cryptoki libraries SHALL set the attribute's ulValueLen to 0.
Note that implementations of previous versions of Cryptoki may have used other methods to identify an "empty" attribute of type CK_DATE, and applications that needs to interoperate with these libraries therefore have to be flexible in what they accept as an empty value.
· CK_PROFILE_ID; CK_PROFILE_ID_PTR
CK_PROFILE_ID is an unsigend ulong value represting a specific token profile. It is defined as follows:
typedef CK_ULONG CK_PROFILE_ID;

Profiles are defines in the PKCS #11 Cryptographic Token Interface Profiles document. s. ID's greater than 0xffffffff may cause compatibility issues on platforms that have CK_ULONG values of 32 bits, and should be avoided. 
Vendor defined values for this type may also be specified.
CKP_VENDOR_DEFINED 

Profile IDs CKP_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their object classes through the PKCS process.

Valid Profile IDs in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki defines the following symbolic value:
CKP_INVALID_ID
CK_PROFILE_ID_PTR is a pointer to a CK_PROFILE_ID.
· CK_JAVA_MIDP_SECURITY_DOMAIN
CK_JAVA_MIDP_SECURITY_DOMAIN is a value that identifies the Java MIDP security domain of a certificate. It is defined as follows:
typedef CK_ULONG CK_JAVA_MIDP_SECURITY_DOMAIN;
For this version of Cryptoki, the following security domains are defined. See the [Java MIDP] specification for further information:
Table 9, Security domain values
	Constant
	Value
	Meaning

	CK_SECURITY_DOMAIN_UNSPECIFIED
	0x00000000UL
	No domain specified

	CK_SECURITY_DOMAIN_MANUFACTURER
	0x00000001UL
	Manufacturer protection domain

	CK_SECURITY_DOMAIN_OPERATOR
	0x00000002UL
	Operator protection domain

	CK_SECURITY_DOMAIN_THIRD_PARTY
	0x00000003UL
	Third party protection domain



3.5 [bookmark: _Toc323205401][bookmark: _Toc323610831][bookmark: _Toc383864940][bookmark: _Toc385057835][bookmark: _Toc405794648][bookmark: _Toc72656046][bookmark: _Toc235002261][bookmark: _Toc370633976][bookmark: _Toc391468767][bookmark: _Toc395183763][bookmark: _Toc7432275][bookmark: _Toc29976545][bookmark: _Toc90376210][bookmark: _Toc111203195][bookmark: _Toc148962037][bookmark: _Toc195693059][bookmark: _Toc322855277][bookmark: _Toc322945103][bookmark: _Toc323000686][bookmark: _Toc323024078][bookmark: _Toc323205409][bookmark: _Toc323610839][bookmark: _Ref372962897][bookmark: _Toc383864845][bookmark: _Toc319287655][bookmark: _Toc319313496][bookmark: _Toc319313689][bookmark: _Toc319315682][bookmark: _Ref319978509]Data types for mechanisms
Cryptoki supports the following types for describing mechanisms and parameters to them:
· [bookmark: _Toc323024071][bookmark: _Toc323205402][bookmark: _Toc323610832][bookmark: _Toc383864941][bookmark: _Toc385057836][bookmark: _Toc405794649][bookmark: _Toc72656047][bookmark: _Toc235002262]CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR
CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:
typedef CK_ULONG CK_MECHANISM_TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.
Vendor defined values for this type may also be specified.
CKM_VENDOR_DEFINED

[bookmark: _Toc323024072]Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their mechanism types through the PKCS process.
CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.
· [bookmark: _Toc323024073][bookmark: _Toc323205404][bookmark: _Toc323610834][bookmark: _Toc383864943][bookmark: _Toc385057838][bookmark: _Toc405794650][bookmark: _Toc72656048][bookmark: _Toc235002263]CK_MECHANISM; CK_MECHANISM_PTR
CK_MECHANISM is a structure that specifies a particular mechanism and any parameters it requires. It is defined as follows:
typedef struct CK_MECHANISM {
  CK_MECHANISM_TYPE mechanism;
  CK_VOID_PTR pParameter;
  CK_ULONG ulParameterLen;
} CK_MECHANISM;

The fields of the structure have the following meanings:
mechanism	the type of mechanism
pParameter	pointer to the parameter if required by the mechanism
ulParameterLen	length in bytes of the parameter
[bookmark: _Toc323024074]Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the application and the Cryptoki library MUST ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).
CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.
· [bookmark: _Toc323024075][bookmark: _Toc323205406][bookmark: _Toc323610836][bookmark: _Toc383864945][bookmark: _Toc385057840][bookmark: _Toc405794651][bookmark: _Toc72656049][bookmark: _Toc235002264]CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR
CK_MECHANISM_INFO is a structure that provides information about a particular mechanism. It is defined as follows:
typedef struct CK_MECHANISM_INFO {
  CK_ULONG ulMinKeySize;
  CK_ULONG ulMaxKeySize;
  CK_FLAGS flags;
} CK_MECHANISM_INFO;

The fields of the structure have the following meanings:
	ulMinKeySize	the minimum size of the key for the mechanism (whether this is measured in bits or in bytes is mechanism-dependent)
	ulMaxKeySize	the maximum size of the key for the mechanism (whether this is measured in bits or in bytes is mechanism-dependent)
	flags	bit flags specifying mechanism capabilities
For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.
The following table defines the flags field:
[bookmark: _Toc383864547][bookmark: _Toc405794974][bookmark: _Toc225305945]Table 10, Mechanism Information Flags
	Bit Flag
	Mask
	Meaning

	CKF_HW
	0x00000001
	True if the mechanism is performed by the device; false if the mechanism is performed in software

	CKF_MESSAGE_ENCRYPT
	0x00000002
	True if the mechanism can be used with C_MessageEncryptInit

	CKF_MESSAGE_DECRYPT
	0x00000004
	True if the mechanism can be used with C_MessageDecryptInit

	CKF_MESSAGE_SIGN
	0x00000008
	True if the mechanism can be used with C_MessageSignInit

	CKF_MESSAGE_VERIFY
	0x00000010
	True if the mechanism can be used with C_MessageVerifyInit

	CKF_MULTI_MESSAGE
	0x00000020
	True if the mechanism can be used with C_*MessageBegin. One of CKF_MESSAGE_* flag must also be set.

	CKF_FIND_OBJECTS
	0x00000040
	This flag can be passed in as a parameter to C_SessionCancel to cancel an active object search operation. Any other use of this flag is outside the scope of this standard.

	CKF_ENCRYPT
	0x00000100
	True if the mechanism can be used with C_EncryptInit

	CKF_DECRYPT
	0x00000200
	True if the mechanism can be used with C_DecryptInit

	CKF_DIGEST
	0x00000400
	True if the mechanism can be used with C_DigestInit

	CKF_SIGN
	0x00000800
	True if the mechanism can be used with C_SignInit

	CKF_SIGN_RECOVER
	0x00001000
	True if the mechanism can be used with C_SignRecoverInit

	CKF_VERIFY
	0x00002000
	True if the mechanism can be used with C_VerifyInit and C_VerifySignatureInit

	CKF_VERIFY_RECOVER
	0x00004000
	True if the mechanism can be used with C_VerifyRecoverInit

	CKF_GENERATE
	0x00008000
	True if the mechanism can be used with C_GenerateKey

	CKF_GENERATE_KEY_PAIR
	0x00010000
	True if the mechanism can be used with C_GenerateKeyPair

	CKF_WRAP
	0x00020000
	True if the mechanism can be used with C_WrapKey

	CKF_UNWRAP
	0x00040000
	True if the mechanism can be used with C_UnwrapKey

	CKF_DERIVE
	0x00080000
	True if the mechanism can be used with C_DeriveKey

	CKF_ENCAPSULATE
	0x10000000
	True if the mechanism can be used with C_EncapsulateKey

	CKF_DECAPSULATE
	0x20000000
	True if the mechanism can be used with C_DecapsulateKey

	CKF_EXTENSION
	0x80000000
	True if there is an extension to the flags; false if no extensions. MUST be false for this version.


[bookmark: _Toc323024076][bookmark: _Toc323205407][bookmark: _Toc323610837][bookmark: _Toc383864946][bookmark: _Toc385057841]CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.
3.6 [bookmark: _Ref384634468][bookmark: _Toc385057842][bookmark: _Toc405794652][bookmark: _Toc72656050][bookmark: _Toc235002265][bookmark: _Toc370633977][bookmark: _Toc391468768][bookmark: _Toc395183764][bookmark: _Toc7432276][bookmark: _Toc29976546][bookmark: _Toc90376211][bookmark: _Toc111203196][bookmark: _Toc148962038][bookmark: _Toc195693060]Function types
Cryptoki represents information about functions with the following data types:
· [bookmark: _Toc323024080][bookmark: _Toc323205411][bookmark: _Toc323610841][bookmark: _Toc383864847][bookmark: _Toc385057844][bookmark: _Toc405794654][bookmark: _Toc72656051][bookmark: _Toc235002266]CK_RV
CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:
typedef CK_ULONG CK_RV;

Vendor defined values for this type may also be specified.
CKR_VENDOR_DEFINED

Section 5.1 defines the meaning of each CK_RV value. Return values CKR_VENDOR_DEFINED and above are permanently reserved for token vendors. For interoperability, vendors should register their return values through the PKCS process.
· [bookmark: _Toc385057845][bookmark: _Toc405794655][bookmark: _Toc72656052][bookmark: _Toc235002267]CK_NOTIFY
CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification callbacks. It is defined as follows:
typedef CK_CALLBACK_FUNCTION(CK_RV, CK_NOTIFY)(
  CK_SESSION_HANDLE hSession,
  CK_NOTIFICATION event,
  CK_VOID_PTR pApplication
);

The arguments to a notification callback function have the following meanings:
hSession	The handle of the session performing the callback
event	The type of notification callback
pApplication	An application-defined value. This is the same value as was passed to C_OpenSession to open the session performing the callback
· [bookmark: _Toc405794656][bookmark: _Toc72656053][bookmark: _Toc235002268]CK_C_XXX
Cryptoki also defines an entire family of other function pointer types. For each function C_XXX in the Cryptoki API (see Section 5 for detailed information about each of them), Cryptoki defines a type CK_C_XXX, which is a pointer to a function with the same arguments and return value as C_XXX has. An appropriately-set variable of type CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.
· [bookmark: _Toc385057846][bookmark: _Toc405794657][bookmark: _Toc72656054][bookmark: _Toc235002269]CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR; CK_FUNCTION_LIST_PTR_PTR
CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to each function in the Cryptoki API. It is defined as follows:
typedef struct CK_FUNCTION_LIST {
  CK_VERSION version;
  CK_C_Initialize C_Initialize;
  CK_C_Finalize C_Finalize;
  CK_C_GetInfo C_GetInfo;
  CK_C_GetFunctionList C_GetFunctionList;
  CK_C_GetSlotList C_GetSlotList;
  CK_C_GetSlotInfo C_GetSlotInfo;
  CK_C_GetTokenInfo C_GetTokenInfo;
  CK_C_GetMechanismList C_GetMechanismList;
  CK_C_GetMechanismInfo C_GetMechanismInfo;
  CK_C_InitToken C_InitToken;
  CK_C_InitPIN C_InitPIN;
  CK_C_SetPIN C_SetPIN;
  CK_C_OpenSession C_OpenSession;
  CK_C_CloseSession C_CloseSession;
  CK_C_CloseAllSessions C_CloseAllSessions;
  CK_C_GetSessionInfo C_GetSessionInfo;

  CK_C_GetOperationState C_GetOperationState;
  CK_C_SetOperationState C_SetOperationState;
  CK_C_Login C_Login;
  CK_C_Logout C_Logout;
  CK_C_CreateObject C_CreateObject;
  CK_C_CopyObject C_CopyObject;
  CK_C_DestroyObject C_DestroyObject;
  CK_C_GetObjectSize C_GetObjectSize;
  CK_C_GetAttributeValue C_GetAttributeValue;
  CK_C_SetAttributeValue C_SetAttributeValue;
  CK_C_FindObjectsInit C_FindObjectsInit;
  CK_C_FindObjects C_FindObjects;
  CK_C_FindObjectsFinal C_FindObjectsFinal;
  CK_C_EncryptInit C_EncryptInit;
  CK_C_Encrypt C_Encrypt;
  CK_C_EncryptUpdate C_EncryptUpdate;
  CK_C_EncryptFinal C_EncryptFinal;
  CK_C_DecryptInit C_DecryptInit;
  CK_C_Decrypt C_Decrypt;
  CK_C_DecryptUpdate C_DecryptUpdate;
  CK_C_DecryptFinal C_DecryptFinal;
  CK_C_DigestInit C_DigestInit;
  CK_C_Digest C_Digest;
  CK_C_DigestUpdate C_DigestUpdate;
  CK_C_DigestKey C_DigestKey;
  CK_C_DigestFinal C_DigestFinal;
  CK_C_SignInit C_SignInit;
  CK_C_Sign C_Sign;
  CK_C_SignUpdate C_SignUpdate;
  CK_C_SignFinal C_SignFinal;
  CK_C_SignRecoverInit C_SignRecoverInit;
  CK_C_SignRecover C_SignRecover;
  CK_C_VerifyInit C_VerifyInit;
  CK_C_Verify C_Verify;
  CK_C_VerifyUpdate C_VerifyUpdate;
  CK_C_VerifyFinal C_VerifyFinal;
  CK_C_VerifyRecoverInit C_VerifyRecoverInit;
  CK_C_VerifyRecover C_VerifyRecover;
  CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;
  CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;
  CK_C_SignEncryptUpdate C_SignEncryptUpdate;
  CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;
  CK_C_GenerateKey C_GenerateKey;
  CK_C_GenerateKeyPair C_GenerateKeyPair;
  CK_C_WrapKey C_WrapKey;
  CK_C_UnwrapKey C_UnwrapKey;
  CK_C_DeriveKey C_DeriveKey;
  CK_C_SeedRandom C_SeedRandom;
  CK_C_GenerateRandom C_GenerateRandom;
  CK_C_GetFunctionStatus C_GetFunctionStatus;
  CK_C_CancelFunction C_CancelFunction;
  CK_C_WaitForSlotEvent C_WaitForSlotEvent;
} CK_FUNCTION_LIST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it (or to a copy of it which is also owned by the library) may be obtained by the C_GetFunctionList function (see Section 5.2). The value that this pointer points to can be used by an application to quickly find out where the executable code for each function in the Cryptoki API is located. Every function in the Cryptoki API MUST have an entry point defined in the Cryptoki library’s CK_FUNCTION_LIST structure. If a particular function in the Cryptoki API is not supported by a library, then the function pointer for that function in the library’s CK_FUNCTION_LIST structure should point to a function stub which simply returns CKR_FUNCTION_NOT_SUPPORTED.
In this structure ‘version’ is the cryptoki specification version number. The major and minor versions must be set to 0x02 and 0x28 indicating a version 2.40 compatible structure. The updated function list table for this version of the specification may be returned via C_GetInterfaceList or C_GetInterface.

An application may or may not be able to modify a Cryptoki library’s static CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do so.
PKCS #11 modules must not add new functions at the end of the CK_FUNCTION_LIST that are not contained within the defined structure. If a PKCS #11 module needs to define additional functions, they should be placed within a vendor defined interface returned via C_GetInterfaceList or C_GetInterface.
CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.
CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

· CK_FUNCTION_LIST_3_0; CK_FUNCTION_LIST_3_0_PTR; CK_FUNCTION_LIST_3_0_PTR_PTR
CK_FUNCTION_LIST_3_0 is a structure which contains the same function pointers as in CK_FUNCTION_LIST and additional functions added to the end of the structure that were defined in Cryptoki version 3.0. It is defined as follows:
typedef struct CK_FUNCTION_LIST_3_0 {
  CK_VERSION version;
  CK_C_Initialize C_Initialize;
  CK_C_Finalize C_Finalize;
  CK_C_GetInfo C_GetInfo;
  CK_C_GetFunctionList C_GetFunctionList;
  CK_C_GetSlotList C_GetSlotList;
  CK_C_GetSlotInfo C_GetSlotInfo;
  CK_C_GetTokenInfo C_GetTokenInfo;
  CK_C_GetMechanismList C_GetMechanismList;
  CK_C_GetMechanismInfo C_GetMechanismInfo;
  CK_C_InitToken C_InitToken;
  CK_C_InitPIN C_InitPIN;
  CK_C_SetPIN C_SetPIN;
  CK_C_OpenSession C_OpenSession;
  CK_C_CloseSession C_CloseSession;
  CK_C_CloseAllSessions C_CloseAllSessions;
  CK_C_GetSessionInfo C_GetSessionInfo;
  CK_C_GetOperationState C_GetOperationState;
  CK_C_SetOperationState C_SetOperationState;
  CK_C_Login C_Login;
  CK_C_Logout C_Logout;
  CK_C_CreateObject C_CreateObject;
  CK_C_CopyObject C_CopyObject;
  CK_C_DestroyObject C_DestroyObject;
  CK_C_GetObjectSize C_GetObjectSize;
  CK_C_GetAttributeValue C_GetAttributeValue;
  CK_C_SetAttributeValue C_SetAttributeValue;
  CK_C_FindObjectsInit C_FindObjectsInit;
  CK_C_FindObjects C_FindObjects;
  CK_C_FindObjectsFinal C_FindObjectsFinal;
  CK_C_EncryptInit C_EncryptInit;
  CK_C_Encrypt C_Encrypt;
  CK_C_EncryptUpdate C_EncryptUpdate;
  CK_C_EncryptFinal C_EncryptFinal;
  CK_C_DecryptInit C_DecryptInit;
  CK_C_Decrypt C_Decrypt;
  CK_C_DecryptUpdate C_DecryptUpdate;
  CK_C_DecryptFinal C_DecryptFinal;
  CK_C_DigestInit C_DigestInit;
  CK_C_Digest C_Digest;
  CK_C_DigestUpdate C_DigestUpdate;
  CK_C_DigestKey C_DigestKey;
  CK_C_DigestFinal C_DigestFinal;
  CK_C_SignInit C_SignInit;
  CK_C_Sign C_Sign;
  CK_C_SignUpdate C_SignUpdate;
  CK_C_SignFinal C_SignFinal;
  CK_C_SignRecoverInit C_SignRecoverInit;
  CK_C_SignRecover C_SignRecover;
  CK_C_VerifyInit C_VerifyInit;
  CK_C_Verify C_Verify;
  CK_C_VerifyUpdate C_VerifyUpdate;
  CK_C_VerifyFinal C_VerifyFinal;
  CK_C_VerifyRecoverInit C_VerifyRecoverInit;
  CK_C_VerifyRecover C_VerifyRecover;
  CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;
  CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;
  CK_C_SignEncryptUpdate C_SignEncryptUpdate;
  CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;
  CK_C_GenerateKey C_GenerateKey;
  CK_C_GenerateKeyPair C_GenerateKeyPair;
  CK_C_WrapKey C_WrapKey;
  CK_C_UnwrapKey C_UnwrapKey;
  CK_C_DeriveKey C_DeriveKey;
  CK_C_SeedRandom C_SeedRandom;
  CK_C_GenerateRandom C_GenerateRandom;
  CK_C_GetFunctionStatus C_GetFunctionStatus;
  CK_C_CancelFunction C_CancelFunction;
  CK_C_WaitForSlotEvent C_WaitForSlotEvent;
  CK_C_GetInterfaceList C_GetInterfaceList;
  CK_C_GetInterface C_GetInterface;
  CK_C_LoginUser C_LoginUser;
  CK_C_SessionCancel C_SessionCancel;
  CK_C_MessageEncryptInit C_MessageEncryptInit;
  CK_C_EncryptMessage C_EncryptMessage;
  CK_C_EncryptMessageBegin C_EncryptMessageBegin;
  CK_C_EncryptMessageNext C_EncryptMessageNext;
  CK_C_MessageEncryptFinal C_MessageEncryptFinal;
  CK_C_MessageDecryptInit C_MessageDecryptInit;
  CK_C_DecryptMessage C_DecryptMessage;
  CK_C_DecryptMessageBegin C_DecryptMessageBegin;
  CK_C_DecryptMessageNext C_DecryptMessageNext;
  CK_C_MessageDecryptFinal C_MessageDecryptFinal;
  CK_C_MessageSignInit C_MessageSignInit;
  CK_C_SignMessage C_SignMessage;
  CK_C_SignMessageBegin C_SignMessageBegin;
  CK_C_SignMessageNext C_SignMessageNext;
  CK_C_MessageSignFinal C_MessageSignFinal;
  CK_C_MessageVerifyInit C_MessageVerifyInit;
  CK_C_VerifyMessage C_VerifyMessage;
  CK_C_VerifyMessageBegin C_VerifyMessageBegin;
  CK_C_VerifyMessageNext C_VerifyMessageNext;
  CK_C_MessageVerifyFinal C_MessageVerifyFinal;
} CK_FUNCTION_LIST_3_0;

For a general description of CK_FUNCTION_LIST_3_0 see CK_FUNCTION_LIST.
In this structure, version is the cryptoki specification version number. It should match the value of cryptokiVersion returned in the CK_INFO structure, but must be 3.0 at minimum.
This function list may be returned via C_GetInterfaceList or C_GetInterface
CK_FUNCTION_LIST_3_0_PTR is a pointer to a CK_FUNCTION_LIST_3_0.
CK_FUNCTION_LIST_3_0_PTR_PTR is a pointer to a CK_FUNCTION_LIST_3_0_PTR.
· CK_FUNCTION_LIST_3_2; CK_FUNCTION_LIST_3_2_PTR; CK_FUNCTION_LIST_3_2_PTR_PTR
CK_FUNCTION_LIST_3_2 is a structure which contains the same function pointers as in CK_FUNCTION_LIST_3_0 and additional functions added to the end of the structure that were defined in Cryptoki version 3.2. It is defined as follows:
typedef struct CK_FUNCTION_LIST_3_2 {
  CK_VERSION version;
  CK_C_Initialize C_Initialize;
  CK_C_Finalize C_Finalize;
  CK_C_GetInfo C_GetInfo;
  CK_C_GetFunctionList C_GetFunctionList;
  CK_C_GetSlotList C_GetSlotList;
  CK_C_GetSlotInfo C_GetSlotInfo;
  CK_C_GetTokenInfo C_GetTokenInfo;
  CK_C_GetMechanismList C_GetMechanismList;
  CK_C_GetMechanismInfo C_GetMechanismInfo;
  CK_C_InitToken C_InitToken;
  CK_C_InitPIN C_InitPIN;
  CK_C_SetPIN C_SetPIN;
  CK_C_OpenSession C_OpenSession;
  CK_C_CloseSession C_CloseSession;
  CK_C_CloseAllSessions C_CloseAllSessions;
  CK_C_GetSessionInfo C_GetSessionInfo;
  CK_C_GetOperationState C_GetOperationState;
  CK_C_SetOperationState C_SetOperationState;
  CK_C_Login C_Login;
  CK_C_Logout C_Logout;
  CK_C_CreateObject C_CreateObject;
  CK_C_CopyObject C_CopyObject;
  CK_C_DestroyObject C_DestroyObject;
  CK_C_GetObjectSize C_GetObjectSize;
  CK_C_GetAttributeValue C_GetAttributeValue;
  CK_C_SetAttributeValue C_SetAttributeValue;
  CK_C_FindObjectsInit C_FindObjectsInit;
  CK_C_FindObjects C_FindObjects;
  CK_C_FindObjectsFinal C_FindObjectsFinal;
  CK_C_EncryptInit C_EncryptInit;
  CK_C_Encrypt C_Encrypt;
  CK_C_EncryptUpdate C_EncryptUpdate;
  CK_C_EncryptFinal C_EncryptFinal;
  CK_C_DecryptInit C_DecryptInit;
  CK_C_Decrypt C_Decrypt;
  CK_C_DecryptUpdate C_DecryptUpdate;
  CK_C_DecryptFinal C_DecryptFinal;
  CK_C_DigestInit C_DigestInit;
  CK_C_Digest C_Digest;
  CK_C_DigestUpdate C_DigestUpdate;
  CK_C_DigestKey C_DigestKey;
  CK_C_DigestFinal C_DigestFinal;
  CK_C_SignInit C_SignInit;
  CK_C_Sign C_Sign;
  CK_C_SignUpdate C_SignUpdate;
  CK_C_SignFinal C_SignFinal;
  CK_C_SignRecoverInit C_SignRecoverInit;
  CK_C_SignRecover C_SignRecover;
  CK_C_VerifyInit C_VerifyInit;
  CK_C_Verify C_Verify;
  CK_C_VerifyUpdate C_VerifyUpdate;
  CK_C_VerifyFinal C_VerifyFinal;
  CK_C_VerifyRecoverInit C_VerifyRecoverInit;
  CK_C_VerifyRecover C_VerifyRecover;
  CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;
  CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;
  CK_C_SignEncryptUpdate C_SignEncryptUpdate;
  CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;
  CK_C_GenerateKey C_GenerateKey;
  CK_C_GenerateKeyPair C_GenerateKeyPair;
  CK_C_WrapKey C_WrapKey;
  CK_C_UnwrapKey C_UnwrapKey;
  CK_C_DeriveKey C_DeriveKey;
  CK_C_SeedRandom C_SeedRandom;
  CK_C_GenerateRandom C_GenerateRandom;
  CK_C_GetFunctionStatus C_GetFunctionStatus;
  CK_C_CancelFunction C_CancelFunction;
  CK_C_WaitForSlotEvent C_WaitForSlotEvent;
  CK_C_GetInterfaceList C_GetInterfaceList;
  CK_C_GetInterface C_GetInterface;
  CK_C_LoginUser C_LoginUser;
  CK_C_SessionCancel C_SessionCancel;
  CK_C_MessageEncryptInit C_MessageEncryptInit;
  CK_C_EncryptMessage C_EncryptMessage;
  CK_C_EncryptMessageBegin C_EncryptMessageBegin;
  CK_C_EncryptMessageNext C_EncryptMessageNext;
  CK_C_MessageEncryptFinal C_MessageEncryptFinal;
  CK_C_MessageDecryptInit C_MessageDecryptInit;
  CK_C_DecryptMessage C_DecryptMessage;
  CK_C_DecryptMessageBegin C_DecryptMessageBegin;
  CK_C_DecryptMessageNext C_DecryptMessageNext;
  CK_C_MessageDecryptFinal C_MessageDecryptFinal;
  CK_C_MessageSignInit C_MessageSignInit;
  CK_C_SignMessage C_SignMessage;
  CK_C_SignMessageBegin C_SignMessageBegin;
  CK_C_SignMessageNext C_SignMessageNext;
  CK_C_MessageSignFinal C_MessageSignFinal;
  CK_C_MessageVerifyInit C_MessageVerifyInit;
  CK_C_VerifyMessage C_VerifyMessage;
  CK_C_VerifyMessageBegin C_VerifyMessageBegin;
  CK_C_VerifyMessageNext C_VerifyMessageNext;
  CK_C_MessageVerifyFinal C_MessageVerifyFinal;
  CK_C_EncapsulateKey C_EncapsulateKey;
  CK_C_DecapsulateKey C_DecapsulateKey;
  CK_C_VerifySignatureInit C_VerifySignatureInit;
  CK_C_VerifySignature C_VerifySignature;
  CK_C_VerifySignatureUpdate C_VerifySignatureUpdate;
  CK_C_VerifySignatureFinal C_VerifySignatureFinal;
  CK_C_GetSessionValidationFlags C_GetSessionValidationFlags;
  CK_C_AsyncComplete C_AsyncComplete;
  CK_C_AsyncGetID C_AsyncGetID;
  CK_C_AsyncJoin C_AsyncJoin;
  CK_C_WrapKeyAuthenticated C_WrapKeyAuthenticated;
  CK_C_UnwrapKeyAuthenticated C_UnwrapKeyAuthenticated;
} CK_FUNCTION_LIST_3_2;

For a general description of CK_FUNCTION_LIST_3_2 see CK_FUNCTION_LIST.
In this structure, version is the cryptoki specification version number. It should match the value of cryptokiVersion returned in the CK_INFO structure, but must be 3.2 at minimum.
This function list may be returned via C_GetInterfaceList or C_GetInterface
CK_FUNCTION_LIST_3_2_PTR is a pointer to a CK_FUNCTION_LIST_3_2.
CK_FUNCTION_LIST_3_2_PTR_PTR is a pointer to a CK_FUNCTION_LIST_3_2_PTR.
· CK_INTERFACE; CK_INTERFACE_PTR; CK_INTERFACE_PTR_PTR
CK_INTERFACE is a structure which contains an interface name with a function list and flag.
It is defined as follows:
typedef struct CK_INTERFACE {
  CK_UTF8CHAR_PTR pInterfaceName;
  CK_VOID_PTR     pFunctionList;
  CK_FLAGS        flags;
} CK_INTERFACE;

The fields of the structure have the following meanings:
	pInterfaceName	the name of the interface
	pFunctionList	the interface function list which must always begin with a CK_VERSION structure as the first field
	flags	bit flags specifying interface capabilities
The interface name “PKCS 11” is reserved for use by interfaces defined within the cryptoki specification.
Interfaces starting with the string: “Vendor ” are reserved for vendor use and will not oetherwise be defined as interfaces in the PKCS #11 specification. Vendors should supply new functions with interface names of “Vendor {vendor name}”. For example “Vendor ACME Inc”.

The following table defines the flags field:
Table 11, CK_INTERFACE Flags
	Bit Flag
	Mask
	Meaning

	CKF_INTERFACE_FORK_SAFE  
	0x00000001
	The returned interface will have fork tolerant semantics. When the application forks, each process will get its own copy of all session objects, session states, login states, and encryption states. Each process will also maintain access to token objects with their previously supplied handles.



CK_INTERFACE_PTR is a pointer to a CK_INTERFACE.
CK_INTERFACE_PTR_PTR is a pointer to a CK_INTERFACE_PTR.
· CK_ASYNC_DATA, CK_ASYNC_DATA_PTR
CK_ASYNC_DATA is a structure used by asynchronous function management functions. It is defined as follows:
typedef struct CK_ASYNC_DATA {
  CK_ULONG ulVersion;
  CK_BYTE_PTR pValue;
  CK_ULONG ulValue;
  CK_OBJECT_HANDLE hObject;
  CK_OBJECT_HANDLE hAdditionalObject;
} CK_ASYNC_DATA;

The fields of the structure have the following meanings:
	ulVersion	version of this structure; always 0 for this version of Cryptoki
	pValue	on completion contains a pointer to the original input buffer, caller is responsible for this memory
	ulValue	size of the result
	hObject	receives the handle for an object resulting from the operation
	hAdditionalObject	receives the handle for an additional object resulting from the operation
CK_ASYNC_DATA_PTR is a pointer to a CK_ASYNC_DATA.

3.7 [bookmark: _Toc405794658][bookmark: _Ref407445939][bookmark: _Toc72656055][bookmark: _Toc235002270][bookmark: _Toc370633978][bookmark: _Toc391468769][bookmark: _Toc395183765][bookmark: _Toc7432277][bookmark: _Toc29976547][bookmark: _Toc90376212][bookmark: _Toc111203197][bookmark: _Toc148962039][bookmark: _Toc195693061]Locking-related types
The types in this section are provided solely for applications which need to access Cryptoki from multiple threads simultaneously. Applications which will not do this need not use any of these types.
· [bookmark: _Toc405794659][bookmark: _Toc72656056][bookmark: _Toc235002271]CK_CREATEMUTEX
CK_CREATEMUTEX is the type of a pointer to an application-supplied function which creates a new mutex object and returns a pointer to it. It is defined as follows:
typedef CK_CALLBACK_FUNCTION(CK_RV, CK_CREATEMUTEX)(
  CK_VOID_PTR_PTR ppMutex
);

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in the location pointed to by ppMutex. Such a function should return one of the following values:
CKR_OK, CKR_GENERAL_ERROR
CKR_HOST_MEMORY
· [bookmark: _Toc405794660][bookmark: _Toc72656057][bookmark: _Toc235002272]CK_DESTROYMUTEX
CK_DESTROYMUTEX is the type of a pointer to an application-supplied function which destroys an existing mutex object. It is defined as follows:
typedef CK_CALLBACK_FUNCTION(CK_RV, CK_DESTROYMUTEX)(
  CK_VOID_PTR pMutex
);

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be destroyed. Such a function should return one of the following values: 
CKR_OK, CKR_GENERAL_ERROR
CKR_HOST_MEMORY
CKR_MUTEX_BAD
· [bookmark: _Toc405794661][bookmark: _Toc72656058][bookmark: _Toc235002273]CK_LOCKMUTEX and CK_UNLOCKMUTEX
CK_LOCKMUTEX is the type of a pointer to an application-supplied function which locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-supplied function which unlocks an existing mutex object. The proper behavior for these types of functions is as follows:
· If a CK_LOCKMUTEX function is called on a mutex which is not locked, the calling thread obtains a lock on that mutex and returns.
· If a CK_LOCKMUTEX function is called on a mutex which is locked by some thread other than the calling thread, the calling thread blocks and waits for that mutex to be unlocked.
· If a CK_LOCKMUTEX function is called on a mutex which is locked by the calling thread, the behavior of the function call is undefined.
· If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the calling thread, that mutex is unlocked and the function call returns. Furthermore:
· If exactly one thread was blocking on that particular mutex, then that thread stops blocking, obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.
· If more than one thread was blocking on that particular mutex, then exactly one of the blocking threads is selected somehow. That lucky thread stops blocking, obtains a lock on the mutex, and its CK_LOCKMUTEX call returns. All other threads blocking on that particular mutex continue to block.
· If a CK_UNLOCKMUTEX function is called on a mutex which is not locked, then the function call returns the error code CKR_MUTEX_NOT_LOCKED.
· If a CK_UNLOCKMUTEX function is called on a mutex which is locked by some thread other than the calling thread, the behavior of the function call is undefined.
CK_LOCKMUTEX is defined as follows:
typedef CK_CALLBACK_FUNCTION(CK_RV, CK_LOCKMUTEX)(
  CK_VOID_PTR pMutex
);

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked. Such a function should return one of the following values: 
CKR_OK, CKR_GENERAL_ERROR
CKR_HOST_MEMORY,
CKR_MUTEX_BAD

CK_UNLOCKMUTEX is defined as follows:
typedef CK_CALLBACK_FUNCTION(CK_RV, CK_UNLOCKMUTEX)(
  CK_VOID_PTR pMutex
);

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be unlocked. Such a function should return one of the following values: 
CKR_OK, CKR_GENERAL_ERROR
CKR_HOST_MEMORY
CKR_MUTEX_BAD
CKR_MUTEX_NOT_LOCKED
· [bookmark: _Toc405794663][bookmark: _Toc72656059][bookmark: _Toc235002274]CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR
CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the C_Initialize function. For this version of Cryptoki, these optional arguments are all concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is defined as follows:
typedef struct CK_C_INITIALIZE_ARGS {
  CK_CREATEMUTEX CreateMutex;
  CK_DESTROYMUTEX DestroyMutex;
  CK_LOCKMUTEX LockMutex;
  CK_UNLOCKMUTEX UnlockMutex;
  CK_FLAGS flags;
  CK_VOID_PTR pReserved;
} CK_C_INITIALIZE_ARGS;

The fields of the structure have the following meanings:
	CreateMutex	pointer to a function to use for creating mutex objects
	DestroyMutex	pointer to a function to use for destroying mutex objects
	LockMutex	pointer to a function to use for locking mutex objects
	UnlockMutex	pointer to a function to use for unlocking mutex objects
	flags	bit flags specifying options for C_Initialize; the flags are defined below
	pReserved	reserved for future use. Should be NULL_PTR for this version of Cryptoki
The following table defines the flags field:
[bookmark: _Toc405794975][bookmark: _Toc225305946]Table 12, C_Initialize Parameter Flags
	Bit Flag
	Mask
	Meaning

	CKF_LIBRARY_CANT_CREATE_OS_THREADS
	0x00000001
	True if application threads which are executing calls to the library may not use native operating system calls to spawn new threads; false if they may

	CKF_OS_LOCKING_OK
	0x00000002
	True if the library can use the native operation system threading model for locking; false otherwise


CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.
4 [bookmark: _Ref457115175][bookmark: _Toc72656060][bookmark: _Toc235002275][bookmark: _Toc370633979][bookmark: _Toc391468770][bookmark: _Toc395183766][bookmark: _Toc7432278][bookmark: _Toc29976548][bookmark: _Toc90376213][bookmark: _Toc111203198][bookmark: _Toc148962040][bookmark: _Toc195693062]Objects
Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type. An object consists of a set of attributes, each of which has a given value. Each attribute that an object possesses has precisely one value. The following figure illustrates the high-level hierarchy of the Cryptoki objects and some of the attributes they support:


[bookmark: _Toc225305929]Figure 1, Object Attribute Hierarchy
Cryptoki provides functions for creating, destroying, and copying objects in general, and for obtaining and modifying the values of their attributes. Some of the cryptographic functions (e.g., C_GenerateKey) also create key objects to hold their results.
Objects are always “well-formed” in Cryptoki—that is, an object always contains all required attributes, and the attributes are always consistent with one another from the time the object is created. This contrasts with some object-based paradigms where an object has no attributes other than perhaps a class when it is created, and is uninitialized for some time. In Cryptoki, objects are always initialized.
Tables throughout most of Section 4 define each Cryptoki attribute in terms of the data type of the attribute value and the meaning of the attribute, which may include a default initial value. Some of the data types are defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attribute values may also take the following types:
	Byte array	an arbitrary string (array) of CK_BYTEs
	Big integer	a string of CK_BYTEs representing an unsigned integer of arbitrary size, most-significant byte first (e.g., the integer 32768 is represented as the 2-byte string 0x80 0x00)
	Local string	an unpadded string of CK_CHARs (see Table 3) with no null-termination
	RFC2279 string	an unpadded string of CK_UTF8CHARs with no null-termination
A token can hold several identical objects, i.e., it is permissible for two or more objects to have exactly the same values for all their attributes.
In most cases each type of object in the Cryptoki specification possesses a completely well-defined set of Cryptoki attributes. Some of these attributes possess default values, and need not be specified when creating an object; some of these default values may even be the empty string (“”). Nonetheless, the object possesses these attributes. A given object has a single value for each attribute it possesses, even if the attribute is a vendor-specific attribute whose meaning is outside the scope of Cryptoki.
In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes whose meanings and values are not specified by Cryptoki.
4.1 [bookmark: _Ref399824691][bookmark: _Ref399824759][bookmark: _Ref399824797][bookmark: _Toc405794665][bookmark: _Toc72656061][bookmark: _Toc235002276][bookmark: _Toc370633980][bookmark: _Toc391468771][bookmark: _Toc395183767][bookmark: _Toc7432279][bookmark: _Toc29976549][bookmark: _Toc90376214][bookmark: _Toc111203199][bookmark: _Toc148962041][bookmark: _Toc195693063]Creating, modifying, and copying objects
All Cryptoki functions that create, modify, or copy objects take a template as one of their arguments, where the template specifies attribute values. Cryptographic functions that create objects (see Section 5.18) may also contribute some additional attribute values themselves; which attributes have values contributed by a cryptographic function call depends on which cryptographic mechanism is being performed (see section 6 Mechanisms and [PKCS11-Hist] for specification of mechanisms for PKCS #11). In any case, all the required attributes supported by an object class that do not have default values MUST be specified when an object is created, either in the template or by the function itself.
4.1.1 [bookmark: _Ref399215106][bookmark: _Toc405794666][bookmark: _Toc72656062][bookmark: _Toc235002277][bookmark: _Toc370633981][bookmark: _Toc391468772][bookmark: _Toc395183768][bookmark: _Toc7432280][bookmark: _Toc29976550][bookmark: _Toc90376215][bookmark: _Toc111203200][bookmark: _Toc148962042][bookmark: _Toc195693064]Creating objects
Objects may be created with the Cryptoki functions C_CreateObject (see Section 5.6.11), C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, C_DeriveKey, C_EncapsulateKey, and C_DecapsulateKey (see Section 5.18). In addition, copying an existing object (with the function C_CopyObject) also creates a new object, but we consider this type of object creation separately in Section 4.1.3.
Attempting to create an object with any of these functions requires an appropriate template to be supplied.
1. If the supplied template specifies a value for an invalid attribute, then the attempt should fail with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute is valid if it is either one of the attributes described in the Cryptoki specification or an additional vendor-specific attribute supported by the library and token.
2. If the supplied template specifies an invalid value for a valid attribute, then the attempt should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID. The valid values for Cryptoki attributes are described in the Cryptoki specification.
3. If the supplied template specifies a value for a read-only attribute, then the attempt should fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification; however, a particular library and token may be even more restrictive than Cryptoki specifies. In other words, an attribute which Cryptoki says is not read-only may nonetheless be read-only under certain circumstances (i.e., in conjunction with some combinations of other attributes) for a particular library and token. Whether or not a given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.
4. If the attribute values in the supplied template, together with any default attribute values and any attribute values contributed to the object by the object-creation function itself, are insufficient to fully specify the object to create, then the attempt should fail with the error code CKR_TEMPLATE_INCOMPLETE.
5. If the attribute values in the supplied template, together with any default attribute values and any attribute values contributed to the object by the object-creation function itself, are inconsistent, then the attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT. A set of attribute values is inconsistent if not all of its members can be satisfied simultaneously by the token, although each value individually is valid in Cryptoki. One example of an inconsistent template would be using a template which specifies two different values for the same attribute. Another example would be trying to create a secret key object with an attribute which is appropriate for various types of public keys or private keys, but not for secret keys. A final example would be a template with an attribute that violates some token specific requirement. Note that this final example of an inconsistent template is token-dependent—on a different token, such a template might not be inconsistent.
6. If the supplied template specifies the same value for a particular attribute more than once (or the template specifies the same value for a particular attribute that the object-creation function itself contributes to the object), then the behavior of Cryptoki is not completely specified. The attempt to create an object can either succeed—thereby creating the same object that would have been created if the multiply-specified attribute had only appeared once—or it can fail with error code CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make their libraries behave as though the attribute had only appeared once in the template; application developers are strongly encouraged never to put a particular attribute into a particular template more than once.
If more than one of the situations listed above applies to an attempt to create an object, then the error code returned from the attempt can be any of the error codes from above that applies.
4.1.2 [bookmark: _Toc405794667][bookmark: _Toc72656063][bookmark: _Ref226351743][bookmark: _Toc235002278][bookmark: _Toc370633982][bookmark: _Toc391468773][bookmark: _Toc395183769][bookmark: _Toc7432281][bookmark: _Toc29976551][bookmark: _Toc90376216][bookmark: _Toc111203201][bookmark: _Toc148962043][bookmark: _Toc195693065]Modifying objects
Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 5.6.11). The template supplied to C_SetAttributeValue can contain new values for attributes which the object already possesses; values for attributes which the object does not yet possess; or both.
Some attributes of an object may be modified after the object has been created, and some may not. In addition, attributes which Cryptoki specifies are modifiable may actually not be modifiable on some tokens. That is, if a Cryptoki attribute is described as being modifiable, that really means only that it is modifiable insofar as the Cryptoki specification is concerned. A particular token might not actually support modification of some such attributes. Furthermore, whether or not a particular attribute of an object on a particular token is modifiable might depend on the values of certain attributes of the object. For example, a secret key object’s CKA_SENSITIVE attribute can be changed from CK_FALSE to CK_TRUE, but not the other way around.
All the scenarios in Section 4.1.1—and the error codes they return—apply to modifying objects with C_SetAttributeValue, except for the possibility of a template being incomplete.
4.1.3 [bookmark: _Ref399147407][bookmark: _Toc405794668][bookmark: _Toc72656064][bookmark: _Toc235002279][bookmark: _Toc370633983][bookmark: _Toc391468774][bookmark: _Toc395183770][bookmark: _Toc7432282][bookmark: _Toc29976552][bookmark: _Toc90376217][bookmark: _Toc111203202][bookmark: _Toc148962044][bookmark: _Toc195693066]Copying objects
Unless an object's CKA_COPYABLE (see Table 19) attribute is set to CK_FALSE, it may be copied with the Cryptoki function C_CopyObject (see Section 5.6.11). In the process of copying an object, C_CopyObject also modifies the attributes of the newly-created copy according to an application-supplied template.
The Cryptoki attributes which can be modified during the course of a C_CopyObject operation are the same as the Cryptoki attributes which are described as being modifiable, plus the four special attributes CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE and CKA_DESTROYABLE. To be more precise, these attributes are modifiable during the course of a C_CopyObject operation insofar as the Cryptoki specification is concerned. A particular token might not actually support modification of some such attributes during the course of a C_CopyObject operation. Furthermore, whether or not a particular attribute of an object on a particular token is modifiable during the course of a C_CopyObject operation might depend on the values of certain attributes of the object. For example, a secret key object’s CKA_SENSITIVE attribute can be changed from CK_FALSE to CK_TRUE during the course of a C_CopyObject operation, but not the other way around.
[bookmark: _Toc322855279][bookmark: _Toc322945121][bookmark: _Toc323000688][bookmark: _Toc323024082][bookmark: _Toc323205413][bookmark: _Toc323610843][bookmark: _Toc383864849][bookmark: _Toc385057850]If the CKA_COPYABLE attribute of the object to be copied is set to CK_FALSE, C_CopyObject returns CKR_ACTION_PROHIBITED. Otherwise, the scenarios described in 10.1.1 - and the error codes they return - apply to copying objects with C_CopyObject, except for the possibility of a template being incomplete.
4.2 [bookmark: _Common_attributes][bookmark: _Toc405794669][bookmark: _Toc72656065][bookmark: _Toc235002280][bookmark: _Toc370633984][bookmark: _Toc391468775][bookmark: _Toc395183771][bookmark: _Toc7432283][bookmark: _Toc29976553][bookmark: _Toc90376218][bookmark: _Toc111203203][bookmark: _Toc148962045][bookmark: _Toc195693067]Common attributes
[bookmark: _Ref62896792][bookmark: _Toc405794980][bookmark: _Toc225305947]Table 13, Common footnotes for object attribute tables
	1 MUST be specified when object is created with C_CreateObject.
2 MUST not be specified when object is created with C_CreateObject.
3 MUST be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.
4 MUST not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.
5 MUST be specified when object is unwrapped with C_UnwrapKey.
6 MUST not be specified when object is unwrapped with C_UnwrapKey.
7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK_FALSE.
8 May be modified after object is created with a C_SetAttributeValue call, or in the process of copying object with a C_CopyObject call. However, it is possible that a particular token may not permit modification of the attribute during the course of a C_CopyObject call.
9 Default value is token-specific, and may depend on the values of other attributes.
10 Can only be set to CK_TRUE by the SO user.
11 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.
12 Attribute cannot be changed once set to CK_FALSE. It becomes a read only attribute.
13 Attribute is generated by the module with C_GenerateKeyPair.



[bookmark: _Ref457120199][bookmark: _Ref457120194][bookmark: _Toc225305948]Table 14, Common Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_CLASS1
	CK_OBJECT_CLASS
	Object class (type)


- Refer to Table 13 for footnotes
The above table defines the attributes common to all objects.
4.3 [bookmark: _Toc72656066][bookmark: _Toc235002281][bookmark: _Toc370633985][bookmark: _Toc391468776][bookmark: _Toc395183772][bookmark: _Toc7432284][bookmark: _Toc29976554][bookmark: _Toc90376219][bookmark: _Toc111203204][bookmark: _Toc148962046][bookmark: _Toc195693068]Hardware Feature Objects
4.3.1 [bookmark: _Toc72656067][bookmark: _Toc235002282][bookmark: _Toc370633986][bookmark: _Toc391468777][bookmark: _Toc395183773][bookmark: _Toc7432285][bookmark: _Toc29976555][bookmark: _Toc90376220][bookmark: _Toc111203205][bookmark: _Toc148962047][bookmark: _Toc195693069]Definitions
This section defines the object class CKO_HW_FEATURE for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
4.3.2 [bookmark: _Toc72656068][bookmark: _Toc235002283][bookmark: _Toc370633987][bookmark: _Toc391468778][bookmark: _Toc395183774][bookmark: _Toc7432286][bookmark: _Toc29976556][bookmark: _Toc90376221][bookmark: _Toc111203206][bookmark: _Toc148962048][bookmark: _Toc195693070]Overview
Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They provide an easily expandable method for introducing new value-based features to the Cryptoki interface.
[bookmark: _Toc225305949]Table 15, Hardware Feature Common Attributes
	Attribute
	Data Type
	Meaning

	CKA_HW_FEATURE_TYPE1
	CK_HW_FEATURE_TYPE
	Hardware feature (type)


- Refer to Table 13 for footnotes
4.3.3 [bookmark: _Toc235002284][bookmark: _Toc370633988][bookmark: _Toc391468779][bookmark: _Toc395183775][bookmark: _Toc7432287][bookmark: _Toc29976557][bookmark: _Toc90376222][bookmark: _Toc111203207][bookmark: _Toc148962049][bookmark: _Toc195693071]Clock
4.3.3.1 [bookmark: _Toc7432288][bookmark: _Toc29976558][bookmark: _Toc90376223][bookmark: _Toc111203208][bookmark: _Toc148962050][bookmark: _Toc195693072]Definition
The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type CK_HW_FEATURE_TYPE.
4.3.3.2 [bookmark: _Toc7432289][bookmark: _Toc29976559][bookmark: _Toc90376224][bookmark: _Toc111203209][bookmark: _Toc148962051][bookmark: _Toc195693073]Description
Clock objects represent real-time clocks that exist on the device. This represents the same clock source as the utcTime field in the CK_TOKEN_INFO structure.
[bookmark: _Toc225305950]Table 16, Clock Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE
	CK_CHAR[16]
	Current time as a character-string of length 16, represented in the format YYYYMMDDhhmmssxx (4 characters for the year;  2 characters each for the month, the day, the hour, the minute, and the second; and 2 additional reserved ‘0’ characters).


The CKA_VALUE attribute may be set using the C_SetAttributeValue function if permitted by the device. The session used to set the time MUST be logged in. The device may require the SO to be the user logged in to modify the time value. C_SetAttributeValue will return the error CKR_USER_NOT_LOGGED_IN to indicate that a different user type is required to set the value.
4.3.4 [bookmark: _Toc235002285][bookmark: _Toc370633989][bookmark: _Toc391468780][bookmark: _Toc395183776][bookmark: _Toc7432290][bookmark: _Toc29976560][bookmark: _Toc90376225][bookmark: _Toc111203210][bookmark: _Toc148962052][bookmark: _Toc195693074]Monotonic Counter Objects
4.3.4.1 [bookmark: _Toc7432291][bookmark: _Toc29976561][bookmark: _Toc90376226][bookmark: _Toc111203211][bookmark: _Toc148962053][bookmark: _Toc195693075]Definition
The CKA_HW_FEATURE_TYPE attribute takes the value CKH_MONOTONIC_COUNTER of type CK_HW_FEATURE_TYPE.
4.3.4.2 [bookmark: _Toc7432292][bookmark: _Toc29976562][bookmark: _Toc90376227][bookmark: _Toc111203212][bookmark: _Toc148962054][bookmark: _Toc195693076]Description
Monotonic counter objects represent hardware counters that exist on the device. The counter is guaranteed to increase each time its value is read, but not necessarily by one. This might be used by an application for generating serial numbers to get some assurance of uniqueness per token.
[bookmark: _Toc225305951]Table 17, Monotonic Counter Attributes
	Attribute
	Data Type
	Meaning

	CKA_RESET_ON_INIT1
	CK_BBOOL
	The value of the counter will reset to a previously returned value if the token is initialized using C_InitToken.

	CKA_HAS_RESET1
	CK_BBOOL
	The value of the counter has been reset at least once at some point in time.

	CKA_VALUE1
	Byte array
	The current version of the monotonic counter. The value is returned in big endian order.


1Read Only
The CKA_VALUE attribute may not be set by the client.
4.3.5 [bookmark: _Toc235002286][bookmark: _Toc370633990][bookmark: _Toc391468781][bookmark: _Toc395183777][bookmark: _Toc7432293][bookmark: _Toc29976563][bookmark: _Toc90376228][bookmark: _Toc111203213][bookmark: _Toc148962055][bookmark: _Toc195693077]User Interface Objects
4.3.5.1 [bookmark: _Toc7432294][bookmark: _Toc29976564][bookmark: _Toc90376229][bookmark: _Toc111203214][bookmark: _Toc148962056][bookmark: _Toc195693078]Definition
The CKA_HW_FEATURE_TYPE attribute takes the value CKH_USER_INTERFACE of type CK_HW_FEATURE_TYPE.
4.3.5.2 [bookmark: _Toc7432295][bookmark: _Toc29976565][bookmark: _Toc90376230][bookmark: _Toc111203215][bookmark: _Toc148962057][bookmark: _Toc195693079]Description
User interface objects represent the presentation capabilities of the device.
[bookmark: _Toc225305952]Table 18, User Interface Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PIXEL_X
	CK_ULONG
	Screen resolution (in pixels) in X-axis (e.g. 1280)

	CKA_PIXEL_Y
	CK_ULONG
	Screen resolution (in pixels) in Y-axis (e.g. 1024)

	CKA_RESOLUTION
	CK_ULONG
	DPI, pixels per inch

	CKA_CHAR_ROWS
	CK_ULONG
	For character-oriented displays; number of character rows (e.g. 24)

	CKA_CHAR_COLUMNS
	CK_ULONG
	For character-oriented displays: number of character columns (e.g. 80). If display is of proportional-font type, this is the width of the display in “em”-s (letter “M”), see [CC/PP] Struct.

	CKA_COLOR
	CK_BBOOL
	Color support

	CKA_BITS_PER_PIXEL
	CK_ULONG
	The number of bits of color or grayscale information per pixel.

	CKA_CHAR_SETS
	RFC 2279 string
	String indicating supported character sets, as defined by IANA MIBenum sets (www.iana.org). Supported character sets are separated with “;”. E.g. a token supporting iso-8859-1 and US-ASCII would set the attribute value to “4;3”.

	CKA_ENCODING_METHODS
	RFC 2279 string
	String indicating supported content transfer encoding methods, as defined by IANA (www.iana.org). Supported methods are separated with “;”. E.g. a token supporting 7bit, 8bit and base64 could set the attribute value to “7bit;8bit;base64”.

	CKA_MIME_TYPES
	RFC 2279 string
	String indicating supported (presentable) MIME-types, as defined by IANA (www.iana.org). Supported types are separated with “;”. E.g. a token supporting MIME types "a/b", "a/c" and "a/d" would set the attribute value to “a/b;a/c;a/d”.


The selection of attributes, and associated data types, has been done in an attempt to stay as aligned with [RFC 2534] and [CC/PP] Struct as possible. The special value CK_UNAVAILABLE_INFORMATION may be used for CK_ULONG-based attributes when information is not available or applicable.
None of the attribute values may be set by an application.
The value of the CKA_ENCODING_METHODS attribute may be used when the application needs to send MIME objects with encoded content to the token.
4.4 [bookmark: _Toc72656069][bookmark: _Toc235002287][bookmark: _Toc370633991][bookmark: _Toc391468782][bookmark: _Toc395183778][bookmark: _Toc7432296][bookmark: _Toc29976566][bookmark: _Toc90376231][bookmark: _Toc111203216][bookmark: _Toc148962058][bookmark: _Toc195693080]Storage Objects
This is not an object class; hence no CKO_ definition is required. It is a category of object classes with common attributes for the object classes that follow.
[bookmark: _Ref383948268][bookmark: _Toc319314009][bookmark: _Toc319314551][bookmark: _Toc319314966][bookmark: _Toc319315838][bookmark: _Toc323204879][bookmark: _Ref323704643][bookmark: _Toc383864513][bookmark: _Ref384017029][bookmark: _Toc405794976][bookmark: _Toc225305953][bookmark: _Ref25850480]Table 19, Common Storage Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_TOKEN
	CK_BBOOL
	CK_TRUE if object is a token object; CK_FALSE if object is a session object. Default is CK_FALSE.

	CKA_PRIVATE
	CK_BBOOL
	CK_TRUE if object is a private object; CK_FALSE if object is a public object. Default value is token-specific, and may depend on the values of other attributes of the object.

	CKA_MODIFIABLE
	CK_BBOOL
	CK_TRUE if object can be modified Default is CK_TRUE.

	CKA_LABEL
	RFC2279 string
	Description of the object (default empty).

	CKA_COPYABLE
	CK_BBOOL
	CK_TRUE if object can be copied using C_CopyObject. Defaults to CK_TRUE. Can’t be set to TRUE once it is set to FALSE.

	CKA_DESTROYABLE
	CK_BBOOL
	CK_TRUE if the object can be destroyed using C_DestroyObject. Default is CK_TRUE.

	CKA_UNIQUE_ID246
	RFC2279 string
	The unique identifier assigned to the object.


Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying an object, however.)
The CKA_TOKEN attribute identifies whether the object is a token object or a session object.
When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object until the user has been authenticated to the token.
The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only. 
The CKA_LABEL attribute is intended to assist users in browsing.
The value of the CKA_COPYABLE attribute determines whether or not an object can be copied. This attribute can be used in conjunction with CKA_MODIFIABLE to prevent changes to the permitted usages of keys and other objects.
The value of the CKA_DESTROYABLE attribute determines whether the object can be destroyed using C_DestroyObject.
4.4.1 [bookmark: _Toc7432297][bookmark: _Toc29976567][bookmark: _Ref65664564][bookmark: _Ref65664803][bookmark: _Ref65664943][bookmark: _Ref65665046][bookmark: _Ref65665107][bookmark: _Ref65665136][bookmark: _Toc90376232][bookmark: _Toc111203217][bookmark: _Toc148962059][bookmark: _Ref170812747][bookmark: _Toc195693081]The CKA_UNIQUE_ID attribute
Any time a new object is created, a value for CKA_UNIQUE_ID MUST be generated by the token and stored with the object. The specific algorithm used to generate unique ID values for objects is token-specific, but values generated MUST be unique across all objects visible to any particular session, and SHOULD be unique across all objects created by the token. Reinitializing the token, such as by calling C_InitToken, MAY cause reuse of CKA_UNIQUE_ID values.
Any attempt to modify the CKA_UNIQUE_ID attribute of an existing object or to specify the value of the CKA_UNIQUE_ID attribute in the template for an operation that creates one or more objects MUST fail. Operations failing for this reason return the error code CKR_ATTRIBUTE_READ_ONLY.

4.5 [bookmark: _Toc319287656][bookmark: _Toc319313497][bookmark: _Toc319313690][bookmark: _Toc319315683][bookmark: _Toc322855280][bookmark: _Toc322945122][bookmark: _Toc323000689][bookmark: _Toc323024083][bookmark: _Toc323205414][bookmark: _Toc323610844][bookmark: _Toc383864850][bookmark: _Toc385057851][bookmark: _Toc405794670][bookmark: _Toc72656070][bookmark: _Toc235002288][bookmark: _Toc370633992][bookmark: _Toc391468783][bookmark: _Toc395183779][bookmark: _Toc7432298][bookmark: _Toc29976568][bookmark: _Toc90376233][bookmark: _Toc111203218][bookmark: _Toc148962060][bookmark: _Toc195693082][bookmark: _Ref317568626]Data objects
4.5.1 [bookmark: _Toc72656071][bookmark: _Toc235002289][bookmark: _Toc370633993][bookmark: _Toc391468784][bookmark: _Toc395183780][bookmark: _Toc7432299][bookmark: _Toc29976569][bookmark: _Toc90376234][bookmark: _Toc111203219][bookmark: _Toc148962061][bookmark: _Toc195693083]Definitions
This section defines the object class CKO_DATA for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
4.5.2 [bookmark: _Toc72656072][bookmark: _Toc235002290][bookmark: _Toc370633994][bookmark: _Toc391468785][bookmark: _Toc395183781][bookmark: _Toc7432300][bookmark: _Toc29976570][bookmark: _Toc90376235][bookmark: _Toc111203220][bookmark: _Toc148962062][bookmark: _Toc195693084]Overview
Data objects (object class CKO_DATA) hold information defined by an application. Other than providing access to it, Cryptoki does not attach any special meaning to a data object. The following table lists the attributes supported by data objects, in addition to the common attributes defined for this object class:
[bookmark: _Toc319314010][bookmark: _Toc319314552][bookmark: _Toc319314967][bookmark: _Toc319315839][bookmark: _Toc323204880][bookmark: _Toc383864514][bookmark: _Toc405794977][bookmark: _Toc225305954]Table 20, Data Object Attributes
	Attribute
	Data type
	Meaning

	CKA_APPLICATION
	RFC2279 string
	Description of the application that manages the object (default empty)

	CKA_OBJECT_ID
	Byte array
	DER-encoding of the object identifier indicating the data object type (default empty)

	CKA_VALUE
	Byte array
	Value of the object (default empty)


The CKA_APPLICATION attribute provides a means for applications to indicate ownership of the data objects they manage. Cryptoki does not provide a means of ensuring that only a particular application has access to a data object, however.
The CKA_OBJECT_ID attribute provides an application independent and expandable way to indicate the type of the data object value. Cryptoki does not provide a means of insuring that the data object identifier matches the data value.
The following is a sample template containing attributes for creating a data object:
CK_OBJECT_CLASS class = CKO_DATA;
CK_UTF8CHAR label[] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK_BYTE data[] = “Sample data”;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_APPLICATION, application, sizeof(application)-1},
  {CKA_VALUE, data, sizeof(data)}
};
[bookmark: _Toc319287657][bookmark: _Toc319313498][bookmark: _Toc319313691][bookmark: _Toc319315684][bookmark: _Toc322855281][bookmark: _Toc322945123][bookmark: _Toc323000690][bookmark: _Toc323024084][bookmark: _Toc323205415][bookmark: _Toc323610845][bookmark: _Ref383856511][bookmark: _Toc383864851][bookmark: _Toc385057852][bookmark: _Ref388965223][bookmark: _Toc405794671][bookmark: _Toc72656073][bookmark: _Toc235002291][bookmark: _Toc370633995][bookmark: _Toc391468786][bookmark: _Toc395183782][bookmark: _Toc7432301]
4.6 [bookmark: _Toc29976571][bookmark: _Ref65672177][bookmark: _Toc90376236][bookmark: _Toc111203221][bookmark: _Toc148962063][bookmark: _Toc195693085]Certificate objects
4.6.1 [bookmark: _Toc72656074][bookmark: _Toc235002292][bookmark: _Toc370633996][bookmark: _Toc391468787][bookmark: _Toc395183783][bookmark: _Toc7432302][bookmark: _Toc29976572][bookmark: _Toc90376237][bookmark: _Toc111203222][bookmark: _Toc148962064][bookmark: _Toc195693086]Definitions
This section defines the object class CKO_CERTIFICATE for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
4.6.2 [bookmark: _Toc72656075][bookmark: _Toc235002293][bookmark: _Toc370633997][bookmark: _Toc391468788][bookmark: _Toc395183784][bookmark: _Toc7432303][bookmark: _Toc29976573][bookmark: _Toc90376238][bookmark: _Toc111203223][bookmark: _Toc148962065][bookmark: _Toc195693087]Overview
Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other than providing access to certificate objects, Cryptoki does not attach any special meaning to certificates. The following table defines the common certificate object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Ref383948332][bookmark: _Toc383864515][bookmark: _Toc405794978][bookmark: _Toc225305955]Table 21, Common Certificate Object Attributes
	Attribute
	Data type
	Meaning

	CKA_CERTIFICATE_TYPE1
	CK_CERTIFICATE_TYPE
	Type of certificate

	CKA_TRUSTED10
	CK_BBOOL
	The certificate can be trusted for the application that it was created.

	CKA_CERTIFICATE_CATEGORY
	CKA_CERTIFICATE_CATEGORY 
	(default CK_CERTIFICATE_CATEGORY_UNSPECIFIED)

	CKA_CHECK_VALUE
	Byte array
	Checksum

	CKA_START_DATE
	CK_DATE
	Start date for the certificate (default empty)

	CKA_END_DATE 
	CK_DATE 
	End date for the certificate (default empty)

	CKA_PUBLIC_KEY_INFO
	Byte array
	DER-encoding of the SubjectPublicKeyInfo for the public key contained in this certificate (default empty)


- Refer to Table 13 for footnotes
Cryptoki does not enforce the relationship of the CKA_PUBLIC_KEY_INFO to the public key in the certificate, but does recommend that the key be extracted from the certificate to create this value.
The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created. This version of Cryptoki supports the following certificate types:
· X.509 public key certificate
· WTLS public key certificate
· X.509 attribute certificate
The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It MUST be set by a token initialization application or by the token’s SO. Trusted certificates cannot be modified.
[bookmark: _Toc323205416][bookmark: _Toc323610846][bookmark: _Toc383864853][bookmark: _Toc385057854][bookmark: _Toc405794673][bookmark: _Toc322855282][bookmark: _Toc322945124][bookmark: _Toc323000691][bookmark: _Toc323024085][bookmark: _Toc319287658][bookmark: _Toc319313499][bookmark: _Toc319313692][bookmark: _Toc319315685]The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored certificate is a user certificate for which the corresponding private key is available on the token (“token user”), a CA certificate (“authority”), or another end-entity certificate (“other entity”). This attribute may not be modified after an object is created. 
The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will together be used to map to the categorization of the certificates. 
CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by taking the first three bytes of the SHA-1 hash of the certificate object’s CKA_VALUE attribute.
The CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does not attach any special meaning to them. When present, the application is responsible to set them to values that match the certificate’s encoded “not before” and “not after” fields (if any).
4.6.3 [bookmark: _Toc72656076][bookmark: _Toc235002294][bookmark: _Toc370633998][bookmark: _Toc391468789][bookmark: _Toc395183785][bookmark: _Toc7432304][bookmark: _Toc29976574][bookmark: _Toc90376239][bookmark: _Toc111203224][bookmark: _Toc148962066][bookmark: _Toc195693088]X.509 public key certificate objects
X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following table defines the X.509 certificate object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc225305956]Table 22, X.509 Certificate Object Attributes
	Attribute
	Data type
	Meaning

	CKA_SUBJECT1
	Byte array
	DER-encoding of the certificate subject name

	CKA_ID
	Byte array
	Key identifier for public/private key pair (default empty)

	CKA_ISSUER
	Byte array
	DER-encoding of the certificate issuer name (default empty)

	CKA_SERIAL_NUMBER
	Byte array
	DER-encoding of the certificate serial number (default empty)

	CKA_VALUE2
	Byte array
	BER-encoding of the certificate

	CKA_URL3
	RFC2279 string
	If not empty this attribute gives the URL where the complete certificate can be obtained (default empty)

	CKA_HASH_OF_SUBJECT_PUBLIC_KEY4
	Byte array
	Hash of the subject public key (default empty). Hash algorithm is defined by CKA_NAME_HASH_ALGORITHM

	CKA_HASH_OF_ISSUER_PUBLIC_KEY4
	Byte array
	Hash of the issuer public key (default empty). Hash algorithm is defined by CKA_NAME_HASH_ALGORITHM

	CKA_JAVA_MIDP_SECURITY_DOMAIN
	CK_JAVA_MIDP_SECURITY_DOMAIN
	Java MIDP security domain. (default CK_SECURITY_DOMAIN_UNSPECIFIED)

	CKA_NAME_HASH_ALGORITHM
	CK_MECHANISM_TYPE
	Defines the mechanism used to calculate CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY. If the attribute is not present then the type defaults to SHA-1.


1MUST be specified when the object is created.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.
3MUST be non-empty if CKA_VALUE is empty. 
4Can only be empty if CKA_URL is empty.
Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified after the object is created.
The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key pairs held by the same subject (whether stored in the same token or not). (Since the keys are distinguished by subject name as well as identifier, it is possible that keys for different subjects may have the same CKA_ID value without introducing any ambiguity.)
It is intended in the interests of interoperability that the subject name and key identifier for a certificate will be the same as those for the corresponding public and private keys (though it is not required that all be stored in the same token). However, Cryptoki does not enforce this association, or even the uniqueness of the key identifier for a given subject; in particular, an application may leave the key identifier empty.
The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with [PKCS #7] and Privacy Enhanced Mail [RFC 1421]. Note that with the version 3 extensions to X.509 certificates, the key identifier may be carried in the certificate. It is intended that the CKA_ID value be identical to the key identifier in such a certificate extension, although this will not be enforced by Cryptoki.
The CKA_URL attribute enables the support for storage of the URL where the certificate can be found instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile environments. 
The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of the public keys of the subject and the issuer. They are particularly important when only the URL is available to be able to correlate a certificate with a private key and when searching for the certificate of the issuer. The hash algorithm is defined by CKA_NAME_HASH_ALGORITHM.
The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with a Java MIDP security domain.
The following is a sample template for creating an X.509 certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_VALUE, certificate, sizeof(certificate)}
};
4.6.4 [bookmark: _Toc72656077][bookmark: _Toc235002295][bookmark: _Toc370633999][bookmark: _Toc391468790][bookmark: _Toc395183786][bookmark: _Toc7432305][bookmark: _Toc29976575][bookmark: _Toc90376240][bookmark: _Toc111203225][bookmark: _Toc148962067][bookmark: _Toc195693089]WTLS public key certificate objects
WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The following table defines the WTLS certificate object attributes, in addition to the common attributes defined for this object class.
[bookmark: _Toc225305957]Table 23, WTLS Certificate Object Attributes
	Attribute
	Data type
	Meaning

	CKA_SUBJECT1
	Byte array
	WTLS-encoding (Identifier type) of the certificate subject 

	CKA_ISSUER
	Byte array
	WTLS-encoding (Identifier type) of the certificate issuer (default empty)

	CKA_VALUE2
	Byte array
	WTLS-encoding of the certificate

	CKA_URL3
	RFC2279 string
	If not empty this attribute gives the URL where the complete certificate can be obtained

	CKA_HASH_OF_SUBJECT_PUBLIC_KEY4
	Byte array
	SHA-1 hash of the subject public key (default empty). Hash algorithm is defined by CKA_NAME_HASH_ALGORITHM

	CKA_HASH_OF_ISSUER_PUBLIC_KEY4
	Byte array
	SHA-1 hash of the issuer public key (default empty). Hash algorithm is defined by CKA_NAME_HASH_ALGORITHM

	CKA_NAME_HASH_ALGORITHM
	CK_MECHANISM_TYPE
	Defines the mechanism used to calculate CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY. If the attribute is not present then the type defaults to SHA-1.


1MUST be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.
3MUST be non-empty if CKA_VALUE is empty. 
4Can only be empty if CKA_URL is empty. 

Only the CKA_ISSUER attribute may be modified after the object has been created.
The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes can be found in [WTLS].
The CKA_URL attribute enables the support for storage of the URL where the certificate can be found instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile environments.
The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of the public keys of the subject and the issuer. They are particularly important when only the URL is available to be able to correlate a certificate with a private key and when searching for the certificate of the issuer. The hash algorithm is defined by CKA_NAME_HASH_ALGORITHM.
The following is a sample template for creating a WTLS certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_WTLS;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] =
{
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_VALUE, certificate, sizeof(certificate)}
};
4.6.5 [bookmark: _Toc72656078][bookmark: _Toc235002296][bookmark: _Toc370634000][bookmark: _Toc391468791][bookmark: _Toc395183787][bookmark: _Toc7432306][bookmark: _Toc29976576][bookmark: _Toc90376241][bookmark: _Toc111203226][bookmark: _Toc148962068][bookmark: _Toc195693090]X.509 attribute certificate objects
X.509 attribute certificate objects (certificate type CKC_X_509_ATTR_CERT) hold X.509 attribute certificates. The following table defines the X.509 attribute certificate object attributes, in addition to the common attributes defined for this object class: 
[bookmark: _Toc225305958]Table 24, X.509 Attribute Certificate Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_OWNER1
	Byte array
	DER-encoding of the attribute certificate's subject field. This is distinct from the CKA_SUBJECT attribute contained in CKC_X_509 certificates because the ASN.1 syntax and encoding are different.

	CKA_AC_ISSUER
	Byte array
	DER-encoding of the attribute certificate's issuer field. This is distinct from the CKA_ISSUER attribute contained in CKC_X_509 certificates because the ASN.1 syntax and encoding are different. (default empty)

	CKA_SERIAL_NUMBER
	Byte array
	DER-encoding of the certificate serial number. (default empty)

	CKA_ATTR_TYPES
	Byte array
	BER-encoding of a sequence of object identifier values corresponding to the attribute types contained in the certificate. When present, this field offers an opportunity for applications to search for a particular attribute certificate without fetching and parsing the certificate itself. (default empty)

	CKA_VALUE1
	Byte array
	BER-encoding of the certificate.


1MUST be specified when the object is created 
Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES attributes may be modified after the object is created. 
The following is a sample template for creating an X.509 attribute certificate object: 
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509_ATTR_CERT;
CK_UTF8CHAR label[] = "An attribute certificate object";
CK_BYTE owner[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_OWNER, owner, sizeof(owner)},
  {CKA_VALUE, certificate, sizeof(certificate)}
};
[bookmark: _Toc195693091][bookmark: _Toc72656079][bookmark: _Toc235002297][bookmark: _Toc370634001][bookmark: _Toc391468792][bookmark: _Toc395183788][bookmark: _Toc7432307][bookmark: _Toc29976577][bookmark: _Toc90376242][bookmark: _Toc111203227][bookmark: _Toc148962069]Trust objects
[bookmark: _Toc195693092]Definitions
This section defines the object class CKO_TRUST for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

CK_TRUST is defined as:
typedef CK_ULONG CK_TRUST;

and can have the following values: CKT_TRUSTED, CKT_TRUST_ANCHOR, CKT_NOT_TRUSTED, CKT_TRUST_MUST_VERIFY_TRUST, or CKT_TRUST_UNKNOWN.
[bookmark: _Toc195693093]Overview
Trust objects (object class CKO_TRUST) bind trusted usages to individual certificates. Trust objects for a given certificate are accessed using the CKA_ISSUER and CKA_SERIAL_NUMBER attributes, and may be confirmed by comparing CKA_HASH_OF_CERTIFICATE with a recomputed hash value. The corresponding certificate does not necessarily have to exist in the same token as its trust object. Multiple trust objects for the same certificate can exist in different tokens, but each token should have no more than one trust object for a given certificate. 
Table 25, Trust Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_ISSUER1
	Byte array
	DER-encoding of the certificate issuer name (default empty)

	CKA_SERIAL_NUMBER1
	Byte array
	DER-encoding of the certificate serial number (default empty)

	CKA_HASH_OF_CERTIFICATE2
	Byte array
	cryptographic hash of the certificate computed by CKA_NAME_HASH_ALGORITHM (default empty) 

	CKA_NAME_HASH_ALGORITHM2
	CK_MECHANISM_TYPE
	mechanism used to calculate CKA_HASH_OF_CERTIFICATE (defaults to SHA-1 if not present)

	CKA_TRUST_SERVER_AUTH3
	CK_TRUST
	trust for authenticating the server in a client/server interaction (as in TLS/SSL/SSH)

	CKA_TRUST_CLIENT_AUTH3
	CK_TRUST
	trust for authenticating the client in a client/server interaction (as in TLS/SSL/SSH)

	CKA_TRUST_CODE_SIGNING3
	CK_TRUST
	trust for authenticating a code fragment

	CKA_TRUST_EMAIL_PROTECTION3
	CK_TRUST
	trust for authenticating an email user

	CKA_TRUST_IPSEC_IKE3
	CK_TRUST
	trust for IPSEC

	CKA_TRUST_TIME_STAMPING3
	CK_TRUST
	trust for Timestamping

	CKA_TRUST_OCSP_SIGNING3
	CK_TRUST
	trust for OCSP Signing


1MUST be specified when the object is created.
2MUST be specified when the object is created unless all trust attributes are CKT_TRUST_UNKNOWN, or CKT_NOT_TRUSTED. 
3Missing CKA_TRUST_XXX attributes are treated as CKT_TRUST_UNKNOWN. 

CKA_TRUST_XXX attributes map roughly to Certificate EKU values, and carry the same semantics. If CKA_MODIFIABLE is not set in the template, it defaults to CK_TRUE; if CKA_PRIVATE is not set in the template, it defaults to CK_FALSE.
To obtain the effective trust attributes for a given certificate, the typical application will first:
1. identify the tokens containing a Trust object with matching CKA_ISSUER and CKA_SERIAL_NUMBER (and optionally check that CKA_HASH_OF_CERTIFICATE agrees with the hash of the certificate computed using CKA_NAME_HASH_ALGORITHM), 
2. determine which of those Trust objects should be processed (presumably according to an established security policy), and
3. arrange the selected Trust objects in a list sorted in order of increasing priority.
Now, taking the first Trust object in the list as the initial working Trust object (WTO) with all omitted attributes assumed to have the value CKT_TRUST_UNKNOWN, the remaining Trust objects in the list are iteratively merged into it as follows: 
· if the value of a trust attribute in the current object is CKT_TRUST_UNKNOWN, that attribute is left unchanged in the WTO,
· otherwise, the current attribute value replaces the attribute value in the WTO .
Note that at any step of this process, an attribute value of CKT_TRUST_MUST_VERIFY_TRUST in the current Trust object resets any trust or distrust assigned to that attribute in the WTO by a lower priority token. 
When the process is complete, the final (“effective”) trust attribute values are to be interpreted as follows:
	CKT_TRUSTED
	the certificate is trusted for the associated operation

	CKT_TRUST_ANCHOR
	the certificate is trusted as a root signing certificate for chain validation of a cert that is trusted for the associate operation; this applies even when the certificate is not self-signed and when the certificate does not have the proper attributes to be CA certificate

	CKT_NOT_TRUSTED
	the certificate is explicitly not trusted for the associated operation, nor can trust chain through the certificate to an otherwise trusted root; this attribute can be used to ‘revoke’ intermediate CA certificates that have been compromised without removing trust from the parent certificate

	CKT_TRUST_MUST_VERIFY_TRUST
CKT_TRUST_UNKNOWN
	the certificate is neither trusted nor untrusted for the associated operation 


Note that when processing a certificate chain, applications may use the various Trust objects to override trust attributes that would otherwise be associated with each certificate solely based on EKUs and other extensions encountered along the chain.
The following is a sample template for creating an X.509 certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE issuer[] = {...}; // matches certificate’s issuer 
CK_BYTE serialNumber[] = {...}; // matches certificate’s serialNumber
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_TRUST trustAnchor = CKT_TRUST_ANCHOR;
CK_TRUST notTrusted = CKT_NOT_TRUSTED;
CK_MECHANISM_TYPE hashMec = CKM_SHA265
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ISSUER, issuer, sizeof(issuer)},
  {CKA_SERIAL_NUBMER, serialNumber, sizeof(serialNumber)},
  {CKA_HASH_OF_CERTIIFICATE, hash(hashMec,certificate, sizeof(certificate),hashLen(hashMec)},
  {CKA_NAME_HASH_ALGORITHM, &hashMech, sizeof(hashMech)},
  {CKA_TRUST_SERVER_AUTH, &trustAnchor, sizeof(trustAnchor) },
  {CKA_TRUST_CODE_SIGNING, &notTrusted, sizeof(notTrusted) }
   // other attributes are CKT_TRUST_UNKNOWN if not included here.
};
4.7 [bookmark: _Toc195693094]Key objects
4.7.1 [bookmark: _Toc72656080][bookmark: _Toc235002298][bookmark: _Toc370634002][bookmark: _Toc391468793][bookmark: _Toc395183789][bookmark: _Toc7432308][bookmark: _Toc29976578][bookmark: _Toc90376243][bookmark: _Toc111203228][bookmark: _Toc148962070][bookmark: _Toc195693095]Definitions
There is no CKO_ definition for the base key object class, only for the key types derived from it.
This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE_KEY and CKO_SECRET_KEY for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
4.7.2 [bookmark: _Toc72656081][bookmark: _Toc235002299][bookmark: _Toc370634003][bookmark: _Toc391468794][bookmark: _Toc395183790][bookmark: _Toc7432309][bookmark: _Toc29976579][bookmark: _Toc90376244][bookmark: _Toc111203229][bookmark: _Toc148962071][bookmark: _Toc195693096]Overview
Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret keys. The following common footnotes apply to all the tables describing attributes of keys:
The following table defines the attributes common to public key, private key and secret key classes, in addition to the common attributes defined for this object class:
[bookmark: _Ref384003113][bookmark: _Ref323111513][bookmark: _Toc323204882][bookmark: _Toc383864517][bookmark: _Toc405794981][bookmark: _Toc225305959][bookmark: _Ref323111519]Table 26, Common Key Attributes
	Attribute
	Data Type
	Meaning

	CKA_KEY_TYPE1,5
	CK_KEY_TYPE
	Type of key

	CKA_ID8
	Byte array
	Key identifier for key (default empty)

	CKA_START_DATE8
	CK_DATE
	Start date for the key (default empty)

	CKA_END_DATE8
	CK_DATE
	End date for the key (default empty)

	CKA_DERIVE8
	CK_BBOOL
	CK_TRUE if key supports key derivation (i.e., if other keys can be derived from this one (default CK_FALSE)

	CKA_LOCAL2,4,6
	CK_BBOOL
	CK_TRUE only if key was either
· generated locally (i.e., on the token) with a C_GenerateKey or C_GenerateKeyPair call
· created with a C_CopyObject call as a copy of a key which had its CKA_LOCAL attribute set to CK_TRUE

	CKA_KEY_GEN_MECHANISM2,4,6
	CK_MECHANISM_TYPE
	Identifier of the mechanism used to generate the key material.

	CKA_ALLOWED_MECHANISMS
	CK_MECHANISM_TYPE _PTR, pointer to a CK_MECHANISM_TYPE array
	A list of mechanisms allowed to be used with this key. The number of mechanisms in the array is the ulValueLen component of the attribute divided by the size
of CK_MECHANISM_TYPE.

	CKA_OBJECT_VALIDATION_FLAGS4,6,9,12
	CK_FLAGS
	Object was created consistent with the validations appearing in flags.


- Refer to Table 13 for footnotes
The CKA_ID field is intended to distinguish among multiple keys. In the case of public and private keys, this field assists in handling multiple keys held by the same subject; the key identifier for a public key and its corresponding private key should be the same. The key identifier should also be the same as for the corresponding certificate, if one exists. Cryptoki does not enforce these associations, however. (See Section 4.6 for further commentary.)
In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.
Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does not attach any special meaning to them. In particular, it does not restrict usage of a key according to the dates; doing this is up to the application.
The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to derive other keys from the key.
The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key was originally generated on the token by a C_GenerateKey or C_GenerateKeyPair call.
The CKA_KEY_GEN_MECHANISM attribute identifies the key generation mechanism used to generate the key material. It contains a valid value only if the CKA_LOCAL attribute has the value CK_TRUE. If CKA_LOCAL has the value CK_FALSE, the value of the attribute is CK_UNAVAILABLE_INFORMATION.
4.8 [bookmark: _Toc323205417][bookmark: _Toc323610847][bookmark: _Toc383864854][bookmark: _Toc385057855][bookmark: _Ref399153796][bookmark: _Toc405794674][bookmark: _Toc72656082][bookmark: _Toc235002300][bookmark: _Toc370634004][bookmark: _Toc391468795][bookmark: _Toc395183791][bookmark: _Toc7432310][bookmark: _Toc29976580][bookmark: _Toc90376245][bookmark: _Toc111203230][bookmark: _Toc148962072][bookmark: _Toc195693097]Public key objects
Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following table defines the attributes common to all public keys, in addition to the common attributes defined for this object class:
[bookmark: _Ref384003159][bookmark: _Toc323204883][bookmark: _Toc383864518][bookmark: _Toc405794982][bookmark: _Toc225305960]Table 27, Common Public Key Attributes
	Attribute
	Data type
	Meaning

	CKA_SUBJECT8
	Byte array
	DER-encoding of the key subject name (default empty)

	CKA_ENCRYPT8
	CK_BBOOL
	CK_TRUE if key supports encryption9

	CKA_VERIFY8
	CK_BBOOL
	CK_TRUE if key supports verification where the signature is an appendix to the data9

	CKA_VERIFY_RECOVER8
	CK_BBOOL
	CK_TRUE if key supports verification where the data is recovered from the signature9

	CKA_WRAP8
	CK_BBOOL
	CK_TRUE if key supports wrapping (i.e., can be used to wrap other keys)9

	CKA_ENCAPSULATE8
	CK_BBOOL
	CK_TRUE if key supports encapsulation (i.e., can be used in a KEM to create an encapsulated key and ciphertext for C_DecapsulateKey)9

	[bookmark: _Toc322855283][bookmark: _Toc322945125][bookmark: _Toc323000692][bookmark: _Toc323024086]CKA_TRUSTED10
	CK_BBOOL
	The key can be trusted for the application that it was created.
The wrapping key can be used to wrap keys with  CKA_WRAP_WITH_TRUSTED set to CK_TRUE.

	CKA_WRAP_TEMPLATE
	CK_ATTRIBUTE_PTR
	For wrapping keys. The attribute template to match against any keys wrapped using this wrapping key. Keys that do not match cannot be wrapped. The number of attributes in the array is the ulValueLen component of the attribute divided by the size of CK_ATTRIBUTE.

	CKA_PUBLIC_KEY_INFO
	Byte array
	DER-encoding of the SubjectPublicKeyInfo for this public key. (MAY be empty, DEFAULT derived from the underlying public key data)

	CKA_PUBLIC_CRC64_VALUE1,4,13
	Byte array
	The CRC-64-ECMA calculated over the public key object’s CKA_VALUE attribute unless otherwise specified in the mechanism description


- Refer to Table 13 for footnotes
It is intended in the interests of interoperability that the subject name and key identifier for a public key will be the same as those for the corresponding certificate and private key. However, Cryptoki does not enforce this, and it is not required that the certificate and private key also be stored on the token.
To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS #11 attributes for public keys, use the following table.
[bookmark: _Toc225305961]Table 28, Mapping of X.509 key usage flags to Cryptoki attributes for public keys
	Key usage flags for public keys in X.509 public key certificates
	Corresponding cryptoki attributes for public keys.

	dataEncipherment
	CKA_ENCRYPT

	digitalSignature, keyCertSign, cRLSign
	CKA_VERIFY

	digitalSignature, keyCertSign, cRLSign
	CKA_VERIFY_RECOVER

	keyAgreement
	CKA_DERIVE

	keyEncipherment
	CKA_WRAP

	nonRepudiation
	CKA_VERIFY

	nonRepudiation
	CKA_VERIFY_RECOVER


The value of the CKA_PUBLIC_KEY_INFO attribute is the DER encoded value of SubjectPublicKeyInfo:
	SubjectPublicKeyInfo	::= SEQUENCE {
		algorithm		AlgorithmIdentifier,
		subjectPublicKey	BIT_STRING }
The encodings for the subjectPublicKey field are specified in the description of the public key types in the appropriate sections for the key types defined within this specification.
4.9 [bookmark: _Toc322855286][bookmark: _Toc322945128][bookmark: _Toc323000695][bookmark: _Toc323024089][bookmark: _Toc323205421][bookmark: _Toc323610851][bookmark: _Toc383864858][bookmark: _Toc385057862][bookmark: _Ref399153802][bookmark: _Toc405794680][bookmark: _Ref457139268][bookmark: _Ref457140112][bookmark: _Ref457140239][bookmark: _Ref72643709][bookmark: _Ref72646759][bookmark: _Ref72646937][bookmark: _Toc72656083][bookmark: _Toc235002301][bookmark: _Toc370634005][bookmark: _Toc391468796][bookmark: _Toc395183792][bookmark: _Toc7432311][bookmark: _Toc29976581][bookmark: _Ref65664486][bookmark: _Toc90376246][bookmark: _Toc111203231][bookmark: _Toc148962073][bookmark: _Toc195693098][bookmark: _Toc319287661][bookmark: _Toc319313502][bookmark: _Toc319313695][bookmark: _Toc319315688]Private key objects
Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The following table defines the attributes common to all private keys, in addition to the common attributes defined for this object class:
[bookmark: _Ref384003347][bookmark: _Ref320440894][bookmark: _Toc323204887][bookmark: _Toc383864522][bookmark: _Toc405794988][bookmark: _Toc225305962]Table 29, Common Private Key Attributes
	Attribute
	Data type
	Meaning

	CKA_SUBJECT8
	Byte array
	DER-encoding of certificate subject name (default empty)

	CKA_SENSITIVE8,11 
	CK_BBOOL
	CK_TRUE if key is sensitive9 

	CKA_DECRYPT8
	CK_BBOOL
	CK_TRUE if key supports decryption9

	CKA_SIGN8
	CK_BBOOL
	CK_TRUE if key supports signatures where the signature is an appendix to the data9

	CKA_SIGN_RECOVER8
	CK_BBOOL
	CK_TRUE if key supports signatures where the data can be recovered from the signature9

	CKA_UNWRAP8
	CK_BBOOL
	CK_TRUE if key supports unwrapping (i.e., can be used to unwrap other keys)9

	CKA_DECAPSULATE8
	CK_BBOOL
	CK_TRUE if key supports decapsulation9

	CKA_EXTRACTABLE8,12 
	CK_BBOOL
	CK_TRUE if key is extractable and can be wrapped 9

	CKA_ALWAYS_SENSITIVE2,4,6
	CK_BBOOL
	CK_TRUE if key has always had the CKA_SENSITIVE attribute set to CK_TRUE

	CKA_NEVER_EXTRACTABLE2,4,6
	CK_BBOOL
	CK_TRUE if key has never had the CKA_EXTRACTABLE attribute set to CK_TRUE

	CKA_WRAP_WITH_TRUSTED11
	CK_BBOOL
	CK_TRUE if the key can only be wrapped with a wrapping key that has CKA_TRUSTED set to CK_TRUE.
Default is CK_FALSE.

	CKA_UNWRAP_TEMPLATE
	CK_ATTRIBUTE_PTR
	For wrapping keys. The attribute template to apply to any keys unwrapped using this wrapping key. Any user supplied template is applied after this template as if the object has already been created. The number of attributes in the array is the ulValueLen component of the attribute divided by the size of
CK_ATTRIBUTE.

	CKA_ALWAYS_AUTHENTICATE
	CK_BBOOL
	If CK_TRUE, the user has to supply the PIN for each use (sign or decrypt) with the key. Default is CK_FALSE.

	CKA_PUBLIC_KEY_INFO8
	Byte array
	DER-encoding of the SubjectPublicKeyInfo for the associated public key (MAY be empty; DEFAULT derived from the underlying private key data; MAY be manually set for specific key types; if set; MUST be consistent with the underlying private key data)

	CKA_DERIVE_TEMPLATE
	CK_ATTRIBUTE_PTR
	For deriving keys. The attribute template to match against any keys derived using this derivation key. Any user supplied template is applied after this template as if the object has already been created. The number of attributes in the array is the ulValueLen component of the attribute divided by the size of CK_ATTRIBUTE.

	CKA_PUBLIC_CRC64_VALUE1,4,13
	Byte array
	The CRC-64-ECMA calculated over the public key object’s CKA_VALUE attribute unless otherwise specified in the mechanism description


- Refer to Table 13 for footnotes
[bookmark: _Toc322855287][bookmark: _Toc322945129][bookmark: _Toc323000696][bookmark: _Toc323024090][bookmark: _Toc323205422][bookmark: _Toc323610852][bookmark: _Toc383864859][bookmark: _Ref384665978][bookmark: _Ref384871793][bookmark: _Toc385057863]It is intended in the interests of interoperability that the subject name and key identifier for a private key will be the same as those for the corresponding certificate and public key. However, this is not enforced by Cryptoki, and it is not required that the certificate and public key also be stored on the token.
If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE, then certain attributes of the private key cannot be revealed in plaintext outside the token. Which attributes these are is specified for each type of private key in the attribute table in the section describing that type of key.
The CKA_ALWAYS_AUTHENTICATE attribute can be used to force re-authentication (i.e. force the user to provide a PIN) for each use of a private key. “Use” in this case means a cryptographic operation such as sign or decrypt. This attribute may only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE. 
Re-authentication occurs by calling C_Login with userType set to CKU_CONTEXT_SPECIFIC immediately after a cryptographic operation using the key has been initiated (e.g. after C_SignInit). In this call, the actual user type is implicitly given by the usage requirements of the active key. If C_Login returns CKR_OK the user was successfully authenticated and this sets the active key in an authenticated state that lasts until the cryptographic operation has successfully or unsuccessfully been completed (e.g. by C_Sign, C_SignFinal,..). A return value CKR_PIN_INCORRECT from C_Login means that the user was denied permission to use the key and continuing the cryptographic operation will result in a behavior as if C_Login had not been called. In both of these cases the session state will remain the same, however repeated failed re-authentication attempts may cause the PIN to be locked. C_Login returns in this case CKR_PIN_LOCKED and this also logs the user out from the token. Failing or omitting to re-authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_TRUE will result in CKR_USER_NOT_LOGGED_IN to be returned from calls using the key. C_Login will return CKR_OPERATION_NOT_INITIALIZED, but the active cryptographic operation will not be affected, if an attempt is made to re-authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_FALSE.
The CKA_PUBLIC_KEY_INFO attribute represents the public key associated with this private key. The data it represents may either be stored as part of the private key data, or regenerated as needed from the private key.
If this attribute is supplied as part of a template for C_CreateObject, C_CopyObject or C_SetAttributeValue for a private key, the token MUST verify correspondence between the private key data and the public key data as supplied in CKA_PUBLIC_KEY_INFO. This can be done either by deriving a public key from the private key and comparing the values, or by doing a sign and verify operation. If there is a mismatch, the command SHALL return CKR_ATTRIBUTE_VALUE_INVALID. A token MAY choose not to support the CKA_PUBLIC_KEY_INFO attribute for commands which create new private keys. If it does not support the attribute, the command SHALL return CKR_ATTRIBUTE_TYPE_INVALID.
[bookmark: _Hlk69289396]As a general guideline, private keys of any type SHOULD store sufficient information to retrieve the public key information. In particular, the RSA private key description has been modified in PKCS #11 V2.40 to add the CKA_PUBLIC_EXPONENT to the list of attributes required for an RSA private key. All other private key types described in this specification contain sufficient information to recover the associated public key.
4.10 [bookmark: _Toc322855290][bookmark: _Toc322945132][bookmark: _Toc323000699][bookmark: _Toc323024093][bookmark: _Toc323205425][bookmark: _Toc323610855][bookmark: _Toc383864862][bookmark: _Toc385057869][bookmark: _Toc405794686][bookmark: _Toc72656084][bookmark: _Toc235002302][bookmark: _Toc370634007][bookmark: _Toc391468798][bookmark: _Toc395183794][bookmark: _Toc7432313][bookmark: _Toc29976583][bookmark: _Toc90376247][bookmark: _Toc111203232][bookmark: _Toc148962074][bookmark: _Toc195693099][bookmark: _Toc319287664][bookmark: _Toc319313505][bookmark: _Toc319313698][bookmark: _Toc319315691]Secret key objects
Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following table defines the attributes common to all secret keys, in addition to the common attributes defined for this object class:
[bookmark: _Toc323204891][bookmark: _Toc383864526][bookmark: _Toc405794994][bookmark: _Toc225305963]Table 30, Common Secret Key Attributes
	Attribute
	Data type
	Meaning

	CKA_SENSITIVE8,11 
	CK_BBOOL
	CK_TRUE if object is sensitive (default CK_FALSE)

	CKA_ENCRYPT8
	CK_BBOOL
	CK_TRUE if key supports encryption9

	CKA_DECRYPT8
	CK_BBOOL
	CK_TRUE if key supports decryption9

	CKA_SIGN8
	CK_BBOOL
	CK_TRUE if key supports signatures (i.e., authentication codes) where the signature is an appendix to the data9

	CKA_VERIFY8
	CK_BBOOL
	CK_TRUE if key supports verification (i.e., of authentication codes) where the signature is an appendix to the data9

	CKA_WRAP8
	CK_BBOOL
	CK_TRUE if key supports wrapping (i.e., can be used to wrap other keys)9

	CKA_UNWRAP8
	CK_BBOOL
	CK_TRUE if key supports unwrapping (i.e., can be used to unwrap other keys)9

	CKA_EXTRACTABLE8,12 
	CK_BBOOL
	CK_TRUE if key is extractable and can be wrapped 9

	CKA_ALWAYS_SENSITIVE2,4,6
	CK_BBOOL
	CK_TRUE if key has always had the CKA_SENSITIVE attribute set to CK_TRUE

	CKA_NEVER_EXTRACTABLE2,4,6
	CK_BBOOL
	CK_TRUE if key has never had the CKA_EXTRACTABLE attribute set to CK_TRUE

	CKA_CHECK_VALUE
	Byte array
	Key checksum

	CKA_WRAP_WITH_TRUSTED11
	CK_BBOOL
	CK_TRUE if the key can only be wrapped with a wrapping key that has CKA_TRUSTED set to CK_TRUE.
Default is CK_FALSE.

	CKA_TRUSTED10
	CK_BBOOL
	The wrapping key can be used to wrap keys with  CKA_WRAP_WITH_TRUSTED set to CK_TRUE.

	CKA_WRAP_TEMPLATE
	CK_ATTRIBUTE_PTR
	For wrapping keys. The attribute template to match against any keys wrapped using this wrapping key. Keys that do not match cannot be wrapped. The number of attributes in the array is the
ulValueLen component of the attribute divided by the size of
CK_ATTRIBUTE

	CKA_UNWRAP_TEMPLATE
	CK_ATTRIBUTE_PTR
	For wrapping keys. The attribute template to apply to any keys unwrapped using this wrapping key. Any user supplied template is applied after this template as if the object has already been created. The number of attributes in the array is the ulValueLen component of the attribute divided by the size of
CK_ATTRIBUTE.

	A_DERIVE_TEMPLATE
	CK_ATTRIBUTE_PTR
	For deriving keys. The attribute template to match against any keys derived using this derivation key. Any user supplied template is applied after this template as if the object has already been created. The number of attributes in the array is the ulValueLen component of the attribute divided by the size of CK_ATTRIBUTE.


- Refer to Table 13 for footnotes
If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE, then certain attributes of the secret key cannot be revealed in plaintext outside the token. Which attributes these are is specified for each type of secret key in the attribute table in the section describing that type of key.
The key check value (KCV) attribute for symmetric key objects to be called CKA_CHECK_VALUE, of type byte array, length 3 bytes, operates like a fingerprint, or checksum of the key. They are intended to be used to cross-check symmetric keys against other systems where the same key is shared, and as a validity check after manual key entry or restore from backup. Refer to object definitions of specific key types for KCV algorithms.
Properties:
1. For two keys that are cryptographically identical the value of this attribute should be identical.
2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.
3. Non-uniqueness. Two different keys can have the same CKA_CHECK_VALUE. This is unlikely (the probability can easily be calculated) but possible.
The attribute is optional, but if supported, regardless of how the key object is created or derived, the value of the attribute is always supplied. It SHALL be supplied even if the encryption operation for the key is forbidden (i.e. when CKA_ENCRYPT is set to CK_FALSE).
If a value is supplied in the application template (allowed but never necessary) then, if supported, it MUST match what the library calculates it to be or the library returns a CKR_ATTRIBUTE_VALUE_INVALID. If the library does not support the attribute then it should ignore it. Allowing the attribute in the template this way does no harm and allows the attribute to be treated like any other attribute for the purposes of key wrap and unwrap where the attributes are preserved also.
The generation of the KCV may be prevented by the application supplying the attribute in the template as a no-value (0 length) entry. The application can query the value at any time like any other attribute using C_GetAttributeValue. C_SetAttributeValue may be used to destroy the attribute, by supplying no-value.
Unless otherwise specified for the object definition, the value of this attribute is derived from the key object by taking the first three bytes of an encryption of a single block of null (0x00) bytes, using the default cipher and mode (e.g. ECB) associated with the key type of the secret key object.
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This section defines the object class CKO_DOMAIN_PARAMETERS for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
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This object class was created to support the storage of certain algorithm's extended parameters. DSA and DH both use domain parameters in the key-pair generation step. In particular, some libraries support the generation of domain parameters (originally out of scope for PKCS11) so the object class was added.
To use a domain parameter object you MUST extract the attributes into a template and supply them (still in the template) to the corresponding key-pair generation function.
Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public domain parameters. 
The following table defines the attributes common to domain parameter objects in addition to the common attributes defined for this object class:
[bookmark: _Toc225305964]Table 31, Common Domain Parameter Attributes
	Attribute
	Data Type
	Meaning

	CKA_KEY_TYPE1
	CK_KEY_TYPE
	Type of key the domain parameters can be used to generate.

	CKA_LOCAL2,4
	CK_BBOOL
	CK_TRUE only if domain parameters were either
· generated locally (i.e., on the token) with a C_GenerateKey
· created with a C_CopyObject call as a copy of domain parameters which had its CKA_LOCAL attribute set to CK_TRUE


- Refer to Table 13 for footnotes
The CKA_LOCAL attribute has the value CK_TRUE if and only if the values of the domain parameters were originally generated on the token by a C_GenerateKey call.
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This section defines the object class CKO_MECHANISM for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
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Mechanism objects provide information about mechanisms supported by a device beyond that given by the CK_MECHANISM_INFO structure.
[bookmark: _Toc225305965]Table 32, Common Mechanism Attributes
	Attribute
	Data Type
	Meaning

	CKA_MECHANISM_TYPE
	CK_MECHANISM_TYPE
	The type of mechanism object


The CKA_MECHANISM_TYPE attribute may not be set.
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4.13.1 [bookmark: _Toc7432321][bookmark: _Toc29976591][bookmark: _Toc90376255][bookmark: _Toc111203240][bookmark: _Toc148962082][bookmark: _Toc195693107]Definitions
This section defines the object class CKO_PROFILE for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
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Profile objects (object class CKO_PROFILE) describe which PKCS #11 profiles the token implements. Profiles are defined in the OASIS PKCS #11 Cryptographic Token Interface Profiles document. A given token can contain more than one profile ID. The following table lists the attributes supported by profile objects, in addition to the common attributes defined for this object class:
Table 33, Profile Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PROFILE_ID
	CK_PROFILE_ID
	ID of the supported profile.


The CKA_PROFILE_ID attribute identifies a profile that the token supports.
[bookmark: _Toc195693109]Validation objects
[bookmark: _Toc195693110]Definitions
This section defines the object class CKO_VALIDATION for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.
[bookmark: _Toc195693111]Overview
Validation objects (object class CKO_VALIDATION) describe which third party validations the module conforms to. Validation objects are read only, token objects.
Table 34, Validation Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALIDATION_TYPE
	CK_VALIDATION_TYPE
	Identifier indicating the validation type

	CKA_VALIDATION_VERSION
	CK_VERSION
	Version of the validation standard or specification

	CKA_VALIDATION_LEVEL
	CK_ULONG
	Validation level, Meaning is Validation type specific

	CKA_VALIDATION_MODULE_ID
	CK_UTF8CHAR
	How the module is identified in the validation documentation

	CKA_VALIDATION_FLAG
	CK_FLAGS
	Flags identifying this validation in sessions and objects

	CKA_VALIDATION_AUTHORITY_TYPE
	CK_VALIDATION_AUTHORITY_TYPE
	Identifies the authority that issues the validation

	CKA_VALIDATION_COUNTRY1
	CK_UTF8CHAR
	2 letter ISO country code

	CKA_VALIDATION_CERTIFICATE_IDENTIFIER1
	CK_UTF8CHAR
	Identifier of the validation certificate

	CKA_VALIDATION_CERTIFICATE_URI1
	CK_UTF8CHAR
	Validation authority URI from which information related to the validation is available. If the Validation Certificate URI is not provided, the validation object SHOULD include a Validation Vendor URI.

	CKA_VALIDATION_VENDOR_URI1
	CK_UTF8CHAR
	Validation Vendor URI from which information related to the validation is available. 

	CKA_VALIDATION_PROFILE1
	CK_UTF8CHAR
	Profile used for validation


1 Optional value; may be empty.

1. CK_VALIDATION_TYPE, CK_VALIDATION_TYPE_PTR
CK_VALIDATION_TYPE identifies the type of validation. It is defined as follows:
typedef CK_ULONG CK_VALIDATION_TYPE;
typedef CK_VALIDATION_TYPE CK_PTR CK_VALIDATION_TYPE_PTR;
Valid values are:
CKV_TYPE_UNSPECIFIED
CKV_TYPE_SOFTWARE
CKV_TYPE_HARDWARE
CKV_TYPE_FIRMWARE
CKV_TYPE_HYBRID
1. CK_VALIDATION_AUTHORITY_TYPE, CK_VALIDATION_AUTHORITY_TYPE_PTR
CK_VALIDATION_AUTHORITY_TYPE identifies the authority that issues the validation. It is defined as follows:
typedef CK_ULONG CK_VALIDATION_AUTHORITY_TYPE;
typedef CK_VALIDATION_AUTHORITY_TYPE CK_PTR CK_VALIDATION_AUTHORITY_TYPE_PTR;
Valid values are:
CKV_AUTHORITY_TYPE_UNSPECIFIED
CKV_AUTHORITY_TYPE_NIST_CMVP
CKV_AUTHORITY_TYPE_COMMON_CRITERIA
[bookmark: _Ref165386006][bookmark: _Toc195693112]Validation Indicators
Validation indicators are runtime indicators if a particular operation meets the appropriate criteria for this module running under the given validation rules. These rules will vary by validation type and even by different modules using various validation types.
[bookmark: _Ref174604450][bookmark: _Ref174604543][bookmark: _Toc195693113]Session validation flags
Sessions carry validation flags. These can be queried with C_GetSessionValidationFlags. Session validation flags are defined as follows:
typedef CK_ULONG CK_SESSION_VALIDATION_FLAGS_TYPE;
Valid values are:
CKS_LAST_VALIDATION_OK
Last operation flags
The last operation flag is set if the last operation that completed (the last C_XXXFinal, or the last single short operation C_WrapKey, C_DeriveKey, etc.) met all the requirements of a validated mechanism. This allows access to the state of operations that don’t return a key object.
[bookmark: _Toc195693114]Key object state
CKA_OBJECT_VALIDATION_FLAGS can only be set in ways conforming to the module’s validation. Key objects typically take on the flags of the operation that created them, but are subject to the modules requirements under the module’s validation.

Application notes:
Applications should be prepared for changes in semantics as various validations change their guidance.
Many of these operation chains, so in SSL, if the final key objects have the appropriate flags set in CKA_OBJECT_VALIDATION_FLAGS, then it generally means that all the operations (unwrap, key_derive, etc.) occurred in a manner that matches the module’s validation, so the application would generally only need to query the validation flags of the final keys.
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Cryptoki's functions are organized into the following categories:
· general-purpose functions (6 functions)
· slot and token management functions (9 functions)
· session management functions (11 functions)
· object management functions (9 functions)
· encryption functions (4 functions)
· message-based encryption functions (5 functions)
· decryption functions (4 functions)
· message-based decryption functions (5 functions)
· message digesting functions (5 functions)
· signing and MACing functions (6 functions)
· message-based signing functions (5 functions)
· functions for verifying signatures and MACs (10 functions)
· message-based functions for verifying signatures and MACs (5 functions)
· dual-purpose cryptographic functions (4 functions)
· key management functions (9 functions)
· random number generation functions (2 functions)
· parallel function management functions (2 functions)
· asynchronous function management functions (3 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to notify an application of certain events, and can also use application-supplied functions to handle mutex objects for safe multi-threaded library access.
The Cryptoki API functions are presented in the following table:
Table 35, Summary of Cryptoki Functions
	Category
	Function
	Description

	General
	C_Initialize
	initializes Cryptoki

	purpose functions
	C_Finalize
	clean up miscellaneous Cryptoki-associated resources

	
	C_GetInfo
	obtains general information about Cryptoki

	
	C_GetFunctionList
	obtains entry points of Cryptoki library functions

	
	C_GetInterfaceList
	obtains list of interfaces supported by Cryptoki library

	
	C_GetInterface
	obtains interface specific entry points to Cryptoki library functions

	Slot and token
	C_GetSlotList
	obtains a list of slots in the system

	management
	C_GetSlotInfo
	obtains information about a particular slot

	functions
	C_GetTokenInfo
	obtains information about a particular token

	
	C_WaitForSlotEvent
	waits for a slot event (token insertion, removal, etc.) to occur

	
	C_GetMechanismList
	obtains a list of mechanisms supported by a token

	
	C_GetMechanismInfo
	obtains information about a particular mechanism

	
	C_InitToken
	initializes a token

	
	C_InitPIN
	initializes the normal user’s PIN

	
	C_SetPIN
	modifies the PIN of the current user

	Session management functions
	C_OpenSession
	opens a connection between an application and a particular token or sets up an application callback for token insertion

	
	C_CloseSession
	closes a session

	
	C_CloseAllSessions
	closes all sessions with a token

	
	C_GetSessionInfo
	obtains information about the session

	
	C_SessionCancel
	terminates active session based operations

	
	C_GetOperationState
	obtains the cryptographic operations state of a session

	
	C_SetOperationState
	sets the cryptographic operations state of a session

	
	C_Login
	logs into a token

	
	C_LoginUser
	logs into a token with explicit user name

	
	C_Logout
	logs out from a token

	
	C_GetSessionValidationFlags
	fetches validation flags from the session

	Object
	C_CreateObject
	creates an object

	management
	C_CopyObject
	creates a copy of an object

	functions
	C_DestroyObject
	destroys an object

	
	C_GetObjectSize
	obtains the size of an object in bytes

	
	C_GetAttributeValue
	obtains an attribute value of an object

	
	C_SetAttributeValue
	modifies an attribute value of an object

	
	C_FindObjectsInit
	initializes an object search operation

	
	C_FindObjects
	continues an object search operation

	
	C_FindObjectsFinal
	finishes an object search operation

	Encryption
	C_EncryptInit
	initializes an encryption operation

	functions
	C_Encrypt
	encrypts single-part data

	
	C_EncryptUpdate
	continues a multiple-part encryption operation

	
	C_EncryptFinal
	finishes a multiple-part encryption operation

	Message-based Encryption Functions
	C_MessageEncryptInit
	initializes a message-based encryption process

	
	C_EncryptMessage
	encrypts a single-part message  

	
	C_EncryptMessageBegin
	begins a multiple-part message encryption operation

	
	C_EncryptMessageNext
	continues or finishes a multiple-part message encryption operation

	
	C_MessageEncryptFinal
	finishes a message-based encryption process

	Decryption
	C_DecryptInit
	initializes a decryption operation

	Functions
	C_Decrypt
	decrypts single-part encrypted data

	
	C_DecryptUpdate
	continues a multiple-part decryption operation

	
	C_DecryptFinal
	finishes a multiple-part decryption operation

	Message-based
Decryption
Functions
	C_MessageDecryptInit
	initializes a message decryption operation

	
	C_DecryptMessage
	decrypts single-part encrypted data

	
	C_DecryptMessageBegin
	starts a multiple-part message decryption operation

	
	C_DecryptMessageNext
	Continues and finishes a multiple-part message decryption operation

	
	C_MessageDecryptFinal
	finishes a message decryption operation

	Message
	C_DigestInit
	initializes a message-digesting operation

	Digesting
	C_Digest
	digests single-part data

	Functions
	C_DigestUpdate
	continues a multiple-part digesting operation

	
	C_DigestKey
	digests a key

	
	C_DigestFinal
	finishes a multiple-part digesting operation

	Signing
	C_SignInit
	initializes a signature operation

	and MACing
	C_Sign
	signs single-part data

	functions
	C_SignUpdate
	continues a multiple-part signature operation

	
	C_SignFinal
	finishes a multiple-part signature operation

	
	C_SignRecoverInit
	initializes a signature operation, where the data can be recovered from the signature

	
	C_SignRecover
	signs single-part data, where the data can be recovered from the signature

	Message-based Signature functions
	C_MessageSignInit
	initializes a message signature operation

	
	C_SignMessage
	signs single-part data

	
	C_SignMessageBegin
	starts a multiple-part message signature operation

	
	C_SignMessageNext
	continues and finishes a multiple-part message signature operation

	
	C_MessageSignFinal
	finishes a message signature operation

	Functions for verifying
	C_VerifyInit
	initializes a verification operation

	signatures
	C_Verify
	verifies a signature on single-part data

	and MACs
	C_VerifyUpdate
	continues a multiple-part verification operation

	
	C_VerifyFinal
	finishes a multiple-part verification operation

	
	C_VerifyRecoverInit
	initializes a verification operation where the data is recovered from the signature

	
	C_VerifyRecover
	verifies a signature on single-part data, where the data is recovered from the signature

	
	C_VerifySignatureInit
	initializes a verification operation, passing the signature at initialization time.

	
	C_VerifySignature
	verifies a signature on single-part data

	
	C_VerifySignatureUpdate
	continues a multiple-part verification operation

	
	C_VerifySignatureFinal
	finishes a multiple-part verification operation

	Message-based Functions for verifying signatures and MACs
	C_MessageVerifyInit
	initializes a message verification operation

	
	C_VerifyMessage
	verifies a signature on single-part data

	
	C_VerifyMessageBegin
	starts a multiple-part message verification operation

	
	C_VerifyMessageNext
	continues and finishes a multiple-part message verification operation

	
	C_MessageVerifyFinal
	finishes a message verification operation

	Dual-purpose cryptographic
	C_DigestEncryptUpdate
	continues simultaneous multiple-part digesting and encryption operations

	functions
	C_DecryptDigestUpdate
	continues simultaneous multiple-part decryption and digesting operations

	
	C_SignEncryptUpdate
	continues simultaneous multiple-part signature and encryption operations

	
	C_DecryptVerifyUpdate
	continues simultaneous multiple-part decryption and verification operations

	Key
	C_GenerateKey
	generates a secret key

	management
	C_GenerateKeyPair
	generates a public-key/private-key pair

	functions
	C_WrapKey
	wraps (encrypts) a key

	
	C_UnwrapKey
	unwraps (decrypts) a key

	
	C_DeriveKey
	derives a key from a base key

	
	C_WrapKeyAuthenticated
	authenticated key wrapping (encryption) of a key

	
	C_UnwrapKeyAuthenticated
	authenticated key unwrapping (decryption) of a key

	
	C_EncapsulateKey
	generates a secret key from a public key and returns the encapsulated ciphertext (KEM)

	
	C_DecapsulateKey
	generates a secret key from a private key and the previously encapsulated ciphertext(KEM)

	Random number generation
	C_SeedRandom
	mixes in additional seed material to the random number generator

	functions
	C_GenerateRandom
	generates random data

	Parallel function management
	C_GetFunctionStatus
	legacy function which always returns CKR_FUNCTION_NOT_PARALLEL

	functions
	C_CancelFunction
	legacy function which always returns CKR_FUNCTION_NOT_PARALLEL

	Asynchronous function
	C_AsyncComplete
	checks if an asynchronous function has completed

	management functions
	C_AsyncGetID
	persist an asynchronous operation past a C_Finalize call

	
	C_AsyncJoin
	reconnects the client application to an asynchronous operation

	Callback function
	
	application-supplied function to process notifications from Cryptoki



Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function call accomplishes either its entire goal, or nothing at all.
· If a Cryptoki function executes successfully, it returns the value CKR_OK.
· If a Cryptoki function does not execute successfully, it returns some value other than CKR_OK, and the token is in the same state as it was in prior to the function call. If the function call was supposed to modify the contents of certain memory addresses on the host computer, these memory addresses may have been modified, despite the failure of the function.
· Some Cryptoki function may return CKR_PENDING to indicate that function execution has not finished yet. For details see Section 5.21.
· In unusual (and extremely unpleasant!) circumstances, a function can fail with the return value CKR_GENERAL_ERROR. When this happens, the token and/or host computer may be in an inconsistent state, and the goals of the function may have been partially achieved.
There are a small number of Cryptoki functions whose return values do not behave precisely as described above; these exceptions are documented individually with the description of the functions themselves.
A Cryptoki library need not support every function in the Cryptoki API. However, even an unsupported function MUST have a “stub” in the library which simply returns the value CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s CK_FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to this stub function (see Section 3.6).
5.1 [bookmark: _Ref384634295][bookmark: _Toc385057886][bookmark: _Toc405794703][bookmark: _Toc72656092][bookmark: _Toc235002310][bookmark: _Toc370634015][bookmark: _Toc391468806][bookmark: _Toc395183802][bookmark: _Toc7432324][bookmark: _Toc29976594][bookmark: _Toc90376258][bookmark: _Toc111203243][bookmark: _Toc148962085][bookmark: _Toc195693116]Function return values
The Cryptoki interface possesses a large number of functions and return values. In Section 5.1, we enumerate the various possible return values for Cryptoki functions; most of the remainder of Section 5.1 details the behavior of Cryptoki functions, including what values each of them may return.
Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki applications attempt to give some leeway when interpreting Cryptoki functions’ return values. We have attempted to specify the behavior of Cryptoki functions as completely as was feasible; nevertheless, there are presumably some gaps. For example, it is possible that a particular error code which might apply to a particular Cryptoki function is unfortunately not actually listed in the description of that function as a possible error code. It is conceivable that the developer of a Cryptoki library might nevertheless permit his/her implementation of that function to return that error code. It would clearly be somewhat ungraceful if a Cryptoki application using that library were to terminate by abruptly dumping core upon receiving that error code for that function. It would be far preferable for the application to examine the function’s return value, see that it indicates some sort of error (even if the application doesn’t know precisely what kind of error), and behave accordingly.
See Section 5.1.8 for some specific details on how a developer might attempt to make an application that accommodates a range of behaviors from Cryptoki libraries.
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Any Cryptoki function can return any of the following values:
· CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst case, it is possible that the function only partially succeeded, and that the computer and/or token is in an inconsistent state.
· CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient memory to perform the requested function.
· CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed information about why not is not available in this error return. If the failed function uses a session, it is possible that the CK_SESSION_INFO structure that can be obtained by calling C_GetSessionInfo will hold useful information about what happened in its ulDeviceError field. In any event, although the function call failed, the situation is not necessarily totally hopeless, as it is likely to be when CKR_GENERAL_ERROR is returned. Depending on what the root cause of the error actually was, it is possible that an attempt to make the exact same function call again would succeed.
· CKR_OPERATION_NOT_VALIDATED: The requested operation violates one or more of the token’s validation policies. Tokens may choose to return a more specific error (like CKR_ATTRIBUTE_VALUE_INVALID or CKR_DATA_LEN_RANGE).
· CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a “universal” return value; in particular, the legacy functions C_GetFunctionStatus and C_CancelFunction (see Section 5.20) cannot return CKR_OK.
The relative priorities of these errors are in the order listed above, e.g., if either of CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then CKR_GENERAL_ERROR should be returned.
5.1.2 [bookmark: _Ref384823481][bookmark: _Toc385057888][bookmark: _Toc405794705][bookmark: _Toc72656094][bookmark: _Toc235002312][bookmark: _Toc370634017][bookmark: _Toc391468808][bookmark: _Toc395183804][bookmark: _Toc7432326][bookmark: _Toc29976596][bookmark: _Toc90376260][bookmark: _Toc111203245][bookmark: _Toc148962087][bookmark: _Toc195693118]	Cryptoki function return values for functions that use a session handle
Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotInfo, C_GetTokenInfo, C_WaitForSlotEvent, C_GetMechanismList, C_GetMechanismInfo, C_InitToken, C_OpenSession, and C_CloseAllSessions) can return the following values:
· CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that the function was invoked. Note that this can happen if the session’s token is removed before the function invocation, since removing a token closes all sessions with it.
· CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.
· CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note that, as stated in [PKCS11-UG], the behavior of Cryptoki is undefined if multiple threads of an application attempt to access a common Cryptoki session simultaneously. Therefore, there is actually no guarantee that a function invocation could ever return the value CKR_SESSION_CLOSED. An example of multiple threads accessing a common session simultaneously is where one thread is using a session when another thread closes that same session.
The relative priorities of these errors are in the order listed above, e.g., if either of CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.
In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a distinction between a token being removed before a function invocation and a token being removed during a function execution.
5.1.3 [bookmark: _Ref384823523][bookmark: _Toc385057889][bookmark: _Toc405794706][bookmark: _Toc72656095][bookmark: _Toc235002313][bookmark: _Toc370634018][bookmark: _Toc391468809][bookmark: _Toc395183805][bookmark: _Toc7432327][bookmark: _Toc29976597][bookmark: _Toc90376261][bookmark: _Toc111203246][bookmark: _Toc148962088][bookmark: _Toc195693119]	Cryptoki function return values for functions that use a token
Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotInfo, or C_WaitForSlotEvent) can return any of the following values:
· CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the requested function.
· CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error code can be returned by more than just the functions mentioned above; in particular, it is possible for C_GetSlotInfo to return CKR_DEVICE_ERROR.
· CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the function was invoked.
· CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.
· CKR_TOKEN_NOT_INITIALIZED: The token is in factory state and C_InitToken (or an out of band initialization method) needs to be called before any other token related operations can be completed.
The relative priorities of these errors are in the order listed above, e.g., if either of CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then CKR_DEVICE_MEMORY should be returned.
In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a distinction between a token being removed before a function invocation and a token being removed during a function execution.
5.1.4 [bookmark: _Toc405794707][bookmark: _Toc385057890][bookmark: _Ref385060159][bookmark: _Toc72656096][bookmark: _Toc235002314][bookmark: _Toc370634019][bookmark: _Toc391468810][bookmark: _Toc395183806][bookmark: _Toc7432328][bookmark: _Toc29976598][bookmark: _Toc90376262][bookmark: _Toc111203247][bookmark: _Toc148962089][bookmark: _Toc195693120]	Special return value for application-supplied callbacks
There is a special-purpose return value which is not returned by any function in the actual Cryptoki API, but which may be returned by an application-supplied callback function. It is:
· CKR_CANCEL: When a function executing in serial with an application decides to give the application a chance to do some work, it calls an application-supplied function with a CKN_SURRENDER callback (see Section 5.21). If the callback returns the value CKR_CANCEL, then the function aborts and returns CKR_FUNCTION_CANCELED.
5.1.5 [bookmark: _Toc405794708][bookmark: _Toc72656097][bookmark: _Toc235002315][bookmark: _Toc370634020][bookmark: _Toc391468811][bookmark: _Toc395183807][bookmark: _Toc7432329][bookmark: _Toc29976599][bookmark: _Toc90376263][bookmark: _Toc111203248][bookmark: _Toc148962090][bookmark: _Toc195693121]	Special return values for mutex-handling functions
There are two other special-purpose return values which are not returned by any actual Cryptoki functions. These values may be returned by application-supplied mutex-handling functions, and they may safely be ignored by application developers who are not using their own threading model. They are:
· CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions that are passed a bad mutex object as an argument. Unfortunately, it is possible for such a function not to recognize a bad mutex object. There is therefore no guarantee that such a function will successfully detect bad mutex objects and return this value.
· CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking functions. It indicates that the mutex supplied to the mutex-unlocking function was not locked.
5.1.6 [bookmark: _Ref395516454][bookmark: _Toc405794709][bookmark: _Toc72656098][bookmark: _Toc235002316][bookmark: _Toc370634021][bookmark: _Toc391468812][bookmark: _Toc395183808][bookmark: _Toc7432330][bookmark: _Toc29976600][bookmark: _Toc90376264][bookmark: _Toc111203249][bookmark: _Toc148962091][bookmark: _Toc195693122]	All other Cryptoki function return values
Descriptions of the other Cryptoki function return values follow. Except as mentioned in the descriptions of particular error codes, there are in general no particular priorities among the errors listed below, i.e., if more than one error code might apply to an execution of a function, then the function may return any applicable error code.
· CKR_ACTION_PROHIBITED: This value can only be returned by C_CopyObject, C_SetAttributeValue and C_DestroyObject. It denotes that the action may not be taken, either because of underlying policy restrictions on the token, or because the object has the relevant CKA_COPYABLE, CKA_MODIFIABLE or CKA_DESTROYABLE policy attribute set to CK_FALSE.
· CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the arguments supplied to the Cryptoki function were in some way not appropriate.
· CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which may not be set by the application, or which may not be modified by the application. See Section 4.1 for more information.
· CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of an object which cannot be satisfied because the object is either sensitive or un-extractable.
· CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template. See Section 4.1 for more information.
· CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a particular attribute in a template. See Section 4.1 for more information.
· CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the supplied buffer.
· CKR_CANT_LOCK: This value can only be returned by C_Initialize. It means that the type of locking requested by the application for thread-safety is not available in this library, and so the application cannot make use of this library in the specified fashion.
· CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by C_Initialize. It means that the Cryptoki library has already been initialized (by a previous call to C_Initialize which did not have a matching C_Finalize call).
· CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function other than C_Initialize,  C_GetFunctionList, C_GetInterfaceList and C_GetInterface. It indicates that the function cannot be executed because the Cryptoki library has not yet been initialized by a call to C_Initialize.
· CKR_CURVE_NOT_SUPPORTED: This curve is not supported by this token. Used with Elliptic Curve mechanisms.
· CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. This return value has lower priority than CKR_DATA_LEN_RANGE.
· CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad length. Depending on the operation’s mechanism, this could mean that the plaintext data is too short, too long, or is not a multiple of some particular block size. This return value has higher priority than CKR_DATA_INVALID.
· CKR_DOMAIN_PARAMS_INVALID: Invalid or unsupported domain parameters were supplied to the function. Which representation methods of domain parameters are supported by a given mechanism can vary from token to token.
· CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has been determined to be invalid ciphertext. This return value has lower priority than CKR_ENCRYPTED_DATA_LEN_RANGE.
· CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption operation has been determined to be invalid ciphertext solely on the basis of its length. Depending on the operation’s mechanism, this could mean that the ciphertext is too short, too long, or is not a multiple of some particular block size. This return value has higher priority than CKR_ENCRYPTED_DATA_INVALID.
· CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key pair generation, domain parameter generation etc.) failed because we have exceeded the maximum number of iterations. This error code has precedence over CKR_FUNCTION_FAILED. Examples of iterative algorithms include DSA signature generation (retry if either r = 0 or s = 0) and generation of DSA primes p and q specified in [FIPS PUB 186-4].
· CKR_FIPS_SELF_TEST_FAILED: A FIPS 140-2 power-up self-test or conditional self-test failed. The token entered an error state. Future calls to cryptographic functions on the token will return CKR_GENERAL_ERROR. CKR_FIPS_SELF_TEST_FAILED has a higher precedence over CKR_GENERAL_ERROR. This error may be returned by C_Initialize, if a power-up self-test failed, by C_GenerateRandom or C_SeedRandom, if the continuous random number generator test failed, or by C_GenerateKeyPair, if the pair-wise consistency test failed.
· CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This happens to a cryptographic function if the function makes a CKN_SURRENDER application callback which returns CKR_CANCEL (see CKR_CANCEL). It also happens to a function that performs PIN entry through a protected path. The method used to cancel a protected path PIN entry operation is device dependent.
· CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in the specified session. This is a legacy error code which is only returned by the legacy functions C_GetFunctionStatus and C_CancelFunction.
· CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this Cryptoki library. Even unsupported functions in the Cryptoki API should have a “stub” in the library; this stub should simply return the value CKR_FUNCTION_NOT_SUPPORTED.
· CKR_FUNCTION_REJECTED: The signature request is rejected by the user.
· CKR_INFORMATION_SENSITIVE: The information requested could not be obtained because the token considers it sensitive, and is not able or willing to reveal it.
· CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It indicates that one of the keys specified is not the same key that was being used in the original saved session.
· CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to use a key for performing encryption, that key MUST have its CKA_ENCRYPT attribute set to CK_TRUE (the fact that the key MUST have a CKA_ENCRYPT attribute implies that the key cannot be a private key). This return value has lower priority than CKR_KEY_TYPE_INCONSISTENT.
· CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case that the specified handle is a valid handle for an object which is not a key. We reiterate here that 0 is never a valid key handle.
· CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey. It indicates that the value of the specified key cannot be digested for some reason (perhaps the key isn’t a secret key, or perhaps the token simply can’t digest this kind of key).
· CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It indicates that the session state cannot be restored because C_SetOperationState needs to be supplied with one or more keys that were being used in the original saved session.
· CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For example, an attempt was made to restore a session that had been performing a message digesting operation, and an encryption key was supplied.
· CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have its CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the token) is unable to wrap the key as requested (possibly the token can only wrap a given key with certain types of keys, and the wrapping key specified is not one of these types). Compare with CKR_KEY_UNEXTRACTABLE.
· [bookmark: _Hlk69379027]CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation could in principle be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied key‘s size is outside the range of key sizes that it can handle.
· CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use with the specified mechanism. This return value has a higher priority than CKR_KEY_FUNCTION_NOT_PERMITTED.
· CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because its CKA_EXTRACTABLE attribute is set to CK_FALSE. Compare with CKR_KEY_NOT_WRAPPABLE.
· CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a dependent shared library.
· CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic operation. This error code is an appropriate return value if an unknown mechanism was specified or if the mechanism specified cannot be used in the selected token with the selected function.
· CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the mechanism specified to the cryptographic operation. Which parameter values are supported by a given mechanism can vary from token to token.
· CKR_NEED_TO_CREATE_THREADS: This value can only be returned by C_Initialize. It is returned when two conditions hold:
1. The application called C_Initialize in a way which tells the Cryptoki library that application threads executing calls to the library cannot use native operating system methods to spawn new threads.
2. The library cannot function properly without being able to spawn new threads in the above fashion.
· CKR_NO_EVENT: This value can only be returned by C_WaitForSlotEvent. It is returned when C_WaitForSlotEvent is called in non-blocking mode and there are no new slot events to return.
· CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate here that 0 is never a valid object handle.
· CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active operations) which prevents Cryptoki from activating the specified operation. For example, an active object-searching operation would prevent Cryptoki from activating an encryption operation with C_EncryptInit. Or, an active digesting operation and an active encryption operation would prevent Cryptoki from activating a signature operation. Or, on a token which doesn’t support simultaneous dual cryptographic operations in a session (see the description of the CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO structure), an active signature operation would prevent Cryptoki from activating an encryption operation.
· CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an appropriate type in the specified session. For example, an application cannot call C_Encrypt in a session without having called C_EncryptInit first to activate an encryption operation.
· CKR_PARAMETER_SET_NOT_SUPPORTED: This parameter set is not supported by this token. Used with XMSS, XMSSMT, ML-KEM, ML-DSA and SLH-DSA mechanisms.
· CKR_PENDING: This value is returned if the operation is running asynchronously. 
· CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation cannot be carried out unless C_SetPIN is called to change the PIN value. Whether or not the normal user’s PIN on a token ever expires varies from token to token.
· CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN stored on the token. More generally-- when authentication to the token involves something other than a PIN-- the attempt to authenticate the user has failed.
· CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only applies to functions which attempt to set a PIN.
· CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only applies to functions which attempt to set a PIN.
· CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is, because some particular number of failed authentication attempts has been reached, the token is unwilling to permit further attempts at authentication. Depending on the token, the specified PIN may or may not remain locked indefinitely.
· CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could be easy to guess. If the PIN is too short, CKR_PIN_LEN_RANGE should be returned instead. This return code only applies to functions which attempt to set a PIN.
· CKR_PUBLIC_KEY_INVALID: The public key fails a public key validation. For example, an EC public key fails the public key validation specified in Section 5.2.2 of [ANSI X9.62]. This error code may be returned by C_CreateObject, when the public key is created, or by C_VerifyInit, C_VerifySignatureInit or C_VerifyRecoverInit, when the public key is used. It may also be returned by C_DeriveKey, in preference to CKR_MECHANISM_PARAM_INVALID, if the other party's public key specified in the mechanism's parameters is invalid.
· CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and C_GenerateRandom. It indicates that the specified token doesn’t have a random number generator. This return value has higher priority than CKR_RANDOM_SEED_NOT_SUPPORTED.
· CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by C_SeedRandom. It indicates that the token’s random number generator does not accept seeding from an application. This return value has lower priority than CKR_RANDOM_NO_RNG.
· CKR_SAVED_STATE_INVALID: This value can only be returned by C_SetOperationState. It indicates that the supplied saved cryptographic operations state is invalid, and so it cannot be restored to the specified session.
· CKR_SEED_RANDOM_REQUIRED: This value can only be returned by C_GenerateRandom. It indicates that the token’s random number generator has not yet been seeded, or requires re-seeding, by C_SeedRandom.
· CKR_SESSION_ASYNC_NOT_SUPPORTED: This value is returned if the token doesn’t support async operations.
· CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It indicates that the attempt to open a session failed, either because the token has too many sessions already open, or because the token has too many read/write sessions already open.
· CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates that a session with the token is already open, and so the token cannot be initialized.
· CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not support parallel sessions. This is a legacy error code—in Cryptoki Version 2.01 and up, no token supports parallel sessions. CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by C_OpenSession, and it is only returned when C_OpenSession is called in a particular [deprecated] way.
· CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired action because it is a read-only session. This return value has lower priority than CKR_TOKEN_WRITE_PROTECTED.
· CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO cannot be logged in.
· CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a read-only session cannot be opened.
· CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid solely on the basis of its length. This return value has higher priority than CKR_SIGNATURE_INVALID.
· CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value has lower priority than CKR_SIGNATURE_LEN_RANGE.
· CKR_SLOT_ID_INVALID: The specified slot ID is not valid.
· CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session cannot be saved for some reason (possibly the token is simply unable to save the current state). This return value has lower priority than CKR_OPERATION_NOT_INITIALIZED.
· CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is incomplete, and lacks some necessary attributes. See Section 4.1 for more information.
· CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has conflicting attributes. See Section 4.1 for more information.
· CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the token in the slot.
· CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because the token is write-protected. This return value has higher priority than CKR_SESSION_READ_ONLY.
· CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap another key is not valid.
· CKR_UNWRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_UnwrapKey. It indicates that although the requested unwrapping operation could in principle be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied key’s size is outside the range of key sizes that it can handle.
· CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is not consistent with the mechanism specified for unwrapping.
· CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It indicates that the specified user cannot be logged into the session, because it is already logged into the session. For example, if an application has an open SO session, and it attempts to log the SO into it, it will receive this error code.
· CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It indicates that the specified user cannot be logged into the session, because another user is already logged into the session. For example, if an application has an open SO session, and it attempts to log the normal user into it, it will receive this error code.
· CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the appropriate user (or an appropriate user) is not logged in. One example is that a session cannot be logged out unless it is logged in. Another example is that a private object cannot be created on a token unless the session attempting to create it is logged in as the normal user. A final example is that cryptographic operations on certain tokens cannot be performed unless the normal user is logged in.
· CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by C_Login. It indicates that the normal user’s PIN has not yet been initialized with C_InitPIN.
· CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct users simultaneously logged into the token than the token and/or library permits. For example, if some application has an open SO session, and another application attempts to log the normal user into a session, the attempt may return this error. It is not required to, however. Only if the simultaneous distinct users cannot be supported does C_Login have to return this value. Note that this error code generalizes to true multi-user tokens.
· CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid types are CKU_SO, CKU_USER, and CKU_CONTEXT_SPECIFIC.
· CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey. It indicates that the provided wrapped key is not valid. If a call is made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key type is specified in the template provided to C_UnwrapKey), and the wrapped key provided to C_UnwrapKey is recognizably not a wrapped key of the proper type, then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return value has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.
· CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid solely on the basis of its length. This return value has higher priority than CKR_WRAPPED_KEY_INVALID.
· CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_WrapKey. It indicates that the key handle specified to be used to wrap another key is not valid.
· CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_WrapKey. It indicates that although the requested wrapping operation could in principle be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied wrapping key’s size is outside the range of key sizes that it can handle.
· CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by C_WrapKey. It indicates that the type of the key specified to wrap another key is not consistent with the mechanism specified for wrapping.
· CKR_OPERATION_CANCEL_FAILED: This value can only be returned by C_SessionCancel. It means that one or more of the requested operations could not be cancelled for implementation or vendor-specific reasons.
5.1.7 [bookmark: _Toc385057891][bookmark: _Toc405794710][bookmark: _Toc72656099][bookmark: _Toc235002317][bookmark: _Toc370634022][bookmark: _Toc391468813][bookmark: _Toc395183809][bookmark: _Toc7432331][bookmark: _Toc29976601][bookmark: _Toc90376265][bookmark: _Toc111203250][bookmark: _Toc148962092][bookmark: _Toc195693123]	More on relative priorities of Cryptoki errors
In general, when a Cryptoki call is made, error codes from Section 5.1.1 (other than CKR_OK) take precedence over error codes from Section 5.1.2, which take precedence over error codes from Section 5.1.3, which take precedence over error codes from Section 5.1.6. One minor implication of this is that functions that use a session handle (i.e., most functions!) never return the error code CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if more than one error code applies to the result of a Cryptoki call, any of the applicable error codes may be returned. Exceptions to this rule will be explicitly mentioned in the descriptions of functions.
5.1.8 [bookmark: _Ref406906262][bookmark: _Toc72656100][bookmark: _Toc235002318][bookmark: _Toc370634023][bookmark: _Toc391468814][bookmark: _Toc395183810][bookmark: _Toc7432332][bookmark: _Toc29976602][bookmark: _Toc90376266][bookmark: _Toc111203251][bookmark: _Toc148962093][bookmark: _Toc195693124]	Error code “gotchas”
Here is a short list of a few particular things about return values that Cryptoki developers might want to be aware of:
1. As mentioned in Sections 5.1.2 and 5.1.3, a Cryptoki library may not be able to make a distinction between a token being removed before a function invocation and a token being removed during a function invocation.
2. As mentioned in Section 5.1.2, an application should never count on getting a CKR_SESSION_CLOSED error.
3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE can be somewhat subtle. Unless an application needs to be able to distinguish between these return values, it is best to always treat them equivalently.
4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and CKR_ENCRYPTED_DATA_LEN_RANGE, and between CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED_KEY_LEN_RANGE, can be subtle, and it may be best to treat these return values equivalently.
5. Even with the guidance of Section 4.1, it can be difficult for a Cryptoki library developer to know which of CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, or CKR_TEMPLATE_INCONSISTENT to return. When possible, it is recommended that application developers be generous in their interpretations of these error codes.
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A number of the functions defined in Cryptoki return output produced by some cryptographic mechanism. The amount of output returned by these functions is returned in a variable-length application-supplied buffer. An example of a function of this sort is C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of ciphertext.
These functions have some common calling conventions, which we describe here. Two of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a location which will hold the length of the output produced (say pulBufLen). There are two ways for an application to call such a function:
1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a number of bytes which would suffice to hold the cryptographic output produced from the input to the function. This number may somewhat exceed the precise number of bytes needed, but should not exceed it by a large amount. CKR_OK is returned by the function.
2. If pBuf is not NULL_PTR, then *pulBufLen MUST contain the size in bytes of the buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic output produced from the input to the function, then that cryptographic output is placed there, and CKR_OK is returned by the function and *pulBufLen is set to the exact number of bytes returned. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned and *pulBufLen is set to at least the number of bytes needed to hold the cryptographic output produced from the input to the function.
NOTE: This is a change from previous specs. The problem is that in some decrypt cases, the token doesn’t know how big a buffer is needed until the decrypt completes. The act of doing decrypt can mess up the internal encryption state. Many tokens already implement this relaxed behavior, tokens which implement the more precise behavior are still compliant. The one corner case is applications using a token that knows exactly how big the decryption is (through some out of band means), could get CKR_BUFFER_TOO_SMALL returned when it supplied a buffer exactly big enough to hold the decrypted value when it may previously have succeeded.
All functions which use the above convention will explicitly say so.
Cryptographic functions which return output in a variable-length buffer should always return as much output as can be computed from what has been passed in to them thus far. As an example, consider a session which is performing a multiple-part decryption operation with DES in cipher-block chaining mode with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The block size of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether the ciphertext was produced from encrypting a 0-byte string, or from encrypting some string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a single additional byte of ciphertext is supplied by a subsequent call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES block).
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For the remainder of this section, we enumerate the various functions defined in Cryptoki. Most functions will be shown in use in at least one sample code snippet. For the sake of brevity, sample code will frequently be somewhat incomplete. In particular, sample code will generally ignore possible error returns from C library functions, and also will not deal with Cryptoki error returns in a realistic fashion.
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Cryptoki provides the following general-purpose functions:
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CK_DECLARE_FUNCTION(CK_RV, C_Initialize) {
	CK_VOID_PTR pInitArgs
);
C_Initialize initializes the Cryptoki library. pInitArgs either has the value NULL_PTR or points to a CK_C_INITIALIZE_ARGS structure containing information on how the library should deal with multi-threaded access. If an application will not be accessing Cryptoki through multiple threads simultaneously, it can generally supply the value NULL_PTR to C_Initialize (the consequences of supplying this value will be explained below).
If pInitArgs is non-NULL_PTR, C_Initialize should cast it to a CK_C_INITIALIZE_ARGS_PTR and then dereference the resulting pointer to obtain the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex, UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved thereby obtained MUST be NULL_PTR; if it’s not, then C_Initialize should return with the value CKR_ARGUMENTS_BAD.
If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set, that indicates that application threads which are executing calls to the Cryptoki library are not permitted to use the native operation system calls to spawn off new threads. In other words, the library’s code may not create its own threads. If the library is unable to function properly under this restriction, C_Initialize should return with the value CKR_NEED_TO_CREATE_THREADS.
A call to C_Initialize specifies one of four different ways to support multi-threaded access via the value of the CKF_OS_LOCKING_OK flag in the flags field and the values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer fields:
1. If the flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have the value NULL_PTR), that means that the application won’t be accessing the Cryptoki library from multiple threads simultaneously.
2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the value NULL_PTR), that means that the application will be performing multi-threaded Cryptoki access, and the library needs to use the native operating system primitives to ensure safe multi-threaded access. If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.
3. If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR values), that means that the application will be performing multi-threaded Cryptoki access, and the library needs to use the supplied function pointers for mutex-handling to ensure safe multi-threaded access. If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.
4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR values), that means that the application will be performing multi-threaded Cryptoki access, and the library needs to use either the native operating system primitives or the supplied function pointers for mutex-handling to ensure safe multi-threaded access. If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.
If some, but not all, of the supplied function pointers to C_Initialize are non-NULL_PTR, then C_Initialize should return with the value CKR_ARGUMENTS_BAD.
A call to C_Initialize with pInitArgs set to NULL_PTR is treated like a call to C_Initialize with pInitArgs pointing to a CK_C_INITIALIZE_ARGS which has the CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to NULL_PTR, and has the flags field set to 0.
C_Initialize should be the first Cryptoki call made by an application, except for calls to C_GetFunctionList, C_GetInterfaceList, or C_GetInterface. What this function actually does is implementation-dependent; typically, it might cause Cryptoki to initialize its internal memory buffers, or any other resources it requires.
If several applications are using Cryptoki, each one should call C_Initialize. Every call to C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See [PKCS11-UG] for further details.
Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK, CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NEED_TO_CREATE_THREADS, CKR_OK.
Example: see C_GetInfo.
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CK_DECLARE_FUNCTION(CK_RV, C_Finalize)(
	CK_VOID_PTR pReserved
);
C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should be the last Cryptoki call made by an application. The pReserved parameter is reserved for future versions; for this version, it should be set to NULL_PTR (if C_Finalize is called with a non-NULL_PTR value for pReserved, it should return the value CKR_ARGUMENTS_BAD.
If several applications are using Cryptoki, each one should call C_Finalize. Each application’s call to C_Finalize should be preceded by a single call to C_Initialize; in between the two calls, an application can make calls to other Cryptoki functions. See [PKCS11-UG] for further details.
Despite the fact that the parameters supplied to C_Initialize can in general allow for safe multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless undefined if it is called by an application while other threads of the application are making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs when a thread calls C_Finalize while another of the application’s threads is blocking on Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread becomes unblocked and returns the value CKR_CRYPTOKI_NOT_INITIALIZED. See C_WaitForSlotEvent for more information.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example: see C_GetInfo.
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CK_DECLARE_FUNCTION(CK_RV, C_GetInfo)(
	CK_INFO_PTR pInfo
);
C_GetInfo returns general information about Cryptoki. pInfo points to the location that receives the information.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example:
CK_INFO info;
CK_RV rv;
CK_C_INITIALIZE_ARGS InitArgs;

InitArgs.CreateMutex = &MyCreateMutex;
InitArgs.DestroyMutex = &MyDestroyMutex;
InitArgs.LockMutex = &MyLockMutex;
InitArgs.UnlockMutex = &MyUnlockMutex;
InitArgs.flags = CKF_OS_LOCKING_OK;
InitArgs.pReserved = NULL_PTR;

rv = C_Initialize((CK_VOID_PTR)&InitArgs);
assert(rv == CKR_OK);

rv = C_GetInfo(&info);
assert(rv == CKR_OK);
if(info.cryptokiVersion.major == 2) {
  /* Do lots of interesting cryptographic things with the token */
  .
  .
}

rv = C_Finalize(NULL_PTR);
assert(rv == CKR_OK);
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CK_DECLARE_FUNCTION(CK_RV, C_GetFunctionList)(
	CK_FUNCTION_LIST_PTR_PTR ppFunctionList
);
C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers. ppFunctionList points to a value which will receive a pointer to the library’s CK_FUNCTION_LIST structure, which in turn contains function pointers for all the Cryptoki API routines in the library. The pointer thus obtained may point into memory which is owned by the Cryptoki library, and which may or may not be writable. Whether or not this is the case, no attempt should be made to write to this memory.
C_GetFunctionList, C_GetInterfaceList, and C_GetInterface are the only Cryptoki functions which an application may call before calling C_Initialize. It is provided to make it easier and faster for applications to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.
Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example:
CK_FUNCTION_LIST_PTR pFunctionList;
CK_C_Initialize pC_Initialize;
CK_RV rv;

/* It’s OK to call C_GetFunctionList before calling C_Initialize */
rv = C_GetFunctionList(&pFunctionList);
assert(rv == CKR_OK);
pC_Initialize = pFunctionList -> C_Initialize;

/* Call the C_Initialize function in the library */
rv = (*pC_Initialize)(NULL_PTR);
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CK_DECLARE_FUNCTION(CK_RV, C_GetInterfaceList)(
	CK_INTERFACE_PTR      pInterfaceList,
CK_ULONG_PTR          pulCount
);
C_GetInterfaceList is used to obtain a list of interfaces supported by a Cryptoki library. pulCount points to the location that receives the number of interfaces.
There are two ways for an application to call C_GetInterfaceList:
1. If pInterfaceList is NULL_PTR, then all that C_GetInterfaceList does is return (in *pulCount) the number of interfaces, without actually returning a list of interfaces. The contents of *pulCount on entry to C_GetInterfaceList has no meaning in this case, and the call returns the value CKR_OK.
2. If pIntrerfaceList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_INTERFACE elements) of the buffer pointed to by pInterfaceList. If that buffer is large enough to hold the list of interfaces, then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetInterfaceList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number of interfaces.
Because C_GetInterfaceList does not allocate any space of its own, an application will often call C_GetInterfaceList twice. However, this behavior is by no means required.
C_GetInterfaceList obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki library, and which may or may not be writable. Whether or not this is the case, no attempt should be made to write to this memory. The same caveat applies to the interface names returned.

C_GetFunctionList, C_GetInterfaceList, and C_GetInterface are the only Cryptoki functions which an application may call before calling C_Initialize. It is provided to make it easier and faster for applications to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.
Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example:
CK_ULONG ulCount=0;
CK_INTERFACE_PTR interfaceList=NULL;
CK_RV rv;
int I;

/* get number of interfaces */
rv = C_GetInterfaceList(NULL,&ulCount);
if (rv == CKR_OK) {
  /* get copy of interfaces */
  interfaceList = (CK_INTERFACE_PTR)malloc(ulCount*sizeof(CK_INTERFACE));
  rv = C_GetInterfaceList(interfaceList,&ulCount);
  for(i=0;i<ulCount;i++) {
    printf("interface %s version %d.%d funcs %p flags 0x%lu\n",
	interfaceList[i].pInterfaceName,
	((CK_VERSION *)interfaceList[i].pFunctionList)->major,
	((CK_VERSION *)interfaceList[i].pFunctionList)->minor,
        interfaceList[i].pFunctionList,
	interfaceList[i].flags);
  }
}
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CK_DECLARE_FUNCTION(CK_RV,C_GetInterface)(
[bookmark: _Hlk529983792]  CK_UTF8CHAR_PTR       pInterfaceName,
  CK_VERSION_PTR        pVersion,
  CK_INTERFACE_PTR_PTR  ppInterface,
  CK_FLAGS              flags
);
C_GetInterface is used to obtain an interface supported by a Cryptoki library. pInterfaceName specifies the name of the interface, pVersion specifies the interface version, ppInterface points to the location that receives the interface, flags specifies the required interface flags.
There are multiple ways for an application to specify a particular interface when calling C_GetInterface:
1. If pInterfaceName is not NULL_PTR, the name of the interface returned must match. If pInterfaceName is NULL_PTR, the cryptoki library can return a default interface of its choice
2. If pVersion is not NULL_PTR, the version of the interface returned must match. If pVersion is NULL_PTR, the cryptoki library can return an interface of any version
3. If flags is non-zero, the interface returned must match all of the supplied flag values (but may include additional flags not specified). If flags is 0, the cryptoki library can return an interface with any flags
C_GetInterface obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki library, and which may or may not be writable. Whether or not this is the case, no attempt should be made to write to this memory. The same caveat applies to the interface names returned.
C_GetFunctionList, C_GetInterfaceList, and C_GetInterface are the only Cryptoki functions which an application may call before calling C_Initialize. It is provided to make it easier and faster for applications to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.
Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example:
CK_INTERFACE_PTR interface;
CK_RV rv;
CK_VERSION version;
CK_FLAGS flags=CKF_ INTERFACE_FORK_SAFE;

/* get default interface */
rv = C_GetInterface(NULL,NULL,&interface,flags);
if (rv == CKR_OK) {
  printf("interface %s version %d.%d funcs %p flags 0x%lu\n",
	interface->pInterfaceName,
	((CK_VERSION *)interface->pFunctionList)->major,
	((CK_VERSION *)interface->pFunctionList)->minor,
	interface->pFunctionList,
	interface->flags);
}

/* get default standard interface */
rv = C_GetInterface((CK_UTF8CHAR_PTR)"PKCS 11",NULL,&interface,flags);
if (rv == CKR_OK) {
  printf("interface %s version %d.%d funcs %p flags 0x%lu\n",
	interface->pInterfaceName,
	((CK_VERSION *)interface->pFunctionList)->major,
	((CK_VERSION *)interface->pFunctionList)->minor,
	interface->pFunctionList,
	interface->flags);
}

/* get specific standard version interface */
version.major=3;
version.minor=0;
rv = C_GetInterface((CK_UTF8CHAR_PTR)"PKCS 11",&version,&interface,flags);
if (rv == CKR_OK) {
  CK_FUNCTION_LIST_3_0_PTR pkcs11=interface->pFunctionList;
  
  /* ... use the new functions */
  pkcs11->C_LoginUser(hSession,userType,pPin,ulPinLen,
                                                  pUsername,ulUsernameLen);
}

/* get specific vendor version interface */
version.major=1;
version.minor=0;
rv = C_GetInterface((CK_UTF8CHAR_PTR)
                        "Vendor VendorName",&version,&interface,flags);
if (rv == CKR_OK) {
  CK_FUNCTION_LIST_VENDOR_1_0_PTR pkcs11=interface->pFunctionList;
  
  /* ... use vendor specific functions */
  pkcs11->C_VendorFunction1(param1,param2,param3);
}

5.5 [bookmark: _Toc7432342][bookmark: _Toc29976612][bookmark: _Toc90376276][bookmark: _Toc111203261][bookmark: _Toc148962103][bookmark: _Toc195693134]Slot and token management functions
Cryptoki provides the following functions for slot and token management:
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CK_DECLARE_FUNCTION(CK_RV, C_GetSlotList)(
	CK_BBOOL tokenPresent,
	CK_SLOT_ID_PTR pSlotList,
	CK_ULONG_PTR pulCount
);
C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list obtained includes only those slots with a token present (CK_TRUE), or all slots (CK_FALSE); pulCount points to the location that receives the number of slots.
There are two ways for an application to call C_GetSlotList:
1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the number of slots, without actually returning a list of slots. The contents of the buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case, and the call returns the value CKR_OK.
2. If pSlotList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_SLOT_ID elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of slots, then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetSlotList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number of slots.
Because C_GetSlotList does not allocate any space of its own, an application will often call C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all slots with a token present, then the number of such slots can (unfortunately) change between when the application asks for how many such slots there are and when the application asks for the slots themselves). However, multiple calls to C_GetSlotList are by no means required.
All slots which C_GetSlotList reports MUST be able to be queried as valid slots by C_GetSlotInfo. Furthermore, the set of slots accessible through a Cryptoki library is checked at the time that C_GetSlotList, for list length prediction (NULL pSlotList argument) is called. If an application calls C_GetSlotList with a non-NULL pSlotList, and then the user adds or removes a hardware device, the changed slot list will only be visible and effective if C_GetSlotList is called again with NULL. Even if C_ GetSlotList is successfully called this way, it may or may not be the case that the changed slot list will be successfully recognized depending on the library implementation. On some platforms, or earlier PKCS11 compliant libraries, it may be necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.
Example:
CK_ULONG ulSlotCount, ulSlotWithTokenCount;
CK_SLOT_ID_PTR pSlotList, pSlotWithTokenList;
CK_RV rv;

/* Get list of all slots */
rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);
if (rv == CKR_OK) {
  pSlotList =
    (CK_SLOT_ID_PTR) malloc(ulSlotCount*sizeof(CK_SLOT_ID));
  rv = C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
  if (rv == CKR_OK) {
    /* Now use that list of all slots */
    .
    .
  }

  free(pSlotList);
}

/* Get list of all slots with a token present */
pSlotWithTokenList = (CK_SLOT_ID_PTR) malloc(0);
ulSlotWithTokenCount = 0;
while (1) {
  rv = C_GetSlotList(
    CK_TRUE, pSlotWithTokenList, &ulSlotWithTokenCount);
  if (rv != CKR_BUFFER_TOO_SMALL)
    break;
  pSlotWithTokenList = realloc(
    pSlotWithTokenList,
    ulSlotWithTokenList*sizeof(CK_SLOT_ID));
}

if (rv == CKR_OK) {
  /* Now use that list of all slots with a token present */
  .
  .
}

free(pSlotWithTokenList);
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CK_DECLARE_FUNCTION(CK_RV, C_GetSlotInfo)(
	CK_SLOT_ID slotID,
	CK_SLOT_INFO_PTR pInfo
);
C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the slot; pInfo points to the location that receives the slot information.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID.
Example: see C_GetTokenInfo.
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CK_DECLARE_FUNCTION(CK_RV, C_GetTokenInfo)(
	CK_SLOT_ID slotID,
	CK_TOKEN_INFO_PTR pInfo
);
C_GetTokenInfo obtains information about a particular token in the system. slotID is the ID of the token’s slot; pInfo points to the location that receives the token information.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.
Example:
CK_ULONG ulCount;
CK_SLOT_ID_PTR pSlotList;
CK_SLOT_INFO slotInfo;
CK_TOKEN_INFO tokenInfo;
CK_RV rv;

rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
  pSlotList = (CK_SLOT_ID_PTR) malloc(ulCount*sizeof(CK_SLOT_ID));
  rv = C_GetSlotList(CK_FALSE, pSlotList, &ulCount);
  assert(rv == CKR_OK);

  /* Get slot information for first slot */
  rv = C_GetSlotInfo(pSlotList[0], &slotInfo);
  assert(rv == CKR_OK);

  /* Get token information for first slot */
  rv = C_GetTokenInfo(pSlotList[0], &tokenInfo);
  if (rv == CKR_TOKEN_NOT_PRESENT) {
    .
    .
  }
  .
  .
  free(pSlotList);
}
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CK_DECLARE_FUNCTION(CK_RV, C_WaitForSlotEvent)(
	CK_FLAGS flags,
	CK_SLOT_ID_PTR pSlot,
	CK_VOID_PTR pReserved
);
C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to occur. flags determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits for a slot event to occur); pSlot points to a location which will receive the ID of the slot that the event occurred in. pReserved is reserved for future versions; for this version of Cryptoki, it should be NULL_PTR.
At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:
Internally, each Cryptoki application has a flag for each slot which is used to track whether or not any unrecognized events involving that slot have occurred. When an application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot event occurs, the flag corresponding to the slot in which the event occurred is set.
If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and some slot’s event flag is set, then that event flag is cleared, and the call returns with the ID of that slot in the location pointed to by pSlot. If more than one slot’s event flag is set at the time of the call, one such slot is chosen by the library to have its event flag cleared and to have its slot ID returned.
If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and no slot’s event flag is set, then the call returns with the value CKR_NO_EVENT. In this case, the contents of the location pointed to by pSlot when C_WaitForSlotEvent are undefined.
If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags argument, then the call behaves as above, except that it will block. That is, if no slot’s event flag is set at the time of the call, C_WaitForSlotEvent will wait until some slot’s event flag becomes set. If a thread of an application has a C_WaitForSlotEvent call blocking when another thread of that application calls C_Finalize, the C_WaitForSlotEvent call returns with the value CKR_CRYPTOKI_NOT_INITIALIZED.
Although the parameters supplied to C_Initialize can in general allow for safe multi-threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the behavior of Cryptoki is undefined if multiple threads of a single application make simultaneous calls to C_WaitForSlotEvent.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NO_EVENT, CKR_OK.
Example:
CK_FLAGS flags = 0;
CK_SLOT_ID slotID;
CK_SLOT_INFO slotInfo;
CK_RV rv;
.
.
/* Block and wait for a slot event */
rv = C_WaitForSlotEvent(flags, &slotID, NULL_PTR);
assert(rv == CKR_OK);

/* See what’s up with that slot */
rv = C_GetSlotInfo(slotID, &slotInfo);
assert(rv == CKR_OK);
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CK_DECLARE_FUNCTION(CK_RV, C_GetMechanismList)(
	CK_SLOT_ID slotID,
	CK_MECHANISM_TYPE_PTR pMechanismList,
	CK_ULONG_PTR pulCount
);
C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is the ID of the token’s slot; pulCount points to the location that receives the number of mechanisms.
There are two ways for an application to call C_GetMechanismList:
1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in *pulCount) the number of mechanisms, without actually returning a list of mechanisms. The contents of *pulCount on entry to C_GetMechanismList has no meaning in this case, and the call returns the value CKR_OK.
2. If pMechanismList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. If that buffer is large enough to hold the list of mechanisms, then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number of mechanisms.
Because C_GetMechanismList does not allocate any space of its own, an application will often call C_GetMechanismList twice. However, this behavior is by no means required.
Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.
Example:
CK_SLOT_ID slotID;
CK_ULONG ulCount;
CK_MECHANISM_TYPE_PTR pMechanismList;
CK_RV rv;

.
.
rv = C_GetMechanismList(slotID, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
  pMechanismList =
    (CK_MECHANISM_TYPE_PTR)
    malloc(ulCount*sizeof(CK_MECHANISM_TYPE));
  rv = C_GetMechanismList(slotID, pMechanismList, &ulCount);
  if (rv == CKR_OK) {
    .
    .
  }
  free(pMechanismList);
}
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CK_DECLARE_FUNCTION(CK_RV, C_GetMechanismInfo)(
	CK_SLOT_ID slotID,
	CK_MECHANISM_TYPE type,
	CK_MECHANISM_INFO_PTR pInfo
);
C_GetMechanismInfo obtains information about a particular mechanism possibly supported by a token. slotID is the ID of the token’s slot; type is the type of mechanism; pInfo points to the location that receives the mechanism information.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.
Example:
CK_SLOT_ID slotID;
CK_MECHANISM_INFO info;
CK_RV rv;

.
.
/* Get information about the CKM_MD2 mechanism for this token */
rv = C_GetMechanismInfo(slotID, CKM_MD2, &info);
if (rv == CKR_OK) {
  if (info.flags & CKF_DIGEST) {
    .
    .
  }
}
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CK_DECLARE_FUNCTION(CK_RV, C_InitToken)(
	CK_SLOT_ID slotID,
	CK_UTF8CHAR_PTR pPin,
	CK_ULONG ulPinLen,
	CK_UTF8CHAR_PTR pLabel
);
C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial PIN (which need not be null-terminated); ulPinLen is the length in bytes of the PIN; pLabel points to the 32-byte label of the token (which MUST be padded with blank characters, and which MUST not be null-terminated). This standard allows PIN values to contain any valid UTF8 character, but the token may impose subset restrictions.
If the token has not been initialized (i.e. new from the factory), then the pPin parameter becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin parameter is checked against the existing SO PIN to authorize the initialization operation. In both cases, the SO PIN is the value pPin after the function completes successfully. If the SO PIN is lost, then the card MUST be reinitialized using a mechanism outside the scope of this standard. The CKF_TOKEN_INITIALIZED flag in the CK_TOKEN_INFO structure indicates the action that will result from calling C_InitToken. If set, the token will be reinitialized, and the client MUST supply the existing SO password in pPin.
When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for “indestructible” objects such as keys built into the token). Also, access by the normal user is disabled until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created, and attributes of some objects may be set to default values.
If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having the application send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot device. To initialize a token with such a protected authentication path, the pPin parameter to C_InitToken should be NULL_PTR. During the execution of C_InitToken, the SO’s PIN will be entered through the protected authentication path.
If the token has a protected authentication path other than a PINpad, then it is token-dependent whether or not C_InitToken can be used to initialize the token.
A token cannot be initialized if Cryptoki detects that any application has an open session with it; when a call to C_InitToken is made under such circumstances, the call fails with error CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is called that some other application does have an open session with the token, but Cryptoki cannot detect this, because it cannot detect anything about other applications using the token. If this is the case, then the consequences of the C_InitToken call are undefined.
The C_InitToken function may not be sufficient to properly initialize complex tokens. In these situations, an initialization mechanism outside the scope of Cryptoki MUST be employed. The definition of “complex token” is product specific.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.
Example:
CK_SLOT_ID slotID;
CK_UTF8CHAR pin[] = {“MyPIN”};
CK_UTF8CHAR label[32];
CK_RV rv;

.
.
memset(label, ‘ ’, sizeof(label));
memcpy(label, “My first token”, strlen(“My first token”));
rv = C_InitToken(slotID, pin, strlen(pin), label);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_InitPIN)(
  CK_SESSION_HANDLE hSession,
  CK_UTF8CHAR_PTR pPin,
  CK_ULONG ulPinLen
);
C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the normal user’s PIN; ulPinLen is the length in bytes of the PIN. This standard allows PIN values to contain any valid UTF8 character, but the token may impose subset restrictions.
C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a session in any other state fails with error CKR_USER_NOT_LOGGED_IN.
If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having to send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or on the slot device. To initialize the normal user’s PIN on a token with such a protected authentication path, the pPin parameter to C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO will enter the new PIN through the protected authentication path.
If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether or not C_InitPIN can be used to initialize the normal user’s token access.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY, CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.
Example:
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR newPin[]= {“NewPIN”};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin)-1);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_SetPIN)(
  CK_SESSION_HANDLE hSession,
  CK_UTF8CHAR_PTR pOldPin,
  CK_ULONG ulOldLen,
  CK_UTF8CHAR_PTR pNewPin,
  CK_ULONG ulNewLen
);
C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER PIN if the session is not logged in. hSession is the session’s handle; pOldPin points to the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to contain any valid UTF8 character, but the token may impose subset restrictions.
C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions” state, or “R/W User Functions” state. An attempt to call it from a session in any other state fails with error CKR_SESSION_READ_ONLY.
If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having to send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or on the slot device. To modify the current user’s PIN on a token with such a protected authentication path, the pOldPin and pNewPin parameters to C_SetPIN should be NULL_PTR. During the execution of C_SetPIN, the current user will enter the old PIN and the new PIN through the protected authentication path. It is not specified how the PIN pad should be used to enter two PINs; this varies.
If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether or not C_SetPIN can be used to modify the current user’s PIN.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.
Example:
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR oldPin[] = {“OldPIN”};
CK_UTF8CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(
  hSession, oldPin, sizeof(oldPin)-1, newPin, sizeof(newPin)-1);
if (rv == CKR_OK) {
  .
  .
}
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A typical application might perform the following series of steps to make use of a token (note that there are other reasonable sequences of events that an application might perform):
1. Select a token.
2. Make one or more calls to C_OpenSession to obtain one or more sessions with the token.
3. Call C_Login to log the user into the token. Since all sessions an application has with a token have a shared login state, C_Login only needs to be called for one of the sessions.
4. Perform cryptographic operations using the sessions with the token.
5. Call C_CloseSession once for each session that the application has with the token, or call C_CloseAllSessions to close all the application’s sessions simultaneously.
As has been observed, an application may have concurrent sessions with more than one token. It is also possible for a token to have concurrent sessions with more than one application.
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CK_DECLARE_FUNCTION(CK_RV, C_OpenSession)(
  CK_SLOT_ID slotID,
  CK_FLAGS flags,
  CK_VOID_PTR pApplication,
  CK_NOTIFY Notify,
  CK_SESSION_HANDLE_PTR phSession
);
C_OpenSession opens a session between an application and a token in a particular slot. slotID is the slot’s ID; flags indicates the type of session; pApplication is an application-defined pointer to be passed to the notification callback; Notify is the address of the notification callback function (see Section 5.21); phSession points to the location that receives the handle for the new session.
When opening a session with C_OpenSession, the flags parameter consists of the logical OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy reasons, the CKF_SERIAL_SESSION bit MUST always be set; if a call to C_OpenSession does not have this bit set, the call should return unsuccessfully with the error code CKR_SESSION_PARALLEL_NOT_SUPPORTED.
There may be a limit on the number of concurrent sessions an application may have with the token, which may depend on whether the session is “read-only” or “read/write”. An attempt to open a session which does not succeed because there are too many existing sessions of some type should return CKR_SESSION_COUNT.
If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-only sessions may be opened with it.
If the application calling C_OpenSession already has a R/W SO session open with the token, then any attempt to open a R/O session with the token fails with error code CKR_SESSION_READ_WRITE_SO_EXISTS (see [PKCS11-UG] for further details).
The Notify callback function is used by Cryptoki to notify the application of certain events. If the application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify parameter. See Section 5.21 for more information about application callbacks.
As of version 3.2 an application can request an asynchronous session by providing the CKF_ASYNC_SESSION flag in the flags parameter. If the token does not support asynchronous operations, it should return CKR_SESSION_ASYNC_NOT_SUPPORTED. Tokens must support synchronous sessions. Tokens may support asynchronous sessions and may return CKR_PENDING if the token determines that the operation will take a long time to conclude.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_ASYNC_NOT_SUPPORTED, CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.
Example: see C_CloseSession.
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CK_DECLARE_FUNCTION(CK_RV, C_CloseSession)(
  CK_SESSION_HANDLE hSession
);
C_CloseSession closes a session between an application and a token. hSession is the session’s handle. 
C_CloseSession cancels all pending operations whose ID has not been retrieved using C_AsyncGetID. After a successful call to C_CloseSession the caller should free any memory passed into functions that returned CKR_PENDING.
When a session is closed, all session objects created by the session are destroyed automatically, even if the application has other sessions “using” the objects (see [PKCS11-UG] for further details).
If this function is successful and it closes the last session between the application and the token, the login state of the token for the application returns to public sessions. Any new sessions to the token opened by the application will be either R/O Public or R/W Public sessions.
Depending on the token, when the last open session any application has with the token is closed, the token may be “ejected” from its reader (if this capability exists).
Despite the fact this C_CloseSession is supposed to close a session, the return value CKR_SESSION_CLOSED is an error return. It actually indicates the (probably somewhat unlikely) event that while this function call was executing, another call was made to C_CloseSession to close this particular session, and that call finished executing first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will occur in general if an application indulges in this sort of behavior.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
CK_SLOT_ID slotID;
CK_BYTE application;
CK_NOTIFY MyNotify;
CK_SESSION_HANDLE hSession;
CK_RV rv;

.
.
application = 17;
MyNotify = &EncryptionSessionCallback;
rv = C_OpenSession(
  slotID, CKF_SERIAL_SESSION | CKF_RW_SESSION,
		(CK_VOID_PTR) &application, MyNotify,
  &hSession);
if (rv == CKR_OK) {
  .
  .
  C_CloseSession(hSession);
}
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CK_DECLARE_FUNCTION(CK_RV, C_CloseAllSessions)(
  CK_SLOT_ID slotID
);
C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the token’s slot.
C_CloseAllSessions cancels all pending operations whose ID has not been retrieved using C_AsyncGetID. After a successful call to C_CloseAllSessions the caller should free any memory passed into functions that returned CKR_PENDING.
When a session is closed, all session objects created by the session are destroyed automatically.
After successful execution of this function, the login state of the token for the application returns to public sessions. Any new sessions to the token opened by the application will be either R/O Public or R/W Public sessions.
Depending on the token, when the last open session any application has with the token is closed, the token may be “ejected” from its reader (if this capability exists).
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.
Example:
CK_SLOT_ID slotID;
CK_RV rv;

.
.
rv = C_CloseAllSessions(slotID);
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CK_DECLARE_FUNCTION(CK_RV, C_GetSessionInfo)(
  CK_SESSION_HANDLE hSession,
  CK_SESSION_INFO_PTR pInfo
);
C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pInfo points to the location that receives the session information.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.
Example:
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO info;
CK_RV rv;

.
.
rv = C_GetSessionInfo(hSession, &info);
if (rv == CKR_OK) {
  if (info.state == CKS_RW_USER_FUNCTIONS) {
    .
    .
  }
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_SessionCancel)(
  CK_SESSION_HANDLE hSession 
  CK_FLAGS flags 
);
C_SessionCancel terminates active session based operations. hSession is the session’s handle; flags indicates the operations to cancel.
To identify which operation(s) should be terminated, the flags parameter should be assigned the logical bitwise OR of one or more of the bit flags defined in the CK_MECHANISM_INFO structure. C_SessionCancel will cancel a pending operation matching the input flags including those whose ID has been retrieved using C_AsyncGetID.
If no flags are set, the session state will not be modified and CKR_OK will be returned.
If a flag is set for an operation that has not been initialized in the session, the operation flag will be ignored and C_SessionCancel will behave as if the operation flag was not set.
If any of the operations indicated by the flags parameter cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned. If multiple operation flags were set and CKR_OPERATION_CANCEL_FAILED is returned, this function does not provide any information about which operation(s) could not be cancelled. If an application desires to know if any single operation could not be cancelled, the application should not call C_SessionCancel with multiple flags set.
If C_SessionCancel is called from an application callback (see Section 5.21), no action will be taken by the library and CKR_FUNCTION_FAILED must be returned. 
If C_SessionCancel is used to cancel one half of a dual-function operation, the remaining operation should still be left in an active state. However, it is expected that some Cryptoki implementations may not support this and return CKR_OPERATION_CANCEL_FAILED unless flags for both operations are provided. 
After a successful call to C_SessionCancel the caller should free any memory passed into functions that returned CKR_PENDING and were canceled.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_CANCEL_FAILED, CKR_PENDING, CKR_TOKEN_NOT_PRESENT.
Example:
CK_SESSION_HANDLE hSession;
CK_RV rv;

rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv != CKR_OK)
{
   .
   .
}

rv = C_SessionCancel (hSession, CKF_ENCRYPT);
if (rv != CKR_OK)
{
   .
   .
}

rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv != CKR_OK)
{
   .
   .
}


Below are modifications to existing API descriptions to allow an alternate method of cancelling individual operations. The additional text is highlighted.
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CK_DECLARE_FUNCTION(CK_RV, C_GetOperationState)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pOperationState,
  CK_ULONG_PTR pulOperationStateLen
);
C_GetOperationState obtains a copy of the cryptographic operations state of a session, encoded as a string of bytes. hSession is the session’s handle; pOperationState points to the location that receives the state; pulOperationStateLen points to the location that receives the length in bytes of the state.
Although the saved state output by C_GetOperationState is not really produced by a “cryptographic mechanism”, C_GetOperationState nonetheless uses the convention described in Section 5.2 on producing output.
Precisely what the “cryptographic operations state” this function saves is varies from token to token; however, this state is what is provided as input to C_SetOperationState to restore the cryptographic activities of a session.
Consider a session which is performing a message digest operation using SHA-1 (i.e., the session is using the CKM_SHA_1 mechanism). Suppose that the message digest operation was initialized properly, and that precisely 80 bytes of data have been supplied so far as input to SHA-1. The application now wants to “save the state” of this digest operation, so that it can continue it later. In this particular case, since SHA-1 processes 512 bits (64 bytes) of input at a time, the cryptographic operations state of the session most likely consists of three distinct parts: the state of SHA-1’s 160-bit internal chaining variable; the 16 bytes of unprocessed input data; and some administrative data indicating that this saved state comes from a session which was performing SHA-1 hashing. Taken together, these three pieces of information suffice to continue the current hashing operation at a later time.
Consider next a session which is performing an encryption operation with DES (a block cipher with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the CKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in addition to an IV for the CBC mode) have been supplied so far as input to DES, which means that the first two 8-byte blocks of ciphertext have already been produced and output. In this case, the cryptographic operations state of the session most likely consists of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still awaiting encryption; some administrative data indicating that this saved state comes from a session which was performing DES encryption in CBC mode; and possibly the DES key being used for encryption (see C_SetOperationState for more information on whether or not the key is present in the saved state).
If a session is performing two cryptographic operations simultaneously (see Section 5.14), then the cryptographic operations state of the session will contain all the necessary information to restore both operations.
An attempt to save the cryptographic operations state of a session which does not currently have some active savable cryptographic operation(s) (encryption, decryption, digesting, signing without message recovery, verification without message recovery, or some legal combination of two of these) should fail with the error CKR_OPERATION_NOT_INITIALIZED.
An attempt to save the cryptographic operations state of a session which is performing an appropriate cryptographic operation (or two), but which cannot be satisfied for any of various reasons (certain necessary state information and/or key information can’t leave the token, for example) should fail with the error CKR_STATE_UNSAVEABLE.
Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE, CKR_ARGUMENTS_BAD.
Example: see C_SetOperationState.
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CK_DECLARE_FUNCTION(CK_RV, C_SetOperationState)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pOperationState,
  CK_ULONG ulOperationStateLen,
  CK_OBJECT_HANDLE hEncryptionKey,
  CK_OBJECT_HANDLE hAuthenticationKey
);
[bookmark: _Toc323024118][bookmark: _Toc323205450][bookmark: _Toc323610880][bookmark: _Toc383864887]C_SetOperationState restores the cryptographic operations state of a session from a string of bytes obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points to the location holding the saved state; ulOperationStateLen holds the length of the saved state; hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or decryption operation in the restored session (or 0 if no encryption or decryption key is needed, either because no such operation is ongoing in the stored session or because all the necessary key information is present in the saved state); hAuthenticationKey holds a handle to the key which will be used for an ongoing signature, MACing, or verification operation in the restored session (or 0 if no such key is needed, either because no such operation is ongoing in the stored session or because all the necessary key information is present in the saved state).
The state need not have been obtained from the same session (the “source session”) as it is being restored to (the “destination session”). However, the source session and destination session should have a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token. There is also no guarantee that cryptographic operations state may be carried across logins, or across different Cryptoki implementations.
If C_SetOperationState is supplied with alleged saved cryptographic operations state which it can determine is not valid saved state (or is cryptographic operations state from a session with a different session state, or is cryptographic operations state from a different token), it fails with the error CKR_SAVED_STATE_INVALID.
Saved state obtained from calls to C_GetOperationState may or may not contain information about keys in use for ongoing cryptographic operations. If a saved cryptographic operations state has an ongoing encryption or decryption operation, and the key in use for the operation is not saved in the state, then it MUST be supplied to C_SetOperationState in the hEncryptionKey argument. If it is not, then C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can be supplied in the hEncryptionKey argument, but this is not required.
Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or verification operation, and the key in use for the operation is not saved in the state, then it MUST be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is not, then C_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can be supplied in the hAuthenticationKey argument, but this is not required.
If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is submitted in the hEncryptionKey argument, but the saved cryptographic operations state supplied does not have an ongoing encryption or decryption operation, then C_SetOperationState fails with the error CKR_KEY_NOT_NEEDED.
If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can somehow detect that this key was not the key being used in the source session for the supplied cryptographic operations state (it may be able to detect this if the key or a hash of the key is present in the saved state, for example), then C_SetOperationState fails with the error CKR_KEY_CHANGED.
An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles to C_SetOperationState calls. If this flag is true, then a call to C_SetOperationState never needs a key handle to be supplied to it. If this flag is false, then at least some of the time, C_SetOperationState requires a key handle, and so the application should probably always pass in any relevant key handles when restoring cryptographic operations state to a session.
C_SetOperationState can successfully restore cryptographic operations state to a session even if that session has active cryptographic or object search operations when C_SetOperationState is called (the ongoing operations are abruptly cancelled).
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_CHANGED, CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.
Example:
CK_SESSION_HANDLE hSession;
CK_MECHANISM digestMechanism;
CK_BYTE_PTR pState;
CK_ULONG ulStateLen;
CK_BYTE data1[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE data2[] = {0x02, 0x04, 0x08};
CK_BYTE data3[] = {0x10, 0x0F, 0x0E, 0x0D, 0x0C};
CK_BYTE pDigest[20];
CK_ULONG ulDigestLen;
CK_RV rv;

.
.
/* Initialize hash operation */
rv = C_DigestInit(hSession, &digestMechanism);
assert(rv == CKR_OK);

/* Start hashing */
rv = C_DigestUpdate(hSession, data1, sizeof(data1));
assert(rv == CKR_OK);

/* Find out how big the state might be */
rv = C_GetOperationState(hSession, NULL_PTR, &ulStateLen);
assert(rv == CKR_OK);

/* Allocate some memory and then get the state */
pState = (CK_BYTE_PTR) malloc(ulStateLen);
rv = C_GetOperationState(hSession, pState, &ulStateLen);

/* Continue hashing */
rv = C_DigestUpdate(hSession, data2, sizeof(data2));
assert(rv == CKR_OK);

/* Restore state. No key handles needed */
rv = C_SetOperationState(hSession, pState, ulStateLen, 0, 0);
assert(rv == CKR_OK);

/* Continue hashing from where we saved state */
rv = C_DigestUpdate(hSession, data3, sizeof(data3));
assert(rv == CKR_OK);

/* Conclude hashing operation */
ulDigestLen = sizeof(pDigest);
rv = C_DigestFinal(hSession, pDigest, &ulDigestLen);
if (rv == CKR_OK) {
  /* pDigest[] now contains the hash of 0x01030507100F0E0D0C */
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_Login)(
  CK_SESSION_HANDLE hSession,
  CK_USER_TYPE userType,
  CK_UTF8CHAR_PTR pPin,
  CK_ULONG ulPinLen
);
C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin points to the user’s PIN; ulPinLen is the length of the PIN. This standard allows PIN values to contain any valid UTF8 character, but the token may impose subset restrictions.
When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's sessions will enter either the "R/W SO Functions" state, the "R/W User Functions" state, or the "R/O User Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_Login depends on the context in which it is called. Improper use of this user type will result in a return value CKR_OPERATION_NOT_INITIALIZED..
If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having to send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or on the slot device. Or the user might not even use a PIN—authentication could be achieved by some fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin parameter to C_Login should be NULL_PTR. When C_Login returns, whatever authentication method supported by the token will have been performed; a return value of CKR_OK means that the user was successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was denied access.
If there are any active cryptographic or object finding operations in an application’s session, and then C_Login is successfully executed by that application, it may or may not be the case that those operations are still active. Therefore, before logging in, any active operations should be finished.
If the application calling C_Login has a R/O session open with the token, then it will be unable to log the SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error code CKR_SESSION_READ_ONLY_EXISTS.
C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do cryptographic operation on this key. See further Section 4.10.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN, CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.
Example: see C_Logout.
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CK_DECLARE_FUNCTION(CK_RV, C_LoginUser)(
  CK_SESSION_HANDLE hSession,
  CK_USER_TYPE userType,
  CK_UTF8CHAR_PTR pPin,
  CK_ULONG ulPinLen,
  CK_UTF8CHAR_PTR pUsername,
  CK_ULONG ulUsernameLen
);
C_LoginUser logs a user into a token. hSession is a session handle; userType is the user type; pPin points to the user’s PIN; ulPinLen is the length of the PIN, pUsername points to the user name, ulUsernameLen is the length of the user name. This standard allows PIN and user name values to contain any valid UTF8 character, but the token may impose subset restrictions. 
When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's sessions will enter either the "R/W SO Functions" state, the "R/W User Functions" state, or the "R/O User Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_LoginUser depends on the context in which it is called. Improper use of this user type will result in a return value CKR_OPERATION_NOT_INITIALIZED. 
If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having to send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or on the slot device. The user might not even use a PIN—authentication could be achieved by some fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin parameter to C_LoginUser should be NULL_PTR. When C_LoginUser returns, whatever authentication method supported by the token will have been performed; a return value of CKR_OK means that the user was successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was denied access. 
If there are any active cryptographic or object finding operations in an application’s session, and then C_LoginUser is successfully executed by that application, it may or may not be the case that those operations are still active. Therefore, before logging in, any active operations should be finished. 
If the application calling C_LoginUser has a R/O session open with the token, then it will be unable to log the SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error code CKR_SESSION_READ_ONLY_EXISTS. 
C_LoginUser may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do cryptographic operation on this key. See further Section 4.10. 
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN, CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID. 
Example:
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR userPin[] = {“MyPIN”};
CK_UTF8CHAR userName[] = {“MyUserName”};
CK_RV rv;

rv = C_LoginUser(hSession, CKU_USER, userPin, sizeof(userPin)-1, userName,
sizeof(userName)-1);
if (rv == CKR_OK) {
  .
  .
  rv = C_Logout(hSession);
  if (rv == CKR_OK) {
    .
    .
  }
}
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CK_DECLARE_FUNCTION(CK_RV, C_Logout)(
  CK_SESSION_HANDLE hSession
);
C_Logout logs a user out from a token. hSession is the session’s handle.
Depending on the current user type, if the call succeeds, each of the application’s sessions will enter either the “R/W Public Session” state or the “R/O Public Session” state.
When C_Logout successfully executes, any of the application’s handles to private objects become invalid (even if a user is later logged back into the token, those handles remain invalid). In addition, all private session objects from sessions belonging to the application are destroyed.
If there are any active cryptographic or object-finding operations in an application’s session, and then C_Logout is successfully executed by that application, it may or may not be the case that those operations are still active. Therefore, before logging out, any active operations should be finished.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR userPin[] = {“MyPIN”};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPin, sizeof(userPin)-1);
if (rv == CKR_OK) {
  .
  .
  rv = C_Logout(hSession);
  if (rv == CKR_OK) {
    .
    .
  }
}
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CK_DECLARE_FUNCTION(CK_RV, C_GetSessionValidationFlags)(
  CK_SESSION_HANDLE hSession,
  CK_SESSION_VALIDATION_FLAGS_TYPE type,
  CK_FLAGS_PTR pFlags,
);
C_GetSessionValidationFlags fetches the requested flags from the session. See Validation indicators (section 4.15.3.1) for meaning and semantics for these flags. Applications are responsible for the appropriate locking to protect session to get a meaningful result from this call.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
5.7 [bookmark: _Toc195693156]Object management functions
Cryptoki provides the following functions for managing objects. Additional functions provided specifically for managing key objects are described in Section 5.18.
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CK_DECLARE_FUNCTION(CK_RV, C_CreateObject)(
  CK_SESSION_HANDLE hSession,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount,
  CK_OBJECT_HANDLE_PTR phObject
);
C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the object’s template; ulCount is the number of attributes in the template; phObject points to the location that receives the new object’s handle.
If a call to C_CreateObject cannot support the precise template supplied to it, it will fail and return without creating any object.
If C_CreateObject is used to create a key object, the key object will have its CKA_LOCAL attribute set to CK_FALSE. If that key object is a secret or private key then the new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.
Only session objects can be created during a read-only session. Only public objects can be created unless the normal user is logged in.
Whenever an object is created, a value for CKA_UNIQUE_ID is generated and assigned to the new object (See Section 4.4.1).
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE
  hData,
  hCertificate,
  hKey;
CK_OBJECT_CLASS
  dataClass = CKO_DATA,
  certificateClass = CKO_CERTIFICATE,
  keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE dataTemplate[] = {
  {CKA_CLASS, &dataClass, sizeof(dataClass)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_APPLICATION, application, sizeof(application)-1},
  {CKA_VALUE, dataValue, sizeof(dataValue)}
};
CK_ATTRIBUTE certificateTemplate[] = {
  {CKA_CLASS, &certificateClass, sizeof(certificateClass)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_VALUE, certificateValue, sizeof(certificateValue)}
};
CK_ATTRIBUTE keyTemplate[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_WRAP, &true, sizeof(true)},
  {CKA_MODULUS, modulus, sizeof(modulus)},
  {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
CK_RV rv;

.
.
/* Create a data object */
rv = C_CreateObject(hSession, dataTemplate, 4, &hData);
if (rv == CKR_OK) {
  .
  .
}

/* Create a certificate object */
rv = C_CreateObject(
  hSession, certificateTemplate, 5, &hCertificate);
if (rv == CKR_OK) {
  .
  .
}

/* Create an RSA public key object */
rv = C_CreateObject(hSession, keyTemplate, 5, &hKey);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_CopyObject)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hObject,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount,
  CK_OBJECT_HANDLE_PTR phNewObject
);
C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s handle; hObject is the object’s handle; pTemplate points to the template for the new object; ulCount is the number of attributes in the template; phNewObject points to the location that receives the handle for the copy of the object.
The template may specify new values for any attributes of the object that can ordinarily be modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may be changed from CK_TRUE to CK_FALSE, but not the other way around. If this change is made, the new key’s CKA_NEVER_EXTRACTABLE attribute will have the value CK_FALSE. Similarly, the template may specify that the new key’s CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the template specifies a value of an attribute which is incompatible with other existing attributes of the object, the call fails with the return code CKR_TEMPLATE_INCONSISTENT.
If a call to C_CopyObject cannot support the precise template supplied to it, it will fail and return without creating any object. If the object indicated by hObject has its CKA_COPYABLE attribute set to CK_FALSE, C_CopyObject will return CKR_ACTION_PROHIBITED.
Whenever an object is copied, a new value for CKA_UNIQUE_ID is generated and assigned to the new object (See Section 4.4.1).
Only session objects can be created during a read-only session. Only public objects can be created unless the normal user is logged in.
Return values: , CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
 Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BYTE id[] = {...};
CK_BYTE keyValue[] = {...};
CK_BBOOL false = CK_FALSE;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE keyTemplate[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &false, sizeof(false)},
  {CKA_ID, id, sizeof(id)},
  {CKA_VALUE, keyValue, sizeof(keyValue)}
};
CK_ATTRIBUTE copyTemplate[] = {
  {CKA_TOKEN, &true, sizeof(true)}
};
CK_RV rv;

.
.
/* Create a DES secret key session object */
rv = C_CreateObject(hSession, keyTemplate, 5, &hKey);
if (rv == CKR_OK) {
  /* Create a copy which is a token object */
  rv = C_CopyObject(hSession, hKey, copyTemplate, 1, &hNewKey);
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_DestroyObject)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hObject
);
C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s handle.
Only session objects can be destroyed during a read-only session. Only public objects can be destroyed unless the normal user is logged in.
Certain objects may not be destroyed. Calling C_DestroyObject on such objects will result in the CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_DESTROYABLE attribute to determine if an object may be destroyed or not.
Return values: CKR_ACTION_PROHIBITED, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.
 Example: see C_GetObjectSize.
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CK_DECLARE_FUNCTION(CK_RV, C_GetObjectSize)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hObject,
  CK_ULONG_PTR pulSize
);
C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the object’s handle; pulSize points to the location that receives the size in bytes of the object.
Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is some measure of how much token memory the object takes up. If an application deletes (say) a private object of size S, it might be reasonable to assume that the ulFreePrivateMemory field of the token’s CK_TOKEN_INFO structure increases by approximately S.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_UTF8CHAR application[] = {“My Application”};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &dataClass, sizeof(dataClass)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_APPLICATION, application, sizeof(application)-1},
  {CKA_VALUE, value, sizeof(value)}
};
CK_ULONG ulSize;
CK_RV rv;

.
.
rv = C_CreateObject(hSession, template, 4, &hObject);
if (rv == CKR_OK) {
  rv = C_GetObjectSize(hSession, hObject, &ulSize);
  if (rv != CKR_INFORMATION_SENSITIVE) {
    .
    .
  }

  rv = C_DestroyObject(hSession, hObject);
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_GetAttributeValue)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hObject,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount
);
C_GetAttributeValue obtains the value of one or more attributes of an object. hSession is the session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute values are to be obtained, and receives the attribute values; ulCount is the number of attributes in the template.
For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue performs the following algorithm:
1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be revealed because the object is sensitive or unextractable, then the ulValueLen field in that triple is modified to hold the value CK_UNAVAILABLE_INFORMATION.
2. Otherwise, if the specified value for the object is invalid (the object does not possess such an attribute), then the ulValueLen field in that triple is modified to hold the value CK_UNAVAILABLE_INFORMATION.
3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is modified to hold the exact length of the specified attribute for the object.
4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of the specified attribute for the object, then that attribute is copied into the buffer located at pValue, and the ulValueLen field is modified to hold the exact length of the attribute.
5. Otherwise, the ulValueLen field is modified to hold the value CK_UNAVAILABLE_INFORMATION.
If case 1 applies to any of the requested attributes, then the call should return the value CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 applies to any of the requested attributes, then the call should return the value CKR_BUFFER_TOO_SMALL. As usual, if more than one of these error codes is applicable, Cryptoki may return any of them. Only if none of them applies to any of the requested attributes will CKR_OK be returned.
In the special case of an attribute whose value is an array of attributes, for example CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, the length specified in ulValueLen MUST be large enough to hold all attributes in the array. If the pValue of elements within the array is NULL_PTR then the ulValueLen of elements within the array will be set to the required length. If the pValue of elements within the array is not NULL_PTR, then the ulValueLen element of attributes within the array MUST reflect the space that the corresponding pValue points to, and pValue is filled in if there is sufficient room. Therefore it is important to initialize the contents of a buffer before calling C_GetAttributeValue to get such an array value. Note that the type element of attributes within the array MUST be ignored on input and MUST be set on output. If any ulValueLen within the array isn't large enough, it will be set to CK_UNAVAILABLE_INFORMATION and the function will return CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute type having the CKF_ARRAY_ATTRIBUTE bit set.
Note that the error codes CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO_SMALL do not denote true errors for C_GetAttributeValue. If a call to C_GetAttributeValue returns any of these three values, then the call MUST nonetheless have processed every attribute in the template supplied to C_GetAttributeValue. Each attribute in the template whose value can be returned by the call to C_GetAttributeValue will be returned by the call to C_GetAttributeValue.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_BYTE_PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {
  {CKA_MODULUS, NULL_PTR, 0},
  {CKA_PUBLIC_EXPONENT, NULL_PTR, 0}
};
CK_RV rv;

.
.
rv = C_GetAttributeValue(hSession, hObject, template, 2);
if (rv == CKR_OK) {
  pModulus = (CK_BYTE_PTR) malloc(template[0].ulValueLen);
  template[0].pValue = pModulus;
  /* template[0].ulValueLen was set by C_GetAttributeValue */

  pExponent = (CK_BYTE_PTR) malloc(template[1].ulValueLen);
  template[1].pValue = pExponent;
  /* template[1].ulValueLen was set by C_GetAttributeValue */

  rv = C_GetAttributeValue(hSession, hObject, template, 2);
  if (rv == CKR_OK) {
    .
    .
  }
  free(pModulus);
  free(pExponent);
}
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CK_DECLARE_FUNCTION(CK_RV, C_SetAttributeValue)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hObject,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount
);
C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute values are to be modified and their new values; ulCount is the number of attributes in the template.
Certain objects may not be modified. Calling C_SetAttributeValue on such objects will result in the CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_MODIFIABLE attribute to determine if an object may be modified or not.
Only session objects can be modified during a read-only session.
The template may specify new values for any attributes of the object that can be modified. If the template specifies a value of an attribute which is incompatible with other existing attributes of the object, the call fails with the return code CKR_TEMPLATE_INCONSISTENT.
Not all attributes can be modified; see Section 4.1.2 for more details.
Return values: CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_UTF8CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {
  {CKA_LABEL, label, sizeof(label)-1}
};
CK_RV rv;

.
.
rv = C_SetAttributeValue(hSession, hObject, template, 1);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_FindObjectsInit)(
  CK_SESSION_HANDLE hSession,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount
);
C_FindObjectsInit initializes a search for token and session objects that match a template. hSession is the session’s handle; pTemplate points to a search template that specifies the attribute values to match; ulCount is the number of attributes in the search template. The matching criterion is an exact byte-for-byte match with all attributes in the template. To find all objects, set ulCount to 0.
After calling C_FindObjectsInit, the application may call C_FindObjects one or more times to obtain handles for objects matching the template, and then eventually call C_FindObjectsFinal to finish the active search operation. At most one search operation may be active at a given time in a given session.
The object search operation will only find objects that the session can view. For example, an object search in an “R/W Public Session” will not find any private objects (even if one of the attributes in the search template specifies that the search is for private objects).
If a search operation is active, and objects are created or destroyed which fit the search template for the active search operation, then those objects may or may not be found by the search operation. Note that this means that, under these circumstances, the search operation may return invalid object handles.
Even though C_FindObjectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search template with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a search operation which will match no objects and return CKR_OK.
If the CKA_UNIQUE_ID attribute is present in the search template, either zero or one objects will be found, since at most one object can have any particular CKA_UNIQUE_ID value.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_FindObjectsFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_FindObjects)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE_PTR phObject,
  CK_ULONG ulMaxObjectCount,
  CK_ULONG_PTR pulObjectCount
);
C_FindObjects continues a search for token and session objects that match a template, obtaining additional object handles. hSession is the session’s handle; phObject points to the location that receives the list (array) of additional object handles; ulMaxObjectCount is the maximum number of object handles to be returned; pulObjectCount points to the location that receives the actual number of object handles returned.
If there are no more objects matching the template, then the location that pulObjectCount points to receives the value 0.
The search MUST have been initialized with C_FindObjectsInit.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_FindObjectsFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_FindObjectsFinal)(
  CK_SESSION_HANDLE hSession
);
C_FindObjectsFinal terminates a search for token and session objects. hSession is the session’s handle.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_ULONG ulObjectCount;
CK_RV rv;

.
.
rv = C_FindObjectsInit(hSession, NULL_PTR, 0);
assert(rv == CKR_OK);
while (1) {
  rv = C_FindObjects(hSession, &hObject, 1, &ulObjectCount);
  if (rv != CKR_OK || ulObjectCount == 0)
    break;
  .
  .
}

rv = C_FindObjectsFinal(hSession);
assert(rv == CKR_OK);
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Cryptoki provides the following functions for encrypting data: 
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CK_DECLARE_FUNCTION(CK_RV, C_EncryptInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_EncryptInit initializes an encryption operation. hSession is the session’s handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.
The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.
After calling C_EncryptInit, the application can either call C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the application MUST call C_EncryptInit again.
C_EncryptInit can be called with pMechanism set to NULL_PTR to terminate an active encryption operation. If an active operation operations cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_EncryptFinal.
5.8.2 [bookmark: _Toc323024130][bookmark: _Toc323205464][bookmark: _Toc323610893][bookmark: _Toc383864900][bookmark: _Toc385057929][bookmark: _Toc405794749][bookmark: _Toc72656139][bookmark: _Toc235002357][bookmark: _Toc7432375][bookmark: _Toc29976645][bookmark: _Toc90376309][bookmark: _Toc111203294][bookmark: _Toc148962136][bookmark: _Toc195693168]C_Encrypt
CK_DECLARE_FUNCTION(CK_RV, C_Encrypt)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pEncryptedData,
  CK_ULONG_PTR pulEncryptedDataLen
);
C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data; ulDataLen is the length in bytes of the data; pEncryptedData points to the location that receives the encrypted data; pulEncryptedDataLen points to the location that holds the length in bytes of the encrypted data.
C_Encrypt uses the convention described in Section 5.2 on producing output.
The encryption operation MUST have been initialized with C_EncryptInit. A call to C_Encrypt always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the ciphertext.
C_Encrypt cannot be used to terminate a multi-part operation, and MUST be called after C_EncryptInit without intervening C_EncryptUpdate calls.
For some encryption mechanisms, the input plaintext data has certain length constraints (either because the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input data MUST consist of an integral number of blocks). If these constraints are not satisfied, then C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.
The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData point to the same location.
For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate operations followed by C_EncryptFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_EncryptFinal for an example of similar functions.
5.8.3 [bookmark: _Toc323024131][bookmark: _Toc323205465][bookmark: _Toc323610894][bookmark: _Toc383864901][bookmark: _Toc385057930][bookmark: _Toc405794750][bookmark: _Toc72656140][bookmark: _Toc235002358][bookmark: _Toc7432376][bookmark: _Toc29976646][bookmark: _Toc90376310][bookmark: _Toc111203295][bookmark: _Toc148962137][bookmark: _Toc195693169]C_EncryptUpdate
CK_DECLARE_FUNCTION(CK_RV, C_EncryptUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG_PTR pulEncryptedPartLen
);
C_EncryptUpdate continues a multiple-part encryption operation, processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part; pEncryptedPart points to the location that receives the encrypted data part; pulEncryptedPartLen points to the location that holds the length in bytes of the encrypted data part.
C_EncryptUpdate uses the convention described in Section 5.2 on producing output.
The encryption operation MUST have been initialized with C_EncryptInit. This function may be called any number of times in succession. A call to C_EncryptUpdate which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current encryption operation.
The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart point to the same location.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_EncryptFinal.
5.8.4 [bookmark: _Toc323024132][bookmark: _Toc323205466][bookmark: _Toc323610895][bookmark: _Toc383864902][bookmark: _Toc385057931][bookmark: _Toc405794751][bookmark: _Toc72656141][bookmark: _Toc235002359][bookmark: _Toc7432377][bookmark: _Toc29976647][bookmark: _Toc90376311][bookmark: _Toc111203296][bookmark: _Toc148962138][bookmark: _Toc195693170]C_EncryptFinal
CK_DECLARE_FUNCTION(CK_RV, C_EncryptFinal)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pLastEncryptedPart,
  CK_ULONG_PTR pulLastEncryptedPartLen
);
C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle; pLastEncryptedPart points to the location that receives the last encrypted data part, if any; pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.
C_EncryptFinal uses the convention described in Section 5.2 on producing output.
The encryption operation MUST have been initialized with C_EncryptInit. A call to C_EncryptFinal always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the ciphertext.
For some multi-part encryption mechanisms, the input plaintext data has certain length constraints, because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return code CKR_DATA_LEN_RANGE.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
#define PLAINTEXT_BUF_SZ 200
#define CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
  CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedData1Len;
CK_ULONG ulEncryptedData2Len;
CK_ULONG ulEncryptedData3Len;
CK_RV rv;

.
.
firstPieceLen = 90;
secondPieceLen = PLAINTEXT_BUF_SZ-firstPieceLen;
rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  /* Encrypt first piece */
  ulEncryptedData1Len = sizeof(encryptedData);
  rv = C_EncryptUpdate(
    hSession,
    &data[0], firstPieceLen,
    &encryptedData[0], &ulEncryptedData1Len);
  if (rv != CKR_OK) {
     .
     .
  }

  /* Encrypt second piece */
  ulEncryptedData2Len = sizeof(encryptedData)-ulEncryptedData1Len;
  rv = C_EncryptUpdate(
    hSession,
    &data[firstPieceLen], secondPieceLen,
    &encryptedData[ulEncryptedData1Len], &ulEncryptedData2Len);
  if (rv != CKR_OK) {
     .
     .
  }

  /* Get last little encrypted bit */
  ulEncryptedData3Len =
    sizeof(encryptedData)-ulEncryptedData1Len-ulEncryptedData2Len;
  rv = C_EncryptFinal(
    hSession,
    &encryptedData[ulEncryptedData1Len+ulEncryptedData2Len],
    &ulEncryptedData3Len);
  if (rv != CKR_OK) {
     .
     .
  }
}
5.9 [bookmark: _Toc7432378][bookmark: _Toc29976648][bookmark: _Toc90376312][bookmark: _Toc111203297][bookmark: _Toc148962139][bookmark: _Toc195693171][bookmark: _Toc385057932][bookmark: _Toc405794752][bookmark: _Toc72656142][bookmark: _Toc235002360][bookmark: _Toc370634031][bookmark: _Toc391468822][bookmark: _Toc395183818]Message-based encryption functions
Message-based encryption refers to the process of encrypting multiple messages using the same encryption mechanism and encryption key. The encryption mechanism can be either an authenticated encryption with associated data (AEAD) algorithm or a pure encryption algorithm.
Cryptoki provides the following functions for message-based encryption:
5.9.1 [bookmark: _Toc7432379][bookmark: _Toc29976649][bookmark: _Toc90376313][bookmark: _Toc111203298][bookmark: _Toc148962140][bookmark: _Toc195693172]C_MessageEncryptInit
CK_DECLARE_FUNCTION(CK_RV, C_MessageEncryptInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_MessageEncryptInit prepares a session for one or more encryption operations that use the same encryption mechanism and encryption key. hSession is the session’s handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.
The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.
After calling C_MessageEncryptInit, the application can either call C_EncryptMessage to encrypt a message in a single part, or call C_EncryptMessageBegin, followed by C_EncryptMessageNext one or more times, to encrypt a message in multiple parts. This may be repeated several times. The message-based encryption process is active until the application calls C_MessageEncryptFinal to finish the message-based encryption process.
C_MessageEncryptInit can be called with pMechanism set to NULL_PTR to terminate a message-based encryption process. If a multi-part message encryption operation is active, it will also be terminated. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
5.9.2 [bookmark: _Toc7432380][bookmark: _Toc29976650][bookmark: _Toc90376314][bookmark: _Toc111203299][bookmark: _Toc148962141][bookmark: _Toc195693173]C_EncryptMessage
CK_DECLARE_FUNCTION(CK_RV, C_EncryptMessage)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pAssociatedData,
  CK_ULONG ulAssociatedDataLen,
  CK_BYTE_PTR pPlaintext,
  CK_ULONG ulPlaintextLen,
  CK_BYTE_PTR pCiphertext,
  CK_ULONG_PTR pulCiphertextLen
);
C_EncryptMessage encrypts a message in a single part. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message encryption operation; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism; pPlaintext points to the plaintext data; ulPlaintextLen is the length in bytes of the plaintext data; pCiphertext points to the location that receives the encrypted data; pulCiphertextLen points to the location that holds the length in bytes of the encrypted data.
Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter passed to C_MessageEncryptInit, pParameter may be either an input or an output parameter. For example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV generator will be output to the pParameter buffer.
If the encryption mechanism is not AEAD, pAssociatedData and ulAssociatedDataLen are not used and should be set to (NULL, 0).
C_EncryptMessage uses the convention described in Section 5.2 on producing output.
The message-based encryption process MUST have been initialized with C_MessageEncryptInit. A call to C_EncryptMessage begins and terminates a message encryption operation.
C_EncryptMessage cannot be called in the middle of a multi-part message encryption operation.
For some encryption mechanisms, the input plaintext data has certain length constraints (either because the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input data MUST consist of an integral number of blocks). If these constraints are not satisfied, then C_EncryptMessage will fail with return code CKR_DATA_LEN_RANGE. The plaintext and ciphertext can be in the same place, i.e., it is OK if pPlaintext and pCiphertext point to the same location.
For most mechanisms, C_EncryptMessage is equivalent to C_EncryptMessageBegin followed by a sequence of C_EncryptMessageNext operations.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
5.9.3 [bookmark: _Toc7432381][bookmark: _Toc29976651][bookmark: _Toc90376315][bookmark: _Toc111203300][bookmark: _Toc148962142][bookmark: _Toc195693174]C_EncryptMessageBegin
CK_DECLARE_FUNCTION(CK_RV, C_EncryptMessageBegin)(  
CK_SESSION_HANDLE hSession,
CK_VOID_PTR pParameter,
CK_ULONG ulParameterLen,
CK_BYTE_PTR pAssociatedData,
CK_ULONG ulAssociatedDataLen
);
C_EncryptMessageBegin begins a multiple-part message encryption operation. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message encryption operation; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism.
Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter passed to C_MessageEncryptInit, pParameter may be either an input or an output parameter. For example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV generator will be output to the pParameter buffer.
If the mechanism is not AEAD, pAssociatedData and ulAssociatedDataLen are not used and should be set to (NULL, 0).
After calling C_EncryptMessageBegin, the application should call C_EncryptMessageNext one or more times to encrypt the message in multiple parts. The message encryption operation is active until the application uses a call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE to actually obtain the final piece of ciphertext. To process additional messages (in single or multiple parts), the application MUST call C_EncryptMessage or C_EncryptMessageBegin again.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
5.9.4 [bookmark: _Toc7432382][bookmark: _Toc29976652][bookmark: _Toc90376316][bookmark: _Toc111203301][bookmark: _Toc148962143][bookmark: _Toc195693175]C_EncryptMessageNext
CK_DECLARE_FUNCTION(CK_RV, C_EncryptMessageNext)(  
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pPlaintextPart,
  CK_ULONG ulPlaintextPartLen,
  CK_BYTE_PTR pCiphertextPart,
  CK_ULONG_PTR pulCiphertextPartLen,
  CK_FLAGS flags
);
C_EncryptMessageNext continues a multiple-part message encryption operation, processing another message part. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message encryption operation; pPlaintextPart points to the plaintext message part; ulPlaintextPartLen is the length of the plaintext message part; pCiphertextPart points to the location that receives the encrypted message part; pulCiphertextPartLen points to the location that holds the length in bytes of the encrypted message part; flags is set to 0 if there is more plaintext data to follow, or set to CKF_END_OF_MESSAGE if this is the last plaintext part.
Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter passed to C_EncryptMessageNext, pParameter may be either an input or an output parameter. For example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV generator will be output to the pParameter buffer.
C_EncryptMessageNext uses the convention described in Section 5.2 on producing output.
The message encryption operation MUST have been started with C_EncryptMessageBegin. This function may be called any number of times in succession. A call to C_EncryptMessageNext with flags=0 which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message encryption operation. A call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE always terminates the active message encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the ciphertext.
Although the last C_EncryptMessageNext call ends the encryption of a message, it does not finish the message-based encryption process. Additional C_EncryptMessage or C_EncryptMessageBegin and C_EncryptMessageNext calls may be made on the session.
The plaintext and ciphertext can be in the same place, i.e., it is OK if pPlaintextPart and pCiphertextPart point to the same location.
For some multi-part encryption mechanisms, the input plaintext data has certain length constraints, because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints are not satisfied when the final message part is supplied (i.e., with flags=CKF_END_OF_MESSAGE), then C_EncryptMessageNext will fail with return code CKR_DATA_LEN_RANGE.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
5.9.5 [bookmark: _Toc7432383][bookmark: _Toc29976653][bookmark: _Toc90376317][bookmark: _Toc111203302][bookmark: _Toc148962144][bookmark: _Toc195693176]C_MessageEncryptFinal
CK_DECLARE_FUNCTION(CK_RV, C_MessageEncryptFinal)(  
  CK_SESSION_HANDLE hSession
);
C_MessageEncryptFinal finishes a message-based encryption process. hSession is the session’s handle.
The message-based encryption process MUST have been initialized with C_MessageEncryptInit.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
#define PLAINTEXT_BUF_SZ 200
#define AUTH_BUF_SZ 100
#define CIPHERTEXT_BUF_SZ 256

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
CK_BYTE tag[16];
CK_GCM_MESSAGE_PARAMS gcmParams = {
  iv,
  sizeof(iv) * 8,
  0,
  CKG_NO_GENERATE,
  tag,
  sizeof(tag) * 8
};
CK_MECHANISM mechanism = {
  CKM_AES_GCM, &gcmParams, sizeof(gcmParams)
};
CK_BYTE data[2][PLAINTEXT_BUF_SZ];
CK_BYTE auth[2][AUTH_BUF_SZ];
CK_BYTE encryptedData[2][CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedDataLen, ulFirstEncryptedDataLen;
CK_ULONG firstPieceLen = PLAINTEXT_BUF_SZ / 2;

/* error handling is omitted for better readability */
.
.
C_MessageEncryptInit(hSession, &mechanism, hKey);
/* encrypt message en bloc with given IV */
ulEncryptedDataLen = sizeof(encryptedData[0]);
C_EncryptMessage(hSession,
  &gcmParams, sizeof(gcmParams),
  &auth[0][0], sizeof(auth[0]),
  &data[0][0], sizeof(data[0]),
  &encryptedData[0][0], &ulEncryptedDataLen);
/* iv and tag are set now for message */

/* encrypt message in two steps with generated IV */
gcmParams.ivGenerator = CKG_GENERATE;
C_EncryptMessageBegin(hSession,
  &gcmParams, sizeof(gcmParams),
  &auth[1][0], sizeof(auth[1])
);
/* encrypt first piece */
ulFirstEncryptedDataLen = sizeof(encryptedData[1]);
C_EncryptMessageNext(hSession,
  &gcmParams, sizeof(gcmParams),
  &data[1][0], firstPieceLen,
  &encryptedData[1][0], &ulFirstEncryptedDataLen,
  0
);
/* encrypt second piece */
ulEncryptedDataLen = sizeof(encryptedData[1]) - ulFirstEncryptedDataLen;
C_EncryptMessageNext(hSession,
  &gcmParams, sizeof(gcmParams),
  &data[1][firstPieceLen], sizeof(data[1])-firstPieceLen,
  &encryptedData[1][ulFirstEncryptedDataLen], &ulEncryptedDataLen,
  CKF_END_OF_MESSAGE
);
/* tag is set now for message */

/* finalize */
C_MessageEncryptFinal(hSession);
5.10 [bookmark: _Toc7432384][bookmark: _Toc29976654][bookmark: _Toc90376318][bookmark: _Toc111203303][bookmark: _Toc148962145][bookmark: _Toc195693177]Decryption functions
[bookmark: _Toc323024133][bookmark: _Toc323205467][bookmark: _Toc323610896][bookmark: _Toc383864903]Cryptoki provides the following functions for decrypting data: 
5.10.1 [bookmark: _Toc385057933][bookmark: _Toc405794753][bookmark: _Toc72656143][bookmark: _Toc235002361][bookmark: _Toc7432385][bookmark: _Toc29976655][bookmark: _Toc90376319][bookmark: _Toc111203304][bookmark: _Toc148962146][bookmark: _Toc195693178]C_DecryptInit
CK_DECLARE_FUNCTION(CK_RV, C_DecryptInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_DecryptInit initializes a decryption operation. hSession is the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.
The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption, MUST be CK_TRUE.
After calling C_DecryptInit, the application can either call C_Decrypt to decrypt data in a single part; or call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the final piece of plaintext. To process additional data (in single or multiple parts), the application MUST call C_DecryptInit again.
C_DecryptInit can be called with pMechanism set to NULL_PTR to terminate an active decryption operation. If an active operation cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_DecryptFinal.
5.10.2 [bookmark: _Toc323024134][bookmark: _Toc323205468][bookmark: _Toc323610897][bookmark: _Toc383864904][bookmark: _Toc385057934][bookmark: _Toc405794754][bookmark: _Toc72656144][bookmark: _Toc235002362][bookmark: _Toc7432386][bookmark: _Toc29976656][bookmark: _Toc90376320][bookmark: _Toc111203305][bookmark: _Toc148962147][bookmark: _Toc195693179]C_Decrypt
CK_DECLARE_FUNCTION(CK_RV, C_Decrypt)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pEncryptedData,
  CK_ULONG ulEncryptedDataLen,
  CK_BYTE_PTR pData,
  CK_ULONG_PTR pulDataLen
);
C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle; pEncryptedData points to the encrypted data; ulEncryptedDataLen is the length of the encrypted data; pData points to the location that receives the recovered data; pulDataLen points to the location that holds the length of the recovered data.
C_Decrypt uses the convention described in Section 5.2 on producing output.
The decryption operation MUST have been initialized with C_DecryptInit. A call to C_Decrypt always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the plaintext.
C_Decrypt cannot be used to terminate a multi-part operation, and MUST be called after C_DecryptInit without intervening C_DecryptUpdate calls.
The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData point to the same location.
If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.
For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate operations followed by C_DecryptFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
[bookmark: _Toc323024135][bookmark: _Toc323205469][bookmark: _Toc323610898][bookmark: _Toc383864905]Example: see C_DecryptFinal for an example of similar functions.
5.10.3 [bookmark: _Toc385057935][bookmark: _Toc405794755][bookmark: _Toc72656145][bookmark: _Toc235002363][bookmark: _Toc7432387][bookmark: _Toc29976657][bookmark: _Toc90376321][bookmark: _Toc111203306][bookmark: _Toc148962148][bookmark: _Toc195693180]C_DecryptUpdate
CK_DECLARE_FUNCTION(CK_RV, C_DecryptUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG ulEncryptedPartLen,
  CK_BYTE_PTR pPart,
  CK_ULONG_PTR pulPartLen
);
C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that receives the recovered data part; pulPartLen points to the location that holds the length of the recovered data part.
[bookmark: _Toc319287678]C_DecryptUpdate uses the convention described in Section 5.2 on producing output.
The decryption operation MUST have been initialized with C_DecryptInit. This function may be called any number of times in succession. A call to C_DecryptUpdate which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current decryption operation.
The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart point to the same location.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
Example: See C_DecryptFinal.
5.10.4 [bookmark: _Toc323024136][bookmark: _Toc323205470][bookmark: _Toc323610899][bookmark: _Toc383864906][bookmark: _Toc385057936][bookmark: _Toc405794756][bookmark: _Toc72656146][bookmark: _Toc235002364][bookmark: _Toc7432388][bookmark: _Toc29976658][bookmark: _Toc90376322][bookmark: _Toc111203307][bookmark: _Toc148962149][bookmark: _Toc195693181]C_DecryptFinal
CK_DECLARE_FUNCTION(CK_RV, C_DecryptFinal)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pLastPart,
  CK_ULONG_PTR pulLastPartLen
);
C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle; pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen points to the location that holds the length of the last recovered data part.
C_DecryptFinal uses the convention described in Section 5.2 on producing output.
The decryption operation MUST have been initialized with C_DecryptInit. A call to C_DecryptFinal always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the plaintext.
If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
[bookmark: _Toc319287679][bookmark: _Toc319313519][bookmark: _Toc319313712][bookmark: _Toc319315705][bookmark: _Toc322855303][bookmark: _Toc322945145][bookmark: _Toc323000712][bookmark: _Toc323024137][bookmark: _Toc323205471][bookmark: _Toc323610900][bookmark: _Toc383864907]Example:
#define CIPHERTEXT_BUF_SZ 256
#define PLAINTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPieceLen, secondEncryptedPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
  CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulData1Len, ulData2Len, ulData3Len;
CK_RV rv;

.
.
firstEncryptedPieceLen = 90;
secondEncryptedPieceLen = CIPHERTEXT_BUF_SZ-firstEncryptedPieceLen;
rv = C_DecryptInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  /* Decrypt first piece */
  ulData1Len = sizeof(data);
  rv = C_DecryptUpdate(
    hSession,
    &encryptedData[0], firstEncryptedPieceLen,
    &data[0], &ulData1Len);
  if (rv != CKR_OK) {
    .
    .
  }

  /* Decrypt second piece */
  ulData2Len = sizeof(data)-ulData1Len;
  rv = C_DecryptUpdate(
    hSession,
    &encryptedData[firstEncryptedPieceLen],
    secondEncryptedPieceLen,
    &data[ulData1Len], &ulData2Len);
  if (rv != CKR_OK) {
    .
    .
  }

  /* Get last little decrypted bit */
  ulData3Len = sizeof(data)-ulData1Len-ulData2Len;
  rv = C_DecryptFinal(
    hSession,
    &data[ulData1Len+ulData2Len], &ulData3Len);
  if (rv != CKR_OK) {
     .
     .
  }
}
5.11 [bookmark: _Toc7432389][bookmark: _Toc29976659][bookmark: _Toc90376323][bookmark: _Toc111203308][bookmark: _Toc148962150][bookmark: _Toc195693182][bookmark: _Toc385057937][bookmark: _Toc405794757][bookmark: _Toc72656147][bookmark: _Toc235002365][bookmark: _Toc370634032][bookmark: _Toc391468823][bookmark: _Toc395183819]Message-based decryption functions
Message-based decryption refers to the process of decrypting multiple encrypted messages using the same decryption mechanism and decryption key. The decryption mechanism can be either an authenticated encryption with associated data (AEAD) algorithm or a pure encryption algorithm.
Cryptoki provides the following functions for message-based decryption.
5.11.1 [bookmark: _Toc7432390][bookmark: _Toc29976660][bookmark: _Toc90376324][bookmark: _Toc111203309][bookmark: _Toc148962151][bookmark: _Toc195693183]C_MessageDecryptInit
CK_DECLARE_FUNCTION(CK_RV, C_MessageDecryptInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_MessageDecryptInit initializes a message-based decryption process, preparing a session for one or more decryption operations that use the same decryption mechanism and decryption key. hSession is the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.
The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption, MUST be CK_TRUE.
After calling C_MessageDecryptInit, the application can either call C_DecryptMessage to decrypt an encrypted message in a single part; or call C_DecryptMessageBegin, followed by C_DecryptMessageNext one or more times, to decrypt an encrypted message in multiple parts. This may be repeated several times. The message-based decryption process is active until the application uses a call to C_MessageDecryptFinal to finish the message-based decryption process.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
5.11.2 [bookmark: _Toc7432391][bookmark: _Toc29976661][bookmark: _Toc90376325][bookmark: _Toc111203310][bookmark: _Toc148962152][bookmark: _Toc195693184]C_DecryptMessage
CK_DECLARE_FUNCTION(CK_RV, C_DecryptMessage)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pAssociatedData,
  CK_ULONG ulAssociatedDataLen,
  CK_BYTE_PTR pCiphertext,
  CK_ULONG ulCiphertextLen,
  CK_BYTE_PTR pPlaintext,
  CK_ULONG_PTR pulPlaintextLen
);
C_DecryptMessage decrypts an encrypted message in a single part. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message decryption operation; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism; pCiphertext points to the encrypted message; ulCiphertextLen is the length of the encrypted message; pPlaintext points to the location that receives the recovered message; pulPlaintextLen points to the location that holds the length of the recovered message.
Typically, pParameter is an initialization vector (IV) or nonce. Unlike the pParameter parameter of C_EncryptMessage, pParameter is always an input parameter.
If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDataLen are not used and should be set to (NULL, 0).
C_DecryptMessage uses the convention described in Section 5.2 on producing output.
The message-based decryption process MUST have been initialized with C_MessageDecryptInit. A call to C_DecryptMessage begins and terminates a message decryption operation.
C_DecryptMessage cannot be called in the middle of a multi-part message decryption operation.
The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertext and pPlaintext point to the same location.
If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.
If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned.
For most mechanisms, C_DecryptMessage is equivalent to C_DecryptMessageBegin followed by a sequence of C_DecryptMessageNext operations.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
5.11.3 [bookmark: _Toc7432392][bookmark: _Toc29976662][bookmark: _Toc90376326][bookmark: _Toc111203311][bookmark: _Toc148962153][bookmark: _Toc195693185]C_DecryptMessageBegin
CK_DECLARE_FUNCTION(CK_RV, C_DecryptMessageBegin)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pAssociatedData,
  CK_ULONG ulAssociatedDataLen
);
C_DecryptMessageBegin begins a multiple-part message decryption operation. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message decryption operation; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism.
Typically, pParameter is an initialization vector (IV) or nonce. Unlike the pParameter parameter of C_EncryptMessageBegin, pParameter is always an input parameter.
If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDataLen are not used and should be set to (NULL, 0).
After calling C_DecryptMessageBegin, the application should call C_DecryptMessageNext one or more times to decrypt the encrypted message in multiple parts. The message decryption operation is active until the application uses a call to C_DecryptMessageNext with flags=CKF_END_OF_MESSAGE to actually obtain the final piece of plaintext. To process additional encrypted messages (in single or multiple parts), the application MUST call C_DecryptMessage or C_DecryptMessageBegin again.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
5.11.4 [bookmark: _Toc7432393][bookmark: _Toc29976663][bookmark: _Toc90376327][bookmark: _Toc111203312][bookmark: _Toc148962154][bookmark: _Toc195693186]C_DecryptMessageNext
CK_DECLARE_FUNCTION(CK_RV, C_DecryptMessageNext)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pCiphertextPart,
  CK_ULONG ulCiphertextPartLen,
  CK_BYTE_PTR pPlaintextPart,
  CK_ULONG_PTR pulPlaintextPartLen,
  CK_FLAGS flags
);
C_DecryptMessageNext continues a multiple-part message decryption operation, processing another encrypted message part. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message decryption operation; pCiphertextPart points to the encrypted message part; ulCiphertextPartLen is the length of the encrypted message part; pPlaintextPart points to the location that receives the recovered message part; pulPlaintextPartLen points to the location that holds the length of the recovered message part; flags is set to 0 if there is more ciphertext data to follow, or set to CKF_END_OF_MESSAGE if this is the last ciphertext part.
Typically, pParameter is an initialization vector (IV) or nonce. Unlike the pParameter parameter of C_EncryptMessageNext, pParameter is always an input parameter.
C_DecryptMessageNext uses the convention described in Section 5.2 on producing output.
The message decryption operation MUST have been started with C_DecryptMessageBegin. This function may be called any number of times in succession. A call to C_DecryptMessageNext with flags=0 which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message decryption operation. A call to C_DecryptMessageNext with flags=CKF_END_OF_MESSAGE always terminates the active message decryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the plaintext.
The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertextPart and pPlaintextPart point to the same location.
Although the last C_DecryptMessageNext call ends the decryption of a message, it does not finish the message-based decryption process. Additional C_DecryptMessage or C_DecryptMessageBegin and C_DecryptMessageNext calls may be made on the session.
If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned by the last C_DecryptMessageNext call.
If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned by the last C_DecryptMessageNext call.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
5.11.5 [bookmark: _Toc7432394][bookmark: _Toc29976664][bookmark: _Toc90376328][bookmark: _Toc111203313][bookmark: _Toc148962155][bookmark: _Toc195693187]C_MessageDecryptFinal
CK_DECLARE_FUNCTION(CK_RV, C_MessageDecryptFinal)(
  CK_SESSION_HANDLE hSession 
);
C_MessageDecryptFinal finishes a message-based decryption process. hSession is the session’s handle. 
The message-based decryption process MUST have been initialized with C_MessageDecryptInit.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
5.12 [bookmark: _Toc7432395][bookmark: _Toc29976665][bookmark: _Toc90376329][bookmark: _Toc111203314][bookmark: _Toc148962156][bookmark: _Toc195693188]Message digesting functions
Cryptoki provides the following functions for digesting data: 
5.12.1 [bookmark: _Toc323024138][bookmark: _Toc323205472][bookmark: _Toc323610901][bookmark: _Toc383864908][bookmark: _Toc385057938][bookmark: _Toc405794758][bookmark: _Toc72656148][bookmark: _Toc235002366][bookmark: _Toc7432396][bookmark: _Toc29976666][bookmark: _Toc90376330][bookmark: _Toc111203315][bookmark: _Toc148962157][bookmark: _Toc195693189]C_DigestInit
CK_DECLARE_FUNCTION(CK_RV, C_DigestInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism
);
C_DigestInit initializes a message-digesting operation. hSession is the session’s handle; pMechanism points to the digesting mechanism.
After calling C_DigestInit, the application can either call C_Digest to digest data in a single part; or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in multiple parts. The message-digesting operation is active until the application uses a call to C_Digest or C_DigestFinal to actually obtain the message digest. To process additional data (in single or multiple parts), the application MUST call C_DigestInit again.
C_DigestInit can be called with pMechanism set to NULL_PTR to terminate an active message-digesting operation. If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_DigestFinal.
5.12.2 [bookmark: _Toc323024139][bookmark: _Toc323205473][bookmark: _Toc323610902][bookmark: _Toc383864909][bookmark: _Toc385057939][bookmark: _Toc405794759][bookmark: _Toc72656149][bookmark: _Toc235002367][bookmark: _Toc7432397][bookmark: _Toc29976667][bookmark: _Toc90376331][bookmark: _Toc111203316][bookmark: _Toc148962158][bookmark: _Toc195693190]C_Digest
CK_DECLARE_FUNCTION(CK_RV, C_Digest)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pDigest,
  CK_ULONG_PTR pulDigestLen
);
C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data; ulDataLen is the length of the data; pDigest points to the location that receives the message digest; pulDigestLen points to the location that holds the length of the message digest.
C_Digest uses the convention described in Section 5.2 on producing output.
The digest operation MUST have been initialized with C_DigestInit. A call to C_Digest always terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message digest.
C_Digest cannot be used to terminate a multi-part operation, and MUST be called after C_DigestInit without intervening C_DigestUpdate calls.
The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point to the same location.
C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by C_DigestFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_DigestFinal for an example of similar functions.
5.12.3 [bookmark: _Toc323024140][bookmark: _Toc323205474][bookmark: _Toc323610903][bookmark: _Toc383864910][bookmark: _Toc385057940][bookmark: _Toc405794760][bookmark: _Toc72656150][bookmark: _Toc235002368][bookmark: _Toc7432398][bookmark: _Toc29976668][bookmark: _Toc90376332][bookmark: _Toc111203317][bookmark: _Toc148962159][bookmark: _Toc195693191]C_DigestUpdate
CK_DECLARE_FUNCTION(CK_RV, C_DigestUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen
);
C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.
[bookmark: _Toc319287681]The message-digesting operation MUST have been initialized with C_DigestInit. Calls to this function and C_DigestKey may be interspersed any number of times in any order. A call to C_DigestUpdate which results in an error terminates the current digest operation.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_DigestFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_DigestKey)(
  CK_SESSION_HANDLE hSession,
  CK_OBJECT_HANDLE hKey
);
C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a secret key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.
The message-digesting operation MUST have been initialized with C_DigestInit. Calls to this function and C_DigestUpdate may be interspersed any number of times in any order.
If the value of the supplied key cannot be digested purely for some reason related to its length, C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example: see C_DigestFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_DigestFinal)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pDigest,
  CK_ULONG_PTR pulDigestLen
);
C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest. hSession is the session’s handle; pDigest points to the location that receives the message digest; pulDigestLen points to the location that holds the length of the message digest.
C_DigestFinal uses the convention described in Section 5.2 on producing output.
The digest operation MUST have been initialized with C_DigestInit. A call to C_DigestFinal always terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message digest.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
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CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_MD5, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_RV rv;

.
.
rv = C_DigestInit(hSession, &mechanism);
if (rv != CKR_OK) {
  .
  .
}

rv = C_DigestUpdate(hSession, data, sizeof(data));
if (rv != CKR_OK) {
  .
  .
}

rv = C_DigestKey(hSession, hKey);
if (rv != CKR_OK) {
  .
  .
}

ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.
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Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these operations also encompass message authentication codes).
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CK_DECLARE_FUNCTION(CK_RV, C_SignInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_SignInit initializes a signature operation, where the signature is an appendix to the data. hSession is the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature key.
The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with appendix, MUST be CK_TRUE.
After calling C_SignInit, the application can either call C_Sign to sign in a single part; or call C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The signature operation is active until the application uses a call to C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in single or multiple parts), the application MUST call C_SignInit again.
C_SignInit can be called with pMechanism set to NULL_PTR to terminate an active signature operation. If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_SignFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_Sign)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG_PTR pulSignatureLen
);
C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the session’s handle; pData points to the data; ulDataLen is the length of the data; pSignature points to the location that receives the signature; pulSignatureLen points to the location that holds the length of the signature.
C_Sign uses the convention described in Section 5.2 on producing output.
The signing operation MUST have been initialized with C_SignInit. A call to C_Sign always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.
C_Sign cannot be used to terminate a multi-part operation, and MUST be called after C_SignInit without intervening C_SignUpdate calls.
For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations followed by C_SignFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_SignFinal for an example of similar functions.
5.13.3 [bookmark: _Toc323024145][bookmark: _Toc323205479][bookmark: _Toc323610908][bookmark: _Toc383864915][bookmark: _Toc385057946][bookmark: _Toc405794766][bookmark: _Toc72656156][bookmark: _Toc235002374][bookmark: _Toc7432404][bookmark: _Toc29976674][bookmark: _Toc90376338][bookmark: _Toc111203323][bookmark: _Toc148962165][bookmark: _Toc195693197]C_SignUpdate
CK_DECLARE_FUNCTION(CK_RV, C_SignUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen
);
C_SignUpdate continues a multiple-part signature operation, processing another data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.
The signature operation MUST have been initialized with C_SignInit. This function may be called any number of times in succession. A call to C_SignUpdate which results in an error terminates the current signature operation.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_SignFinal.
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CK_DECLARE_FUNCTION(CK_RV, C_SignFinal)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pSignature,
  CK_ULONG_PTR pulSignatureLen
);
C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the session’s handle; pSignature points to the location that receives the signature; pulSignatureLen points to the location that holds the length of the signature.
C_SignFinal uses the convention described in Section 5.2 on producing output.
The signing operation MUST have been initialized with C_SignInit. A call to C_SignFinal always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: 
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_ULONG ulMacLen;
CK_RV rv;

.
.
rv = C_SignInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  rv = C_SignUpdate(hSession, data, sizeof(data));
  .
  .
  ulMacLen = sizeof(mac);
  rv = C_SignFinal(hSession, mac, &ulMacLen);
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_SignRecoverInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_SignRecoverInit initializes a signature operation, where the data can be recovered from the signature. hSession is the session’s handle; pMechanism points to the structure that specifies the signature mechanism; hKey is the handle of the signature key.
The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports signatures where the data can be recovered from the signature, MUST be CK_TRUE.
After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a single part. The signature operation is active until the application uses a call to C_SignRecover to actually obtain the signature. To process additional data in a single part, the application MUST call C_SignRecoverInit again.
C_SignRecoverInit can be called with pMechanism set to NULL_PTR to terminate an active signature with data recovery operation. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_SignRecover.
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CK_DECLARE_FUNCTION(CK_RV, C_SignRecover)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG_PTR pulSignatureLen
);
C_SignRecover signs data in a single operation, where the data can be recovered from the signature. hSession is the session’s handle; pData points to the data; uLDataLen is the length of the data; pSignature points to the location that receives the signature; pulSignatureLen points to the location that holds the length of the signature.
C_SignRecover uses the convention described in Section 5.2 on producing output.
The signing operation MUST have been initialized with C_SignRecoverInit. A call to C_SignRecover always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_RESOURCE_EXCEEDED.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE signature[128];
CK_ULONG ulSignatureLen;
CK_RV rv;

.
.
rv = C_SignRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  ulSignatureLen = sizeof(signature);
  rv = C_SignRecover(
    hSession, data, sizeof(data), signature, &ulSignatureLen);
  if (rv == CKR_OK) {
     .
     .
  }
}
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Message-based signature refers to the process of signing multiple messages using the same signature mechanism and signature key.
Cryptoki provides the following functions for signing messages (for the purposes of Cryptoki, these operations also encompass message authentication codes).
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CK_DECLARE_FUNCTION(CK_RV, C_MessageSignInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_MessageSignInit initializes a message-based signature process, preparing a session for one or more signature operations (where the signature is an appendix to the data) that use the same signature mechanism and signature key. hSession is the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature key.
The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with appendix, MUST be CK_TRUE.
After calling C_MessageSignInit, the application can either call C_SignMessage to sign a message in a single part; or call C_SignMessageBegin, followed by C_SignMessageNext one or more times, to sign a message in multiple parts. This may be repeated several times. The message-based signature process is active until the application calls C_MessageSignFinal to finish the message-based signature process.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
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CK_DECLARE_FUNCTION(CK_RV, C_SignMessage)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG_PTR pulSignatureLen
);
C_SignMessage signs a message in a single part, where the signature is an appendix to the message. C_MessageSignInit must previously been called on the session. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message signature operation; pData points to the data; ulDataLen is the length of the data; pSignature points to the location that receives the signature; pulSignatureLen points to the location that holds the length of the signature.
Depending on the mechanism parameter passed to C_MessageSignInit, pParameter may be either an input or an output parameter.
C_SignMessage uses the convention described in Section 5.2 on producing output.
The message-based signing process MUST have been initialized with C_MessageSignInit. A call to C_SignMessage begins and terminates a message signing operation unless it returns CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to hold the signature, or is a successful call (i.e., one which returns CKR_OK). 
C_SignMessage cannot be called in the middle of a multi-part message signing operation.
C_SignMessage does not finish the message-based signing process. Additional C_SignMessage or C_SignMessageBegin and C_SignMessageNext calls may be made on the session.
For most mechanisms, C_SignMessage is equivalent to C_SignMessageBegin followed by a sequence of C_SignMessageNext operations.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED, CKR_TOKEN_RESOURCE_EXCEEDED.
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CK_DECLARE_FUNCTION(CK_RV, C_SignMessageBegin)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen
);
C_SignMessageBegin begins a multiple-part message signature operation, where the signature is an appendix to the message. C_MessageSignInit must previously been called on the session. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message signature operation.
Depending on the mechanism parameter passed to C_MessageSignInit, pParameter may be either an input or an output parameter.
After calling C_SignMessageBegin, the application should call C_SignMessageNext one or more times to sign the message in multiple parts. The message signature operation is active until the application uses a call to C_SignMessageNext with a non-NULL pulSignatureLen to actually obtain the signature. To process additional messages (in single or multiple parts), the application MUST call C_SignMessage or C_SignMessageBegin again.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_RESOURCE_EXCEEDED.
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CK_DECLARE_FUNCTION(CK_RV, C_SignMessageNext)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pDataPart,
  CK_ULONG ulDataPartLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG_PTR pulSignatureLen
);
C_SignMessageNext continues a multiple-part message signature operation, processing another data part, or finishes a multiple-part message signature operation, returning the signature. hSession is the session’s handle, pDataPart points to the data part; pParameter and ulParameterLen specify any mechanism-specific parameters for the message signature operation; ulDataPartLen is the length of the data part; pSignature points to the location that receives the signature; pulSignatureLen points to the location that holds the length of the signature.
The pulSignatureLen argument is set to NULL if there is more data part to follow, or set to a non-NULL value (to receive the signature length) if this is the last data part.
C_SignMessageNext uses the convention described in Section 5.2 on producing output.
The message signing operation MUST have been started with C_SignMessageBegin. This function may be called any number of times in succession. A call to C_SignMessageNext with a NULL pulSignatureLen which results in an error terminates the current message signature operation. A call to C_SignMessageNext with a non-NULL pulSignatureLen always terminates the active message signing operation unless it returns CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to hold the signature, or is a successful call (i.e., one which returns CKR_OK).
Although the last C_SignMessageNext call ends the signing of a message, it does not finish the message-based signing process. Additional C_SignMessage or C_SignMessageBegin and C_SignMessageNext calls may be made on the session.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED, CKR_TOKEN_RESOURCE_EXCEEDED.
5.14.5 [bookmark: _Toc7432413][bookmark: _Toc29976683][bookmark: _Toc90376347][bookmark: _Toc111203332][bookmark: _Toc148962174][bookmark: _Toc195693206]C_MessageSignFinal
CK_DECLARE_FUNCTION(CK_RV, C_MessageSignFinal)(
  CK_SESSION_HANDLE hSession
);
C_MessageSignFinal finishes a message-based signing process. hSession is the session’s handle.
The message-based signing process MUST have been initialized with C_MessageSignInit.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED, CKR_TOKEN_RESOURCE_EXCEEDED.
5.15 [bookmark: _Toc7432414][bookmark: _Toc29976684][bookmark: _Toc90376348][bookmark: _Toc111203333][bookmark: _Toc148962175][bookmark: _Toc195693207]Functions for verifying signatures and MACs
Cryptoki provides the following functions for verifying signatures on data (for the purposes of Cryptoki, these operations also encompass message authentication codes): 
5.15.1 [bookmark: _Toc323024149][bookmark: _Toc323205483][bookmark: _Toc323610912][bookmark: _Toc383864919][bookmark: _Toc385057951][bookmark: _Toc405794771][bookmark: _Toc72656161][bookmark: _Toc235002379][bookmark: _Toc7432415][bookmark: _Toc29976685][bookmark: _Toc90376349][bookmark: _Toc111203334][bookmark: _Toc148962176][bookmark: _Toc195693208]C_VerifyInit
CK_DECLARE_FUNCTION(CK_RV, C_VerifyInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_VerifyInit initializes a verification operation, where the signature is an appendix to the data. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification where the signature is an appendix to the data, MUST be CK_TRUE.
After calling C_VerifyInit, the application can either call C_Verify to verify a signature on data in a single part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify a signature on data in multiple parts. The verification operation is active until the application calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the application MUST call C_VerifyInit again.
C_VerifyInit can be called with pMechanism set to NULL_PTR to terminate an active verification operation. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_VerifyFinal.
5.15.2 [bookmark: _Toc323024150][bookmark: _Toc323205484][bookmark: _Toc323610913][bookmark: _Toc383864920][bookmark: _Toc385057952][bookmark: _Toc405794772][bookmark: _Toc72656162][bookmark: _Toc235002380][bookmark: _Toc7432416][bookmark: _Toc29976686][bookmark: _Toc90376350][bookmark: _Toc111203335][bookmark: _Toc148962177][bookmark: _Toc195693209]C_Verify
CK_DECLARE_FUNCTION(CK_RV, C_Verify)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen
);
C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data. hSession is the session’s handle; pData points to the data; ulDataLen is the length of the data; pSignature points to the signature; ulSignatureLen is the length of the signature.
The verification operation MUST have been initialized with C_VerifyInit. A call to C_Verify always terminates the active verification operation.
A successful call to C_Verify should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active signing operation is terminated.
C_Verify cannot be used to terminate a multi-part operation, and MUST be called after C_VerifyInit without intervening C_VerifyUpdate calls.
For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations followed by C_VerifyFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_VerifyFinal for an example of similar functions.
5.15.3 [bookmark: _Toc323024151][bookmark: _Toc323205485][bookmark: _Toc323610914][bookmark: _Toc383864921][bookmark: _Toc385057953][bookmark: _Toc405794773][bookmark: _Toc72656163][bookmark: _Toc235002381][bookmark: _Toc7432417][bookmark: _Toc29976687][bookmark: _Toc90376351][bookmark: _Toc111203336][bookmark: _Toc148962178][bookmark: _Toc195693210]C_VerifyUpdate
CK_DECLARE_FUNCTION(CK_RV, C_VerifyUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen
);
C_VerifyUpdate continues a multiple-part verification operation, processing another data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.
The verification operation MUST have been initialized with C_VerifyInit. This function may be called any number of times in succession. A call to C_VerifyUpdate which results in an error terminates the current verification operation.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_VerifyFinal.
5.15.4 [bookmark: _Toc323024152][bookmark: _Toc323205486][bookmark: _Toc323610915][bookmark: _Toc383864922][bookmark: _Toc385057954][bookmark: _Toc405794774][bookmark: _Toc72656164][bookmark: _Toc235002382][bookmark: _Toc7432418][bookmark: _Toc29976688][bookmark: _Toc90376352][bookmark: _Toc111203337][bookmark: _Toc148962179][bookmark: _Toc195693211]C_VerifyFinal
CK_DECLARE_FUNCTION(CK_RV, C_VerifyFinal)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen
);
C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is the length of the signature.
The verification operation MUST have been initialized with C_VerifyInit. A call to C_VerifyFinal always terminates the active verification operation.
A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active verifying operation is terminated.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;

.
.
rv = C_VerifyInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  rv = C_VerifyUpdate(hSession, data, sizeof(data));
  .
  .
  rv = C_VerifyFinal(hSession, mac, sizeof(mac));
  .
  .
}
5.15.5 [bookmark: _Toc323024153][bookmark: _Toc323205487][bookmark: _Toc323610916][bookmark: _Toc383864923][bookmark: _Toc385057955][bookmark: _Toc405794775][bookmark: _Toc72656165][bookmark: _Toc235002383][bookmark: _Toc7432419][bookmark: _Toc29976689][bookmark: _Toc90376353][bookmark: _Toc111203338][bookmark: _Toc148962180][bookmark: _Toc195693212]C_VerifyRecoverInit
CK_DECLARE_FUNCTION(CK_RV, C_VerifyRecoverInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_VerifyRecoverInit initializes a signature verification operation, where the data is recovered from the signature. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports verification where the data is recovered from the signature, MUST be CK_TRUE.
After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify a signature on data in a single part. The verification operation is active until the application uses a call to C_VerifyRecover to actually obtain the recovered message.
C_VerifyRecoverInit can be called with pMechanism set to NULL_PTR to terminate an active verification with data recovery operation. If an active operations has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_VerifyRecover.
5.15.6 [bookmark: _Toc323024154][bookmark: _Toc323205488][bookmark: _Toc323610917][bookmark: _Toc383864924][bookmark: _Toc385057956][bookmark: _Toc405794776][bookmark: _Toc72656166][bookmark: _Toc235002384][bookmark: _Toc7432420][bookmark: _Toc29976690][bookmark: _Toc90376354][bookmark: _Toc111203339][bookmark: _Toc148962181][bookmark: _Toc195693213]C_VerifyRecover
CK_DECLARE_FUNCTION(CK_RV, C_VerifyRecover)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen,
  CK_BYTE_PTR pData,
  CK_ULONG_PTR pulDataLen
);
C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the signature. hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is the length of the signature; pData points to the location that receives the recovered data; and pulDataLen points to the location that holds the length of the recovered data.
[bookmark: _Toc319287684]C_VerifyRecover uses the convention described in Section 5.2 on producing output.
The verification operation MUST have been initialized with C_VerifyRecoverInit. A call to C_VerifyRecover always terminates the active verification operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the recovered data.
A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. The return codes CKR_SIGNATURE_INVALID and CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid signature, it will never return CKR_BUFFER_TOO_SMALL.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_TOKEN_RESOURCE_EXCEEDED.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_ULONG ulDataLen;
CK_BYTE signature[128];
CK_RV rv;

.
.
rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
  ulDataLen = sizeof(data);
  rv = C_VerifyRecover(
    hSession, signature, sizeof(signature), data, &ulDataLen);
  .
  .
}
5.15.7 [bookmark: _Toc195693214][bookmark: _Toc7432421][bookmark: _Toc29976691][bookmark: _Toc90376355][bookmark: _Toc111203340][bookmark: _Toc148962182]C_VerifySignatureInit
CK_DECLARE_FUNCTION(CK_RV, C_VerifySignatureInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen
);
C_VerifySignatureInit initializes a verification operation, where the signature is included as part of the initialization. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key; pSignature points to the signature; ulSignatureLen is the length of the signature.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification, MUST be CK_TRUE.
After calling C_VerifySignatureInit, the application can either call C_VerifySignature to verify a signature on data in a single part; or call C_VerifySignatureUpdate one or more times, followed by C_VerifySignatureFinal, to verify a signature on data in multiple parts. The verification operation is active until the application calls C_VerifySignature or C_VerifySignatureFinal. To process additional data (in single or multiple parts), the application MUST call C_VerifySignatureInit again.
Any mechanism that supports C_VerifyInit must also support C_VerifySignatureInit.
C_VerifySignatureInit can be called with pMechanism set to NULL_PTR to terminate an active verification operation. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_VerifySignatureFinal.
5.15.8 [bookmark: _Toc195693215]C_VerifySignature
CK_DECLARE_FUNCTION(CK_RV, C_VerifySignature)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen
);
C_VerifySignature verifies a signature in a single-part operation, where the signature is an appendix to the data. hSession is the session’s handle; pData points to the data; ulDataLen is the length of the data.
The verification operation MUST have been initialized with C_VerifySignatureInit. A call to C_VerifySignature always terminates the active verification operation.
A successful call to C_VerifySignature should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). In any of these cases, the active signing operation is terminated.
C_VerifySignature cannot be used to terminate a multi-part operation, and MUST be called after C_VerifySignatureInit without intervening C_VerifySignatureUpdate calls.
For most mechanisms, C_VerifySignature is equivalent to a sequence of C_VerifySignatureUpdate operations followed by C_VerifySignatureFinal.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_VerifySignatureFinal.
[bookmark: _Toc195693216]C_VerifySignatureUpdate
CK_DECLARE_FUNCTION(CK_RV, C_VerifySignatureUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen
);
C_VerifySignatureUpdate continues a multiple-part verification operation, processing another data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.
The verification operation MUST have been initialized with C_VerifySignatureInit. This function may be called any number of times in succession. A call to C_VerifySignatureUpdate which results in an error terminates the current verification operation.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_RESOURCE_EXCEEDED.
Example: see C_VerifySignatureFinal.
[bookmark: _Toc195693217]C_VerifySignatureFinal
CK_DECLARE_FUNCTION(CK_RV, C_VerifySignatureFinal)(
  CK_SESSION_HANDLE hSession
);
C_VerifySignatureFinal finishes a multiple-part verification operation, checking the signature. hSession is the session’s handle.
The verification operation MUST have been initialized with C_VerifySignatureInit. A call to C_VerifySignatureFinal always terminates the active verification operation.
A successful call to C_VerifySignatureFinal should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). In any of these cases, the active verifying operation is terminated.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;
.
.
rv = C_VerifySignatureInit(hSession, &mechanism, hKey, mac, sizeof(mac));
if (rv == CKR_OK) {
  rv = C_VerifySignatureUpdate(hSession, data, sizeof(data));
  .
  .
  rv = C_VerifySignatureFinal(hSession);
  .
  .
}
5.16 [bookmark: _Toc195693218]Message-based functions for verifying signatures and MACs
Message-based verification refers to the process of verifying signatures on multiple messages using the same verification mechanism and verification key.
Cryptoki provides the following functions for verifying signatures on messages (for the purposes of Cryptoki, these operations also encompass message authentication codes).
5.16.1 [bookmark: _Toc7432422][bookmark: _Toc29976692][bookmark: _Toc90376356][bookmark: _Toc111203341][bookmark: _Toc148962183][bookmark: _Toc195693219]C_MessageVerifyInit
CK_DECLARE_FUNCTION(CK_RV, C_MessageVerifyInit)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hKey
);
C_MessageVerifyInit initializes a message-based verification process, preparing a session for one or more verification operations (where the signature is an appendix to the data) that use the same verification mechanism and verification key. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification where the signature is an appendix to the data, MUST be CK_TRUE.
After calling C_MessageVerifyInit, the application can either call C_VerifyMessage to verify a signature on a message in a single part; or call C_VerifyMessageBegin, followed by C_VerifyMessageNext one or more times, to verify a signature on a message in multiple parts. This may be repeated several times. The message-based verification process is active until the application calls C_MessageVerifyFinal to finish the message-based verification process.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
5.16.2 [bookmark: _Toc7432423][bookmark: _Toc29976693][bookmark: _Toc90376357][bookmark: _Toc111203342][bookmark: _Toc148962184][bookmark: _Toc195693220]C_VerifyMessage
CK_DECLARE_FUNCTION(CK_RV, C_VerifyMessage)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pData,
  CK_ULONG ulDataLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen
);
C_VerifyMessage verifies a signature on a message in a single part operation, where the signature is an appendix to the data. C_MessageVerifyInit must previously been called on the session. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message verification operation; pData points to the data; ulDataLen is the length of the data; pSignature points to the signature; ulSignatureLen is the length of the signature.
Unlike the pParameter parameter of C_SignMessage, pParameter is always an input parameter.
The message-based verification process MUST have been initialized with C_MessageVerifyInit. A call to C_VerifyMessage starts and terminates a message verification operation.
A successful call to C_VerifyMessage should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned.
C_VerifyMessage does not finish the message-based verification process. Additional C_VerifyMessage or C_VerifyMessageBegin and C_VerifyMessageNext calls may be made on the session.
For most mechanisms, C_VerifyMessage is equivalent to C_VerifyMessageBegin followed by a sequence of C_VerifyMessageNext operations.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
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CK_DECLARE_FUNCTION(CK_RV, C_VerifyMessageBegin)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen
);
C_VerifyMessageBegin begins a multiple-part message verification operation, where the signature is an appendix to the message. C_MessageVerifyInit must previously been called on the session. hSession is the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the message verification operation.
Unlike the pParameter parameter of C_SignMessageBegin, pParameter is always an input parameter.
After calling C_VerifyMessageBegin, the application should call C_VerifyMessageNext one or more times to verify a signature on a message in multiple parts. The message verification operation is active until the application calls C_VerifyMessageNext with a non-NULL pSignature. To process additional messages (in single or multiple parts), the application MUST call C_VerifyMessage or C_VerifyMessageBegin again.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
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CK_DECLARE_FUNCTION(CK_RV, C_VerifyMessageNext)(
  CK_SESSION_HANDLE hSession,
  CK_VOID_PTR pParameter,
  CK_ULONG ulParameterLen,
  CK_BYTE_PTR pDataPart,
  CK_ULONG ulDataPartLen,
  CK_BYTE_PTR pSignature,
  CK_ULONG ulSignatureLen
);
C_VerifyMessageNext continues a multiple-part message verification operation, processing another data part, or finishes a multiple-part message verification operation, checking the signature. hSession is the session’s handle, pParameter and ulParameterLen specify any mechanism-specific parameters for the message verification operation, pPart points to the data part; ulPartLen is the length of the data part; pSignature points to the signature; ulSignatureLen is the length of the signature.
The pSignature argument is set to NULL if there is more data part to follow, or set to a non-NULL value (pointing to the signature to verify) if this is the last data part.
The message verification operation MUST have been started with C_VerifyMessageBegin. This function may be called any number of times in succession. A call to C_VerifyMessageNext with a NULL pSignature which results in an error terminates the current message verification operation. A call to C_VerifyMessageNext with a non-NULL pSignature always terminates the active message verification operation.
A successful call to C_VerifyMessageNext with a non-NULL pSignature should return either the value CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active message verifying operation is terminated.
Although the last C_VerifyMessageNext call ends the verification of a message, it does not finish the message-based verification process. Additional C_VerifyMessage or C_VerifyMessageBegin and C_VerifyMessageNext calls may be made on the session.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.
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CK_DECLARE_FUNCTION(CK_RV,C_MessageVerifyFinal)(
 CK_SESSION_HANDLE hSession
);
C_MessageVerifyFinal finishes a message-based verification process. hSession is the session’s handle.
The message-based verification process MUST have been initialized with C_MessageVerifyInit.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_RESOURCE_EXCEEDED.
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Cryptoki provides the following functions to perform two cryptographic operations “simultaneously” within a session. These functions are provided so as to avoid unnecessarily passing data back and forth to and from a token.
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CK_DECLARE_FUNCTION(CK_RV, C_DigestEncryptUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG_PTR pulEncryptedPartLen
);
C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part; pEncryptedPart points to the location that receives the digested and encrypted data part; pulEncryptedPartLen points to the location that holds the length of the encrypted data part.
C_DigestEncryptUpdate uses the convention described in Section 5.2 on producing output. If a C_DigestEncryptUpdate call does not produce encrypted output (because an error occurs, or because pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire encrypted part output), then no plaintext is passed to the active digest operation.
Digest and encryption operations MUST both be active (they MUST have been initialized with C_DigestInit and C_EncryptInit, respectively). This function may be called any number of times in succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and C_EncryptUpdate calls (it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM digestMechanism = {
  CKM_MD5, NULL_PTR, 0
};
CK_MECHANISM encryptionMechanism = {
  CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_ULONG ulEncryptedDataLen;
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.
.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism, hKey);
if (rv != CKR_OK) {
  .
  .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK) {
  .
  .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
  hSession,
  &data[0], BUF_SZ,
  encryptedData, &ulEncryptedDataLen);
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
  hSession,
  &data[BUF_SZ], BUF_SZ,
  encryptedData, &ulEncryptedDataLen);
.
.

/*
 * The last portion of the buffer needs to be 
 * handled with separate calls to deal with 
 * padding issues in ECB mode
 */

/* First, complete the digest on the buffer */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.

/* Then, pad last part with 3 0x00 bytes, and complete encryption */
for(i=0;i<3;i++)
  data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
  hSession,
  &data[BUF_SZ*2], 8,
  encryptedData, &ulEncryptedDataLen);
.
.

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);
.
.
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CK_DECLARE_FUNCTION(CK_RV, C_DecryptDigestUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG ulEncryptedPartLen,
  CK_BYTE_PTR pPart,
  CK_ULONG_PTR pulPartLen
);
C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation, processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that receives the recovered data part; pulPartLen points to the location that holds the length of the recovered data part.
C_DecryptDigestUpdate uses the convention described in Section 5.2 on producing output. If a C_DecryptDigestUpdate call does not produce decrypted output (because an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire decrypted part output), then no plaintext is passed to the active digest operation.
Decryption and digesting operations MUST both be active (they MUST have been initialized with C_DecryptInit and C_DigestInit, respectively). This function may be called any number of times in succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).
Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because when C_DigestEncryptUpdate is called, precisely the same input is passed to both the active digesting operation and the active encryption operation; however, when C_DecryptDigestUpdate is called, the input passed to the active digesting operation is the output of the active decryption operation. This issue comes up only when the mechanism used for decryption performs padding.
In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this ciphertext and digest the original plaintext thereby obtained.
After initializing decryption and digesting operations, the application passes the 24-byte ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed into the active digesting operation.
Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active decryption and digesting operations are linked only through the C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to be digested.
A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the plaintext, not the message digest of the entire plaintext. It is crucial that, before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active digesting operation via a C_DigestUpdate call.
Because of this, it is critical that when an application uses a padded decryption mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active digesting operation. Extreme caution is warranted when using a padded decryption mechanism with C_DecryptDigestUpdate.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
  CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM digestMechanism = {
  CKM_MD5, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.
.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism, hKey);
if (rv != CKR_OK) {
  .
  .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK){
  .
  .
}

ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
  hSession,
  &encryptedData[0], BUF_SZ,
  data, &ulDataLen);
.
.
ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
  hSession,
  &encryptedData[BUF_SZ], BUF_SZ,
  data, &ulDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled with 
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
  hSession,
  &encryptedData[BUF_SZ*2], 8,
  data, &ulLastUpdateSize);
.
.
/* Get last piece of plaintext (should have length 0, here) */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);
if (rv != CKR_OK) {
  .
  .
}

/* Digest last bit of plaintext */
rv = C_DigestUpdate(hSession, data, 5);
if (rv != CKR_OK) {
  .
  .
}
ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
if (rv != CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_SignEncryptUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pPart,
  CK_ULONG ulPartLen,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG_PTR pulEncryptedPartLen
);
C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation, processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part; pEncryptedPart points to the location that receives the digested and encrypted data part; and pulEncryptedPartLen points to the location that holds the length of the encrypted data part.
C_SignEncryptUpdate uses the convention described in Section 5.2 on producing output. If a C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or because pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire encrypted part output), then no plaintext is passed to the active signing operation.
Signature and encryption operations MUST both be active (they MUST have been initialized with C_SignInit and C_EncryptInit, respectively). This function may be called any number of times in succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hEncryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM signMechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};
CK_MECHANISM encryptionMechanism = {
  CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_ULONG ulEncryptedDataLen;
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.
.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism, hEncryptionKey);
if (rv != CKR_OK) {
  .
  .
}
rv = C_SignInit(hSession, &signMechanism, hMacKey);
if (rv != CKR_OK) {
  .
  .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
  hSession,
  &data[0], BUF_SZ,
  encryptedData, &ulEncryptedDataLen);
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
  hSession,
  &data[BUF_SZ], BUF_SZ,
  encryptedData, &ulEncryptedDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled with 
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the signature on the buffer */
rv = C_SignUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
ulMacLen = sizeof(MAC);
rv = C_SignFinal(hSession, MAC, &ulMacLen);
.
.

/* Then pad last part with 3 0x00 bytes, and complete encryption */
for(i=0;i<3;i++)
  data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
  hSession,
  &data[BUF_SZ*2], 8,
  encryptedData, &ulEncryptedDataLen);
.
.

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);
.
.
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CK_DECLARE_FUNCTION(CK_RV, C_DecryptVerifyUpdate)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pEncryptedPart,
  CK_ULONG ulEncryptedPartLen,
  CK_BYTE_PTR pPart,
  CK_ULONG_PTR pulPartLen
);
[bookmark: _Ref320514967][bookmark: _Toc322855305][bookmark: _Toc322945147][bookmark: _Toc323000714][bookmark: _Toc323024155][bookmark: _Toc323205489][bookmark: _Toc323610918][bookmark: _Toc383864925]C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification operation, processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data; pPart points to the location that receives the recovered data; and pulPartLen points to the location that holds the length of the recovered data.
C_DecryptVerifyUpdate uses the convention described in Section 5.2 on producing output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire encrypted part output), then no plaintext is passed to the active verification operation.
Decryption and signature operations MUST both be active (they MUST have been initialized with C_DecryptInit and C_VerifyInit, respectively). This function may be called any number of times in succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.
Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing operation and the active encryption operation; however, when C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is the output of the active decryption operation. This issue comes up only when the mechanism used for decryption performs padding.
In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this ciphertext and verify a signature on the original plaintext thereby obtained.
After initializing decryption and verification operations, the application passes the 24-byte ciphertext (3 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed into the active verification operation.
Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active decryption and verification operations are linked only through the C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed on to the verification mechanism.
A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before C_VerifyFinal is called, the last 2 bytes of plaintext get passed into the active verification operation via a C_VerifyUpdate call.
Because of this, it is critical that when an application uses a padded decryption mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active verification operation. Extreme caution is warranted when using a padded decryption mechanism with C_DecryptVerifyUpdate.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_OPERATION_NOT_INITIALIZED, CKR_PENDING, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hDecryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
  CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM verifyMechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.
.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism, hDecryptionKey);
if (rv != CKR_OK) {
  .
  .
}
rv = C_VerifyInit(hSession, &verifyMechanism, hMacKey);
if (rv != CKR_OK){
  .
  .
}

ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
  hSession,
  &encryptedData[0], BUF_SZ,
  data, &ulDataLen);
.
.
ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
  hSession,
  &encryptedData[BUF_SZ], BUF_SZ,
  data, &ulDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled with 
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
  hSession,
  &encryptedData[BUF_SZ*2], 8,
  data, &ulLastUpdateSize);
.
.
/* Get last little piece of plaintext. Should have length 0 */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);
if (rv != CKR_OK) {
  .
  .
}

/* Send last bit of plaintext to verification operation */
rv = C_VerifyUpdate(hSession, data, 5);
if (rv != CKR_OK) {
  .
  .
}
rv = C_VerifyFinal(hSession, MAC, ulMacLen);
if (rv == CKR_SIGNATURE_INVALID) {
  .
  .
}
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Cryptoki provides the following functions for key management:
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CK_DECLARE_FUNCTION(CK_RV, C_GenerateKey)(
  CK_SESSION_HANDLE hSession
  CK_MECHANISM_PTR pMechanism,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulCount,
  CK_OBJECT_HANDLE_PTR phKey
);
C_GenerateKey generates a secret key or set of domain parameters, creating a new object. hSession is the session’s handle; pMechanism points to the generation mechanism; pTemplate points to the template for the new key or set of domain parameters; ulCount is the number of attributes in the template; phKey points to the location that receives the handle of the new key or set of domain parameters.
If the generation mechanism is for domain parameter generation, the CKA_CLASS attribute will have the value CKO_DOMAIN_PARAMETERS; otherwise, it will have the value CKO_SECRET_KEY.
Since the type of key or domain parameters to be generated is implicit in the generation mechanism, the template does not need to supply a key type. If it does supply a key type which is inconsistent with the generation mechanism, C_GenerateKey fails and returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.
If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail and return without creating an object.
The object created by a successful call to C_GenerateKey will have its CKA_LOCAL attribute set to CK_TRUE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_DES_KEY_GEN, NULL_PTR, 0
};
CK_RV rv;

.
.
rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0, &hKey);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_GenerateKeyPair)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_ATTRIBUTE_PTR pPublicKeyTemplate,
  CK_ULONG ulPublicKeyAttributeCount,
  CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
  CK_ULONG ulPrivateKeyAttributeCount,
  CK_OBJECT_HANDLE_PTR phPublicKey,
  CK_OBJECT_HANDLE_PTR phPrivateKey
);
C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points to the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the public-key template; pPrivateKeyTemplate points to the template for the private key; ulPrivateKeyAttributeCount is the number of attributes in the private-key template; phPublicKey points to the location that receives the handle of the new public key; phPrivateKey points to the location that receives the handle of the new private key.
Since the types of keys to be generated are implicit in the key pair generation mechanism, the templates do not need to supply key types. If one of the templates does supply a key type which is inconsistent with the key generation mechanism, C_GenerateKeyPair fails and returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.
If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fail and return without creating any key objects.
A call to C_GenerateKeyPair will never create just one key and return. A call can fail, and create no keys; or it can succeed, and create a matching public/private key pair.
The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL attributes set to CK_TRUE. In addition, the key objects created will both have values for CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).
Note carefully the order of the arguments to C_GenerateKeyPair. The last two arguments do not have the same order as they did in the original Cryptoki Version 1.0 document. The order of these two arguments has caused some unfortunate confusion.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
  CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_ULONG modulusBits = 3072;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VERIFY, &true, sizeof(true)},
  {CKA_WRAP, &true, sizeof(true)},
  {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
  {CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_PRIVATE, &true, sizeof(true)},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_UNWRAP, &true, sizeof(true)}
};
CK_RV rv;

rv = C_GenerateKeyPair(
  hSession, &mechanism,
  publicKeyTemplate, 5,
  privateKeyTemplate, 8,
  &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_WrapKey)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hWrappingKey,
  CK_OBJECT_HANDLE hKey,
  CK_BYTE_PTR pWrappedKey,
  CK_ULONG_PTR pulWrappedKeyLen
);
C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle; pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle of the key to be wrapped; pWrappedKey points to the location that receives the wrapped key; and pulWrappedKeyLen points to the location that receives the length of the wrapped key.
C_WrapKey uses the convention described in Section 5.2 on producing output.
The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping, MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be CK_TRUE.
If the key to be wrapped cannot be wrapped for some token-specific reason, despite it having its CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails with error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism solely because of its length, then C_WrapKey fails with error code CKR_KEY_SIZE_RANGE.
C_WrapKey can be used in the following situations:
· To wrap any secret key with a public key that supports encryption and decryption.
· To wrap any secret key with any other secret key. Consideration MUST be given to key size and mechanism strength or the token may not allow the operation.
· To wrap a private key with any secret key.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.
To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be compared against the attributes of the key to be wrapped. If all attributes match according to the C_FindObject rules of attribute matching then the wrap will proceed. The value of this attribute is an attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this attribute is not supplied then any template is acceptable. If an attribute is not present, it will not be checked. If any attribute mismatch occurs on an attempt to wrap a key then the function SHALL return CKR_KEY_HANDLE_INVALID.
Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE, CKR_WRAPPING_KEY_TYPE_INCONSISTENT.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
  CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8];
CK_ULONG ulWrappedKeyLen;
CK_RV rv;

.
.
ulWrappedKeyLen = sizeof(wrappedKey);
rv = C_WrapKey(
  hSession, &mechanism,
  hWrappingKey, hKey,
  wrappedKey, &ulWrappedKeyLen);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_UnwrapKey)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hUnwrappingKey,
  CK_BYTE_PTR pWrappedKey,
  CK_ULONG ulWrappedKeyLen,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulAttributeCount,
  CK_OBJECT_HANDLE_PTR phKey
);
C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new key; ulAttributeCount is the number of attributes in the template; phKey points to the location that receives the handle of the recovered key.
The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports unwrapping, MUST be CK_TRUE.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The template for the new key SHALL specify CKA_VALUE_LEN when neither the key type of the unwrapped key nor the unwrapping mechanism unambiguously determine the length of the unwrapped key; otherwise, the function SHALL return CKR_TEMPLATE_INCOMPLETE.
The template for the new key MAY specify CKA_VALUE_LEN when the key type of the unwrapped key or the unwrapping mechanism unambiguously determine the length of the unwrapped key. If any length conflict occurs between the key type of the unwrapped key, the output from the unwrapping mechanism, or the specified CKA_VALUE_LEN, then the function SHALL return CKR_WRAPPED_KEY_LEN_RANGE.
The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by default set to CK_TRUE.
Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the same time that the key is unwrapped.
If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail and return without creating any key object.
The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute set to CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).
To partition the unwrapping keys so they can only unwrap a subset of keys the attribute CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute conflict occurs on an attempt to unwrap a key then the function SHALL return CKR_TEMPLATE_INCONSISTENT.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE, CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
  CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
rv = C_UnwrapKey(
  hSession, &mechanism, hUnwrappingKey,
  wrappedKey, sizeof(wrappedKey), template, 4, &hKey);
if (rv == CKR_OK) {
  .
  .
}
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CK_DECLARE_FUNCTION(CK_RV, C_DeriveKey)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hBaseKey,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulAttributeCount,
  CK_OBJECT_HANDLE_PTR phKey
);
C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is the handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is the number of attributes in the template; and phKey points to the location that receives the handle of the derived key.
The values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes can hold for the newly-derived key. See the description of each particular key-derivation mechanism in Section 6.42 and 6.43 for any constraints of this type.
If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail and return without creating any key object.
The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute set to CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).
To partition the derivation keys so they can only derive a subset of keys the attribute CKA_DERIVE_TEMPLATE can be used on the derivation keys to specify an attribute set that will be added to attributes of the key to be derived. If the attributes do not conflict with the user supplied attribute template, in ‘pTemplate’, then the derivation will proceed. The value of this attribute is an attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this attribute is not present on the base derivation keys then no additional attributes will be added. If any attribute conflict occurs on an attempt to derive a key then the function SHALL return CKR_TEMPLATE_INCONSISTENT.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {
  CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publicValue[128];
CK_BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
  CKM_DH_PKCS_DERIVE, otherPublicValue, sizeof(otherPublicValue)
};
CK_ATTRIBUTE template[] = {
  {CKA_VALUE, &publicValue, sizeof(publicValue)}
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
  {CKA_DERIVE, &true, sizeof(true)}
};
CK_ATTRIBUTE derivedKeyTemplate[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
rv = C_GenerateKeyPair(
  hSession, &keyPairMechanism,
  publicKeyTemplate, 2,
  privateKeyTemplate, 1,
  &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
  rv = C_GetAttributeValue(hSession, hPublicKey, template, 1);
  if (rv == CKR_OK) {
    /* Put other guy’s public value in otherPublicValue */
    .
    .
    rv = C_DeriveKey(
      hSession, &mechanism,
      hPrivateKey, derivedKeyTemplate, 4, &hKey);
    if (rv == CKR_OK) {
      .
      .
    }
  }
}
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CK_DECLARE_FUNCTION(CK_RV, C_WrapKeyAuthenticated)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hWrappingKey,
  CK_OBJECT_HANDLE hKey,
  CK_BYTE_PTR pAssociatedData,
  CK_ULONG ulAssociatedDataLen,
  CK_BYTE_PTR pWrappedKey,
  CK_ULONG_PTR pulWrappedKeyLen
);
C_WrapKeyAuthenticated wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle; pMechanism points to the wrapping mechanism with the message params; hWrappingKey is the handle of the wrapping key; hKey is the handle of the key to be wrapped; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism; pWrappedKey points to the location that receives the wrapped key; and pulWrappedKeyLen points to the location that receives the length of the wrapped key.
C_WrapKeyAuthenticated uses the convention described in section 5.2 on producing output.
The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping, MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be CK_TRUE.
If the key to be wrapped cannot be wrapped for some token-specific reason, despite it having its CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKeyAuthenticated fails with error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism solely because of its length, then C_WrapKeyAuthenticated fails with error code CKR_KEY_SIZE_RANGE.
C_WrapKeyAuthenticated primary use case:
To wrap any secret or private key using an AEAD authenticated mechanism. This allows the ability to use a provider generated (random) IV (GCM) or nonce (CCM) using the standard CK_*_MESSAGE_PARAMS with a mechanism as opposed to passing in the IV (GCM) or nonce (CCM). This IV can then be passed into the mechanism CK_*_MESSAGE_PARAMS for C_UnwrapKeyAuthenticated. See section 6.13.3 for further description of AES-GCM authenticated wrap/unwrap and section 6.13.5 for AES-CCM authenticated wrap/unwrap.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms. 
To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be compared against the attributes of the key to be wrapped. If all attributes match according to the C_FindObject rules of attribute matching, then the wrap will proceed. The value of this attribute is an attribute template, and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this attribute is not supplied, then any template is acceptable. If an attribute is not present, it will not be checked. If any attribute mismatch occurs on an attempt to wrap a key, then the function SHALL return CKR_KEY_HANDLE_INVALID.
Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE, CKR_WRAPPING_KEY_TYPE_INCONSISTENT.
Example: 
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_BYTE iv[12];
CK_BYTE tag[16];
CK_BYTE auth[100];

CK_GCM_MESSAGE_PARAMS gcmParams = {
  iv,
  sizeof(iv) * 8,
  96,
  CKG_GENERATE,
  tag,
  sizeof(tag) * 8
};
CK_MECHANISM mechanism = {
  CKM_AES_GCM, gcmParams, sizeof(gcmParams)
};
CK_BYTE wrappedKey[32]; /* only the wrapped key returned*/
CK_ULONG ulWrappedKeyLen;
CK_RV rv;

ulWrappedKeyLen = sizeof(wrappedKey);
rv = C_WrapKeyAuthenticated(
  hSession, &mechanism, hWrappingKey, hKey,
  auth, sizeof(auth),
  wrappedKey, &ulWrappedKeyLen);

if (rv == CKR_OK) {
  .
  .
}
5.18.7 [bookmark: _Toc127348493][bookmark: _Toc195693236]C_UnwrapKeyAuthenticated
CK_DECLARE_FUNCTION(CK_RV, C_UnwrapKeyAuthenticated)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hUnwrappingKey,
  CK_BYTE_PTR pWrappedKey,
  CK_ULONG ulWrappedKeyLen,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulAttributeCount,
  CK_BYTE_PTR pAssociatedData,
  CK_ULONG ulAssociatedDataLen
  CK_OBJECT_HANDLE_PTR phKey
);
C_UnwrapKeyAuthenticated unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism with the message params; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new key; ulAttributeCount is the number of attributes in the template; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD mechanism; phKey points to the location that receives the handle of the key.
The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports unwrapping, MUST be CK_TRUE.
The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by default set to CK_TRUE.
Some mechanisms may modify, or attempt to modify, the contents of the pMechanism structure at the same time that the key is unwrapped.
If a call to C_UnwrapKeyAuthenticated cannot support the precise template supplied to it, it will fail and return without creating any key object.
The key object created by a successful call to C_UnwrapKeyAuthenticated will have its CKA_LOCAL attribute set to CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and assigned (see section 4.4.1).

C_UnwrapKeyAuthenticated Primary use case:
To unwrap any wrapped secret or private key using an AEAD Authenticated mechanism. This allows the ability to use a provider generated (random) IV (GCM) or nonce (CCM) from C_WrapKeyAuthenticated using the standard CK_*_MESSAGE_PARAMS. This IV can then be passed into the mechanism CK_*_MESSAGE_PARAMS for C_UnwrapKeyAuthenticated. See section 6.13.3 for further description of AES-GCM authenticated wrap/unwrap and section 6.13.5 for AES-CCM authenticated wrap/unwrap.
Of course, tokens vary in which types of keys can actually be unwrapped with which mechanisms.
To partition the unwrapping keys so they can only unwrap a subset of keys the attribute CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied attribute template in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute conflict occurs on an attempt to unwrap a key then the function SHALL return CKR_TEMPLATE_INCONSISTENT.
Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE, CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_BYTE wrappedKey[32] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof1(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;
CK_BYTE iv[] = {1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; /*value from wrap CKG_GENERATE */
CK_BYTE tag[16];
CK_BYTE auth[100];
CK_GCM_MESSAGE_PARAMS gcmParams = {
  iv,
  sizeof(iv) * 8,
  0, /* ignored */
  CKG_NO_GENERATE, /* ignored */
  tag, /* Tag returned from Wrap */
  sizeof(tag) * 8
};
CK_MECHANISM mechanism = {
  CKM_AES_GCM, gcmParams, sizeof(gcmParams)
};

.
.
rv = C_UnwrapKeyAuthenticated(
  hSession, &mechanism, hUnwrappingKey,
  auth, sizeof(auth),
  wrappedKey, sizeof(wrappedKey),
  template, 4, &hKey);

if (rv == CKR_OK) {
  .
  .
}
[bookmark: _Toc195693237]C_EncapsulateKey
CK_DECLARE_FUNCTION(CK_RV, C_EncapsulateKey)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hPublicKey,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulAttributeCount,
  CK_BYTE_PTR pCiphertext, 
  CK_ULONG_PTR pulCiphertextLen 
  CK_OBJECT_HANDLE_PTR phKey,
);
C_EncapulateKey creates a new secret key object from a public key using a KEM. hSession is the session’s handle; pMechanism points to a structure that specifies the encapsulation mechanism; hPublicKey is the handle of the public key; pTemplate points to the template for the new key; ulAttributeCount is the number of attributes in the template; pCiphertext points to the location that receives the ciphertext needed by decapsulate; pulCiphertextLen points to the location to receive the length; and phKey points to the location that receives the handle of the new key. If pCiphertext is not big enough to hold the required ciphertext, pulCiphertextLen is set to the space needed to hold pCiphertext and C_EncapsulateKey returns CKR_BUFFER_TOO_SMALL. The CKA_ENCAPSULATE attribute of the public key, which indicates whether the key supports encapsulation, MUST be CK_TRUE.
The new key will have:
· the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
· the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.
· the CKA_EXTRACTABLE set to the value of the input template with a default of CK_TRUE if not provided,
· the CKA_LOCAL attribute set to CK_FALSE, and
· the CKA_UNIQUE_ID attribute generated and assigned per section 4.4.1.
If a call to C_EncapsulateKey cannot support the precise template supplied to it, it will fail and return without creating any key object.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hKey;
CK_BYTE cipherText[128];
CK_MECHANISM mechanism = {
  CKM_ECDH, NULL_PTR, 0
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE keyTemplate[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
ulCipherTextLen = sizeof(cipherText);
rv = C_EncapsulateKey(
  hSession, &mechanism, hPublicKey,
  keyTemplate, 4,
  cipherText, &ulCipherTextLen,
  &hKey);

if (rv == CKR_OK) {
    .
    .
}
[bookmark: _Toc195693238]C_DecapsulateKey
CK_DECLARE_FUNCTION(CK_RV, C_DecapsulateKey)(
  CK_SESSION_HANDLE hSession,
  CK_MECHANISM_PTR pMechanism,
  CK_OBJECT_HANDLE hPrivateKey,
  CK_ATTRIBUTE_PTR pTemplate,
  CK_ULONG ulAttributeCount,
  CK_BYTE_PTR pCiphertext,
  CK_ULONG ulCiphertextLen,
  CK_OBJECT_HANDLE_PTR phKey,
);
C_DecapsulateKey creates a new secret key object based on the private key and ciphertext generated by a prior encapsulate operation. This new key (called a ‘shared key’ in most KEM documentation) is identical to the key returned by C_EncapsulateKey when it was called with the matching public key and returned the same ciphertext. This function is a KEM style function. hSession is the session’s handle; pMechanism points to the decapsulation mechanism; hPrivateKey is the handle of the decapsulation key; pTemplate points to the template for the new key; ulAttributeCount is the number of attributes in the template; pCiphertext points to the ciphertext in the KEM protocol; ulCiphertextLen is the length of the ciphertext; phKey points to the location that receives the handle of the decapsulated key.
If a call to C_DecapsulateKey cannot support the precise template supplied to it, it will fail and return without creating any key object.
The CKA_DECAPSULATE attribute of the private key, which indicates whether the key supports decapsulation, MUST be CK_TRUE.
The new key will have:
· the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
· the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.
· the CKA_EXTRACTABLE set to the value of the input template with a default of CK_TRUE if not provided,
· the CKA_LOCAL attribute set to CK_FALSE, and
· the CKA_UNIQUE_ID attribute generated and assigned per section 4.4.1.
Some mechanisms may modify, or attempt to modify, the contents of the pMechanism structure at the same time that the key is decapsulated.
If a call to C_DecapsulateKey cannot support the precise template supplied to it, it will fail and return without creating any key object.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PARAMETER_SET_NOT_SUPPORTED, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED, CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE, CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.
Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPrivateKey, hKey;
CK_MECHANISM mechanism = {
  CKM_ECDH, NULL_PTR, 0
};
CK_BYTE cipherText[35] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
rv = C_DecapsulateKey(
  hSession, &mechanism, hPrivateKey,
  template, 4,
  cipherText, sizeof(cipherText), 
  &hKey);

if (rv == CKR_OK) {
  .
  .
}
5.19 [bookmark: _Toc195693239]Random number generation functions
[bookmark: _Toc323205496]Cryptoki provides the following functions for generating random numbers:
5.19.1 [bookmark: _Toc323610925][bookmark: _Toc383864932][bookmark: _Toc385057969][bookmark: _Toc405794789][bookmark: _Toc72656179][bookmark: _Toc235002397][bookmark: _Toc7432439][bookmark: _Toc29976709][bookmark: _Toc90376373][bookmark: _Toc111203358][bookmark: _Toc148962200][bookmark: _Toc195693240]C_SeedRandom
CK_DECLARE_FUNCTION(CK_RV, C_SeedRandom)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pSeed,
  CK_ULONG ulSeedLen
);
C_SeedRandom mixes additional seed material into the token’s random number generator. hSession is the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in bytes of the seed material.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
Example: see C_GenerateRandom.
5.19.2 [bookmark: _Toc323024163][bookmark: _Toc323205497][bookmark: _Toc323610926][bookmark: _Toc383864933][bookmark: _Toc385057970][bookmark: _Toc405794790][bookmark: _Toc72656180][bookmark: _Toc235002398][bookmark: _Toc7432440][bookmark: _Toc29976710][bookmark: _Toc90376374][bookmark: _Toc111203359][bookmark: _Toc148962201][bookmark: _Toc195693241]C_GenerateRandom
CK_DECLARE_FUNCTION(CK_RV, C_GenerateRandom)(
  CK_SESSION_HANDLE hSession,
  CK_BYTE_PTR pRandomData,
  CK_ULONG ulRandomLen
);
C_GenerateRandom generates random data. hSession is the session’s handle; pRandomData points to the location that receives the random data; and ulRandomLen is the length in bytes of the random data to be generated.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_RANDOM_NO_RNG, CKR_SEED_RANDOM_REQUIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
Example:
CK_SESSION_HANDLE hSession;
CK_BYTE seed[] = {...};
CK_BYTE randomData[] = {...};
CK_RV rv;

.
.
rv = C_SeedRandom(hSession, seed, sizeof(seed));
if (rv != CKR_OK) {
  .
  .
}
rv = C_GenerateRandom(hSession, randomData, sizeof(randomData));
if (rv == CKR_OK) {
  .
  .
}
5.20 [bookmark: _Toc322855307][bookmark: _Toc322945149][bookmark: _Toc323000716][bookmark: _Toc323024164][bookmark: _Toc323205498][bookmark: _Toc323610927][bookmark: _Toc383864934][bookmark: _Toc385057971][bookmark: _Ref399575137][bookmark: _Toc405794791][bookmark: _Toc72656181][bookmark: _Toc235002399][bookmark: _Toc370634037][bookmark: _Toc391468828][bookmark: _Toc395183824][bookmark: _Toc7432441][bookmark: _Toc29976711][bookmark: _Toc90376375][bookmark: _Toc111203360][bookmark: _Toc148962202][bookmark: _Toc195693242]Parallel function management functions
Cryptoki provides the following functions for managing parallel execution of cryptographic functions. These functions exist only for backwards compatibility.
5.20.1 [bookmark: _Toc323024165][bookmark: _Toc323205499][bookmark: _Toc323610928][bookmark: _Toc383864935][bookmark: _Toc385057972][bookmark: _Toc405794792][bookmark: _Toc72656182][bookmark: _Toc235002400][bookmark: _Toc7432442][bookmark: _Toc29976712][bookmark: _Toc90376376][bookmark: _Toc111203361][bookmark: _Toc148962203][bookmark: _Toc195693243]C_GetFunctionStatus
CK_DECLARE_FUNCTION(CK_RV, C_GetFunctionStatus)(
  CK_SESSION_HANDLE hSession
);
In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function running in parallel with an application. Now, however, C_GetFunctionStatus is a legacy function which should simply return the value CKR_FUNCTION_NOT_PARALLEL.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED. 
5.20.2 [bookmark: _Toc323024166][bookmark: _Toc323205500][bookmark: _Toc323610929][bookmark: _Toc383864936][bookmark: _Toc385057973][bookmark: _Toc405794793][bookmark: _Toc72656183][bookmark: _Toc235002401][bookmark: _Toc7432443][bookmark: _Toc29976713][bookmark: _Toc90376377][bookmark: _Toc111203362][bookmark: _Toc148962204][bookmark: _Toc195693244]C_CancelFunction
CK_DECLARE_FUNCTION(CK_RV, C_CancelFunction)(
  CK_SESSION_HANDLE hSession
);
In previous versions of Cryptoki, C_CancelFunction cancelled a function running in parallel with an application. Now, however, C_CancelFunction is a legacy function which should simply return the value CKR_FUNCTION_NOT_PARALLEL.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PENDING, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED. 
5.21 [bookmark: _Ref183428710][bookmark: _Toc195693245][bookmark: _Ref320505795][bookmark: _Toc322855308][bookmark: _Ref322938213][bookmark: _Toc322945150][bookmark: _Toc323000717][bookmark: _Toc323024167][bookmark: _Toc323205501][bookmark: _Toc323610930][bookmark: _Toc383864937][bookmark: _Ref384828675][bookmark: _Toc385057974][bookmark: _Ref385351071][bookmark: _Toc405794794][bookmark: _Toc72656184][bookmark: _Toc235002402][bookmark: _Toc370634038][bookmark: _Toc391468829][bookmark: _Toc395183825][bookmark: _Toc7432444][bookmark: _Toc29976714][bookmark: _Toc90376378][bookmark: _Toc111203363][bookmark: _Toc148962205][bookmark: _Ref319997130]Asynchronous function management functions
Cryptoki provides the following functions for managing asynchronous execution of cryptographic functions.
[bookmark: _Toc195693246]C_AsyncComplete
CK_DECLARE_FUNCTION(CK_RV, C_AsyncComplete)(
  CK_SESSION_HANDLE hSession
  CK_UTF8CHAR_PTR pFunctionName,
  CK_ASYNC_DATA_PTR pResult
);
C_AsyncComplete checks if the function identified by pFunctionName has completed an asynchronous operation and, if so, returns the associated result(s). hSession is the session’s handle; pFunctionName is the name of the function whose state is being queried; pResult is a pointer to a structure to receive the result(s) if the function has completed. If the operation has not completed, CKR_PENDING is returned, and the location pointed to by pResult is not modified. If C_AsyncComplete returns an error other than CKR_PENDING, the pValue item of pResult is set to the address passed into C_AsyncJoin as pData, or the address passed into the original call to pFunctionName as the variable-length output buffer, so that it may be freed if dynamically allocated.
For functions that take a buffer in which to place the result of the operation:
· They must return CKR_BUFFER_TOO_SMALL if the input buffer is too small. They cannot return CKR_PENDING.
· Callers must ensure that the buffer passed into the original function remains available to the module for the duration of the operation.
Return values: This function’s return values are as returned by the function identified by pFunctionName.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
  CKM_DES_MAC, NULL_PTR, 0
};

CK_BYTE data[] = {...};
CK_BYTE_PTR mac = NULL_PTR;
CK_ULONG ulMacLen = 0;
CK_RV rv;
.
.
rv = C_SignInit(hSession, &mechanism, hKey);
while (rv == CKR_PENDING)
{
  rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignInit", NULL_PTR);
  /* rv will contain CKR_PENDING if the operation is still running 
     or it will contain the return code from the C_SignInit operation */
}

if (rv == CKR_OK) 
{
  rv = C_SignUpdate(hSession, data, sizeof(data));
  while (rv == CKR_PENDING)
  {
    rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignUpdate", NULL_PTR);
    /* rv will contain CKR_PENDING if the operation is still running 
       or it will contain the return code from the C_SignUpdate operation */
  }
  .
  .
  rv = C_SignFinal(hSession, mac, &ulMacLen);
  if (rv == CKR_BUFFER_TOO_SMALL)
  {
    mac = (CK_BYTE_PTR)malloc(ulMacLen);
    rv = C_SignFinal(hSession, mac, &ulMacLen);
  }
  
  if (rv == CKR_PENDING)
  {
    .
    .
    CK_ASYNC_DATA result;
    result.ulVersion = 0;
    result.pValue = NULL_PTR;
    result.ulValue = 0;
    rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignFinal", &result);
    /* on success, result.pValue contains the pointer to the buffer input 
       to C_SignFinal i.e., on success, mac == result.pValue */
  }
}
5.21.1 [bookmark: _Toc195693247]C_AsyncGetID
CK_DECLARE_FUNCTION(CK_RV, C_AsyncGetID)(
  CK_SESSION_HANDLE hSession
  CK_UTF8CHAR_PTR pFunctionName,
  CK_ULONG_PTR pulID
);
C_AsyncGetID is used to persist an operation past a C_Finalize call and allow another instance of the client to reconnect after a call to C_Initialize. C_AsyncGetID places a module dependent identifier for the asynchronous operation being performed by the function identified by pFunctionName. hSession is the session’s handle; pFunctionName is the name of the function for which an identifier is being requested; pulID is a pointer to a ULONG to contain the identifier.
An attempt to obtain an identifier for a function that is not performing an asynchronous operation should fail with the error CKR_OPERATION_NOT_INITIALIZED.
An attempt to obtain an identifier for a function that is performing an asynchronous operation, but for which the module is unable or unwilling to persist past session close should fail with the error CKR_STATE_UNSAVEABLE.
After a successful call to C_AsyncGetID the caller should free any memory passed into the original call to pFunctionName.
Return values: This function’s return values are CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD, CKR_TOKEN_NOT_PRESENT, CKR_STATE_UNSAVEABLE.
5.21.2 [bookmark: _Toc195693248]C_AsyncJoin
CK_DECLARE_FUNCTION(CK_RV, C_AsyncJoin)(
  CK_SESSION_HANDLE hSession
  CK_UTF8CHAR_PTR pFunctionName,
  CK_ULONG ulID,
  CK_BYTE_PTR pData,
  CK_ULONG ulData
);
C_AsyncJoin checks if the function identified by pFunctionName and ulID is a valid asynchronous operation and, if so, reconnects the client application to the module using the buffer specified by pData and ulData in place of those passed into the original call to pFunctionName. hSession is the session’s handle; pFunctionName is the name of the function to join; ulID is an identifier returned by C_AsyncGetID; pData is a pointer to a buffer to contain the result once the function has completed; ulData is the length in bytes of the data.
This function follows the conventions in section 5.2 with respect to pData and ulData if the function identified by pFunctionName requires an output buffer. If the function identified by pFunctionName does not require an output buffer pData and ulData should be ignored.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD, CKR_TOKEN_NOT_PRESENT, CKR_SAVED_STATE_INVALID, CKR_BUFFER_TOO_SMALL.
5.22 [bookmark: _Toc195693249]Callback functions
Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the application of certain events.
5.22.1 [bookmark: _Ref394400826][bookmark: _Toc405794795][bookmark: _Toc72656185][bookmark: _Toc235002403][bookmark: _Toc370634039][bookmark: _Toc391468830][bookmark: _Toc395183826][bookmark: _Toc7432445][bookmark: _Toc29976715][bookmark: _Toc90376379][bookmark: _Toc111203364][bookmark: _Toc148962206][bookmark: _Toc195693250]Surrender callbacks
Cryptographic functions (i.e., any functions falling under one of these categories: encryption functions; decryption functions; message digesting functions; signing and MACing functions; functions for verifying signatures and MACs; dual-purpose cryptographic functions; key management functions; random number generation functions) executing in Cryptoki sessions can periodically surrender control to the application who called them if the session they are executing in had a notification callback function associated with it when it was opened. They do this by calling the session’s callback with the arguments (hSession, CKN_SURRENDER, pApplication), where hSession is the session’s handle and pApplication was supplied to C_OpenSession when the session was opened. Surrender callbacks should return either the value CKR_OK (to indicate that Cryptoki should continue executing the function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution of the function). Of course, before returning one of these values, the callback function can perform some computation, if desired.
A typical use of a surrender callback might be to give an application user feedback during a lengthy key pair generation operation. Each time the application receives a callback, it could display an additional “.” to the user. It might also examine the keyboard’s activity since the last surrender callback, and abort the key pair generation operation (probably by returning the value CKR_CANCEL) if the user hit <ESCAPE>.
A Cryptoki library is not required to make any surrender callbacks.
5.22.2 [bookmark: _Toc405794796][bookmark: _Toc72656186][bookmark: _Toc235002404][bookmark: _Toc370634040][bookmark: _Toc391468831][bookmark: _Toc395183827][bookmark: _Toc7432446][bookmark: _Toc29976716][bookmark: _Toc90376380][bookmark: _Toc111203365][bookmark: _Toc148962207][bookmark: _Toc195693251][bookmark: _Ref320514897][bookmark: _Toc322855309][bookmark: _Toc322945151][bookmark: _Toc323000718][bookmark: _Toc323024169][bookmark: _Toc323205503][bookmark: _Toc323610932][bookmark: _Toc383864939][bookmark: _Toc385057976]Vendor-defined callbacks
Library vendors can also define additional types of callbacks. Because of this extension capability, application-supplied notification callback routines should examine each callback they receive, and if they are unfamiliar with the type of that callback, they should immediately give control back to the library by returning with the value CKR_OK.
6 [bookmark: _Ref65662830][bookmark: _Toc90376381][bookmark: _Toc111203366][bookmark: _Toc148962208][bookmark: _Toc195693252]Mechanisms
6.1 [bookmark: _Toc228894629][bookmark: _Toc228807151][bookmark: _Toc72656197][bookmark: _Toc405794798][bookmark: _Toc370634366][bookmark: _Toc391471083][bookmark: _Toc395187721][bookmark: _Toc416959967][bookmark: _Toc8118064][bookmark: _Toc30061129][bookmark: _Toc90376382][bookmark: _Toc111203367][bookmark: _Toc148962209][bookmark: _Toc195693253]RSA
[bookmark: _Toc228807488][bookmark: _Toc405795010][bookmark: _Toc383864546][bookmark: _Toc323204916][bookmark: _Toc25853364]Table 36, Mechanisms vs. Functions
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6.1.1 [bookmark: _Toc195693254]Definitions
This section defines the RSA key type “CKK_RSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of RSA key objects.
Mechanisms:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_RSA_PKCS
CKM_RSA_9796
CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMD128_RSA_PKCS
CKM_RIPEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP
CKM_RSA_X9_31_KEY_PAIR_GEN
CKM_RSA_X9_31
CKM_SHA1_RSA_X9_31
CKM_RSA_PKCS_PSS
CKM_SHA1_RSA_PKCS_PSS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_RSA_PKCS_TPM_1_1
CKM_RSA_PKCS_OAEP_TPM_1_1 
CKM_RSA_AES_KEY_WRAP
CKM_SHA3_224_RSA_PKCS
CKM_SHA3_256_RSA_PKCS
CKM_SHA3_384_RSA_PKCS
CKM_SHA3_512_RSA_PKCS
CKM_SHA3_224_RSA_PKCS_PSS
CKM_SHA3_256_RSA_PKCS_PSS
CKM_SHA3_384_RSA_PKCS_PSS
CKM_SHA3_512_RSA_PKCS_PSS

6.1.2 [bookmark: _Toc527453865][bookmark: _Toc527454546][bookmark: _Toc527453866][bookmark: _Toc527454547][bookmark: _Toc527453867][bookmark: _Toc527454548][bookmark: _Toc527453868][bookmark: _Toc527454549][bookmark: _Toc527453869][bookmark: _Toc527454550][bookmark: _Toc228894631][bookmark: _Toc228807153][bookmark: _Toc72656199][bookmark: _Toc370634368][bookmark: _Toc391471085][bookmark: _Toc395187723][bookmark: _Toc416959969][bookmark: _Toc8118068][bookmark: _Toc30061131][bookmark: _Toc90376384][bookmark: _Toc111203369][bookmark: _Toc148962211][bookmark: _Toc195693255]RSA public key objects
RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys. The following table defines the RSA public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315841][bookmark: _Toc319314969][bookmark: _Toc319314554][bookmark: _Toc319314012][bookmark: _Toc228807489][bookmark: _Toc405794983][bookmark: _Toc383864519][bookmark: _Toc323204884][bookmark: _Toc25853365]Table 37, RSA Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_MODULUS1,4
	Big integer
	Modulus n

	CKA_MODULUS_BITS2,3
	CK_ULONG
	Length in bits of modulus n

	CKA_PUBLIC_EXPONENT1
	Big integer
	Public exponent e

	CKA_PUBLIC_CRC64_VALUE1,4,13
	Byte array
	The CRC-64-ECMA calculated over the CKA_MODULUS attribute


- Refer to Table 13 for footnotes
Depending on the token, there may be limits on the length of key components. See [PKCS #1] for more information on RSA keys. 
The following is a sample template for creating an RSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR label[] = “An RSA public key object”;
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_WRAP, &true, sizeof(true)},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_MODULUS, modulus, sizeof(modulus)},
  {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
6.1.3 [bookmark: _Toc228894632][bookmark: _Toc228807154][bookmark: _Toc370634369][bookmark: _Toc391471086][bookmark: _Toc395187724][bookmark: _Toc416959970][bookmark: _Toc8118069][bookmark: _Toc30061132][bookmark: _Toc90376385][bookmark: _Toc111203370][bookmark: _Toc148962212][bookmark: _Toc195693256]RSA private key objects
RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys. The following table defines the RSA private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Ref384613038][bookmark: _Toc228807490][bookmark: _Toc25853366]Table 38, RSA Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_MODULUS1,4,6
	Big integer
	Modulus n

	CKA_PUBLIC_EXPONENT1,4,6
	Big integer
	Public exponent e

	CKA_PRIVATE_EXPONENT1,4,6,7
	Big integer
	Private exponent d

	CKA_PRIME_14,6,7
	Big integer
	Prime p

	CKA_PRIME_24,6,7
	Big integer
	Prime q

	CKA_EXPONENT_14,6,7
	Big integer
	Private exponent d modulo p-1 

	CKA_EXPONENT_24,6,7
	Big integer
	Private exponent d modulo q-1 

	CKA_COEFFICIENT4,6,7
	Big integer
	CRT coefficient q-1 mod p  

	CKA_PUBLIC_CRC64_VALUE1,4,13
	Byte array
	The CRC-64-ECMA calculated over the CKA_MODULUS attribute


- Refer to Table 13 for footnotes
Depending on the token, there may be limits on the length of the key components. See [PKCS #1] for more information on RSA keys.
[bookmark: _Hlk69289613]Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above attributes, which can assist in performing rapid RSA computations. Other tokens might store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the associated public key.
[bookmark: _Hlk69289634]Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an RSA private key, it stores whichever of the fields in Table 38 it keeps track of. Later, if an application asks for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose values it can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails). Note that a Cryptoki implementation may or may not be able and/or willing to supply various attributes of RSA private keys which are not actually stored on the token. E.g., if a particular token stores values only for the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is certainly able to report values for all the attributes above (since they can all be computed efficiently from these three values). However, a Cryptoki implementation may or may not actually do this extra computation. The only attributes from Table 38 for which a Cryptoki implementation is required to be able to return values are CKA_MODULUS, CKA_PUBLIC_EXPONENT and CKA_PRIVATE_EXPONENT. A token SHOULD also be able to return CKA_PUBLIC_KEY_INFO for an RSA private key. 
If an RSA private key object is created on a token, and more attributes from Table 38 are supplied to the object creation call than are supported by the token, the extra attributes are likely to be thrown away. If an attempt is made to create an RSA private key object on a token with insufficient attributes for that particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.
Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified. This is because RSA private keys are only generated as part of an RSA key pair, and the CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.
The following is a sample template for creating an RSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR label[] = “An RSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE modulus[] = {...};
CK_BYTE publicExponent[] = {...};
CK_BYTE privateExponent[] = {...};
CK_BYTE prime1[] = {...};
CK_BYTE prime2[] = {...};
CK_BYTE exponent1[] = {...};
CK_BYTE exponent2[] = {...};
CK_BYTE coefficient[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DECRYPT, &true, sizeof(true)},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_MODULUS, modulus, sizeof(modulus)},
  {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
  {CKA_PRIVATE_EXPONENT, privateExponent, sizeof(privateExponent)},
  {CKA_PRIME_1, prime1, sizeof(prime1)},
  {CKA_PRIME_2, prime2, sizeof(prime2)},
  {CKA_EXPONENT_1, exponent1, sizeof(exponent1)},
  {CKA_EXPONENT_2, exponent2, sizeof(exponent2)},
  {CKA_COEFFICIENT, coefficient, sizeof(coefficient)}
};
6.1.4 [bookmark: _Toc228894633][bookmark: _Toc228807155][bookmark: _Toc72656201][bookmark: _Toc370634370][bookmark: _Toc391471087][bookmark: _Toc395187725][bookmark: _Toc416959971][bookmark: _Toc8118070][bookmark: _Toc30061133][bookmark: _Toc90376386][bookmark: _Toc111203371][bookmark: _Toc148962213][bookmark: _Toc195693257]PKCS #1 RSA key pair generation
The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on the RSA public-key cryptosystem, as defined in [PKCS #1].
It does not have a parameter.
The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537). Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by the token.
Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error if this attribute is omitted from the template. Experience has shown that many implementations of 2.11 and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key. CKA_PUBLIC_EXPONENT will be copied from the template if supplied. CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the RSA public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.5 [bookmark: _Toc228894634][bookmark: _Toc228807156][bookmark: _Toc72656202][bookmark: _Toc370634371][bookmark: _Toc391471088][bookmark: _Toc395187726][bookmark: _Toc416959972][bookmark: _Toc8118071][bookmark: _Toc30061134][bookmark: _Toc90376387][bookmark: _Toc111203372][bookmark: _Toc148962214][bookmark: _Toc195693258]X9.31 RSA key pair generation
The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.
It does not have a parameter.
The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the RSA public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is guaranteed to generate p and q values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the strong primes requirement of X9.31.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.6 [bookmark: _Toc228894635][bookmark: _Toc228807157][bookmark: _Toc72656203][bookmark: _Toc405794800][bookmark: _Toc385057979][bookmark: _Toc383864951][bookmark: _Toc323610934][bookmark: _Toc323205505][bookmark: _Toc323024171][bookmark: _Toc323000720][bookmark: _Toc322945153][bookmark: _Toc322855311][bookmark: _Toc370634372][bookmark: _Toc391471089][bookmark: _Toc395187727][bookmark: _Toc416959973][bookmark: _Toc8118072][bookmark: _Toc30061135][bookmark: _Toc90376388][bookmark: _Toc111203373][bookmark: _Toc148962215][bookmark: _Toc195693259]PKCS #1 v1.5 RSA
The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports single-part encryption and decryption; single-part signatures and verification with and without message recovery; key wrapping and key unwrapping; and key encapsulation and key decapsulation. This mechanism corresponds only to the part of PKCS #1 v1.5 that involves RSA; it does not compute a message digest or a DigestInfo encoding as specified for the md2withRSAEncryption and md5withRSAEncryption algorithms in PKCS #1 v1.5 .
This mechanism does not have a parameter.
This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type or any other information about the key, except the key length; the application must convey these separately. In particular, the mechanism contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during unwrapping; other attributes must be specified in the template.
When the mechanism is used in key encapsulation, the secret key is generated in the C_EncapsulateKey function and then wrapped with RSA PKCS #1 v1.5. C_DecapsulateKey is exactly equivalent to C_UnwrapKey for RSA PKCS.
Constraints on key types and the length of the data are summarized in the following table. For encryption, decryption, signatures and signature verification, the input and output data may begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Ref172641918][bookmark: _Toc228807491][bookmark: _Toc405795011][bookmark: _Toc383864548][bookmark: _Toc323204899][bookmark: _Toc25853367][bookmark: _Ref172641909]Table 39, PKCS #1 v1.5 RSA: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt1
	RSA public key
	≤ k-11
	k
	block type 02

	C_Decrypt1
	RSA private key
	k
	≤ k-11
	block type 02

	C_Sign1
	RSA private key
	≤ k-11
	k
	block type 01

	C_SignRecover1
	RSA private key
	≤ k-11
	k
	block type 01

	C_Verify1
	RSA public key
	≤ k-11, k2
	N/A
	block type 01

	C_VerifyRecover1
	RSA public key
	k
	≤ k-11
	block type 01

	C_WrapKey
	RSA public key
	≤ k-11
	k
	block type 02

	C_UnwrapKey
	RSA private key
	k
	≤ k-11
	block type 02

	C_EncapsulateKey
	RSA public key
	none
	≤ k-11, k
	block type 02

	C_DecapsulateKey
	RSA private key
	k
	≤ k-11
	block type 02


1 Single-part operations only.
2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.7 [bookmark: _Toc228894636][bookmark: _Toc228807158][bookmark: _Toc72656204][bookmark: _Toc370634373][bookmark: _Toc391471090][bookmark: _Toc395187728][bookmark: _Toc416959974][bookmark: _Toc8118073][bookmark: _Toc30061136][bookmark: _Toc90376389][bookmark: _Toc111203374][bookmark: _Toc148962216][bookmark: _Ref174618024][bookmark: _Toc195693260][bookmark: _Toc405794801][bookmark: _Toc385057980][bookmark: _Toc383864952][bookmark: _Toc323610935][bookmark: _Toc323205506][bookmark: _Toc323024172][bookmark: _Toc323000721]PKCS #1 RSA OAEP mechanism parameters
· [bookmark: _Toc228807159][bookmark: _Toc72656205]CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR
CK_RSA_PKCS_MGF_TYPE  is used to indicate the Mask Generation Function (MGF) applied to a message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the PKCS #1 PSS signature scheme. It is defined as follows:
typedef CK_ULONG CK_RSA_PKCS_MGF_TYPE;

The following MGFs are defined in [PKCS #1]. The following table lists the defined functions.
[bookmark: _Toc228807492][bookmark: _Toc25853368]Table 40, PKCS #1 Mask Generation Functions
	Source Identifier
	Value

	CKG_MGF1_SHA1
	0x00000001UL

	CKG_MGF1_SHA224
	0x00000005UL

	CKG_MGF1_SHA256
	0x00000002UL

	CKG_MGF1_SHA384
	0x00000003UL

	CKG_MGF1_SHA512
	0x00000004UL

	CKG_MGF1_SHA3_224
	0x00000006UL

	CKG_MGF1_SHA3_256
	0x00000007UL

	CKG_MGF1_SHA3_384
	0x00000008UL

	CKG_MGF1_SHA3_512
	0x00000009UL


CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_MGF_TYPE.
· [bookmark: _Toc228807160][bookmark: _Toc72656206]CK_RSA_PKCS_OAEP_SOURCE_TYPE; CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR
CK_RSA_PKCS_OAEP_SOURCE_TYPE  is used to indicate the source of the encoding parameter when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:
typedef CK_ULONG CK_RSA_PKCS_OAEP_SOURCE_TYPE;

The following encoding parameter sources are defined in [PKCS #1]. The following table lists the defined sources along with the corresponding data type for the pSourceData field in the CK_RSA_PKCS_OAEP_PARAMS structure defined below.
[bookmark: _Toc228807493][bookmark: _Toc25853369]Table 41, PKCS #1 RSA OAEP: Encoding parameter sources
	Source Identifier
	Value

	CKZ_DATA_SPECIFIED
	0x00000001UL


CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a CK_RSA_PKCS_OAEP_SOURCE_TYPE.
· [bookmark: _Toc228807161][bookmark: _Toc72656207]CK_RSA_PKCS_OAEP_PARAMS; CK_RSA_PKCS_OAEP_PARAMS_PTR
CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:
typedef struct CK_RSA_PKCS_OAEP_PARAMS {
	CK_MECHANISM_TYPE	hashAlg;
	CK_RSA_PKCS_MGF_TYPE	mgf;
	CK_RSA_PKCS_OAEP_SOURCE_TYPE	source;
	CK_VOID_PTR	pSourceData;
	CK_ULONG	ulSourceDataLen;
}	CK_RSA_PKCS_OAEP_PARAMS;

The fields of the structure have the following meanings:
	hashAlg	mechanism ID of the message digest algorithm used to calculate the digest of the encoding parameter
	mgf	mask generation function to use on the encoded block
	source 	must be CKZ_DATA_SPECIFIED
	pSourceData	pointer to the optional label L to be associated with the message; it must be NULL_PTR if the caller wants the default label (the empty string) to be used (as per [RFC 8017])
	ulSourceDataLen 	length in bytes of the data pointed to by pSourceData; it must be 0 if the caller wants the default label (the empty string) to be used (as per [RFC 8017])
CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

6.1.8 [bookmark: _Toc228894637][bookmark: _Toc228807162][bookmark: _Toc72656208][bookmark: _Toc370634374][bookmark: _Toc391471091][bookmark: _Toc395187729][bookmark: _Toc416959975][bookmark: _Toc8118074][bookmark: _Toc30061137][bookmark: _Toc90376390][bookmark: _Toc111203375][bookmark: _Toc148962217][bookmark: _Toc195693261]PKCS #1 RSA OAEP
The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in [PKCS #1]. It supports single-part encryption and decryption; key wrapping and key unwrapping; and key encapsulation and key decapsulation.
It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.
This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type or any other information about the key, except the key length; the application must convey these separately. In particular, the mechanism contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during unwrapping; other attributes must be specified in the template.
When the mechanism is used in key encapsulation, the secret key is generated in the C_EncapsulateKey function and then wrapped with RSA OAEP. C_DecapsulateKey is exactly equivalent to C_UnwrapKey for RSA OAEP.
Constraints on key types and the length of the data are summarized in the following table. For encryption and decryption, the input and output data may begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.
[bookmark: _Toc228807494][bookmark: _Toc25853370]Table 42, PKCS #1 RSA OAEP: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt1
	RSA public key
	≤ k-2-2hLen
	k

	C_Decrypt1
	RSA private key
	k
	≤ k-2-2hLen

	C_WrapKey
	RSA public key
	≤ k-2-2hLen
	k

	C_UnwrapKey
	RSA private key
	k
	≤ k-2-2hLen

	C_EncapsulateKey
	RSA public key
	none
	≤ k-2-2hLen,k

	C_DecapsulateKey
	RSA private key
	k
	≤ k-2-2hLen


1 Single-part operations only.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.9 [bookmark: _Toc228894638][bookmark: _Toc228807163][bookmark: _Toc72656209][bookmark: _Toc370634375][bookmark: _Toc391471092][bookmark: _Toc395187730][bookmark: _Toc416959976][bookmark: _Toc8118075][bookmark: _Toc30061138][bookmark: _Toc90376391][bookmark: _Toc111203376][bookmark: _Toc148962218][bookmark: _Toc195693262]PKCS #1 RSA PSS mechanism parameters
· [bookmark: _Toc228807164][bookmark: _Toc72656210]CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR
CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:
typedef struct CK_RSA_PKCS_PSS_PARAMS {
	CK_MECHANISM_TYPE	hashAlg;
	CK_RSA_PKCS_MGF_TYPE	mgf;
	CK_ULONG	sLen;
}	CK_RSA_PKCS_PSS_PARAMS;

The fields of the structure have the following meanings:
	hashAlg	hash algorithm used in the PSS encoding; if the signature mechanism does not include message hashing, then this value must be the mechanism used by the application to generate the message hash; if the signature mechanism includes hashing, then this value must match the hash algorithm indicated by the signature mechanism
	mgf	mask generation function to use on the encoded block
	sLen	length, in bytes, of the salt value used in the PSS encoding; typical values are the length of the message hash and zero
CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.
6.1.10 [bookmark: _Toc228894639][bookmark: _Toc228807165][bookmark: _Toc72656211][bookmark: _Toc370634376][bookmark: _Toc391471093][bookmark: _Toc395187731][bookmark: _Toc416959977][bookmark: _Toc8118076][bookmark: _Toc30061139][bookmark: _Toc90376392][bookmark: _Toc111203377][bookmark: _Toc148962219][bookmark: _Toc195693263]PKCS #1 RSA PSS
The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the RSA public-key cryptosystem and the PSS block format defined in [PKCS #1]. It supports single-part signature generation and verification without message recovery. This mechanism corresponds only to the part of [PKCS #1] that involves block formatting and RSA, given a hash value; it does not compute a hash value on the message to be signed.
It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of 8, in which case k* is one less than the length in bytes of the RSA modulus.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the RSA.
[bookmark: _Toc228807495][bookmark: _Toc25853371]Table 43, PKCS #1 RSA PSS: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	RSA private key
	hLen
	k

	C_Verify1
	RSA public key
	hLen, k
	N/A


1 Single-part operations only.
2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.11 [bookmark: _Toc228894640][bookmark: _Toc228807166][bookmark: _Toc72656212][bookmark: _Toc370634377][bookmark: _Toc391471094][bookmark: _Toc395187732][bookmark: _Toc416959978][bookmark: _Toc8118077][bookmark: _Toc30061140][bookmark: _Toc90376393][bookmark: _Toc111203378][bookmark: _Toc148962220][bookmark: _Toc195693264]ISO/IEC 9796 RSA
The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part signatures and verification with and without message recovery based on the RSA public-key cryptosystem and the block formats defined in [ISO/IEC 9796] and its annex A.
This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly, the following transformations are performed:
· Data is converted between byte and bit string formats by interpreting the most-significant bit of the leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of the data is a multiple of 8).
· A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string as above; it is converted from a byte string to a bit string by converting the byte string as above, and removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.
This mechanism does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Ref172641925][bookmark: _Toc228807496][bookmark: _Toc405795012][bookmark: _Toc383864549][bookmark: _Toc323204900][bookmark: _Toc25853372]Table 44, ISO/IEC 9796 RSA: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	RSA private key
	≤ ⌊k/2⌋
	k

	C_SignRecover1
	RSA private key
	≤ ⌊k/2⌋
	k

	C_Verify1
	RSA public key
	≤ ⌊k/2⌋, k2
	N/A

	C_VerifyRecover1
	RSA public key
	k
	≤ ⌊k/2⌋


1 Single-part operations only.
2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.12 [bookmark: _Toc228894641][bookmark: _Toc228807167][bookmark: _Toc72656213][bookmark: _Toc405794802][bookmark: _Toc385057981][bookmark: _Toc383864953][bookmark: _Toc323610936][bookmark: _Toc323205507][bookmark: _Toc323024173][bookmark: _Toc323000722][bookmark: _Toc370634378][bookmark: _Toc391471095][bookmark: _Toc395187733][bookmark: _Toc416959979][bookmark: _Toc8118078][bookmark: _Toc30061141][bookmark: _Toc90376394][bookmark: _Toc111203379][bookmark: _Toc148962221][bookmark: _Toc195693265]X.509 (raw) RSA
The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures and verification with and without message recovery; key wrapping and key unwrapping; and key encapsulation and key decapsulation. All these operations are based on so-called “raw” RSA, as assumed in X.509.
“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first, applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first. The input string, considered as an integer, must be less than the modulus; the output string is also less than the modulus.
This mechanism does not have a parameter.
This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other information about the key; the application must convey these separately, and supply them when unwrapping the key.
This mechanism can encapsulate and decapsulate keys according to RSASVE defined in [FIPS SP 800-56B].
For all operations other than encapsulate, X.509 does not specify how to perform padding for RSA encryption. For this mechanism, padding should be performed by prepending plaintext data with 0-valued bytes. In effect, to encrypt the sequence of plaintext bytes b1 b2 … bn (n ≤ k), Cryptoki forms P=2n-1b1+2n-2b2+…+bn. This number must be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to produce an unwrapped key, then however many bytes are specified in the template for the length of the key are taken from the end of this sequence of bytes.
Technically, the above procedures may differ very slightly from certain details of what is specified in X.509.
Executing cryptographic operations using this mechanism can result in the error returns CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same length as the RSA modulus and is numerically at least as large as the modulus).
Constraints on key types and the length of input and output data are summarized in the following table. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Ref172641930][bookmark: _Toc228807497][bookmark: _Toc405795013][bookmark: _Toc383864550][bookmark: _Toc323204901][bookmark: _Toc25853373]Table 45, X.509 (Raw) RSA: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt1
	RSA public key
	≤ k
	k

	C_Decrypt1
	RSA private key
	k
	k

	C_Sign1
	RSA private key
	≤ k
	k

	C_SignRecover1
	RSA private key
	≤ k
	k

	C_Verify1
	RSA public key
	≤ k, k2
	N/A

	C_VerifyRecover1
	RSA public key
	k
	k

	C_WrapKey
	RSA public key
	≤ k
	k

	C_UnwrapKey
	RSA private key
	k
	≤ k (specified in template)

	C_EncapsulateKey
	RSA public key
	none
	k,k

	C_DecapsulateKey
	RSA private key
	k
	k


1 Single-part operations only.
2 Data length, signature length.
[bookmark: _Toc322945156][bookmark: _Toc322855314]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
This mechanism is intended for compatibility with applications that do not follow the [PKCS #1] or [ISO/IEC 9796] block formats.
6.1.13 [bookmark: _Toc228894642][bookmark: _Toc228807168][bookmark: _Toc72656214][bookmark: _Toc370634379][bookmark: _Toc391471096][bookmark: _Toc395187734][bookmark: _Toc416959980][bookmark: _Toc8118079][bookmark: _Toc30061142][bookmark: _Toc90376395][bookmark: _Toc111203380][bookmark: _Toc148962222][bookmark: _Toc195693266][bookmark: _Toc405794803][bookmark: _Toc385057982]ANSI X9.31 RSA
The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures and verification without message recovery based on the RSA public-key cryptosystem and the block formats defined in [ANSI X9.31].
This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must be applied by the application.
This mechanism processes only byte strings, whereas [ANSI X9.31] operates on bit strings. Accordingly, the following transformations are performed:
· Data is converted between byte and bit string formats by interpreting the most-significant bit of the leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of the data is a multiple of 8).
· A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string as above; it is converted from a byte string to a bit string by converting the byte string as above, and removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.
This mechanism does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least 128 and a multiple of 32 as specified in [ANSI X9.31].
[bookmark: _Toc228807498][bookmark: _Toc25853374]Table 46, ANSI X9.31 RSA: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	RSA private key
	≤ k-2
	k

	C_Verify1
	RSA public key
	≤ k-2, k2
	N/A


1 Single-part operations only.
2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.14 [bookmark: _Toc228894643][bookmark: _Toc228807169][bookmark: _Toc72656215][bookmark: _Toc370634380][bookmark: _Toc391471097][bookmark: _Toc395187735][bookmark: _Toc416959981][bookmark: _Toc8118080][bookmark: _Toc30061143][bookmark: _Toc90376396][bookmark: _Toc111203381][bookmark: _Toc148962223][bookmark: _Toc195693267]PKCS #1 v1.5 RSA signature with hashing
The PKCS #1 v1.5 RSA signature with hashing, denoted CKM_<hash>_RSA_PKCS where <hash> identifies a hash function as per Table 47, performs single- and multiple-part digital signatures and verification operations without message recovery. The operations performed are as described initially in PKCS #1 v1.5 with the object identifier as per Table 47, and as in the scheme RSASSA-PKCS1-v1_5 in the current version of PKCS #1, where the underlying hash function is the hash function as per Table 47.
[bookmark: _Ref165390249]Table 47, PKCS #1 v1.5 RSA signature with hashing: mechanisms and hash functions
	[bookmark: _Hlk165389702]Mechanism
	Hash function
	Hash value length in bytes
	Object identifier

	CKM_MD2_RSA_PKCS
	MD2
	16
	md2WithRSAEncryption

	CKM_MD5_RSA_PKCS
	MD5
	16
	md5WithRSAEncryption

	CKM_RIPEMD128_RSA_PKCS
	RIPEMD-128
	16
	ripemd128WithRSAEncryption

	CKM_RIPEMD160_RSA_PKCS
	RIPEMD-160
	20
	ripemd160WithRSAEncryption

	CKM_SHA1_RSA_PKCS
	SHA-1
	20
	sha1WithRSAEncryption

	CKM_SHA224_RSA_PKCS
	SHA-224
	28
	sha224WithRSAEncryption

	CKM_SHA256_RSA_PKCS
	SHA-256
	32
	sha256WithRSAEncryption

	CKM_SHA384_RSA_PKCS
	SHA-384
	48
	sha384WithRSAEncryption

	CKM_SHA512_RSA_PKCS
	SHA-512
	64
	sha512WithRSAEncryption

	CKM_SHA3_224_RSA_PKCS
	SHA3-224
	28
	id-rsassa-pkcs1-v1-5-with-sha3-224

	CKM_SHA3_256_RSA_PKCS
	SHA3-256
	32
	id-rsassa-pkcs1-v1-5-with-sha3-256

	CKM_SHA3_384_RSA_PKCS
	SHA3-384
	48
	id-rsassa-pkcs1-v1-5-with-sha3-384

	CKM_SHA3_512_RSA_PKCS
	SHA3-512
	64
	id-rsassa-pkcs1-v1-5-with-sha3-512


Note: CKM_MD2_RSA_PKCS, CKM_MD5_RSA_PKCS, CKM_RIPEMD128_RSA_PKCS and CKM_RIPEMD160_RSA_PKCS are deprecated with PKCS #11 3.20. New implementations shall not use these mechanisms anymore.
None of these mechanisms has a parameter.
Constraints on key types and the length of the data for these mechanisms are summarized in the following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA signature with hashing mechanisms, k must be at least 11 bytes more than the length of the hash value as indicated in Table 47.
[bookmark: _Ref165390097][bookmark: _Toc228807499][bookmark: _Toc405795014][bookmark: _Toc25853375][bookmark: _Ref165390049]Table 48, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Sign
	RSA private key
	any
	k
	block type 01

	C_Verify
	RSA public key
	any, k2
	N/A
	block type 01


2 Data length, signature length.
For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.15 [bookmark: _Toc72656216][bookmark: _Toc228894646][bookmark: _Toc228807172][bookmark: _Toc370634383][bookmark: _Toc391471100][bookmark: _Toc395187738][bookmark: _Toc416959984][bookmark: _Toc8118083][bookmark: _Toc30061146][bookmark: _Toc90376399][bookmark: _Toc111203384][bookmark: _Toc148962226][bookmark: _Toc228894645][bookmark: _Toc228807171][bookmark: _Toc151796110][bookmark: _Toc370634382][bookmark: _Toc391471099][bookmark: _Toc395187737][bookmark: _Toc416959983][bookmark: _Toc8118082][bookmark: _Toc30061145][bookmark: _Toc90376398][bookmark: _Toc111203383][bookmark: _Toc148962225][bookmark: _Toc195693268][bookmark: _Toc405794804][bookmark: _Toc385057983][bookmark: _Toc383864954][bookmark: _Toc323610937][bookmark: _Toc323205508][bookmark: _Toc323024174][bookmark: _Toc323000723]PKCS #1 RSA PSS signature with hashing
The PKCS #1 RSA PSS signature with hashing, denoted CKM_<hash>_RSA_PKCS_PSS where <hash> identifies a hash function as per Table 49, performs single- and multiple-part digital signatures and verification operations without message recovery. The operations performed are as described in [PKCS #1] with the object identifier id-RSASSA-PSS, i.e., as in the scheme RSASSA-PSS in [PKCS #1] where the underlying hash function is the hash function as per Table 49.
[bookmark: _Ref165548398]Table 49, PKCS #1 RSA PSS signature with hashing: mechanisms and hash functions
	Mechanism
	Hash function
	Hash value length in bytes

	CKM_SHA1_RSA_PKCS_PSS
	SHA-1
	20

	CKM_SHA224_RSA_PKCS_PSS
	SHA-224
	28

	CKM_SHA256_RSA_PKCS_PSS
	SHA-256
	32

	CKM_SHA384_RSA_PKCS_PSS
	SHA-384
	48

	CKM_SHA512_RSA_PKCS_PSS
	SHA-512
	64

	CKM_SHA3_224_RSA_PKCS_PSS
	SHA3-224
	28

	CKM_SHA3_256_RSA_PKCS_PSS
	SHA3-256
	32

	CKM_SHA3_384_RSA_PKCS_PSS
	SHA3-384
	48

	CKM_SHA3_512_RSA_PKCS_PSS
	SHA3-512
	64



The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value as indicated in Table 49. k* is the length in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of 8, in which case k* is one less than the length in bytes of the RSA modulus.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Toc228807500][bookmark: _Toc25853376]Table 50, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	RSA private key
	any
	k

	C_Verify
	RSA public key
	any, k2
	N/A


2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.16 [bookmark: _Toc228894647][bookmark: _Toc228807173][bookmark: _Toc72656217][bookmark: _Toc370634384][bookmark: _Toc391471101][bookmark: _Toc395187739][bookmark: _Toc416959985][bookmark: _Toc8118086][bookmark: _Toc30061149][bookmark: _Toc90376402][bookmark: _Toc111203387][bookmark: _Toc148962229][bookmark: _Toc195693269]ANSI X9.31 RSA signature with SHA-1
The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs single- and multiple-part digital signatures and verification operations without message recovery. The operations performed are as described in [ANSI X9.31].
This mechanism does not have a parameter.
Constraints on key types and the length of the data for these mechanisms are summarized in the following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least 128 and a multiple of 32 as specified in [ANSI X9.31].
[bookmark: _Toc228807501][bookmark: _Toc25853377]Table 51, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	RSA private key
	any
	k

	C_Verify
	RSA public key
	any, k2
	N/A


2 Data length, signature length.
For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.17 [bookmark: _Toc76209442][bookmark: _Toc228807174][bookmark: _Toc228894648][bookmark: _Toc370634385][bookmark: _Toc391471102][bookmark: _Toc395187740][bookmark: _Toc416959986][bookmark: _Toc8118087][bookmark: _Toc30061150][bookmark: _Toc90376403][bookmark: _Toc111203388][bookmark: _Toc148962230][bookmark: _Toc195693270][bookmark: _Toc72656218][bookmark: _Toc76209444]TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA
The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS_TPM_1_1, is a multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports single-part encryption and decryption; key wrapping; and key unwrapping. 
This mechanism does not have a parameter. It differs from the standard PKCS #1 v1.5 RSA encryption mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure before being submitted to the PKCS #1 v1.5 encryption process. On encryption, the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, 0xYY may be accepted.
This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type or any other information about the key, except the key length; the application must convey these separately. In particular, the mechanism contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during unwrapping; other attributes must be specified in the template.
Constraints on key types and the length of the data are summarized in the following table. For encryption and decryption, the input and output data may begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Toc228807502][bookmark: _Toc76209817][bookmark: _Toc25853378]Table 52, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt1
	RSA public key
	≤ k-11-5
	k

	C_Decrypt1
	RSA private key
	k
	≤ k-11-5

	C_WrapKey
	RSA public key
	≤ k-11-5
	k

	C_UnwrapKey
	RSA private key
	k
	≤ k-11-5


1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.18 [bookmark: _Toc228894649][bookmark: _Toc228807175][bookmark: _Toc76209449][bookmark: _Toc370634386][bookmark: _Toc391471103][bookmark: _Toc395187741][bookmark: _Toc416959987][bookmark: _Toc8118088][bookmark: _Toc30061151][bookmark: _Toc90376404][bookmark: _Toc111203389][bookmark: _Toc148962231][bookmark: _Toc195693271]TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP
The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key unwrapping. 
This mechanism does not have a parameter. It differs from the standard PKCS #1 OAEP RSA encryption mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure before being submitted to the encryption process and that all of the values of the parameters that are passed to a standard CKM_RSA_PKCS_OAEP operation are fixed. On encryption, the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, 0xYY may be accepted.
This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type or any other information about the key, except the key length; the application must convey these separately. In particular, the mechanism contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during unwrapping; other attributes must be specified in the template.
Constraints on key types and the length of the data are summarized in the following table. For encryption and decryption, the input and output data may begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.
[bookmark: _Toc228807503][bookmark: _Toc76209820][bookmark: _Toc25853379]Table 53, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt1
	RSA public key
	≤ k-2-40-5
	k

	C_Decrypt1
	RSA private key
	k
	≤ k-2-40-5

	C_WrapKey
	RSA public key
	≤ k-2-40-5
	k

	C_UnwrapKey
	RSA private key
	k
	≤ k-2-40-5


1 Single-part operations only.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.
6.1.19 [bookmark: _Toc370634387][bookmark: _Toc391471104][bookmark: _Toc395187742][bookmark: _Toc416959988][bookmark: _Toc8118089][bookmark: _Toc30061152][bookmark: _Toc90376405][bookmark: _Toc111203390][bookmark: _Toc148962232][bookmark: _Toc195693272]RSA AES KEY WRAP
The RSA AES key wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP, is a mechanism based on the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key wrapping; and key unwrapping.
It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure. 
The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA key. 
· A temporary AES key is used for wrapping the target key using CKM_AES_KEY_WRAP_KWP mechanism. 
· The temporary AES key is wrapped with the wrapping RSA key using CKM_RSA_PKCS_OAEP mechanism.

For wrapping, the mechanism -
· Generates a temporary random AES key of ulAESKeyBits length. This key is not accessible to the user - no handle is returned.
· Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters of OAEPParams.
· Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key 
· Concatenates two wrapped keys and outputs the concatenated blob. The first is the wrapped AES key, and the second is the wrapped target key.

The private target key will be encoded as defined in section 6.7. 

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism - 
· Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped target key. The length of the first part is equal to the length of the unwrapping RSA key.
· Un-wraps the temporary AES key from the first part with the private RSA key using CKM_RSA_PKCS_OAEP with parameters of OAEPParams.
· Un-wraps the target key from the second part with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key.
· Returns the handle to the newly unwrapped target key.
[bookmark: _Toc25853380]Table 54, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions
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6.1.20 [bookmark: _Toc370634388][bookmark: _Toc391471105][bookmark: _Toc395187743][bookmark: _Toc416959989][bookmark: _Toc8118090][bookmark: _Toc30061153][bookmark: _Toc90376406][bookmark: _Toc111203391][bookmark: _Toc148962233][bookmark: _Toc195693273]RSA AES KEY WRAP mechanism parameters
· CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR
CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:
typedef struct CK_RSA_AES_KEY_WRAP_PARAMS {
	CK_ULONG	ulAESKeyBits;
	CK_RSA_PKCS_OAEP_PARAMS_PTR	pOAEPParams;
}	CK_RSA_AES_KEY_WRAP_PARAMS;
The fields of the structure have the following meanings:
	ulAESKeyBits	length of the temporary AES key in bits. Can be only 128, 192 or 256.
	pOAEPParams	pointer to the parameters of the temporary AES key wrapping. See also the description of PKCS #1 RSA OAEP mechanism parameters.
CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.
6.1.21 [bookmark: _Toc370634389][bookmark: _Toc391471106][bookmark: _Toc395187744][bookmark: _Toc416959990][bookmark: _Toc8118091][bookmark: _Toc30061154][bookmark: _Toc90376407][bookmark: _Toc111203392][bookmark: _Toc148962234][bookmark: _Toc195693274]FIPS 186-4
When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024, 2048, or 3072 bits. 
6.2 [bookmark: _Toc370634390][bookmark: _Toc391471107][bookmark: _Toc395187745][bookmark: _Toc416959991][bookmark: _Toc8118092][bookmark: _Toc30061155][bookmark: _Toc90376408][bookmark: _Toc111203393][bookmark: _Toc148962235][bookmark: _Toc195693275]DSA
[bookmark: _Toc25853381]Table 55, DSA Mechanisms vs. Functions
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[bookmark: _Toc72656219][bookmark: _Toc228894651][bookmark: _Toc228807177][bookmark: _Toc370634391][bookmark: _Toc391471108][bookmark: _Toc395187746][bookmark: _Toc416959992][bookmark: _Toc8118093][bookmark: _Toc30061156][bookmark: _Toc90376409][bookmark: _Toc111203394][bookmark: _Toc148962236][bookmark: _Toc405794676][bookmark: _Toc385057857][bookmark: _Toc383864856][bookmark: _Toc323610849][bookmark: _Toc323205419][bookmark: _Toc323024087][bookmark: _Toc323000693][bookmark: _Toc322945126][bookmark: _Toc322855284][bookmark: _Toc319315686][bookmark: _Toc319313693][bookmark: _Toc319313500][bookmark: _Toc319287659][bookmark: _Toc405794805][bookmark: _Toc385057984]1 Single-part operations only
6.2.1 [bookmark: _Toc195693276]Definitions
This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of DSA key objects.
Mechanisms:
[bookmark: _Toc228894652][bookmark: _Toc228807178][bookmark: _Toc72656220]CKM_DSA_KEY_PAIR_GEN
CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512
CKM_DSA_SHA3_224
CKM_DSA_SHA3_256
CKM_DSA_SHA3_384
CKM_DSA_SHA3_512 
CKM_DSA_PARAMETER_GEN
CKM_DSA_PROBABILISTIC_PARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN
CKM_DSA_FIPS_G_GEN

· CK_DSA_PARAMETER_GEN_PARAM
CK_DSA_PARAMETER_GEN_PARAM is a structure which provides and returns parameters for the [NIST FIPS 186-4] parameter generating algorithms.
CK_DSA_PARAMETER_GEN_PARAM_PTR is a pointer to a CK_DSA_PARAMETER_GEN_PARAM.

typedef struct CK_DSA_PARAMETER_GEN_PARAM {
	CK_MECHANISM_TYPE	hash;
	CK_BYTE_PTR	pSeed;
	CK_ULONG	ulSeedLen;
	CK_ULONG	ulIndex;
}	CK_DSA_PARAMETER_GEN_PARAM;

The fields of the structure have the following meanings:
	hash	Mechanism value for the base hash used in PQG generation, Valid values are CKM_SHA_1, CKM_SHA224, CKM_SHA256, CKM_SHA384, CKM_SHA512.
	pSeed	Seed value used to generate PQ and G. This value is returned by CKM_DSA_PROBABILISTIC_PARAMETER_GEN, CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, and passed into CKM_DSA_FIPS_G_GEN.
	ulSeedLen	Length of seed value.
	ulIndex	Index value for generating G. Input for CKM_DSA_FIPS_G_GEN. Ignored by CKM_DSA_PROBABILISTIC_PARAMETER_GEN and CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN.
6.2.2 [bookmark: _Toc370634392][bookmark: _Toc391471109][bookmark: _Toc395187747][bookmark: _Toc416959993][bookmark: _Toc8118094][bookmark: _Toc30061157][bookmark: _Toc90376410][bookmark: _Toc111203395][bookmark: _Toc148962237][bookmark: _Toc195693277]DSA public key objects
DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys. The following table defines the DSA public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315842][bookmark: _Toc319314970][bookmark: _Toc319314555][bookmark: _Toc319314013][bookmark: _Toc228807504][bookmark: _Toc405794984][bookmark: _Toc383864520][bookmark: _Toc323204885][bookmark: _Toc25853382]Table 56, DSA Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,3
	Big integer
	Prime p (512 to 3072 bits, in steps of 64 bits)

	CKA_SUBPRIME1,3
	Big integer
	Subprime q (160, 224 bits, or 256 bits)

	CKA_BASE1,3
	Big integer
	Base g

	CKA_VALUE1,4
	Big integer
	Public value y


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain parameters”. See [FIPS PUB 186-4] for more information on DSA keys.
The following is a sample template for creating a DSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR label[] = “A DSA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_VALUE, value, sizeof(value)}
};

6.2.3 [bookmark: _Toc370634393][bookmark: _Toc391471110][bookmark: _Toc395187748][bookmark: _Toc416959994][bookmark: _Toc8118095][bookmark: _Toc30061158][bookmark: _Toc90376411][bookmark: _Toc111203396][bookmark: _Toc148962238][bookmark: _Toc195693278]DSA Key Restrictions
[FIPS PUB 186-4] specifies permitted combinations of prime and sub-prime lengths. They are:
· Prime: 1024 bits, Subprime: 160
· Prime: 2048 bits, Subprime: 224
· Prime: 2048 bits, Subprime: 256
· Prime: 3072 bits, Subprime: 256
Earlier versions of FIPS PUB 186 permitted smaller prime lengths, and those are included here for backwards compatibility. An implementation that is compliant to [FIPS PUB 186-4] does not permit the use of primes of any length less than 1024 bits.
6.2.4 [bookmark: _Toc228894653][bookmark: _Toc228807179][bookmark: _Toc72656221][bookmark: _Toc405794682][bookmark: _Toc385057864][bookmark: _Toc383864860][bookmark: _Toc323610853][bookmark: _Toc323205423][bookmark: _Toc323024091][bookmark: _Toc323000697][bookmark: _Toc322945130][bookmark: _Toc322855288][bookmark: _Toc319315689][bookmark: _Toc319313696][bookmark: _Toc319313503][bookmark: _Toc319287662][bookmark: _Toc370634394][bookmark: _Toc391471111][bookmark: _Toc395187749][bookmark: _Toc416959995][bookmark: _Toc8118096][bookmark: _Toc30061159][bookmark: _Toc90376412][bookmark: _Toc111203397][bookmark: _Toc148962239][bookmark: _Toc195693279]DSA private key objects
DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys. The following table defines the DSA private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315845][bookmark: _Toc319314973][bookmark: _Toc319314558][bookmark: _Toc319314016][bookmark: _Toc228807505][bookmark: _Toc405794990][bookmark: _Toc383864524][bookmark: _Toc323204889][bookmark: _Toc25853383]Table 57, DSA Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4,6
	Big integer
	Prime p (512 to 1024 bits, in steps of 64 bits)

	CKA_SUBPRIME1,4,6
	Big integer
	Subprime q (160 bits, 224 bits, or 256 bits)

	CKA_BASE1,4,6
	Big integer
	Base g

	CKA_VALUE1,4,6,7
	Big integer
	Private value x


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain parameters”. See [FIPS PUB 186-4] for more information on DSA keys.
Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA domain parameters for the pair are specified in the template for the DSA public key.
[bookmark: _Toc319315690][bookmark: _Toc319313697][bookmark: _Toc319313504][bookmark: _Toc319287663]The following is a sample template for creating a DSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR label[] = “A DSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_VALUE, value, sizeof(value)}
};
6.2.5 [bookmark: _Toc228894654][bookmark: _Toc228807180][bookmark: _Toc72656222][bookmark: _Toc370634395][bookmark: _Toc391471112][bookmark: _Toc395187750][bookmark: _Toc416959996][bookmark: _Toc8118097][bookmark: _Toc30061160][bookmark: _Toc90376413][bookmark: _Toc111203398][bookmark: _Toc148962240][bookmark: _Toc195693280]DSA domain parameter objects
DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold DSA domain parameters. The following table defines the DSA domain parameter object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807506][bookmark: _Toc25853384]Table 58, DSA Domain Parameter Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4
	Big integer
	Prime p (512 to 1024 bits, in steps of 64 bits)

	CKA_SUBPRIME1,4
	Big integer
	Subprime q (160 bits, 224 bits, or 256 bits)

	CKA_BASE1,4
	Big integer
	Base g

	CKA_PRIME_BITS2,3
	CK_ULONG
	Length of the prime value.


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain parameters”. See [FIPS PUB 186-4] for more information on DSA domain parameters.
To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows: 
· If CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits
· If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
· If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR label[] = “A DSA domain parameter object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
  {CKA_BASE, base, sizeof(base)},
};
6.2.6 [bookmark: _Toc228894655][bookmark: _Toc228807181][bookmark: _Toc72656223][bookmark: _Toc370634396][bookmark: _Toc391471113][bookmark: _Toc395187751][bookmark: _Toc416959997][bookmark: _Toc8118098][bookmark: _Toc30061161][bookmark: _Toc90376414][bookmark: _Toc111203399][bookmark: _Toc148962241][bookmark: _Toc195693281]DSA key pair generation
The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism does not have a parameter.
The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.7 [bookmark: _Toc228894656][bookmark: _Toc228807182][bookmark: _Toc72656224][bookmark: _Toc370634397][bookmark: _Toc391471114][bookmark: _Toc395187752][bookmark: _Toc416959998][bookmark: _Toc8118099][bookmark: _Toc30061162][bookmark: _Toc90376415][bookmark: _Toc111203400][bookmark: _Toc148962242][bookmark: _Toc195693282]DSA domain parameter generation
The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism does not have a parameter.
The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in the CKA_PRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA domain parameter types may also be specified in the template, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.8 [bookmark: _Toc370634398][bookmark: _Toc391471115][bookmark: _Toc395187753][bookmark: _Toc416959999][bookmark: _Toc8118100][bookmark: _Toc30061163][bookmark: _Toc90376416][bookmark: _Toc111203401][bookmark: _Toc148962243][bookmark: _Toc195693283]DSA probabilistic domain parameter generation
The DSA probabilistic domain parameter generation mechanism, denoted CKM_DSA_PROBABILISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based on the Digital Signature Algorithm defined in [FIPS PUB 186-4], section Appendix A.1.1 Generation and Validation of Probable Primes..
This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and returns the seed (pSeed) and the length (ulSeedLen).
The mechanism generates DSA the prime and subprime domain parameters with a particular prime length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as specified in the CKA_SUBPRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by this call. Other attributes supported by the DSA domain parameter types may also be specified in the template, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.9 [bookmark: _Toc370634399][bookmark: _Toc391471116][bookmark: _Toc395187754][bookmark: _Toc416960000][bookmark: _Toc8118101][bookmark: _Toc30061164][bookmark: _Toc90376417][bookmark: _Toc111203402][bookmark: _Toc148962244][bookmark: _Toc195693284]DSA Shawe-Taylor domain parameter generation
The DSA Shawe-Taylor domain parameter generation mechanism, denoted CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism based on the Digital Signature Algorithm defined in [FIPS PUB 186-4], section Appendix A.1.2 Construction and Validation of Provable Primes p and q.
This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and returns the seed (pSeed) and the length (ulSeedLen).
The mechanism generates DSA the prime and subprime domain parameters with a particular prime length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as specified in the CKA_SUBPRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by this call. Other attributes supported by the DSA domain parameter types may also be specified in the template, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.10 [bookmark: _Toc370634400][bookmark: _Toc391471117][bookmark: _Toc395187755][bookmark: _Toc416960001][bookmark: _Toc8118102][bookmark: _Toc30061165][bookmark: _Toc90376418][bookmark: _Toc111203403][bookmark: _Toc148962245][bookmark: _Toc195693285]DSA base domain parameter generation
The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base parameter generation mechanism based on the Digital Signature Algorithm defined in [FIPS PUB 186-4], section Appendix A.2 Generation of Generator G.
This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed (pSeed) and the length (ulSeedLen) and the index value.
The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and CKA_SUBPRIME attributes of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new object. Other attributes supported by the DSA domain parameter types may also be specified in the template, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.11 [bookmark: _Toc405794806][bookmark: _Toc385057985][bookmark: _Toc383864955][bookmark: _Toc323610938][bookmark: _Toc323205509][bookmark: _Toc323024175][bookmark: _Toc323000724][bookmark: _Toc322945157][bookmark: _Toc322855315][bookmark: _Toc228894657][bookmark: _Toc228807183][bookmark: _Toc72656225][bookmark: _Toc370634401][bookmark: _Toc391471118][bookmark: _Toc395187756][bookmark: _Toc416960002][bookmark: _Toc8118103][bookmark: _Toc30061166][bookmark: _Toc90376419][bookmark: _Toc111203404][bookmark: _Toc148962246][bookmark: _Toc195693286]DSA without hashing
The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash value.)
For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the concatenation of the DSA values r and s, each represented most-significant byte first.
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807507][bookmark: _Toc405795015][bookmark: _Toc383864551][bookmark: _Toc323204902][bookmark: _Toc25853385]Table 59, DSA: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	DSA private key
	20, 28, 32, 48, or 64 bytes
	2*length of subprime

	C_Verify1
	DSA public key
	(20, 28, 32, 48, or 64 bytes), 
(2*length of subprime)2
	N/A


1 Single-part operations only.
2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.12 [bookmark: _Toc228894658][bookmark: _Toc228807184][bookmark: _Toc72656226][bookmark: _Toc405794807][bookmark: _Toc385057986][bookmark: _Toc370634402][bookmark: _Toc391471119][bookmark: _Toc395187757][bookmark: _Toc416960003][bookmark: _Toc8118104][bookmark: _Toc30061167][bookmark: _Toc90376420][bookmark: _Toc111203405][bookmark: _Toc148962247][bookmark: _Toc195693287]DSA with hashing
The DSA with hashing mechanism, denoted CKM_DSA_<hash> where <hash> identifies a hash function as per Table 60, is a mechanism for single- and multiple-part signatures and verification based on the Digital Signature Algorithm defined in [FIPS PUB 186-4]. This mechanism computes the entire DSA specification, including the hashing.
[bookmark: _Ref165548795]Table 60, DSA with hashing: mechanisms and hash functions
	Mechanism
	Hash function

	CKM_DSA_SHA1
	SHA-1

	CKM_DSA_SHA224
	SHA-224

	CKM_DSA_SHA256
	SHA-256

	CKM_DSA_SHA384
	SHA-384

	CKM_DSA_SHA512
	SHA-512

	CKM_DSA_SHA3_224
	SHA3-224

	CKM_DSA_SHA3_256
	SHA3-256

	CKM_DSA_SHA3_384
	SHA3-384

	CKM_DSA_SHA3_512 
	SHA3-512



For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the concatenation of the DSA values r and s, each represented most-significant byte first.
This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807508][bookmark: _Toc405795016][bookmark: _Toc25853386]Table 61, DSA with SHA-1: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	DSA private key
	any
	2*length of subprime

	C_Verify
	DSA public key
	any, 
2*length of subprime2
	N/A


2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.
6.2.13 [bookmark: _Toc370634403][bookmark: _Toc391471120][bookmark: _Toc395187758][bookmark: _Toc416960004][bookmark: _Toc8118105][bookmark: _Toc30061168][bookmark: _Toc90376421][bookmark: _Toc111203406][bookmark: _Toc148962248][bookmark: _Toc195693288]FIPS 186-4
When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and q, represented by L and N, SHALL be used:
L = 1024, N = 160
L = 2048, N = 224
L = 2048, N = 256
L = 3072, N = 256

6.3 [bookmark: _Toc527453912][bookmark: _Toc527454593][bookmark: _Toc527453913][bookmark: _Toc527454594][bookmark: _Toc527453914][bookmark: _Toc527454595][bookmark: _Toc527453915][bookmark: _Toc527454596][bookmark: _Toc527453916][bookmark: _Toc527454597][bookmark: _Toc527453932][bookmark: _Toc527454613][bookmark: _Toc527453933][bookmark: _Toc527454614][bookmark: _Toc228894659][bookmark: _Toc228807185][bookmark: _Toc72656228][bookmark: _Ref505595588][bookmark: _Ref505595426][bookmark: _Ref505595420][bookmark: _Ref407416671][bookmark: _Toc405794809][bookmark: _Toc385057988][bookmark: _Toc370634408][bookmark: _Toc391471125][bookmark: _Toc395187763][bookmark: _Toc416960009][bookmark: _Toc8118114][bookmark: _Toc30061177][bookmark: _Toc90376430][bookmark: _Toc111203415][bookmark: _Toc148962257][bookmark: _Toc195693289][bookmark: _Toc383864956][bookmark: _Toc323610939][bookmark: _Toc323205510][bookmark: _Toc323024176][bookmark: _Toc323000725][bookmark: _Toc322945158][bookmark: _Toc322855316]Elliptic Curve
The Elliptic Curve (EC) cryptosystem in this document was originally based on the one described in the [ANSI X9.62] and [ANSI X9.63] standards developed by the ANSI X9F1 working group.
The EC cryptosystem developed by the ANSI X9F1 working group was created at a time when EC curves were always represented in their Weierstrass form. Since that time, new curves represented in Edwards form ([RFC 8032]) and Montgomery form ([RFC 7748]) have become more common. To support these new curves, the EC cryptosystem in this document has been extended from the original. Additional key generation mechanisms have been added as well as an additional signature generation mechanism.

[bookmark: _Toc25853395]Table 62, Elliptic Curve Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_EC_KEY_PAIR_GEN 
	
	
	
	
	
	
	
	

	CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS
	
	
	
	
	
	
	
	

	CKM_EC_EDWARDS_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_EC_MONTGOMERY_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_ECDSA
	
	1
	
	
	
	
	
	

	CKM_ECDSA_SHA1
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA224
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA256
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA384
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA512
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA3_224
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA3_256
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA3_384
	
	
	
	
	
	
	
	

	CKM_ECDSA_SHA3_512
	
	
	
	
	
	
	
	

	CKM_EDDSA
	
	
	
	
	
	
	
	

	CKM_XEDDSA
	
	
	
	
	
	
	
	

	CKM_ECDH1_DERIVE
	
	
	
	
	
	
	
	

	CKM_ECDH1_COFACTOR_DERIVE
	
	
	
	
	
	
	
	

	CKM_ECMQV_DERIVE
	
	
	
	
	
	
	
	

	CKM_ECDH_AES_KEY_WRAP
	
	
	
	
	
	
	
	

	CKM_ECDH_COF_AES_KEY_WRAP
	
	
	
	
	
	
	
	

	CKM_ECDH_X_AES_KEY_WRAP
	
	
	
	
	
	
	
	


1 Single-part operations only
[bookmark: _Toc228807509][bookmark: _Toc25853396]Table 63, Mechanism Information Flags
	CKF_EC_F_P
	0x00100000UL
	True if the mechanism can be used with EC domain parameters over Fp

	CKF_EC_F_2M
	0x00200000UL
	True if the mechanism can be used with EC domain parameters over F2m

	CKF_EC_ECPARAMETERS
	0x00400000UL
	True if the mechanism can be used with EC domain parameters of the choice ecParameters

	CKF_EC_OID
	0x00800000UL
	True if the mechanism can be used with EC domain parameters of the choice oId

	CKF_EC_UNCOMPRESS
	0x01000000UL
	True if the mechanism can be used with Elliptic Curve point uncompressed

	CKF_EC_COMPRESS
	0x02000000UL
	True if the mechanism can be used with Elliptic Curve point compressed

	CKF_EC_CURVENAME
	0x04000000UL
	True if the mechanism can be used with EC domain parameters of the choice curveName


Note: CKF_EC_NAMEDCURVE is deprecated with PKCS #11 3.00. It is replaced by CKF_EC_OID.
In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).
2. EC using a field of characteristic two (i.e. the finite field F2m).
An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a Cryptoki library supporting EC keys over F2m. A Cryptoki library that can perform EC mechanisms must set either or both of these flags for each EC mechanism.
In these specifications there are also four representation methods to define the domain parameters for an EC key. Only the ecParameters, the oId and the curveName choices are supported in Cryptoki. The CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library supporting the ecParameters choice whereas the CKF_EC_OID flag identifies a Cryptoki library supporting the oId choice, and the CKF_EC_CURVENAME flag identifies a Cryptoki library supporting the curveName choice. A Cryptoki library that can perform EC mechanisms must set the appropriate flag(s) for each EC mechanism.
[bookmark: _Hlt496500903]In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters choice is used can be represented as an octet string of the uncompressed form or the compressed form. The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or both of these flags for each EC mechanism.
Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation of domain parameters or one form may encounter difficulties achieving interoperability with other implementations.
If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create, generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.
6.3.1 [bookmark: _Toc228894660][bookmark: _Toc228807186][bookmark: _Toc72656229][bookmark: _Ref44295942][bookmark: _Toc370634409][bookmark: _Toc391471126][bookmark: _Toc395187764][bookmark: _Toc416960010][bookmark: _Toc8118115][bookmark: _Toc30061178][bookmark: _Toc90376431][bookmark: _Toc111203416][bookmark: _Toc148962258][bookmark: _Toc195693290][bookmark: _Toc471006064][bookmark: _Toc405794810][bookmark: _Toc385057989]EC Signatures
For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at most two times nLen octets, where nLen is the length in octets of the base point order n. The signature octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string of equal length of at most nLen with the most significant byte first. If r and s have different octet length, the shorter of both must be padded with leading zero octets such that both have the same octet length. Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification, the signature may have a shorter length but must be composed as specified before. 
If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the length of n will be used. Any truncation is done by the token.
Note: For applications, it is recommended to encode the signature as an octet string of length two times nLen if possible. This ensures that the application works with PKCS #11 modules which have been implemented based on an older version of this document. Older versions required all signatures to have length two times nLen. It may be impossible to encode the signature with the maximum length of two times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does not know the base point order n, because r and s can have any value between zero and the base point order n. 
An EdDSA signature is an octet string of even length which is two times nLen octets, where nLen is calculated as EdDSA parameter b divided by 8. The signature octets correspond to the concatenation of the EdDSA values R and S as defined in [RFC 8032], both represented as an octet string of equal length of nLen bytes in little endian order.
6.3.2 [bookmark: _Toc228894661][bookmark: _Toc228807187][bookmark: _Toc72656230][bookmark: _Toc370634410][bookmark: _Toc391471127][bookmark: _Toc395187765][bookmark: _Toc416960011][bookmark: _Toc8118116][bookmark: _Toc30061179][bookmark: _Toc90376432][bookmark: _Toc111203417][bookmark: _Toc148962259][bookmark: _Toc195693291]Definitions
This section defines the key types “CKK_EC”, “CKK_EC_EDWARDS” and “CKK_EC_MONTGOMERY” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Note: CKK_ECDSA is deprecated. It is replaced by CKK_EC.
Mechanisms:

CKM_EC_KEY_PAIR_GEN
CKM_EC_EDWARDS_KEY_PAIR_GEN
CKM_EC_MONTGOMERY_KEY_PAIR_GEN
CKM_ECDSA
CKM_ECDSA_SHA1
CKM_ECDSA_SHA224
CKM_ECDSA_SHA256
CKM_ECDSA_SHA384
CKM_ECDSA_SHA512
CKM_ECDSA_SHA3_224
CKM_ECDSA_SHA3_256
CKM_ECDSA_SHA3_384
CKM_ECDSA_SHA3_512
CKM_EDDSA
CKM_XEDDSA
CKM_ECDH1_DERIVE
[bookmark: _Hlt494255338][bookmark: _Hlt494260222]CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP
CKM_ECDH_COF_AES_KEY_WRAP
CKM_ECDH_X_AES_KEY_WRAP

CKD_NULL
CKD_SHA1_KDF
CKD_SHA224_KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHA512_KDF
CKD_SHA3_224_KDF
CKD_SHA3_256_KDF
CKD_SHA3_384_KDF
CKD_SHA3_512_KDF
CKD_SHA1_KDF_SP800
CKD_SHA224_KDF_SP800
CKD_SHA256_KDF_SP800
CKD_SHA384_KDF_SP800
CKD_SHA512_KDF_SP800
CKD_SHA3_224_KDF_SP800
CKD_SHA3_256_KDF_SP800
CKD_SHA3_384_KDF_SP800
CKD_SHA3_512_KDF_SP800
CKD_BLAKE2B_160_KDF
CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF
6.3.3 [bookmark: _Toc228894662][bookmark: _Toc228807188][bookmark: _Toc72656231][bookmark: _Toc370634411][bookmark: _Toc391471128][bookmark: _Toc395187766][bookmark: _Toc416960012][bookmark: _Toc8118117][bookmark: _Toc30061180][bookmark: _Toc90376433][bookmark: _Toc111203418][bookmark: _Toc148962260][bookmark: _Toc195693292]Short Weierstrass Elliptic Curve public key objects
Short Weierstrass EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC) hold EC public keys. The following table defines the EC public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807510][bookmark: _Toc25853397]Table 64, Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3 
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_EC_POINT1,4
	Byte array
	DER-encoding of ANSI X9.62 ECPoint value Q


- Refer to Table 13 for footnotes
Note: CKA_ECDSA_PARAMS is deprecated. It is replaced by CKA_EC_PARAMS.
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in [ANSI X9.62] as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId	CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}

This allows detailed specification of all required values using choice ecParameters, the use of oId as an object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of oId or curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.
The following is a sample template for creating an short Weierstrass EC public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
  {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};
6.3.4 [bookmark: _Toc228894663][bookmark: _Toc228807189][bookmark: _Toc72656232][bookmark: _Toc370634412][bookmark: _Toc391471129][bookmark: _Toc395187767][bookmark: _Toc416960013][bookmark: _Toc8118118][bookmark: _Toc30061181][bookmark: _Toc90376434][bookmark: _Toc111203419][bookmark: _Toc148962261][bookmark: _Toc195693293][bookmark: _Toc468937842]Short Weierstrass Elliptic Curve private key objects
Short Weierstrass EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC) hold EC private keys. See Section 6.3 for more information about EC. The following table defines the EC private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807511][bookmark: _Toc25853398]Table 65, Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6 
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_VALUE1,4,6,7
	Big integer
	ANSI X9.62 private value d


- Refer to Table 13 for footnotes
[bookmark: _Hlt493299885]The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in [ANSI X9.62] as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId		CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}

[bookmark: _Hlk526365150]This allows detailed specification of all required values using choice ecParameters, the use of oId as an object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of oId or curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.Note that when generating an EC private key, the EC domain parameters are not specified in the key’s template. This is because EC private keys are only generated as part of an EC key pair, and the EC domain parameters for the pair are specified in the template for the EC public key.
The following is a sample template for creating an short Weierstrass EC private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
  {CKA_VALUE, value, sizeof(value)}
[bookmark: _Toc385057865][bookmark: _Toc383864861][bookmark: _Toc323610854][bookmark: _Toc323205424][bookmark: _Toc323024092][bookmark: _Toc323000698][bookmark: _Toc322945131][bookmark: _Toc322855289]};
6.3.5 [bookmark: _Toc8118119][bookmark: _Toc30061182][bookmark: _Toc90376435][bookmark: _Toc111203420][bookmark: _Toc148962262][bookmark: _Toc195693294]Edwards Elliptic Curve public key objects
Edwards EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_EDWARDS) hold Edwards EC public keys. The following table defines the Edwards EC public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853399]Table 66, Edwards Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3
	Byte array
	DER-encoding of a Parameters value as defined above

	CKA_EC_POINT1,4
	Byte array
	Public key bytes in little endian order as defined in [RFC 8032]


- Refer to Table 13 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in [ANSI X9.62] as a choice of three parameter representation methods. A 4th choice is added to support Edwards and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId	CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}
Edwards EC public keys only support the use of the curveName selection to specify a curve name as defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as defined in [RFC 8410]. Note that keys defined by [RFC 8032] and [RFC 8410] are incompatible.
The following is a sample template for creating an Edwards EC public key object with Edwards25519 being specified as curveName:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC_EDWARDS;
CK_UTF8CHAR label[] = “An Edwards EC public key object”;
CK_BYTE ecParams[] = {0x13, 0x0c, 0x65, 0x64, 0x77, 0x61, 0x72, 0x64, 0x73, 0x32, 0x35, 0x35, 0x31, 0x39};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
  {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};
6.3.6 [bookmark: _Toc8118120][bookmark: _Toc30061183][bookmark: _Toc90376436][bookmark: _Toc111203421][bookmark: _Toc148962263][bookmark: _Toc195693295]Edwards Elliptic Curve private key objects
Edwards EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_EDWARDS) hold Edwards EC private keys. See Section 6.3 for more information about EC. The following table defines the Edwards EC private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853400]Table 67, Edwards Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6
	Byte array
	DER-encoding of a Parameters value as defined above

	CKA_VALUE1,4,6,7
	Big integer
	Private key bytes in little endian order as defined in [RFC 8032]


- Refer to Table 13 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in [ANSI X9.62] as a choice of three parameter representation methods. A 4th choice is added to support Edwards and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId	CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}
Edwards EC private keys only support the use of the curveName selection to specify a curve name as defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as defined in [RFC 8410]. Note that keys defined by [RFC 8032] and [RFC 8410] are incompatible.
Note that when generating an Edwards EC private key, the EC domain parameters are not specified in the key’s template. This is because Edwards EC private keys are only generated as part of an Edwards EC key pair, and the EC domain parameters for the pair are specified in the template for the Edwards EC public key.
The following is a sample template for creating an Edwards EC private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC_EDWARDS;
CK_UTF8CHAR label[] = “An Edwards EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.3.7 [bookmark: _Toc8118121][bookmark: _Toc30061184][bookmark: _Toc90376437][bookmark: _Toc111203422][bookmark: _Toc148962264][bookmark: _Toc195693296]Montgomery Elliptic Curve public key objects
Montgomery EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_MONTGOMERY) hold Montgomery EC public keys. The following table defines the Montgomery EC public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853401]Table 68, Montgomery Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3
	Byte array
	DER-encoding of a Parameters value as defined above

	CKA_EC_POINT1,4
	Byte array
	Public key bytes in little endian order as defined in [RFC 7748]


- Refer to Table 13 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI [X9.62] as a choice of three parameter representation methods. A 4th choice is added to support Edwards and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId	CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}
Montgomery EC public keys only support the use of the curveName selection to specify a curve name as defined in [RFC 7748] and the use of the oID selection to specify a curve through an ECDH algorithm as defined in [RFC 8410]. Note that keys defined by [RFC 7748] and [RFC 8410] are incompatible.
The following is a sample template for creating a Montgomery EC public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC_MONTGOMERY;
CK_UTF8CHAR label[] = “A Montgomery EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
  {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};
6.3.8 [bookmark: _Toc8118122][bookmark: _Toc30061185][bookmark: _Toc90376438][bookmark: _Toc111203423][bookmark: _Toc148962265][bookmark: _Toc195693297]Montgomery Elliptic Curve private key objects
Montgomery EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_MONTGOMERY) hold Montgomery EC private keys. See Section 6.3 for more information about EC. The following table defines the Montgomery EC private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853402]Table 69, Montgomery Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6
	Byte array
	DER-encoding of a Parameters value as defined above

	CKA_VALUE1,4,6,7
	Big integer
	Private key bytes in little endian order as defined in [RFC 7748]


- Refer to Table 13 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI [X9.62] as a choice of three parameter representation methods. A 4th choice is added to support Edwards and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:
Parameters ::= CHOICE {
  ecParameters	ECParameters,
  oId	CURVES.&id({CurveNames}),
  implicitlyCA	NULL,
  curveName	PrintableString
}
Montgomery EC private keys only support the use of the curveName selection to specify a curve name as defined in [RFC7748] and the use of the oID selection to specify a curve through an ECDH algorithm as defined in [RFC 8410]. Note that keys defined by [RFC 7748] and [RFC 8410] are incompatible.
Note that when generating a Montgomery EC private key, the EC domain parameters are not specified in the key’s template. This is because Montgomery EC private keys are only generated as part of a Montgomery EC key pair, and the EC domain parameters for the pair are specified in the template for the Montgomery EC public key.
The following is a sample template for creating a Montgomery EC private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC_MONTGOMERY;
CK_UTF8CHAR label[] = “A Montgomery EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.3.9 [bookmark: _Toc228894664][bookmark: _Toc228807190][bookmark: _Toc72656233][bookmark: _Toc370634413][bookmark: _Toc391471130][bookmark: _Toc395187768][bookmark: _Toc416960014][bookmark: _Toc8118123][bookmark: _Toc30061186][bookmark: _Toc90376439][bookmark: _Toc111203424][bookmark: _Toc148962266][bookmark: _Toc195693298]Elliptic Curve key pair generation
The short Weierstrass ECkey pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN, is a key pair generation mechanism that uses the method defined by the [ANSI X9.62] and [ANSI X9.63] standards.
The short Weierstrass EC key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS, is a key pair generation mechanism that uses the method defined by [FIPS PUB 186-4] Appendix B.4.1.
These mechanisms do not have a parameter.
These mechanisms generate EC public/private key pairs with particular EC domain parameters, as specified in the CKA_EC_PARAMS attribute of the template for the public key. Note that this version of Cryptoki does not include a mechanism for generating these EC domain parameters.
These mechanism contribute the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
6.3.10 [bookmark: _Toc8118124][bookmark: _Toc30061187][bookmark: _Toc90376440][bookmark: _Toc111203425][bookmark: _Toc148962267][bookmark: _Toc195693299]Edwards Elliptic Curve key pair generation
The Edwards EC key pair generation mechanism, denoted CKM_EC_EDWARDS_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over curves represented in Edwards form.
This mechanism does not have a parameter.
The mechanism can only generate EC public/private key pairs over the curves edwards25519 and edwards448 as defined in [RFC 8032] or the curves id-Ed25519 and id-Ed448 as defined in [RFC 8410]. These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key using the curveName or the oID methods. Attempts to generate keys over these curves using any other EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the Edwards EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as [RFC 8032] only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
6.3.11 [bookmark: _Toc8118125][bookmark: _Toc30061188][bookmark: _Toc90376441][bookmark: _Toc111203426][bookmark: _Toc148962268][bookmark: _Toc195693300]Montgomery Elliptic Curve key pair generation
The Montgomery EC key pair generation mechanism, denoted CKM_EC_MONTGOMERY_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over curves represented in Montgomery form.
This mechanism does not have a parameter.
The mechanism can only generate Montgomery EC public/private key pairs over the curves curve25519 and curve448 as defined in [RFC 7748] or the curves id-X25519 and id-X448 as defined in [RFC 8410]. These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key using the curveName or oId methods. Attempts to generate keys over these curves using any other EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as [RFC 7748] only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
6.3.12 [bookmark: _Hlt494608145][bookmark: _Toc471006065][bookmark: _Toc72656234][bookmark: _Toc228807191][bookmark: _Toc228894665][bookmark: _Toc370634414][bookmark: _Toc391471131][bookmark: _Toc395187769][bookmark: _Toc416960015][bookmark: _Toc8118126][bookmark: _Toc30061189][bookmark: _Toc90376442][bookmark: _Toc111203427][bookmark: _Toc148962269][bookmark: _Toc195693301]ECDSA without hashing
Refer to section 6.3.1 for signature encoding.
The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that processes the hash value, which should not be longer than 1024 bits; it does not compute the hash value.)
This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807512][bookmark: _Toc468937872][bookmark: _Toc25853403]Table 70, ECDSA without hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	CKK_EC private key
	any3
	2nLen

	C_Verify1
	CKK_EC public key
	any3, ≤2nLen 2
	N/A


1 Single-part operations only.
2 Data length, signature length.
3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
6.3.13 [bookmark: _Toc228894666][bookmark: _Toc228807192][bookmark: _Toc72656235][bookmark: _Toc471006066][bookmark: _Toc370634415][bookmark: _Toc391471132][bookmark: _Toc395187770][bookmark: _Toc416960016][bookmark: _Toc8118127][bookmark: _Toc30061190][bookmark: _Toc90376443][bookmark: _Toc111203428][bookmark: _Toc148962270][bookmark: _Toc195693302]ECDSA with hashing
Refer to section 6.3.1 for signature encoding.
The ECDSA with hashing mechanism, denoted CKM_ECDSA_<hash> where <hash> identifies a hash function as per Table 71, is a mechanism for single- and multiple-part signatures and verification for ECDSA. This mechanism computes the entire ECDSA specification, including the hashing.
[bookmark: _Ref165549246]Table 71, ECDSA with hashing: mechanisms and hash functions
	Mechanism
	Hash function

	CKM_ECDSA_SHA1
	SHA-1

	CKM_ECDSA_SHA224
	SHA-224

	CKM_ECDSA_SHA256
	SHA-256

	CKM_ECDSA_SHA384
	SHA-384

	CKM_ECDSA_SHA512
	SHA-512

	CKM_ECDSA_SHA3_224
	SHA3-224

	CKM_ECDSA_SHA3_256
	SHA3-256

	CKM_ECDSA_SHA3_384
	SHA3-384

	CKM_ECDSA_SHA3_512 
	SHA3-512



This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807513][bookmark: _Toc468937873][bookmark: _Toc25853404]Table 72, ECDSA with hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	CKK_EC private key
	any
	2nLen

	C_Verify
	CKK_EC public key
	any, ≤2nLen 2
	N/A


2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
6.3.14 [bookmark: _Toc8118128][bookmark: _Toc30061191][bookmark: _Toc90376444][bookmark: _Toc111203429][bookmark: _Toc148962271][bookmark: _Toc195693303]EdDSA
The EdDSA mechanism, denoted CKM_EDDSA, is a mechanism for single-part and multipart signatures and verification for EdDSA. This mechanism implements the five EdDSA signature schemes defined in [RFC 8032] and [RFC 8410].
For curves according to [RFC 8032], this mechanism has an optional parameter, a CK_EDDSA_PARAMS structure. The absence or presence of the parameter as well as its content is used to identify which signature scheme is to be used. The following table enumerates the five signature schemes defined in [RFC 8032] and all supported permutations of the mechanism parameter and its content.
[bookmark: _Toc25853405]Table 73, Mapping to RFC 8032 Signature Schemes
	Signature Scheme
	Mechanism Param
	phFlag
	Context Data

	Ed25519
	Not Required
	N/A
	N/A

	Ed25519ctx
	Required
	False
	Optional

	Ed25519ph
	Required
	True
	Optional

	Ed448
	Required
	False
	Optional

	Ed448ph
	Required
	True
	Optional


For curves according to [RFC 8410], the mechanism is implicitly given by the curve, which is EdDSA in pure mode.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853406]Table 74, EdDSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	CKK_EC_EDWARDS private key
	any
	2bLen

	C_Verify
	CKK_EC_EDWARDS public key
	any, ≤2bLen 2
	N/A


2 Data length, signature length.
Note that for EdDSA in pure mode, Ed25519 and Ed448 the data must be processed twice. Therefore, a token might need to cache all the data, especially when used with C_SignUpdate/C_VerifyUpdate. If tokens are unable to do so they can return CKR_TOKEN_RESOURCE_EXCEEDED.
[bookmark: _Toc527453953][bookmark: _Toc527454634][bookmark: _Toc527453954][bookmark: _Toc527454635][bookmark: _Toc527453955][bookmark: _Toc527454636][bookmark: _Toc527453956][bookmark: _Toc527454637][bookmark: _Toc527453957][bookmark: _Toc527454638][bookmark: _Toc527453959][bookmark: _Toc527454640][bookmark: _Toc527453960][bookmark: _Toc527454641][bookmark: _Toc527453961][bookmark: _Toc527454642][bookmark: _Toc527453962][bookmark: _Toc527454643][bookmark: _Toc527453963][bookmark: _Toc527454644][bookmark: _Toc527453964][bookmark: _Toc527454645][bookmark: _Toc527453965][bookmark: _Toc527454646][bookmark: _Toc527453966][bookmark: _Toc527454647][bookmark: _Toc527453967][bookmark: _Toc527454648][bookmark: _Toc527453968][bookmark: _Toc527454649][bookmark: _Toc527453969][bookmark: _Toc527454650][bookmark: _Toc527453970][bookmark: _Toc527454651][bookmark: _Toc527453971][bookmark: _Toc527454652][bookmark: _Toc527453972][bookmark: _Toc527454653][bookmark: _Toc527453973][bookmark: _Toc527454654][bookmark: _Toc527453974][bookmark: _Toc527454655][bookmark: _Toc527453975][bookmark: _Toc527454656][bookmark: _Toc527453976][bookmark: _Toc527454657][bookmark: _Toc527453977][bookmark: _Toc527454658][bookmark: _Toc527453978][bookmark: _Toc527454659][bookmark: _Toc527453979][bookmark: _Toc527454660][bookmark: _Toc527453980][bookmark: _Toc527454661][bookmark: _Toc527453982][bookmark: _Toc527454663][bookmark: _Toc527453983][bookmark: _Toc527454664][bookmark: _Toc527453984][bookmark: _Toc527454665][bookmark: _Toc527453985][bookmark: _Toc527454666][bookmark: _Toc527453986][bookmark: _Toc527454667][bookmark: _Toc527453987][bookmark: _Toc527454668][bookmark: _Toc527453988][bookmark: _Toc527454669][bookmark: _Toc527453989][bookmark: _Toc527454670][bookmark: _Toc8118130]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as [RFC 8032] and [RFC 8410] only define curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
6.3.15 [bookmark: _Toc30061192][bookmark: _Toc90376445][bookmark: _Toc111203430][bookmark: _Toc148962272][bookmark: _Toc195693304]XEdDSA
The XEdDSA mechanism, denoted CKM_XEDDSA, is a mechanism for single-part signatures and verification for XEdDSA. This mechanism implements the XEdDSA signature scheme defined in [XEDDSA]. CKM_XEDDSA operates on CKK_EC_MONTGOMERY type EC keys, which allows these keys to be used both for signing/verification and for Diffie-Hellman style key-exchanges. This double use is necessary for the Extended Triple Diffie-Hellman where the long-term identity key is used to sign short-term keys and also contributes to the DH key-exchange.
This mechanism has a parameter, a CK_XEDDSA_PARAMS structure.
[bookmark: _Ref172641938][bookmark: _Toc25853407]Table 75, XEdDSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	CKK_EC_MONTGOMERY private key
	Any
	2b

	C_Verify1
	CKK_EC_MONTGOMERY public key
	any, ≤2b 2
	N/A


1 Single-part operations only.
2 Data length, signature length.
[bookmark: _Toc441162376][bookmark: _Toc441850454][bookmark: _Toc437440535]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as [XEDDSA] only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
6.3.16 [bookmark: _Hlt500652492][bookmark: _Toc72656236][bookmark: _Toc228807193][bookmark: _Toc228894667][bookmark: _Toc370634416][bookmark: _Toc391471133][bookmark: _Toc395187771][bookmark: _Toc416960017][bookmark: _Toc8118132][bookmark: _Toc30061193][bookmark: _Toc90376446][bookmark: _Toc111203431][bookmark: _Toc148962273][bookmark: _Toc195693305]EC mechanism parameters
· CK_EDDSA_PARAMS, CK_EDDSA_PARAMS_PTR
CK_EDDSA_PARAMS is a structure that provides the parameters for the CKM_EDDSA signature mechanism. The structure is defined as follows:
typedef struct CK_EDDSA_PARAMS {
	CK_BBOOL	phFlag;
	CK_ULONG	ulContextDataLen;
	CK_BYTE_PTR	pContextData;
}	CK_EDDSA_PARAMS;

The fields of the structure have the following meanings:
	phFlag	a Boolean value which indicates if Pre-hashed variant of EdDSA should used
	ulContextDataLen	the length in bytes of the context data where 0 ≤ ulContextDataLen ≤ 255.
	pContextData	context data shared between the signer and verifier
CK_EDDSA_PARAMS_PTR is a pointer to a CK_EDDSA_PARAMS.

· CK_XEDDSA_PARAMS, CK_XEDDSA_PARAMS_PTR
CK_XEDDSA_PARAMS is a structure that provides the parameters for the CKM_XEDDSA signature mechanism. The structure is defined as follows:
typedef struct CK_XEDDSA_PARAMS {
	CK_XEDDSA_HASH_TYPE	hash;
}	CK_XEDDSA_PARAMS;

The fields of the structure have the following meanings:
	hash	a Hash mechanism to be used by the mechanism.
CK_XEDDSA_PARAMS_PTR is a pointer to a CK_XEDDSA_PARAMS.

· CK_XEDDSA_HASH_TYPE, CK_XEDDSA_HASH_TYPE_PTR
CK_XEDDSA_HASH_TYPE is used to indicate the hash function used in XEDDSA. It is defined as follows:
typedef CK_ULONG CK_XEDDSA_HASH_TYPE;

The following table lists the defined functions.
[bookmark: _Toc25853408]Table 76, EC: Key Derivation Functions
	Source Identifier

	CKM_BLAKE2B_256

	CKM_BLAKE2B_512

	CKM_SHA3_256

	CKM_SHA3_512

	CKM_SHA256

	CKM_SHA512



CK_XEDDSA_HASH_TYPE_PTR is a pointer to a CK_XEDDSA_HASH_TYPE.

· CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR
[bookmark: _Hlk526363963]CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is defined as follows:
typedef CK_ULONG CK_EC_KDF_TYPE;

The following table lists the defined functions.
[bookmark: _Toc228807514][bookmark: _Toc25853409]Table 77, EC: Key Derivation Functions
	Source Identifier

	CKD_NULL

	CKD_SHA1_KDF

	CKD_SHA224_KDF

	CKD_SHA256_KDF

	CKD_SHA384_KDF

	CKD_SHA512_KDF

	[bookmark: _Hlk526364098]CKD_SHA3_224_KDF

	CKD_SHA3_256_KDF

	CKD_SHA3_384_KDF

	CKD_SHA3_512_KDF

	CKD_SHA1_KDF_SP800

	CKD_SHA224_KDF_SP800

	CKD_SHA256_KDF_SP800

	CKD_SHA384_KDF_SP800

	CKD_SHA512_KDF_SP800

	CKD_SHA3_224_KDF_SP800

	CKD_SHA3_256_KDF_SP800

	CKD_SHA3_384_KDF_SP800

	CKD_SHA3_512_KDF_SP800

	CKD_BLAKE2B_160_KDF

	CKD_BLAKE2B_256_KDF

	CKD_BLAKE2B_384_KDF

	CKD_BLAKE2B_512_KDF


[bookmark: _Hlk526363920]The key derivation function CKD_NULL produces a raw shared secret value without applying any key derivation function. 
The key derivation functions CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF, which are based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512 respectively, derive keying data from the shared secret value as defined in [ANSI X9.63]. 
The key derivation functions CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF_SP800, which are based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512 respectively, derive keying data from the shared secret value as defined in [NIST SP800-56A] section 5.8.1.1. 
The key derivation functions CKD_BLAKE2B_[160|256|384|512]_KDF, which are based on the Blake2b family of hashes, derive keying data from the shared secret value as defined in [NIST SP800-56A] section 5.8.1.1. CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

· CK_ECDH1_DERIVE_PARAMS, CK_ECDH1_DERIVE_PARAMS_PTR
CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where each party contributes one key pair. The structure is defined as follows:
typedef struct CK_ECDH1_DERIVE_PARAMS {
	CK_EC_KDF_TYPE	kdf;
	CK_ULONG	ulSharedDataLen;
	CK_BYTE_PTR	pSharedData;
	CK_ULONG	ulPublicDataLen;
	CK_BYTE_PTR	pPublicData;
}	CK_ECDH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s EC public key
	pPublicData[footnoteRef:2]	pointer to other party’s EC public key value. For short Weierstrass EC keys: a token MUST be able to accept this value encoded as a raw octet string (as per section A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting this value as a DER-encoded ECPoint (as per section E.6 of [ANSI X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling application is responsible for converting the offered public key to the compressed or uncompressed forms of these encodings if the token does not support the offered form. 
For Montgomery keys: the public key is provided as bytes in little endian order as defined in [RFC 7748]. [2:  The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding (e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.] 

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be zero. With the key derivation functions CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF, CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF_SP800, an optional pSharedData may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDataLen must be zero.
CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.
· CK_ECDH2_DERIVE_PARAMS, CK_ECDH2_DERIVE_PARAMS_PTR
[bookmark: _Hlk527390956][bookmark: _Hlk527390997]CK_ECDH2_DERIVE_PARAMS is a structure that provides the parameters to the CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_ECDH2_DERIVE_PARAMS {
	CK_EC_KDF_TYPE kdf;
	CK_ULONG ulSharedDataLen;
	CK_BYTE_PTR pSharedData;
	CK_ULONG ulPublicDataLen;
	CK_BYTE_PTR pPublicData;
	CK_ULONG ulPrivateDataLen;
	CK_OBJECT_HANDLE hPrivateData;
	CK_ULONG ulPublicDataLen2;
	CK_BYTE_PTR pPublicData2;
} CK_ECDH2_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s first EC public key
	pPublicData	pointer to other party’s first EC public key value. Encoding rules are as per pPublicData  of CK_ECDH1_DERIVE_PARAMS
	ulPrivateDataLen	the length in bytes of the second EC private key
	hPrivateData	key handle for second EC private key value
	ulPublicDataLen2	the length in bytes of the other party’s second EC public key
	pPublicData2	pointer to other party’s second EC public key value. Encoding rules are as per pPublicData  of CK_ECDH1_DERIVE_PARAMS
With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDataLen must be zero.
CK_ECDH2_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH2_DERIVE_PARAMS.

· CK_ECMQV_DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR
[bookmark: _Hlk527391026]CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_ECMQV_DERIVE_PARAMS {
	CK_EC_KDF_TYPE	kdf;
	CK_ULONG	ulSharedDataLen;
	CK_BYTE_PTR	pSharedData;
	CK_ULONG	ulPublicDataLen;
	CK_BYTE_PTR	pPublicData;
	CK_ULONG	ulPrivateDataLen;
	CK_OBJECT_HANDLE	hPrivateData;
	CK_ULONG	ulPublicDataLen2;
	CK_BYTE_PTR	pPublicData2;
[bookmark: _Hlk527391086]	CK_OBJECT_HANDLE	publicKey;
}	CK_ECMQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s first EC public key
	pPublicData	pointer to other party’s first EC public key value. Encoding rules are as per pPublicData  of CK_ECDH1_DERIVE_PARAMS
	ulPrivateDataLen	the length in bytes of the second EC private key
	hPrivateData	key handle for second EC private key value
	ulPublicDataLen2	the length in bytes of the other party’s second EC public key
	pPublicData2	pointer to other party’s second EC public key value. Encoding rules are as per pPublicData  of CK_ECDH1_DERIVE_PARAMS
	publicKey	Handle to the first party’s ephemeral public key
With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be zero. With the key derivation functions CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF, CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]_KDF_SP800, an optional pSharedData may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDataLen must be zero.
CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.
6.3.17 [bookmark: _Toc228894668][bookmark: _Toc228807194][bookmark: _Toc72656237][bookmark: _Toc370634417][bookmark: _Toc391471134][bookmark: _Toc395187772][bookmark: _Toc416960018][bookmark: _Toc8118133][bookmark: _Toc30061194][bookmark: _Toc90376447][bookmark: _Toc111203432][bookmark: _Toc148962274][bookmark: _Toc195693306]Elliptic Curve Diffie-Hellman key derivation
[bookmark: _Hlt500132816]The Elliptic Curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman version of the Elliptic Curve key agreement scheme, as defined in [ANSI X9.63] for short Weierstrass EC keys and [RFC 7748] for Montgomery keys, where each party contributes one key pair all using the same EC domain parameters.
It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
When this mechanism is used in C_EncapsulateKey and C_DecapsulateKey, the mechanism parameters pPublicData and ulPublicDataLen must be set to NULL and 0 respectively. For C_EncapsulateKey, an ephemeral key pair is generated. The value of the generated public key is returned as the ciphertext. The generated private key is used with public key provided in the API to generate a symmetric key using EC Derive and has the same format as the public key used in C_DeriveKey. For C_DecapsulateKey, the ciphertext is used with the private key provided in the API to generate a symmetric key using EC Derive.
Constraints on key types are summarized in the following table:
[bookmark: _Toc25853410]Table 78, ECDH: Allowed Key Types
	Function
	Key type

	C_DeriveKey
	CKK_EC or CKK_EC_MONTGOMERY

	C_EncapsulateKey
	CKK_EC or CKK_EC_MONTGOMERY

	C_DecapsulateKey
	CKK_EC or CKK_EC_MONTGOMERY


6.3.18 [bookmark: _Toc228894669][bookmark: _Toc228807195][bookmark: _Toc72656238][bookmark: _Toc370634418][bookmark: _Toc391471135][bookmark: _Toc395187773][bookmark: _Toc416960019][bookmark: _Toc8118134][bookmark: _Toc30061195][bookmark: _Toc90376448][bookmark: _Toc111203433][bookmark: _Toc148962275][bookmark: _Toc195693307]Elliptic Curve Diffie-Hellman with cofactor key derivation
The Elliptic Curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-Hellman version of the Elliptic Curve key agreement scheme, as defined in [ANSI X9.63], where each party contributes one key pair all using the same EC domain parameters. Cofactor multiplication is computationally efficient and helps to prevent security problems like small group attacks.
It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
When this mechanism is used in C_EncapsulateKey and C_DecapsulateKey, the mechanism parameters pPublicData and ulPublicDataLen must be set to NULL and 0 respectively. For C_EncapsulateKey, an ephemeral key pair is generated. The value of the generated public key is returned as the ciphertext. The generated private key is used with public key provided in the API to generate a symmetric key using EC Cofactor Derive and has the same format as the public key used in C_DeriveKey. For C_DecapsulateKey, the ciphertext is used with the private key provided in the API to generate a symmetric key using EC Cofactor Derive.
Constraints on key types are summarized in the following table:
[bookmark: _Toc25853411]Table 79, ECDH with cofactor: Allowed Key Types
	Function
	Key type

	C_DeriveKey
	CKK_EC

	C_EncapsulateKey
	CKK_EC

	C_DecapsulateKey
	CKK_EC


6.3.19 [bookmark: _Toc228894670][bookmark: _Toc228807196][bookmark: _Toc72656239][bookmark: _Toc370634419][bookmark: _Toc391471136][bookmark: _Toc395187774][bookmark: _Toc416960020][bookmark: _Toc8118135][bookmark: _Toc30061196][bookmark: _Toc90376449][bookmark: _Toc111203434][bookmark: _Toc148962276][bookmark: _Toc195693308]Elliptic Curve Menezes-Qu-Vanstone key derivation
The Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the Elliptic Curve key agreement scheme, as defined in [ANSI X9.63], where each party contributes two key pairs all using the same EC domain parameters.
It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
Constraints on key types are summarized in the following table:
[bookmark: _Toc25853412]Table 80, ECDH MQV: Allowed Key Types
	Function
	Key type

	C_DeriveKey
	CKK_EC


6.3.20 [bookmark: _Toc370634420][bookmark: _Toc391471137][bookmark: _Toc395187775][bookmark: _Toc416960021][bookmark: _Toc8118136][bookmark: _Toc30061197][bookmark: _Toc90376450][bookmark: _Toc111203435][bookmark: _Toc148962277][bookmark: _Toc195693309]ECDH AES KEY WRAP
Note: Mechanism CKM_ECDH_AES_KEY_WRAP is deprecated with PKCS #11 Version 3.2. Use CKM_ECDH_COF_AES_KEY_WRAP and CKM_ECDH_X_AES_KEY_WRAP instead. CKM_ECDH_X_AES_KEY_WRAP will work as CKM_ECDH_AES_KEY_WRAP applied to CKK_EC_MONTGOMERY keys.

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism based on Elliptic Curve public-key crypto-system and the AES key wrap mechanism. It supports single-part key wrapping; and key unwrapping. 
It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure. 

The mechanism can wrap and unwrap an asymmetric target key of any length and type using an EC key. 
· A temporary AES key is derived from a temporary EC key and the wrapping EC key using the CKM_ECDH1_DERIVE mechanism.
· The derived AES key is used for wrapping the target key using the CKM_AES_KEY_WRAP_KWP mechanism. 

For wrapping, the mechanism -
· Generates a temporary random EC key (transport key) having the same parameters as the wrapping EC key (and domain parameters). Saves the transport key public key material.
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private key of the transport EC key and the public key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the temporary AES key.
· Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key and EC transport private key.
· Concatenates public key material of the transport key and output the concatenated blob. The first part is the public key material of the transport key and the second part is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism - 
· Splits the input into two parts. The first part is the public key material of the transport key and the second part is the wrapped target key. The length of the first part is equal to the length of the public key material of the unwrapping EC key. 
Note: since the transport key and the wrapping EC key share the same domain, the length of the public key material of the transport key is the same length of the public key material of the unwrapping EC key.
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private part of unwrapping EC key and the public part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the temporary AES key. 
· Un-wraps the target key from the second part with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key. 

[bookmark: _Toc25853413]Table 81, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_ECDH_AES_KEY_WRAP
	
	
	
	
	
	
	
	



Constraints on key types are summarized in the following table:
[bookmark: _Toc25853414]Table 82, ECDH AES Key Wrap: Allowed Key Types
	[bookmark: _Toc527453997][bookmark: _Toc527454678]Function
	Key type

	C_WrapKey / C_UnwrapKey
	CKK_EC or CKK_EC_MONTGOMERY


6.3.21 [bookmark: _Toc77392355][bookmark: _Toc195693310][bookmark: _Toc370634421][bookmark: _Toc391471138][bookmark: _Toc395187776][bookmark: _Toc416960022][bookmark: _Toc8118137][bookmark: _Toc30061198][bookmark: _Toc90376451][bookmark: _Toc111203436][bookmark: _Toc148962278]ECDH COFACTOR AES KEY WRAP
The ECDH COFACTOR AES KEY WRAP mechanism, denoted CKM_ECDH_COF_AES_KEY_WRAP, is a mechanism based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-part key wrapping; and key unwrapping.
It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure. 

The mechanism can wrap and unwrap an asymmetric target key of any length and type using a CKK_EC key. 
· A temporary AES key is derived from a temporary EC key and the wrapping EC key using the CKM_ECDH1_COFACTOR_DERIVE mechanism.
· The derived AES key is used for wrapping the target key using the CKM_AES_KEY_WRAP_KWP mechanism. 

For wrapping, the mechanism -
· Generates a temporary random EC key (transport key) having the same parameters as the wrapping EC key (and domain parameters). 
· Saves the transport key public key material as DER-encoded OCTET STRING of the ANSI X9.62 ECPoint value.
· Performs ECDH operation using CKM_ECDH1_COFACTOR_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private key of the transport EC key and the public key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the temporary AES key.
· Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key and EC transport private key.
· Concatenates public key material of the transport key and output the concatenated blob. The first part is the public key material of the transport key and the second part is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism - 
· Splits the input into two parts. The first part is the public key material of the transport key and the second part is the wrapped target key. Since the public key material is a DER encoded OCTET STRING its length can be easily determined. 
· Performs ECDH operation using CKM_ECDH1_COFACTOR_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private part of unwrapping EC key and the public part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the temporary AES key. 
· Un-wraps the target key from the second part with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key. 

Table 83, CKM_ECDH_COF_AES_KEY_WRAP Mechanisms vs. Functions
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Constraints on key types are summarized in the following table:
Table 84, ECDH AES Key Wrap: Allowed Key Types
	Function
	Key type

	C_WrapKey / C_UnwrapKey
	CKK_EC



6.3.22 [bookmark: _Toc80879371][bookmark: _Toc195693311]ECDH Montgomery AES KEY WRAP
The ECDH Montgomery AES KEY WRAP mechanism, denoted CKM_ECDH_X_AES_KEY_WRAP, is a mechanism based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-part key wrapping; and key unwrapping.
It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure. 

The mechanism can wrap and unwrap an asymmetric target key of any length and type using a CKK_EC_MONTGOMERY EC key. 
· A temporary AES key is derived from a temporary EC key and the wrapping EC key using the CKM_ECDH1_DERIVE mechanism.
· The derived AES key is used for wrapping the target key using the CKM_AES_KEY_WRAP_KWP mechanism. 

For wrapping, the mechanism -
· Generates a temporary random EC key (transport key) having the same parameters as the wrapping CKK_EC_MONTGOMERY EC key.
· Saves the transport key public key material as bytes in little endian order as defined in [RFC 7748] (i.e. as encoded in the CKA_EC_POINT attribute of Montgomery public keys).
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private key of the transport EC key and the public key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the temporary AES key.
· Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key and EC transport private key.
· Concatenates public key material of the transport key and output the concatenated blob. The first part is the public key material of the transport key and the second part is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism - 
· Splits the input into two parts. The first part is the public key material of the CKK_EC_MONTGOMERY transport key and the second part is the wrapped target key. The length of the first part is equal to the length of the public key material of the unwrapping CKK_EC_MONTGOMERY EC key. 
Note: since the transport key and the wrapping EC key share the same domain, the length of the public key material of the transport key is the same length as the public key material of the unwrapping EC key.
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private part of unwrapping EC key and the public part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the temporary AES key. 
· Un-wraps the target key from the second part with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
· Zeroizes the temporary AES key. 

Table 85, CKM_ECDH_X_AES_KEY_WRAP Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_ECDH_X_AES_KEY_WRAP
	
	
	
	
	
	
	
	



Constraints on key types are summarized in the following table:
Table 86, ECDH AES Key Wrap: Allowed Key Types
	Function
	Key type

	C_WrapKey / C_UnwrapKey
	CKK_EC_MONTGOMERY



6.3.23 [bookmark: _Toc195693312]ECDH AES KEY WRAP mechanism parameters
* CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR
CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the CKM_ECDH_AES_KEY_WRAP, CKM_ECDH_COF_AES_KEY_WRAP and CKM_ECDH_X_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_ECDH_AES_KEY_WRAP_PARAMS {
	CK_ULONG	ulAESKeyBits;
	CK_EC_KDF_TYPE	kdf;
	CK_ULONG	ulSharedDataLen;
	CK_BYTE_PTR	pSharedData;
}	CK_ECDH_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

	ulAESKeyBits	length of the temporary AES key in bits. Can be only 128, 192 or 256.
	kdf	key derivation function used on the shared secret value to generate AES key.
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	Some data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_ECDH_AES_KEY_WRAP_PARAMS.

6.3.24 [bookmark: _Toc370634422][bookmark: _Toc391471139][bookmark: _Toc395187777][bookmark: _Toc416960023][bookmark: _Toc8118138][bookmark: _Toc30061199][bookmark: _Toc90376452][bookmark: _Toc111203437][bookmark: _Toc148962279][bookmark: _Toc195693313]FIPS 186-4
When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves (with a fixed set of domain parameters) or curves with domain parameters generated as specified by [ANSI X9.62]. The NIST recommended curves are:
P-192, P-224, P-256, P-384, P-521 
K-163, B-163, K-233, B-233 
K-283, B-283, K-409, B-409 
K-571, B-571
6.4 [bookmark: _Toc228894671][bookmark: _Toc228807197][bookmark: _Toc72656240][bookmark: _Toc405794813][bookmark: _Toc385057992][bookmark: _Toc370634423][bookmark: _Toc391471140][bookmark: _Toc395187778][bookmark: _Toc416960024][bookmark: _Toc8118139][bookmark: _Toc30061200][bookmark: _Toc90376453][bookmark: _Toc111203438][bookmark: _Toc148962280][bookmark: _Toc195693314]Diffie-Hellman
[bookmark: _Toc25853415]Table 87, Diffie-Hellman Mechanisms vs. Functions
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6.4.1 [bookmark: _Toc228894672][bookmark: _Toc228807198][bookmark: _Toc370634424][bookmark: _Toc391471141][bookmark: _Toc395187779][bookmark: _Toc416960025][bookmark: _Toc8118140][bookmark: _Toc30061201][bookmark: _Toc90376454][bookmark: _Toc111203439][bookmark: _Toc148962281][bookmark: _Toc195693315]Definitions
This section defines the key type “CKK_DH” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of [DH] key objects.
Mechanisms:
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_PARAMETER_GEN
CKM_DH_PKCS_DERIVE
CKM_X9_42_DH_KEY_PAIR_GEN
CKM_X9_42_DH_PARAMETER_GEN
CKM_X9_42_DH_DERIVE
CKM_X9_42_DH_HYBRID_DERIVE
CKM_X9_42_MQV_DERIVE

6.4.2 [bookmark: _Toc228894673][bookmark: _Toc228807199][bookmark: _Toc72656242][bookmark: _Toc370634425][bookmark: _Toc391471142][bookmark: _Toc395187780][bookmark: _Toc416960026][bookmark: _Toc8118141][bookmark: _Toc30061202][bookmark: _Toc90376455][bookmark: _Toc111203440][bookmark: _Toc148962282][bookmark: _Toc195693316]Diffie-Hellman public key objects
Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315843][bookmark: _Toc319314971][bookmark: _Toc319314556][bookmark: _Toc319314014][bookmark: _Toc228807515][bookmark: _Toc405794986][bookmark: _Toc383864521][bookmark: _Toc323204886][bookmark: _Toc25853416]Table 88, Diffie-Hellman Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,3
	Big integer
	Prime p

	CKA_BASE1,3
	Big integer
	Base g

	CKA_VALUE1,4
	Big integer
	Public value y 


- Refer to Table 13 for footnotes
The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain parameters”. Depending on the token, there may be limits on the length of the key components. See [PKCS #3] for more information on Diffie-Hellman keys.
The following is a sample template for creating a Diffie-Hellman public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR label[] = “A Diffie-Hellman public key object”;
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_VALUE, value, sizeof(value)}
};
6.4.3 [bookmark: _Toc228894674][bookmark: _Toc228807200][bookmark: _Toc72656243][bookmark: _Toc370634426][bookmark: _Toc391471143][bookmark: _Toc395187781][bookmark: _Toc416960027][bookmark: _Toc8118142][bookmark: _Toc30061203][bookmark: _Toc90376456][bookmark: _Toc111203441][bookmark: _Toc148962283][bookmark: _Toc195693317]X9.42 Diffie-Hellman public key objects
X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH) hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807516][bookmark: _Toc25853417]Table 89, X9.42 Diffie-Hellman Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,3
	Big integer
	Prime p ( 1024 bits, in steps of 256 bits)

	CKA_BASE1,3
	Big integer
	Base g

	CKA_SUBPRIME1,3
	Big integer
	Subprime q ( 160 bits)

	CKA_VALUE1,4
	Big integer
	Public value y


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-Hellman domain parameters”. See the [ANSI X9.42] standard for more information on X9.42 Diffie-Hellman keys.
The following is a sample template for creating a X9.42 Diffie-Hellman public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_X9_42_DH;
CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman public key object”;
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
  {CKA_VALUE, value, sizeof(value)}
};
6.4.4 [bookmark: _Toc228894675][bookmark: _Toc228807201][bookmark: _Toc72656244][bookmark: _Toc405794684][bookmark: _Toc370634427][bookmark: _Toc391471144][bookmark: _Toc395187782][bookmark: _Toc416960028][bookmark: _Toc8118143][bookmark: _Toc30061204][bookmark: _Toc90376457][bookmark: _Toc111203442][bookmark: _Toc148962284][bookmark: _Toc195693318]Diffie-Hellman private key objects
Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315846][bookmark: _Toc319314974][bookmark: _Toc319314559][bookmark: _Toc319314017][bookmark: _Toc228807517][bookmark: _Toc405794992][bookmark: _Toc383864525][bookmark: _Toc323204890][bookmark: _Toc25853418]Table 90, Diffie-Hellman Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4,6
	Big integer
	Prime p

	CKA_BASE1,4,6
	Big integer
	Base g

	CKA_VALUE1,4,6,7
	Big integer
	Private value x

	CKA_VALUE_BITS2
	CK_ULONG
	Length in bits of private value x


- Refer to Table 13 for footnotes
The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain parameters”. Depending on the token, there may be limits on the length of the key components. See [PKCS #3] for more information on Diffie-Hellman keys.
Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the Diffie-Hellman public key.
The following is a sample template for creating a Diffie-Hellman private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR label[] = “A Diffie-Hellman private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_VALUE, value, sizeof(value)}
};
6.4.5 [bookmark: _Toc228894676][bookmark: _Toc228807202][bookmark: _Toc72656245][bookmark: _Toc370634428][bookmark: _Toc391471145][bookmark: _Toc395187783][bookmark: _Toc416960029][bookmark: _Toc8118144][bookmark: _Toc30061205][bookmark: _Toc90376458][bookmark: _Toc111203443][bookmark: _Toc148962285][bookmark: _Toc195693319]X9.42 Diffie-Hellman private key objects
X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH) hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807518][bookmark: _Toc25853419]Table 91, X9.42 Diffie-Hellman Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4,6
	Big integer
	Prime p ( 1024 bits, in steps of 256 bits)

	CKA_BASE1,4,6
	Big integer
	Base g

	CKA_SUBPRIME1,4,6
	Big integer
	Subprime q ( 160 bits)

	CKA_VALUE1,4,6,7
	Big integer
	Private value x


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-Hellman domain parameters”. Depending on the token, there may be limits on the length of the key components. See the [ANSI X9.42] standard for more information on X9.42 Diffie-Hellman keys.
Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.
The following is a sample template for creating a X9.42 Diffie-Hellman private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_X9_42_DH;
CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
  {CKA_VALUE, value, sizeof(value)}
};
6.4.6 [bookmark: _Toc228894677][bookmark: _Toc228807203][bookmark: _Toc72656246][bookmark: _Toc370634429][bookmark: _Toc391471146][bookmark: _Toc395187784][bookmark: _Toc416960030][bookmark: _Toc8118145][bookmark: _Toc30061206][bookmark: _Toc90376459][bookmark: _Toc111203444][bookmark: _Toc148962286][bookmark: _Toc195693320]Diffie-Hellman domain parameter objects
Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain parameter object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807519][bookmark: _Toc25853420]Table 92, Diffie-Hellman Domain Parameter Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4
	Big integer
	Prime p

	CKA_BASE1,4
	Big integer
	Base g

	CKA_PRIME_BITS2,3
	CK_ULONG
	Length of the prime value.


- Refer to Table 13 for footnotes
The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain parameters”. Depending on the token, there may be limits on the length of the key components. See [PKCS #3] for more information on Diffie-Hellman domain parameters.
The following is a sample template for creating a Diffie-Hellman domain parameter object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR label[] = “A Diffie-Hellman domain parameters object”;
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
};
6.4.7 [bookmark: _Toc228894678][bookmark: _Toc228807204][bookmark: _Toc72656247][bookmark: _Toc370634430][bookmark: _Toc391471147][bookmark: _Toc395187785][bookmark: _Toc416960031][bookmark: _Toc8118146][bookmark: _Toc30061207][bookmark: _Toc90376460][bookmark: _Toc111203445][bookmark: _Toc148962287][bookmark: _Toc195693321]X9.42 Diffie-Hellman domain parameters objects
X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42 Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807520][bookmark: _Toc25853421]Table 93, X9.42 Diffie-Hellman Domain Parameters Object Attributes
	Attribute
	Data type
	Meaning

	CKA_PRIME1,4
	Big integer
	Prime p ( 1024 bits, in steps of 256 bits)

	CKA_BASE1,4
	Big integer
	Base g

	CKA_SUBPRIME1,4
	Big integer
	Subprime q ( 160 bits)

	CKA_PRIME_BITS2,3
	CK_ULONG
	Length of the prime value.

	CKA_SUBPRIME_BITS2,3
	CK_ULONG
	Length of the subprime value.


- Refer to Table 13 for footnotes
The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain parameters components. See the [ANSI X9.42] standard for more information on X9.42 Diffie-Hellman domain parameters.
The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_X9_42_DH;
CK_UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain parameters object”;
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprime[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PRIME, prime, sizeof(prime)},
  {CKA_BASE, base, sizeof(base)},
  {CKA_SUBPRIME, subprime, sizeof(subprime)},
};
6.4.8 [bookmark: _Toc228894679][bookmark: _Toc228807205][bookmark: _Toc72656248][bookmark: _Toc370634431][bookmark: _Toc391471148][bookmark: _Toc395187786][bookmark: _Toc416960032][bookmark: _Toc8118147][bookmark: _Toc30061208][bookmark: _Toc90376461][bookmark: _Toc111203446][bookmark: _Toc148962288][bookmark: _Toc195693322]PKCS #3 Diffie-Hellman key pair generation
The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in [PKCS #3]. This is what PKCS #3 calls “phase I”. It does not have a parameter.
The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the private value, as described in [PKCS #3]. 
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private key; other attributes required by the Diffie-Hellman public and private key types must be specified in the templates.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman prime sizes, in bits.
6.4.9 [bookmark: _Toc228894680][bookmark: _Toc228807206][bookmark: _Toc72656249][bookmark: _Toc370634432][bookmark: _Toc391471149][bookmark: _Toc395187787][bookmark: _Toc416960033][bookmark: _Toc8118148][bookmark: _Toc30061209][bookmark: _Toc90376462][bookmark: _Toc111203447][bookmark: _Toc148962289][bookmark: _Toc195693323]PKCS #3 Diffie-Hellman domain parameter generation
The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-Hellman key agreement, as defined in [PKCS #3].
It does not have a parameter.
The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as specified in the CKA_PRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain parameter types may also be specified in the template, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman prime sizes, in bits.
6.4.10 [bookmark: _Toc228894681][bookmark: _Toc228807207][bookmark: _Toc72656250][bookmark: _Toc405794815][bookmark: _Toc385057994][bookmark: _Toc383864957][bookmark: _Toc323610940][bookmark: _Toc323205511][bookmark: _Toc323024177][bookmark: _Toc323000726][bookmark: _Toc322945159][bookmark: _Toc322855317][bookmark: _Toc370634433][bookmark: _Toc391471150][bookmark: _Toc395187788][bookmark: _Toc416960034][bookmark: _Toc8118149][bookmark: _Toc30061210][bookmark: _Toc90376463][bookmark: _Toc111203448][bookmark: _Toc148962290][bookmark: _Toc195693324]PKCS #3 Diffie-Hellman key derivation
The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a mechanism for key derivation based on Diffie-Hellman key agreement, as defined in [PKCS #3]. This is what PKCS #3 calls “phase II”.
It has a parameter, which is the public value of the other party in the key agreement protocol, represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).
This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other party. It computes a Diffie-Hellman secret value from the public value and private key according to [PKCS #3], and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability[footnoteRef:3]: [3:  Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE. ] 

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
When this mechanism is used in C_EncapsulateKey and C_DecapsulateKey, the mechanism parameters pPublicData and ulPublicDataLen must be set to NULL and 0 respectively. For C_EncapsulateKey, an ephemeral key pair is generated. The value of the generated public key is returned as the ciphertext. The generated private key is used with public key provided in the API to generate a symmetric key using Diffie Helman PKCS #3 Derive. For C_DecapsulateKey, the ciphertext is used with the private key provided in the API to generate a symmetric key using Diffie Helman PKCS #3 Derive.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman prime sizes, in bits.
6.4.11 [bookmark: _Toc228894682][bookmark: _Toc228807208][bookmark: _Toc72656253][bookmark: _Toc370634434][bookmark: _Toc391471151][bookmark: _Toc395187789][bookmark: _Toc416960035][bookmark: _Toc8118150][bookmark: _Toc30061211][bookmark: _Toc90376464][bookmark: _Toc111203449][bookmark: _Toc148962291][bookmark: _Toc195693325]X9.42 Diffie-Hellman mechanism parameters
· CK_X9_42_DH_KDF_TYPE, CK_X9_42_DH_KDF_TYPE_PTR
CK_X9_42_DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman key agreement schemes. It is defined as follows:
typedef CK_ULONG CK_X9_42_DH_KDF_TYPE;

The following table lists the defined functions.
[bookmark: _Toc228807521][bookmark: _Toc25853422]Table 94, X9.42 Diffie-Hellman Key Derivation Functions
	Source Identifier

	CKD_NULL

	CKD_SHA1_KDF_ASN1

	CKD_SHA1_KDF_CONCATENATE


The key derivation function CKD_NULL produces a raw shared secret value without applying any key derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the shared secret value as defined in the [ANSI X9.42] standard.
CK_X9_42_DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.
1. [bookmark: _Toc228807209][bookmark: _Toc72656254]CK_X9_42_DH1_DERIVE_PARAMS, CK_X9_42_DH1_DERIVE_PARAMS_PTR
CK_X9_42_DH1_DERIVE_PARAMS is a structure that provides the parameters to the CKM_X9_42_DH_DERIVE key derivation mechanism, where each party contributes one key pair. The structure is defined as follows:
typedef struct CK_X9_42_DH1_DERIVE_PARAMS {
	CK_X9_42_DH_KDF_TYPE	kdf;
	CK_ULONG	ulOtherInfoLen;
	CK_BYTE_PTR	pOtherInfo;
	CK_ULONG	ulPublicDataLen;
	CK_BYTE_PTR	pPublicData;
}	CK_X9_42_DH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulOtherInfoLen	the length in bytes of the other info
	pOtherInfo	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s X9.42 Diffie-Hellman public key
	pPublicData	pointer to other party’s X9.42 Diffie-Hellman public key value
With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero. With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by the two parties intending to share the shared secret. With the key derivation function CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
CK_X9_42_DH1_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH1_DERIVE_PARAMS.
· [bookmark: _Toc228807210][bookmark: _Toc72656255]CK_X9_42_DH2_DERIVE_PARAMS, CK_X9_42_DH2_DERIVE_PARAMS_PTR
CK_X9_42_DH2_DERIVE_PARAMS is a structure that provides the parameters to the CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms, where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_X9_42_DH2_DERIVE_PARAMS {
	CK_X9_42_DH_KDF_TYPE	kdf;
	CK_ULONG	ulOtherInfoLen;
	CK_BYTE_PTR	pOtherInfo;
	CK_ULONG	ulPublicDataLen;
	CK_BYTE_PTR	pPublicData;
	CK_ULONG	ulPrivateDataLen;
	CK_OBJECT_HANDLE	hPrivateData;
	CK_ULONG	ulPublicDataLen2;
	CK_BYTE_PTR	pPublicData2;
}	CK_X9_42_DH2_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulOtherInfoLen	the length in bytes of the other info
	pOtherInfo	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s first X9.42 Diffie-Hellman public key
	pPublicData	pointer to other party’s first X9.42 Diffie-Hellman public key value
	ulPrivateDataLen	the length in bytes of the second X9.42 Diffie-Hellman private key
	hPrivateData	key handle for second X9.42 Diffie-Hellman private key value
	ulPublicDataLen2	the length in bytes of the other party’s second X9.42 Diffie-Hellman public key
	pPublicData2	pointer to other party’s second X9.42 Diffie-Hellman public key value
With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero. With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by the two parties intending to share the shared secret. With the key derivation function CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
CK_X9_42_DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.
· [bookmark: _Toc228807211][bookmark: _Toc72656256]CK_X9_42_MQV_DERIVE_PARAMS, CK_X9_42_MQV_DERIVE_PARAMS_PTR
CK_X9_42_MQV_DERIVE_PARAMS is a structure that provides the parameters to the CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_X9_42_MQV_DERIVE_PARAMS {
	CK_X9_42_DH_KDF_TYPE	kdf;
	CK_ULONG	ulOtherInfoLen;
	CK_BYTE_PTR	pOtherInfo;
	CK_ULONG	ulPublicDataLen;
	CK_BYTE_PTR	pPublicData;
	CK_ULONG	ulPrivateDataLen;
	CK_OBJECT_HANDLE	hPrivateData;
	CK_ULONG	ulPublicDataLen2;
	CK_BYTE_PTR	pPublicData2;
	CK_OBJECT_HANDLE	publicKey;
}	CK_X9_42_MQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulOtherInfoLen	the length in bytes of the other info
	pOtherInfo	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s first X9.42 Diffie-Hellman public key
	pPublicData	pointer to other party’s first X9.42 Diffie-Hellman public key value
	ulPrivateDataLen	the length in bytes of the second X9.42 Diffie-Hellman private key
	hPrivateData	key handle for second X9.42 Diffie-Hellman private key value
	ulPublicDataLen2	the length in bytes of the other party’s second X9.42 Diffie-Hellman public key
	pPublicData2	pointer to other party’s second X9.42 Diffie-Hellman public key value
	publicKey	Handle to the first party’s ephemeral public key
With the key derivation function CKD_NULL, pOtherInfo must be NULL and ulOtherInfoLen must be zero. With the key derivation function CKD_SHA1_KDF_ASN1, pOtherInfo must be supplied, which contains an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by the two parties intending to share the shared secret. With the key derivation function CKD_SHA1_KDF_CONCATENATE, an optional pOtherInfo may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.
CK_X9_42_MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_MQV_DERIVE_PARAMS.
6.4.12 [bookmark: _Toc228894683][bookmark: _Toc228807212][bookmark: _Toc72656257][bookmark: _Toc370634435][bookmark: _Toc391471152][bookmark: _Toc395187790][bookmark: _Toc416960036][bookmark: _Toc8118151][bookmark: _Toc30061212][bookmark: _Toc90376465][bookmark: _Toc111203450][bookmark: _Toc148962292][bookmark: _Toc195693326]X9.42 Diffie-Hellman key pair generation
The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42_DH_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the [ANSI X9.42] standard.
It does not have a parameter.
The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template for the public key. 
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman public and private key types must be specified in the templates.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.
6.4.13 [bookmark: _Toc228894684][bookmark: _Toc228807213][bookmark: _Toc72656258][bookmark: _Toc370634436][bookmark: _Toc391471153][bookmark: _Toc395187791][bookmark: _Toc416960037][bookmark: _Toc8118152][bookmark: _Toc30061213][bookmark: _Toc90376466][bookmark: _Toc111203451][bookmark: _Toc148962293][bookmark: _Toc195693327]X9.42 Diffie-Hellman domain parameter generation
The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted CKM_X9_42_DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42 Diffie-Hellman key agreement, as defined in the [ANSI X9.42] standard.
It does not have a parameter.
The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the template for the domain parameters.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the template for the domain parameters, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.
6.4.14 [bookmark: _Toc228894685][bookmark: _Toc228807214][bookmark: _Toc72656259][bookmark: _Toc370634437][bookmark: _Toc391471154][bookmark: _Toc395187792][bookmark: _Toc416960038][bookmark: _Toc8118153][bookmark: _Toc30061214][bookmark: _Toc90376467][bookmark: _Toc111203452][bookmark: _Toc148962294][bookmark: _Toc195693328]X9.42 Diffie-Hellman key derivation
The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_DH_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the [ANSI X9.42] standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman domain parameters.
It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.)  The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template. Note that in order to validate this mechanism it may be required to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g. CKM_SHA_1_HMAC_GENERAL) over some test data.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
When this mechanism is used in C_EncapsulateKey and C_DecapsulateKey, the mechanism parameters pPublicData and ulPublicDataLen must be set to NULL and 0 respectively. For C_EncapsulateKey, an ephemeral key pair is generated. The value of the generated public key is returned as the ciphertext. The generated private key is used with public key provided in the API to generate a symmetric key using Diffie Helman X9.42 Derive. For C_DecapsulateKey, the ciphertext is used with the private key provided in the API to generate a symmetric key using Diffie Helman X9.42 Derive.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.
6.4.15 [bookmark: _Toc228894686][bookmark: _Toc228807215][bookmark: _Toc72656260][bookmark: _Toc370634438][bookmark: _Toc391471155][bookmark: _Toc395187793][bookmark: _Toc416960039][bookmark: _Toc8118154][bookmark: _Toc30061215][bookmark: _Toc90376468][bookmark: _Toc111203453][bookmark: _Toc148962295][bookmark: _Toc195693329]X9.42 Diffie-Hellman hybrid key derivation
The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted CKM_X9_42_DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman hybrid key agreement scheme, as defined in the [ANSI X9.42] standard, where each party contributes two key pair, all using the same X9.42 Diffie-Hellman domain parameters.
It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.)  The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template. Note that in order to validate this mechanism it may be required to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g. CKM_SHA_1_HMAC_GENERAL) over some test data.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.
6.4.16 [bookmark: _Toc228894687][bookmark: _Toc228807216][bookmark: _Toc72656261][bookmark: _Toc370634439][bookmark: _Toc391471156][bookmark: _Toc395187794][bookmark: _Toc416960040][bookmark: _Toc8118155][bookmark: _Toc30061216][bookmark: _Toc90376469][bookmark: _Toc111203454][bookmark: _Toc148962296][bookmark: _Toc195693330]X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation
The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted CKM_X9_42_MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in the [ANSI X9.42] standard, where each party contributes two key pairs, all using the same X9.42 Diffie-Hellman domain parameters.
It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template. Note that in order to validate this mechanism it may be required to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g. CKM_SHA_1_HMAC_GENERAL) over some test data.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
[bookmark: _Toc383864958][bookmark: _Toc323610941][bookmark: _Toc323205512][bookmark: _Toc323024178][bookmark: _Toc323000727][bookmark: _Toc322945160][bookmark: _Toc322855318]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.
6.5 [bookmark: _Toc8118156][bookmark: _Toc30061217][bookmark: _Toc90376470][bookmark: _Toc111203455][bookmark: _Toc148962297][bookmark: _Toc195693331]Extended Triple Diffie-Hellman (x3dh)
The Extended Triple Diffie-Hellman mechanism described here is the one described in [SIGNAL].

[bookmark: _Toc25853423]Table 95, Extended Triple Diffie-Hellman Mechanisms vs. Functions
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6.5.1 [bookmark: _Toc8118157][bookmark: _Toc30061218][bookmark: _Toc90376471][bookmark: _Toc111203456][bookmark: _Toc148962298][bookmark: _Toc195693332]Definitions
Mechanisms:
CKM_X3DH_INITIALIZE
CKM_X3DH_RESPOND
6.5.2 [bookmark: _Toc8118158][bookmark: _Toc30061219][bookmark: _Toc90376472][bookmark: _Toc111203457][bookmark: _Toc148962299][bookmark: _Toc195693333]Extended Triple Diffie-Hellman key objects
Extended Triple Diffie-Hellman uses Elliptic Curve keys in Montgomery representation (CKK_EC_MONTGOMERY). Three different kinds of keys are used, they differ in their lifespan:
· identity keys are long-term keys, which identify the peer,
· prekeys are short-term keys, which should be rotated often (weekly to hourly)
· onetime prekeys are keys, which should be used only once.
Any peer intending to be contacted using X3DH must publish their so-called prekey-bundle, consisting of their: 
· public Identity key, 
· current prekey, signed using XEDDSA with their identity key 
· optionally a batch of One-time public keys.
6.5.3 [bookmark: _Toc8118159][bookmark: _Toc30061220][bookmark: _Toc90376473][bookmark: _Toc111203458][bookmark: _Toc148962300][bookmark: _Toc195693334]Initiating an Extended Triple Diffie-Hellman key exchange
Initiating an Extended Triple Diffie-Hellman key exchange starts by retrieving the following required public keys (the so-called prekey-bundle) of the other peer: the Identity key, the signed public Prekey, and optionally one One-time public key.
When the necessary key material is available, the initiating party calls CKM_X3DH_INITIALIZE, also providing the following additional parameters:
· the initiator’s identity key
· the initiator’s ephemeral key (a fresh, one-time CKK_EC_MONTGOMERY type key)

CK_X3DH_INITIATE_PARAMS is a structure that provides the parameters to the CKM_X3DH_INITIALIZE key exchange mechanism. The structure is defined as follows:
typedef struct CK_X3DH_INITIATE_PARAMS {
	CK_X3DH_KDF_TYPE	kdf;
	CK_OBJECT_HANDLE	pPeer_identity;
	CK_OBJECT_HANDLE	pPeer_prekey;
	CK_BYTE_PTR	pPrekey_signature;
	CK_BYTE_PTR	pOnetime_key;
	CK_OBJECT_HANDLE	pOwn_identity;
	CK_OBJECT_HANDLE	pOwn_ephemeral;
}	CK_X3DH_INITIATE_PARAMS;
[bookmark: _Toc25853424]Table 96, Extended Triple Diffie-Hellman Initiate Message parameters:
	Parameter
	Data type
	Meaning

	kdf
	CK_X3DH_KDF_TYPE
	Key derivation function

	pPeer_identity
	Key handle
	Peer’s public Identity key (from the prekey-bundle)

	pPeer_prekey
	Key Handle
	Peer’s public prekey (from the prekey-bundle)

	pPrekey_signature
	Byte array
	XEDDSA signature of PEER_PREKEY (from prekey-bundle)

	pOnetime_key
	Byte array
	Optional one-time public prekey of peer (from the prekey-bundle)

	pOwn_identity
	Key Handle
	Initiators Identity key

	pOwn_ephemeral
	Key Handle
	Initiators ephemeral key



6.5.4 [bookmark: _Toc8118160][bookmark: _Toc30061221][bookmark: _Toc90376474][bookmark: _Toc111203459][bookmark: _Toc148962301][bookmark: _Toc195693335]Responding to an Extended Triple Diffie-Hellman key exchange
Responding an Extended Triple Diffie-Hellman key exchange is done by executing a CKM_X3DH_RESPOND mechanism. CK_X3DH_RESPOND_PARAMS is a structure that provides the parameters to the CKM_X3DH_RESPOND key exchange mechanism. All these parameter should be supplied by the Initiator in a message to the responder. The structure is defined as follows:
typedef struct CK_X3DH_RESPOND_PARAMS {
	CK_X3DH_KDF_TYPE	kdf;
	CK_BYTE_PTR	pIdentity_id;
	CK_BYTE_PTR	pPrekey_id;
	CK_BYTE_PTR	pOnetime_id;
	CK_OBJECT_HANDLE	pInitiator_identity;
	CK_BYTE_PTR	pInitiator_ephemeral;
}	CK_X3DH_RESPOND_PARAMS;

[bookmark: _Toc25853425]Table 97, Extended Triple Diffie-Hellman 1st Message parameters:
	Parameter
	Data type
	Meaning

	kdf
	CK_X3DH_KDF_TYPE
	Key derivation function

	pIdentity_id
	Byte array
	Peer’s public Identity key identifier (from the prekey-bundle)

	pPrekey_id
	Byte array
	Peer’s public prekey identifier (from the prekey-bundle)

	pOnetime_id
	Byte array
	Optional one-time public prekey of peer (from the prekey-bundle)

	pInitiator_identity
	Key handle
	Initiators Identity key

	pInitiator_ephemeral
	Byte array
	Initiators ephemeral key



Where the *_id fields are identifiers marking which key has been used from the prekey-bundle, these identifiers could be the keys themselves.

This mechanism has the following rules about key sensitivity and extractability[footnoteRef:4]: [4:  Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE. ] 

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
2 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
3 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
6.5.5 [bookmark: _Toc8118161][bookmark: _Toc30061222][bookmark: _Toc90376475][bookmark: _Toc111203460][bookmark: _Toc148962302][bookmark: _Toc195693336]Extended Triple Diffie-Hellman parameters
· CK_X3DH_KDF_TYPE, CK_X3DH_KDF_TYPE_PTR
CK_X3DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data from a shared secret. The key derivation function will be used by the X3DH key agreement schemes. It is defined as follows:
typedef CK_ULONG CK_X3DH_KDF_TYPE;

The following table lists the defined functions.
[bookmark: _Toc25853426]Table 98, X3DH: Key Derivation Functions
	Source Identifier

	CKD_NULL

	CKD_BLAKE2B_256_KDF

	CKD_BLAKE2B_512_KDF

	CKD_SHA3_256_KDF

	CKD_SHA256_KDF

	CKD_SHA3_512_KDF

	CKD_SHA512_KDF


6.6 [bookmark: _Toc8118162][bookmark: _Toc30061223][bookmark: _Toc90376476][bookmark: _Toc111203461][bookmark: _Toc148962303][bookmark: _Toc195693337]Double Ratchet
The Double Ratchet is a key management algorithm managing the ongoing renewal and maintenance of short-lived session keys providing forward secrecy and break-in recovery for encrypt/decrypt operations. The algorithm is described in [DoubleRatchet]. The Signal protocol uses X3DH to exchange a shared secret in the first step, which is then used to derive a Double Ratchet secret key.
[bookmark: _Toc25853427]Table 99, Double Ratchet Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	Digest
	Gen.
 Key/
Key
Pair
	Wrap
&
Unwrap
	Derive
	Encap
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&
Decap
sulate

	CKM_X2RATCHET_INITIALIZE
	
	
	
	
	
	
	✓
	

	CKM_X2RATCHET_RESPOND
	
	
	
	
	
	
	✓
	

	CKM_X2RATCHET_ENCRYPT
	✓
	
	
	
	
	✓
	
	

	CKM_X2RATCHET_DECRYPT
	✓
	
	
	
	
	✓
	
	



6.6.1 [bookmark: _Toc8118163][bookmark: _Toc30061224][bookmark: _Toc90376477][bookmark: _Toc111203462][bookmark: _Toc148962304][bookmark: _Toc195693338]Definitions
This section defines the key type “CKK_X2RATCHET” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_X2RATCHET_INITIALIZE
CKM_X2RATCHET_RESPOND
CKM_X2RATCHET_ENCRYPT
CKM_X2RATCHET_DECRYPT
6.6.2 [bookmark: _Toc8118164][bookmark: _Toc30061225][bookmark: _Toc90376478][bookmark: _Toc111203463][bookmark: _Toc148962305][bookmark: _Toc195693339]Double Ratchet secret key objects
[bookmark: _Hlk20922536]Double Ratchet secret key objects (object class CKO_SECRET_KEY, key type CKK_X2RATCHET) hold Double Ratchet keys. Double Ratchet secret keys can only be derived from shared secret keys using the mechanism CKM_X2RATCHET_INITIALIZE or CKM_X2RATCHET_RESPOND. In the Signal protocol these are seeded with the shared secret derived from an Extended Triple Diffie-Hellman [X3DH] key-exchange. The following table defines the Double Ratchet secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853428]Table 100, Double Ratchet Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_X2RATCHET_RK
	Byte array
	Root key

	CKA_X2RATCHET_HKS
	Byte array
	Sender Header key

	CKA_X2RATCHET_HKR
	Byte array
	Receiver Header key

	CKA_X2RATCHET_NHKS
	Byte array
	Next Sender Header Key

	CKA_X2RATCHET_NHKR
	Byte array
	Next Receiver Header Key

	CKA_X2RATCHET_CKS
	Byte array
	Sender Chain key

	CKA_X2RATCHET_CKR
	Byte array
	Receiver Chain key

	CKA_X2RATCHET_DHS
	Byte array
	Sender DH secret key

	CKA_X2RATCHET_DHP
	Byte array
	Sender DH public key

	CKA_X2RATCHET_DHR
	Byte array
	Receiver DH public key

	CKA_X2RATCHET_NS
	ULONG
	Message number send

	CKA_X2RATCHET_NR
	ULONG
	Message number receive

	CKA_X2RATCHET_PNS
	ULONG
	Previous message number send

	CKA_X2RATCHET_BOBS1STMSG
	BOOL
	Is this bob and has he ever sent a message?

	CKA_X2RATCHET_ISALICE
	BOOL
	Is this Alice?

	CKA_X2RATCHET_BAGSIZE
	ULONG
	How many out-of-order keys do we store

	CKA_X2RATCHET_BAG
	Byte array
	Out-of-order keys


6.6.3 [bookmark: _Toc8118165][bookmark: _Toc30061226][bookmark: _Toc90376479][bookmark: _Toc111203464][bookmark: _Toc148962306][bookmark: _Toc195693340]Double Ratchet key derivation
The Double Ratchet key derivation mechanisms depend on who is the initiating party, and who the receiving, denoted CKM_X2RATCHET_INITIALIZE and CKM_X2RATCHET_RESPOND, are the key derivation mechanisms for the Double Ratchet. Usually, the keys are derived from a shared secret by executing a X3DH key exchange.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Additionally, the attribute flags indicating which functions the key supports are also contributed by the mechanism.
For this mechanism, the only allowed values are 255 and 448 as [RFC 8032] only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
· CK_X2RATCHET_INITIALIZE_PARAMS; CK_X2RATCHET_INITIALIZE_PARAMS_PTR
CK_X2RATCHET_INITIALIZE_PARAMS provides the parameters to the CKM_X2RATCHET_INITIALIZE mechanism. It is defined as follows:
typedef struct CK_X2RATCHET_INITIALIZE_PARAMS {
	CK_BYTE_PTR	sk;
	CK_OBJECT_HANDLE	peer_public_prekey;
	CK_OBJECT_HANDLE	peer_public_identity;
	CK_OBJECT_HANDLE	own_public_identity;
	CK_BBOOL	bEncryptedHeader;
	CK_ULONG	eCurve;
	CK_MECHANISM_TYPE	aeadMechanism;
	CK_X2RATCHET_KDF_TYPE	kdfMechanism;
}	CK_X2RATCHET_INITIALIZE_PARAMS;

The fields of the structure have the following meanings:
	sk	the shared secret with peer (derived using X3DH)
	peers_public_prekey	Peer’s public prekey which the Initiator used in the X3DH
	peers_public_identity	Peer’s public identity which the Initiator used in the X3DH
	own_public_identity	Initiators public identity as used in the X3DH
	bEncryptedHeader	whether the headers are encrypted
	eCurve	255 for curve 25519 or 448 for curve 448
	aeadMechanism	a mechanism supporting AEAD encryption
	kdfMechanism	a Key Derivation Mechanism, such as CKD_BLAKE2B_512_KDF
· CK_X2RATCHET_RESPOND_PARAMS; CK_X2RATCHET_RESPOND_PARAMS_PTR
CK_X2RATCHET_RESPOND_PARAMS provides the parameters to the CKM_X2RATCHET_RESPOND mechanism. It is defined as follows:
typedef struct CK_X2RATCHET_RESPOND_PARAMS {
	CK_BYTE_PTR	sk;
	CK_OBJECT_HANDLE	own_prekey;
	CK_OBJECT_HANDLE	initiator_identity;
	CK_OBJECT_HANDLE	own_public_identity;
	CK_BBOOL	bEncryptedHeader;
	CK_ULONG	eCurve;
	CK_MECHANISM_TYPE	aeadMechanism;
	CK_X2RATCHET_KDF_TYPE	kdfMechanism;
}	CK_X2RATCHET_RESPOND_PARAMS;

The fields of the structure have the following meanings:
	sk	shared secret with the Initiator
	own_prekey	Own Prekey pair that the Initiator used
	initiator_identity	Initiator’s public identity key used
	own_public_identity	as used in the prekey bundle by the initiator in the X3DH
	bEncryptedHeader	whether the headers are encrypted
	eCurve	255 for curve 25519 or 448 for curve 448
	aeadMechanism	a mechanism supporting AEAD encryption
	kdfMechanism	a Key Derivation Mechanism, such as CKD_BLAKE2B_512_KDF
6.6.4 [bookmark: _Toc8118166][bookmark: _Toc30061227][bookmark: _Toc90376480][bookmark: _Toc111203465][bookmark: _Toc148962307][bookmark: _Toc195693341]Double Ratchet Encryption mechanism
The Double Ratchet encryption mechanism, denoted CKM_X2RATCHET_ENCRYPT and CKM_X2RATCHET_DECRYPT, are mechanisms for single part encryption and decryption based on the Double Ratchet and its underlying AEAD cipher.
6.6.5 [bookmark: _Toc8118167][bookmark: _Toc30061228][bookmark: _Toc90376481][bookmark: _Toc111203466][bookmark: _Toc148962308][bookmark: _Toc195693342]Double Ratchet parameters
· CK_X2RATCHET_KDF_TYPE, CK_X2RATCHET_KDF_TYPE_PTR
CK_X2RATCHET_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data from a shared secret. The key derivation function will be used by the X key derivation scheme. It is defined as follows:
typedef CK_ULONG CK_X2RATCHET_KDF_TYPE;

The following table lists the defined functions.
[bookmark: _Toc25853429]Table 101, X2RATCHET: Key Derivation Functions
	Source Identifier

	CKD_NULL

	CKD_BLAKE2B_256_KDF

	CKD_BLAKE2B_512_KDF

	CKD_SHA3_256_KDF

	CKD_SHA256_KDF

	CKD_SHA3_512_KDF

	CKD_SHA512_KDF



6.7 [bookmark: _Toc228894688][bookmark: _Toc228807217][bookmark: _Toc72656270][bookmark: _Ref42317804][bookmark: _Ref42317763][bookmark: _Ref42317715][bookmark: _Ref42317544][bookmark: _Toc370634440][bookmark: _Toc391471157][bookmark: _Toc395187795][bookmark: _Toc416960041][bookmark: _Toc8118168][bookmark: _Toc30061229][bookmark: _Ref56524370][bookmark: _Ref65665201][bookmark: _Ref65665282][bookmark: _Ref65665926][bookmark: _Ref65665954][bookmark: _Toc90376482][bookmark: _Toc111203467][bookmark: _Toc148962309][bookmark: _Ref165379367][bookmark: _Toc195693343][bookmark: _Toc405794821][bookmark: _Toc385058007][bookmark: _Toc323624147]Wrapping/unwrapping private keys
Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, short Weierstrass EC private keys, DSA private keys, HSS private keys, XMSS/XMSSMT private keys, ML-DSA private keys, ML-KEM private keys and SLH-DSA private keys. For wrapping, a private key is BER-encoded according to [PKCS #8] PrivateKeyInfo ASN.1 type. [PKCS #8] requires an algorithm identifier for the type of the private key. The object identifiers for the required algorithm identifiers are as follows:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1 }

dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

id-ml-dsa-44 OBJECT IDENTIFIER ::= { nist-sigAlgs 17 }
id-ml-dsa-65 OBJECT IDENTIFIER ::= { nist-sigAlgs 18 }
id-ml-dsa-87 OBJECT IDENTIFIER ::= { nist-sigAlgs 19 }

id-slh-dsa-sha2-128s OBJECT IDENTIFIER ::= { nist-sigAlgs 20 }
id-slh-dsa-sha2-128f OBJECT IDENTIFIER ::= { nist-sigAlgs 21 }
id-slh-dsa-sha2-192s OBJECT IDENTIFIER ::= { nist-sigAlgs 22 }
id-slh-dsa-sha2-192f OBJECT IDENTIFIER ::= { nist-sigAlgs 23 }
id-slh-dsa-sha2-256s OBJECT IDENTIFIER ::= { nist-sigAlgs 24 }
id-slh-dsa-sha2-256f OBJECT IDENTIFIER ::= { nist-sigAlgs 25 }
id-slh-dsa-shake-128s OBJECT IDENTIFIER ::= { nist-sigAlgs 26 }
id-slh-dsa-shake-128f OBJECT IDENTIFIER ::= { nist-sigAlgs 27 }
id-slh-dsa-shake-192s OBJECT IDENTIFIER ::= { nist-sigAlgs 28 }
id-slh-dsa-shake-192f OBJECT IDENTIFIER ::= { nist-sigAlgs 29 }
id-slh-dsa-shake-256s OBJECT IDENTIFIER ::= { nist-sigAlgs 30 }
id-slh-dsa-shake-256f OBJECT IDENTIFIER ::= { nist-sigAlgs 31 }

id-hash-ml-dsa-44-with-sha512 OBJECT IDENTIFIER ::= { 
nist-sigAlgs 32 }
id-hash-ml-dsa-65-with-sha512 OBJECT IDENTIFIER ::= { 
nist-sigAlgs 33 }
id-hash-ml-dsa-87-with-sha512 OBJECT IDENTIFIER ::= { 
nist-sigAlgs 34 }

id-hash-slh-dsa-sha2-128s-with-sha256 OBJECT IDENTIFIER ::= { nist-sigAlgs 35 }
id-hash-slh-dsa-sha2-128f-with-sha256 OBJECT IDENTIFIER ::= { nist-sigAlgs 36 }
id-hash-slh-dsa-sha2-192s-with-sha512 OBJECT IDENTIFIER ::= { nist-sigAlgs 37 }
id-hash-slh-dsa-sha2-192f-with-sha512 OBJECT IDENTIFIER ::= { nist-sigAlgs 38 }
id-hash-slh-dsa-sha2-256s-with-sha512 OBJECT IDENTIFIER ::= { nist-sigAlgs 39 }
id-hash-slh-dsa-sha2-256f-with-sha512 OBJECT IDENTIFIER ::= { nist-sigAlgs 40 }
id-hash-slh-dsa-shake-128s-with-shake128 OBJECT IDENTIFIER ::= { nist-sigAlgs 41 }
id-hash-slh-dsa-shake-128f-with-shake128 OBJECT IDENTIFIER ::= { nist-sigAlgs 42 }
id-hash-slh-dsa-shake-192s-with-shake256 OBJECT IDENTIFIER ::= { nist-sigAlgs 43 }
id-hash-slh-dsa-shake-192f-with-shake256 OBJECT IDENTIFIER ::= { nist-sigAlgs 44 }
id-hash-slh-dsa-shake-256s-with-shake256 OBJECT IDENTIFIER ::= { nist-sigAlgs 45 }
id-hash-slh-dsa-shake-256f-with-shake256 OBJECT IDENTIFIER ::= { nist-sigAlgs 46 }

id-alg-ml-kem-512 OBJECT IDENTIFIER ::= { nist-kems 1 }
id-alg-ml-kem-768 OBJECT IDENTIFIER ::= { nist-kems 2 }
id-alg-ml-kem-1024 OBJECT IDENTIFIER ::= { nist-kems 3 }

where
pkcs-1 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 1 }

pkcs-3 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 3 }

nistAlgorithms OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) }
nist-sigAlgs OBJECT IDENTIFIER ::= { nistAlgorithms 3 }
nist-kems OBJECT IDENTIFIER ::= { nistAlgorithms 4 }

These parameters for the algorithm identifiers have the following types, respectively:
NULL

DHParameter ::= SEQUENCE {
  prime				INTEGER,  -- p
  base				INTEGER,  -- g
  privateValueLength	INTEGER OPTIONAL
}

DomainParameters ::= SEQUENCE {
  prime				INTEGER,  -- p
  base				INTEGER,  -- g
  subprime			INTEGER,  -- q
  cofactor			INTEGER OPTIONAL,  -- j
  validationParms	ValidationParms OPTIONAL
}

ValidationParms ::= SEQUENCE {
  Seed			BIT STRING, -- seed
  PGenCounter	INTEGER     -- parameter verification
}

Parameters ::= CHOICE {
  ecParameters	ECParameters,
  namedCurve	CURVES.&id({CurveNames}),
  implicitlyCA	NULL
}

Dss-Parms ::= SEQUENCE {
  p INTEGER,
  q INTEGER,
  g INTEGER
}

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values are not stored within the token.
For the EC domain parameters, the use of namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.
Within the PrivateKeyInfo type:
· RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1 type. This type requires values to be present for all the attributes specific to Cryptoki’s RSA private key objects. In other words, if a Cryptoki library does not have values for an RSA private key’s CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT values, it must not create an RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.
· Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
· X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
· Short Weierstrass EC private keys are BER-encoded according to SECG [SEC 1] ECPrivateKey ASN.1 type:
ECPrivateKey ::= SEQUENCE {
	Version		INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
	privateKey	OCTET STRING,
	parameters	[0] Parameters OPTIONAL,
	publicKey	[1] BIT STRING OPTIONAL
}

Since the EC domain parameters are placed in the PKCS #8’s privateKeyAlgorithm field, the optional parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this publicKey field is outside the scope of Cryptoki.
· DSA private keys are represented as BER-encoded ASN.1 type INTEGER.
· For ML-KEM and ML-DSA keys, the private key can be encoded with a seed, a value, or both. If only one of the two are supplied, unwrap may fail in some tokens. Which encodings on wrap are specified is token specific.
Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string of bytes is encrypted with the secret key. This encryption is defined in the section for the respective key wrapping mechanism.
Unwrapping a wrapped private key undoes the above procedure. The ciphertext is decrypted as defined for the respective key unwrapping mechanism. The data thereby obtained are parsed as a PrivateKeyInfo type. An error will result if the original wrapped key does not decrypt properly, or if the decrypted data does not parse properly, or its type does not match the key type specified in the template for the new key. The unwrapping mechanism contributes only those attributes specified in the PrivateKeyInfo type to the newly-unwrapped key; other attributes must be specified in the template, or will take their default values.
Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier
DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
  iso(1) identifier-organization(3) oiw(14) secsig(3) algorithm(2) }

with associated parameters
DSAParameters ::= SEQUENCE {
  prime1 INTEGER,  -- modulus p
  prime2 INTEGER,  -- modulus q
  base INTEGER  -- base g
}

for wrapping DSA private keys. Note that although the two structures for holding DSA domain parameters appear identical when instances of them are encoded, the two corresponding object identifiers are different.
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6.8.1 [bookmark: _Toc228894690][bookmark: _Toc228807219][bookmark: _Toc370634442][bookmark: _Toc391471159][bookmark: _Toc395187797][bookmark: _Toc416960043][bookmark: _Toc8118170][bookmark: _Toc30061231][bookmark: _Toc90376484][bookmark: _Toc111203469][bookmark: _Toc148962311][bookmark: _Toc195693345]Definitions
This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN
6.8.2 [bookmark: _Toc228894691][bookmark: _Toc228807220][bookmark: _Toc72656273][bookmark: _Toc370634443][bookmark: _Toc391471160][bookmark: _Toc395187798][bookmark: _Toc416960044][bookmark: _Toc8118171][bookmark: _Toc30061232][bookmark: _Toc90376485][bookmark: _Toc111203470][bookmark: _Toc148962312][bookmark: _Toc195693346]Generic secret key objects
Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support encryption or decryption; however, other keys can be derived from them and they can be used in HMAC operations. The following table defines the generic secret key object attributes, in addition to the common attributes defined for this object class:
These key types are used in several of the mechanisms described in this section.
[bookmark: _Toc228807522][bookmark: _Toc405794995][bookmark: _Toc383864527][bookmark: _Toc323204892][bookmark: _Toc25853431]Table 103, Generic Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (arbitrary length)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating a generic secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
CK_UTF8CHAR label[] = “A generic secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_DERIVE, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the SHA-1 hash of the generic secret key object’s CKA_VALUE attribute.
6.8.3 [bookmark: _Toc228894692][bookmark: _Toc228807221][bookmark: _Toc72656274][bookmark: _Toc370634444][bookmark: _Toc391471161][bookmark: _Toc395187799][bookmark: _Toc416960045][bookmark: _Toc8118172][bookmark: _Toc30061233][bookmark: _Toc90376486][bookmark: _Toc111203471][bookmark: _Toc148962313][bookmark: _Toc195693347]Generic secret key generation
The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The generated keys take on any attributes provided in the template passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key to be generated. 
It does not have a parameter.
The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies an object type and a class, they must have the following values:
	CK_OBJECT_CLASS = CKO_SECRET_KEY;
	CK_KEY_TYPE = CKK_GENERIC_SECRET;
[bookmark: _Toc385058009][bookmark: _Ref384745181]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bits.
6.9 [bookmark: _Toc228894693][bookmark: _Toc228807222][bookmark: _Toc72656275][bookmark: _Toc370634445][bookmark: _Toc391471162][bookmark: _Toc395187800][bookmark: _Toc416960046][bookmark: _Toc8118173][bookmark: _Toc30061234][bookmark: _Toc90376487][bookmark: _Toc111203472][bookmark: _Toc148962314][bookmark: _Toc195693348]HMAC mechanisms
Refer to [RFC 2104] and [FIPS 198] for HMAC algorithm description. The HMAC secret key shall correspond to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism definition). Such keys, for use with HMAC operations can be created using C_CreateObject, C_GenerateKey, or C_UnwrapKey.
The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.
6.9.1 [bookmark: _Toc8118174][bookmark: _Toc30061235][bookmark: _Toc90376488][bookmark: _Toc111203473][bookmark: _Toc148962315][bookmark: _Toc195693349]General block cipher mechanism parameters
· CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR
CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of the DES, DES3 (triple-DES), AES, Camellia, SEED, and ARIA ciphers. It also provides the parameters to the general-length HMACing mechanisms (i.e.,SHA-1, SHA-256, SHA-384, SHA-512, and SHA-512/T family) and the two SSL 3.0 MACing mechanisms, (i.e., MD5 and SHA-1). It holds the length of the MAC that these mechanisms produce. It is defined as follows:
	typedef CK_ULONG CK_MAC_GENERAL_PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.
6.10 [bookmark: _Toc228894694][bookmark: _Toc228807223][bookmark: _Toc72656307][bookmark: _Toc370634446][bookmark: _Toc391471163][bookmark: _Toc395187801][bookmark: _Toc416960047][bookmark: _Toc8118175][bookmark: _Toc30061236][bookmark: _Toc90376489][bookmark: _Toc111203474][bookmark: _Toc148962316][bookmark: _Toc195693350][bookmark: _Toc405794851][bookmark: _Toc385058043][bookmark: _Ref384737733][bookmark: _Toc383864964][bookmark: _Toc323610947][bookmark: _Toc323205518][bookmark: _Toc323024184][bookmark: _Toc323000733][bookmark: _Toc322945166][bookmark: _Toc322855324]AES
For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
[bookmark: _Toc25853432]Table 104, AES Mechanisms vs. Functions
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6.10.1 [bookmark: _Toc228894695][bookmark: _Toc228807224][bookmark: _Toc370634447][bookmark: _Toc391471164][bookmark: _Toc395187802][bookmark: _Toc416960048][bookmark: _Toc8118176][bookmark: _Toc30061237][bookmark: _Toc90376490][bookmark: _Toc111203475][bookmark: _Toc148962317][bookmark: _Toc195693351]Definitions
This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_AES_KEY_GEN
CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD
CKM_AES_OFB
CKM_AES_CFB64
CKM_AES_CFB8
CKM_AES_CFB128
CKM_AES_CFB1
CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96
6.10.2 [bookmark: _Toc228894696][bookmark: _Toc228807225][bookmark: _Toc72656309][bookmark: _Toc370634448][bookmark: _Toc391471165][bookmark: _Toc395187803][bookmark: _Toc416960049][bookmark: _Toc8118177][bookmark: _Toc30061238][bookmark: _Toc90376491][bookmark: _Toc111203476][bookmark: _Toc148962318][bookmark: _Toc195693352]AES secret key objects
AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The following table defines the AES secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807523][bookmark: _Toc25853433]Table 105, AES Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (16, 24, or 32 bytes)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating an AES secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_UTF8CHAR label[] = “An AES secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with the key type of the secret key object.
6.10.3 [bookmark: _Toc228894697][bookmark: _Toc228807226][bookmark: _Toc72656310][bookmark: _Toc370634449][bookmark: _Toc391471166][bookmark: _Toc395187804][bookmark: _Toc416960050][bookmark: _Toc8118178][bookmark: _Toc30061239][bookmark: _Toc90376492][bookmark: _Toc111203477][bookmark: _Toc148962319][bookmark: _Toc195693353]AES key generation
The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for NIST’s Advanced Encryption Standard.
It does not have a parameter.
The mechanism generates AES keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.4 [bookmark: _Toc228894698][bookmark: _Toc228807227][bookmark: _Toc72656311][bookmark: _Toc370634450][bookmark: _Toc391471167][bookmark: _Toc395187805][bookmark: _Toc416960051][bookmark: _Toc8118179][bookmark: _Toc30061240][bookmark: _Toc90376493][bookmark: _Toc111203478][bookmark: _Toc148962320][bookmark: _Toc195693354]AES-ECB
AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and electronic codebook mode.
It does not have a parameter.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807524][bookmark: _Toc25853434]Table 106, AES-ECB: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	AES
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	AES
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	AES
	any
	input length rounded up to multiple of block size
	

	C_UnwrapKey
	AES
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.5 [bookmark: _Toc228894699][bookmark: _Toc228807228][bookmark: _Toc72656312][bookmark: _Toc370634451][bookmark: _Toc391471168][bookmark: _Toc395187806][bookmark: _Toc416960052][bookmark: _Toc8118180][bookmark: _Toc30061241][bookmark: _Toc90376494][bookmark: _Toc111203479][bookmark: _Toc148962321][bookmark: _Toc195693355]AES-CBC
AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807525][bookmark: _Toc25853435]Table 107, AES-CBC: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	AES
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	AES
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	AES
	any
	input length rounded up to multiple of the block size
	

	C_UnwrapKey
	AES
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.6 [bookmark: _Toc228894700][bookmark: _Toc228807229][bookmark: _Toc72656313][bookmark: _Toc370634452][bookmark: _Toc391471169][bookmark: _Toc395187807][bookmark: _Toc416960053][bookmark: _Toc8118181][bookmark: _Toc30061242][bookmark: _Toc90376495][bookmark: _Toc111203480][bookmark: _Toc148962322][bookmark: _Toc195693356]AES-CBC with PKCS padding
AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 16-byte initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, short Weierstrass EC and DSA private keys (see section 6.7 for details). The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Ref499219953][bookmark: _Toc228807526][bookmark: _Ref499219946][bookmark: _Toc25853436]Table 108, AES-CBC with PKCS Padding: Key And Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt
	AES
	any
	input length rounded up to multiple of the block size

	C_Decrypt
	AES
	multiple of block size
	between 1 and block size bytes shorter than input length

	C_WrapKey
	AES
	any
	input length rounded up to multiple of the block size

	C_UnwrapKey
	AES
	multiple of block size
	between 1 and block length bytes shorter than input length


[bookmark: _Ref499219209]For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.7 [bookmark: _Toc228894701][bookmark: _Toc228807230][bookmark: _Toc370634453][bookmark: _Toc391471170][bookmark: _Toc395187808][bookmark: _Toc416960054][bookmark: _Toc8118182][bookmark: _Toc30061243][bookmark: _Toc90376496][bookmark: _Toc111203481][bookmark: _Toc148962323][bookmark: _Toc195693357][bookmark: _Toc72656314]AES-OFB
AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and decryption with AES. AES-OFB mode is described in [NIST sp800-38a].
It has a parameter, an initialization vector for this mode. The initialization vector has the same length as the block size.

Constraints on key types and the length of data are summarized in the following table:

[bookmark: _Toc228807527][bookmark: _Toc25853437]Table 109, AES-OFB: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	AES
	any
	same as input length
	no final part

	C_Decrypt
	AES
	any
	same as input length
	no final part


For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.
6.10.8 [bookmark: _Toc228894702][bookmark: _Toc228807231][bookmark: _Toc370634454][bookmark: _Toc391471171][bookmark: _Toc395187809][bookmark: _Toc416960055][bookmark: _Toc8118183][bookmark: _Toc30061244][bookmark: _Toc90376497][bookmark: _Toc111203482][bookmark: _Toc148962324][bookmark: _Toc195693358]AES-CFB
Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES_CFB8, CKM_AES_CFB64, and CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES. AES-OFB mode is described [NIST sp800-38a].
It has a parameter, an initialization vector for this mode. The initialization vector has the same length as the block size.

Constraints on key types and the length of data are summarized in the following table:

[bookmark: _Toc228807528][bookmark: _Toc25853438]Table 110, AES-CFB: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	AES
	any
	same as input length
	no final part

	C_Decrypt
	AES
	any
	same as input length
	no final part


For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.
6.10.9 [bookmark: _Toc228894703][bookmark: _Toc228807232][bookmark: _Toc370634455][bookmark: _Toc391471172][bookmark: _Toc395187810][bookmark: _Toc416960056][bookmark: _Toc8118184][bookmark: _Toc30061245][bookmark: _Toc90376498][bookmark: _Toc111203483][bookmark: _Toc148962325][bookmark: _Toc195693359]General-length AES-MAC
General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in FIPS PUB 197 and data authentication as defined in FIPS PUB 113.
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final AES cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807529][bookmark: _Toc25853439]Table 111, General-length AES-MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	AES
	any
	1-block size, as specified in parameters

	C_Verify
	AES
	any
	1-block size, as specified in parameters


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.10 [bookmark: _Toc228894704][bookmark: _Toc228807233][bookmark: _Toc72656315][bookmark: _Toc370634456][bookmark: _Toc391471173][bookmark: _Toc395187811][bookmark: _Toc416960057][bookmark: _Toc8118185][bookmark: _Toc30061246][bookmark: _Toc90376499][bookmark: _Toc111203484][bookmark: _Toc148962326][bookmark: _Toc195693360]AES-MAC
AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism. AES-MAC always produces and verifies MACs that are half the block size in length.
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807530][bookmark: _Toc25853440]Table 112, AES-MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	AES
	Any
	½ block size (8 bytes)

	C_Verify
	AES
	Any
	½ block size (8 bytes)


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.11 [bookmark: _Toc370634458][bookmark: _Toc391471174][bookmark: _Toc395187812][bookmark: _Toc416960058][bookmark: _Toc8118186][bookmark: _Toc30061247][bookmark: _Toc90376500][bookmark: _Toc111203485][bookmark: _Toc148962327][bookmark: _Toc195693361]AES-XCBC-MAC
AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853441]Table 113, AES-XCBC-MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	AES
	Any
	16 bytes

	C_Verify
	AES
	Any
	16 bytes


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.10.12 [bookmark: _Toc370634459][bookmark: _Toc391471175][bookmark: _Toc395187813][bookmark: _Toc416960059][bookmark: _Toc8118187][bookmark: _Toc30061248][bookmark: _Toc90376501][bookmark: _Toc111203486][bookmark: _Toc148962328][bookmark: _Toc195693362]AES-XCBC-MAC-96
AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC_96, is a mechanism for single and multiple part signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853442]Table 114, AES-XCBC-MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	AES
	Any
	12 bytes

	C_Verify
	AES
	Any
	12 bytes


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.11 [bookmark: _Toc228894705][bookmark: _Toc228807234][bookmark: _Toc151796117][bookmark: _Toc370634460][bookmark: _Toc391471176][bookmark: _Toc395187814][bookmark: _Toc416960060][bookmark: _Toc8118188][bookmark: _Toc30061249][bookmark: _Toc90376502][bookmark: _Toc111203487][bookmark: _Toc148962329][bookmark: _Toc195693363][bookmark: _Toc72656332][bookmark: _Toc405794860][bookmark: _Toc385058053][bookmark: _Toc383864968][bookmark: _Toc323610951][bookmark: _Toc323205522][bookmark: _Toc323024188][bookmark: _Toc323000737][bookmark: _Toc322945170][bookmark: _Toc322855328]AES with Counter
[bookmark: _Toc25853443]Table 115, AES with Counter Mechanisms vs. Functions
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6.11.1 [bookmark: _Toc228894706][bookmark: _Toc228807235][bookmark: _Toc370634461][bookmark: _Toc391471177][bookmark: _Toc395187815][bookmark: _Toc416960061][bookmark: _Toc8118189][bookmark: _Toc30061250][bookmark: _Toc90376503][bookmark: _Toc111203488][bookmark: _Toc148962330][bookmark: _Toc195693364]Definitions
Mechanisms:
CKM_AES_CTR
6.11.2 [bookmark: _Toc228894707][bookmark: _Toc228807236][bookmark: _Toc151796119][bookmark: _Toc76209563][bookmark: _Toc72656324][bookmark: _Toc370634462][bookmark: _Toc391471178][bookmark: _Toc395187816][bookmark: _Toc416960062][bookmark: _Toc8118190][bookmark: _Toc30061251][bookmark: _Toc90376504][bookmark: _Toc111203489][bookmark: _Toc148962331][bookmark: _Toc195693365]AES with Counter mechanism parameters
· [bookmark: _Toc385058044][bookmark: _Toc228807237][bookmark: _Toc151796120][bookmark: _Toc76209564][bookmark: _Toc72656325][bookmark: _Toc405794852]CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR
CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism. It is defined as follows:
typedef struct CK_AES_CTR_PARAMS {
	CK_ULONG	ulCounterBits;
	CK_BYTE	cb[16];
}	CK_AES_CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This number shall be such that 0 < ulCounterBits ≤ 128. For any values outside this range the mechanism shall return CKR_MECHANISM_PARAM_INVALID.
It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.
E.g. as defined in [RFC 3686]:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Nonce                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Initialization Vector (IV)                   |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Block Counter                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This construction permits each packet to consist of up to 232-1 blocks = 4,294,967,295 blocks = 68,719,476,720 octets.
CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR_PARAMS.
6.11.3 [bookmark: _Toc228894708][bookmark: _Toc228807238][bookmark: _Toc151796121][bookmark: _Toc370634463][bookmark: _Toc391471179][bookmark: _Toc395187817][bookmark: _Toc416960063][bookmark: _Toc8118191][bookmark: _Toc30061252][bookmark: _Toc90376505][bookmark: _Toc111203490][bookmark: _Toc148962332][bookmark: _Toc195693366]AES with Counter Encryption / Decryption
Generic AES counter mode is described in NIST Special Publication 800-38A and in [RFC 3686]. These describe encryption using a counter block which may include a nonce to guarantee uniqueness of the counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of counter bits in the counter block.
The block counter is incremented by 1 after each block of plaintext is processed. There is no support for any other increment functions in this mechanism.
If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits, then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the final post increment of the counter to overflow (if it implements it this way) but not allow any further processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of data can be processed. 

6.12 [bookmark: _Toc370634470][bookmark: _Toc391471180][bookmark: _Toc395187818][bookmark: _Toc416960064][bookmark: _Toc8118192][bookmark: _Toc30061253][bookmark: _Toc90376506][bookmark: _Toc111203491][bookmark: _Toc148962333][bookmark: _Toc195693367]AES CBC with CipherText Stealing CTS
Ref [NIST AES CTS]
This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to the same length of ciphertext.
[bookmark: _Toc25853444]Table 116, AES CBC with CipherText Stealing CTS Mechanisms vs. Functions
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6.12.1 [bookmark: _Toc228894710][bookmark: _Toc228807240][bookmark: _Toc370634471][bookmark: _Toc391471181][bookmark: _Toc395187819][bookmark: _Toc416960065][bookmark: _Toc8118193][bookmark: _Toc30061254][bookmark: _Toc90376507][bookmark: _Toc111203492][bookmark: _Toc148962334][bookmark: _Toc195693368]Definitions
Mechanisms:
CKM_AES_CTS 
6.12.2 [bookmark: _Toc228894711][bookmark: _Toc228807241][bookmark: _Toc370634472][bookmark: _Toc391471182][bookmark: _Toc395187820][bookmark: _Toc416960066][bookmark: _Toc8118194][bookmark: _Toc30061255][bookmark: _Toc90376508][bookmark: _Toc111203493][bookmark: _Toc148962335][bookmark: _Toc195693369]AES CTS mechanism parameters
It has a parameter, a 16-byte initialization vector.
[bookmark: _Toc228807531][bookmark: _Toc25853445]Table 117, AES-CTS: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	AES
	Any, ≥ block size (16 bytes)
	same as input length
	no final part

	C_Decrypt
	AES
	any, ≥ block size (16 bytes)
	same as input length
	no final part


[bookmark: _Toc228894712][bookmark: _Toc228807242][bookmark: _Toc370634473][bookmark: _Toc391471183][bookmark: _Toc395187821][bookmark: _Toc416960067]
6.13 [bookmark: _Toc8118195][bookmark: _Toc30061256][bookmark: _Toc90376509][bookmark: _Toc111203494][bookmark: _Toc148962336][bookmark: _Toc195693370]Additional AES Mechanisms
[bookmark: _Toc25853446]Table 118, Additional AES Mechanisms vs. Functions
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6.13.1 [bookmark: _Toc222284779][bookmark: _Toc228894713][bookmark: _Toc228807243][bookmark: _Toc370634474][bookmark: _Toc391471184][bookmark: _Toc395187822][bookmark: _Toc416960068][bookmark: _Toc8118196][bookmark: _Toc30061257][bookmark: _Toc90376510][bookmark: _Toc111203495][bookmark: _Toc148962337][bookmark: _Toc195693371]Definitions
Mechanisms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC
Generator Functions:
	CKG_NO_GENERATE
	CKG_GENERATE
	CKG_GENERATE_COUNTER
	CKG_GENERATE_RANDOM
CKG_GENERATE_COUNTER_XOR
6.13.2 [bookmark: _Toc370634467][bookmark: _Toc391471185][bookmark: _Toc395187823][bookmark: _Toc416960069][bookmark: _Toc8118197][bookmark: _Toc30061258][bookmark: _Toc90376511][bookmark: _Toc111203496][bookmark: _Toc148962338][bookmark: _Ref170811999][bookmark: _Ref177392421][bookmark: _Ref177392445][bookmark: _Toc195693372][bookmark: _Toc228894709][bookmark: _Toc228807239][bookmark: _Toc222284778]AES-GCM Authenticated Encryption / Decryption
Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K (key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.
Encrypt:
· Set the IV length ulIvLen in the parameter block.
· Set the IV data pIv in the parameter block.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the tag length ulTagBits in the parameter block.
· Call C_EncryptInit for CKM_AES_GCM mechanism with parameters and key K.
· Call C_Encrypt, or C_EncryptUpdate*[footnoteRef:5] C_EncryptFinal, for the plaintext obtaining ciphertext and authentication tag output. [5:  “*” indicates 0 or more calls may be made as required] 

Decrypt:
· Set the IV length ulIvLen in the parameter block.
· Set the IV data pIv in the parameter block.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the tag length ulTagBits in the parameter block.
· Call C_DecryptInit for CKM_AES_GCM mechanism with parameters and key K.
· Call C_Decrypt, or C_DecryptUpdate*1 C_DecryptFinal, for the ciphertext, including the appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data should be returned until C_Decrypt or C_DecryptFinal.
MessageEncrypt:
· Set the IV length ulIvLen in the parameter block.
· Set pIv to hold the IV data returned from C_EncryptMessage and C_EncryptMessageBegin. If ulIvFixedBits is not zero, then the ulIvFixedBits most significant bits of pIV contain the fixed IV. If ivGenerator is set to CKG_NO_GENERATE, pIv is an input parameter with the full IV.
· Set the ulIvFixedBits and ivGenerator fields in the parameter block. 
· Set the tag length ulTagBits in the parameter block.
· [bookmark: _Hlk526516525]Set pTag to hold the tag data returned from C_EncryptMessage or the final C_EncryptMessageNext.
· Call C_MessageEncryptInit for CKM_AES_GCM mechanism key K.
· Call C_EncryptMessage, or C_EncryptMessageBegin followed by C_EncryptMessageNext*[footnoteRef:6]. The mechanism parameter is passed to all three of these functions. [6:  “*” indicates 0 or more calls may be made as required] 

· Call C_MessageEncryptFinal to close the message encryption.
MessageDecrypt:
· Set the IV length ulIvLen in the parameter block.
· Set the IV data pIv in the parameter block.
· [bookmark: _Hlk526516631]The ulIvFixedBits and ivGenerator fields are ignored.
· [bookmark: _Hlk526516605]Set the tag length ulTagBits in the parameter block.
· Set the tag data pTag in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext.
· Call C_MessageDecryptInit for CKM_AES_GCM mechanism key K.
· Call C_DecryptMessage, or C_DecryptMessageBegin followed by C_DecryptMessageNext*[footnoteRef:7]. The mechanism parameter is passed to all three of these functions. [7:  “*” indicates 0 or more calls may be made as required] 

· Call C_MessageDecryptFinal to close the message decryption.
In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the initialization vector in bytes.
On MessageEncrypt, the meaning of ivGenerator is as follows: 
CKG_NO_GENERATE means the IV is passed in on MessageEncrypt and no internal IV generation is done. 
CKG_GENERATE means that the non-fixed portion of the IV is generated by the module internally. The generation method is not defined. 
CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module internally by use of an incrementing counter, the initial IV counter is zero. 
CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter. The value of the non-fixed portion passed must not vary from call to call. Like CKG_GENERATE_COUNTER, the counter starts at zero. 
CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module internally using a PRNG. In any case the entire IV, including the fixed portion, is returned in pIV.
Modules must implement CKG_GENERATE. Modules may also reject ulIvFixedBits values which are too large. Zero is always an acceptable value for ulIvFixedBits.
In Encrypt and Decrypt the tag is appended to the ciphertext and the least significant bit of the tag is the rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag field of CK_GCM_MESSAGE_PARAMS. 
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit/C_MessageEncryptInit/C_MessageDecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.
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Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where wK (wrapping key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses CK_GCM_WRAP_PARAMS for WrapKey, UnwrapKey and CK_GCM_MESSAGE_PARAMS for WrapKeyAuthenticated and UnwrapKeyAuthenticated. 
WrapKey:
· Set the IV length ulIvLen in the parameter block.
· Set pIv to hold the IV data returned from C_WrapKey. If ulIvFixedBits is not zero, then the ulIvFixedBits most significant bits of pIV contain the fixed IV. If ivGenerator is set to CKG_NO_GENERATE, pIv is an input parameter with the full IV.
· Set the ulIvFixedBits and ivGenerator fields in the parameter block.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the tag length ulTagBits in the parameter block.
· Call C_WrapKey for CKM_AES_GCM mechanism with parameters and wrapping key wK and key to be wrapped K, obtaining a wrapped key and authentication tag output.
UnwrapKey:
· Set the IV length ulIvLen in the parameter block.
· Set the IV data pIv in the parameter block.
· The ulIvFixedBits and ivGenerator fields are ignored.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the tag length ulTagBits in the parameter block.
· Call C_UnwrapKey for CKM_AES_GCM mechanism with parameters and wrapping key K, wrapped key and authenticated tag output from wrap, and template for the new key, obtaining a key handle. 
WrapKeyAuthenticated:
· Set the IV length ulIvLen in the parameter block.
· Set pIv to hold the IV data returned from C_WrapKeyAuthenticated. If ulIvFixedBits is not zero, then the ulIvFixedBits most significant bits of pIV contain the fixed IV. If ivGenerator is set to CKG_NO_GENERATE, pIv is an input parameter with the full IV.
· Set the ulIvFixedBits and ivGenerator fields in the parameter block. 
· Set the tag length ulTagBits in the parameter block.
· Set pTag to hold the tag data returned from C_WrapKeyAuthenticated.
· Call C_WrapKeyAuthenticated for CKM_AES_GCM mechanism wrapping key wK. wrapped key, parameter and obtaining a wrapped key and authentication tag output in the parameter block.
UnwrapKeyAuthenticated:
· Set the IV length ulIvLen in the parameter block.
· Set the IV data pIv in the parameter block.
· The ulIvFixedBits and ivGenerator fields are ignored.
· Set the tag length ulTagBits in the parameter block.
· Set the tag data pTag in the parameter block.
· Call C_UnwrapKeyAuthenticated for CKM_AES_GCM mechanism, wrapping key wK, wrapped key and authenticated tag output from wrap, and template for the new key, obtaining a key handle.
In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the initialization vector in bytes.
On WrapKeyAuthenticated, the meaning of ivGenerator is as follows: 
CKG_NO_GENERATE means the IV is passed in on WrapKeyAuthenticated and no internal IV generation is done. 
CKG_GENERATE means that the non-fixed portion of the IV is generated by the module internally. The generation method is not defined. 
CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module internally by use of an incrementing counter, the initial IV counter is zero. 
CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter. The value of the non-fixed portion passed must not vary from call to call. Like CKG_GENERATE_COUNTER, the counter starts at zero. 
CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module internally using a PRNG. In any case the entire IV, including the fixed portion, is returned in pIV.
Modules must implement CKG_GENERATE. Modules may also reject ulIvFixedBits values which are too large. Zero is always an acceptable value for ulIvFixedBits.
In WrapKey and UnwrapKey the tag is appended to the wrapped key and the least significant bit of the tag is the rightmost bit and the tag bits are the rightmost ulTagBits bits. In WrapKeyAuthenticated the tag is returned in the pTag field of CK_GCM_MESSAGE_PARAMS. In UnwrapKeyAuthenticated the tag is provided by the pTag field of CK_GCM_MESSAGE_PARAMS. 
6.13.4 [bookmark: _Toc195693374]AES-CCM Authenticated Encryption / Decryption
For IPsec ([RFC 4309]) and also for use in ZFS encryption. Generic CCM mode is described in [RFC 3610].
To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.
Encrypt:
1. Set the message/data length ulDataLen in the parameter block.
1. Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. 
1. Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
1. Set the MAC length ulMACLen in the parameter block.
1. Call C_EncryptInit for CKM_AES_CCM mechanism with parameters and key K.
1. Call C_Encrypt, C_EncryptUpdate, or C_EncryptFinal, for the plaintext obtaining the final ciphertext output and the MAC. The total length of data processed must be ulDataLen. The output length will be ulDataLen + ulMACLen.
Decrypt:
· Set the message/data length ulDataLen in the parameter block. This length must not include the length of the MAC that is appended to the ciphertext.
· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. 
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the MAC length ulMACLen in the parameter block.
· Call C_DecryptInit for CKM_AES_CCM mechanism with parameters and key K.
1. Call C_Decrypt, C_DecryptUpdate, or C_DecryptFinal, for the ciphertext, including the appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen + ulMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until C_Decrypt or C_DecryptFinal.
MessageEncrypt:
1. Set the message/data length ulDataLen in the parameter block.
1. Set the nonce length ulNonceLen.
1. Set pNonce to hold the nonce data returned from C_EncryptMessage and C_EncryptMessageBegin. If ulNonceFixedBits is not zero, then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input parameter with the full nonce.
1. Set the ulNonceFixedBits and nonceGenerator fields in the parameter block. 
1. Set the MAC length ulMACLen in the parameter block.
1. Set pMAC to hold the MAC data returned from C_EncryptMessage or the final C_EncryptMessageNext.
1. Call C_MessageEncryptInit for CKM_AES_CCM mechanism key K.
1. Call C_EncryptMessage, or C_EncryptMessageBegin followed by C_EncryptMessageNext*[footnoteRef:8].. The mechanism parameter is passed to all three functions. [8:  “*” indicates 0 or more calls may be made as required] 

1. Call C_MessageEncryptFinal to close the message encryption.
1. The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure. 
MessageDecrypt:
1. Set the message/data length ulDataLen in the parameter block.
1. Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block
1. The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored. 
1. Set the MAC length ulMACLen in the parameter block.
1. Set the MAC data pMAC in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext.
1. Call C_MessageDecryptInit for CKM_AES_CCM mechanism key K.
1. Call C_DecryptMessage, or C_DecryptMessageBegin followed by C_DecryptMessageNext*[footnoteRef:9]. The mechanism parameter is passed to all three functions. [9:  “*” indicates 0 or more calls may be made as required] 

1. Call C_MessageDecryptFinal to close the message decryption.
In pNonce the least significant bit of the nonce is the rightmost bit. ulNonceLen is the length of the nonce in bytes.
On MessageEncrypt, the meaning of nonceGenerator is as follows: 
CKG_NO_GENERATE means the nonce is passed in on MessageEncrypt and no internal nonce generation is done. 
CKG_GENERATE means that the non-fixed portion of the nonce is generated by the module internally. The generation method is not defined. 
CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module internally by use of an incrementing counter, the initial IV counter is zero. 
CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter. The value of the non-fixed portion passed must not vary from call to call. Like CKG_GENERATE_COUNTER, the counter starts at zero. 
CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.
Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are too large. Zero is always an acceptable value for ulNonceFixedBits.
In Encrypt and Decrypt the MAC is appended to the ciphertext and the least significant byte of the MAC is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In MessageEncrypt the MAC is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is provided by the pMAC field of CK_CCM_MESSAGE_PARAMS. 
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit/C_MessageEncryptInit/C_MessageDecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.
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To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated data are as described in [RFC 3610]. AES-CCM uses CK_CCM_WRAP_PARAMS for WrapKey and UnwrapKey, and CK_CCM_MESSAGE_PARAMS for WrapKeyAuthenticated and UnwrapKeyAuthenticated.
WrapKey:
1. Set the message/data length ulDataLen in the parameter block to zero. The token will determine the message/data length during the wrap operation based on the key being wrapped. Previous versions of the specification state that the application should populate this field. As such, tokens SHALL ignore any value provided in this field.
1. Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. 
1. Set pNonce to hold the nonce data returned from C_WrapKey. If ulNonceFixedBits is not zero, then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input parameter with the full nonce.
1. Set the ulNonceFixedBits and nonceGenerator fields in the parameter block. 
1. Set the MAC length ulMACLen in the parameter block.
1. Call C_WrapKey for CKM_AES_CCM mechanism with parameters, wrapping key wK, key to be wrapped mK, obtaining the final wrapped key and the MAC. The total length of data processed must be ulDataLen. The output length will be ulDataLen + ulMACLen.
UnwrapKey:
· Set the message/data length ulDataLen to Zero in the parameter block. The token will get the ciphertext length from ulWrappedKeyLen.
· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. 
· The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Set the MAC length ulMACLen in the parameter block.
· Call C_UnwrapKey for CKM_AES_CCM mechanism with parameters, unwrapping key wK, template, and wrapped key including the appended MAC, obtaining a new key handle.
WrapKeyAuthenticated:
1. Set the message/data length ulDataLen in the parameter block to zero, the length will be defined by the token based on the key being wrapped.
1. Set the nonce length ulNonceLen.
1. Set pNonce to hold the nonce data returned from C_WrapKeyAuthenticated. If ulNonceFixedBits is not zero, then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input parameter with the full nonce.
1. Set the ulNonceFixedBits and nonceGenerator fields in the parameter block. 
1. Set the MAC length ulMACLen in the parameter block.
1. Set pMAC to hold the MAC data returned from C_WrapKeyAuthenticated.
1. Call C_WrapKeyAuthenticated for CKM_AES_CCM mechanism with wrapping key wK, the key to be wrapped mK, and parameter block.
1. The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure. 
UnwrapKeyAuthenticated:
1. Set the message/data length ulDataLen to Zero in the parameter block.
1. Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.
1. The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored. 
1. Set the MAC length ulMACLen in the parameter block.
1. Set the MAC data pMAC in the parameter block.
1. Call C_UnwrapKeyAuthenticated for CKM_AES_CCM mechanism with unwrapping key wK, wrapped key mK, parameter block and template, obtaining a new key handle.

In pNonce the least significant bit of the nonce is the rightmost bit. ulNonceLen is the length of the nonce in bytes.
On C_WrapKeyAuthenticated the meaning of nonceGenerator is as follows: 
CKG_NO_GENERATE means the nonce is passed in on WrapKeyAuthenticated and no internal nonce generation is done. 
CKG_GENERATE means that the non-fixed portion of the nonce is generated by the module internally. The generation method is not defined. 
CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module internally by use of an incrementing counter, the initial IV counter is zero. 
CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter. The value of the non-fixed portion passed must not vary from call to call. Like CKG_GENERATE_COUNTER, the counter starts at zero. 
CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.
Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are too large. Zero is always an acceptable value for ulNonceFixedBits.
In WrapKey and UnwrapKey the MAC is appended to the ciphertext and the least significant byte of the MAC is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In C_WrapKeyAuthenticated the MAC is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In C_UnwrapKeyAuthenticated the MAC is provided by the pMAC field of CK_CCM_MESSAGE_PARAMS. 
6.13.6 [bookmark: _Toc195693376]AES-GMAC
AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism parameters. When GMAC is used with C_Sign or C_Verify, pData points to the AAD. GMAC does not use plaintext or ciphertext.
The signature produced by GMAC, also referred to as a Tag, the tag’s length is determined by the CK_GCM_PARAMS field ulTagBits.
The IV length is determined by the CK_GCM_PARAMS field ulIvLen.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853447]Table 119, AES-GMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_AES
	< 2^64
	Depends on param’s ulTagBits

	C_Verify
	CKK_AES
	< 2^64
	Depends on param’s ulTagBits


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.13.7 [bookmark: _Toc228894714][bookmark: _Toc228807244][bookmark: _Toc222284780][bookmark: _Toc370634475][bookmark: _Toc391471188][bookmark: _Toc395187826][bookmark: _Toc416960072][bookmark: _Toc8118284][bookmark: _Toc30061261][bookmark: _Toc90376514][bookmark: _Toc111203499][bookmark: _Toc148962341][bookmark: _Toc195693377]AES GCM and CCM Mechanism parameters
· [bookmark: _Toc228807245][bookmark: _Toc222284781]CK_GENERATOR_FUNCTION
Functions to generate unique IVs and nonces.
typedef CK_ULONG CK_GENERATOR_FUNCTION;
· CK_GCM_PARAMS; CK_GCM_PARAMS_PTR
CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK_GCM_PARAMS {
	CK_BYTE_PTR	pIv;
	CK_ULONG	ulIvLen;
	CK_ULONG	ulIvBits;
	CK_BYTE_PTR	pAAD;
	CK_ULONG	ulAADLen;
	CK_ULONG	ulTagBits;
}	CK_GCM_PARAMS;

The fields of the structure have the following meanings:
	pIv	pointer to initialization vector
	ulIvLen	length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and (2^32) - 1. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.
	ulIvBits	length of initialization vector in bits. Do no use ulIvBits to specify the length of the initialization vector, but ulIvLen instead.
	pAAD	pointer to additional authentication data. This data is authenticated but not encrypted.
	ulAADLen	length of pAAD in bytes. The length of the AAD can be any number between 0 and (2^32) – 1.
	ulTagBits	length of authentication tag (output following ciphertext) in bits. Can be any value between 0 and 128.
CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.
· CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR
CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK_GCM_MESSAGE_PARAMS {
	CK_BYTE_PTR	pIv;
	CK_ULONG	ulIvLen;
	CK_ULONG	ulIvFixedBits;
	CK_GENERATOR_FUNCTION	ivGenerator;
	CK_BYTE_PTR	pTag;
	CK_ULONG	ulTagBits;
}	CK_GCM_MESSAGE_PARAMS;

The fields of the structure have the following meanings:
	pIv	pointer to initialization vector
	ulIvLen	length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and (2^32) - 1. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.
	ulIvFixedBits	number of bits of the original IV to preserve when generating an new IV. These bits are counted from the Most significant bits (to the right).
	ivGenerator	Function used to generate a new IV. Each IV must be unique for a given session.
	pTag	location of the authentication tag which is returned on MessageEncrypt, and provided on MessageDecrypt.
	ulTagBits	length of authentication tag in bits. Can be any value between 0 and 128.
CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.
· [bookmark: _Toc228807246][bookmark: _Toc222284782]CK_GCM_WRAP_PARAMS; CK_GCM_WRAP_PARAMS_PTR
CK_GCM_WRAP_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism when used for WrapKey to return a token generated IV for input into UnwrapKey. It is defined as follows: 
typedef struct CK_GCM_WRAP_PARAMS {
	CK_BYTE_PTR	pIv;
	CK_ULONG	ulIvLen;
	CK_ULONG	ulIvFixedBits;
	CK_GENERATOR_FUNCTION	ivGenerator;
	CK_BYTE_PTR	pAAD;
	CK_ULONG	ulAADLen;
	CK_ULONG	ulTagBits;
}	CK_GCM_WRAP_PARAMS;

The fields of the structure have the following meanings:
	pIv	pointer to initialization vector
	ulIvLen	length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and (2^32) - 1. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.
	ulIvFixedBits	number of bits of the original IV to preserve when generating an new IV. These bits are counted from the Most significant bits (to the right).
	ivGenerator	Function used to generate a new IV. Each IV must be unique for a given session.
	pAAD	pointer to additional authentication data. This data is authenticated but not encrypted.
	ulAADLen	length of pAAD in bytes. The length of the AAD can be any number between 0 and (2^32) – 1.
	ulTagBits	length of authentication tag in bits. Can be any value between 0 and 128.
CK_GCM_WRAP_PARAMS_PTR is a pointer to a CK_GCM_WRAP_PARAMS.
· CK_CCM_PARAMS; CK_CCM_PARAMS_PTR
CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK_CCM_PARAMS {
	CK_ULONG	ulDataLen; /*plaintext or ciphertext*/
	CK_BYTE_PTR	pNonce;
	CK_ULONG	ulNonceLen;
	CK_BYTE_PTR	pAAD;
	CK_ULONG	ulAADLen;
	CK_ULONG	ulMACLen;
}	CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 ≤ L ≤ 8):
	ulDataLen	length of the data where 0 ≤ ulDataLen < 2^(8L). 
	pNonce	the nonce.
	ulNonceLen	length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.
	pAAD	Additional authentication data. This data is authenticated but not encrypted.
	ulAADLen	length of pAAD in bytes where 0 ≤ ulAADLen ≤ (2^32) - 1.
 	ulMACLen	length of the MAC (output following ciphertext) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.
· CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR
CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK_CCM_MESSAGE_PARAMS {
	CK_ULONG	ulDataLen; /*plaintext or ciphertext*/
	CK_BYTE_PTR	pNonce;
	CK_ULONG	ulNonceLen;
	CK_ULONG	ulNonceFixedBits;
	CK_GENERATOR_FUNCTION	nonceGenerator;
	CK_BYTE_PTR	pMAC;
	CK_ULONG	ulMACLen;
}	CK_CCM_MESSAGE_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 ≤ L ≤ 8):
	ulDataLen	length of the data where 0 ≤ ulDataLen < 2^(8L). 
	pNonce	the nonce.
	ulNonceLen	length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.
	ulNonceFixedBits	number of bits of the original nonce to preserve when generating a new nonce. These bits are counted from the Most significant bits (to the right).
	nonceGenerator	Function used to generate a new nonce. Each nonce must be unique for a given session.
	pMAC	location of the CCM MAC returned on MessageEncrypt, provided on MessageDecrypt
	ulMACLen	length of the MAC (output following ciphertext) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.
· CK_CCM_WRAP_PARAMS; CK_CCM_WAP_PARAMS_PTR
CK_CCM_WRAP_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism when used for WrapKey only to provide a token generated nonce and the number of bits to preserve. It is defined as follows: 
typedef struct CK_CCM_WRAP_PARAMS {
	CK_ULONG	ulDataLen; /*wrappedkey data*/
	CK_BYTE_PTR	pNonce;
	CK_ULONG	ulNonceLen;
	CK_ULONG	ulNonceFixedBits;
	CK_GENERATOR_FUNCTION	nonceGenerator;
	CK_BYTE_PTR	pAAD;
	CK_ULONG	ulAADLen;
	CK_ULONG	ulMACLen;
}	CK_CCM_WRAP_PARAMS;


The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 ≤ L ≤ 8):
	ulDataLen	length of the data where 0 ≤ ulDataLen < 2^(8L). 
	pNonce	the nonce.
	ulNonceLen	length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.
	ulNonceFixedBits	number of bits of the original nonce to preserve when generating a new nonce. These bits are counted from the most significant bits (to the right).
	nonceGenerator	Function used to generate a new nonce. Each nonce must be unique for a given session.
	pAAD	Additional authentication data. This data is authenticated but not wrapped.
	ulAADLen	length of pAAD in bytes where 0 ≤ ulAADLen ≤ (2^32) - 1.
 	ulMACLen	length of the MAC (output following ciphertext) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_WRAP_PARAMS_PTR is a pointer to a CK_CCM_WRAP_PARAMS.
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6.14.1 [bookmark: _Toc228894718][bookmark: _Toc228807250][bookmark: _Toc234043806][bookmark: _Toc370634479][bookmark: _Toc391471192][bookmark: _Toc395187830][bookmark: _Toc416960076][bookmark: _Toc8118288][bookmark: _Toc30061263][bookmark: _Toc90376516][bookmark: _Toc111203501][bookmark: _Toc148962343][bookmark: _Toc195693379]Definitions
Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC
6.14.2 [bookmark: _Toc228894719][bookmark: _Toc228807251][bookmark: _Toc234043807][bookmark: _Toc370634480][bookmark: _Toc391471193][bookmark: _Toc395187831][bookmark: _Toc416960077][bookmark: _Toc8118289][bookmark: _Toc30061264][bookmark: _Toc90376517][bookmark: _Toc111203502][bookmark: _Toc148962344][bookmark: _Toc195693380]Mechanism parameters
CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure. CKM_AES_CMAC does not use a mechanism parameter.
6.14.3 [bookmark: _Toc228894720][bookmark: _Toc228807252][bookmark: _Toc234043808][bookmark: _Toc370634481][bookmark: _Toc391471194][bookmark: _Toc395187832][bookmark: _Toc416960078][bookmark: _Toc8118290][bookmark: _Toc30061265][bookmark: _Toc90376518][bookmark: _Toc111203503][bookmark: _Toc148962345][bookmark: _Toc195693381]General-length AES-CMAC
General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on [NIST SP800-38B] and [RFC 4493].
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final AES cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807533][bookmark: _Toc25853449]Table 121, General-length AES-CMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_AES
	any
	1-block size, as specified in parameters

	C_Verify
	CKK_AES
	any
	1-block size, as specified in parameters


 [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less than 64 bits. The MAC length must be specified before the communication starts, and must not be changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.14.4 [bookmark: _Toc228894721][bookmark: _Toc228807253][bookmark: _Toc234043809][bookmark: _Toc370634482][bookmark: _Toc391471195][bookmark: _Toc395187833][bookmark: _Toc416960079][bookmark: _Toc8118291][bookmark: _Toc30061266][bookmark: _Toc90376519][bookmark: _Toc111203504][bookmark: _Toc148962346][bookmark: _Toc195693382]AES-CMAC
AES-CMAC, denoted CKM_AES_CMAC, is a special case of the general-length AES-CMAC mechanism. AES-MAC always produces and verifies MACs that are a full block size in length, the default output length specified by [RFC 4493].
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807534][bookmark: _Toc25853450]Table 122, AES-CMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_AES
	any
	Block size (16 bytes)

	C_Verify
	CKK_AES
	any
	Block size (16 bytes)


 [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less than 64 bits. The MAC length must be specified before the communication starts, and must not be changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
6.15 [bookmark: _Toc8118292][bookmark: _Toc30061267][bookmark: _Toc90376520][bookmark: _Toc111203505][bookmark: _Toc148962347][bookmark: _Toc195693383]AES XTS
[bookmark: _Toc25853451]Table 123, Mechanisms vs. Functions
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6.15.1 [bookmark: _Toc8118293][bookmark: _Toc30061268][bookmark: _Toc90376521][bookmark: _Toc111203506][bookmark: _Toc148962348][bookmark: _Toc195693384]Definitions
This section defines the key type “CKK_AES_XTS” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
	CKM_AES_XTS
	CKM_AES_XTS_KEY_GEN
6.15.2 [bookmark: _Toc8118294][bookmark: _Toc30061269][bookmark: _Toc90376522][bookmark: _Toc111203507][bookmark: _Toc148962349][bookmark: _Toc195693385]AES-XTS secret key objects
[bookmark: _Toc25853452]Table 124, AES-XTS Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (32 or 64 bytes)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


[bookmark: _Toc8118295][bookmark: _Toc30061270]- Refer to Table 13 for footnotes
6.15.3 [bookmark: _Toc90376523][bookmark: _Toc111203508][bookmark: _Toc148962350][bookmark: _Toc195693386]AES-XTS key generation
The double-length AES-XTS key generation mechanism, denoted CKM_AES_XTS_KEY_GEN, is a key generation mechanism for double-length AES-XTS keys.
The mechanism generates AES-XTS keys with a particular length in bytes as specified in the CKA_VALUE_LEN attributes of the template for the key.
This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the double-length AES-XTS key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES-XTS key sizes, in bytes.
6.15.4 [bookmark: _Toc8118296][bookmark: _Toc30061271][bookmark: _Toc90376524][bookmark: _Toc111203509][bookmark: _Toc148962351][bookmark: _Toc195693387]AES-XTS
AES-XTS (XEX-based Tweaked CodeBook mode with Ciphertext Stealing), denoted CKM_AES_XTS, isa mechanism for single- and multiple-part encryption and decryption. It is specified in NIST SP800-38E.
Its single parameter is a Data Unit Sequence Number 16 bytes long. Supported key lengths are 32 and 64 bytes. Keys are internally split into half-length sub-keys of 16 and 32 bytes respectively. Constraintson key types and the length of data are summarized in the following table:
[bookmark: _Toc25853453]Table 125, AES-XTS: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_AES_XTS
	Any, ≥ block size (16 bytes)
	Same as input length
	No final part

	C_Decrypt
	CKK_AES_XTS
	Any, ≥ block size (16 bytes)
	Same as input length
	No final part



6.16 [bookmark: _Toc228894722][bookmark: _Toc228807254][bookmark: _Toc370634483][bookmark: _Toc391471196][bookmark: _Toc395187834][bookmark: _Toc416960080][bookmark: _Toc8118297][bookmark: _Toc30061272][bookmark: _Toc90376525][bookmark: _Toc111203510][bookmark: _Toc148962352][bookmark: _Toc195693388]AES Key Wrap
[bookmark: _Toc25853454]Table 126, AES Key Wrap Mechanisms vs. Functions
	[bookmark: _Toc215378699]
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6.16.1 [bookmark: _Toc228894723][bookmark: _Toc228807255][bookmark: _Toc370634484][bookmark: _Toc391471197][bookmark: _Toc395187835][bookmark: _Toc416960081][bookmark: _Toc8118298][bookmark: _Toc30061273][bookmark: _Toc90376526][bookmark: _Toc111203511][bookmark: _Toc148962353][bookmark: _Toc195693389]Definitions
Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD
CKM_AES_KEY_WRAP_KWP
CKM_AES_KEY_WRAP_PKCS7
6.16.2 [bookmark: _Toc228894724][bookmark: _Toc228807256][bookmark: _Toc215378700][bookmark: _Toc370634485][bookmark: _Toc391471198][bookmark: _Toc395187836][bookmark: _Toc416960082][bookmark: _Toc8118299][bookmark: _Toc30061274][bookmark: _Toc90376527][bookmark: _Toc111203512][bookmark: _Toc148962354][bookmark: _Toc195693390]AES Key Wrap Mechanism parameters
[bookmark: _Toc228894725][bookmark: _Toc228807257][bookmark: _Toc215378701][bookmark: _Toc370634486][bookmark: _Toc391471199][bookmark: _Toc395187837][bookmark: _Toc416960083]The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if present, must be a fixed size array of 8 bytes for CKM_AES_KEY_WRAP and CKM_AES_KEY_WRAP_PKCS7, resp. 4 bytes for CKM_AES_KEY_WRAP_KWP; and, if NULL, will use the default initial value defined in section 4.3 resp. 6.2 / 6.3 of [AES KEYWRAP].
The type of this parameter is CK_BYTE_PTR and the pointer points to the array of bytes to be used as the initial value. The length shall be either 0 and the pointer NULL; or 8 for CKM_AES_KEY_WRAP and CKM_AES_KEY_WRAP_PKCS7, resp. 4 for CKM_AES_KEY_WRAP_KWP, and the pointer non-NULL.
6.16.3 [bookmark: _Toc8118300][bookmark: _Toc30061275][bookmark: _Toc90376528][bookmark: _Toc111203513][bookmark: _Toc148962355][bookmark: _Toc195693391]AES Key Wrap 
The mechanisms support only single-part operations, i.e. single part wrapping and unwrapping, and single-part encryption and decryption.
· [bookmark: _Toc228894726][bookmark: _Toc228807258][bookmark: _Toc370634487][bookmark: _Toc391471200][bookmark: _Toc395187838][bookmark: _Toc416960084]CKM_AES_KEY_WRAP
The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A secret key whose length is not a multiple of the AES Key Wrap semiblock size (8 bytes) will be zero padded to fit. Semiblock size is defined in section 5.2 of [AES KEYWRAP]. A private key will be encoded as defined in section 6.7; the encoded private key will be zero padded to fit if necessary.

The CKM_AES_KEY_WRAP mechanism can only encrypt a block of data whose size is an exact multiple of the AES Key Wrap algorithm semiblock size.

For unwrapping, the mechanism decrypts the wrapped key. In case of a secret key, it truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. The length specified in the template must not be less than n-7 bytes, where n is the length of the wrapped key. In case of a private key, the mechanism parses the encoding as defined in section 6.7 and ignores trailing zero bytes.
· CKM_AES_KEY_WRAP_PAD
The CKM_AES_KEY_WRAP_PAD mechanism is deprecated. CKM_AES_KEY_WRAP_KWP resp. CKM_AES_KEY_WRAP_PKCS7 shall be used instead.
· CKM_AES_KEY_WRAP_KWP
The CKM_AES_KEY_WRAP_KWP mechanism can wrap a key or encrypt block of data of any length. The input is zero-padded and wrapped / encrypted as defined in section 6.3 of [AES KEYWRAP], which produces same results as RFC 5649.
· CKM_AES_KEY_WRAP_PKCS7
The CKM_AES_KEY_WRAP_PKCS7 mechanism can wrap a key or encrypt a block of data of any length. It does the padding detailed in [PKCS #7] of inputs (keys or data blocks) up to a semiblock size to make it an exact multiple of AES Key Wrap algorithm semiblock size (8bytes), always producing wrapped output that is larger than the input key/data to be wrapped. This padding is done by the token before being passed to the AES key wrap algorithm, which then wraps / encrypts the padded block of data as defined in section 6.2 of [AES KEYWRAP].
6.17 [bookmark: _Toc8118301][bookmark: _Toc30061276][bookmark: _Toc90376529][bookmark: _Toc111203514][bookmark: _Toc148962356][bookmark: _Toc195693392]Key derivation by data encryption – DES & AES
These mechanisms allow derivation of keys using the result of an encryption operation as the key value. They are for use with the C_DeriveKey function.
[bookmark: _Toc25853455]Table 127, Key derivation by data encryption Mechanisms vs. Functions
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6.17.1 [bookmark: _Toc228894727][bookmark: _Toc228807259][bookmark: _Toc370634488][bookmark: _Toc391471201][bookmark: _Toc395187839][bookmark: _Toc416960085][bookmark: _Toc8118302][bookmark: _Toc30061277][bookmark: _Toc90376530][bookmark: _Toc111203515][bookmark: _Toc148962357][bookmark: _Toc195693393]Definitions
Mechanisms:
CKM_DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA

typedef struct CK_DES_CBC_ENCRYPT_DATA_PARAMS {
	CK_BYTE	iv[8];
	CK_BYTE_PTR	pData;
	CK_ULONG	length;
}	CK_DES_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_DES_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

typedef struct CK_AES_CBC_ENCRYPT_DATA_PARAMS {
	CK_BYTE	iv[16];
	CK_BYTE_PTR	pData;
	CK_ULONG	length;
}	CK_AES_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_AES_CBC_ENCRYPT_DATA_PARAMS CK_PTR
CK_AES_CBC_ENCRYPT_DATA_PARAMS_PTR;
6.17.2 [bookmark: _Toc228894728][bookmark: _Toc228807260][bookmark: _Toc72656334][bookmark: _Toc370634489][bookmark: _Toc391471202][bookmark: _Toc395187840][bookmark: _Toc416960086][bookmark: _Toc8118303][bookmark: _Toc30061278][bookmark: _Toc90376531][bookmark: _Toc111203516][bookmark: _Toc148962358][bookmark: _Toc195693394]Mechanism Parameters
Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 6.43.2
[bookmark: _Toc228807535][bookmark: _Toc25853456]Table 128, Mechanism Parameters
	CKM_DES_ECB_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 8 bytes long.

	CKM_AES_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 16 long.

	CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA
	Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 8 byte IV value followed by the data. The data value part must be a multiple of 8 bytes long.

	CKM_AES_CBC_ENCRYPT_DATA
	Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 16 byte IV value followed by the data. The data value part
must be a multiple of 16 bytes long.


6.17.3 [bookmark: _Toc228894729][bookmark: _Toc228807261][bookmark: _Toc72656335][bookmark: _Toc370634490][bookmark: _Toc391471203][bookmark: _Toc395187841][bookmark: _Toc416960087][bookmark: _Toc8118304][bookmark: _Toc30061279][bookmark: _Toc90376532][bookmark: _Toc111203517][bookmark: _Toc148962359][bookmark: _Toc195693395]Mechanism Description
The mechanisms will function by performing the encryption over the data provided using the base key. The resulting ciphertext shall be used to create the key value of the resulting key. If not all the ciphertext is used then the part discarded will be from the trailing end (least significant bytes) of the ciphertext data. The derived key shall be defined by the attribute template supplied but constrained by the length of ciphertext available for the key value and other normal PKCS11 derivation constraints. 
Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1 Key Derivation mechanism in section 6.20.5.
If the data is too short to make the requested key then the mechanism returns CKR_DATA_LEN_RANGE.
6.18 [bookmark: _Toc228894730][bookmark: _Toc228807262][bookmark: _Toc72656336][bookmark: _Toc370634491][bookmark: _Toc391471204][bookmark: _Toc395187842][bookmark: _Toc416960088][bookmark: _Toc8118305][bookmark: _Toc30061280][bookmark: _Toc90376533][bookmark: _Toc111203518][bookmark: _Toc148962360][bookmark: _Toc195693396]Double and Triple-length DES
[bookmark: _Toc25853457]Table 129, Double and Triple-Length DES Mechanisms vs. Functions
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6.18.1 [bookmark: _Toc228894731][bookmark: _Toc228807263][bookmark: _Toc370634492][bookmark: _Toc391471205][bookmark: _Toc395187843][bookmark: _Toc416960089][bookmark: _Toc8118306][bookmark: _Toc30061281][bookmark: _Toc90376534][bookmark: _Toc111203519][bookmark: _Toc148962361][bookmark: _Toc195693397]Definitions
This section defines the key type “CKK_DES2” and “CKK_DES3” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD
6.18.2 [bookmark: _Toc228894732][bookmark: _Toc228807264][bookmark: _Toc72656338][bookmark: _Toc405794692][bookmark: _Toc385057875][bookmark: _Toc383864867][bookmark: _Toc323610860][bookmark: _Toc323205430][bookmark: _Toc323024098][bookmark: _Toc323000703][bookmark: _Toc322945136][bookmark: _Toc322855294][bookmark: _Toc370634493][bookmark: _Toc391471206][bookmark: _Toc395187844][bookmark: _Toc416960090][bookmark: _Toc8118307][bookmark: _Toc30061282][bookmark: _Toc90376535][bookmark: _Toc111203520][bookmark: _Toc148962362][bookmark: _Toc195693398]DES2 secret key objects
DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length DES keys. The following table defines the DES2 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315850][bookmark: _Toc319314978][bookmark: _Toc319314563][bookmark: _Toc319314021][bookmark: _Toc228807536][bookmark: _Toc405795000][bookmark: _Toc383864531][bookmark: _Toc323204896][bookmark: _Toc25853458]Table 130, DES2 Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (always 16 bytes long)


[bookmark: _Toc319315695][bookmark: _Toc319313702][bookmark: _Toc319313509][bookmark: _Toc319287668]- Refer to Table 13 for footnotes
DES2 keys must always have their parity bits properly set as described in [FIPS PUB 46-3] (i.e., each of the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or unwrap a DES2 key with incorrect parity will return an error.
The following is a sample template for creating a double-length DES secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;
CK_UTF8CHAR label[] = “A DES2 secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc405794693][bookmark: _Toc385057876][bookmark: _Toc383864868][bookmark: _Toc323610861][bookmark: _Toc323205431][bookmark: _Toc323024099][bookmark: _Toc323000704][bookmark: _Toc322945137][bookmark: _Toc322855295]
CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with the key type of the secret key object.
6.18.3 [bookmark: _Toc228894733][bookmark: _Toc228807265][bookmark: _Toc72656339][bookmark: _Toc370634494][bookmark: _Toc391471207][bookmark: _Toc395187845][bookmark: _Toc416960091][bookmark: _Toc8118308][bookmark: _Toc30061283][bookmark: _Toc90376536][bookmark: _Toc111203521][bookmark: _Toc148962363][bookmark: _Toc195693399]DES3 secret key objects
DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES keys. The following table defines the DES3 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc319315851][bookmark: _Toc319314979][bookmark: _Toc319314564][bookmark: _Toc319314022][bookmark: _Toc228807537][bookmark: _Toc405795001][bookmark: _Toc383864532][bookmark: _Toc323204897][bookmark: _Toc25853459]Table 131, DES3 Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (always 24 bytes long)


- Refer to Table 13 for footnotes
DES3 keys must always have their parity bits properly set as described in [FIPS PUB 46-3] (i.e., each of the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or unwrap a DES3 key with incorrect parity will return an error.
The following is a sample template for creating a triple-length DES secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;
CK_UTF8CHAR label[] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with the key type of the secret key object.
6.18.4 [bookmark: _Toc228894734][bookmark: _Toc228807266][bookmark: _Toc72656340][bookmark: _Toc370634495][bookmark: _Toc391471208][bookmark: _Toc395187846][bookmark: _Toc416960092][bookmark: _Toc8118309][bookmark: _Toc30061284][bookmark: _Toc90376537][bookmark: _Toc111203522][bookmark: _Toc148962364][bookmark: _Toc195693400]Double-length DES key generation
The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key generation mechanism for double-length DES keys. The DES keys making up a double-length DES key both have their parity bits set properly, as specified in [FIPS PUB 46-3].
It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the double-length DES key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
Double-length DES keys can be used with all the same mechanisms as triple-DES keys: CKM_DES3_ECB, CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES3_MAC_GENERAL, and CKM_DES3_MAC. Triple-DES encryption with a double-length DES key is equivalent to encryption with a triple-length DES key with K1=K3 as specified in [FIPS PUB 46-3].
[bookmark: _Toc323024193][bookmark: _Toc323000742][bookmark: _Toc322945175][bookmark: _Toc322855333][bookmark: _Toc385058055]When double-length DES keys are generated, it is token-dependent whether or not it is possible for either of the component DES keys to be “weak” or “semi-weak” keys.
6.18.5 [bookmark: _Toc228894735][bookmark: _Toc228807267][bookmark: _Toc72656341][bookmark: _Toc370634496][bookmark: _Toc391471209][bookmark: _Toc395187847][bookmark: _Toc416960093][bookmark: _Toc8118310][bookmark: _Toc30061285][bookmark: _Toc90376538][bookmark: _Toc111203523][bookmark: _Toc148962365][bookmark: _Toc195693401]Triple-length DES Order of Operations
Triple-length DES encryptions are carried out as specified in [FIPS PUB 46-3]: encrypt, decrypt, encrypt. Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt. The mathematical representations of the encrypt and decrypt operations are as follows:
DES3-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P)))
DES3-D({K1,K2,K3}, C) = D(K1, E(K2, D(K3, P)))
6.18.6 [bookmark: _Toc228894736][bookmark: _Toc228807268][bookmark: _Toc72656342][bookmark: _Toc370634497][bookmark: _Toc391471210][bookmark: _Toc395187848][bookmark: _Toc416960094][bookmark: _Toc8118311][bookmark: _Toc30061286][bookmark: _Toc90376539][bookmark: _Toc111203524][bookmark: _Toc148962366][bookmark: _Toc195693402]Triple-length DES in CBC Mode
Triple-length DES operations in CBC mode, with double or triple-length keys, are performed using TRIPLE DATA ENCRYPTION ALGORITHM (TDEA) A Cipher Block Chaining Mode 
of Operation (TCBC) as defined in [FIPS PUB 46-3]. The mathematical representations of the CBC encrypt and decrypt operations are as follows:
DES3-CBC-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P + I)))
DES3-CBC-D({K1,K2,K3}, C) = D(K1, E(K2, D(K3, P))) + I
The value I is either an 8-byte initialization vector or the previous block of ciphertext that is added to the current input block. The addition operation is used is addition modulo-2 (XOR).
6.18.7 [bookmark: _Toc228894737][bookmark: _Toc228807269][bookmark: _Toc72656343][bookmark: _Toc370634498][bookmark: _Toc391471211][bookmark: _Toc395187849][bookmark: _Toc416960095][bookmark: _Toc8118312][bookmark: _Toc30061287][bookmark: _Toc90376540][bookmark: _Toc111203525][bookmark: _Toc148962367][bookmark: _Toc195693403][bookmark: _Toc405794862]DES and Triple length DES in OFB Mode
[bookmark: _Toc25853460]Table 132, DES and Triple Length DES in OFB Mode Mechanisms vs. Functions
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Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES_OFB8 and CKM_DES_OFB64. It is a mechanism for single and multiple-part encryption and decryption with DES.
It has a parameter, an initialization vector for this mode. The initialization vector has the same length as the block size.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807538][bookmark: _Toc25853461]Table 133, OFB: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_DES, CKK_DES2, CKK_DES3
	any
	same as input length
	no final part

	C_Decrypt
	CKK_DES, CKK_DES2, CKK_DES3
	any
	same as input length
	no final part


For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.
6.18.8 [bookmark: _Toc228894738][bookmark: _Toc228807270][bookmark: _Toc72656344][bookmark: _Toc370634499][bookmark: _Toc391471212][bookmark: _Toc395187850][bookmark: _Toc416960096][bookmark: _Toc8118313][bookmark: _Toc30061288][bookmark: _Toc90376541][bookmark: _Toc111203526][bookmark: _Toc148962368][bookmark: _Toc195693404]DES and Triple length DES in CFB Mode
Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and CKM_DES_CFB64. It is a mechanism for single and multiple-part encryption and decryption with DES.
It has a parameter, an initialization vector for this mode. The initialization vector has the same length as the block size.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807539][bookmark: _Toc25853462]Table 134, CFB: Key And Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_DES, CKK_DES2, CKK_DES3
	any
	same as input length
	no final part

	C_Decrypt
	CKK_DES, CKK_DES2, CKK_DES3
	any
	same as input length
	no final part


For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.
6.19 [bookmark: _Toc76209575][bookmark: _Toc228894739][bookmark: _Toc228807271][bookmark: _Toc234043810][bookmark: _Toc370634500][bookmark: _Toc391471213][bookmark: _Toc395187851][bookmark: _Toc416960097][bookmark: _Toc8118314][bookmark: _Toc30061289][bookmark: _Toc90376542][bookmark: _Toc111203527][bookmark: _Toc148962369][bookmark: _Toc195693405][bookmark: _Toc72656393][bookmark: _Toc405794902][bookmark: _Toc383864975][bookmark: _Toc323610958][bookmark: _Toc323205529][bookmark: _Toc323024195][bookmark: _Toc323000744][bookmark: _Toc322945177][bookmark: _Toc322855335]Double and Triple-length DES CMAC
[bookmark: _Toc25853463]Table 135, Double and Triple-length DES CMAC Mechanisms vs. Functions
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6.19.1 [bookmark: _Toc228894740][bookmark: _Toc228807272][bookmark: _Toc234043811][bookmark: _Toc76209576][bookmark: _Toc370634501][bookmark: _Toc391471214][bookmark: _Toc395187852][bookmark: _Toc416960098][bookmark: _Toc8118315][bookmark: _Toc30061290][bookmark: _Toc90376543][bookmark: _Toc111203528][bookmark: _Toc148962370][bookmark: _Toc195693406]Definitions
Mechanisms:
CKM_DES3_CMAC_GENERAL
CKM_DES3_CMAC
6.19.2 [bookmark: _Toc228894741][bookmark: _Toc228807273][bookmark: _Toc234043812][bookmark: _Toc370634502][bookmark: _Toc391471215][bookmark: _Toc395187853][bookmark: _Toc416960099][bookmark: _Toc8118316][bookmark: _Toc30061291][bookmark: _Toc90376544][bookmark: _Toc111203529][bookmark: _Toc148962371][bookmark: _Toc195693407]Mechanism parameters
CKM_DES3_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure. CKM_DES3_CMAC does not use a mechanism parameter.
6.19.3 [bookmark: _Toc228894742][bookmark: _Toc228807274][bookmark: _Toc234043813][bookmark: _Toc370634503][bookmark: _Toc391471216][bookmark: _Toc395187854][bookmark: _Toc416960100][bookmark: _Toc8118317][bookmark: _Toc30061292][bookmark: _Toc90376545][bookmark: _Toc111203530][bookmark: _Toc148962372][bookmark: _Toc195693408]General-length DES3-MAC
General-length DES3-CMAC, denoted CKM_DES3_CMAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification with DES3 or DES2 keys, based on [NIST sp800-38b].
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final DES3 cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807540][bookmark: _Toc25853464]Table 136, General-length DES3-CMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_DES3
CKK_DES2
	any
	1-block size, as specified in parameters

	C_Verify
	CKK_DES3
CKK_DES2
	any
	1-block size, as specified in parameters


Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less than 64 bits (which means using the entire block for DES). The MAC length must be specified before the communication starts, and must not be changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used 
6.19.4 [bookmark: _Toc228894743][bookmark: _Toc228807275][bookmark: _Toc234043814][bookmark: _Toc370634504][bookmark: _Toc391471217][bookmark: _Toc395187855][bookmark: _Toc416960101][bookmark: _Toc8118318][bookmark: _Toc30061293][bookmark: _Toc90376546][bookmark: _Toc111203531][bookmark: _Toc148962373][bookmark: _Toc195693409]DES3-CMAC
DES3-CMAC, denoted CKM_DES3_CMAC, is a special case of the general-length DES3-CMAC mechanism. DES3-MAC always produces and verifies MACs that are a full block size in length, since the DES3 block length is the minimum output length recommended by [NIST sp800-38b].
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807541][bookmark: _Toc25853465]Table 137, DES3-CMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_DES3
CKK_DES2
	any
	Block size (8 bytes)

	C_Verify
	CKK_DES3
CKK_DES2
	any
	Block size (8 bytes)


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.20 [bookmark: _Toc228894744][bookmark: _Toc228807276][bookmark: _Toc370634505][bookmark: _Toc391471218][bookmark: _Toc395187856][bookmark: _Toc416960102][bookmark: _Toc8118319][bookmark: _Toc30061294][bookmark: _Toc90376547][bookmark: _Toc111203532][bookmark: _Toc148962374][bookmark: _Toc195693410]SHA-1
[bookmark: _Toc25853466]Table 138, SHA-1 Mechanisms vs. Functions
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6.20.1 [bookmark: _Toc228894745][bookmark: _Toc228807277][bookmark: _Toc370634506][bookmark: _Toc391471219][bookmark: _Toc395187857][bookmark: _Toc416960103][bookmark: _Toc8118320][bookmark: _Toc30061295][bookmark: _Toc90376548][bookmark: _Toc111203533][bookmark: _Toc148962375][bookmark: _Toc195693411]Definitions
This section defines the key type “CKK_SHA_1_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA_1
CKM_SHA_1_HMAC
CKM_SHA_1_HMAC_GENERAL
CKM_SHA1_KEY_DERIVATION
CKM_SHA_1_KEY_GEN

6.20.2 [bookmark: _Toc228894746][bookmark: _Toc228807278][bookmark: _Toc72656395][bookmark: _Toc370634507][bookmark: _Toc391471220][bookmark: _Toc395187858][bookmark: _Toc416960104][bookmark: _Toc8118321][bookmark: _Toc30061296][bookmark: _Toc90376549][bookmark: _Toc111203534][bookmark: _Toc148962376][bookmark: _Toc195693412]SHA-1 digest
The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following the Secure Hash Algorithm with a 160-bit message digest defined in [FIPS PUB 180-4].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc228807542][bookmark: _Toc405795056][bookmark: _Toc383864564][bookmark: _Toc323204915][bookmark: _Toc25853467]Table 139, SHA-1: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	20


6.20.3 [bookmark: _Toc228894747][bookmark: _Toc228807279][bookmark: _Toc72656396][bookmark: _Toc405794904][bookmark: _Ref384785246][bookmark: _Toc370634508][bookmark: _Toc391471221][bookmark: _Toc395187859][bookmark: _Toc416960105][bookmark: _Toc8118322][bookmark: _Toc30061297][bookmark: _Toc90376550][bookmark: _Toc111203535][bookmark: _Toc148962377][bookmark: _Toc195693413][bookmark: _Toc323024196][bookmark: _Toc323000745][bookmark: _Toc322945178][bookmark: _Toc322855336]General-length SHA-1-HMAC
The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC_GENERAL, is a mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1 hash function. The keys it uses are generic secret keys and CKK_SHA_1_HMAC.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-20 (the output size of SHA-1 is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output.
[bookmark: _Toc228807543][bookmark: _Toc405795057][bookmark: _Toc25853468]Table 140, General-length SHA-1-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
CKK_SHA_1_HMAC
	any
	1-20, depending on parameters

	C_Verify
	generic secret
CKK_SHA_1_HMAC
	any
	1-20, depending on parameters


6.20.4 [bookmark: _Toc228894748][bookmark: _Toc228807280][bookmark: _Toc72656397][bookmark: _Toc405794905][bookmark: _Toc370634509][bookmark: _Toc391471222][bookmark: _Toc395187860][bookmark: _Toc416960106][bookmark: _Ref527381268][bookmark: _Ref527381269][bookmark: _Ref527381271][bookmark: _Ref527381273][bookmark: _Ref527381275][bookmark: _Toc8118323][bookmark: _Toc30061298][bookmark: _Toc90376551][bookmark: _Toc111203536][bookmark: _Toc148962378][bookmark: _Toc195693414]SHA-1-HMAC
The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC, is a special case of the general-length SHA-1-HMAC mechanism in section 6.20.3.
It has no parameter, and always produces an output of length 20.
6.20.5 [bookmark: _Toc228894749][bookmark: _Toc228807281][bookmark: _Toc72656398][bookmark: _Ref47931671][bookmark: _Ref47495546][bookmark: _Toc405794906][bookmark: _Toc370634510][bookmark: _Toc391471223][bookmark: _Toc395187861][bookmark: _Toc416960107][bookmark: _Ref527381270][bookmark: _Ref527381272][bookmark: _Ref527381274][bookmark: _Ref527381276][bookmark: _Ref527381997][bookmark: _Toc8118324][bookmark: _Toc30061299][bookmark: _Ref65665437][bookmark: _Toc90376552][bookmark: _Toc111203537][bookmark: _Toc148962379][bookmark: _Toc195693415]SHA-1 key derivation
SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism which provides the capability of deriving a secret key by digesting the value of another secret key with SHA-1. 
The value of the base key is digested once, and the result is used to make the value of derived secret key.
· If no length or key type is provided in the template, then the key produced by this mechanism will be a generic secret key. Its length will be 20 bytes (the output size of SHA-1).
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length was provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more than 20 bytes, such as DES3, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
[bookmark: _Toc8118325][bookmark: _Toc30061300][bookmark: _Toc90376553][bookmark: _Toc111203538][bookmark: _Toc148962380][bookmark: _Toc195693416]SHA-1 HMAC key generation
The SHA-1-HMAC key generation mechanism, denoted CKM_SHA_1_KEY_GEN, is a key generation mechanism for NIST’s SHA-1-HMAC.
It does not have a parameter.
The mechanism generates SHA-1-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA-1-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA_1_HMAC key sizes, in bytes.
6.21 [bookmark: _Toc228894750][bookmark: _Toc228807282][bookmark: _Toc151796111][bookmark: _Toc370634511][bookmark: _Toc391471224][bookmark: _Toc395187862][bookmark: _Toc416960108][bookmark: _Toc8118326][bookmark: _Toc30061301][bookmark: _Toc90376554][bookmark: _Toc111203539][bookmark: _Toc148962381][bookmark: _Toc195693417][bookmark: _Toc72656399][bookmark: _Toc405794907]SHA-224
[bookmark: _Toc25853469]Table 141, SHA-224 Mechanisms vs. Functions
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6.21.1 [bookmark: _Toc228894751][bookmark: _Toc228807283][bookmark: _Toc370634512][bookmark: _Toc391471225][bookmark: _Toc395187863][bookmark: _Toc416960109][bookmark: _Toc8118327][bookmark: _Toc30061302][bookmark: _Toc90376555][bookmark: _Toc111203540][bookmark: _Toc148962382][bookmark: _Toc195693418]Definitions
This section defines the key type “CKK_SHA224_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA224
CKM_SHA224_HMAC
CKM_SHA224_HMAC_GENERAL
CKM_SHA224_KEY_DERIVATION
CKM_SHA224_KEY_GEN
6.21.2 [bookmark: _Toc228894752][bookmark: _Toc228807284][bookmark: _Toc151796113][bookmark: _Toc370634513][bookmark: _Toc391471226][bookmark: _Toc395187864][bookmark: _Toc416960110][bookmark: _Toc8118328][bookmark: _Toc30061303][bookmark: _Toc90376556][bookmark: _Toc111203541][bookmark: _Toc148962383][bookmark: _Toc195693419]SHA-224 digest
The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message digesting, following the Secure Hash Algorithm with a 224-bit message digest defined in [FIPS PUB 180-4].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc228807544][bookmark: _Toc151796152][bookmark: _Toc25853470]Table 142, SHA-224: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	28


6.21.3 [bookmark: _Toc228894753][bookmark: _Toc228807285][bookmark: _Toc151796114][bookmark: _Toc370634514][bookmark: _Toc391471227][bookmark: _Toc395187865][bookmark: _Toc416960111][bookmark: _Toc8118329][bookmark: _Toc30061304][bookmark: _Toc90376557][bookmark: _Toc111203542][bookmark: _Toc148962384][bookmark: _Toc195693420]General-length SHA-224-HMAC
The general-length SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism except that it uses the HMAC construction based on the SHA-224 hash function and length of the output should be in the range 1-28. The keys it uses are generic secret keys and CKK_SHA224_HMAC. FIPS-198 compliant tokens may require the key length to be at least 14 bytes; that is, half the size of the SHA-224 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-28 (the output size of SHA-224 is 28 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 28-byte HMAC output.
[bookmark: _Toc228807545][bookmark: _Toc151796153][bookmark: _Toc25853471]Table 143, General-length SHA-224-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
CKK_SHA224_HMAC
	Any
	1-28, depending on parameters

	C_Verify
	generic secret
CKK_SHA224_HMAC
	Any
	1-28, depending on parameters


6.21.4 [bookmark: _Toc228894754][bookmark: _Toc228807286][bookmark: _Toc151796115][bookmark: _Toc370634515][bookmark: _Toc391471228][bookmark: _Toc395187866][bookmark: _Toc416960112][bookmark: _Toc8118330][bookmark: _Toc30061305][bookmark: _Toc90376558][bookmark: _Toc111203543][bookmark: _Toc148962385][bookmark: _Toc195693421]SHA-224-HMAC
The SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC, is a special case of the general-length SHA-224-HMAC mechanism.
It has no parameter, and always produces an output of length 28.
6.21.5 [bookmark: _Toc228894755][bookmark: _Toc228807287][bookmark: _Toc151796116][bookmark: _Toc370634516][bookmark: _Toc391471229][bookmark: _Toc395187867][bookmark: _Toc416960113][bookmark: _Toc8118331][bookmark: _Toc30061306][bookmark: _Toc90376559][bookmark: _Toc111203544][bookmark: _Toc148962386][bookmark: _Toc195693422]SHA-224 key derivation
SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5 except that it uses the SHA-224 hash function and the relevant length is 28 bytes. 
6.21.6 [bookmark: _Toc8118332][bookmark: _Toc30061307][bookmark: _Toc90376560][bookmark: _Toc111203545][bookmark: _Toc148962387][bookmark: _Toc195693423]SHA-224 HMAC key generation
The SHA-224-HMAC key generation mechanism, denoted CKM_SHA224_KEY_GEN, is a key generation mechanism for NIST’s SHA224-HMAC.
It does not have a parameter.
The mechanism generates SHA224-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA224-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA224_HMAC key sizes, in bytes.
6.22 [bookmark: _Toc228894756][bookmark: _Toc228807288][bookmark: _Toc370634517][bookmark: _Toc391471230][bookmark: _Toc395187868][bookmark: _Toc416960114][bookmark: _Toc8118333][bookmark: _Toc30061308][bookmark: _Toc90376561][bookmark: _Toc111203546][bookmark: _Toc148962388][bookmark: _Toc195693424]SHA-256
[bookmark: _Toc25853472]Table 144, SHA-256 Mechanisms vs. Functions
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6.22.1 [bookmark: _Toc228894757][bookmark: _Toc228807289][bookmark: _Toc370634518][bookmark: _Toc391471231][bookmark: _Toc395187869][bookmark: _Toc416960115][bookmark: _Toc8118334][bookmark: _Toc30061309][bookmark: _Toc90376562][bookmark: _Toc111203547][bookmark: _Toc148962389][bookmark: _Toc195693425]Definitions
This section defines the key type “CKK_SHA256_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA256
CKM_SHA256_HMAC
CKM_SHA256_HMAC_GENERAL
CKM_SHA256_KEY_DERIVATION
CKM_SHA256_KEY_GEN 
6.22.2 [bookmark: _Toc228894758][bookmark: _Toc228807290][bookmark: _Toc72656401][bookmark: _Toc370634519][bookmark: _Toc391471232][bookmark: _Toc395187870][bookmark: _Toc416960116][bookmark: _Toc8118335][bookmark: _Toc30061310][bookmark: _Toc90376563][bookmark: _Toc111203548][bookmark: _Toc148962390][bookmark: _Toc195693426]SHA-256 digest
The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message digesting, following the Secure Hash Algorithm with a 256-bit message digest defined in [FIPS PUB 180-4].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc228807546][bookmark: _Toc25853473]Table 145, SHA-256: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	32


6.22.3 [bookmark: _Toc228894759][bookmark: _Toc228807291][bookmark: _Toc72656402][bookmark: _Ref47495209][bookmark: _Toc370634520][bookmark: _Toc391471233][bookmark: _Toc395187871][bookmark: _Toc416960117][bookmark: _Toc8118336][bookmark: _Toc30061311][bookmark: _Toc90376564][bookmark: _Toc111203549][bookmark: _Toc148962391][bookmark: _Toc195693427]General-length SHA-256-HMAC
The general-length SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-256 hash function and length of the output should be in the range 1-32. The keys it uses are generic secret keys and CKK_SHA256_HMAC. FIPS-198 compliant tokens may require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-32 (the output size of SHA-256 is 32 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC output.
[bookmark: _Toc228807547][bookmark: _Toc25853474]Table 146, General-length SHA-256-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret,
CKK_SHA256_HMAC
	Any
	1-32, depending on parameters

	C_Verify
	generic secret,
CKK_SHA256_HMAC
	Any
	1-32, depending on parameters


6.22.4 [bookmark: _Toc228894760][bookmark: _Toc228807292][bookmark: _Toc72656403][bookmark: _Toc370634521][bookmark: _Toc391471234][bookmark: _Toc395187872][bookmark: _Toc416960118][bookmark: _Toc8118337][bookmark: _Toc30061312][bookmark: _Toc90376565][bookmark: _Toc111203550][bookmark: _Toc148962392][bookmark: _Toc195693428]SHA-256-HMAC
The SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC, is a special case of the general-length SHA-256-HMAC mechanism in section 6.22.3.
It has no parameter, and always produces an output of length 32.
6.22.5 [bookmark: _Toc228894761][bookmark: _Toc228807293][bookmark: _Toc72656404][bookmark: _Toc370634522][bookmark: _Toc391471235][bookmark: _Toc395187873][bookmark: _Toc416960119][bookmark: _Toc8118338][bookmark: _Toc30061313][bookmark: _Toc90376566][bookmark: _Toc111203551][bookmark: _Toc148962393][bookmark: _Toc195693429]SHA-256 key derivation
SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA-256 hash function and the relevant length is 32 bytes. 
[bookmark: _Toc8118339][bookmark: _Toc30061314][bookmark: _Toc90376567][bookmark: _Toc111203552][bookmark: _Toc148962394][bookmark: _Toc195693430]SHA-256 HMAC key generation
The SHA-256-HMAC key generation mechanism, denoted CKM_SHA256_KEY_GEN, is a key generation mechanism for NIST’s SHA256-HMAC.
It does not have a parameter.
The mechanism generates SHA256-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA256-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA256_HMAC key sizes, in bytes.
6.23 [bookmark: _Toc228894762][bookmark: _Toc228807294][bookmark: _Toc72656405][bookmark: _Toc370634523][bookmark: _Toc391471236][bookmark: _Toc395187874][bookmark: _Toc416960120][bookmark: _Toc8118340][bookmark: _Toc30061315][bookmark: _Toc90376568][bookmark: _Toc111203553][bookmark: _Toc148962395][bookmark: _Toc195693431]SHA-384
[bookmark: _Toc25853475]Table 147, SHA-384 Mechanisms vs. Functions
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6.23.1 [bookmark: _Toc228894763][bookmark: _Toc228807295][bookmark: _Toc370634524][bookmark: _Toc391471237][bookmark: _Toc395187875][bookmark: _Toc416960121][bookmark: _Toc8118341][bookmark: _Toc30061316][bookmark: _Toc90376569][bookmark: _Toc111203554][bookmark: _Toc148962396][bookmark: _Toc195693432]Definitions
This section defines the key type “CKK_SHA384_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
CKM_SHA384
CKM_SHA384_HMAC
CKM_SHA384_HMAC_GENERAL
CKM_SHA384_KEY_DERIVATION
CKM_SHA384_KEY_GEN
6.23.2 [bookmark: _Toc228894764][bookmark: _Toc228807296][bookmark: _Toc72656407][bookmark: _Toc370634525][bookmark: _Toc391471238][bookmark: _Toc395187876][bookmark: _Toc416960122][bookmark: _Toc8118342][bookmark: _Toc30061317][bookmark: _Toc90376570][bookmark: _Toc111203555][bookmark: _Toc148962397][bookmark: _Toc195693433]SHA-384 digest
The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message digesting, following the Secure Hash Algorithm with a 384-bit message digest defined in [FIPS PUB 180-4].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc228807548][bookmark: _Toc25853476]Table 148, SHA-384: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	48


6.23.3 [bookmark: _Toc228894765][bookmark: _Toc228807297][bookmark: _Toc72656408][bookmark: _Toc370634526][bookmark: _Toc391471239][bookmark: _Toc395187877][bookmark: _Toc416960123][bookmark: _Toc8118343][bookmark: _Toc30061318][bookmark: _Toc90376571][bookmark: _Toc111203556][bookmark: _Toc148962398][bookmark: _Toc195693434]General-length SHA-384-HMAC
The general-length SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-384 hash function and length of the output should be in the range 1-48.
The keys it uses are generic secret keys and CKK_SHA384_HMAC. FIPS-198 compliant tokens may require the key length to be at least 24 bytes; that is, half the size of the SHA-384 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-48 (the output size of SHA-384 is 48 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 24 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 48-byte HMAC output.
[bookmark: _Toc25853477]Table 149, General-length SHA-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret, CKK_SHA384_HMAC
	Any
	1-48, depending on parameters

	C_Verify
	generic secret,
CKK_SHA384_HMAC
	Any
	1-48, depending on parameters



6.23.4 [bookmark: _Toc228894766][bookmark: _Toc228807298][bookmark: _Toc72656409][bookmark: _Toc370634527][bookmark: _Toc391471240][bookmark: _Toc395187878][bookmark: _Toc416960124][bookmark: _Toc8118344][bookmark: _Toc30061319][bookmark: _Toc90376572][bookmark: _Toc111203557][bookmark: _Toc148962399][bookmark: _Toc195693435]SHA-384-HMAC
The SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC, is a special case of the general-length SHA-384-HMAC mechanism.
It has no parameter, and always produces an output of length 48.
6.23.5 [bookmark: _Toc228894767][bookmark: _Toc228807299][bookmark: _Toc72656410][bookmark: _Toc370634528][bookmark: _Toc391471241][bookmark: _Toc395187879][bookmark: _Toc416960125][bookmark: _Toc8118345][bookmark: _Toc30061320][bookmark: _Toc90376573][bookmark: _Toc111203558][bookmark: _Toc148962400][bookmark: _Toc195693436]SHA-384 key derivation
SHA-384 key derivation, denoted CKM_SHA384_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA-384 hash function and the relevant length is 48 bytes. 
[bookmark: _Toc8118346][bookmark: _Toc30061321][bookmark: _Toc90376574][bookmark: _Toc111203559][bookmark: _Toc148962401][bookmark: _Toc195693437]SHA-384 HMAC key generation
The SHA-384-HMAC key generation mechanism, denoted CKM_SHA384_KEY_GEN, is a key generation mechanism for NIST’s SHA384-HMAC.
It does not have a parameter.
The mechanism generates SHA384-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA384-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA384_HMAC key sizes, in bytes.
6.24 [bookmark: _Toc228894768][bookmark: _Toc228807300][bookmark: _Toc72656411][bookmark: _Toc370634529][bookmark: _Toc391471242][bookmark: _Toc395187880][bookmark: _Toc416960126][bookmark: _Toc8118347][bookmark: _Toc30061322][bookmark: _Toc90376575][bookmark: _Toc111203560][bookmark: _Toc148962402][bookmark: _Toc195693438]SHA-512
[bookmark: _Toc25853478]Table 150, SHA-512 Mechanisms vs. Functions
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6.24.1 [bookmark: _Toc228894769][bookmark: _Toc228807301][bookmark: _Toc370634530][bookmark: _Toc391471243][bookmark: _Toc395187881][bookmark: _Toc416960127][bookmark: _Toc8118348][bookmark: _Toc30061323][bookmark: _Toc90376576][bookmark: _Toc111203561][bookmark: _Toc148962403][bookmark: _Toc195693439]Definitions
This section defines the key type “CKK_SHA512_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA512
CKM_SHA512_HMAC
CKM_SHA512_HMAC_GENERAL
CKM_SHA512_KEY_DERIVATION
CKM_SHA512_KEY_GEN
6.24.2 [bookmark: _Toc228894770][bookmark: _Toc228807302][bookmark: _Toc72656413][bookmark: _Toc370634531][bookmark: _Toc391471244][bookmark: _Toc395187882][bookmark: _Toc416960128][bookmark: _Toc8118349][bookmark: _Toc30061324][bookmark: _Toc90376577][bookmark: _Toc111203562][bookmark: _Toc148962404][bookmark: _Toc195693440]SHA-512 digest
The SHA-512 mechanism, denoted CKM_SHA512, is a mechanism for message digesting, following the Secure Hash Algorithm with a 512-bit message digest defined in [FIPS PUB 180-4].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc228807549][bookmark: _Toc25853479]Table 151, SHA-512: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	64


6.24.3 [bookmark: _Toc228894771][bookmark: _Toc228807303][bookmark: _Toc72656414][bookmark: _Toc370634532][bookmark: _Toc391471245][bookmark: _Toc395187883][bookmark: _Toc416960129][bookmark: _Toc8118350][bookmark: _Toc30061325][bookmark: _Toc90376578][bookmark: _Toc111203563][bookmark: _Toc148962405][bookmark: _Toc195693441]General-length SHA-512-HMAC
The general-length SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-512 hash function and length of the output should be in the range 1-64.
The keys it uses are generic secret keys and CKK_SHA512_HMAC. FIPS-198 compliant tokens may require the key length to be at least 32 bytes; that is, half the size of the SHA-512 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-64 (the output size of SHA-512 is 64 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 32 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 64-byte HMAC output.
[bookmark: _Toc25853480]Table 152, General-length SHA-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret, CKK_SHA512_HMAC
	Any
	1-64, depending on parameters

	C_Verify
	generic secret,
CKK_SHA512_HMAC
	Any
	1-64, depending on parameters



6.24.4 [bookmark: _Toc228894772][bookmark: _Toc228807304][bookmark: _Toc72656415][bookmark: _Toc370634533][bookmark: _Toc391471246][bookmark: _Toc395187884][bookmark: _Toc416960130][bookmark: _Toc8118351][bookmark: _Toc30061326][bookmark: _Toc90376579][bookmark: _Toc111203564][bookmark: _Toc148962406][bookmark: _Toc195693442]SHA-512-HMAC
The SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC, is a special case of the general-length SHA-512-HMAC mechanism.
It has no parameter, and always produces an output of length 64.
6.24.5 [bookmark: _Toc228894773][bookmark: _Toc228807305][bookmark: _Toc72656416][bookmark: _Toc370634534][bookmark: _Toc391471247][bookmark: _Toc395187885][bookmark: _Toc416960131][bookmark: _Toc8118352][bookmark: _Toc30061327][bookmark: _Ref65665569][bookmark: _Ref65665609][bookmark: _Ref65665648][bookmark: _Toc90376580][bookmark: _Toc111203565][bookmark: _Toc148962407][bookmark: _Toc195693443]SHA-512 key derivation
SHA-512 key derivation, denoted CKM_SHA512_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA-512 hash function and the relevant length is 64 bytes. 
[bookmark: _Toc8118353][bookmark: _Toc30061328][bookmark: _Toc90376581][bookmark: _Toc111203566][bookmark: _Toc148962408][bookmark: _Toc195693444]SHA-512 HMAC key generation
The SHA-512-HMAC key generation mechanism, denoted CKM_SHA512_KEY_GEN, is a key generation mechanism for NIST’s SHA512-HMAC.
It does not have a parameter.
The mechanism generates SHA512-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA512-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA512_HMAC key sizes, in bytes.
6.25 [bookmark: _Toc370634535][bookmark: _Toc391471248][bookmark: _Toc395187886][bookmark: _Toc416960132][bookmark: _Toc8118354][bookmark: _Toc30061329][bookmark: _Toc90376582][bookmark: _Toc111203567][bookmark: _Toc148962409][bookmark: _Toc195693445] SHA-512/224
[bookmark: _Toc25853481]Table 153, SHA-512/224 Mechanisms vs. Functions
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6.25.1 [bookmark: _Toc370634536][bookmark: _Toc391471249][bookmark: _Toc395187887][bookmark: _Toc416960133][bookmark: _Toc8118355][bookmark: _Toc30061330][bookmark: _Toc90376583][bookmark: _Toc111203568][bookmark: _Toc148962410][bookmark: _Toc195693446]Definitions
This section defines the key type “CKK_SHA512_224_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA512_224
CKM_SHA512_224_HMAC
CKM_SHA512_224_HMAC_GENERAL
CKM_SHA512_224_KEY_DERIVATION
CKM_SHA512_224_KEY_GEN 
6.25.2 [bookmark: _Toc370634537][bookmark: _Toc391471250][bookmark: _Toc395187888][bookmark: _Toc416960134][bookmark: _Toc8118356][bookmark: _Toc30061331][bookmark: _Toc90376584][bookmark: _Toc111203569][bookmark: _Toc148962411][bookmark: _Toc195693447]SHA-512/224 digest
The SHA-512/224 mechanism, denoted CKM_SHA512_224, is a mechanism for message digesting, following the Secure Hash Algorithm defined in [FIPS PUB 180-4], section 5.3.6. It is based on a 512-bit message digest with a distinct initial hash value and truncated to 224 bits. CKM_SHA512_224 is the same as CKM_SHA512_T with a parameter value of 224.
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853482]Table 154, SHA-512/224: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	28


6.25.3 [bookmark: _Toc370634538][bookmark: _Toc391471251][bookmark: _Toc395187889][bookmark: _Toc416960135][bookmark: _Toc8118357][bookmark: _Toc30061332][bookmark: _Toc90376585][bookmark: _Toc111203570][bookmark: _Toc148962412][bookmark: _Toc195693448]General-length SHA-512/224-HMAC
The general-length SHA-512/224-HMAC mechanism, denoted CKM_SHA512_224_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-512/224 hash function and length of the output should be in the range 1-28. The keys it uses are generic secret keys and CKK_SHA512_224_HMAC. FIPS-198 compliant tokens may require the key length to be at least 14 bytes; that is, half the size of the SHA-512/224 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-28 (the output size of SHA-512/224 is 28 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 28-byte HMAC output.
[bookmark: _Toc25853483]Table 155, General-length SHA-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret, CKK_SHA512_224_HMAC
	Any
	1-28, depending on parameters

	C_Verify
	generic secret,
CKK_SHA512_224_HMAC
	Any
	1-28, depending on parameters



6.25.4 [bookmark: _Toc370634539][bookmark: _Toc391471252][bookmark: _Toc395187890][bookmark: _Toc416960136][bookmark: _Toc8118358][bookmark: _Toc30061333][bookmark: _Toc90376586][bookmark: _Toc111203571][bookmark: _Toc148962413][bookmark: _Toc195693449]SHA-512/224-HMAC
The SHA-512-HMAC mechanism, denoted CKM_SHA512_224_HMAC, is a special case of the general-length SHA-512/224-HMAC mechanism.
It has no parameter, and always produces an output of length 28.
6.25.5 [bookmark: _Toc370634540][bookmark: _Toc391471253][bookmark: _Toc395187891][bookmark: _Toc416960137][bookmark: _Toc8118359][bookmark: _Toc30061334][bookmark: _Toc90376587][bookmark: _Toc111203572][bookmark: _Toc148962414][bookmark: _Toc195693450]SHA-512/224 key derivation
The SHA-512/224 key derivation, denoted CKM_SHA512_224_KEY_DERIVATION, is the same as the SHA-512 key derivation mechanism in section 6.24.5, except that it uses the SHA-512/224 hash function and the relevant length is 28 bytes.
[bookmark: _Toc8118360][bookmark: _Toc30061335][bookmark: _Toc90376588][bookmark: _Toc111203573][bookmark: _Toc148962415][bookmark: _Toc195693451]SHA-512/224 HMAC key generation
The SHA-512/224-HMAC key generation mechanism, denoted CKM_SHA512_224_KEY_GEN, is a key generation mechanism for NIST’s SHA512/224-HMAC.
It does not have a parameter.
The mechanism generates SHA512/224-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA512/224-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA512_224_HMAC key sizes, in bytes.
6.26 [bookmark: _Toc370634541][bookmark: _Toc391471254][bookmark: _Toc395187892][bookmark: _Toc416960138][bookmark: _Toc8118361][bookmark: _Toc30061336][bookmark: _Toc90376589][bookmark: _Toc111203574][bookmark: _Toc148962416][bookmark: _Toc195693452]SHA-512/256
[bookmark: _Toc25853484]Table 156, SHA-512/256 Mechanisms vs. Functions
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6.26.1 [bookmark: _Toc370634542][bookmark: _Toc391471255][bookmark: _Toc395187893][bookmark: _Toc416960139][bookmark: _Toc8118362][bookmark: _Toc30061337][bookmark: _Toc90376590][bookmark: _Toc111203575][bookmark: _Toc148962417][bookmark: _Toc195693453]Definitions
This section defines the key type “CKK_SHA512_256_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA512_256
CKM_SHA512_256_HMAC
CKM_SHA512_256_HMAC_GENERAL
CKM_SHA512_256_KEY_DERIVATION
CKM_SHA512_256_KEY_GEN 
6.26.2 [bookmark: _Toc370634543][bookmark: _Toc391471256][bookmark: _Toc395187894][bookmark: _Toc416960140][bookmark: _Toc8118363][bookmark: _Toc30061338][bookmark: _Toc90376591][bookmark: _Toc111203576][bookmark: _Toc148962418][bookmark: _Toc195693454]SHA-512/256 digest
The SHA-512/256 mechanism, denoted CKM_SHA512_256, is a mechanism for message digesting, following the Secure Hash Algorithm defined in [FIPS PUB 180-4], section 5.3.6. It is based on a 512-bit message digest with a distinct initial hash value and truncated to 256 bits. CKM_SHA512_256 is the same as CKM_SHA512_T with a parameter value of 256.
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853485]Table 157, SHA-512/256: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	32


6.26.3 [bookmark: _Toc370634544][bookmark: _Toc391471257][bookmark: _Toc395187895][bookmark: _Toc416960141][bookmark: _Toc8118364][bookmark: _Toc30061339][bookmark: _Toc90376592][bookmark: _Toc111203577][bookmark: _Toc148962419][bookmark: _Toc195693455]General-length SHA-512/256-HMAC
The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_256_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-512/256 hash function and length of the output should be in the range 1-32. The keys it uses are generic secret keys and CKK_SHA512_256_HMAC. FIPS-198 compliant tokens may require the key length to be at least 16 bytes; that is, half the size of the SHA-512/256 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-32 (the output size of SHA-512/256 is 32 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length). Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC output.
[bookmark: _Toc25853486]Table 158, General-length SHA-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret, CKK_SHA512_256_HMAC
	Any
	1-32, depending on parameters

	C_Verify
	generic secret,
CKK_SHA512_256_HMAC
	Any
	1-32, depending on parameters



6.26.4 [bookmark: _Toc370634545][bookmark: _Toc391471258][bookmark: _Toc395187896][bookmark: _Toc416960142][bookmark: _Toc8118365][bookmark: _Toc30061340][bookmark: _Toc90376593][bookmark: _Toc111203578][bookmark: _Toc148962420][bookmark: _Toc195693456]SHA-512/256-HMAC
The SHA-512-HMAC mechanism, denoted CKM_SHA512_256_HMAC, is a special case of the general-length SHA-512/256-HMAC mechanism.
It has no parameter, and always produces an output of length 32.
6.26.5 [bookmark: _Toc370634546][bookmark: _Toc391471259][bookmark: _Toc395187897][bookmark: _Toc416960143][bookmark: _Toc8118366][bookmark: _Toc30061341][bookmark: _Toc90376594][bookmark: _Toc111203579][bookmark: _Toc148962421][bookmark: _Toc195693457]SHA-512/256 key derivation
The SHA-512/256 key derivation, denoted CKM_SHA512_256_KEY_DERIVATION, is the same as the SHA-512 key derivation mechanism in section 6.24.5, except that it uses the SHA-512/256 hash function and the relevant length is 32 bytes.
[bookmark: _Toc8118367][bookmark: _Toc30061342][bookmark: _Toc90376595][bookmark: _Toc111203580][bookmark: _Toc148962422][bookmark: _Toc195693458]SHA-512/256 HMAC key generation
The SHA-512/256-HMAC key generation mechanism, denoted CKM_SHA512_256_KEY_GEN, is a key generation mechanism for NIST’s SHA512/256-HMAC.
It does not have a parameter.
The mechanism generates SHA512/256-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA512/256-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA512_256_HMAC key sizes, in bytes.
6.27 [bookmark: _Toc370634547][bookmark: _Toc391471260][bookmark: _Toc395187898][bookmark: _Toc416960144][bookmark: _Toc8118368][bookmark: _Toc30061343][bookmark: _Toc90376596][bookmark: _Toc111203581][bookmark: _Toc148962423][bookmark: _Toc195693459]SHA-512/t
[bookmark: _Toc25853487]Table 159, SHA-512 / t Mechanisms vs. Functions
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6.27.1 [bookmark: _Toc370634548][bookmark: _Toc391471261][bookmark: _Toc395187899][bookmark: _Toc416960145][bookmark: _Toc8118369][bookmark: _Toc30061344][bookmark: _Toc90376597][bookmark: _Toc111203582][bookmark: _Toc148962424][bookmark: _Toc195693460]Definitions
This section defines the key type “CKK_SHA512_T_HMAC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA512_T
CKM_SHA512_T_HMAC
CKM_SHA512_T_HMAC_GENERAL
CKM_SHA512_T_KEY_DERIVATION
CKM_SHA512_T_KEY_GEN
6.27.2 [bookmark: _Toc370634549][bookmark: _Toc391471262][bookmark: _Toc395187900][bookmark: _Toc416960146][bookmark: _Toc8118370][bookmark: _Toc30061345][bookmark: _Toc90376598][bookmark: _Toc111203583][bookmark: _Toc148962425][bookmark: _Toc195693461]SHA-512/t digest
The SHA-512/t mechanism, denoted CKM_SHA512_T, is a mechanism for message digesting, following the Secure Hash Algorithm defined in [FIPS PUB 180-4], section 5.3.6. It is based on a 512-bit message digest with a distinct initial hash value and truncated to t bits.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in bytes of the desired output should be in the range of 0-⌈ t/8⌉, where 0 < t < 512, and t <> 384.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853488]Table 160, SHA-512/256: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	⌈t/8⌉, where 0 < t < 512, and t <> 384


6.27.3 [bookmark: _Toc370634550][bookmark: _Toc391471263][bookmark: _Toc395187901][bookmark: _Toc416960147][bookmark: _Toc8118371][bookmark: _Toc30061346][bookmark: _Toc90376599][bookmark: _Toc111203584][bookmark: _Toc148962426][bookmark: _Toc195693462]General-length SHA-512/t-HMAC
The general-length SHA-512/t-HMAC mechanism, denoted CKM_SHA512_T_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.3, except that it uses the HMAC construction based on the SHA-512/t hash function and length of the output should be in the range 0 – ⌈t/8⌉, where 0 < t < 512, and t <> 384.
6.27.4 [bookmark: _Toc370634551][bookmark: _Toc391471264][bookmark: _Toc395187902][bookmark: _Toc416960148][bookmark: _Toc8118372][bookmark: _Toc30061347][bookmark: _Toc90376600][bookmark: _Toc111203585][bookmark: _Toc148962427][bookmark: _Toc195693463]SHA-512/t-HMAC
The SHA-512/t-HMAC mechanism, denoted CKM_SHA512_T_HMAC, is a special case of the general-length SHA-512/t-HMAC mechanism.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in bytes of the desired output should be in the range of 0-⌈t/8⌉, where 0 < t < 512, and t <> 384.
6.27.5 [bookmark: _Toc370634552][bookmark: _Toc391471265][bookmark: _Toc395187903][bookmark: _Toc416960149][bookmark: _Toc8118373][bookmark: _Toc30061348][bookmark: _Toc90376601][bookmark: _Toc111203586][bookmark: _Toc148962428][bookmark: _Toc195693464]SHA-512/t key derivation
The SHA-512/t key derivation, denoted CKM_SHA512_T_KEY_DERIVATION, is the same as the SHA-512 key derivation mechanism in section 6.24.5, except that it uses the SHA-512/t hash function and the relevant length is ⌈t/8⌉ bytes, where 0 < t < 512, and t <> 384.
[bookmark: _Toc8118374][bookmark: _Toc30061349][bookmark: _Toc90376602][bookmark: _Toc111203587][bookmark: _Toc148962429][bookmark: _Toc195693465]SHA-512/t HMAC key generation
The SHA-512/t-HMAC key generation mechanism, denoted CKM_SHA512_T_KEY_GEN, is a key generation mechanism for NIST’s SHA512/t-HMAC.
It does not have a parameter.
The mechanism generates SHA512/t-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA512/t-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA512_T_HMAC key sizes, in bytes.

6.28 [bookmark: _Toc8118375][bookmark: _Toc30061350][bookmark: _Toc90376603][bookmark: _Toc111203588][bookmark: _Toc148962430][bookmark: _Toc195693466]SHA3-224
[bookmark: _Toc25853489]Table 161, SHA3-224 Mechanisms vs. Functions
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6.28.1 [bookmark: _Toc8118376][bookmark: _Toc30061351][bookmark: _Toc90376604][bookmark: _Toc111203589][bookmark: _Toc148962431][bookmark: _Toc195693467]Definitions
Mechanisms:
CKM_SHA3_224
CKM_SHA3_224_HMAC
CKM_SHA3_224_HMAC_GENERAL
CKM_SHA3_224_KEY_DERIVATION
CKM_SHA3_224_KEY_GEN

CKK_SHA3_224_HMAC
6.28.2 [bookmark: _Toc8118377][bookmark: _Toc30061352][bookmark: _Toc90376605][bookmark: _Toc111203590][bookmark: _Toc148962432][bookmark: _Toc195693468]SHA3-224 digest
The SHA3-224 mechanism, denoted CKM_SHA3_224, is a mechanism for message digesting, following the Secure Hash 3 Algorithm with a 224-bit message digest defined in [FIPS PUB 202].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853490]Table 162, SHA3-224: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	28


6.28.3 [bookmark: _Toc8118378][bookmark: _Toc30061353][bookmark: _Toc90376606][bookmark: _Toc111203591][bookmark: _Toc148962433][bookmark: _Toc195693469]General-length SHA3-224-HMAC
The general-length SHA3-224-HMAC mechanism, denoted CKM_SHA3_224_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.4 except that it uses the HMAC construction based on the SHA3-224 hash function and length of the output should be in the range 1-28. The keys it uses are generic secret keys and CKK_SHA3_224_HMAC. FIPS-198 compliant tokens may require the key length to be at least 14 bytes; that is, half the size of the SHA3-224 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-28 (the output size of SHA3-224 is 28 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 28-byte HMAC output.
[bookmark: _Toc25853491]Table 163, General-length SHA3-224-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_SHA3_224_HMAC
	Any
	1-28, depending on parameters

	C_Verify
	generic secret or CKK_SHA3_224_HMAC
	Any
	1-28, depending on parameters


6.28.4 [bookmark: _Toc8118379][bookmark: _Toc30061354][bookmark: _Toc90376607][bookmark: _Toc111203592][bookmark: _Toc148962434][bookmark: _Toc195693470]SHA3-224-HMAC
The SHA3-224-HMAC mechanism, denoted CKM_SHA3_224_HMAC, is a special case of the general-length SHA3-224-HMAC mechanism.
It has no parameter, and always produces an output of length 28.
6.28.5 [bookmark: _Toc8118380][bookmark: _Toc30061355][bookmark: _Toc90376608][bookmark: _Toc111203593][bookmark: _Toc148962435][bookmark: _Toc195693471]SHA3-224 key derivation
SHA-224 key derivation, denoted CKM_SHA3_224_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5 except that it uses the SHA3-224 hash function and the relevant length is 28 bytes. 
6.28.6 [bookmark: _Toc8118381][bookmark: _Toc30061356][bookmark: _Toc90376609][bookmark: _Toc111203594][bookmark: _Toc148962436][bookmark: _Toc195693472]SHA3-224 HMAC key generation
The SHA3-224-HMAC key generation mechanism, denoted CKM_SHA3_224_KEY_GEN, is a key generation mechanism for NIST’s SHA3-224-HMAC.
It does not have a parameter.
The mechanism generates SHA3-224-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA3-224-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA3_224_HMAC key sizes, in bytes.
6.29 [bookmark: _Toc8118382][bookmark: _Toc30061357][bookmark: _Toc90376610][bookmark: _Toc111203595][bookmark: _Toc148962437][bookmark: _Toc195693473]SHA3-256
[bookmark: _Toc25853492]Table 164, SHA3-256 Mechanisms vs. Functions
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6.29.1 [bookmark: _Toc8118383][bookmark: _Toc30061358][bookmark: _Toc90376611][bookmark: _Toc111203596][bookmark: _Toc148962438][bookmark: _Toc195693474]Definitions
Mechanisms:
CKM_SHA3_256
CKM_SHA3_256_HMAC
CKM_SHA3_256_HMAC_GENERAL
CKM_SHA3_256_KEY_DERIVATION
CKM_SHA3_256_KEY_GEN

CKK_SHA3_256_HMAC
6.29.2 [bookmark: _Toc8118384][bookmark: _Toc30061359][bookmark: _Toc90376612][bookmark: _Toc111203597][bookmark: _Toc148962439][bookmark: _Toc195693475]SHA3-256 digest
The SHA3-256 mechanism, denoted CKM_SHA3_256, is a mechanism for message digesting, following the Secure Hash 3 Algorithm with a 256-bit message digest defined in [FIPS PUB 202].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853493]Table 165, SHA3-256: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	32


6.29.3 [bookmark: _Toc8118385][bookmark: _Toc30061360][bookmark: _Toc90376613][bookmark: _Toc111203598][bookmark: _Toc148962440][bookmark: _Toc195693476]General-length SHA3-256-HMAC
The general-length SHA3-256-HMAC mechanism, denoted CKM_SHA3_256_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.4, except that it uses the HMAC construction based on the SHA3-256 hash function and length of the output should be in the range 1-32. The keys it uses are generic secret keys and CKK_SHA3_256_HMAC. FIPS-198 compliant tokens may require the key length to be at least 16 bytes; that is, half the size of the SHA3-256 hash output.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-32 (the output size of SHA3-256 is 32 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 32-byte HMAC output.
[bookmark: _Toc25853494]Table 166, General-length SHA3-256-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_SHA3_256_HMAC
	Any
	1-32, depending on parameters

	C_Verify
	generic secret or
CKK_SHA3_256_HMAC
	Any
	1-32, depending on parameters


6.29.4 [bookmark: _Toc8118386][bookmark: _Toc30061361][bookmark: _Toc90376614][bookmark: _Toc111203599][bookmark: _Toc148962441][bookmark: _Toc195693477]SHA3-256-HMAC
The SHA-256-HMAC mechanism, denoted CKM_SHA3_256_HMAC, is a special case of the general-length SHA-256-HMAC mechanism.
It has no parameter, and always produces an output of length 32.
6.29.5 [bookmark: _Toc8118387][bookmark: _Toc30061362][bookmark: _Toc90376615][bookmark: _Toc111203600][bookmark: _Toc148962442][bookmark: _Toc195693478]SHA3-256 key derivation
SHA-256 key derivation, denoted CKM_SHA3_256_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA3-256 hash function and the relevant length is 32 bytes. 
6.29.6 [bookmark: _Toc8118388][bookmark: _Toc30061363][bookmark: _Toc90376616][bookmark: _Toc111203601][bookmark: _Toc148962443][bookmark: _Toc195693479]SHA3-256 HMAC key generation
The SHA3-256-HMAC key generation mechanism, denoted CKM_SHA3_256_KEY_GEN, is a key generation mechanism for NIST’s SHA3-256-HMAC.
It does not have a parameter.
The mechanism generates SHA3-256-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA3-256-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA3_256_HMAC key sizes, in bytes.

6.30 [bookmark: _Toc8118389][bookmark: _Toc30061364][bookmark: _Toc90376617][bookmark: _Toc111203602][bookmark: _Toc148962444][bookmark: _Toc195693480]SHA3-384
[bookmark: _Toc25853495]Table 167, SHA3-384 Mechanisms vs. Functions
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6.30.1 [bookmark: _Toc8118390][bookmark: _Toc30061365][bookmark: _Toc90376618][bookmark: _Toc111203603][bookmark: _Toc148962445][bookmark: _Toc195693481]Definitions
CKM_SHA3_384
CKM_SHA3_384_HMAC
CKM_SHA3_384_HMAC_GENERAL
CKM_SHA3_384_KEY_DERIVATION
CKM_SHA3_384_KEY_GEN

CKK_SHA3_384_HMAC
6.30.2 [bookmark: _Toc8118391][bookmark: _Toc30061366][bookmark: _Toc90376619][bookmark: _Toc111203604][bookmark: _Toc148962446][bookmark: _Toc195693482]SHA3-384 digest
The SHA3-384 mechanism, denoted CKM_SHA3_384, is a mechanism for message digesting, following the Secure Hash 3 Algorithm with a 384-bit message digest defined in [FIPS PUB 202].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853496]Table 168, SHA3-384: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	48


6.30.3 [bookmark: _Toc8118392][bookmark: _Toc30061367][bookmark: _Toc90376620][bookmark: _Toc111203605][bookmark: _Toc148962447][bookmark: _Toc195693483]General-length SHA3-384-HMAC
The general-length SHA3-384-HMAC mechanism, denoted CKM_SHA3_384_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.4, except that it uses the HMAC construction based on the SHA-384 hash function and length of the output should be in the range 1-48.The keys it uses are generic secret keys and CKK_SHA3_384_HMAC. FIPS-198 compliant tokens may require the key length to be at least 24 bytes; that is, half the size of the SHA3-384 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-48 (the output size of SHA3-384 is 48 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 24 (half the maximum length). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 48-byte HMAC output.
[bookmark: _Toc25853497]Table 169, General-length SHA3-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or
CKK_SHA3_384_HMAC
	Any
	1-48, depending on parameters

	C_Verify
	generic secret or
CKK_SHA3_384_HMAC
	Any
	1-48, depending on parameters



6.30.4 [bookmark: _Toc8118393][bookmark: _Toc30061368][bookmark: _Toc90376621][bookmark: _Toc111203606][bookmark: _Toc148962448][bookmark: _Toc195693484]SHA3-384-HMAC
The SHA3-384-HMAC mechanism, denoted CKM_SHA3_384_HMAC, is a special case of the general-length SHA3-384-HMAC mechanism.
It has no parameter, and always produces an output of length 48.
6.30.5 [bookmark: _Toc8118394][bookmark: _Toc30061369][bookmark: _Toc90376622][bookmark: _Toc111203607][bookmark: _Toc148962449][bookmark: _Toc195693485]SHA3-384 key derivation
SHA3-384 key derivation, denoted CKM_SHA3_384_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA-384 hash function and the relevant length is 48 bytes. 
6.30.6 [bookmark: _Toc8118395][bookmark: _Toc30061370][bookmark: _Toc90376623][bookmark: _Toc111203608][bookmark: _Toc148962450][bookmark: _Toc195693486]SHA3-384 HMAC key generation
The SHA3-384-HMAC key generation mechanism, denoted CKM_SHA3_384_KEY_GEN, is a key generation mechanism for NIST’s SHA3-384-HMAC.
It does not have a parameter.
The mechanism generates SHA3-384-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA3-384-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA3_384_HMAC key sizes, in bytes.
6.31 [bookmark: _Toc8118396][bookmark: _Toc30061371][bookmark: _Toc90376624][bookmark: _Toc111203609][bookmark: _Toc148962451][bookmark: _Toc195693487]SHA3-512
[bookmark: _Toc25853498]Table 170, SHA-512 Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
 Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_SHA3_512
	
	
	
	
	
	
	
	

	CKM_SHA3_512_HMAC_GENERAL
	
	
	
	
	
	
	
	

	CKM_SHA3_512_HMAC
	
	
	
	
	
	
	
	

	CKM_SHA3_512_KEY_DERIVATION
	
	
	
	
	
	
	
	

	CKM_SHA3_512_KEY_GEN
	
	
	
	
	
	
	
	


6.31.1 [bookmark: _Toc8118397][bookmark: _Toc30061372][bookmark: _Toc90376625][bookmark: _Toc111203610][bookmark: _Toc148962452][bookmark: _Toc195693488]Definitions
CKM_SHA3_512
CKM_SHA3_512_HMAC
CKM_SHA3_512_HMAC_GENERAL
CKM_SHA3_512_KEY_DERIVATION
CKM_SHA3_512_KEY_GEN

CKK_SHA3_512_HMAC
6.31.2 [bookmark: _Toc8118398][bookmark: _Toc30061373][bookmark: _Toc90376626][bookmark: _Toc111203611][bookmark: _Toc148962453][bookmark: _Toc195693489]SHA3-512 digest
The SHA3-512 mechanism, denoted CKM_SHA3_512, is a mechanism for message digesting, following the Secure Hash 3 Algorithm with a 512-bit message digest defined in [FIPS PUB 202].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853499]Table 171, SHA3-512: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	64


6.31.3 [bookmark: _Toc8118399][bookmark: _Toc30061374][bookmark: _Toc90376627][bookmark: _Toc111203612][bookmark: _Toc148962454][bookmark: _Toc195693490]General-length SHA3-512-HMAC
The general-length SHA3-512-HMAC mechanism, denoted CKM_SHA3_512_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC mechanism in section 6.20.4, except that it uses the HMAC construction based on the SHA3-512 hash function and length of the output should be in the range 1-64.The keys it uses are generic secret keys and CKK_SHA3_512_HMAC. FIPS-198 compliant tokens may require the key length to be at least 32 bytes; that is, half the size of the SHA3-512 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-64 (the output size of SHA3-512 is 64 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 32 (half the maximum length). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 64-byte HMAC output.
[bookmark: _Toc25853500]Table 172, General-length SHA3-512-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_SHA3_512_HMAC
	Any
	1-64, depending on parameters

	C_Verify
	generic secret or CKK_SHA3_512_HMAC
	Any
	1-64, depending on parameters



6.31.4 [bookmark: _Toc8118400][bookmark: _Toc30061375][bookmark: _Toc90376628][bookmark: _Toc111203613][bookmark: _Toc148962455][bookmark: _Toc195693491]SHA3-512-HMAC
The SHA3-512-HMAC mechanism, denoted CKM_SHA3_512_HMAC, is a special case of the general-length SHA3-512-HMAC mechanism.
It has no parameter, and always produces an output of length 64.
6.31.5 [bookmark: _Toc8118401][bookmark: _Toc30061376][bookmark: _Toc90376629][bookmark: _Toc111203614][bookmark: _Toc148962456][bookmark: _Toc195693492]SHA3-512 key derivation
SHA3-512 key derivation, denoted CKM_SHA3_512_KEY_DERIVATION, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the SHA-512 hash function and the relevant length is 64 bytes. 
6.31.6 [bookmark: _Toc8118402][bookmark: _Toc30061377][bookmark: _Toc90376630][bookmark: _Toc111203615][bookmark: _Toc148962457][bookmark: _Toc195693493]SHA3-512 HMAC key generation
The SHA3-512-HMAC key generation mechanism, denoted CKM_SHA3_512_KEY_GEN, is a key generation mechanism for NIST’s SHA3-512-HMAC.
It does not have a parameter.
The mechanism generates SHA3-512-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SHA3-512-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_SHA3_512_HMAC key sizes, in bytes.
6.32 [bookmark: _Toc8118403][bookmark: _Toc30061378][bookmark: _Toc90376631][bookmark: _Toc111203616][bookmark: _Toc148962458][bookmark: _Toc195693494]SHAKE
[bookmark: _Toc25853501]Table 173, SHA-512 Mechanisms vs. Functions
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6.32.1 [bookmark: _Toc8118404][bookmark: _Toc30061379][bookmark: _Toc90376632][bookmark: _Toc111203617][bookmark: _Toc148962459][bookmark: _Toc195693495]Definitions
CKM_SHAKE_128_KEY_DERIVATION
CKM_SHAKE_256_KEY_DERIVATION
6.32.2 [bookmark: _Toc8118405][bookmark: _Toc30061380][bookmark: _Toc90376633][bookmark: _Toc111203618][bookmark: _Toc148962460][bookmark: _Toc195693496]SHAKE Key Derivation
SHAKE-128 and SHAKE-256 key derivation, denoted CKM_SHAKE_128_KEY_DERIVATION and CKM_SHAKE_256_KEY_DERIVATION, implements the SHAKE expansion function defined in [FIPS PUB 202] on the input key.
· If no length or key type is provided in the template a CKR_TEMPLATE_INCOMPLETE error is generated.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism shall be a generic secret key of the specified length.
· If no length was provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism shall be of the type specified in the template. If it doesn’t, an error shall be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism shall be of the specified type and length.
If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key shall be set properly.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key shall as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key shall, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
6.33 [bookmark: _Toc8118406][bookmark: _Toc30061381][bookmark: _Toc90376634][bookmark: _Toc111203619][bookmark: _Toc148962461][bookmark: _Toc195693497]BLAKE2B-160
[bookmark: _Toc25853502]Table 174, BLAKE2B-160 Mechanisms vs. Functions
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33. [bookmark: _Toc8118407][bookmark: _Toc30061382][bookmark: _Toc90376635][bookmark: _Toc111203620][bookmark: _Toc148962462][bookmark: _Toc195693498]Definitions
Mechanisms:
CKM_BLAKE2B_160
CKM_BLAKE2B_160_HMAC
CKM_BLAKE2B_160_HMAC_GENERAL
CKM_BLAKE2B_160_KEY_DERIVE
CKM_BLAKE2B_160_KEY_GEN
CKK_BLAKE2B_160_HMAC
6.33.1 [bookmark: _Toc8118408][bookmark: _Toc30061383][bookmark: _Toc90376636][bookmark: _Toc111203621][bookmark: _Toc148962463][bookmark: _Toc195693499]BLAKE2B-160 digest
The BLAKE2B-160 mechanism, denoted CKM_BLAKE2B_160, is a mechanism for message digesting, following the Blake2b Algorithm with a 160-bit message digest without a key as defined in [RFC 7693].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853503]Table 175, BLAKE2B-160: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	20


6.33.2 [bookmark: _Toc8118409][bookmark: _Toc30061384][bookmark: _Toc90376637][bookmark: _Toc111203622][bookmark: _Toc148962464][bookmark: _Toc195693500]General-length BLAKE2B-160-HMAC
The general-length BLAKE2B-160-HMAC mechanism, denoted CKM_BLAKE2B_160_HMAC_GENERAL, is the keyed variant of BLAKE2b-160 and length of the output should be in the range 1-20. The keys it uses are generic secret keys and CKK_BLAKE2B_160_HMAC. 
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-20 (the output size of BLAKE2B-160 is 20 bytes). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 20-byte HMAC output.
[bookmark: _Toc25853504]Table 176, General-length BLAKE2B-160-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_BLAKE2B_160_HMAC
	Any
	1-20, depending on parameters

	C_Verify
	generic secret or CKK_BLAKE2B_160_HMAC
	Any
	1-20, depending on parameters


6.33.3 [bookmark: _Toc8118410][bookmark: _Toc30061385][bookmark: _Toc90376638][bookmark: _Toc111203623][bookmark: _Toc148962465][bookmark: _Toc195693501]BLAKE2B-160-HMAC
The BLAKE2B-160-HMAC mechanism, denoted CKM_BLAKE2B_160_HMAC, is a special case of the general-length BLAKE2B-160-HMAC mechanism.
It has no parameter, and always produces an output of length 20.
6.33.4 [bookmark: _Toc8118411][bookmark: _Toc30061386][bookmark: _Toc90376639][bookmark: _Toc111203624][bookmark: _Toc148962466][bookmark: _Toc195693502]BLAKE2B-160 key derivation
BLAKE2B-160 key derivation, denoted CKM_BLAKE2B_160_KEY_DERIVE, is the same as the SHA-1 key derivation mechanism in section 6.20.5 except that it uses the BLAKE2B-160 hash function and the relevant length is 20 bytes. 
6.33.5 [bookmark: _Toc8118412][bookmark: _Toc30061387][bookmark: _Toc90376640][bookmark: _Toc111203625][bookmark: _Toc148962467][bookmark: _Toc195693503]BLAKE2B-160 HMAC key generation
The BLAKE2B-160-HMAC key generation mechanism, denoted CKM_BLAKE2B_160_KEY_GEN, is a key generation mechanism for BLAKE2B-160-HMAC.
It does not have a parameter.
The mechanism generates BLAKE2B-160-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the BLAKE2B-160-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_BLAKE2B_160_HMAC key sizes, in bytes.
6.34 [bookmark: _Toc8118413][bookmark: _Toc30061388][bookmark: _Toc90376641][bookmark: _Toc111203626][bookmark: _Toc148962468][bookmark: _Toc195693504]BLAKE2B-256
[bookmark: _Toc25853505]Table 177, BLAKE2B-256 Mechanisms vs. Functions
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6.34.1 [bookmark: _Toc8118414][bookmark: _Toc30061389][bookmark: _Toc90376642][bookmark: _Toc111203627][bookmark: _Toc148962469][bookmark: _Toc195693505]Definitions
Mechanisms:
CKM_BLAKE2B_256
CKM_BLAKE2B_256_HMAC
CKM_BLAKE2B_256_HMAC_GENERAL
CKM_BLAKE2B_256_KEY_DERIVE
CKM_BLAKE2B_256_KEY_GEN
CKK_BLAKE2B_256_HMAC
6.34.2 [bookmark: _Toc8118415][bookmark: _Toc30061390][bookmark: _Toc90376643][bookmark: _Toc111203628][bookmark: _Toc148962470][bookmark: _Toc195693506]BLAKE2B-256 digest
The BLAKE2B-256 mechanism, denoted CKM_BLAKE2B_256, is a mechanism for message digesting, following the Blake2b Algorithm with a 256-bit message digest without a key as defined in [RFC 7693].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853506]Table 178, BLAKE2B-256: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	32


6.34.3 [bookmark: _Toc8118416][bookmark: _Toc30061391][bookmark: _Ref69290389][bookmark: _Toc90376644][bookmark: _Toc111203629][bookmark: _Toc148962471][bookmark: _Toc195693507]General-length BLAKE2B-256-HMAC
The general-length BLAKE2B-256-HMAC mechanism, denoted CKM_BLAKE2B_256_HMAC_GENERAL, is the keyed variant of Blake2b-256 and length of the output should be in the range 1-32. The keys it uses are generic secret keys and CKK_BLAKE2B_256_HMAC. 
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-32 (the output size of BLAKE2B-256 is 32 bytes). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 32-byte HMAC output.
[bookmark: _Toc25853507]Table 179, General-length BLAKE2B-256-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_BLAKE2B_256_HMAC
	Any
	1-32, depending on parameters

	C_Verify
	generic secret or
CKK_BLAKE2B_256_HMAC
	Any
	1-32, depending on parameters


6.34.4 [bookmark: _Toc8118417][bookmark: _Toc30061392][bookmark: _Toc90376645][bookmark: _Toc111203630][bookmark: _Toc148962472][bookmark: _Toc195693508]BLAKE2B-256-HMAC
The BLAKE2B-256-HMAC mechanism, denoted CKM_BLAKE2B_256_HMAC, is a special case of the general-length BLAKE2B-256-HMAC mechanism in section6.34.3.
It has no parameter, and always produces an output of length 32.
6.34.5 [bookmark: _Toc8118418][bookmark: _Toc30061393][bookmark: _Toc90376646][bookmark: _Toc111203631][bookmark: _Toc148962473][bookmark: _Toc195693509]BLAKE2B-256 key derivation
BLAKE2B-256 key derivation, denoted CKM_BLAKE2B_256_KEY_DERIVE, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the BLAKE2B-256 hash function and the relevant length is 32 bytes. 
6.34.6 [bookmark: _Toc8118419][bookmark: _Toc30061394][bookmark: _Toc90376647][bookmark: _Toc111203632][bookmark: _Toc148962474][bookmark: _Toc195693510]BLAKE2B-256 HMAC key generation
The BLAKE2B-256-HMAC key generation mechanism, denoted CKM_BLAKE2B_256_KEY_GEN, is a key generation mechanism for BLAKE2B-256-HMAC.
It does not have a parameter.
The mechanism generates BLAKE2B-256-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the BLAKE2B-256-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_BLAKE2B_256_HMAC key sizes, in bytes.
6.35 [bookmark: _Toc8118420][bookmark: _Toc30061395][bookmark: _Toc90376648][bookmark: _Toc111203633][bookmark: _Toc148962475][bookmark: _Toc195693511]BLAKE2B-384
[bookmark: _Toc25853508]Table 180, BLAKE2B-384 Mechanisms vs. Functions
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6.35.1 [bookmark: _Toc8118421][bookmark: _Toc30061396][bookmark: _Toc90376649][bookmark: _Toc111203634][bookmark: _Toc148962476][bookmark: _Toc195693512]Definitions
CKM_BLAKE2B_384 
CKM_BLAKE2B_384_HMAC 
CKM_BLAKE2B_384_HMAC_GENERAL
CKM_BLAKE2B_384_KEY_DERIVE
CKM_BLAKE2B_384_KEY_GEN
CKK_BLAKE2B_384_HMAC
6.35.2 [bookmark: _Toc8118422][bookmark: _Toc30061397][bookmark: _Toc90376650][bookmark: _Toc111203635][bookmark: _Toc148962477][bookmark: _Toc195693513]BLAKE2B-384 digest
The BLAKE2B-384 mechanism, denoted CKM_BLAKE2B_384, is a mechanism for message digesting, following the Blake2b Algorithm with a 384-bit message digest without a key as defined in [RFC 7693].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853509]Table 181, BLAKE2B-384: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	48


6.35.3 [bookmark: _Toc8118423][bookmark: _Toc30061398][bookmark: _Toc90376651][bookmark: _Toc111203636][bookmark: _Toc148962478][bookmark: _Toc195693514]General-length BLAKE2B-384-HMAC
The general-length BLAKE2B-384-HMAC mechanism, denoted CKM_BLAKE2B_384_HMAC_GENERAL, is the keyed variant of the BLAKE2B-384 hash function and length of the output should be in the range 1-48.The keys it uses are generic secret keys and CKK_BLAKE2B_384_HMAC. 

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-48 (the output size of BLAKE2B-384 is 48 bytes). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 48-byte HMAC output.
[bookmark: _Toc25853510]Table 182, General-length BLAKE2B-384-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or
CKK_BLAKE2B_384_HMAC
	Any
	1-48, depending on parameters

	C_Verify
	generic secret or
CKK_BLAKE2B_384_HMAC
	Any
	1-48, depending on parameters



6.35.4 [bookmark: _Toc8118424][bookmark: _Toc30061399][bookmark: _Toc90376652][bookmark: _Toc111203637][bookmark: _Toc148962479][bookmark: _Toc195693515]BLAKE2B-384-HMAC
The BLAKE2B-384-HMAC mechanism, denoted CKM_BLAKE2B_384_HMAC, is a special case of the general-length BLAKE2B-384-HMAC mechanism.
It has no parameter, and always produces an output of length 48.
6.35.5 [bookmark: _Toc8118425][bookmark: _Toc30061400][bookmark: _Toc90376653][bookmark: _Toc111203638][bookmark: _Toc148962480][bookmark: _Toc195693516]BLAKE2B-384 key derivation
BLAKE2B-384 key derivation, denoted CKM_BLAKE2B_384_KEY_DERIVE, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the BLAKE2B-384 hash function and the relevant length is 48 bytes. 
6.35.6 [bookmark: _Toc8118426][bookmark: _Toc30061401][bookmark: _Toc90376654][bookmark: _Toc111203639][bookmark: _Toc148962481][bookmark: _Toc195693517]BLAKE2B-384 HMAC key generation
The BLAKE2B-384-HMAC key generation mechanism, denoted CKM_BLAKE2B_384_KEY_GEN, is a key generation mechanism for NIST’s BLAKE2B-384-HMAC.
It does not have a parameter.
The mechanism generates BLAKE2B-384-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the BLAKE2B-384-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_BLAKE2B_384_HMAC key sizes, in bytes.
6.36 [bookmark: _Toc8118427][bookmark: _Toc30061402][bookmark: _Toc90376655][bookmark: _Toc111203640][bookmark: _Toc148962482][bookmark: _Toc195693518]BLAKE2B-512
[bookmark: _Toc25853511]Table 183, SHA-512 Mechanisms vs. Functions
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6.36.1 [bookmark: _Toc8118428][bookmark: _Toc30061403][bookmark: _Toc90376656][bookmark: _Toc111203641][bookmark: _Toc148962483][bookmark: _Toc195693519]Definitions
CKM_BLAKE2B_512
CKM_BLAKE2B_512_HMAC
CKM_BLAKE2B_512_HMAC_GENERAL
CKM_BLAKE2B_512_KEY_DERIVE
CKM_BLAKE2B_512_KEY_GEN
CKK_BLAKE2B_512_HMAC
6.36.2 [bookmark: _Toc8118429][bookmark: _Toc30061404][bookmark: _Toc90376657][bookmark: _Toc111203642][bookmark: _Toc148962484][bookmark: _Toc195693520]BLAKE2B-512 digest
The BLAKE2B-512 mechanism, denoted CKM_BLAKE2B_512, is a mechanism for message digesting, following the Blake2b Algorithm with a 512-bit message digest defined in [RFC 7693].
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc25853512]Table 184, BLAKE2B-512: Data Length
	Function
	Input length
	Digest length

	C_Digest
	any
	64


6.36.3 [bookmark: _Toc8118430][bookmark: _Toc30061405][bookmark: _Toc90376658][bookmark: _Toc111203643][bookmark: _Toc148962485][bookmark: _Toc195693521]General-length BLAKE2B-512-HMAC
The general-length BLAKE2B-512-HMAC mechanism, denoted CKM_BLAKE2B_512_HMAC_GENERAL, is the keyed variant of the BLAKE2B-512 hash function and length of the output should be in the range 1-64.The keys it uses are generic secret keys and CKK_BLAKE2B_512_HMAC. 

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 1-64 (the output size of BLAKE2B-512 is 64 bytes). Signatures (MACs) produced by this mechanism shall be taken from the start of the full 64-byte HMAC output.
[bookmark: _Toc25853513]Table 185, General-length BLAKE2B-512-HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret or CKK_BLAKE2B_512_HMAC
	Any
	1-64, depending on parameters

	C_Verify
	generic secret or CKK_BLAKE2B_512_HMAC
	Any
	1-64, depending on parameters



6.36.4 [bookmark: _Toc8118431][bookmark: _Toc30061406][bookmark: _Toc90376659][bookmark: _Toc111203644][bookmark: _Toc148962486][bookmark: _Toc195693522]BLAKE2B-512-HMAC
The BLAKE2B-512-HMAC mechanism, denoted CKM_BLAKE2B_512_HMAC, is a special case of the general-length BLAKE2B-512-HMAC mechanism.
It has no parameter, and always produces an output of length 64.
6.36.5 [bookmark: _Toc8118432][bookmark: _Toc30061407][bookmark: _Toc90376660][bookmark: _Toc111203645][bookmark: _Toc148962487][bookmark: _Toc195693523]BLAKE2B-512 key derivation
BLAKE2B-512 key derivation, denoted CKM_BLAKE2B_512_KEY_DERIVE, is the same as the SHA-1 key derivation mechanism in section 6.20.5, except that it uses the BLAKE2B-512 hash function and the relevant length is 64 bytes. 
6.36.6 [bookmark: _Toc8118433][bookmark: _Toc30061408][bookmark: _Toc90376661][bookmark: _Toc111203646][bookmark: _Toc148962488][bookmark: _Toc195693524]BLAKE2B-512 HMAC key generation
The BLAKE2B-512-HMAC key generation mechanism, denoted CKM_BLAKE2B_512_KEY_GEN, is a key generation mechanism for NIST’s BLAKE2B-512-HMAC.
It does not have a parameter.
The mechanism generates BLAKE2B-512-HMAC keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the BLAKE2B-512-HMAC key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of CKM_BLAKE2B_512_HMAC key sizes, in bytes.

6.37 [bookmark: _Toc405794911][bookmark: _Toc228894774][bookmark: _Toc228807306][bookmark: _Toc72656420][bookmark: _Toc370634553][bookmark: _Toc391471266][bookmark: _Toc395187904][bookmark: _Toc416960150][bookmark: _Toc8118434][bookmark: _Toc30061409][bookmark: _Toc90376662][bookmark: _Toc111203647][bookmark: _Toc148962489][bookmark: _Toc195693525][bookmark: _Toc405794909][bookmark: _Toc323624156]PKCS #5 and PKCS #5-style password-based encryption (PBE)
The mechanisms in this section are for generating keys and IVs for performing password-based encryption. The method used to generate keys and IVs is specified in [PKCS #5].
[bookmark: _Toc25853514]Table 186, PKCS 5 Mechanisms vs. Functions
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6.37.1 [bookmark: _Toc228894775][bookmark: _Toc228807307][bookmark: _Toc370634554][bookmark: _Toc391471267][bookmark: _Toc395187905][bookmark: _Toc416960151][bookmark: _Toc8118435][bookmark: _Toc30061410][bookmark: _Toc90376663][bookmark: _Toc111203648][bookmark: _Toc148962490][bookmark: _Toc195693526]Definitions
Mechanisms:
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PKCS5_PBKD2
CKM_PBA_SHA1_WITH_SHA1_HMAC
6.37.2 [bookmark: _Toc228894776][bookmark: _Toc228807308][bookmark: _Toc72656422][bookmark: _Toc370634555][bookmark: _Toc391471268][bookmark: _Toc395187906][bookmark: _Toc416960152][bookmark: _Toc8118436][bookmark: _Toc30061411][bookmark: _Toc90376664][bookmark: _Toc111203649][bookmark: _Toc148962491][bookmark: _Toc195693527]Password-based encryption/authentication mechanism parameters
· [bookmark: _Toc228807309][bookmark: _Toc72656423][bookmark: _Toc405794910]CK_PBE_PARAMS; CK_PBE_PARAMS_PTR
CK_PBE_PARAMS is a structure which provides all of the necessary information required by the CKM_PBE mechanisms (see [PKCS #5] and [PKCS #12] for information on the PBE generation mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows:
typedef struct CK_PBE_PARAMS {
	CK_BYTE_PTR	pInitVector;
	CK_UTF8CHAR_PTR	pPassword;
	CK_ULONG	ulPasswordLen;
	CK_BYTE_PTR	pSalt;
	CK_ULONG	ulSaltLen;
	CK_ULONG	ulIteration;
}	CK_PBE_PARAMS;

The fields of the structure have the following meanings:
	pInitVector	pointer to the location that receives the 8-byte initialization vector (IV), if an IV is required;
	pPassword	points to the password to be used in the PBE key generation;
	ulPasswordLen	length in bytes of the password information;
	pSalt	points to the salt to be used in the PBE key generation;
	ulSaltLen	length in bytes of the salt information;
	ulIteration	number of iterations required for the generation.
CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.
6.37.3 [bookmark: _Toc228894777][bookmark: _Toc228807310][bookmark: _Toc72656430][bookmark: _Toc370634556][bookmark: _Toc391471269][bookmark: _Toc395187907][bookmark: _Toc416960153][bookmark: _Toc8118437][bookmark: _Toc30061412][bookmark: _Toc90376665][bookmark: _Toc111203650][bookmark: _Toc148962492][bookmark: _Toc195693528][bookmark: _Toc323624157]PKCS #5 PBKDF2 key generation mechanism parameters
· [bookmark: _Toc228807311][bookmark: _Toc72656431]CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE; CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the Pseudo-Random Function (PRF) used to generate key bits using PKCS #5 PBKDF2. It is defined as follows:
typedef CK_ULONG CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;

The following PRFs are defined in [PKCS #5] v2.1. The following table lists the defined functions.
[bookmark: _Toc228807550][bookmark: _Toc25853515]Table 187, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions
	PRF Identifier
	Value
	Parameter Type

	CKP_PKCS5_PBKD2_HMAC_SHA1
	0x00000001UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_GOSTR3411
	0x00000002UL
	This PRF uses GOST R34.11-94 hash to produce secret key value. pPrfData should point to DER-encoded OID, indicating GOSTR34.11-94 parameters. ulPrfDataLen holds encoded OID length in bytes. If pPrfData is set to NULL_PTR, then id-GostR3411-94-CryptoProParamSet parameters will be used ([RFC 4357], 11.2), and ulPrfDataLen must be 0.

	CKP_PKCS5_PBKD2_HMAC_SHA224
	0x00000003UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_SHA256
	0x00000004UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_SHA384
	0x00000005UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_SHA512
	0x00000006UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_SHA512_224
	0x00000007UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.

	CKP_PKCS5_PBKD2_HMAC_SHA512_256
	0x00000008UL
	No Parameter. pPrfData must be NULL and ulPrfDataLen must be zero.


CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

· [bookmark: _Toc228807312][bookmark: _Toc72656432]CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE; CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is used to indicate the source of the salt value when deriving a key using PKCS #5 PBKDF2. It is defined as follows:
typedef CK_ULONG CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;

The following salt value sources are defined in [PKCS #5] v2.1. The following table lists the defined sources along with the corresponding data type for the pSaltSourceData field in the CK_PKCS5_PBKD2_PARAMS2 structure defined below.
[bookmark: _Toc228807551][bookmark: _Toc25853516]Table 188, PKCS #5 PBKDF2 Key Generation: Salt sources
	Source Identifier
	Value
	Data Type

	CKZ_SALT_SPECIFIED
	0x00000001
	Array of CK_BYTE containing the value of the salt value.


CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR is a pointer to a CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE.
· [bookmark: _Toc228807313][bookmark: _Toc72656433]CK_PKCS5_PBKD2_PARAMS2; CK_PKCS5_PBKD2_PARAMS2_PTR
CK_PKCS5_PBKD2_PARAMS2 is a structure that provides the parameters to the CKM_PKCS5_PBKD2 mechanism. The structure is defined as follows:
typedef struct CK_PKCS5_PBKD2_PARAMS2 {
	CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE	saltSource;
	CK_VOID_PTR	pSaltSourceData;
	CK_ULONG	ulSaltSourceDataLen;
	CK_ULONG	iterations;
	CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE	prf;
	CK_VOID_PTR	pPrfData;
	CK_ULONG	ulPrfDataLen;
	CK_UTF8CHAR_PTR	pPassword;
	CK_ULONG	ulPasswordLen;
}	CK_PKCS5_PBKD2_PARAMS2;

The fields of the structure have the following meanings:
	saltSource	source of the salt value
	pSaltSourceData	data used as the input for the salt source
	ulSaltSourceDataLen 	length of the salt source input
	iterations	number of iterations to perform when generating each block of random data
	prf 	pseudo-random function used to generate the key
	pPrfData	data used as the input for PRF in addition to the salt value
	ulPrfDataLen	length of the input data for the PRF
	pPassword	points to the password to be used in the PBE key generation
	ulPasswordLen	length in bytes of the password information
CK_PKCS5_PBKD2_PARAMS2_PTR is a pointer to a CK_PKCS5_PBKD2_PARAMS2.
6.37.4 [bookmark: _Toc228894778][bookmark: _Toc228807314][bookmark: _Toc72656434][bookmark: _Toc370634557][bookmark: _Toc391471270][bookmark: _Toc395187908][bookmark: _Toc416960154][bookmark: _Toc8118438][bookmark: _Toc30061413][bookmark: _Toc90376666][bookmark: _Toc111203651][bookmark: _Toc148962493][bookmark: _Toc195693529]PKCS #5 PBKD2 key generation
PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5_PBKD2, is a mechanism used for generating a secret key from a password and a salt value. This functionality is defined in [PKCS #5] as PBKDF2.
It has a parameter, a CK_PKCS5_PBKD2_PARAMS2 structure. The parameter specifies the salt value source, pseudo-random function, and iteration count used to generate the new key.
Since this mechanism can be used to generate any type of secret key, new key templates must contain the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a fixed length the CKA_VALUE_LEN attribute may be omitted.
6.38 [bookmark: _Toc228894779][bookmark: _Toc228807315][bookmark: _Toc72656435][bookmark: _Ref406245166][bookmark: _Toc405794918][bookmark: _Ref397844004][bookmark: _Toc370634558][bookmark: _Toc391471271][bookmark: _Toc395187909][bookmark: _Toc416960155][bookmark: _Toc8118439][bookmark: _Toc30061414][bookmark: _Toc90376667][bookmark: _Toc111203652][bookmark: _Toc148962494][bookmark: _Toc195693530]PKCS #12 password-based encryption/authentication mechanisms
The mechanisms in this section are for generating keys and IVs for performing password-based encryption or authentication. The method used to generate keys and IVs is based on a method that was specified in [PKCS #12].
We specify here a general method for producing various types of pseudo-random bits from a password, p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to be produced is identified by an identification byte, ID, the meaning of which will be discussed later.
[bookmark: _Toc379096467][bookmark: _Toc365690245]Let H be a hash function built around a compression function f: Z2u  Z2v  Z2u (that is, H has a chaining variable and output of length u bits, and the message input to the compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.
We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.
1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.
2. Concatenate copies of the salt together to create a string S of length vs/v bits (the final copy of the salt may be truncated to create S). Note that if the salt is the empty string, then so is S.
3. Concatenate copies of the password together to create a string P of length vp/v bits (the final copy of the password may be truncated to create P). Note that if the password is the empty string, then so is P.
4. Set I=S||P to be the concatenation of S and P.
5. Set j=n/u.
6. For i=1, 2, …, j, do the following:
a. Set Ai=Hc(D||I), the cth hash of D||I. That is, compute the hash of D||I; compute the hash of that hash; etc.; continue in this fashion until a total of c hashes have been computed, each on the result of the previous hash.
b. Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai may be truncated to create B).
c. Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=s/v+p/v, modify I by setting Ij=(Ij+B+1) mod 2v for each j. To perform this addition, treat each v-bit block as a binary number represented most-significant bit first.
7. Concatenate A1, A2, …, Aj together to form a pseudo-random bit string, A.
8. Use the first n bits of A as the output of this entire process.
When the password-based encryption mechanisms presented in this section are used to generate a key and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To generate a key, the identifier byte ID is set to the value 1; to generate an IV, the identifier byte ID is set to the value 2.
When the password based authentication mechanism presented in this section is used to generate a key from a password, salt, and an iteration count, the above algorithm is used. The identifier byte ID is set to the value 3.
6.38.1 [bookmark: _Toc228894780][bookmark: _Toc228807316][bookmark: _Toc72656438][bookmark: _Toc405794921][bookmark: _Toc370634559][bookmark: _Toc391471272][bookmark: _Toc395187910][bookmark: _Toc416960156][bookmark: _Toc8118440][bookmark: _Toc30061415][bookmark: _Toc90376668][bookmark: _Toc111203653][bookmark: _Toc148962495][bookmark: _Toc195693531]SHA-1-PBE for 3-key triple-DES-CBC
SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES3_EDE_CBC, is a mechanism used for generating a 3-key triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 3-key triple-DES key with proper parity bits is obtained.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which will receive the 8-byte IV generated by the mechanism.
[bookmark: _Toc405794922]The key and IV produced by this mechanism will typically be used for performing password-based encryption.
6.38.2 [bookmark: _Toc228894781][bookmark: _Toc228807317][bookmark: _Toc72656439][bookmark: _Toc370634560][bookmark: _Toc391471273][bookmark: _Toc395187911][bookmark: _Toc416960157][bookmark: _Toc8118441][bookmark: _Toc30061416][bookmark: _Toc90376669][bookmark: _Toc111203654][bookmark: _Toc148962496][bookmark: _Toc195693532]SHA-1-PBE for 2-key triple-DES-CBC
SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES2_EDE_CBC, is a mechanism used for generating a 2-key triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 2-key triple-DES key with proper parity bits is obtained.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which will receive the 8-byte IV generated by the mechanism.
[bookmark: _Toc405794923]The key and IV produced by this mechanism will typically be used for performing password-based encryption.
6.38.3 [bookmark: _Toc228894782][bookmark: _Toc228807318][bookmark: _Toc72656442][bookmark: _Toc370634561][bookmark: _Toc391471274][bookmark: _Toc395187912][bookmark: _Toc416960158][bookmark: _Toc8118442][bookmark: _Toc30061417][bookmark: _Toc90376670][bookmark: _Toc111203655][bookmark: _Toc148962497][bookmark: _Toc195693533]SHA-1-PBA for SHA-1-HMAC
SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1_WITH_SHA1_HMAC, is a mechanism used for generating a 160-bit generic secret key from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key is described above.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process. The parameter also has a field to hold the location of an application-supplied buffer which will receive an IV; for this mechanism, the contents of this field are ignored, since authentication with SHA-1-HMAC does not require an IV.
The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform password-based authentication (not password-based encryption). At the time of this writing, this is primarily done to ensure the integrity of a PKCS #12 PDU.
6.39 [bookmark: _Toc228894783][bookmark: _Toc228807319][bookmark: _Toc72656459][bookmark: _Toc405794936][bookmark: _Toc370634562][bookmark: _Toc391471275][bookmark: _Toc395187913][bookmark: _Toc416960159][bookmark: _Toc8118443][bookmark: _Toc30061418][bookmark: _Toc90376671][bookmark: _Toc111203656][bookmark: _Toc148962498][bookmark: _Toc195693534][bookmark: _Toc405794931][bookmark: _Ref384794928][bookmark: _Ref384794886][bookmark: _Ref384794871]SSL
[bookmark: _Toc25853517]Table 189,SSL Mechanisms vs. Functions
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6.39.1 [bookmark: _Toc228894784][bookmark: _Toc228807320][bookmark: _Toc370634563][bookmark: _Toc391471276][bookmark: _Toc395187914][bookmark: _Toc416960160][bookmark: _Toc8118444][bookmark: _Toc30061419][bookmark: _Toc90376672][bookmark: _Toc111203657][bookmark: _Toc148962499][bookmark: _Toc195693535]Definitions
Mechanisms:
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_SSL3_MASTER_KEY_DERIVE
CKM_SSL3_KEY_AND_MAC_DERIVE
CKM_SSL3_MASTER_KEY_DERIVE_DH
CKM_SSL3_MD5_MAC
CKM_SSL3_SHA1_MAC
6.39.2 [bookmark: _Toc228894785][bookmark: _Toc228807321][bookmark: _Toc72656461][bookmark: _Toc370634564][bookmark: _Toc391471277][bookmark: _Toc395187915][bookmark: _Toc416960161][bookmark: _Toc8118445][bookmark: _Toc30061420][bookmark: _Toc90376673][bookmark: _Toc111203658][bookmark: _Toc148962500][bookmark: _Ref181774697][bookmark: _Ref182835467][bookmark: _Toc195693536]SSL mechanism parameters
· [bookmark: _Toc323624052][bookmark: _Toc228807322][bookmark: _Toc72656462][bookmark: _Toc405794932]CK_SSL3_RANDOM_DATA
CK_SSL3_RANDOM_DATA is a structure which provides information about the random data of a client and a server in an SSL context. This structure is used by both the CKM_SSL3_MASTER_KEY_DERIVE and the CKM_SSL3_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct CK_SSL3_RANDOM_DATA {
	CK_BYTE_PTR	pClientRandom;
	CK_ULONG	ulClientRandomLen;
	CK_BYTE_PTR	pServerRandom;
	CK_ULONG	ulServerRandomLen;
}	CK_SSL3_RANDOM_DATA;

The fields of the structure have the following meanings:
	pClientRandom	pointer to the client’s random data
	ulClientRandomLen	length in bytes of the client’s random data
	pServerRandom	pointer to the server’s random data
	ulServerRandomLen	length in bytes of the server’s random data
· [bookmark: _Toc228807323][bookmark: _Toc72656463][bookmark: _Toc405794933]CK_SSL3_MASTER_KEY_DERIVE_PARAMS; CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR
CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS {
	CK_SSL3_RANDOM_DATA	RandomInfo;
	CK_VERSION_PTR	pVersion;
}	CK_SSL3_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	RandomInfo	client’s and server’s random data information.
	pVersion	pointer to a CK_VERSION structure which receives the SSL protocol version information
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a CK_SSL3_MASTER_KEY_DERIVE_PARAMS.
· [bookmark: _Toc228807324][bookmark: _Toc72656464][bookmark: _Toc405794934]CK_SSL3_KEY_MAT_OUT; CK_SSL3_KEY_MAT_OUT_PTR
CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization vectors after performing a C_DeriveKey function with the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_SSL3_KEY_MAT_OUT {
	CK_OBJECT_HANDLE	hClientMacSecret;
	CK_OBJECT_HANDLE	hServerMacSecret;
	CK_OBJECT_HANDLE	hClientKey;
	CK_OBJECT_HANDLE	hServerKey;
	CK_BYTE_PTR	pIVClient;
	CK_BYTE_PTR	pIVServer;
}	CK_SSL3_KEY_MAT_OUT;

The fields of the structure have the following meanings:
	hClientMacSecret	key handle for the resulting Client MAC Secret key
	hServerMacSecret	key handle for the resulting Server MAC Secret key
	hClientKey	key handle for the resulting Client Secret key
	hServerKey	key handle for the resulting Server Secret key
	pIVClient	pointer to a location which receives the initialization vector (IV) created for the client (if any)
	pIVServer	pointer to a location which receives the initialization vector (IV) created for the server (if any)
CK_SSL3_KEY_MAT_OUT_PTR is a pointer to a CK_SSL3_KEY_MAT_OUT.
· [bookmark: _Toc228807325][bookmark: _Toc72656465][bookmark: _Toc405794935]CK_SSL3_KEY_MAT_PARAMS; CK_SSL3_KEY_MAT_PARAMS_PTR
CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_SSL3_KEY_MAT_PARAMS {
	CK_ULONG	ulMacSizeInBits;
	CK_ULONG	ulKeySizeInBits;
	CK_ULONG	ulIVSizeInBits;
	CK_BBOOL	bIsExport;
	CK_SSL3_RANDOM_DATA	RandomInfo;
	CK_SSL3_KEY_MAT_OUT_PTR	pReturnedKeyMaterial;
}	CK_SSL3_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:
	ulMacSizeInBits	the length (in bits) of the MACing keys agreed upon during the protocol handshake phase
	ulKeySizeInBits	the length (in bits) of the secret keys agreed upon during the protocol handshake phase 
	ulIVSizeInBits	the length (in bits) of the IV agreed upon during the protocol handshake phase. If no IV is required, the length should be set to 0 
	bIsExport	a Boolean value which indicates whether the keys have to be derived for an export version of the protocol
	RandomInfo	client’s and server’s random data information.
	pReturnedKeyMaterial	points to a CK_SSL3_KEY_MAT_OUT structures which receives the handles for the keys generated and the IVs 
CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.
6.39.3 [bookmark: _Toc228894786][bookmark: _Toc228807326][bookmark: _Toc72656466][bookmark: _Toc405794937][bookmark: _Toc370634565][bookmark: _Toc391471278][bookmark: _Toc395187916][bookmark: _Toc416960162][bookmark: _Toc8118446][bookmark: _Toc30061421][bookmark: _Toc90376674][bookmark: _Toc111203659][bookmark: _Toc148962501][bookmark: _Toc195693537]Pre-master key generation
Pre-master key generation in SSL 3.0, denoted CKM_SSL3_PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte generic secret key. It is used to produce the "pre_master" key used in SSL version 3.0 for RSA-like cipher suites. 
It has one parameter, a CK_VERSION structure, which provides the client’s SSL version number.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_GenerateKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.
CKM_TLS_PRE_MASTER_KEY_GEN has identical functionality as CKM_SSL3_PRE_MASTER_KEY_GEN. It exists only for historical reasons, please use CKM_SSL3_PRE_MASTER_KEY_GEN instead. 
6.39.4 [bookmark: _Toc228894787][bookmark: _Toc228807327][bookmark: _Toc72656467][bookmark: _Toc405794938][bookmark: _Toc370634566][bookmark: _Toc391471279][bookmark: _Toc395187917][bookmark: _Toc416960163][bookmark: _Toc8118447][bookmark: _Toc30061422][bookmark: _Toc90376675][bookmark: _Toc111203660][bookmark: _Toc148962502][bookmark: _Toc195693538]Master key derivation
Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is a mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the "master_secret" key used in the SSL protocol from the "pre_master" key. This mechanism returns the value of the client version, which is built into the "pre_master" key as well as a handle to the derived "master_secret" key.
It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token as well as the returning of the protocol version number which is part of the pre-master key. This structure is defined in section 6.39.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template; otherwise they are assigned default values.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.
Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this structure will hold the SSL version associated with the supplied pre_master key.
Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher suites.
6.39.5 [bookmark: _Toc228894788][bookmark: _Toc228807328][bookmark: _Toc72656468][bookmark: _Toc370634567][bookmark: _Toc391471280][bookmark: _Toc395187918][bookmark: _Toc416960164][bookmark: _Toc8118448][bookmark: _Toc30061423][bookmark: _Toc90376676][bookmark: _Toc111203661][bookmark: _Toc148962503][bookmark: _Toc195693539][bookmark: _Toc405794939]Master key derivation for Diffie-Hellman
Master key derivation for Diffie-Hellman in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret key. It is used to produce the "master_secret" key used in the SSL protocol from the "pre_master" key. 
It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token. This structure is defined in section 6.39. The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key as it is for RSA-like cipher suites.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.
Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte “pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but excludes the RSA cipher suites.
6.39.6 [bookmark: _Toc228894789][bookmark: _Toc228807329][bookmark: _Toc72656469][bookmark: _Toc370634568][bookmark: _Toc391471281][bookmark: _Toc395187919][bookmark: _Toc416960165][bookmark: _Toc8118449][bookmark: _Toc30061424][bookmark: _Toc90376677][bookmark: _Toc111203662][bookmark: _Toc148962504][bookmark: _Toc195693540]Key and MAC derivation
Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the "master_secret" key and random data. This mechanism returns the key handles for the keys generated in the process, as well as the IVs created.
It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a structure which receives the handles and IVs which were generated. This structure is defined in section 6.39.
This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY. 
The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret") are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and derivation operations.
The other two keys ("client_write_key" and "server_write_key") are typed according to information found in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are flagged as valid for encryption, decryption, and derivation operations.
IVs will be generated and returned if the ulIVSizeInBits field of the CK_SSL3_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length in bits will agree with the value in the ulIVSizeInBits field.
All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided to C_DeriveKey may not specify values for any of these attributes which differ from those held by the base key.
Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s pIVClient and pIVServer fields will have IVs returned in them (if IVs are requested by the caller). Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.
If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the token.
6.39.7 [bookmark: _Toc228894790][bookmark: _Toc228807330][bookmark: _Toc72656470][bookmark: _Toc405794940][bookmark: _Toc370634569][bookmark: _Toc391471282][bookmark: _Toc395187920][bookmark: _Toc416960166][bookmark: _Toc8118450][bookmark: _Toc30061425][bookmark: _Toc90376678][bookmark: _Toc111203663][bookmark: _Toc148962505][bookmark: _Toc195693541]MD5 MACing in SSL 3.0
MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and multiple-part signatures (data authentication) and verification using MD5, based on the SSL 3.0 protocol. This technique is very similar to the HMAC technique.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the signatures produced by this mechanism.
Constraints on key types and the length of input and output data are summarized in the following table:
[bookmark: _Toc228807552][bookmark: _Toc405795059][bookmark: _Toc25853518]Table 190, MD5 MACing in SSL 3.0: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
	any
	4-8, depending on parameters

	C_Verify
	generic secret
	any
	4-8, depending on parameters


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of generic secret key sizes, in bits.
6.39.8 [bookmark: _Toc228894791][bookmark: _Toc228807331][bookmark: _Toc72656471][bookmark: _Toc405794941][bookmark: _Toc370634570][bookmark: _Toc391471283][bookmark: _Toc395187921][bookmark: _Toc416960167][bookmark: _Toc8118451][bookmark: _Toc30061426][bookmark: _Toc90376679][bookmark: _Toc111203664][bookmark: _Toc148962506][bookmark: _Toc195693542]SHA-1 MACing in SSL 3.0
SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_MAC, is a mechanism for single- and multiple-part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0 protocol. This technique is very similar to the HMAC technique.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the signatures produced by this mechanism.
Constraints on key types and the length of input and output data are summarized in the following table:
[bookmark: _Toc228807553][bookmark: _Toc405795060][bookmark: _Toc25853519]Table 191, SHA-1 MACing in SSL 3.0: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
	any
	4-8, depending on parameters

	C_Verify
	generic secret
	any
	4-8, depending on parameters


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of generic secret key sizes, in bits.
6.40 [bookmark: _Toc228894792][bookmark: _Toc228807332][bookmark: _Toc72656472][bookmark: _Toc370634571][bookmark: _Toc391471284][bookmark: _Toc395187922][bookmark: _Toc416960168][bookmark: _Toc8118452][bookmark: _Toc30061427][bookmark: _Toc90376680][bookmark: _Toc111203665][bookmark: _Toc148962507][bookmark: _Toc195693543]TLS 1.2 Mechanisms
Details for TLS 1.2 and its key derivation and MAC mechanisms can be found in [TLS12]. TLS 1.2 mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2 mechanisms contains a new value in the parameters structure to specify the hash function. 
This section also specifies CKM_TLS12_MAC which should be used in place of CKM_TLS_PRF to calculate the verify_data in the TLS "finished" message.
This section also specifies CKM_TLS_KDF (and CKM_TLS12_KDF) that can be used in place of CKM_TLS_PRF to implement key material exporters.

[bookmark: _Toc25853520]Table 192, TLS 1.2 Mechanisms vs. Functions
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6.40.1 [bookmark: _Toc228894793][bookmark: _Toc228807333][bookmark: _Toc370634572][bookmark: _Toc391471285][bookmark: _Toc395187923][bookmark: _Toc416960169][bookmark: _Toc8118453][bookmark: _Toc30061428][bookmark: _Toc90376681][bookmark: _Toc111203666][bookmark: _Toc148962508][bookmark: _Toc195693544]Definitions
Mechanisms:
CKM_TLS12_MASTER_KEY_DERIVE
CKM_TLS12_MASTER_KEY_DERIVE_DH
CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE
CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE_DH
CKM_TLS12_KEY_AND_MAC_DERIVE
CKM_TLS12_KEY_SAFE_DERIVE
CKM_TLS_MAC
CKM_TLS_KDF
CKM_TLS12_MAC
CKM_TLS12_KDF
6.40.2 [bookmark: _Toc228894794][bookmark: _Toc228807334][bookmark: _Toc72656474][bookmark: _Toc370634573][bookmark: _Toc391471286][bookmark: _Toc395187924][bookmark: _Toc416960170][bookmark: _Toc8118454][bookmark: _Toc30061429][bookmark: _Toc90376682][bookmark: _Toc111203667][bookmark: _Toc148962509][bookmark: _Ref165907056][bookmark: _Toc195693545]TLS 1.2 mechanism parameters
· [bookmark: _Toc228894797][bookmark: _Toc228807338][bookmark: _Toc72656478]CK_TLS12_MASTER_KEY_DERIVE_PARAMS; CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR
CK_TLS12_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the CKM_TLS12_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_TLS12_MASTER_KEY_DERIVE_PARAMS {
  CK_SSL3_RANDOM_DATA RandomInfo;
  CK_VERSION_PTR pVersion;
  CK_MECHANISM_TYPE prfHashMechanism;
} CK_TLS12_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	RandomInfo	client’s and server’s random data information as specified in section 6.39.2.
	pVersion	pointer to a CK_VERSION structure which receives the SSL protocol version information.
	prfHashMechanism	base hash used in the underlying TLS1.2 PRF operation used to derive the master key.

CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a CK_TLS12_MASTER_KEY_DERIVE_PARAMS.
· CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS; CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS_PTR
CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS {
  CK_MECHANISM_TYPE prfHashMechanism;
  CK_BYTE_PTR pSessionHash;
  CK_ULONG ulSessionHashLen;
  CK_VERSION_PTR pVersion;
} CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	prfHashMechanism	base hash used in the underlying TLS1.2 PRF operation used to derive the master key.
	pSessionHash	pointer to the session hash data defined in [RFC 7627]. 
	ulSessionHashLen	length of the data pointed to by pSessionHash.
	pVersion	pointer to a CK_VERSION structure which receives the SSL protocol version information

CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS.
· CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT_PARAMS_PTR
CK_TLS12_KEY_MAT_PARAMS is a structure that provides the parameters to the CKM_TLS12_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_TLS12_KEY_MAT_PARAMS {
  CK_ULONG ulMacSizeInBits;
  CK_ULONG ulKeySizeInBits;
  CK_ULONG ulIVSizeInBits;
  CK_BBOOL bIsExport;
  CK_SSL3_RANDOM_DATA RandomInfo;
  CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
  CK_MECHANISM_TYPE prfHashMechanism;
} CK_TLS12_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:
	ulMacSizeInBits	the length (in bits) of the MACing keys agreed upon during the protocol handshake phase. If no MAC key is required, the length should be set to 0.
	ulKeySizeInBits	the length (in bits) of the secret keys agreed upon during the protocol handshake phase 
	ulIVSizeInBits	the length (in bits) of the IV agreed upon during the protocol handshake phase. If no IV is required, the length should be set to 0 
	bIsExport	must be set to CK_FALSE because export cipher suites must not be used in TLS 1.1 and later.
	RandomInfo	client’s and server’s random data information as specified in section 6.39.2.
	pReturnedKeyMaterial	points to a CK_SSL3_KEY_MAT_OUT structure as specified in section 6.39.2 which receives the handles for the keys generated and the IVs 
	prfHashMechanism	base hash used in the underlying TLS1.2 PRF operation used to derive the master key.
CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.
· CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR
CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF (and CKM_TLS12_KDF) mechanism. It is defined as follows:
typedef struct CK_TLS_KDF_PARAMS {
  CK_MECHANISM_TYPE prfMechanism;
  CK_BYTE_PTR pLabel;
  CK_ULONG ulLabelLength;
  CK_SSL3_RANDOM_DATA RandomInfo;
  CK_BYTE_PTR pContextData;
  CK_ULONG ulContextDataLength;
} CK_TLS_KDF_PARAMS;

The fields of the structure have the following meanings:
	prfMechanism	the hash mechanism used in the TLS1.2 PRF construct or CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct. 
	pLabel	a pointer to the label for this key derivation 
	ulLabelLength	length of the label in bytes
	RandomInfo	the random data for the key derivation as specified in section 6.39.2
	pContextData	a pointer to the context data for this key derivation. NULL_PTR if not present
	ulContextDataLength	length of the context data in bytes. 0 if not present.
CK_TLS_KDF_PARAMS_PTR is a pointer to a CK_TLS_KDF_PARAMS.
· CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR
CK_TLS_MAC_PARAMS is a structure that provides the parameters to the CKM_TLS_MAC (and CKM_TLS12_MAC) mechanism. It is defined as follows:
typedef struct CK_TLS_MAC_PARAMS {
  CK_MECHANISM_TYPE prfHashMechanism;
  CK_ULONG ulMacLength;
  CK_ULONG ulServerOrClient;
} CK_TLS_MAC_PARAMS;

The fields of the structure have the following meanings:
	prfHashMechanism	the hash mechanism used in the TLS12 PRF construct or CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct. 
	ulMacLength	the length of the MAC tag required or offered. Always 12 octets in TLS 1.0 and 1.1. Generally 12 octets, but may be negotiated to a longer value in TLS1.2.
	ulServerOrClient	1 to use the label "server finished", 2 to use the label "client finished".  All other values are invalid.
CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

· [bookmark: _Hlk527387064]CK_TLS_PRF_PARAMS; CK_TLS_PRF_PARAMS_PTR
CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_TLS_PRF mechanism. It is defined as follows:
typedef struct CK_TLS_PRF_PARAMS {
  CK_BYTE_PTR       pSeed;
  CK_ULONG          ulSeedLen;
  CK_BYTE_PTR       pLabel;
  CK_ULONG          ulLabelLen;
  CK_BYTE_PTR       pOutput;
  CK_ULONG_PTR      pulOutputLen;
} CK_TLS_PRF_PARAMS;

The fields of the structure have the following meanings:
	pSeed	pointer to the input seed
	ulSeedLen	length in bytes of the input seed
	pLabel	pointer to the identifying label
	ulLabelLen	length in bytes of the identifying label
	pOutput	pointer receiving the output of the operation
	pulOutputLen	pointer to the length in bytes that the output to be created shall have, has to hold the desired length as input and will receive the calculated length as output
CK_TLS_PRF_PARAMS_PTR is a pointer to a CK_TLS_PRF_PARAMS.
6.40.3 [bookmark: __RefHeading__1691_329915188][bookmark: _Toc370634574][bookmark: _Toc391471287][bookmark: _Toc395187925][bookmark: _Toc416960171][bookmark: _Toc8118455][bookmark: _Toc30061430][bookmark: _Toc90376683][bookmark: _Toc111203668][bookmark: _Toc148962510][bookmark: _Toc195693546]TLS MAC
The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces the use of the CKM_TLS_PRF function for TLS1.0 and 1.1 and that mechanism is deprecated.
CKM_TLS_MAC takes a parameter of CK_TLS_MAC_PARAMS. To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.
In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism) is always 12 bytes. In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12 bytes, but may be negotiated to longer length.
Note: CKM_TLS12_MAC is provided only for historical reasons and should be considered deprecated. This mechanism shares the same behavior with CKM_TLS_MAC.
[bookmark: _Toc235854041][bookmark: _Toc25853521]Table 193, General-length TLS MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
	any
	≥ 12 bytes

	C_Verify
	generic secret
	any
	≥ 12 bytes



6.40.4 [bookmark: _Toc370634575][bookmark: _Toc391471288][bookmark: _Toc395187926][bookmark: _Toc416960172][bookmark: _Toc8118456][bookmark: _Toc30061431][bookmark: _Toc90376684][bookmark: _Toc111203669][bookmark: _Toc148962511][bookmark: _Toc195693547]Master key derivation
Master key derivation in TLS 1.2, denoted CKM_TLS12_MASTER_KEY_DERIVE, is a mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key. This mechanism returns the value of the client version, which is built into the "pre_master" key as well as a handle to the derived "master_secret" key. CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE is the same as CKM_TLS12_MASTER_KEY_DERIVE except it uses [RFC 7627] as the method to generate a new 48 byte generic secret key.
CKM_TLS12_MASTER_KEY_DERIVE has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token, the underlying prf used in the key derivation, as well as the returning of the protocol version number which is part of the pre-master key. This structure is defined in section 6.40.2.
CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE has a parameter, a CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of session hash, the underlying prf used in the key derivation, as well as the returning of the protocol version number which is part of the pre-master key. This structure is defined in section 6.40.2.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS_KDF, CKM_TLS_MAC. Additionally implementations that support them can add the deprecated CKM_TLS12_KDF and CKM_TLS12_MAC mechanisms.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.
Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this structure will hold the SSL version associated with the supplied pre_master key.
Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher suites.
6.40.5 [bookmark: _Toc228894798][bookmark: _Toc228807339][bookmark: _Toc72656479][bookmark: _Toc370634576][bookmark: _Toc391471289][bookmark: _Toc395187927][bookmark: _Toc416960173][bookmark: _Toc8118457][bookmark: _Toc30061432][bookmark: _Toc90376685][bookmark: _Toc111203670][bookmark: _Toc148962512][bookmark: _Toc195693548]Master key derivation for Diffie-Hellman
Master key derivation for Diffie-Hellman in TLS 1.2, denoted CKM_TLS12_MASTER_KEY_DERIVE_DH is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret key. It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key. CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE_DH is the same as CKM_TLS12_MASTER_KEY_DERIVE_DH except it uses [RFC 7627] as the method to generate a new 48 byte generic secret key.
CKM_TLS12_MASTER_KEY_DERIVE_DH has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token and the underlying prf used to generate the key. This structure is defined in section 6.40.2. The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key as it is for RSA-like cipher suites.
CKM_TLS12_EXTENDED_MASTER_KEY_DERIVE_DH has a parameter, a CK_TLS12_EXTENDED_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of session hash to the token and the underlying prf used to generate the key. This structure is defined in section 6.40.2. The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key as it is for RSA-like cipher suites.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS_KDF, CKM_TLS_MAC. Additionally implementations that support them can add the deprecated CKM_TLS12_KDF and CKM_TLS12_MAC mechanisms.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.
Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte “pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but excludes the RSA cipher suites.
6.40.6 [bookmark: _Toc228894799][bookmark: _Toc228807340][bookmark: _Toc72656480][bookmark: _Toc370634577][bookmark: _Toc391471290][bookmark: _Toc395187928][bookmark: _Toc416960174][bookmark: _Toc8118458][bookmark: _Toc30061433][bookmark: _Toc90376686][bookmark: _Toc111203671][bookmark: _Toc148962513][bookmark: _Toc195693549]Key and MAC derivation
Key, MAC and IV derivation in TLS 1.2, denoted CKM_TLS12_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the "master_secret" key and random data. This mechanism returns the key handles for the keys generated in the process, as well as the IVs created.
It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a structure which receives the handles and IVs which were generated. This structure is defined in section 6.39.2.
This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY. 
The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret") (if present) are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.
The other two keys ("client_write_key" and "server_write_key") are typed according to information found in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are flagged as valid for encryption, decryption, and derivation operations.
For CKM_TLS12_KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ulIVSizeInBits field of the CK_SSL3_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length in bits will agree with the value in the ulIVSizeInBits field.

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (IV) data. It is possible to "leak" private data by the simple expedient of decreasing the length of private data requested. E.g. Setting ulMacSizeInBits and ulKeySizeInBits to 0 (or other lengths less than the key size) will result in the private key data being placed in the destination designated for the IV's. Repeated calls with the same master key and same RandomInfo but with differing lengths for the private key material will result in different data being leaked.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided to C_DeriveKey may not specify values for any of these attributes which differ from those held by the base key.
Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s pIVClient and pIVServer fields will have IVs returned in them (if IVs are requested by the caller). Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_TLS12_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.
[bookmark: _Toc405794942]If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the token.
6.40.7 [bookmark: _Toc370634578][bookmark: _Toc391471291][bookmark: _Toc395187929][bookmark: _Toc416960175][bookmark: _Toc8118459][bookmark: _Toc30061434][bookmark: _Toc90376687][bookmark: _Toc111203672][bookmark: _Toc148962514][bookmark: _Toc195693550]CKM_TLS12_KEY_SAFE_DERIVE
CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it shall never produce IV data, and the ulIvSizeInBits field of CK_TLS12_KEY_MAT_PARAMS is ignored and treated as 0. All of the other conditions and behavior described for CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this mechanism. 
CKM_TLS12_KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the export of IV material (and possible leaking of key material) through the use of the CKA_ALLOWED_MECHANISMS key attribute.
6.40.8 [bookmark: _Toc370634579][bookmark: _Toc391471292][bookmark: _Toc395187930][bookmark: _Toc416960176][bookmark: _Toc8118460][bookmark: _Toc30061435][bookmark: _Toc90376688][bookmark: _Toc111203673][bookmark: _Toc148962515][bookmark: _Toc195693551]Generic Key Derivation using the TLS PRF
CKM_TLS_KDF is the mechanism defined in [RFC 5705]. It uses the TLS key material and TLS PRF function to produce additional key material for protocols that want to leverage the TLS key negotiation mechanism. CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS. If the protocol using this mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the ulContextDataLength field shall be set to 0.
To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the TLS1.0/1.1 Pseudo-random function.
This mechanism can be used to derive multiple keys (e.g. similar to CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET of the necessary length and doing subsequent derives against that derived key using the CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.
The mechanism should not be used with the labels defined for use with TLS, but the token does not enforce this behavior.
This mechanism has the following rules about key sensitivity and extractability:
If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the original key.
Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from the original key.
The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.
Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.
6.40.9 [bookmark: _Toc8118461][bookmark: _Toc30061436][bookmark: _Toc90376689][bookmark: _Toc111203674][bookmark: _Toc148962516][bookmark: _Toc195693552]Deprecated TLS 1.2 mechanisms
CKM_TLS12_KDF and CKM_TLS12_MAC are considered aliases of the corresponding CKM_TLS_KDF and CKM_TLS_MAC mechanisms and behave identically. These mechanisms are available with a different identifier for historical reasons and are considered deprecated.
6.41 [bookmark: _Toc228894800][bookmark: _Toc228807341][bookmark: _Toc72656481][bookmark: _Toc370634580][bookmark: _Toc391471293][bookmark: _Toc395187931][bookmark: _Toc416960177][bookmark: _Toc8118462][bookmark: _Toc30061437][bookmark: _Toc90376690][bookmark: _Toc111203675][bookmark: _Toc148962517][bookmark: _Toc195693553][bookmark: _Toc39397798][bookmark: _Toc39387921][bookmark: _Toc35754880][bookmark: _Toc35669496][bookmark: _Toc35655007][bookmark: _Toc35654947][bookmark: _Toc35416783][bookmark: _Toc26949889][bookmark: _Toc405794945]WTLS
Details can be found in [WTLS].
When comparing the existing TLS mechanisms with these extensions to support WTLS one could argue that there would be no need to have distinct handling of the client and server side of the handshake. However, since in WTLS the server and client use different sequence numbers, there could be instances (e.g. when WTLS is used to protect asynchronous protocols) where sequence numbers on the client and server side differ, and hence this motivates the introduced split.

[bookmark: _Toc25853522]Table 194, WTLS Mechanisms vs. Functions
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6.41.1 [bookmark: _Toc228894801][bookmark: _Toc228807342][bookmark: _Toc370634581][bookmark: _Toc391471294][bookmark: _Toc395187932][bookmark: _Toc416960178][bookmark: _Toc8118463][bookmark: _Toc30061438][bookmark: _Toc90376691][bookmark: _Toc111203676][bookmark: _Toc148962518][bookmark: _Toc195693554]Definitions
Mechanisms:
CKM_WTLS_PRE_MASTER_KEY_GEN
CKM_WTLS_MASTER_KEY_DERIVE
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC
CKM_WTLS_PRF
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE
6.41.2 [bookmark: _Toc228894802][bookmark: _Toc228807343][bookmark: _Toc72656483][bookmark: _Toc370634582][bookmark: _Toc391471295][bookmark: _Toc395187933][bookmark: _Toc416960179][bookmark: _Toc8118464][bookmark: _Toc30061439][bookmark: _Toc90376692][bookmark: _Toc111203677][bookmark: _Toc148962519][bookmark: _Toc195693555]WTLS mechanism parameters
· [bookmark: _Toc228807344][bookmark: _Toc72656484][bookmark: _Toc39397799][bookmark: _Toc39387922][bookmark: _Toc35754881][bookmark: _Toc35669497][bookmark: _Toc35655008][bookmark: _Toc35654948][bookmark: _Toc35416784][bookmark: _Toc26949890]CK_WTLS_RANDOM_DATA; CK_WTLS_RANDOM_DATA_PTR
CK_WTLS_RANDOM_DATA is a structure, which provides information about the random data of a client and a server in a WTLS context. This structure is used by the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_WTLS_RANDOM_DATA {
  CK_BYTE_PTR pClientRandom;
  CK_ULONG    ulClientRandomLen;
  CK_BYTE_PTR pServerRandom;
  CK_ULONG    ulServerRandomLen;
} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:
	pClientRandom	pointer to the client’s random data
	pClientRandomLen	length in bytes of the client’s random data
	pServerRaondom	pointer to the server’s random data
	ulServerRandomLen	length in bytes of the server’s random data
CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.
· [bookmark: _Toc228807345][bookmark: _Toc72656485][bookmark: _Toc39397800][bookmark: _Toc39387923][bookmark: _Toc35754882][bookmark: _Toc35669498][bookmark: _Toc35655009][bookmark: _Toc35654949][bookmark: _Toc35416785][bookmark: _Toc26949891]CK_WTLS_MASTER_KEY_DERIVE_PARAMS; CK_WTLS_MASTER_KEY_DERIVE_PARAMS _PTR
CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the parameters to the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK_WTLS_MASTER_KEY_DERIVE_PARAMS {
  CK_MECHANISM_TYPE   DigestMechanism;
  CK_WTLS_RANDOM_DATA RandomInfo;
  CK_BYTE_PTR         pVersion;
} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	DigestMechanism	the mechanism type of the digest mechanism to be used (possible types can be found in [WTLS])
	RandomInfo	Client’s and server’s random data information
	pVersion	pointer to a CK_BYTE which receives the WTLS protocol version information
CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a CK_WTLS_MASTER_KEY_DERIVE_PARAMS.
· [bookmark: _Toc228807346][bookmark: _Toc72656486][bookmark: _Toc39397801][bookmark: _Toc39387924][bookmark: _Toc35754883][bookmark: _Toc35669499][bookmark: _Toc35655010][bookmark: _Toc35654950][bookmark: _Toc35416786][bookmark: _Toc26949892]CK_WTLS_PRF_PARAMS; CK_WTLS_PRF_PARAMS_PTR
CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_WTLS_PRF mechanism. It is defined as follows:
typedef struct CK_WTLS_PRF_PARAMS {
  CK_MECHANISM_TYPE DigestMechanism;
  CK_BYTE_PTR       pSeed;
  CK_ULONG          ulSeedLen;
  CK_BYTE_PTR       pLabel;
  CK_ULONG          ulLabelLen;
  CK_BYTE_PTR       pOutput;
  CK_ULONG_PTR      pulOutputLen;
} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:
	Digest Mechanism	the mechanism type of the digest mechanism to be used (possible types can be found in [WTLS])
	pSeed	pointer to the input seed
	ulSeedLen	length in bytes of the input seed
	pLabel	pointer to the identifying label
	ulLabelLen	length in bytes of the identifying label
	pOutput	pointer receiving the output of the operation
	pulOutputLen	pointer to the length in bytes that the output to be created shall have, has to hold the desired length as input and will receive the calculated length as output
CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.
· [bookmark: _Toc228807347][bookmark: _Toc72656487][bookmark: _Toc39397802][bookmark: _Toc39387925][bookmark: _Toc35754884][bookmark: _Toc35669500][bookmark: _Toc35655011][bookmark: _Toc35654951][bookmark: _Toc35416787][bookmark: _Toc26949893][bookmark: _Ref19504209]CK_WTLS_KEY_MAT_OUT; CK_WTLS_KEY_MAT_OUT_PTR
CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization vectors after performing a C_DeriveKey function with the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE or with the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK_WTLS_KEY_MAT_OUT {
  CK_OBJECT_HANDLE hMacSecret;
  CK_OBJECT_HANDLE hKey;
  CK_BYTE_PTR      pIV;
} CK_WTLS_KEY_MAT_OUT;

The fields of the structure have the following meanings:
	hMacSecret	Key handle for the resulting MAC secret key
	hKey	Key handle for the resulting secret key
	pIV	Pointer to a location which receives the initialization vector (IV) created (if any)
CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.
· [bookmark: _Toc228807348][bookmark: _Toc72656488][bookmark: _Toc39397803][bookmark: _Toc39387926][bookmark: _Toc35754885][bookmark: _Toc35669501][bookmark: _Toc35655012][bookmark: _Toc35654952][bookmark: _Toc35416788][bookmark: _Toc26949894][bookmark: _Ref10431466]CK_WTLS_KEY_MAT_PARAMS; CK_WTLS_KEY_MAT_PARAMS_PTR
CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE and the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct CK_WTLS_KEY_MAT_PARAMS {
  CK_MECHANISM_TYPE       DigestMechanism;
  CK_ULONG                ulMacSizeInBits;
  CK_ULONG                ulKeySizeInBits;
  CK_ULONG                ulIVSizeInBits;
  CK_ULONG                ulSequenceNumber;
  CK_BBOOL                bIsExport;
  CK_WTLS_RANDOM_DATA     RandomInfo;
  CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
} CK_WTLS_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:
	Digest Mechanism	the mechanism type of the digest mechanism to be used (possible types can be found in [WTLS])
	ulMaxSizeInBits	the length (in bits) of the MACing key agreed upon during the protocol handshake phase
	ulKeySizeInBits	the length (in bits) of the secret key agreed upon during the handshake phase
	ulIVSizeInBits	the length (in bits) of the IV agreed upon during the handshake phase. If no IV is required, the length should be set to 0.
	ulSequenceNumber	the current sequence number used for records sent by the client and server respectively
	bIsExport	a boolean value which indicates whether the keys have to be derives for an export version of the protocol. If this value is true (i.e., the keys are exportable) then ulKeySizeInBits is the length of the key in bits before expansion. The length of the key after expansion is determined by the information found in the template sent along with this mechanism during a C_DeriveKey function call (either the CKA_KEY_TYPE or the CKA_VALUE_LEN attribute).
	RandomInfo	client’s and server’s random data information
	pReturnedKeyMaterial	points to a CK_WTLS_KEY_MAT_OUT structure which receives the handles for the keys generated and the IV
CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a CK_WTLS_KEY_MAT_PARAMS.
6.41.3 [bookmark: _Toc228894803][bookmark: _Toc228807349][bookmark: _Toc72656489][bookmark: _Toc39397805][bookmark: _Toc39387928][bookmark: _Toc35754887][bookmark: _Toc35669503][bookmark: _Toc35655014][bookmark: _Toc35654954][bookmark: _Toc35416790][bookmark: _Toc26949896][bookmark: _Toc370634583][bookmark: _Toc391471296][bookmark: _Toc395187934][bookmark: _Toc416960180][bookmark: _Toc8118465][bookmark: _Toc30061440][bookmark: _Toc90376693][bookmark: _Toc111203678][bookmark: _Toc148962520][bookmark: _Toc195693556]Pre master secret key generation for RSA key exchange suite
Pre master secret key generation for the RSA key exchange suite in WTLS denoted CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length secret key. It is used to produce the pre master secret key for RSA key exchange suite used in WTLS. This mechanism returns a handle to the pre master secret key.
It has one parameter, a CK_BYTE, which provides the client’s WTLS version.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_GenerateKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute indicates the length of the pre master secret key.
For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall indicate 20 bytes.
6.41.4 [bookmark: _Toc228894804][bookmark: _Toc228807350][bookmark: _Toc72656490][bookmark: _Toc39397806][bookmark: _Toc39387929][bookmark: _Toc35754888][bookmark: _Toc35669504][bookmark: _Toc35655015][bookmark: _Toc35654955][bookmark: _Toc35416791][bookmark: _Toc26949897][bookmark: _Toc509977016][bookmark: _Toc370634584][bookmark: _Toc391471297][bookmark: _Toc395187935][bookmark: _Toc416960181][bookmark: _Toc8118466][bookmark: _Toc30061441][bookmark: _Toc90376694][bookmark: _Toc111203679][bookmark: _Toc148962521][bookmark: _Toc195693557]Master secret key derivation
Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a mechanism used to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master secret key used in WTLS from the pre master secret key. This mechanism returns the value of the client version, which is built into the pre master secret key as well as a handle to the derived master secret key.
It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for passing the mechanism type of the digest mechanism to be used as well as the passing of random data to the token as well as the returning of the protocol version number which is part of the pre master secret key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 20 bytes.
Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this byte will hold the WTLS version associated with the supplied pre master secret key.
Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master secret key with an embedded version number. This includes the RSA key exchange suites, but excludes the Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.
6.41.5 [bookmark: _Toc228894805][bookmark: _Toc228807351][bookmark: _Toc72656491][bookmark: _Toc39397807][bookmark: _Toc39387930][bookmark: _Toc35754889][bookmark: _Toc35669505][bookmark: _Toc35655016][bookmark: _Toc35654956][bookmark: _Toc35416792][bookmark: _Toc26949898][bookmark: _Toc370634585][bookmark: _Toc391471298][bookmark: _Toc395187936][bookmark: _Toc416960182][bookmark: _Toc8118467][bookmark: _Toc30061442][bookmark: _Toc90376695][bookmark: _Toc111203680][bookmark: _Toc148962522][bookmark: _Toc195693558]Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography
Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master secret key used in WTLS from the pre master secret key. This mechanism returns a handle to the derived master secret key.
It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of the mechanism type of the digest mechanism to be used as well as random data to the token. The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded in the pre master secret key as it is for RSA-like key exchange suites.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 20 bytes.
Note that this mechanism is only useable for key exchange suites that do not use a fixed length 20-byte pre master secret key with an embedded version number. This includes the Diffie-Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the RSA key exchange suites.
6.41.6 [bookmark: _Toc228894806][bookmark: _Toc228807352][bookmark: _Toc72656492][bookmark: _Toc39397808][bookmark: _Toc39387931][bookmark: _Toc35754890][bookmark: _Toc35669506][bookmark: _Toc35655017][bookmark: _Toc35654957][bookmark: _Toc35416793][bookmark: _Toc26949899][bookmark: _Toc370634586][bookmark: _Toc391471299][bookmark: _Toc395187937][bookmark: _Toc416960183][bookmark: _Toc8118468][bookmark: _Toc30061443][bookmark: _Toc90376696][bookmark: _Toc111203681][bookmark: _Toc148962523][bookmark: _Toc195693559]WTLS PRF (pseudorandom function)
PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to produce a securely generated pseudo-random output of arbitrary length. The keys it uses are generic secret keys.
It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the mechanism type of the digest mechanism to be used, the passing of the input seed and its length, the passing of an identifying label and its length and the passing of the length of the output to the token and for receiving the output.
This mechanism produces securely generated pseudo-random output of the length specified in the parameter.
[bookmark: _Ref10432922]This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the template sent along with this mechanism during a C_DeriveKey function call, which means the template shall be a NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_WTLS_PRF mechanism returns the requested number of output bytes in the CK_WTLS_PRF_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary and should be a NULL_PTR.
If a call to C_DeriveKey with this mechanism fails, then no output will be generated.
6.41.7 [bookmark: _Toc228894807][bookmark: _Toc228807353][bookmark: _Toc72656493][bookmark: _Toc39397809][bookmark: _Toc39387932][bookmark: _Toc35754891][bookmark: _Toc35669507][bookmark: _Toc35655018][bookmark: _Toc35654958][bookmark: _Toc35416794][bookmark: _Toc26949900][bookmark: _Ref23037876][bookmark: _Toc370634587][bookmark: _Toc391471300][bookmark: _Toc395187938][bookmark: _Toc416960184][bookmark: _Toc8118469][bookmark: _Toc30061444][bookmark: _Toc90376697][bookmark: _Toc111203682][bookmark: _Toc148962524][bookmark: _Toc195693560]Server Key and MAC derivation
Server key, MAC and IV derivation in WTLS, denoted CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from the master secret key and random data. This mechanism returns the key handles for the keys generated in the process, as well as the IV created.
It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic material for the given cipher suite, and a pointer to a structure which receives the handles and IV which were generated.
This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY. 
The MACing key (server write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation operations.
The other key (server write key) is typed according to information found in the template sent along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption, decryption, and derivation operations.
An IV (server write IV) will be generated and returned if the ulIVSizeInBits field of the CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree with the value in the ulIVSizeInBits field.
Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by the base key.
Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a buffer with sufficient space to hold any IV that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary and should be a NULL_PTR.
If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.
6.41.8 [bookmark: _Toc228894808][bookmark: _Toc228807354][bookmark: _Toc72656494][bookmark: _Toc39397810][bookmark: _Toc39387933][bookmark: _Toc35754892][bookmark: _Toc35669508][bookmark: _Toc35655019][bookmark: _Toc35654959][bookmark: _Toc35416795][bookmark: _Toc26949901][bookmark: _Toc370634588][bookmark: _Toc391471301][bookmark: _Toc395187939][bookmark: _Toc416960185][bookmark: _Toc8118470][bookmark: _Toc30061445][bookmark: _Toc90376698][bookmark: _Toc111203683][bookmark: _Toc148962525][bookmark: _Toc195693561]Client key and MAC derivation
Client key, MAC and IV derivation in WTLS, denoted CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from the master secret key and random data. This mechanism returns the key handles for the keys generated in the process, as well as the IV created.
It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic material for the given cipher suite, and a pointer to a structure which receives the handles and IV which were generated.
This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY. 
The MACing key (client write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation operations.
The other key (client write key) is typed according to information found in the template sent along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption, decryption, and derivation operations.
An IV (client write IV) will be generated and returned if the ulIVSizeInBits field of the CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree with the value in the ulIVSizeInBits field.
Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by the base key.
Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a buffer with sufficient space to hold any IV that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary and should be a NULL_PTR.
If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.
6.42 [bookmark: _Toc437440585][bookmark: _Toc441162426][bookmark: _Toc441850504][bookmark: _Toc8118471][bookmark: _Toc30061446][bookmark: _Toc90376699][bookmark: _Toc111203684][bookmark: _Toc148962526][bookmark: _Ref166062270][bookmark: _Toc195693562]SP800-108 Key Derivation
[NIST SP800-108] defines three types of key derivation functions (KDF); a Counter Mode KDF, a Feedback Mode KDF and a Double Pipeline Mode KDF.
This section defines a unique mechanism for each type of KDF. These mechanisms can be used to derive one or more symmetric keys from a single base symmetric key. 
The KDFs defined in [NIST SP800-108] are all built upon pseudo random functions (PRF). In general terms, the PRFs accepts two pieces of input; a base key and some input data. The base key is taken from the hBaseKey parameter to C_DeriveKey. The input data is constructed from an iteration variable (internally defined by the KDF/PRF) and the data provided in the CK_ PRF_DATA_PARAM array that is part of the mechanism parameter.
[bookmark: _Toc25853523]Table 195, SP800-108 Mechanisms vs. Functions
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For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported base key size in bits. Note, these mechanisms support multiple PRF types and key types; as such the values reported by ulMinKeySize and ulMaxKeySize specify the minimum and maximum supported base key size when all PRF and keys types are considered. For example, a Cryptoki implementation may support CKK_GENERIC_SECRET keys that can be as small as 8-bits in length and therefore ulMinKeySize could report 8-bits. However, for an AES-CMAC PRF the base key must be of type CKK_AES and must be either 16-bytes, 24-bytes or 32-bytes in lengths and therefore the value reported by ulMinKeySize could be misleading. Depending on the PRF type selected, additional key size restrictions may apply.
6.42.1 [bookmark: _Toc437440586][bookmark: _Toc441162427][bookmark: _Toc441850505][bookmark: _Toc8118472][bookmark: _Toc30061447][bookmark: _Toc90376700][bookmark: _Toc111203685][bookmark: _Toc148962527][bookmark: _Toc195693563]Definitions
Mechanisms:
CKM_SP800_108_COUNTER_KDF
CKM_SP800_108_FEEDBACK_KDF
CKM_SP800_108_DOUBLE_PIPELINE_KDF

Data Field Types:
CK_SP800_108_ITERATION_VARIABLE
CK_SP800_108_COUNTER
CK_SP800_108_DKM_LENGTH
CK_SP800_108_BYTE_ARRAY

DKM Length Methods:
CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS
CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS
6.42.2 [bookmark: _Toc8118473][bookmark: _Toc30061448][bookmark: _Toc90376701][bookmark: _Toc111203686][bookmark: _Toc148962528][bookmark: _Toc195693564]Mechanism Parameters
1. CK_SP800_108_PRF_TYPE
The CK_SP800_108_PRF_TYPE field of the mechanism parameter is used to specify the type of PRF that is to be used. It is defined as follows:
typedef CK_MECHANISM_TYPE CK_SP800_108_PRF_TYPE;
The CK_SP800_108_PRF_TYPE field reuses the existing mechanisms definitions. The following table lists the supported PRF types:
[bookmark: _Toc25853524]Table 196, SP800-108 Pseudo Random Functions
	Pseudo Random Function Identifiers

	CKM_SHA_1_HMAC

	CKM_SHA224_HMAC

	CKM_SHA256_HMAC

	CKM_SHA384_HMAC

	CKM_SHA512_HMAC

	CKM_SHA3_224_HMAC

	CKM_SHA3_256_HMAC

	CKM_SHA3_384_HMAC

	CKM_SHA3_512_HMAC

	CKM_DES3_CMAC

	CKM_AES_CMAC



1. CK_PRF_DATA_TYPE
Each mechanism parameter contains an array of CK_PRF_DATA_PARAM structures. The CK_PRF_DATA_PARAM structure contains CK_PRF_DATA_TYPE field. The CK_PRF_DATA_TYPE field is used to identify the type of data identified by each CK_PRF_DATA_PARAM element in the array. Depending on the type of KDF used, some data field types are mandatory, some data field types are optional and some data field types are not allowed. These requirements are defined on a per-mechanism basis in the sections below. The CK_PRF_DATA_TYPE is defined as follows:
typedef CK_ULONG CK_PRF_DATA_TYPE;
The following table lists all of the supported data field types:
[bookmark: _Toc25853525]Table 197, SP800-108 PRF Data Field Types
	Data Field Identifier
	Description

	CK_SP800_108_ITERATION_VARIABLE
	Identifies the iteration variable defined internally by the KDF.

	CK_SP800_108_COUNTER
	Identifies an optional counter value represented as a binary string. Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure. The value of the counter is defined by the KDF’s internal loop counter.

	CK_SP800_108_DKM_LENGTH
	Identifies the length in bits of the derived keying material (DKM) represented as a binary string. Exact formatting of the length value is defined by the CK_SP800_108_DKM_LENGTH_FORMAT structure.

	CK_SP800_108_BYTE_ARRAY
	Identifies a generic byte array of data. This data type can be used to provide “context”, “label”, “separator bytes” as well as any other type of encoding information required by the higher level protocol.

	CK_SP800_108_KEY_HANDLE
	Identifies the key handle for an object with CK_OBJECT_CLASS set to CKO_SECRET_KEY. If specified, this data type will be interpreted as an instance of CK_BYTE_ARRAY where pValue points to the buffer containing the CKA_VALUE attribute of the provided key handle, and ulValueLen is assigned the value of the CKA_VALUE_LEN attribute of the provided key handle.
The specified key handle must have attributes settings consistent with a key that would allow it to be used as a base key for this key derivation mechanism.



1. CK_PRF_DATA_PARAM
CK_PRF_DATA_PARAM is used to define a segment of input for the PRF. Each mechanism parameter supports an array of CK_PRF_DATA_PARAM structures. The CK_PRF_DATA_PARAM is defined as follows:
typedef struct CK_PRF_DATA_PARAM
{
  CK_PRF_DATA_TYPE    type;
  CK_VOID_PTR         pValue;
  CK_ULONG            ulValueLen;
} CK_PRF_DATA_PARAM;

typedef CK_PRF_DATA_PARAM CK_PTR CK_PRF_DATA_PARAM_PTR;

The fields of the CK_PRF_DATA_PARAM structure have the following meaning:
	type	defines the type of data pointed to by pValue
	pValue	pointer to the data defined by type
	ulValueLen	size of the data pointed to by pValue
If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108_ITERATION_VARIABLE, then pValue must be set the appropriate value for the KDF’s iteration variable type. For the Counter Mode KDF, pValue must be assigned a valid CK_SP800_108_COUNTER_FORMAT_PTR and ulValueLen must be set to sizeof(CK_SP800_108_COUNTER_FORMAT). For all other KDF types, pValue must be set to NULL_PTR and ulValueLen must be set to 0.

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108_COUNTER, then pValue must be assigned a valid CK_SP800_108_COUNTER_FORMAT_PTR and ulValueLen must be set to sizeof(CK_SP800_108_COUNTER_FORMAT). 

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108_DKM_LENGTH then pValue must be assigned a valid CK_SP800_108_DKM_LENGTH_FORMAT_PTR and ulValueLen must be set to sizeof(CK_SP800_108_DKM_LENGTH_FORMAT). 

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108_BYTE_ARRAY, then pValue must be assigned a valid CK_BYTE_PTR value and ulValueLen must be set to a non-zero length.

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108_KEY_HANDLE, then pValue must be assigned a valid CK_OBJECT_HANDLE_PTR value and ulValueLen must be set to sizeof(CK_OBJECT_HANDLE).
1. CK_SP800_108_COUNTER_FORMAT
CK_SP800_108_COUNTER_FORMAT is used to define the encoding format for a counter value. The CK_SP800_108_COUNTER_FORMAT is defined as follows:
typedef struct CK_SP800_108_COUNTER_FORMAT
{ 
   CK_BBOOL    bLittleEndian;
   CK_ULONG    ulWidthInBits;
} CK_SP800_108_COUNTER_FORMAT;

typedef CK_SP800_108_COUNTER_FORMAT CK_PTR CK_SP800_108_COUNTER_FORMAT_PTR;

The fields of the CK_SP800_108_COUNTER_FORMAT structure have the following meaning:
	bLittleEndian	defines if the counter should be represented in Big Endian or Little Endian format 
	ulWidthInBits	defines the number of bits used to represent the counter value	
1. CK_SP800_108_DKM_LENGTH_METHOD
CK_SP800_108_DKM_LENGTH_METHOD is used to define how the DKM length value is calculated. The CK_SP800_108_DKM_LENGTH_METHOD type is defined as follows:
typedef CK_ULONG CK_SP800_108_DKM_LENGTH_METHOD;
The following table lists all of the supported DKM Length Methods:
[bookmark: _Toc25853526]Table 198, SP800-108 DKM Length Methods
	DKM Length Method Identifier
	Description

	CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS
	Specifies that the DKM length should be set to the sum of the length of all keys derived by this invocation of the KDF.

	CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS
	Specifies that the DKM length should be set to the sum of the length of all segments of output produced by the PRF by this invocation of the KDF.



1. CK_SP800_108_DKM_LENGTH_FORMAT
CK_SP800_108_DKM_LENGTH_FORMAT is used to define the encoding format for the DKM length value. The CK_SP800_108_DKM_LENGTH_FORMAT is defined as follows:
typedef struct CK_SP800_108_DKM_LENGTH_FORMAT
{ 
  CK_SP800_108_DKM_LENGTH_METHOD  dkmLengthMethod;
  CK_BBOOL                        bLittleEndian;
  CK_ULONG                        ulWidthInBits;
} CK_SP800_108_DKM_LENGTH_FORMAT;

typedef CK_SP800_108_DKM_LENGTH_FORMAT CK_PTR CK_SP800_108_DKM_LENGTH_FORMAT_PTR;

The fields of the CK_SP800_108_DKM_LENGTH_FORMAT structure have the following meaning:
	dkmLengthMethod	defines the method used to calculate the DKM length value
	bLittleEndian	defines if the DKM length value should be represented in Big Endian or Little Endian format 
	ulWidthInBits	defines the number of bits used to represent the DKM length value	
1. CK_DERIVED_KEY
CK_DERIVED_KEY is used to define an additional key to be derived as well as provide a CK_OBJECT_HANDLE_PTR to receive the handle for the derived keys. The CK_DERIVED_KEY is defined as follows:
typedef struct CK_DERIVED_KEY
{
  CK_ATTRIBUTE_PTR     pTemplate;
  CK_ULONG             ulAttributeCount;
  CK_OBJECT_HANDLE_PTR phKey;
} CK_DERIVED_KEY;

typedef CK_DERIVED_KEY CK_PTR CK_DERIVED_KEY_PTR;

The fields of the CK_DERIVED_KEY structure have the following meaning:
	pTemplate	pointer to a template that defines a key to derive
	ulAttributeCount	number of attributes in the template pointed to by pTemplate
	phKey	pointer to receive the handle for a derived key
1. CK_SP800_108_KDF_PARAMS, CK_SP800_108_KDF_PARAMS_PTR
CK_SP800_108_KDF_PARAMS is a structure that provides the parameters for the CKM_SP800_108_COUNTER_KDF and CKM_SP800_108_DOUBLE_PIPELINE_KDF mechanisms. 

typedef struct CK_SP800_108_KDF_PARAMS
{
  CK_SP800_108_PRF_TYPE  prfType;
  CK_ULONG               ulNumberOfDataParams;
  CK_PRF_DATA_PARAM_PTR  pDataParams;
  CK_ULONG               ulAdditionalDerivedKeys;
  CK_DERIVED_KEY_PTR     pAdditionalDerivedKeys;
} CK_SP800_108_KDF_PARAMS;

typedef CK_SP800_108_KDF_PARAMS CK_PTR CK_SP800_108_KDF_PARAMS_PTR;

The fields of the CK_SP800_108_KDF_PARAMS structure have the following meaning:
	prfType	type of PRF
	ulNumberOfDataParams	number of elements in the array pointed to by pDataParams
	pDataParams	an array of CK_PRF_DATA_PARAM structures. The array defines input parameters that are used to construct the “data” input to the PRF.
	ulAdditionalDerivedKeys	number of additional keys that will be derived and the number of elements in the array pointed to by pAdditionalDerivedKeys. If pAdditionalDerivedKeys is set to NULL_PTR, this parameter must be set to 0.
	pAdditionalDerivedKeys	an array of CK_DERIVED_KEY structures. If ulAdditionalDerivedKeys is set to 0, this parameter must be set to NULL_PTR
1. CK_SP800_108_FEEDBACK_KDF_PARAMS, CK_SP800_108_FEEDBACK_KDF_PARAMS_PTR
The CK_SP800_108_FEEDBACK_KDF_PARAMS structure provides the parameters for the CKM_SP800_108_FEEDBACK_KDF mechanism. It is defined as follows:
typedef struct CK_SP800_108_FEEDBACK_KDF_PARAMS
{
  CK_SP800_108_PRF_TYPE  prfType;
  CK_ULONG               ulNumberOfDataParams;
  CK_PRF_DATA_PARAM_PTR  pDataParams;
  CK_ULONG               ulIVLen;
  CK_BYTE_PTR            pIV;
  CK_ULONG               ulAdditionalDerivedKeys;
  CK_DERIVED_KEY_PTR     pAdditionalDerivedKeys;
} CK_SP800_108_FEEDBACK_KDF_PARAMS;

typedef CK_SP800_108_FEEDBACK_KDF_PARAMS CK_PTR CK_SP800_108_FEEDBACK_KDF_PARAMS_PTR;

The fields of the CK_SP800_108_FEEDBACK_KDF_PARAMS structure have the following meaning:
	prfType	type of PRF
	ulNumberOfDataParams	number of elements in the array pointed to by pDataParams
	pDataParams	an array of CK_PRF_DATA_PARAM structures. The array defines input parameters that are used to construct the “data” input to the PRF.
	ulIVLen	the length in bytes of the IV. If pIV is set to NULL_PTR, this parameter must be set to 0.
	pIV	an array of bytes to be used as the IV for the feedback mode KDF. This parameter is optional and can be set to NULL_PTR. If ulIVLen is set to 0, this parameter must be set to NULL_PTR.
	ulAdditionalDerivedKeys	number of additional keys that will be derived and the number of elements in the array pointed to by pAdditionalDerivedKeys. If pAdditionalDerivedKeys is set to NULL_PTR, this parameter must be set to 0.
	pAdditionalDerivedKeys	an array of CK_DERIVED_KEY structures. If ulAdditionalDerivedKeys is set to 0, this parameter must be set to NULL_PTR.
6.42.3 [bookmark: _Toc441850553][bookmark: _Toc441162475][bookmark: _Toc437440634][bookmark: _Toc8118474][bookmark: _Toc30061449][bookmark: _Toc90376702][bookmark: _Toc111203687][bookmark: _Toc148962529][bookmark: _Toc195693565]Counter Mode KDF
The SP800-108 Counter Mode KDF mechanism, denoted CKM_SP800_108_COUNTER_KDF, represents the KDF defined in [NIST SP800-108] section 5.1. CKM_SP800_108_COUNTER_KDF is a mechanism for deriving one or more symmetric keys from a symmetric base key.
It has a parameter, a CK_SP800_108_KDF_PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:
[bookmark: _Toc25853527]Table 199, Counter Mode data field requirements
	Data Field Identifier
	Description

	CK_SP800_108_ITERATION_VARIABLE
	This data field type is mandatory.
This data field type identifies the location of the iteration variable in the constructed PRF input data.
The iteration variable for this KDF type is a counter.
Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure.

	CK_SP800_108_COUNTER
	This data field type is invalid for this KDF type.

	CK_SP800_108_DKM_LENGTH
	This data field type is optional.
This data field type identifies the location of the DKM length in the constructed PRF input data.
Exact formatting of the DKM length is defined by the CK_SP800_108_DKM_LENGTH_FORMAT structure.
If specified, only one instance of this type may be specified.

	CK_SP800_108_BYTE_ARRAY
	This data field type is optional.
This data field type identifies the location and value of a byte array of data in the constructed PRF input data.
This standard does not restrict the number of instances of this data type. 

	CK_SP800_108_KEY_HANDLE
	This data field type is optional.
This data field type identifies the location of a symmetric key value in the constructed PRF input data.
This standard does not restrict the number of instances of this data type.
This standard does not restrict the same key handle being defined multiple times.


 
[NIST SP800-108] limits the amount of derived keying material that can be produced by a Counter Mode KDF by limiting the internal loop counter to (2r−1), where “r” is the number of bits used to represent the counter. Therefore the maximum number of bits that can be produced is (2r−1)h, where “h” is the length in bits of the output of the selected PRF.
6.42.4 [bookmark: _Toc527454389][bookmark: _Toc527455070][bookmark: _Toc8118475][bookmark: _Toc30061450][bookmark: _Toc90376703][bookmark: _Toc111203688][bookmark: _Toc148962530][bookmark: _Toc195693566]Feedback Mode KDF
The SP800-108 Feedback Mode KDF mechanism, denoted CKM_SP800_108_FEEDBACK_KDF, represents the KDF defined in [NIST SP800-108] section 5.2. CKM_SP800_108_FEEDBACK_KDF is a mechanism for deriving one or more symmetric keys from a symmetric base key.
It has a parameter, a CK_SP800_108_FEEDBACK_KDF_PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:
[bookmark: _Toc25853528]Table 200, Feedback Mode data field requirements
	Data Field Identifier
	Description

	CK_SP800_108_ITERATION_VARIABLE
	This data field type is mandatory.
This data field type identifies the location of the iteration variable in the constructed PRF input data.
The iteration variable is defined as K(i-1) in section 5.2 of [NIST SP800-108].
The size, format and value of this data input is defined by the internal KDF structure and PRF output.
Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure.

	CK_SP800_108_COUNTER
	This data field type is optional.
This data field type identifies the location of the counter in the constructed PRF input data.
Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure.
If specified, only one instance of this type may be specified.

	CK_SP800_108_DKM_LENGTH
	This data field type is optional.
This data field type identifies the location of the DKM length in the constructed PRF input data.
Exact formatting of the DKM length is defined by the CK_SP800_108_DKM_LENGTH_FORMAT structure.
If specified, only one instance of this type may be specified.

	CK_SP800_108_BYTE_ARRAY
	This data field type is optional.
This data field type identifies the location and value of a byte array of data in the constructed PRF input data.
This standard does not restrict the number of instances of this data type.

	CK_SP800_108_KEY_HANDLE
	This data field type is optional.
This data field type identifies the location of a symmetric key value in the constructed PRF input data.
This standard does not restrict the number of instances of this data type.
This standard does not restrict the same key handle being defined multiple times.



[NIST SP800-108] limits the amount of derived keying material that can be produced by a Feedback Mode KDF by limiting the internal loop counter to (232−1). Therefore the maximum number of bits that can be produced is (232−1)h, where “h” is the length in bits of the output of the selected PRF.
6.42.5 [bookmark: _Toc8118476][bookmark: _Toc30061451][bookmark: _Toc90376704][bookmark: _Toc111203689][bookmark: _Toc148962531][bookmark: _Toc195693567]Double Pipeline Mode KDF
The SP800-108 Double Pipeline Mode KDF mechanism, denoted CKM_SP800_108_DOUBLE_PIPELINE_KDF, represents the KDF defined [NIST SP800-108] section 5.3. CKM_SP800_108_DOUBLE_PIPELINE_KDF is a mechanism for deriving one or more symmetric keys from a symmetric base key.
It has a parameter, a CK_SP800_108_KDF_PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:
[bookmark: _Toc25853529]Table 201, Double Pipeline Mode data field requirements
	Data Field Identifier
	Description

	CK_SP800_108_ITERATION_VARIABLE
	This data field type is mandatory.
This data field type identifies the location of the iteration variable in the constructed PRF input data.
The iteration variable is defined as A(i) in section 5.3 of [NIST SP800-108].
The size, format and value of this data input is defined by the internal KDF structure and PRF output.
Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure.

	CK_SP800_108_COUNTER
	This data field type is optional.
This data field type identifies the location of the counter in the constructed PRF input data.
Exact formatting of the counter value is defined by the CK_SP800_108_COUNTER_FORMAT structure.
If specified, only one instance of this type may be specified.

	CK_SP800_108_DKM_LENGTH
	This data field type is optional.
This data field type identifies the location of the DKM length in the constructed PRF input data.
Exact formatting of the DKM length is defined by the CK_SP800_108_DKM_LENGTH_FORMAT structure.
If specified, only one instance of this type may be specified.

	CK_SP800_108_BYTE_ARRAY
	This data field type is optional.
This data field type identifies the location and value of a byte array of data in the constructed PRF input data.
This standard does not restrict the number of instances of this data type.

	CK_SP800_108_KEY_HANDLE
	This data field type is optional.
This data field type identifies the location of a symmetric key value in the constructed PRF input data.
This standard does not restrict the number of instances of this data type.
This standard does not restrict the same key handle being defined multiple times.



[NIST SP800-108] limits the amount of derived keying material that can be produced by a Double-Pipeline Mode KDF by limiting the internal loop counter to (232−1). Therefore the maximum number of bits that can be produced is (232−1)h, where “h” is the length in bits of the output of the selected PRF.
The Double Pipeline KDF requires an internal IV value. The IV is constructed using the same method used to construct the PRF input data; the data/values identified by the array of CK_PRF_DATA_PARAM structures are concatenated in to a byte array that is used as the IV. As shown in [NIST SP800-108] section 5.3, the CK_SP800_108_ITERATION_VARIABLE and CK_SP800_108_COUNTER data field types are not included in IV construction process. All other data field types are included in the construction process.
6.42.6 [bookmark: _Toc8118477][bookmark: _Toc30061452][bookmark: _Toc90376705][bookmark: _Toc111203690][bookmark: _Toc148962532][bookmark: _Toc195693568]Deriving Additional Keys
The KDFs defined in this section can be used to derive more than one symmetric key from the base key. The C_DeriveKey function accepts one CK_ATTRIBUTE_PTR to define a single derived key and one CK_OBJECT_HANDLE_PTR to receive the handle for the derived key.
To derive additional keys, the mechanism parameter structure can be filled in with one or more CK_DERIVED_KEY structures. Each structure contains a CK_ATTRIBUTE_PTR to define a derived key and a CK_OBJECT_HANDLE_PTR to receive the handle for the additional derived keys. The key defined by the C_DeriveKey function parameters is always derived before the keys defined by the CK_DERIVED_KEY array that is part of the mechanism parameter. The additional keys that are defined by the CK_DERIVED_KEY array are derived in the order they are defined in the array. That is to say that the derived keying material produced by the KDF is processed from left to right, and bytes are assigned first to the key defined by the C_DeriveKey function parameters, and then bytes are assigned to the keys that are defined by the CK_DERIVED_KEY array in the order they are defined in the array.
Each internal iteration of a KDF produces a unique segment of PRF output. Sometimes, a single iteration will produce enough keying material for the key being derived. Other times, additional internal iterations are performed to produce multiple segments which are concatenated together to produce enough keying material for the derived key(s). 
When deriving multiple keys, no key can be created using part of a segment that was used for another key. All keys must be created from disjoint segments. For example, if the parameters are defined such that a 48-byte key (defined by the C_DeriveKey function parameters) and a 16-byte key (defined by the content of CK_DERIVED_KEY) are to be derived using CKM_SHA256_HMAC as a PRF, three internal iterations of the KDF will be performed and three segments of PRF output will be produced. The first segment and half of the second segment will be used to create the 48-byte key and the third segment will be used to create the 16-byte key.


In the above example, if the CK_SP800_108_DKM_LENGTH data field type is specified with method CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS, then the DKM length value will be 512 bits. If the CK_SP800_108_DKM_LENGTH data field type is specified with method CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS, then the DKM length value will be 768 bits.
When deriving multiple keys, if any of the keys cannot be derived for any reason, none of the keys shall be derived. If the failure was caused by the content of a specific key’s template (ie the template defined by the content of pTemplate), the corresponding phKey value will be set to CK_INVALID_HANDLE to identify the offending template.
6.42.7 [bookmark: _Toc8118478][bookmark: _Toc30061453][bookmark: _Toc90376706][bookmark: _Toc111203691][bookmark: _Toc148962533][bookmark: _Toc195693569]Key Derivation Attribute Rules
The CKM_SP800_108_COUNTER_KDF, CKM_SP800_108_FEEDBACK_KDF and CKM_SP800_108_DOUBLE_PIPELINE_KDF mechanisms have the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the derived key(s) can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on the value of these attributes as they are defined in the base key.
· If the base key or any of the additional input keys have their CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived keys will have their CKA_ALWAYS_SENSITIVE attribute set to the same value as their CKA_SENSITIVE attribute. Otherwise the derived keys will have their CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE.
· If the base key or any of the additional input keys have their CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key will have their CKA_NEVER_EXTRACTABLE attribute set to the opposite value from their CKA_EXTRACTABLE attribute. Otherwise, the derived keys will have their CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.
6.42.8 [bookmark: _Toc527454394][bookmark: _Toc527455075][bookmark: _Toc8118479][bookmark: _Toc30061454][bookmark: _Toc90376707][bookmark: _Toc111203692][bookmark: _Toc148962534][bookmark: _Toc195693570]Constructing PRF Input Data
[NIST SP800-108] defines the PRF input data for each KDF at a high level using terms like “label”, “context”, “separator”, “counter”…etc. The value, formatting and order of the input data is not strictly defined by [NIST SP800-108], instead it is described as being defined by the “encoding scheme”.
To support any encoding scheme, these mechanisms construct the PRF input data from from the array of CK_PRF_DATA_PARAM structures in the mechanism parameter. All of the values defined by the CK_PRF_DATA_PARAM array are concatenated in the order they are defined and passed in to the PRF as the data parameter.
6.42.8.1 [bookmark: _Toc30061455][bookmark: _Toc90376708][bookmark: _Toc111203693][bookmark: _Toc148962535][bookmark: _Toc195693571]Sample Counter Mode KDF
[NIST SP800-108] section 5.1 outlines a sample Counter Mode KDF which defines the following PRF input: 
PRF (KI, [i]2 || Label || 0x00 || Context || [L]2) 
Section 5.1 does not define the number of bits used to represent the counter (the “r” value) or the DKM length (the “L” value), so 16-bits is assumed for both cases. The following sample code shows how to define this PRF input data using an array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_OBJECT_HANDLE hAdditionalInputKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };

CK_BYTE baLabel[] = {0xde, 0xad, 0xbe , 0xef};
CK_ULONG ulLabelLen = sizeof(baLabel);
CK_BYTE baContext[] = {0xfe, 0xed, 0xbe , 0xef};
CK_ULONG ulContextLen = sizeof(baContext);

CK_SP800_108_COUNTER_FORMAT counterFormat = {0, 16};
CK_SP800_108_DKM_LENGTH_FORMAT dkmFormat 
   = {CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS, 0, 16};

CK_PRF_DATA_PARAM dataParams[] =
{
   { CK_SP800_108_ITERATION_VARIABLE,
     &counterFormat, sizeof(counterFormat) },
   { CK_SP800_108_BYTE_ARRAY, baLabel, ulLabelLen },
   { CK_SP800_108_BYTE_ARRAY, {0x00}, 1 },
   { CK_SP800_108_BYTE_ARRAY, baContext, ulContextLen },
   { CK_SP800_108_KEY_HANDLE, &hAdditionalInputKey, sizeof(hAdditionalInputKey) },
   { CK_SP800_108_DKM_LENGTH, dkmFormat, sizeof(dkmFormat) }
};

CK_SP800_108_KDF_PARAMS kdfParams =
{
   CKM_AES_CMAC,
   DIM(dataParams),
   &dataParams,
   0,	/* no addition derived keys */
   NULL	/* no addition derived keys */
};

CK_MECHANISM = mechanism
{
   CKM_SP800_108_COUNTER_KDF,
   &kdfParams,
   sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

hAdditionalInputKey = GetAdditionalInputKeyHandle(.....);

rv = C_DeriveKey(
   hSession,
   &mechanism,
   hBaseKey,
   &derivedKeyTemplate,
   DIM(derivedKeyTemplate),
   &hDerivedKey);
6.42.8.2 [bookmark: _Toc30061456][bookmark: _Toc90376709][bookmark: _Toc111203694][bookmark: _Toc148962536][bookmark: _Toc195693572]Sample SCP03 Counter Mode KDF
The SCP03 standard defines a variation of a counter mode KDF which defines the following PRF input: 
PRF (KI, Label || 0x00 || [L]2 || [i]2 || Context) 
SCP03 defines the number of bits used to represent the counter (the “r” value) and number of bits used to represent the DKM length (the “L” value) as 16-bits. The following sample code shows how to define this PRF input data using an array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };

CK_BYTE baLabel[] = {0xde, 0xad, 0xbe , 0xef};
CK_ULONG ulLabelLen = sizeof(baLabel);
CK_BYTE baContext[] = {0xfe, 0xed, 0xbe , 0xef};
CK_ULONG ulContextLen = sizeof(baContext);

CK_SP800_108_COUNTER_FORMAT counterFormat = {0, 16};
CK_SP800_108_DKM_LENGTH_FORMAT dkmFormat 
   = {CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS, 0, 16};

CK_PRF_DATA_PARAM dataParams[] =
{
   { CK_SP800_108_BYTE_ARRAY, baLabel, ulLabelLen },
   { CK_SP800_108_BYTE_ARRAY, {0x00}, 1 }, 
   { CK_SP800_108_DKM_LENGTH, dkmFormat, sizeof(dkmFormat) },
   { CK_SP800_108_ITERATION_VARIABLE,
     &counterFormat, sizeof(counterFormat) },
   { CK_SP800_108_BYTE_ARRAY, baContext, ulContextLen }
};

CK_SP800_108_KDF_PARAMS kdfParams =
{
   CKM_AES_CMAC,
   DIM(dataParams),
   &dataParams,
   0,	/* no addition derived keys */
   NULL	/* no addition derived keys */
};

CK_MECHANISM = mechanism
{
   CKM_SP800_108_COUNTER_KDF,
   &kdfParams,
   sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

rv = C_DeriveKey(
   hSession,
   &mechanism,
   hBaseKey,
   &derivedKeyTemplate,
   DIM(derivedKeyTemplate),
   &hDerivedKey);
6.42.8.3 [bookmark: _Toc30061457][bookmark: _Toc90376710][bookmark: _Toc111203695][bookmark: _Toc148962537][bookmark: _Toc195693573]Sample Feedback Mode KDF
[NIST SP800-108] section 5.2 outlines a sample Feedback Mode KDF which defines the following PRF input: 
PRF (KI, K(i-1) {|| [i]2 }|| Label || 0x00 || Context || [L]2) 
Section 5.2 does not define the number of bits used to represent the counter (the “r” value) or the DKM length (the “L” value), so 16-bits is assumed for both cases. The counter is defined as being optional and is included in this example. The following sample code shows how to define this PRF input data using an array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };

CK_BYTE baFeedbackIV[] = {0x01, 0x02, 0x03, 0x04};
CK_ULONG ulFeedbackIVLen = sizeof(baFeedbackIV);
CK_BYTE baLabel[] = {0xde, 0xad, 0xbe, 0xef};
CK_ULONG ulLabelLen = sizeof(baLabel);
CK_BYTE baContext[] = {0xfe, 0xed, 0xbe, 0xef};
CK_ULONG ulContextLen = sizeof(baContext);

CK_SP800_108_COUNTER_FORMAT counterFormat = {0, 16};
CK_SP800_108_DKM_LENGTH_FORMAT dkmFormat 
   = {CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS, 0, 16};

CK_PRF_DATA_PARAM dataParams[] =
{
   { CK_SP800_108_ITERATION_VARIABLE,
     &counterFormat, sizeof(counterFormat) },
   { CK_SP800_108_BYTE_ARRAY, baLabel, ulLabelLen },
   { CK_SP800_108_BYTE_ARRAY, {0x00}, 1 },
   { CK_SP800_108_BYTE_ARRAY, baContext, ulContextLen },
   { CK_SP800_108_DKM_LENGTH, dkmFormat, sizeof(dkmFormat) }
};

CK_SP800_108_FEEDBACK_KDF_PARAMS kdfParams =
{
   CKM_AES_CMAC,
   DIM(dataParams),
   &dataParams,
   ulFeedbackIVLen,
   baFeedbackIV,
   0,	/* no addition derived keys */
   NULL	/* no addition derived keys */
};

CK_MECHANISM = mechanism
{
   CKM_SP800_108_FEEDBACK_KDF,
   &kdfParams,
   sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

rv = C_DeriveKey(
   hSession,
   &mechanism,
   hBaseKey,
   &derivedKeyTemplate,
   DIM(derivedKeyTemplate),
   &hDerivedKey);
6.42.8.4 [bookmark: _Toc30061458][bookmark: _Toc90376711][bookmark: _Toc111203696][bookmark: _Toc148962538][bookmark: _Toc195693574]Sample Double-Pipeline Mode KDF
[NIST SP800-108] section 5.3 outlines a sample Double-Pipeline Mode KDF which defines the two following PRF inputs: 
PRF (KI, A(i-1)) 
PRF (KI, K(i-1) {|| [i]2 }|| Label || 0x00 || Context || [L]2) 
Section 5.3 does not define the number of bits used to represent the counter (the “r” value) or the DKM length (the “L” value), so 16-bits is assumed for both cases. The counter is defined as being optional so it is left out in this example. The following sample code shows how to define this PRF input data using an array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };

CK_BYTE baLabel[] = {0xde, 0xad, 0xbe , 0xef};
CK_ULONG ulLabelLen = sizeof(baLabel);
CK_BYTE baContext[] = {0xfe, 0xed, 0xbe , 0xef};
CK_ULONG ulContextLen = sizeof(baContext);

CK_SP800_108_DKM_LENGTH_FORMAT dkmFormat
   = {CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS, 0, 16};

CK_PRF_DATA_PARAM dataParams[] =
{  
   { CK_SP800_108_BYTE_ARRAY, baLabel, ulLabelLen },
   { CK_SP800_108_BYTE_ARRAY, {0x00}, 1 },
   { CK_SP800_108_BYTE_ARRAY, baContext, ulContextLen },
   { CK_SP800_108_DKM_LENGTH, dkmFormat, sizeof(dkmFormat) }
};

CK_SP800_108_KDF_PARAMS kdfParams =
{
   CKM_AES_CMAC,
   DIM(dataParams),
   &dataParams,
   0,	/* no addition derived keys */
   NULL	/* no addition derived keys */
};

CK_MECHANISM = mechanism
{
   CKM_SP800_108_DOUBLE_PIPELINE_KDF,
   &kdfParams,
   sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

rv = C_DeriveKey(
   hSession,
   &mechanism,
   hBaseKey,
   &derivedKeyTemplate,
   DIM(derivedKeyTemplate),
   &hDerivedKey);
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	[bookmark: _Toc72656496]
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
 Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_CONCATENATE_BASE_AND_KEY
	
	
	
	
	
	
	
	

	CKM_CONCATENATE_BASE_AND_DATA
	
	
	
	
	
	
	
	

	CKM_CONCATENATE_DATA_AND_BASE
	
	
	
	
	
	
	
	

	CKM_XOR_BASE_AND_DATA
	
	
	
	
	
	
	
	

	CKM_EXTRACT_KEY_FROM_KEY
	
	
	
	
	
	
	
	

	CKM_PUB_KEY_FROM_PRIV_KEY
	
	
	
	
	
	
	
	


6.43.1 [bookmark: _Toc228894810][bookmark: _Toc228807356][bookmark: _Toc370634590][bookmark: _Toc391471303][bookmark: _Toc395187941][bookmark: _Toc416960187][bookmark: _Toc8118481][bookmark: _Toc30061460][bookmark: _Toc90376713][bookmark: _Toc111203698][bookmark: _Toc148962540][bookmark: _Toc195693576]Definitions
Mechanisms:
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY
CKM_CONCATENATE_BASE_AND_KEY
CKM_PUB_KEY_FROM_PRIV_KEY
6.43.2 [bookmark: _Toc228894811][bookmark: _Toc228807357][bookmark: _Ref72657107][bookmark: _Toc72656497][bookmark: _Toc370634591][bookmark: _Toc391471304][bookmark: _Toc395187942][bookmark: _Toc416960188][bookmark: _Toc8118482][bookmark: _Toc30061461][bookmark: _Toc90376714][bookmark: _Toc111203699][bookmark: _Toc148962541][bookmark: _Toc195693577]Parameters for miscellaneous simple key derivation mechanisms
· [bookmark: _Toc228807358][bookmark: _Toc72656498][bookmark: _Toc405794943]CK_KEY_DERIVATION_STRING_DATA; CK_KEY_DERIVATION_STRING_DATA_PTR
CK_KEY_DERIVATION_STRING_DATA provides the parameters for the CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE, and CKM_XOR_BASE_AND_DATA mechanisms. It is defined as follows:
typedef struct CK_KEY_DERIVATION_STRING_DATA {
  CK_BYTE_PTR pData;
  CK_ULONG ulLen;
} CK_KEY_DERIVATION_STRING_DATA;

The fields of the structure have the following meanings:
	pData	pointer to the byte string
	ulLen	length of the byte string
CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a CK_KEY_DERIVATION_STRING_DATA.
· [bookmark: _Toc228807359][bookmark: _Toc72656499][bookmark: _Toc405794944]CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR
CK_EXTRACT_PARAMS provides the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base key should be used as the first bit of the derived key. It is defined as follows:
typedef CK_ULONG CK_EXTRACT_PARAMS;

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.
6.43.3 [bookmark: _Toc228894812][bookmark: _Toc228807360][bookmark: _Toc72656500][bookmark: _Toc405794946][bookmark: _Toc370634592][bookmark: _Toc391471305][bookmark: _Toc395187943][bookmark: _Toc416960189][bookmark: _Toc8118483][bookmark: _Toc30061462][bookmark: _Toc90376715][bookmark: _Toc111203700][bookmark: _Toc148962542][bookmark: _Toc195693578]Concatenation of a base key and another key
This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from the concatenation of two existing secret keys. The two keys are specified by handles; the values of the keys specified are concatenated together in a buffer.
This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value information which is appended to the end of the base key’s value information (the base key is the key whose handle is supplied as an argument to C_DeriveKey).
For example, if the value of the base key is 0x01234567, and the value of the other key is 0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF. 
· If no length or key type is provided in the template, then the key produced by this mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of the values of the two original keys.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length is provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more bytes than are available by concatenating the two original keys’ values, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· If either of the two original keys has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.
· Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from a default value.
· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if both of the original keys have their CKA_ALWAYS_SENSITIVE attributes set to CK_TRUE.
· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.
6.43.4 [bookmark: _Toc228894813][bookmark: _Toc228807361][bookmark: _Toc72656501][bookmark: _Toc405794947][bookmark: _Toc370634593][bookmark: _Toc391471306][bookmark: _Toc395187944][bookmark: _Toc416960190][bookmark: _Toc8118484][bookmark: _Toc30061463][bookmark: _Toc90376716][bookmark: _Toc111203701][bookmark: _Toc148962543][bookmark: _Toc195693579]Concatenation of a base key and data
This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by concatenating data onto the end of a specified secret key.
This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which specifies the length and value of the data which will be appended to the base key to derive another key.
For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF. 
· If no length or key type is provided in the template, then the key produced by this mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of the value of the original key and the data.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length is provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more bytes than are available by concatenating the original key’s value and the data, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.
· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from a default value.
· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.
· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.
6.43.5 [bookmark: _Toc228894814][bookmark: _Toc228807362][bookmark: _Toc72656502][bookmark: _Toc405794948][bookmark: _Toc370634594][bookmark: _Toc391471307][bookmark: _Toc395187945][bookmark: _Toc416960191][bookmark: _Toc8118485][bookmark: _Toc30061464][bookmark: _Toc90376717][bookmark: _Toc111203702][bookmark: _Toc148962544][bookmark: _Toc195693580]Concatenation of data and a base key
This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by prepending data to the start of a specified secret key.
This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which specifies the length and value of the data which will be prepended to the base key to derive another key.
For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string 0x89ABCDEF01234567. 
· If no length or key type is provided in the template, then the key produced by this mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of the data and the value of the original key.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length is provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more bytes than are available by concatenating the data and the original key’s value, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.
· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from a default value.
· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.
· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.
6.43.6 [bookmark: _Toc228894815][bookmark: _Toc228807363][bookmark: _Toc72656503][bookmark: _Toc405794949][bookmark: _Toc370634595][bookmark: _Toc391471308][bookmark: _Toc395187946][bookmark: _Toc416960192][bookmark: _Toc8118486][bookmark: _Toc30061465][bookmark: _Toc90376718][bookmark: _Toc111203703][bookmark: _Toc148962545][bookmark: _Toc195693581]XORing of a key and data
XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which provides the capability of deriving a secret key by performing a bit XORing of a key pointed to by a base key handle and some data.
This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which specifies the data with which to XOR the original key’s value.
For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string 0x88888888.
· If no length or key type is provided in the template, then the key produced by this mechanism will be a generic secret key. Its length will be equal to the minimum of the lengths of the data and the value of the original key.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length is provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more bytes than are available by taking the shorter of the data and the original key’s value, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.
· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from a default value.
· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.
· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.
6.43.7 [bookmark: _Toc228894816][bookmark: _Toc228807364][bookmark: _Toc72656504][bookmark: _Toc405794950][bookmark: _Toc370634596][bookmark: _Toc391471309][bookmark: _Toc395187947][bookmark: _Toc416960193][bookmark: _Toc8118487][bookmark: _Toc30061466][bookmark: _Toc90376719][bookmark: _Toc111203704][bookmark: _Toc148962546][bookmark: _Toc195693582]Extraction of one key from another key
Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability of creating one secret key from the bits of another secret key.
This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the original key should be used as the first bit of the newly-derived key.
We give an example of how this mechanism works. Suppose a token has a secret key with the 4-byte value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21 (i.e., the value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).
1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We regard this binary string as holding the 32 bits of the key, labeled as b0, b1, …, b31.
2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21. We obtain the binary string 1001 0101 0010 0110.
3. The value of the new key is thus 0x9526.
Note that when constructing the value of the derived key, it is permissible to wrap around the end of the binary string representing the original key’s value.
If the original key used in this process is sensitive, then the derived key must also be sensitive for the derivation to succeed.
· If no length or key type is provided in the template, then an error will be returned.
· If no key type is provided in the template, but a length is, then the key produced by this mechanism will be a generic secret key of the specified length.
· If no length is provided in the template, but a key type is, then that key type must have a well-defined length. If it does, then the key produced by this mechanism will be of the type specified in the template. If it doesn’t, an error will be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism will be of the specified type and length.
If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set properly.
If the requested type of key requires more bytes than the original key has, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
· If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from a default value.
· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from a default value.
· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.
· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.
[bookmark: _Toc195693583]Public key from private key
Public key from private key, denoted CKM_PUB_KEY_FROM_PRIV_KEY, is a mechanism which creates a matching public key from an existing private key. This mechanism takes no parameters. The public key matches the private key’s type, and all the key specific parameters are generated by the mechanism. If the following parameters are not set in the template, they will default as follows:
1. CKA_TOKEN – CK_FALSE
2. CKA_PRIVATE – CK_FALSE
3. CKA_MODIFIABLE – CK_TRUE
4. CKA_LOCAL – CK_FALSE
5. CKA_SENSITIVE – CK_FALSE
6. CKA_ALWAYS_SENSITIVE – CK_FALSE
7. CKA_EXTRACTABLE – CK_TRUE
8. CKA_NEVER_EXTRACTABLE – CK_FALSE
9. CKA_COPYABLE – CK_TRUE
10. CKA_DESTROYABLE - CK_FALSE
11. CKA_LABEL – NULL
12. CKA_WRAP_TEMPLATE - empty
13. CKA_ENCRYPT – to CKA_DECRYPT of the private key
14. CKA_VERIFY – to CKA_SIGN of the private key
15. CKA_VERIFY_RECOVER – to CKA_SIGN_RECOVER of the private key
16. CKA_WRAP – to CKA_UNWRAP of the private key
17. CKA_DERIVE – to CKA_DERIVE of the private key
18. CKA_ID – copy from private key
19. CKA_START_DATE – copy from private key
20. CKA_END_DATE – copy from private key
21. CKA_SUBJECT – copy from private key
22. CKA_PUBLIC_KEY_INFO – copy from private key
23. CKA_KEY_GEN_MECHANISM – copy from private key
24. CKA_ALLOWED_MECHANISMS – copy from private key
25. CKA_TRUSTED – copy from private key
This mechanism should be supported for all private key types supported by the token.
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[bookmark: _Toc25853531]Table 203, CMS Mechanisms vs. Functions
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6.44.1 [bookmark: _Toc228894818][bookmark: _Toc228807366][bookmark: _Toc370634598][bookmark: _Toc391471311][bookmark: _Toc395187949][bookmark: _Toc416960195][bookmark: _Toc8118489][bookmark: _Toc30061468][bookmark: _Toc90376721][bookmark: _Toc111203706][bookmark: _Toc148962548][bookmark: _Toc195693585]Definitions
Mechanisms:
CKM_CMS_SIG
6.44.2 [bookmark: _Toc228894819][bookmark: _Toc228807367][bookmark: _Toc72656507][bookmark: _Toc370634599][bookmark: _Toc391471312][bookmark: _Toc395187950][bookmark: _Toc416960196][bookmark: _Toc8118490][bookmark: _Toc30061469][bookmark: _Toc90376722][bookmark: _Toc111203707][bookmark: _Toc148962549][bookmark: _Toc195693586]CMS Signature Mechanism Objects
These objects provide information relating to the CKM_CMS_SIG mechanism. CKM_CMS_SIG mechanism object attributes represent information about supported CMS signature attributes in the token. They are only present on tokens supporting the CKM_CMS_SIG mechanism, but must be present on those tokens.
[bookmark: _Toc228807554][bookmark: _Toc25853532]Table 204, CMS Signature Mechanism Object Attributes
	Attribute
	Data type
	Meaning

	CKA_REQUIRED_CMS_ATTRIBUTES
	Byte array
	Attributes the token always will include in the set of CMS signed attributes

	CKA_DEFAULT_CMS_ATTRIBUTES
	Byte array
	Attributes the token will include in the set of CMS signed attributes in the absence of any attributes specified by the application

	CKA_SUPPORTED_CMS_ATTRIBUTES
	Byte array
	Attributes the token may include in the set of CMS signed attributes upon request by the application


The contents of each byte array will be a DER-encoded list of CMS Attributes with optional accompanying values. Any attributes in the list shall be identified with its object identifier, and any values shall be DER-encoded. The list of attributes is defined in ASN.1 as:
	Attributes ::= SET SIZE (1..MAX) OF Attribute
	Attribute ::= SEQUENCE {
	attrType    OBJECT IDENTIFIER,
	attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER OPTIONAL
	}
The client may not set any of the attributes.
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CK_CMS_SIG_PARAMS is a structure that provides the parameters to the CKM_CMS_SIG mechanism. It is defined as follows:
typedef struct CK_CMS_SIG_PARAMS {
CK_OBJECT_HANDLE		certificateHandle;
CK_MECHANISM_PTR		pSigningMechanism;
CK_MECHANISM_PTR		pDigestMechanism;
CK_UTF8CHAR_PTR		pContentType;
CK_BYTE_PTR			pRequestedAttributes;
CK_ULONG			ulRequestedAttributesLen;
CK_BYTE_PTR			pRequiredAttributes;
CK_ULONG			ulRequiredAttributesLen;
} CK_CMS_SIG_PARAMS;

The fields of the structure have the following meanings:
	certificateHandle	Object handle for a certificate associated with the signing key. The token may use information from this certificate to identify the signer in the SignerInfo result value. CertificateHandle may be NULL_PTR if the certificate is not available as a PKCS #11 object or if the calling application leaves the choice of certificate completely to the token.
	pSigningMechanism	Mechanism to use when signing a constructed CMS SignedAttributes value. E.g. CKM_SHA1_RSA_PKCS.
	pDigestMechanism	Mechanism to use when digesting the data. Value shall be NULL_PTR when the digest mechanism to use follows from the pSigningMechanism parameter.
	pContentType	NULL-terminated string indicating complete MIME Content-type of message to be signed; or the value NULL_PTR if the message is a MIME object (which the token can parse to determine its MIME Content-type if required). Use the value “application/octet-stream“ if the MIME type for the message is unknown or undefined. Note that the pContentType string shall conform to the syntax specified in [RFC 2045], i.e. any parameters needed for correct presentation of the content by the token (such as, for example, a non-default “charset”) must be present. The token must follow rules and procedures defined in [RFC 2045] when presenting the content.
	pRequestedAttributes	Pointer to DER-encoded list of CMS Attributes the caller requests to be included in the signed attributes. Token may freely ignore this list or modify any supplied values.
	ulRequestedAttributesLen	Length in bytes of the value pointed to by pRequestedAttributes
	pRequiredAttributes	Pointer to DER-encoded list of CMS Attributes (with accompanying values) required to be included in the resulting signed attributes. Token must not modify any supplied values. If the token does not support one or more of the attributes, or does not accept provided values, the signature operation will fail. The token will use its own default attributes when signing if both the pRequestedAttributes and pRequiredAttributes field are set to NULL_PTR.
	ulRequiredAttributesLen	Length in bytes, of the value pointed to by pRequiredAttributes.	
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The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based on the structures defined in [PKCS #7] and [RFC 5652]. It supports single- or multiple-part signatures with and without message recovery. The mechanism is intended for use with, e.g., PTDs (see [MeT-PTD]) or other capable tokens. The token will construct a CMS SignedAttributes value and compute a signature on this value. The content of the SignedAttributes value is decided by the token, however the caller can suggest some attributes in the parameter pRequestedAttributes. The caller can also require some attributes to be present through the parameters pRequiredAttributes. The signature is computed in accordance with the parameter pSigningMechanism.
When this mechanism is used in successful calls to C_Sign or C_SignFinal, the pSignature return value will point to a DER-encoded value of type SignerInfo. SignerInfo is defined in ASN.1 as follows (for a complete definition of all fields and types, see [RFC 5652]):
SignerInfo ::= SEQUENCE {
        version CMSVersion,
        sid SignerIdentifier,
        digestAlgorithm DigestAlgorithmIdentifier,
        signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
        signatureAlgorithm SignatureAlgorithmIdentifier,
        signature SignatureValue,
        unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }
The certificateHandle parameter, when set, helps the token populate the sid field of the SignerInfo value. If certificateHandle is NULL_PTR the choice of a suitable certificate reference in the SignerInfo result value is left to the token (the token could, e.g., interact with the user).
This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the pSigningMechanism mechanism instead).
For the pRequiredAttributes field, the token may have to interact with the user to find out whether to accept a proposed value or not. The token should never accept any proposed attribute values without some kind of confirmation from its owner (but this could be through, e.g., configuration or policy settings and not direct interaction). If a user rejects proposed values, or the signature request as such, the value CKR_FUNCTION_REJECTED shall be returned.
When possible, applications should use the CKM_CMS_SIG mechanism when generating CMS-compatible signatures rather than lower-level mechanisms such as CKM_SHA1_RSA_PKCS. This is especially true when the signatures are to be made on content that the token is able to present to a user. Exceptions may include those cases where the token does not support a particular signing attribute. Note however that the token may refuse usage of a particular signature key unless the content to be signed is known (i.e. the CKM_CMS_SIG mechanism is used).
When a token does not have presentation capabilities, the PKCS #11-aware application may avoid sending the whole message to the token by electing to use a suitable signature mechanism (e.g. CKM_RSA_PKCS) as the pSigningMechanism value in the CK_CMS_SIG_PARAMS structure, and digesting the message itself before passing it to the token.
PKCS #11-aware applications making use of tokens with presentation capabilities, should attempt to provide messages to be signed by the token in a format possible for the token to present to the user. Tokens that receive multipart MIME-messages for which only certain parts are possible to present may fail the signature operation with a return value of CKR_DATA_INVALID, but may also choose to add a signing attribute indicating which parts of the message were possible to present.
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Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption function 16 times. The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex initialization phase required before any encryption can take place, the actual encryption of data is very efficient on large microprocessors. See [BLOWFISH] for details.
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This section defines the key type “CKK_BLOWFISH” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_BLOWFISH_KEY_GEN
CKM_BLOWFISH_CBC
[bookmark: _Toc72656513]CKM_BLOWFISH_CBC_PAD
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Blowfish secret key objects (object class CKO_SECRET_KEY, key type CKK_BLOWFISH) hold Blowfish keys. The following table defines the Blowfish secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807555][bookmark: _Toc25853534]Table 206, BLOWFISH Secret Key Object
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value the key can be any length up to 448 bits. Bit length restricted to a byte array.

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating an Blowfish secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BLOWFISH;
CK_UTF8CHAR label[] = “A blowfish secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.45.3 [bookmark: _Toc228894825][bookmark: _Toc228807374][bookmark: _Toc72656514][bookmark: _Toc370634605][bookmark: _Toc391471318][bookmark: _Toc395187956][bookmark: _Toc416960202][bookmark: _Toc8118496][bookmark: _Toc30061475][bookmark: _Toc90376728][bookmark: _Toc111203713][bookmark: _Toc148962555][bookmark: _Toc195693592]Blowfish key generation
The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, is a key generation mechanism Blowfish.
It does not have a parameter.
The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes in bytes.
6.45.4 [bookmark: _Toc228894826][bookmark: _Toc228807375][bookmark: _Toc72656515][bookmark: _Toc370634606][bookmark: _Toc391471319][bookmark: _Toc395187957][bookmark: _Toc416960203][bookmark: _Toc8118497][bookmark: _Toc30061476][bookmark: _Toc90376729][bookmark: _Toc111203714][bookmark: _Toc148962556][bookmark: _Toc195693593]Blowfish-CBC
Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping.
It has a parameter, a 8-byte initialization vector.
[bookmark: _Toc72656516]This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately. 
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template. 
Constraints on key types and the length of data are summarized in the following table: 
[bookmark: _Toc25853535]Table 207, BLOWFISH-CBC: Key and Data Length
	Function
	Key type
	Input Length
	Output Length

	C_Encrypt
	BLOWFISH
	Multiple of block size
	Same as input length

	C_Decrypt
	BLOWFISH
	Multiple of block size
	Same as input length

	C_WrapKey
	BLOWFISH
	Any
	Input length rounded up to multiple of the block size

	C_UnwrapKey
	BLOWFISH
	Multiple of block size
	Determined by type of key being unwrapped or CKA_VALUE_LEN


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of BLOWFISH key sizes, in bytes. 
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Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 8-byte initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys. 
Constraints on key types and the length of data are summarized in the following table: 

[bookmark: _Toc25853536]Table 208, BLOWFISH-CBC with PKCS Padding: Key and Data Length
	Function
	Key type
	Input Length
	Output Length

	C_Encrypt
	BLOWFISH
	Any
	Input length rounded up to multiple of the block size

	C_Decrypt
	BLOWFISH
	Multiple of block size
	Between 1 and block length block size bytes shorter than input length

	C_WrapKey
	BLOWFISH
	Any
	Input length rounded up to multiple of the block size

	C_UnwrapKey
	BLOWFISH
	Multiple of block size
	Between 1 and block length block size bytes shorter than input length
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Twofish is a secret key block cipher. See [TWOFISH] for details.
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Table 209, Twofish Mechanisms vs. Functions
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6.46.1 [bookmark: _Toc195693596]Definitions
This section defines the key type “CKK_TWOFISH” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_TWOFISH_KEY_GEN
CKM_TWOFISH_CBC
CKM_TWOFISH_CBC_PAD

6.46.2 [bookmark: _Toc228894830][bookmark: _Toc228807379][bookmark: _Toc72656518][bookmark: _Toc370634610][bookmark: _Toc391471323][bookmark: _Toc395187961][bookmark: _Toc416960207][bookmark: _Toc8118501][bookmark: _Toc30061480][bookmark: _Toc90376733][bookmark: _Toc111203718][bookmark: _Toc148962560][bookmark: _Toc195693597]Twofish secret key objects
Twofish secret key objects (object class CKO_SECRET_KEY, key type CKK_TWOFISH) hold Twofish keys. The following table defines the Twofish secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807556][bookmark: _Toc25853537]Table 210, Twofish Secret Key Object
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value 128-, 192-, or 256-bit key

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating an TWOFISH secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_TWOFISH;
CK_UTF8CHAR label[] = “A twofish secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.46.3 [bookmark: _Toc228894831][bookmark: _Toc228807380][bookmark: _Toc72656519][bookmark: _Toc370634611][bookmark: _Toc391471324][bookmark: _Toc395187962][bookmark: _Toc416960208][bookmark: _Toc8118502][bookmark: _Toc30061481][bookmark: _Toc90376734][bookmark: _Toc111203719][bookmark: _Toc148962561][bookmark: _Toc195693598]Twofish key generation
The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a key generation mechanism Twofish.
It does not have a parameter.
The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes.
6.46.4 [bookmark: _Toc228894832][bookmark: _Toc228807381][bookmark: _Toc72656520][bookmark: _Toc370634612][bookmark: _Toc391471325][bookmark: _Toc395187963][bookmark: _Toc416960209][bookmark: _Toc8118503][bookmark: _Toc30061482][bookmark: _Toc90376735][bookmark: _Toc111203720][bookmark: _Toc148962562][bookmark: _Toc195693599]Twofish -CBC
Twofish-CBC, denoted CKM_TWOFISH_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping.
It has a parameter, a 16-byte initialization vector.
6.46.5 [bookmark: _Toc228894833][bookmark: _Toc228807382][bookmark: _Toc370634613][bookmark: _Toc391471326][bookmark: _Toc395187964][bookmark: _Toc416960210][bookmark: _Toc8118504][bookmark: _Toc30061483][bookmark: _Toc90376736][bookmark: _Toc111203721][bookmark: _Toc148962563][bookmark: _Toc195693600][bookmark: _Toc151796122]Twofish-CBC with PKCS padding
Twofish-CBC-PAD, denoted CKM_TWOFISH_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 16-byte initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
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Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. Camellia is described e.g. in IETF [RFC 3713].
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6.47.1 [bookmark: _Toc228894835][bookmark: _Toc228807384][bookmark: _Toc370634615][bookmark: _Toc391471328][bookmark: _Toc395187966][bookmark: _Toc416960212][bookmark: _Toc8118506][bookmark: _Toc30061485][bookmark: _Toc90376738][bookmark: _Toc111203723][bookmark: _Toc148962565][bookmark: _Toc195693602]Definitions
This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA_ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA_MAC
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_CBC_PAD
6.47.2 [bookmark: _Toc228894836][bookmark: _Toc228807385][bookmark: _Toc151796124][bookmark: _Toc76209548][bookmark: _Toc370634616][bookmark: _Toc391471329][bookmark: _Toc395187967][bookmark: _Toc416960213][bookmark: _Toc8118507][bookmark: _Toc30061486][bookmark: _Toc90376739][bookmark: _Toc111203724][bookmark: _Toc148962566][bookmark: _Toc195693603]Camellia secret key objects
Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807557][bookmark: _Toc151796154][bookmark: _Toc76209865][bookmark: _Toc25853539]Table 212, Camellia Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (16, 24, or 32 bytes)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating a Camellia secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAMELLIA;
CK_UTF8CHAR label[] = “A Camellia secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.47.3 [bookmark: _Toc148505534][bookmark: _Toc148506049][bookmark: _Toc76209549][bookmark: _Toc151796125][bookmark: _Toc228807386][bookmark: _Toc228894837][bookmark: _Toc370634617][bookmark: _Toc391471330][bookmark: _Toc395187968][bookmark: _Toc416960214][bookmark: _Toc8118508][bookmark: _Toc30061487][bookmark: _Toc90376740][bookmark: _Toc111203725][bookmark: _Toc148962567][bookmark: _Toc195693604]Camellia key generation
The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a key generation mechanism for Camellia.
It does not have a parameter.
The mechanism generates Camellia keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.
6.47.4 [bookmark: _Toc228894838][bookmark: _Toc228807387][bookmark: _Toc151796126][bookmark: _Toc76209550][bookmark: _Toc370634618][bookmark: _Toc391471331][bookmark: _Toc395187969][bookmark: _Toc416960215][bookmark: _Toc8118509][bookmark: _Toc30061488][bookmark: _Toc90376741][bookmark: _Toc111203726][bookmark: _Toc148962568][bookmark: _Toc195693605]Camellia-ECB
Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.
It does not have a parameter.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807558][bookmark: _Toc151796155][bookmark: _Toc76209866][bookmark: _Toc25853540]Table 213, Camellia-ECB: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CKK_CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CKK_CAMELLIA
	any
	input length rounded up to multiple of block size
	

	C_UnwrapKey
	CKK_CAMELLIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.
6.47.5 [bookmark: _Toc228894839][bookmark: _Toc228807388][bookmark: _Toc151796127][bookmark: _Toc76209551][bookmark: _Toc370634619][bookmark: _Toc391471332][bookmark: _Toc395187970][bookmark: _Toc416960216][bookmark: _Toc8118510][bookmark: _Toc30061489][bookmark: _Toc90376742][bookmark: _Toc111203727][bookmark: _Toc148962569][bookmark: _Toc195693606]Camellia-CBC
Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807559][bookmark: _Toc151796156][bookmark: _Toc76209867][bookmark: _Toc25853541]Table 214, Camellia-CBC: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CKK_CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CKK_CAMELLIA
	any
	input length rounded up to multiple of the block size
	

	C_UnwrapKey
	CKK_CAMELLIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.
6.47.6 [bookmark: _Toc228894840][bookmark: _Toc228807389][bookmark: _Toc151796128][bookmark: _Toc76209552][bookmark: _Toc370634620][bookmark: _Toc391471333][bookmark: _Toc395187971][bookmark: _Toc416960217][bookmark: _Toc8118511][bookmark: _Toc30061490][bookmark: _Toc90376743][bookmark: _Toc111203728][bookmark: _Toc148962570][bookmark: _Toc195693607]Camellia-CBC with PKCS padding
Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia; cipher-block chaining mode; and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 16-byte initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, short Weierstrass EC and DSA private keys (see section 6.7 for details). The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807560][bookmark: _Toc151796157][bookmark: _Toc76209868][bookmark: _Toc25853542]Table 215, Camellia-CBC with PKCS Padding: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt
	CKK_CAMELLIA
	any
	input length rounded up to multiple of the block size

	C_Decrypt
	CKK_CAMELLIA
	multiple of block size
	between 1 and block size bytes shorter than input length

	C_WrapKey
	CKK_CAMELLIA
	any
	input length rounded up to multiple of the block size

	C_UnwrapKey
	CKK_CAMELLIA
	multiple of block size
	between 1 and block length bytes shorter than input length


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

6.47.7 [bookmark: _Toc441850499][bookmark: _Toc441162421][bookmark: _Toc437440580][bookmark: _Toc8118512][bookmark: _Toc30061491][bookmark: _Toc90376744][bookmark: _Toc111203729][bookmark: _Toc148962571][bookmark: _Toc195693608]CAMELLIA with Counter mechanism parameters 
· CK_CAMELLIA_CTR_PARAMS; CK_CAMELLIA_CTR_PARAMS_PTR
CK_CAMELLIA_CTR_PARAMS is a structure that provides the parameters to the CKM_CAMELLIA_CTR mechanism. It is defined as follows:
typedef struct CK_CAMELLIA_CTR_PARAMS {
        CK_ULONG ulCounterBits;
        CK_BYTE cb[16];
} CK_CAMELLIA_CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This number  shall be such that 0 < ulCounterBits ≤ 128. For any values outside this range the mechanism shall return CKR_MECHANISM_PARAM_INVALID.
It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.
E.g. as defined in [RFC 3686]:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Nonce                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Initialization Vector (IV)                   |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Block Counter                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This construction permits each packet to consist of up to 232-1 blocks  =  4,294,967,295 blocks = 68,719,476,720 octets.
CK_CAMELLIA_CTR_PARAMS_PTR is a pointer to a CK_CAMELLIA_CTR_PARAMS.

6.47.8 [bookmark: _Toc228894841][bookmark: _Toc228807390][bookmark: _Toc151796129][bookmark: _Toc76209553][bookmark: _Toc370634621][bookmark: _Toc391471334][bookmark: _Toc395187972][bookmark: _Toc416960218][bookmark: _Toc8118513][bookmark: _Toc30061492][bookmark: _Toc90376745][bookmark: _Toc111203730][bookmark: _Toc148962572][bookmark: _Toc195693609]General-length Camellia-MAC
General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on Camellia  and data authentication as defined in.[CAMELLIA]
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807561][bookmark: _Toc151796158][bookmark: _Toc76209869][bookmark: _Toc25853543]Table 216, General-length Camellia-MAC: Key and Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_CAMELLIA
	any
	1-block size, as specified in parameters

	C_Verify
	CKK_CAMELLIA
	any
	1-block size, as specified in parameters


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.
6.47.9 [bookmark: _Toc228894842][bookmark: _Toc228807391][bookmark: _Toc151796130][bookmark: _Toc76209554][bookmark: _Toc370634622][bookmark: _Toc391471335][bookmark: _Toc395187973][bookmark: _Toc416960219][bookmark: _Toc8118514][bookmark: _Toc30061493][bookmark: _Toc90376746][bookmark: _Toc111203731][bookmark: _Toc148962573][bookmark: _Toc195693610]Camellia-MAC
Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in length.
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807562][bookmark: _Toc151796159][bookmark: _Toc76209870][bookmark: _Toc25853544]Table 217, Camellia-MAC: Key and Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_CAMELLIA
	any
	½ block size (8 bytes)

	C_Verify
	CKK_CAMELLIA
	any
	½ block size (8 bytes)


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.
6.48 [bookmark: _Toc228894843][bookmark: _Toc228807392][bookmark: _Toc151796131][bookmark: _Toc370634623][bookmark: _Toc391471336][bookmark: _Toc395187974][bookmark: _Toc416960220][bookmark: _Toc8118515][bookmark: _Toc30061494][bookmark: _Toc90376747][bookmark: _Toc111203732][bookmark: _Toc148962574][bookmark: _Toc195693611]Key derivation by data encryption - Camellia
These mechanisms allow derivation of keys using the result of an encryption operation as the key value. They are for use with the C_DeriveKey function.
6.48.1 [bookmark: _Toc228894844][bookmark: _Toc228807393][bookmark: _Toc151796132][bookmark: _Toc76209572][bookmark: _Toc370634624][bookmark: _Toc391471337][bookmark: _Toc395187975][bookmark: _Toc416960221][bookmark: _Toc8118516][bookmark: _Toc30061495][bookmark: _Toc90376748][bookmark: _Toc111203733][bookmark: _Toc148962575][bookmark: _Toc195693612]Definitions
Mechanisms:
CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {
  CK_BYTE      iv[16];
  CK_BYTE_PTR  pData;
  CK_ULONG     length;
} CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS_PTR;
6.48.2 [bookmark: _Toc228894845][bookmark: _Toc228807394][bookmark: _Toc151796133][bookmark: _Toc76209573][bookmark: _Toc370634625][bookmark: _Toc391471338][bookmark: _Toc395187976][bookmark: _Toc416960222][bookmark: _Toc8118517][bookmark: _Toc30061496][bookmark: _Toc90376749][bookmark: _Toc111203734][bookmark: _Toc148962576][bookmark: _Toc195693613]Mechanism Parameters
Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS,  and CK_KEY_DERIVATION_STRING_DATA. 
[bookmark: _Toc76209882][bookmark: _Toc228807563][bookmark: _Toc151796160][bookmark: _Toc25853545]Table 218, Mechanism Parameters for Camellia-based key derivation
	CKM_CAMELLIA_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 16 long.

	CKM_CAMELLIA_CBC_ENCRYPT_DATA
	Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 16 byte IV value followed by the data. The data value part must be a multiple of 16 bytes long.



6.49 [bookmark: _Toc228894846][bookmark: _Toc228807395][bookmark: _Toc151796134][bookmark: _Toc370634626][bookmark: _Toc391471339][bookmark: _Toc395187977][bookmark: _Toc416960223][bookmark: _Toc8118518][bookmark: _Toc30061497][bookmark: _Toc90376750][bookmark: _Toc111203735][bookmark: _Toc148962577][bookmark: _Toc195693614]ARIA
ARIA is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. ARIA is described in NSRI “Specification of ARIA”.
[bookmark: _Toc25853546]Table 219, ARIA Mechanisms vs. Functions
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6.49.1 [bookmark: _Toc228894847][bookmark: _Toc228807396][bookmark: _Toc370634627][bookmark: _Toc391471340][bookmark: _Toc395187978][bookmark: _Toc416960224][bookmark: _Toc8118519][bookmark: _Toc30061498][bookmark: _Toc90376751][bookmark: _Toc111203736][bookmark: _Toc148962578][bookmark: _Toc195693615]Definitions
This section defines the key type “CKK_ARIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_ARIA_KEY_GEN
CKM_ARIA_ECB
CKM_ARIA_CBC
CKM_ARIA_MAC
CKM_ARIA_MAC_GENERAL
CKM_ARIA_CBC_PAD
6.49.2 [bookmark: _Toc228894848][bookmark: _Toc228807397][bookmark: _Toc151796136][bookmark: _Toc370634628][bookmark: _Toc391471341][bookmark: _Toc395187979][bookmark: _Toc416960225][bookmark: _Toc8118520][bookmark: _Toc30061499][bookmark: _Toc90376752][bookmark: _Toc111203737][bookmark: _Toc148962579][bookmark: _Toc195693616]Aria secret key objects
ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA) hold ARIA keys. The following table defines the ARIA secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807564][bookmark: _Toc151796161][bookmark: _Toc25853547]Table 220, ARIA Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (16, 24, or 32 bytes)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


- Refer to Table 13 for footnotes
The following is a sample template for creating an ARIA secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_ARIA;
CK_UTF8CHAR label[] = “An ARIA secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.49.3 [bookmark: _Toc228894849][bookmark: _Toc228807398][bookmark: _Toc151796137][bookmark: _Toc370634629][bookmark: _Toc391471342][bookmark: _Toc395187980][bookmark: _Toc416960226][bookmark: _Toc8118521][bookmark: _Toc30061500][bookmark: _Toc90376753][bookmark: _Toc111203738][bookmark: _Toc148962580][bookmark: _Toc195693617]ARIA key generation
The ARIA key generation mechanism, denoted CKM_ARIA_KEY_GEN, is a key generation mechanism for Aria.
It does not have a parameter.
The mechanism generates ARIA keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the ARIA key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ARIA key sizes, in bytes.
6.49.4 [bookmark: _Toc228894850][bookmark: _Toc228807399][bookmark: _Toc151796138][bookmark: _Toc370634630][bookmark: _Toc391471343][bookmark: _Toc395187981][bookmark: _Toc416960227][bookmark: _Toc8118522][bookmark: _Toc30061501][bookmark: _Toc90376754][bookmark: _Toc111203739][bookmark: _Toc148962581][bookmark: _Toc195693618]ARIA-ECB
ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Aria and electronic codebook mode.
It does not have a parameter.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807565][bookmark: _Toc151796162][bookmark: _Toc25853548]Table 221, ARIA-ECB: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_ARIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CKK_ARIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CKK_ARIA
	any
	input length rounded up to multiple of block size
	

	C_UnwrapKey
	CKK_ARIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ARIA key sizes, in bytes.
6.49.5 [bookmark: _Toc228894851][bookmark: _Toc228807400][bookmark: _Toc151796139][bookmark: _Toc370634631][bookmark: _Toc391471344][bookmark: _Toc395187982][bookmark: _Toc416960228][bookmark: _Toc8118523][bookmark: _Toc30061502][bookmark: _Toc90376755][bookmark: _Toc111203740][bookmark: _Toc148962582][bookmark: _Toc195693619]ARIA-CBC
ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA and cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807566][bookmark: _Toc151796163][bookmark: _Toc25853549]Table 222, ARIA-CBC: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CKK_ARIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CKK_ARIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CKK_ARIA
	any
	input length rounded up to multiple of the block size
	

	C_UnwrapKey
	CKK_ARIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Aria key sizes, in bytes.
6.49.6 [bookmark: _Toc228894852][bookmark: _Toc228807401][bookmark: _Toc151796140][bookmark: _Toc370634632][bookmark: _Toc391471345][bookmark: _Toc395187983][bookmark: _Toc416960229][bookmark: _Toc8118524][bookmark: _Toc30061503][bookmark: _Toc90376756][bookmark: _Toc111203741][bookmark: _Toc148962583][bookmark: _Toc195693620]ARIA-CBC with PKCS padding
ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA; cipher-block chaining mode; and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 16-byte initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, short Weierstrass EC and DSA private keys (see section 6.7 for details). The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807567][bookmark: _Toc151796164][bookmark: _Toc25853550]Table 223, ARIA-CBC with PKCS Padding: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt
	CKK_ARIA
	any
	input length rounded up to multiple of the block size

	C_Decrypt
	CKK_ARIA
	multiple of block size
	between 1 and block size bytes shorter than input length

	C_WrapKey
	CKK_ARIA
	any
	input length rounded up to multiple of the block size

	C_UnwrapKey
	CKK_ARIA
	multiple of block size
	between 1 and block length bytes shorter than input length


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ARIA key sizes, in bytes.
6.49.7 [bookmark: _Toc228894853][bookmark: _Toc228807402][bookmark: _Toc151796141][bookmark: _Toc370634633][bookmark: _Toc391471346][bookmark: _Toc395187984][bookmark: _Toc416960230][bookmark: _Toc8118525][bookmark: _Toc30061504][bookmark: _Toc90376757][bookmark: _Toc111203742][bookmark: _Toc148962584][bookmark: _Toc195693621]General-length ARIA-MAC
General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on ARIA and data authentication as defined in [FIPS 113].
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final ARIA cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807568][bookmark: _Toc151796165][bookmark: _Toc25853551]Table 224, General-length ARIA-MAC: Key and Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_ARIA
	any
	1-block size, as specified in parameters

	C_Verify
	CKK_ARIA
	any
	1-block size, as specified in parameters


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ARIA key sizes, in bytes.
6.49.8 [bookmark: _Toc228894854][bookmark: _Toc228807403][bookmark: _Toc151796142][bookmark: _Toc370634634][bookmark: _Toc391471347][bookmark: _Toc395187985][bookmark: _Toc416960231][bookmark: _Toc8118526][bookmark: _Toc30061505][bookmark: _Toc90376758][bookmark: _Toc111203743][bookmark: _Toc148962585][bookmark: _Toc195693622]ARIA-MAC
ARIA-MAC, denoted by CKM_ARIA_MAC, is a special case of the general-length ARIA-MAC mechanism. ARIA-MAC always produces and verifies MACs that are half the block size in length.
It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807569][bookmark: _Toc151796166][bookmark: _Toc25853552]Table 225, ARIA-MAC: Key and Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_ARIA
	any
	½ block size (8 bytes)

	C_Verify
	CKK_ARIA
	any
	½ block size (8 bytes)


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ARIA key sizes, in bytes.
6.50 [bookmark: _Toc228894855][bookmark: _Toc228807404][bookmark: _Toc151796143][bookmark: _Toc370634635][bookmark: _Toc391471348][bookmark: _Toc395187986][bookmark: _Toc416960232][bookmark: _Toc8118527][bookmark: _Toc30061506][bookmark: _Toc90376759][bookmark: _Toc111203744][bookmark: _Toc148962586][bookmark: _Toc195693623]Key derivation by data encryption - ARIA
These mechanisms allow derivation of keys using the result of an encryption operation as the key value. They are for use with the C_DeriveKey function.
6.50.1 [bookmark: _Toc228894856][bookmark: _Toc228807405][bookmark: _Toc151796144][bookmark: _Toc370634636][bookmark: _Toc391471349][bookmark: _Toc395187987][bookmark: _Toc416960233][bookmark: _Toc8118528][bookmark: _Toc30061507][bookmark: _Toc90376760][bookmark: _Toc111203745][bookmark: _Toc148962587][bookmark: _Toc195693624]Definitions
Mechanisms:
CKM_ARIA_ECB_ENCRYPT_DATA
CKM_ARIA_CBC_ENCRYPT_DATA

typedef struct CK_ARIA_CBC_ENCRYPT_DATA_PARAMS {
 CK_BYTE      iv[16];
  CK_BYTE_PTR  pData;
  CK_ULONG     length;
} CK_ARIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_ARIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_ARIA_CBC_ENCRYPT_DATA_PARAMS_PTR;
6.50.2 [bookmark: _Toc228894857][bookmark: _Toc228807406][bookmark: _Toc151796145][bookmark: _Toc370634637][bookmark: _Toc391471350][bookmark: _Toc395187988][bookmark: _Toc416960234][bookmark: _Toc8118529][bookmark: _Toc30061508][bookmark: _Toc90376761][bookmark: _Toc111203746][bookmark: _Toc148962588][bookmark: _Toc195693625]Mechanism Parameters
Uses CK_ARIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA. 
[bookmark: _Toc228807570][bookmark: _Toc151796167][bookmark: _Toc25853553]Table 226, Mechanism Parameters for Aria-based key derivation
	CKM_ARIA_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 16 long.

	CKM_ARIA_CBC_ENCRYPT_DATA
	Uses CK_ARIA_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 16 byte IV value followed by the data. The data value part must be a multiple of 16 bytes long.



6.51 [bookmark: _Toc228894858][bookmark: _Toc228807407][bookmark: _Toc370634638][bookmark: _Toc391471351][bookmark: _Toc395187989][bookmark: _Toc416960235][bookmark: _Toc8118530][bookmark: _Toc30061509][bookmark: _Toc90376762][bookmark: _Toc111203747][bookmark: _Toc148962589][bookmark: _Toc195693626]SEED
SEED is a symmetric block cipher developed by the South Korean Information Security Agency (KISA). It has a 128-bit key size and a 128-bit block size.
Its specification has been published as Internet [RFC 4269].
RFCs have been published defining the use of SEED in
TLS    ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt
IPsec  ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt
CMS    ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS cipher suites that use SEED include:
  CipherSuite TLS_RSA_WITH_SEED_CBC_SHA      = { 0x00, 0x96};
  CipherSuite TLS_DH_DSS_WITH_SEED_CBC_SHA   = { 0x00, 0x97};
  CipherSuite TLS_DH_RSA_WITH_SEED_CBC_SHA   = { 0x00, 0x98};
  CipherSuite TLS_DHE_DSS_WITH_SEED_CBC_SHA  = { 0x00, 0x99};
  CipherSuite TLS_DHE_RSA_WITH_SEED_CBC_SHA  = { 0x00, 0x9A};
  CipherSuite TLS_DH_anon_WITH_SEED_CBC_SHA  = { 0x00, 0x9B};

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of operation, as well as in a MAC algorithm such as HMAC.
OIDs have been published for all these uses. A list may be seen at http://www.alvestrand.no/objectid/1.2.410.200004.1.html

[bookmark: _Toc25853554]Table 227, SEED Mechanisms vs. Functions
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6.51.1 [bookmark: _Toc228894859][bookmark: _Toc228807408][bookmark: _Toc370634639][bookmark: _Toc391471352][bookmark: _Toc395187990][bookmark: _Toc416960236][bookmark: _Toc8118531][bookmark: _Toc30061510][bookmark: _Toc90376763][bookmark: _Toc111203748][bookmark: _Toc148962590][bookmark: _Toc195693627]Definitions
This section defines the key type “CKK_SEED” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SEED_KEY_GEN
CKM_SEED_ECB
CKM_SEED_CBC
CKM_SEED_MAC
CKM_SEED_MAC_GENERAL
CKM_SEED_CBC_PAD

For all of these mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO are always 16.
6.51.2 [bookmark: _Toc228894860][bookmark: _Toc228807409][bookmark: _Toc370634640][bookmark: _Toc391471353][bookmark: _Toc395187991][bookmark: _Toc416960237][bookmark: _Toc8118532][bookmark: _Toc30061511][bookmark: _Toc90376764][bookmark: _Toc111203749][bookmark: _Toc148962591][bookmark: _Toc195693628]SEED secret key objects
SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys. The following table defines the secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807571][bookmark: _Toc25853555]Table 228, SEED Secret Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (always 16 bytes long)


- Refer to Table 13 for footnotes
The following is a sample template for creating a SEED secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SEED;
CK_UTF8CHAR label[] = “A SEED secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
6.51.3 [bookmark: _Toc228894861][bookmark: _Toc228807410][bookmark: _Toc370634641][bookmark: _Toc391471354][bookmark: _Toc395187992][bookmark: _Toc416960238][bookmark: _Toc8118533][bookmark: _Toc30061512][bookmark: _Toc90376765][bookmark: _Toc111203750][bookmark: _Toc148962592][bookmark: _Toc195693629]SEED key generation
The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism for SEED.
It does not have a parameter.
The mechanism generates SEED keys.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the SEED key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
6.51.4 [bookmark: _Toc228894862][bookmark: _Toc228807411][bookmark: _Toc370634642][bookmark: _Toc391471355][bookmark: _Toc395187993][bookmark: _Toc416960239][bookmark: _Toc8118534][bookmark: _Toc30061513][bookmark: _Toc90376766][bookmark: _Toc111203751][bookmark: _Toc148962593][bookmark: _Toc195693630]SEED-ECB
SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED and electronic codebook mode.
It does not have a parameter.
6.51.5 [bookmark: _Toc8118535][bookmark: _Toc30061514][bookmark: _Toc90376767][bookmark: _Toc111203752][bookmark: _Toc148962594][bookmark: _Toc195693631]SEED-CBC
SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED and cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.
6.51.6 [bookmark: _Toc228894864][bookmark: _Toc228807413][bookmark: _Toc370634644][bookmark: _Toc391471357][bookmark: _Toc395187995][bookmark: _Toc416960241][bookmark: _Toc8118536][bookmark: _Toc30061515][bookmark: _Toc90376768][bookmark: _Toc111203753][bookmark: _Toc148962595][bookmark: _Toc195693632]SEED-CBC with PKCS padding
SEED-CBC with PKCS padding, denoted CKM_SEED_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED; cipher-block chaining mode; and the block cipher padding method detailed in [PKCS #7].
It has a parameter, a 16-byte initialization vector.
6.51.7 [bookmark: _Toc228894865][bookmark: _Toc228807414][bookmark: _Toc370634645][bookmark: _Toc391471358][bookmark: _Toc395187996][bookmark: _Toc416960242][bookmark: _Toc8118537][bookmark: _Toc30061516][bookmark: _Toc90376769][bookmark: _Toc111203754][bookmark: _Toc148962596][bookmark: _Toc195693633]General-length SEED-MAC
General-length SEED-MAC, denoted CKM_SEED_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on SEED and data authentication.
It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final cipher block produced in the MACing process.
6.51.8 [bookmark: _Toc228894866][bookmark: _Toc228807415][bookmark: _Toc370634646][bookmark: _Toc391471359][bookmark: _Toc395187997][bookmark: _Toc416960243][bookmark: _Toc8118538][bookmark: _Toc30061517][bookmark: _Toc90376770][bookmark: _Toc111203755][bookmark: _Toc148962597][bookmark: _Toc195693634]SEED-MAC
SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEED-MAC mechanism. SEED-MAC always produces and verifies MACs that are half the block size in length.
It does not have a parameter.
6.52 [bookmark: _Toc228894867][bookmark: _Toc228807416][bookmark: _Toc370634647][bookmark: _Toc391471360][bookmark: _Toc395187998][bookmark: _Toc416960244][bookmark: _Toc8118539][bookmark: _Toc30061518][bookmark: _Toc90376771][bookmark: _Toc111203756][bookmark: _Toc148962598][bookmark: _Toc195693635]Key derivation by data encryption - SEED
These mechanisms allow derivation of keys using the result of an encryption operation as the key value. They are for use with the C_DeriveKey function.
6.52.1 [bookmark: _Toc228894868][bookmark: _Toc228807417][bookmark: _Toc370634648][bookmark: _Toc391471361][bookmark: _Toc395187999][bookmark: _Toc416960245][bookmark: _Toc8118540][bookmark: _Toc30061519][bookmark: _Toc90376772][bookmark: _Toc111203757][bookmark: _Toc148962599][bookmark: _Toc195693636]Definitions
Mechanisms:
CKM_SEED_ECB_ENCRYPT_DATA
CKM_SEED_CBC_ENCRYPT_DATA

typedef struct CK_SEED_CBC_ENCRYPT_DATA_PARAMS {
	CK_BYTE	iv[16];
	CK_BYTE_PTR	pData;
	CK_ULONG	length;
}	CK_SEED_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_SEED_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_SEED_CBC_ENCRYPT_DATA_PARAMS_PTR;
6.52.2 [bookmark: _Toc228894869][bookmark: _Toc228807418][bookmark: _Toc370634649][bookmark: _Toc391471362][bookmark: _Toc395188000][bookmark: _Toc416960246][bookmark: _Toc8118541][bookmark: _Toc30061520][bookmark: _Toc90376773][bookmark: _Toc111203758][bookmark: _Toc148962600][bookmark: _Toc195693637]Mechanism Parameters
[bookmark: _Toc228807572][bookmark: _Toc25853556]Table 229, Mechanism Parameters for SEED-based key derivation
	CKM_SEED_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 16 long.

	CKM_SEED_CBC_ENCRYPT_DATA
	Uses CK_SEED_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 16 byte IV value followed by the data. The data value part must be a multiple of 16 bytes long.



6.53 [bookmark: _Toc8118542][bookmark: _Toc30061521][bookmark: _Toc90376774][bookmark: _Toc111203759][bookmark: _Toc148962601][bookmark: _Toc195693638][bookmark: _Toc228894863][bookmark: _Toc228807412][bookmark: _Toc370634643][bookmark: _Toc391471356][bookmark: _Toc395187994][bookmark: _Toc416960240]OTP
6.53.1 [bookmark: _Toc8118543][bookmark: _Toc30061522][bookmark: _Toc90376775][bookmark: _Toc111203760][bookmark: _Toc148962602][bookmark: _Toc195693639]Usage overview
OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The usage cases can be categorized according to the type of sought functionality.
6.53.2 [bookmark: _Toc8118544][bookmark: _Toc30061523][bookmark: _Toc90376776][bookmark: _Toc111203761][bookmark: _Toc148962603][bookmark: _Toc195693640]Case 1: Generation of OTP values
.[image: ]
[bookmark: _Ref4479114]Figure 2: Retrieving OTP values through C_Sign
Figure 2 shows an integration of PKCS #11 into an application that needs to authenticate users holding OTP tokens. In this particular example, a connected hardware token is used, but a software token is equally possible. The application invokes C_Sign to retrieve the OTP value from the token. In the example, the application then passes the retrieved OTP value to a client API that sends it via the network to an authentication server. The client API may implement a standard authentication protocol such as RADIUS [RFC 2865] or EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's ACE/Agent® software.
6.53.3 [bookmark: _Toc8118545][bookmark: _Toc30061524][bookmark: _Toc90376777][bookmark: _Toc111203762][bookmark: _Toc148962604][bookmark: _Toc195693641]Case 2: Verification of provided OTP values
[image: ]
[bookmark: _Ref4479131]Figure 3: Server-side verification of OTP values
Figure 3 illustrates the server-side equivalent of the scenario depicted in Figure 2. In this case, a server application invokes C_Verify with the received OTP value as the signature value to be verified.
6.53.4 [bookmark: _Toc8118546][bookmark: _Toc30061525][bookmark: _Toc90376778][bookmark: _Toc111203763][bookmark: _Toc148962605][bookmark: _Toc195693642]Case 3: Generation of OTP keys
[image: ]
[bookmark: _Ref4479139]Figure 4: Generation of an OTP key
Figure 4 shows an integration of PKCS #11 into an application that generates OTP keys. The application invokes C_GenerateKey to generate an OTP key of a particular type on the token. The key may subsequently be used as a basis to generate OTP values.
6.53.5 [bookmark: _Toc8118547][bookmark: _Toc30061526][bookmark: _Toc90376779][bookmark: _Toc111203764][bookmark: _Toc148962606][bookmark: _Toc195693643]OTP objects
6.53.5.1 [bookmark: _Toc30061527][bookmark: _Toc90376780][bookmark: _Toc111203765][bookmark: _Toc148962607][bookmark: _Toc195693644]Key objects
OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens. The following table defines the attributes common to all OTP keys, in addition to the attributes defined for secret keys, all of which are inherited by this class:
[bookmark: _Toc25853557]Table 230, Common OTP key attributes
	Attribute
	Data type
	Meaning

	CKA_OTP_FORMAT
	CK_ULONG
	Format of OTP values produced with this key:
CK_OTP_FORMAT_DECIMAL = Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT_HEXADECIMAL = Hexadecimal (UTF8-encoded)
CK_OTP_FORMAT_ALPHANUMERIC = Alphanumeric (UTF8-encoded)
CK_OTP_FORMAT_BINARY = Only binary values.

	CKA_OTP_LENGTH9
	CK_ULONG
	Default length of OTP values (in the CKA_OTP_FORMAT) produced with this key.

	CKA_OTP_USER_FRIENDLY_MODE9
	CK_BBOOL
	Set to CK_TRUE when the token is capable of returning OTPs suitable for human consumption. See the description of CKF_USER_FRIENDLY_OTP below.

	CKA_OTP_CHALLENGE_REQUIREMENT9
	CK_ULONG
	Parameter requirements when generating or verifying OTP values with this key:
CK_OTP_PARAM_MANDATORY = A challenge must be supplied.
CK_OTP_PARAM_OPTIONAL = A challenge may be supplied but need not be.
CK_OTP_PARAM_IGNORED = A challenge, if supplied, will be ignored.

	CKA_OTP_TIME_REQUIREMENT9
	CK_ULONG
	Parameter requirements when generating or verifying OTP values with this key:
CK_OTP_PARAM_MANDATORY = A time value must be supplied.
CK_OTP_PARAM_OPTIONAL = A time value may be supplied but need not be.
CK_OTP_PARAM_IGNORED = A time value, if supplied, will be ignored.

	CKA_OTP_COUNTER_REQUIREMENT9
	CK_ULONG
	Parameter requirements when generating or verifying OTP values with this key:
CK_OTP_PARAM_MANDATORY = A counter value must be supplied.
CK_OTP_PARAM_OPTIONAL = A counter value may be supplied but need not be.
CK_OTP_PARAM_IGNORED = A counter value, if supplied, will be ignored.

	CKA_OTP_PIN_REQUIREMENT9
	CK_ULONG
	Parameter requirements when generating or verifying OTP values with this key:
CK_OTP_PARAM_MANDATORY = A PIN value must be supplied.
CK_OTP_PARAM_OPTIONAL = A PIN value may be supplied but need not be (if not supplied, then library will be responsible for collecting it)
CK_OTP_PARAM_IGNORED = A PIN value, if supplied, will be ignored.

	CKA_OTP_COUNTER
	Byte array
	Value of the associated internal counter. Default value is empty (i.e. ulValueLen = 0).

	CKA_OTP_TIME
	RFC 2279 string
	Value of the associated internal UTC time in the form YYYYMMDDhhmmss. Default value is empty (i.e. ulValueLen= 0).

	CKA_OTP_USER_IDENTIFIER
	RFC 2279 string
	Text string that identifies a user associated with the OTP key (may be used to enhance the user experience). Default value is empty (i.e. ulValueLen = 0).

	CKA_OTP_SERVICE_IDENTIFIER
	RFC 2279 string
	Text string that identifies a service that may validate OTPs generated by this key. Default value is empty (i.e. ulValueLen = 0).

	CKA_OTP_SERVICE_LOGO
	Byte array
	Logotype image that identifies a service that may validate OTPs generated by this key. Default value is empty (i.e. ulValueLen = 0).

	CKA_OTP_SERVICE_LOGO_TYPE
	RFC 2279 string
	MIME type of the CKA_OTP_SERVICE_LOGO attribute value. Default value is empty (i.e. ulValueLen = 0).

	CKA_VALUE1, 4, 6, 7
	Byte array
	Value of the key.

	CKA_VALUE_LEN2, 3
	CK_ULONG
	Length in bytes of key value.


- Refer to Table 13 for footnotes
Note: A Cryptoki library may support PIN-code caching in order to reduce user interactions. An OTP-PKCS #11 application should therefore always consult the state of the CKA_OTP_PIN_REQUIREMENT attribute before each call to C_SignInit, as the value of this attribute may change dynamically.
For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects. The CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO attribute may be used to distinguish between keys. The actual choice of key for a particular operation is however application-specific and beyond the scope of this document.
For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as required.
6.53.6 [bookmark: _Toc8118548][bookmark: _Toc30061528][bookmark: _Toc90376781][bookmark: _Toc111203766][bookmark: _Toc148962608][bookmark: _Toc195693645]OTP-related notifications
This document extends the set of defined notifications as follows:
	CKN_OTP_CHANGED	Cryptoki is informing the application that the OTP for a key on a connected token just changed. This notification is particularly useful when applications wish to display the current OTP value for time-based mechanisms.
6.53.7 [bookmark: _Toc8118549][bookmark: _Toc30061529][bookmark: _Toc90376782][bookmark: _Toc111203767][bookmark: _Toc148962609][bookmark: _Toc195693646]OTP mechanisms
The following table shows, for the OTP mechanisms defined in this document, their support by different cryptographic operations. For any particular token, of course, a particular operation may well support only a subset of the mechanisms listed. There is also no guarantee that a token that supports one mechanism for some operation supports any other mechanism for any other operation (or even supports that same mechanism for any other operation).
[bookmark: _Toc25853558]Table 231, OTP mechanisms vs. applicable functions
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The remainder of this section will present in detail the OTP mechanisms and the parameters that are supplied to them.
6.53.7.1 [bookmark: _Toc30061530][bookmark: _Toc90376783][bookmark: _Toc111203768][bookmark: _Toc148962610][bookmark: _Toc195693647]OTP mechanism parameters
· CK_OTP_PARAM_TYPE
CK_OTP_PARAM_TYPE is a value that identifies an OTP parameter type. It is defined as follows:
typedef CK_ULONG CK_OTP_PARAM_TYPE;
The following CK_OTP_PARAM_TYPE types are defined:
[bookmark: _Toc25853559]Table 232, OTP parameter types
	Parameter
	Data type
	Meaning

	CK_OTP_PIN
	RFC 2279 string
	A UTF8 string containing a PIN for use when computing or verifying PIN-based OTP values.

	CK_OTP_CHALLENGE
	Byte array
	Challenge to use when computing or verifying challenge-based OTP values.

	CK_OTP_TIME
	RFC 2279 string
	UTC time value in the form YYYYMMDDhhmmss to use when computing or verifying time-based OTP values.

	CK_OTP_COUNTER
	Byte array
	Counter value to use when computing or verifying counter-based OTP values.

	CK_OTP_FLAGS
	CK_FLAGS
	Bit flags indicating the characteristics of the sought OTP as defined below.

	CK_OTP_OUTPUT_LENGTH
	CK_ULONG
	Desired output length (overrides any default value). A Cryptoki library will return CKR_MECHANISM_PARAM_INVALID if a provided length value is not supported.

	CK_OTP_OUTPUT_FORMAT
	CK_ULONG
	Returned OTP format (allowed values are the same as for CKA_OTP_FORMAT). This parameter is only intended for C_Sign output, see paragraphs below. When not present, the returned OTP format will be the same as the value of the CKA_OTP_FORMAT attribute for the key in question.

	CK_OTP_VALUE
	Byte array
	An actual OTP value. This parameter type is intended for C_Sign output, see paragraphs below.



The following table defines the possible values for the CK_OTP_FLAGS type:
[bookmark: _Toc25853560]Table 233, OTP Mechanism Flags
	Bit flag
	Mask
	Meaning

	CKF_NEXT_OTP
	0x00000001
	True (i.e. set) if the OTP computation shall be for the next OTP, rather than the current one (current being interpreted in the context of the algorithm, e.g. for the current counter value or current time window). A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if the CKF_NEXT_OTP flag is set and the OTP mechanism in question does not support the concept of “next” OTP or the library is not capable of generating the next OTP[footnoteRef:10]. [10:  Applications that may need to retrieve the next OTP should be prepared to handle this situation. For example, an application could store the OTP value returned by C_Sign so that, if a next OTP is required, it can compare it to the OTP value returned by subsequent calls to C_Sign should it turn out that the library does not support the CKF_NEXT_OTP flag.] 


	CKF_EXCLUDE_TIME
	0x00000002
	True (i.e. set) if the OTP computation must not include a time value. Will have an effect only on mechanisms that do include a time value in the OTP computation and then only if the mechanism (and token) allows exclusion of this value. A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if exclusion of the value is not allowed.

	CKF_EXCLUDE_COUNTER
	0x00000004
	True (i.e. set) if the OTP computation must not include a counter value. Will have an effect only on mechanisms that do include a counter value in the OTP computation and then only if the mechanism (and token) allows exclusion of this value. A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if exclusion of the value is not allowed.

	CKF_EXCLUDE_CHALLENGE
	0x00000008
	True (i.e. set) if the OTP computation must not include a challenge. Will have an effect only on mechanisms that do include a challenge in the OTP computation and then only if the mechanism (and token) allows exclusion of this value. A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if exclusion of the value is not allowed.

	CKF_EXCLUDE_PIN
	0x00000010
	True (i.e. set) if the OTP computation must not include a PIN value. Will have an effect only on mechanisms that do include a PIN in the OTP computation and then only if the mechanism (and token) allows exclusion of this value. A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if exclusion of the value is not allowed.

	CKF_USER_FRIENDLY_OTP
	0x00000020
	True (i.e. set) if the OTP returned shall be in a form suitable for human consumption. If this flag is set, and the call is successful, then the returned CK_OTP_VALUE shall be a UTF8-encoded printable string. A Cryptoki library shall return CKR_MECHANISM_PARAM_INVALID if this flag is set when CKA_OTP_USER_FRIENDLY_MODE for the key in question is CK_FALSE.


Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then there may still be value in setting the CKF_USER_FRIENDLY_OTP flag (assuming CKA_OTP_USER_FRIENDLY_MODE is CK_TRUE, of course) if the intent is for a human to read the generated OTP value, since it may become shorter or otherwise better suited for a user. Applications that do not intend to provide a returned OTP value to a user should not set the CKF_USER_FRIENDLY_OTP flag.
· CK_OTP_PARAM; CK_OTP_PARAM_PTR
CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP parameter. It is defined as follows:
typedef struct CK_OTP_PARAM {
	CK_OTP_PARAM_TYPE type;
	CK_VOID_PTR pValue;
	CK_ULONG	ulValueLen;
} CK_OTP_PARAM;
The fields of the structure have the following meanings:
	type	the parameter type
	pValue	pointer to the value of the parameter
	ulValueLen	length in bytes of the value
If a parameter has no value, then ulValueLen = 0, and the value of pValue is irrelevant. Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the application and the Cryptoki library must ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).
CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.

· CK_OTP_PARAMS; CK_OTP_PARAMS_PTR
CK_OTP_PARAMS is a structure that is used to provide parameters for OTP mechanisms in a generic fashion. It is defined as follows:
typedef struct CK_OTP_PARAMS {
	CK_OTP_PARAM_PTR pParams;
	CK_ULONG ulCount;
} CK_OTP_PARAMS;
The fields of the structure have the following meanings:
	pParams	pointer to an array of OTP parameters
	ulCount	the number of parameters in the array
CK_OTP_PARAMS_PTR is a pointer to a CK_OTP_PARAMS.

When calling C_SignInit or C_VerifyInit with a mechanism that takes a CK_OTP_PARAMS structure as a parameter, the CK_OTP_PARAMS structure shall be populated in accordance with the CKA_OTP_X_REQUIREMENT key attributes for the identified key, where X is PIN, CHALLENGE, TIME, or COUNTER.
For example, if CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_MANDATORY, then the CK_OTP_TIME parameter shall be present. If CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_OPTIONAL, then a CK_OTP_TIME parameter may be present. If it is not present, then the library may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will always be ignored. Additionally, a provided CK_OTP_TIME parameter will always be ignored if CKF_EXCLUDE_TIME is set in a CK_OTP_FLAGS parameter. Similarly, if this flag is set, a library will not attempt to collect the value itself, and it will also instruct the token not to make use of any internal value, subject to token policies. It is an error (CKR_MECHANISM_PARAM_INVALID) to set the CKF_EXCLUDE_TIME flag when the CKA_OTP_TIME_REQUIREMENT attribute is CK_OTP_PARAM_MANDATORY.
The above discussion holds for all CKA_OTP_X_REQUIREMENT attributes (i.e., CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQUIREMENT, CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT). A library may set a particular CKA_OTP_X_REQUIREMENT attribute to CK_OTP_PARAM_OPTIONAL even if it is required by the mechanism as long as the token (or the library itself) has the capability of providing the value to the computation. One example of this is a token with an on-board clock.
In addition, applications may use the CK_OTP_FLAGS, the CK_OTP_OUTPUT_FORMAT and the CKA_OTP_LENGTH parameters to set additional parameters.

· CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR
CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in successful calls to C_Sign (C_SignFinal). The structure informs applications of actual parameter values used in particular OTP computations in addition to the OTP value itself. It is used by all mechanisms for which the key belongs to the class CKO_OTP_KEY and is defined as follows:
typedef struct CK_OTP_SIGNATURE_INFO {
	CK_OTP_PARAM_PTR pParams;
	CK_ULONG ulCount;
} CK_OTP_SIGNATURE_INFO;
The fields of the structure have the following meanings:
	pParams	pointer to an array of OTP parameter values
	ulCount	the number of parameters in the array
After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the pSignature parameter will be set to point to a CK_OTP_SIGNATURE_INFO structure. One of the parameters in this structure will be the OTP value itself, identified with the CK_OTP_VALUE tag. Other parameters may be present for informational purposes, e.g. the actual time used in the OTP calculation. In order to simplify OTP validations, authentication protocols may permit authenticating parties to send some or all of these parameters in addition to OTP values themselves. Applications should therefore check for their presence in returned CK_OTP_SIGNATURE_INFO values whenever such circumstances apply.
Since C_Sign and C_SignFinal follows the convention described in section 5.2 on producing output, a call to C_Sign (or C_SignFinal) with pSignature set to NULL_PTR will return (in the pulSignatureLen parameter) the required number of bytes to hold the CK_OTP_SIGNATURE_INFO structure as well as all the data in all its CK_OTP_PARAM components. If an application allocates a memory block based on this information, it shall therefore not subsequently de-allocate components of such a received value but rather de-allocate the complete CK_OTP_PARAMS structure itself. A Cryptoki library that is called with a non-NULL pSignature pointer will assume that it points to a contiguous memory block of the size indicated by the pulSignatureLen parameter.
When verifying an OTP value using an OTP mechanism, pSignature shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAM structure returned by a call to C_Sign. The CK_OTP_PARAM value supplied in the C_VerifyInit call sets the values to use in the verification operation.
CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.
6.53.8 [bookmark: _Toc8118550][bookmark: _Toc30061531][bookmark: _Toc90376784][bookmark: _Toc111203769][bookmark: _Toc148962611][bookmark: _Toc195693648]RSA SecurID
6.53.8.1 [bookmark: _Toc30061532][bookmark: _Toc90376785][bookmark: _Toc111203770][bookmark: _Toc148962612][bookmark: _Toc195693649]RSA SecurID secret key objects
RSA SecurID secret key objects (object class CKO_OTP_KEY, key type CKK_SECURID) hold RSA SecurID secret keys. The following table defines the RSA SecurID secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853561]Table 234, RSA SecurID secret key object attributes
	Attribute
	Data type
	Meaning

	CKA_OTP_TIME_INTERVAL1
	CK_ULONG
	Interval between OTP values produced with this key, in seconds. Default is 60.


- Refer to Table 13 for footnotes
The following is a sample template for creating an RSA SecurID secret key object:
CK_OBJECT_CLASS class = CKO_OTP_KEY;
CK_KEY_TYPE keyType = CKK_SECURID;
CK_DATE endDate = {...};
CK_UTF8CHAR label[] = “RSA SecurID secret key object”;
CK_BYTE keyId[]= {...};
CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;
CK_ULONG outputLength = 6;
CK_ULONG needPIN = CK_OTP_PARAM_MANDATORY;
CK_ULONG timeInterval = 60;
CK_BYTE value[] = {...};
   CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
	{CKA_CLASS, &class, sizeof(class)},
	{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
	{CKA_END_DATE, &endDate, sizeof(endDate)},
	{CKA_TOKEN, &true, sizeof(true)},
	{CKA_SENSITIVE, &true, sizeof(true)},
	{CKA_LABEL, label, sizeof(label)-1},
	{CKA_SIGN, &true, sizeof(true)},
	{CKA_VERIFY, &true, sizeof(true)},
	{CKA_ID, keyId, sizeof(keyId)},
	{CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},
	{CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},
	{CKA_OTP_PIN_REQUIREMENT, &needPIN, sizeof(needPIN)},
	{CKA_OTP_TIME_INTERVAL, &timeInterval, sizeof(timeInterval)},
	{CKA_VALUE, value, sizeof(value)}
};
6.53.8.2 [bookmark: _Toc30061533][bookmark: _Toc90376786][bookmark: _Toc111203771][bookmark: _Toc148962613][bookmark: _Toc195693650]RSA SecurID key generation
The RSA SecurID key generation mechanism, denoted CKM_SECURID_KEY_GEN, is a key generation mechanism for the RSA SecurID algorithm.
It does not have a parameter.
The mechanism generates RSA SecurID keys with a particular set of attributes as specified in the template for the key.
The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and CKA_VALUE attributes to the new key. Other attributes supported by the RSA SecurID key type may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of SecurID key sizes, in bytes.
6.53.8.3 [bookmark: _Toc30061534][bookmark: _Toc90376787][bookmark: _Toc111203772][bookmark: _Toc148962614][bookmark: _Toc195693651]SecurID OTP generation and validation
CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurID OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.
When signing or verifying using the CKM_SECURID mechanism, pData shall be set to NULL_PTR and ulDataLen shall be set to 0.
6.53.8.4 [bookmark: _Toc30061535][bookmark: _Toc90376788][bookmark: _Toc111203773][bookmark: _Toc148962615][bookmark: _Toc195693652]Return values
Support for the CKM_SECURID mechanism extends the set of return values for C_Verify with the following values:
· CKR_NEW_PIN_MODE: The supplied OTP was not accepted, and the library requests a new OTP computed using a new PIN. The new PIN is set through means out of scope for this document.
· CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal drift in the token's internal state (e.g. clock, counter). To ensure this was not due to a temporary problem, the application should provide the next one-time password to the library for verification.
6.53.9 [bookmark: _Toc8118551][bookmark: _Toc30061536][bookmark: _Toc90376789][bookmark: _Toc111203774][bookmark: _Toc148962616][bookmark: _Toc195693653]OATH HOTP
6.53.9.1 [bookmark: _Toc30061537][bookmark: _Toc90376790][bookmark: _Toc111203775][bookmark: _Toc148962617][bookmark: _Toc195693654]OATH HOTP secret key objects
HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold generic secret keys and associated counter values.
The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK_FALSE.
For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e. network byte order) form. The same holds true for a CK_OTP_COUNTER value in a CK_OTP_PARAM structure.
The following is a sample template for creating a HOTP secret key object:
CK_OBJECT_CLASS class = CKO_OTP_KEY;
CK_KEY_TYPE keyType = CKK_HOTP;
CK_UTF8CHAR label[] = “HOTP secret key object”;
CK_BYTE keyId[]= {...};
CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;
CK_ULONG outputLength = 6;
CK_DATE endDate = {...};
CK_BYTE counterValue[8] = {0};
CK_BYTE value[] = {...};
   CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
	{CKA_CLASS, &class, sizeof(class)},
	{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
	{CKA_END_DATE, &endDate, sizeof(endDate)},
	{CKA_TOKEN, &true, sizeof(true)},
	{CKA_SENSITIVE, &true, sizeof(true)},
	{CKA_LABEL, label, sizeof(label)-1},
	{CKA_SIGN, &true, sizeof(true)},
	{CKA_VERIFY, &true, sizeof(true)},
	{CKA_ID, keyId, sizeof(keyId)},
	{CKA_OTP_FORMAT, &outputFormat, sizeof(outputFormat)},
	{CKA_OTP_LENGTH, &outputLength, sizeof(outputLength)},
	{CKA_OTP_COUNTER, counterValue, sizeof(counterValue)},
	{CKA_VALUE, value, sizeof(value)}
};
6.53.9.2 [bookmark: _Toc30061538][bookmark: _Toc90376791][bookmark: _Toc111203776][bookmark: _Toc148962618][bookmark: _Toc195693655]HOTP key generation
The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key generation mechanism for the HOTP algorithm.
It does not have a parameter.
The mechanism generates HOTP keys with a particular set of attributes as specified in the template for the key.
The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_OTP_COUNTER, CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the HOTP key type may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of HOTP key sizes, in bytes.
6.53.9.3 [bookmark: _Toc30061539][bookmark: _Toc90376792][bookmark: _Toc111203777][bookmark: _Toc148962619][bookmark: _Toc195693656]HOTP OTP generation and validation
CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values based on the current internal counter, or a provided counter.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.
As for the CKM_SECURID mechanism, when signing or verifying using the CKM_HOTP mechanism, pData shall be set to NULL_PTR and ulDataLen shall be set to 0.
For verify operations, the counter value CK_OTP_COUNTER must be provided as a CK_OTP_PARAM parameter to C_VerifyInit. When verifying an OTP value using the CKM_HOTP mechanism, pSignature shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAM structure in the case of an earlier call to C_Sign.
6.53.10 [bookmark: _Toc8118552][bookmark: _Toc30061540][bookmark: _Toc90376793][bookmark: _Toc111203778][bookmark: _Toc148962620][bookmark: _Toc195693657]ActivIdentity ACTI
6.53.10.1 [bookmark: _Toc30061541][bookmark: _Toc90376794][bookmark: _Toc111203779][bookmark: _Toc148962621][bookmark: _Toc195693658]ACTI secret key objects
ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACTI) hold ActivIdentity ACTI secret keys.
For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e. network byte order) form. The same holds true for the CK_OTP_COUNTER value in the CK_OTP_PARAM structure.
The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK_FALSE.
The CKA_OTP_TIME value may be set at key generation; however, some tokens may set it to a fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK_FALSE.
The following is a sample template for creating an ACTI secret key object:
CK_OBJECT_CLASS class = CKO_OTP_KEY;
CK_KEY_TYPE keyType = CKK_ACTI;
CK_UTF8CHAR label[] = “ACTI secret key object”;
CK_BYTE keyId[]= {...};
CK_ULONG outputFormat = CK_OTP_FORMAT_DECIMAL;
CK_ULONG outputLength = 6;
CK_DATE endDate = {...};
CK_BYTE counterValue[8] = {0};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
	{CKA_CLASS, &class, sizeof(class)},
	{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
	{CKA_END_DATE, &endDate, sizeof(endDate)},
	{CKA_TOKEN, &true, sizeof(true)},
	{CKA_SENSITIVE, &true, sizeof(true)},
	{CKA_LABEL, label, sizeof(label)-1},
	{CKA_SIGN, &true, sizeof(true)},
	{CKA_VERIFY, &true, sizeof(true)},
	{CKA_ID, keyId, sizeof(keyId)},
	{CKA_OTP_FORMAT, &outputFormat,
	sizeof(outputFormat)},
	{CKA_OTP_LENGTH, &outputLength,
	sizeof(outputLength)},
	{CKA_OTP_COUNTER, counterValue,
	sizeof(counterValue)},
	{CKA_VALUE, value, sizeof(value)}
};
6.53.10.2 [bookmark: _Toc30061542][bookmark: _Toc90376795][bookmark: _Toc111203780][bookmark: _Toc148962622][bookmark: _Toc195693659]ACTI key generation
The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key generation mechanism for the ACTI algorithm.
It does not have a parameter.
The mechanism generates ACTI keys with a particular set of attributes as specified in the template for the key.
The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the ACTI key type may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ACTI key sizes, in bytes.
6.53.10.3 [bookmark: _Toc30061543][bookmark: _Toc90376796][bookmark: _Toc111203781][bookmark: _Toc148962623][bookmark: _Toc195693660]ACTI OTP generation and validation
CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.
When signing or verifying using the CKM_ACTI mechanism, pData shall be set to NULL_PTR and ulDataLen shall be set to 0.
When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAM structure in the case of an earlier call to C_Sign.
6.54 [bookmark: _Toc228894885][bookmark: _Toc228807438][bookmark: _Toc122340262][bookmark: _Toc370634665][bookmark: _Toc391471378][bookmark: _Toc395188016][bookmark: _Toc416960262][bookmark: _Toc8118568][bookmark: _Toc30061544][bookmark: _Toc90376797][bookmark: _Toc111203782][bookmark: _Toc148962624][bookmark: _Toc195693661]CT-KIP
6.54.1 [bookmark: _Toc228894886][bookmark: _Toc228807439][bookmark: _Toc122340260][bookmark: _Toc370634666][bookmark: _Toc391471379][bookmark: _Toc395188017][bookmark: _Toc416960263][bookmark: _Toc8118569][bookmark: _Toc30061545][bookmark: _Toc90376798][bookmark: _Toc111203783][bookmark: _Toc148962625][bookmark: _Toc195693662][bookmark: _Ref94434902][bookmark: _Ref122504970][bookmark: _Toc122340261][bookmark: _Toc122340263]Principles of Operation
[image: ]
[bookmark: _Ref4479174]Figure 5: PKCS #11 and CT-KIP integration
Figure 5 shows an integration of PKCS #11 into an application that generates cryptographic keys through the use of CT-KIP. The application invokes C_DeriveKey to derive a key of a particular type on the token. The key may subsequently be used as a basis to e.g., generate one-time password values. The application communicates with a CT-KIP server that participates in the key derivation and stores a copy of the key in its database. The key is transferred to the server in wrapped form, after a call to C_WrapKey. The server authenticates itself to the client and the client verifies the authentication by calls to C_Verify.
6.54.2 [bookmark: _Toc228894887][bookmark: _Toc228807440][bookmark: _Toc370634667][bookmark: _Toc391471380][bookmark: _Toc395188018][bookmark: _Toc416960264][bookmark: _Toc8118570][bookmark: _Toc30061546][bookmark: _Toc90376799][bookmark: _Toc111203784][bookmark: _Toc148962626][bookmark: _Toc195693663]Mechanisms
The following table shows, for the mechanisms defined in this document, their support by different cryptographic operations. For any particular token, of course, a particular operation may well support only a subset of the mechanisms listed. There is also no guarantee that a token that supports one mechanism for some operation supports any other mechanism for any other operation (or even supports that same mechanism for any other operation).
[bookmark: _Toc228807578][bookmark: _Toc25853562]Table 235, CT-KIP Mechanisms vs. applicable functions
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The remainder of this section will present in detail the mechanisms and the parameters that are supplied to them.
6.54.3 [bookmark: _Toc228894888][bookmark: _Toc228807441][bookmark: _Toc370634668][bookmark: _Toc391471381][bookmark: _Toc395188019][bookmark: _Toc416960265][bookmark: _Toc8118571][bookmark: _Toc30061547][bookmark: _Toc90376800][bookmark: _Toc111203785][bookmark: _Toc148962627][bookmark: _Toc195693664]Definitions
Mechanisms:
CKM_KIP_DERIVE
CKM_KIP_WRAP
CKM_KIP_MAC
6.54.4 [bookmark: _Toc228894889][bookmark: _Toc228807442][bookmark: _Toc122340264][bookmark: _Toc370634669][bookmark: _Toc391471382][bookmark: _Toc395188020][bookmark: _Toc416960266][bookmark: _Toc8118572][bookmark: _Toc30061548][bookmark: _Toc90376801][bookmark: _Toc111203786][bookmark: _Toc148962628][bookmark: _Toc195693665]CT-KIP Mechanism parameters
· [bookmark: _Toc228807443][bookmark: _Toc122340265]CK_KIP_PARAMS; CK_KIP_PARAMS_PTR
CK_KIP_PARAMS is a structure that provides the parameters to all the CT-KIP related mechanisms: The CKM_KIP_DERIVE key derivation mechanism, the CKM_KIP_WRAP key wrap and key unwrap mechanism, and the CKM_KIP_MAC signature mechanism. The structure is defined as follows:
typedef struct CK_KIP_PARAMS {
	CK_MECHANISM_PTR  pMechanism;
	CK_OBJECT_HANDLE  hKey;
	CK_BYTE_PTR       pSeed;
   CK_ULONG          ulSeedLen;
} CK_KIP_PARAMS;
The fields of the structure have the following meanings:
	pMechanism	pointer to the underlying cryptographic mechanism (e.g. AES, SHA-256)
	hKey	handle to a key that will contribute to the entropy of the derived key (CKM_KIP_DERIVE) or will be used in the MAC operation (CKM_KIP_MAC)
	pSeed	pointer to an input seed
	ulSeedLen	length in bytes of the input seed
CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.	
6.54.5 [bookmark: _Toc228894890][bookmark: _Toc228807444][bookmark: _Toc122340266][bookmark: _Toc370634670][bookmark: _Toc391471383][bookmark: _Toc395188021][bookmark: _Toc416960267][bookmark: _Toc8118573][bookmark: _Toc30061549][bookmark: _Toc90376802][bookmark: _Toc111203787][bookmark: _Toc148962629][bookmark: _Toc195693666]CT-KIP key derivation
The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key derivation mechanism that is capable of generating secret keys of potentially any type, subject to token limitations.
It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the desired underlying cryptographic mechanism as well as some other data. In particular, when the hKey parameter is a handle to an existing key, that key will be used in the key derivation in addition to the hBaseKey of C_DeriveKey. The pSeed parameter may be used to seed the key derivation operation.
The mechanism derives a secret key with a particular set of attributes as specified in the attributes of the template for the key.
The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new key. Other attributes supported by the key type may be specified in the template for the key, or else will be assigned default initial values. Since the mechanism is generic, the CKA_KEY_TYPE attribute should be set in the template, if the key is to be used with a particular mechanism.
6.54.6 [bookmark: _Toc228894891][bookmark: _Toc228807445][bookmark: _Toc122340267][bookmark: _Toc370634671][bookmark: _Toc391471384][bookmark: _Toc395188022][bookmark: _Toc416960268][bookmark: _Toc8118574][bookmark: _Toc30061550][bookmark: _Toc90376803][bookmark: _Toc111203788][bookmark: _Toc148962630][bookmark: _Toc195693667]CT-KIP key wrap and key unwrap
The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key wrap mechanism that is capable of wrapping and unwrapping generic secret keys.
It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying cryptographic mechanism as well as some other data. It does not make use of the hKey parameter of CK_KIP_PARAMS.
6.54.7 [bookmark: _Toc228894892][bookmark: _Toc228807446][bookmark: _Toc122340268][bookmark: _Toc370634672][bookmark: _Toc391471385][bookmark: _Toc395188023][bookmark: _Toc416960269][bookmark: _Toc8118575][bookmark: _Toc30061551][bookmark: _Toc90376804][bookmark: _Toc111203789][bookmark: _Toc148962631][bookmark: _Toc195693668]CT-KIP signature generation
The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism used to produce a message authentication code of arbitrary length. The keys it uses are secret keys.
It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying cryptographic mechanism as well as some other data. The mechanism does not make use of the pSeed and the ulSeedLen parameters of CT_KIP_PARAMS.
This mechanism produces a MAC of the length specified by pulSignatureLen parameter in calls to C_Sign.
If a call to C_Sign with this mechanism fails, then no output will be generated.
6.55 [bookmark: _Toc228894894][bookmark: _Toc228807448][bookmark: _Toc370634674][bookmark: _Toc391471387][bookmark: _Toc395188025][bookmark: _Toc416960271][bookmark: _Toc8118577][bookmark: _Toc30061552][bookmark: _Toc90376805][bookmark: _Toc111203790][bookmark: _Toc148962632][bookmark: _Toc195693669]GOST 28147-89
GOST 28147-89 is a block cipher with 64-bit block size and 256-bit keys.

[bookmark: _Toc25853563]Table 236, GOST 28147-89 Mechanisms vs. Functions
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6.55.1 [bookmark: _Toc228894895][bookmark: _Toc228807449][bookmark: _Toc370634675][bookmark: _Toc391471388][bookmark: _Toc395188026][bookmark: _Toc416960272][bookmark: _Toc8118578][bookmark: _Toc30061553][bookmark: _Toc90376806][bookmark: _Toc111203791][bookmark: _Toc148962633][bookmark: _Toc195693670]Definitions 
This section defines the key type “CKK_GOST28147” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects and domain parameter objects.
Mechanisms:
CKM_GOST28147_KEY_GEN
CKM_GOST28147_ECB
CKM_GOST28147
CKM_GOST28147_MAC
CKM_GOST28147_KEY_WRAP
6.55.2 [bookmark: _Toc228894896][bookmark: _Toc228807450][bookmark: _Toc370634676][bookmark: _Toc391471389][bookmark: _Toc395188027][bookmark: _Toc416960273][bookmark: _Toc8118579][bookmark: _Toc30061554][bookmark: _Toc90376807][bookmark: _Toc111203792][bookmark: _Toc148962634][bookmark: _Toc195693671]GOST 28147-89 secret key objects 
GOST 28147‑89 secret key objects (object class CKO_SECRET_KEY, key type CKK_GOST28147) hold GOST 28147‑89 keys. The following table defines the GOST 28147‑89 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853564]Table 237, GOST 28147-89 Secret Key Object Attributes 
	Attribute
	Data type
	Meaning 

	CKA_VALUE1,4,6,7
	Byte array
	32 bytes in little endian order

	CKA_GOST28147_PARAMS1,3,5
	Byte array 
	DER-encoding of the object identifier indicating the data object type of GOST 28147‑89. 
When key is used the domain parameter object of key type CKK_GOST28147 must be specified with the same attribute CKA_OBJECT_ID 


- Refer to Table 13 for footnotes
The following is a sample template for creating a GOST 28147‑89 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GOST28147;
CK_UTF8CHAR label[] = “A GOST 28147-89 secret key object”;
CK_BYTE value[32] = {...};
CK_BYTE params_oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_ENCRYPT, &true, sizeof(true)},
    {CKA_GOST28147_PARAMS, params_oid, sizeof(params_oid)},
    {CKA_VALUE, value, sizeof(value)}
};
6.55.3 [bookmark: _Toc228894897][bookmark: _Toc228807451][bookmark: _Toc370634677][bookmark: _Toc391471390][bookmark: _Toc395188028][bookmark: _Toc416960274][bookmark: _Toc8118580][bookmark: _Toc30061555][bookmark: _Toc90376808][bookmark: _Toc111203793][bookmark: _Toc148962635][bookmark: _Toc195693672]GOST 28147-89 domain parameter objects
GOST 28147‑89 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_GOST28147) hold GOST 28147‑89 domain parameters. 
The following table defines the GOST 28147‑89 domain parameter object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Ref505614849][bookmark: _Toc76209812][bookmark: _Toc25853565]Table 238, GOST 28147-89 Domain Parameter Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE1
	Byte array
	DER-encoding of the domain parameters as it was introduced in [4] section 8.1 (type Gost28147-89-ParamSetParameters)

	CKA_OBJECT_ID1
	Byte array
	DER-encoding of the object identifier indicating the domain parameters 


- Refer to Table 13 for footnotes
For any particular token, there is no guarantee that a token supports domain parameters loading up and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should take in account that CKA_VALUE attribute may be inaccessible.
The following is a sample template for creating a GOST 28147‑89 domain parameter object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_GOST28147;
CK_UTF8CHAR label[] = “A GOST 28147-89 cryptographic parameters object”;
CK_BYTE oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};
CK_BYTE value[] = {
	0x30,0x62,0x04,0x40,0x4c,0xde,0x38,0x9c,0x29,0x89,0xef,0xb6,
	0xff,0xeb,0x56,0xc5,0x5e,0xc2,0x9b,0x02,0x98,0x75,0x61,0x3b,
	0x11,0x3f,0x89,0x60,0x03,0x97,0x0c,0x79,0x8a,0xa1,0xd5,0x5d,
	0xe2,0x10,0xad,0x43,0x37,0x5d,0xb3,0x8e,0xb4,0x2c,0x77,0xe7,
	0xcd,0x46,0xca,0xfa,0xd6,0x6a,0x20,0x1f,0x70,0xf4,0x1e,0xa4,
	0xab,0x03,0xf2,0x21,0x65,0xb8,0x44,0xd8,0x02,0x01,0x00,0x02,
	0x01,0x40,0x30,0x0b,0x06,0x07,0x2a,0x85,0x03,0x02,0x02,0x0e,
	0x00,0x05,0x00
};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_OBJECT_ID, oid, sizeof(oid)},
    {CKA_VALUE, value, sizeof(value)}
};
6.55.4 [bookmark: _Toc228894898][bookmark: _Toc228807452][bookmark: _Toc370634678][bookmark: _Toc391471391][bookmark: _Toc395188029][bookmark: _Toc416960275][bookmark: _Toc8118581][bookmark: _Toc30061556][bookmark: _Toc90376809][bookmark: _Toc111203794][bookmark: _Toc148962636][bookmark: _Toc195693673]GOST 28147-89 key generation 
The GOST 28147‑89 key generation mechanism, denoted CKM_GOST28147_KEY_GEN, is a key generation mechanism for GOST 28147‑89.
It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the GOST 28147‑89 key type may be specified for objects of object class CKO_SECRET_KEY.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO are not used.
6.55.5 [bookmark: _Toc228894899][bookmark: _Toc228807453][bookmark: _Toc370634679][bookmark: _Toc391471392][bookmark: _Toc395188030][bookmark: _Toc416960276][bookmark: _Toc8118582][bookmark: _Toc30061557][bookmark: _Toc90376810][bookmark: _Toc111203795][bookmark: _Toc148962637][bookmark: _Toc195693674]GOST 28147-89-ECB 
GOST 28147‑89-ECB, denoted CKM_GOST28147_ECB, is a mechanism for single and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on GOST 28147‑89 and electronic codebook mode.
It does not have a parameter.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports.
For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size so that the resulting length is a multiple of the block size.
For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853566]Table 239, GOST 28147-89-ECB: Key and Data Length 
	Function
	Key type
	Input length
	Output length

	C_Encrypt
	CKK_GOST28147
	Multiple of block size
	Same as input length 

	C_Decrypt
	CKK_GOST28147
	Multiple of block size
	Same as input length 

	C_WrapKey
	CKK_GOST28147
	Any
	Input length rounded up to multiple of block size

	C_UnwrapKey
	CKK_GOST28147
	Multiple of block size
	Determined by type of key being unwrapped



For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.55.6 [bookmark: _Toc228894900][bookmark: _Toc228807454][bookmark: _Toc370634680][bookmark: _Toc391471393][bookmark: _Toc395188031][bookmark: _Toc416960277][bookmark: _Toc8118583][bookmark: _Toc30061558][bookmark: _Toc90376811][bookmark: _Toc111203796][bookmark: _Toc148962638][bookmark: _Toc195693675]GOST 28147-89 encryption mode except ECB
GOST 28147‑89 encryption mode except ECB, denoted CKM_GOST28147, is a mechanism for single and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on [GOST 28147‑89] and CFB, counter mode, and additional CBC mode defined in [RFC 4357] section 2. Encryption’s parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.
It has a parameter, which is an 8-byte initialization vector. This parameter may be omitted then a zero initialization vector is used.
This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. 
For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped.
For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as the CKA_VALUE attribute of the new key.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853567]Table 240, GOST 28147-89 encryption modes except ECB: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Encrypt
	CKK_GOST28147
	Any
	For counter mode and CFB is the same as input length. For CBC is the same as input length padded on the trailing end with up to block size so that the resulting length is a multiple of the block size

	C_Decrypt
	CKK_GOST28147
	Any
	

	C_WrapKey
	CKK_GOST28147
	Any
	

	C_UnwrapKey
	CKK_GOST28147
	Any
	



For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.55.7 [bookmark: _Toc228894901][bookmark: _Toc228807455][bookmark: _Toc370634681][bookmark: _Toc391471394][bookmark: _Toc395188032][bookmark: _Toc416960278][bookmark: _Toc8118584][bookmark: _Toc30061559][bookmark: _Toc90376812][bookmark: _Toc111203797][bookmark: _Toc148962639][bookmark: _Toc195693676]GOST 28147-89-MAC 
GOST 28147-89-MAC, denoted CKM_GOST28147_MAC, is a mechanism for data integrity and authentication based on GOST 28147-89 and key meshing algorithms [RFC 4357] section 2.3.
MACing parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.
The output bytes from this mechanism are taken from the start of the final GOST 28147‑89 cipher block produced in the MACing process.
It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a zero initialization vector is used.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853568]Table 241, GOST28147-89-MAC: Key and Data Length 
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_GOST28147
	Any
	4 bytes

	C_Verify
	CKK_GOST28147
	Any
	4 bytes



For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.

6.55.8 [bookmark: _Toc8118585][bookmark: _Toc30061560][bookmark: _Toc90376813][bookmark: _Toc111203798][bookmark: _Toc148962640][bookmark: _Toc195693677]GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89
GOST 28147‑89 keys as a KEK (key encryption keys) for encryption GOST 28147‑89 keys, denoted by CKM_GOST28147_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on GOST 28147‑89. Its purpose is to encrypt and decrypt keys have been generated by key generation mechanism for GOST 28147‑89.
For wrapping (C_WrapKey), the mechanism first computes MAC from the value of the CKA_VALUE attribute of the key that is wrapped and then encrypts in ECB mode the value of the CKA_VALUE attribute of the key that is wrapped. The result is 32 bytes of the key that is wrapped and 4 bytes of MAC.
For unwrapping (C_UnwrapKey), the mechanism first decrypts in ECB mode the 32 bytes of the key that was wrapped and then computes MAC from the unwrapped key. Then compared together 4 bytes MAC has computed and 4 bytes MAC of the input. If these two MACs do not match the wrapped key is disallowed. The mechanism contributes the result as the CKA_VALUE attribute of the unwrapped key.
It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a zero initialization vector is used.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc25853569]Table 242, GOST 28147-89 keys as KEK: Key and Data Length 
	Function
	Key type
	Input length
	Output length

	C_WrapKey
	CKK_GOST28147
	32 bytes
	36 bytes

	C_UnwrapKey
	CKK_GOST28147
	32 bytes
	36 bytes



For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.

6.56 [bookmark: _Toc8118586][bookmark: _Toc30061561][bookmark: _Toc90376814][bookmark: _Toc111203799][bookmark: _Toc148962641][bookmark: _Toc195693678]GOST R 34.11-94 
GOST R 34.11-94 is a mechanism for message digesting, following the hash algorithm with 256-bit message digest defined in [GOST R 34.11-94].

[bookmark: _Toc25853570]Table 243, GOST R 34.11-94 Mechanisms vs. Functions
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6.56.1 [bookmark: _Toc228894902][bookmark: _Toc228807456][bookmark: _Toc370634682][bookmark: _Toc391471395][bookmark: _Toc395188033][bookmark: _Toc416960279][bookmark: _Toc8118587][bookmark: _Toc30061562][bookmark: _Toc90376815][bookmark: _Toc111203800][bookmark: _Toc148962642][bookmark: _Toc195693679]Definitions 
This section defines the key type “CKK_GOSTR3411” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of domain parameter objects.
Mechanisms:
CKM_GOSTR3411
CKM_GOSTR3411_HMAC
6.56.2 [bookmark: _Toc228894903][bookmark: _Toc228807457][bookmark: _Toc370634683][bookmark: _Toc391471396][bookmark: _Toc395188034][bookmark: _Toc416960280][bookmark: _Toc8118588][bookmark: _Toc30061563][bookmark: _Toc90376816][bookmark: _Toc111203801][bookmark: _Toc148962643][bookmark: _Toc195693680]GOST R 34.11-94 domain parameter objects
GOST R 34.11-94 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_GOSTR3411) hold GOST R 34.11-94 domain parameters. 
The following table defines the GOST R 34.11-94 domain parameter object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853571]Table 244, GOST R 34.11-94 Domain Parameter Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE1
	Byte array
	DER-encoding of the domain parameters as it was introduced in [4] section 8.2 (type GostR3411-94-ParamSetParameters)

	CKA_OBJECT_ID1
	Byte array
	DER-encoding of the object identifier indicating the domain parameters 


- Refer to Table 13 for footnotes
For any particular token, there is no guarantee that a token supports domain parameters loading up and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should take in account that CKA_VALUE attribute may be inaccessible.
The following is a sample template for creating a GOST R 34.11-94 domain parameter object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_GOSTR3411;
CK_UTF8CHAR label[] = “A GOST R34.11-94 cryptographic parameters object”;
CK_BYTE oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};
CK_BYTE value[] = {
	0x30,0x64,0x04,0x40,0x4e,0x57,0x64,0xd1,0xab,0x8d,0xcb,0xbf,
	0x94,0x1a,0x7a,0x4d,0x2c,0xd1,0x10,0x10,0xd6,0xa0,0x57,0x35,
	0x8d,0x38,0xf2,0xf7,0x0f,0x49,0xd1,0x5a,0xea,0x2f,0x8d,0x94,
	0x62,0xee,0x43,0x09,0xb3,0xf4,0xa6,0xa2,0x18,0xc6,0x98,0xe3,
	0xc1,0x7c,0xe5,0x7e,0x70,0x6b,0x09,0x66,0xf7,0x02,0x3c,0x8b,
	0x55,0x95,0xbf,0x28,0x39,0xb3,0x2e,0xcc,0x04,0x20,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00
};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_OBJECT_ID, oid, sizeof(oid)},
    {CKA_VALUE, value, sizeof(value)}
};
6.56.3 [bookmark: _Toc228894904][bookmark: _Toc228807458][bookmark: _Toc370634684][bookmark: _Toc391471397][bookmark: _Toc395188035][bookmark: _Toc416960281][bookmark: _Toc8118589][bookmark: _Toc30061564][bookmark: _Toc90376817][bookmark: _Toc111203802][bookmark: _Toc148962644][bookmark: _Toc195693681]GOST R 34.11-94 digest
GOST R 34.11-94 digest, denoted CKM_GOSTR3411, is a mechanism for message digesting based on GOST R 34.11-94 hash algorithm [GOST R 34.11-94].
As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357] (section 11.2) must be used.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest may begin at the same location in memory.
[bookmark: _Toc76209910][bookmark: _Toc25853572]Table 245, GOST R 34.11-94: Data Length
	Function
	Input length
	Digest length

	C_Digest
	Any
	32 bytes



For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.56.4 [bookmark: _Toc228894905][bookmark: _Toc228807459][bookmark: _Toc370634685][bookmark: _Toc391471398][bookmark: _Toc395188036][bookmark: _Toc416960282][bookmark: _Toc8118590][bookmark: _Toc30061565][bookmark: _Toc90376818][bookmark: _Toc111203803][bookmark: _Toc148962645][bookmark: _Toc195693682]GOST R 34.11-94 HMAC
GOST R 34.11-94 HMAC mechanism, denoted CKM_GOSTR3411_HMAC, is a mechanism for signatures and verification. It uses the HMAC construction, based on the GOST R 34.11-94 hash function [GOST R 34.11-94] and core HMAC algorithm [RFC 2104]. The keys it uses are of generic key type CKK_GENERIC_SECRET or CKK_GOST28147.
To be conformed to GOST R 34.11-94 hash algorithm [GOST R 34.11-94] the block length of core HMAC algorithm is 32 bytes long (see [RFC 2104] section 2, and [RFC 4357] section 3).
As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357] (section 11.2) must be used.
Signatures (MACs) produced by this mechanism are of 32 bytes long.
Constraints on the length of input and output data are summarized in the following table:
[bookmark: _Toc76209911][bookmark: _Toc25853573]Table 246, GOST R 34.11-94 HMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_GENERIC_SECRET or CKK_GOST28147
	Any
	32 byte

	C_Verify
	CKK_GENERIC_SECRET or CKK_GOST28147
	Any
	32 bytes


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.57 [bookmark: _Toc228894906][bookmark: _Toc228807460][bookmark: _Toc370634686][bookmark: _Toc391471399][bookmark: _Toc395188037][bookmark: _Toc416960283][bookmark: _Toc8118591][bookmark: _Toc30061566][bookmark: _Toc90376819][bookmark: _Toc111203804][bookmark: _Toc148962646][bookmark: _Toc195693683]GOST R 34.10-2001
GOST R 34.10-2001 is a mechanism for single- and multiple-part signatures and verification, following the digital signature algorithm defined in [GOST R 34.10-2001].

[bookmark: _Toc25853574]Table 247, GOST R34.10-2001 Mechanisms vs. Functions
	Mechanism
	Functions

	
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
 Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_GOSTR3410_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_GOSTR3410
	
	1
	
	
	
	
	
	

	CKM_GOSTR3410_WITH_GOSTR3411
	
	
	
	
	
	
	
	

	CKM_GOSTR3410_KEY_WRAP
	
	
	
	
	
	
	
	

	CKM_GOSTR3410_DERIVE
	
	
	
	
	
	
	
	


1 Single-part operations only

6.57.1 [bookmark: _Toc228894907][bookmark: _Toc228807461][bookmark: _Toc370634687][bookmark: _Toc391471400][bookmark: _Toc395188038][bookmark: _Toc416960284][bookmark: _Toc8118592][bookmark: _Toc30061567][bookmark: _Toc90376820][bookmark: _Toc111203805][bookmark: _Toc148962647][bookmark: _Toc195693684]Definitions 
This section defines the key type “CKK_GOSTR3410” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects and domain parameter objects.
Mechanisms:
CKM_GOSTR3410_KEY_PAIR_GEN
CKM_GOSTR3410
CKM_GOSTR3410_WITH_GOSTR3411
CKM_GOSTR3410
CKM_GOSTR3410_KEY_WRAP
CKM_GOSTR3410_DERIVE
6.57.2 [bookmark: _Toc228894908][bookmark: _Toc228807462][bookmark: _Toc370634688][bookmark: _Toc391471401][bookmark: _Toc395188039][bookmark: _Toc416960285][bookmark: _Toc8118593][bookmark: _Toc30061568][bookmark: _Toc90376821][bookmark: _Toc111203806][bookmark: _Toc148962648][bookmark: _Toc195693685]GOST R 34.10-2001 public key objects
GOST R 34.10-2001 public key objects (object class CKO_PUBLIC_KEY, key type CKK_GOSTR3410) hold GOST R 34.10-2001 public keys.
The following table defines the GOST R 34.10-2001 public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853575]Table 248, GOST R 34.10-2001 Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE1,4
	Byte array
	64 bytes for public key; 32 bytes for each coordinates X and Y of Elliptic Curve point P(X, Y) in little endian order

	CKA_GOSTR3410_PARAMS1,3
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST R 34.10-2001. 
When key is used the domain parameter object of key type CKK_GOSTR3410 must be specified with the same attribute CKA_OBJECT_ID

	CKA_GOSTR3411_PARAMS1,3,8
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST R 34.11-94. 
When key is used the domain parameter object of key type CKK_GOSTR3411 must be specified with the same attribute CKA_OBJECT_ID

	CKA_GOST28147_PARAMS8
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST 28147‑89.
When key is used the domain parameter object of key type CKK_GOST28147 must be specified with the same attribute CKA_OBJECT_ID. The attribute value may be omitted


- Refer to Table 13 for footnotes
The following is a sample template for creating an GOST R 34.10-2001 public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_GOSTR3410;
CK_UTF8CHAR label[] = “A GOST R34.10-2001 public key object”;
CK_BYTE gostR3410params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};
CK_BYTE gostR3411params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};
CK_BYTE gost28147params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};
CK_BYTE value[64] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_GOSTR3410_PARAMS, gostR3410params_oid, sizeof(gostR3410params_oid)},
    {CKA_GOSTR3411_PARAMS, gostR3411params_oid, sizeof(gostR3411params_oid)},
    {CKA_GOST28147_PARAMS, gost28147params_oid, sizeof(gost28147params_oid)},
    {CKA_VALUE, value, sizeof(value)}
};
6.57.3 [bookmark: _Toc228894909][bookmark: _Toc228807463][bookmark: _Toc370634689][bookmark: _Toc391471402][bookmark: _Toc395188040][bookmark: _Toc416960286][bookmark: _Toc8118594][bookmark: _Toc30061569][bookmark: _Toc90376822][bookmark: _Toc111203807][bookmark: _Toc148962649][bookmark: _Toc195693686]GOST R 34.10-2001 private key objects
GOST R 34.10-2001 private key objects (object class CKO_PRIVATE_KEY, key type CKK_GOSTR3410) hold GOST R 34.10-2001 private keys.
The following table defines the GOST R 34.10-2001 private key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853576]Table 249, GOST R 34.10-2001 Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	32 bytes for private key in little endian order

	CKA_GOSTR3410_PARAMS1,4,6
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST R 34.10-2001.
When key is used the domain parameter object of key type CKK_GOSTR3410 must be specified with the same attribute CKA_OBJECT_ID 

	CKA_GOSTR3411_PARAMS1,4,6,8
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST R 34.11-94.
When key is used the domain parameter object of key type CKK_GOSTR3411 must be specified with the same attribute CKA_OBJECT_ID

	CKA_GOST28147_PARAMS4,6,8
	Byte array
	DER-encoding of the object identifier indicating the data object type of GOST 28147‑89.
When key is used the domain parameter object of key type CKK_GOST28147 must be specified with the same attribute CKA_OBJECT_ID. The attribute value may be omitted


- Refer to Table 13 for footnotes
Note that when generating an GOST R 34.10-2001 private key, the GOST R 34.10-2001 domain parameters are not specified in the key’s template. This is because GOST R 34.10-2001 private keys are only generated as part of an GOST R 34.10-2001 key pair, and the GOST R 34.10-2001 domain parameters for the pair are specified in the template for the GOST R 34.10-2001 public key.
The following is a sample template for creating an GOST R 34.10-2001 private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_GOSTR3410;
CK_UTF8CHAR label[] = “A GOST R34.10-2001 private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE gostR3410params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};
CK_BYTE gostR3411params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1e, 0x00};
CK_BYTE gost28147params_oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x1f, 0x00};
CK_BYTE value[32] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_SUBJECT, subject, sizeof(subject)},
    {CKA_ID, id, sizeof(id)},
    {CKA_SENSITIVE, &true, sizeof(true)},
    {CKA_SIGN, &true, sizeof(true)},
    {CKA_GOSTR3410_PARAMS, gostR3410params_oid, sizeof(gostR3410params_oid)},
    {CKA_GOSTR3411_PARAMS, gostR3411params_oid, sizeof(gostR3411params_oid)},
    {CKA_GOST28147_PARAMS, gost28147params_oid, sizeof(gost28147params_oid)},
    {CKA_VALUE, value, sizeof(value)}
};

6.57.4 [bookmark: _Toc228894910][bookmark: _Toc228807464][bookmark: _Toc370634690][bookmark: _Toc391471403][bookmark: _Toc395188041][bookmark: _Toc416960287][bookmark: _Toc8118595][bookmark: _Toc30061570][bookmark: _Toc90376823][bookmark: _Toc111203808][bookmark: _Toc148962650][bookmark: _Toc195693687]GOST R 34.10-2001 domain parameter objects
GOST R 34.10-2001 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_GOSTR3410) hold GOST R 34.10‑2001 domain parameters.
The following table defines the GOST R 34.10-2001 domain parameter object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853577]Table 250, GOST R 34.10-2001 Domain Parameter Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_VALUE1
	Byte array
	DER-encoding of the domain parameters as it was introduced in [4] section 8.4 (type GostR3410-2001-ParamSetParameters)

	CKA_OBJECT_ID1
	Byte array
	DER-encoding of the object identifier indicating the domain parameters 


- Refer to Table 13 for footnotes
For any particular token, there is no guarantee that a token supports domain parameters loading up and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should take in account that CKA_VALUE attribute may be inaccessible.
The following is a sample template for creating a GOST R 34.10-2001 domain parameter object:
CK_OBJECT_CLASS class = CKO_DOMAIN_PARAMETERS;
CK_KEY_TYPE keyType = CKK_GOSTR3410;
CK_UTF8CHAR label[] = “A GOST R34.10-2001 cryptographic parameters object”;
CK_BYTE oid[] = 
	{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};
CK_BYTE value[] = {
	0x30,0x81,0x90,0x02,0x01,0x07,0x02,0x20,0x5f,0xbf,0xf4,0x98,
	0xaa,0x93,0x8c,0xe7,0x39,0xb8,0xe0,0x22,0xfb,0xaf,0xef,0x40,
	0x56,0x3f,0x6e,0x6a,0x34,0x72,0xfc,0x2a,0x51,0x4c,0x0c,0xe9,
	0xda,0xe2,0x3b,0x7e,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
	0x00,0x04,0x31,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x00,0x00,
	0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x50,0xfe,
	0x8a,0x18,0x92,0x97,0x61,0x54,0xc5,0x9c,0xfc,0x19,0x3a,0xcc,
	0xf5,0xb3,0x02,0x01,0x02,0x02,0x20,0x08,0xe2,0xa8,0xa0,0xe6,
	0x51,0x47,0xd4,0xbd,0x63,0x16,0x03,0x0e,0x16,0xd1,0x9c,0x85,
	0xc9,0x7f,0x0a,0x9c,0xa2,0x67,0x12,0x2b,0x96,0xab,0xbc,0xea,
	0x7e,0x8f,0xc8
};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &class, sizeof(class)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_OBJECT_ID, oid, sizeof(oid)},
    {CKA_VALUE, value, sizeof(value)}
};

6.57.5 [bookmark: _Toc228894911][bookmark: _Toc228807465][bookmark: _Ref231378651][bookmark: _Toc370634691][bookmark: _Toc391471404][bookmark: _Toc395188042][bookmark: _Toc416960288][bookmark: _Toc8118596][bookmark: _Toc30061571][bookmark: _Toc90376824][bookmark: _Toc111203809][bookmark: _Toc148962651][bookmark: _Toc195693688]GOST R 34.10-2001 mechanism parameters 
♦  CK_GOSTR3410_KEY_WRAP_PARAMS
CK_GOSTR3410_KEY_WRAP_PARAMS is a structure that provides the parameters to the CKM_GOSTR3410_KEY_WRAP mechanism. It is defined as follows:
typedef struct CK_GOSTR3410_KEY_WRAP_PARAMS {
        CK_BYTE_PTR      pWrapOID;
        CK_ULONG         ulWrapOIDLen;
        CK_BYTE_PTR      pUKM;
        CK_ULONG         ulUKMLen;
        CK_OBJECT_HANDLE hKey;
} CK_GOSTR3410_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:
	pWrapOID
	
	pointer to a data with DER-encoding of the object identifier indicating the data object type of GOST 28147‑89. If pointer takes NULL_PTR value in C_WrapKey operation then parameters are specified in object identifier of attribute CKA_GOSTR3411_PARAMS must be used. For C_UnwrapKey operation the pointer is not used and must take NULL_PTR value anytime

	ulWrapOIDLen
	
	length of data with DER-encoding of the object identifier indicating the data object type of GOST 28147‑89

	pUKM
	
	pointer to a data with UKM. If pointer takes NULL_PTR value in C_WrapKey operation, then random value of UKM will be used. If pointer takes non-NULL_PTR value in C_UnwrapKey operation, then the pointer value will be compared with UKM value of wrapped key. If these two values do not match the wrapped key will be rejected

	ulUKMLen
	
	length of UKM data. If pUKM-pointer is different from NULL_PTR then equal to 8 

	hKey
	
	key handle. Key handle of a sender for C_WrapKey operation. Key handle of a receiver for C_UnwrapKey operation. When key handle takes CK_INVALID_HANDLE value then an ephemeral (one time) key pair of a sender will be used


CK_GOSTR3410_KEY_WRAP_PARAMS_PTR is a pointer to a CK_GOSTR3410_KEY_WRAP_PARAMS.
♦  CK_GOSTR3410_DERIVE_PARAMS
CK_GOSTR3410_DERIVE_PARAMS is a structure that provides the parameters to the CKM_GOSTR3410_DERIVE mechanism. It is defined as follows:
typedef struct CK_GOSTR3410_DERIVE_PARAMS { 
  CK_EC_KDF_TYPE kdf; 
  CK_BYTE_PTR    pPublicData; 
  CK_ULONG       ulPublicDataLen; 
  CK_BYTE_PTR    pUKM; 
  CK_ULONG       ulUKMLen; 
} CK_GOSTR3410_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf
	
	additional key diversification algorithm identifier. Possible values are CKD_NULL and CKD_CPDIVERSIFY_KDF. In case of CKD_NULL, the result of the key derivation function described in [RFC 4357], section 5.2 is used directly. In case of CKD_CPDIVERSIFY_KDF, the resulting key value is additionally processed with algorithm from [RFC 4357], section 6.5.


	pPublicData1
	
	pointer to data with public key of a receiver

	ulPublicDataLen
	
	length of data with public key of a receiver (must be 64)

	pUKM
	
	pointer to a UKM data 

	ulUKMLen
	
	length of UKM data in bytes (must be 8)



1 Public key of a receiver is an octet string of 64 bytes long. The public key octets correspond to the concatenation of X and Y coordinates of a point. Any one of them is 32 bytes long and represented in little endian order.
CK_GOSTR3410_DERIVE_PARAMS_PTR is a pointer to a CK_GOSTR3410_DERIVE_PARAMS.
6.57.6 [bookmark: _Toc228894912][bookmark: _Toc228807466][bookmark: _Toc370634692][bookmark: _Toc391471405][bookmark: _Toc395188043][bookmark: _Toc416960289][bookmark: _Toc8118597][bookmark: _Toc30061572][bookmark: _Toc90376825][bookmark: _Toc111203810][bookmark: _Toc148962652][bookmark: _Toc195693689]GOST R 34.10-2001 key pair generation
The GOST R 34.10‑2001 key pair generation mechanism, denoted CKM_GOSTR3410_KEY_PAIR_GEN, is a key pair generation mechanism for GOST R 34.10‑2001.
This mechanism does not have a parameter.
The mechanism generates GOST R 34.10‑2001 public/private key pairs with particular GOST R 34.10‑2001 domain parameters, as specified in the CKA_GOSTR3410_PARAMS, CKA_GOSTR3411_PARAMS, and CKA_GOST28147_PARAMS attributes of the template for the public key. Note that CKA_GOST28147_PARAMS attribute may not be present in the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and CKA_GOSTR3410_PARAMS, CKA_GOSTR3411_PARAMS, CKA_GOST28147_PARAMS attributes to the new private key.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.57.7 [bookmark: _Toc228894913][bookmark: _Toc228807467][bookmark: _Toc370634693][bookmark: _Toc391471406][bookmark: _Toc395188044][bookmark: _Toc416960290][bookmark: _Toc8118598][bookmark: _Toc30061573][bookmark: _Toc90376826][bookmark: _Toc111203811][bookmark: _Toc148962653][bookmark: _Toc195693690]GOST R 34.10-2001 without hashing
The GOST R 34.10‑2001 without hashing mechanism, denoted CKM_GOSTR3410, is a mechanism for single-part signatures and verification for GOST R 34.10‑2001. (This mechanism corresponds only to the part of GOST R 34.10‑2001 that processes the 32-bytes hash value; it does not compute the hash value.)
This mechanism does not have a parameter.
For the purposes of these mechanisms, a GOST R 34.10‑2001 signature is an octet string of 64 bytes long. The signature octets correspond to the concatenation of the GOST R 34.10‑2001 values s and r’, both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC 4490] section 3.2, and [RFC 4491] section 2.2.2.
The input for the mechanism is an octet string of 32 bytes long with digest has computed by means of GOST R 34.11‑94 hash algorithm in the context of signed or should be signed message.
[bookmark: _Toc76209837][bookmark: _Toc25853578]Table 251, GOST R 34.10-2001 without hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	CKK_GOSTR3410
	32 bytes
	64 bytes

	C_Verify1
	CKK_GOSTR3410
	32 bytes
	64 bytes


1 Single-part operations only.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.57.8 [bookmark: _Toc228894914][bookmark: _Toc228807468][bookmark: _Toc370634694][bookmark: _Toc391471407][bookmark: _Toc395188045][bookmark: _Toc416960291][bookmark: _Toc8118599][bookmark: _Toc30061574][bookmark: _Toc90376827][bookmark: _Toc111203812][bookmark: _Toc148962654][bookmark: _Toc195693691]GOST R 34.10-2001 with GOST R 34.11-94
The GOST R 34.10‑2001 with GOST R 34.11‑94, denoted CKM_GOSTR3410_WITH_GOSTR3411, is a mechanism for signatures and verification for GOST R 34.10‑2001. This mechanism computes the entire GOST R 34.10‑2001 specification, including the hashing with GOST R 34.11‑94 hash algorithm.
As a parameter this mechanism utilizes a DER-encoding of the object identifier indicating GOST R 34.11‑94 data object type. A mechanism parameter may be missed then parameters are specified in object identifier of attribute CKA_GOSTR3411_PARAMS must be used.
[bookmark: z1]For the purposes of these mechanisms, a GOST R 34.10‑2001 signature is an octet string of 64 bytes long. The signature octets correspond to the concatenation of the GOST R 34.10‑2001 values s and r’, both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC 4490] section 3.2, and [RFC 4491] section 2.2.2.
The input for the mechanism is signed or should be signed message of any length. Single- and multiple-part signature operations are available.
[bookmark: _Toc25853579]Table 252, GOST R 34.10-2001 with GOST R 34.11-94: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	CKK_GOSTR3410
	Any
	64 bytes

	C_Verify
	CKK_GOSTR3410
	Any
	64 bytes


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.57.9 [bookmark: _Toc228894915][bookmark: _Toc228807469][bookmark: _Toc370634695][bookmark: _Toc391471408][bookmark: _Toc395188046][bookmark: _Toc416960292][bookmark: _Toc8118600][bookmark: _Toc30061575][bookmark: _Toc90376828][bookmark: _Toc111203813][bookmark: _Toc148962655][bookmark: _Toc195693692]GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001
GOST R 34.10-2001 keys as a KEK (key encryption keys) for encryption GOST 28147 keys, denoted by CKM_GOSTR3410_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on GOST R 34.10-2001. Its purpose is to encrypt and decrypt keys have been generated by key generation mechanism for GOST 28147‑89. An encryption algorithm from [RFC 4490] (section 5.2) must be used. Encrypted key is a DER-encoded structure of ASN.1 GostR3410-KeyTransport type [RFC 4490] section 4.2.
It has a parameter, a CK_GOSTR3410_KEY_WRAP_PARAMS structure defined in section 6.57.5.
For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as the CKA_VALUE attribute of the new key.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used.
6.57.10 [bookmark: _Toc8118601][bookmark: _Toc30061576][bookmark: _Toc90376829][bookmark: _Toc111203814][bookmark: _Toc148962656][bookmark: _Toc195693693]Common key derivation with assistance of GOST R 34.10-2001 keys
[bookmark: z2]Common key derivation, denoted CKM_GOSTR3410_DERIVE, is a mechanism for key derivation with assistance of GOST R 34.10‑2001 private and public keys. The key of the mechanism must be of object class CKO_DOMAIN_PARAMETERS and key type CKK_GOSTR3410. An algorithm for key derivation from [RFC 4357] (section 5.2) must be used.
The mechanism contributes the result as the CKA_VALUE attribute of the new private key. All other attributes must be specified in a template for creating private key object.
6.58 [bookmark: _Toc8118602][bookmark: _Toc30061577][bookmark: _Toc90376830][bookmark: _Toc111203815][bookmark: _Toc148962657][bookmark: _Toc195693694] ChaCha20
ChaCha20 is a secret-key stream cipher described in [CHACHA].
[bookmark: _Toc25853580]Table 253, ChaCha20 Mechanisms vs. Functions
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6.58.1 [bookmark: _Toc8118603][bookmark: _Toc30061578][bookmark: _Toc90376831][bookmark: _Toc111203816][bookmark: _Toc148962658][bookmark: _Toc195693695]Definitions
This section defines the key type “CKK_CHACHA20” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_CHACHA20_KEY_GEN
CKM_CHACHA20
6.58.2 [bookmark: _Toc8118604][bookmark: _Toc30061579][bookmark: _Toc90376832][bookmark: _Toc111203817][bookmark: _Toc148962659][bookmark: _Toc195693696]ChaCha20 secret key objects
ChaCha20 secret key objects (object class CKO_SECRET_KEY, key type CKK_CHACHA20) hold ChaCha20 keys. The following table defines the ChaCha20 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853581]Table 254, ChaCha20 Secret Key Object
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key length is fixed at 256 bits. Bit length restricted to a byte array.

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


The following is a sample template for creating a ChaCha20 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CHACHA20;
CK_UTF8CHAR label[] = “A ChaCha20 secret key object”;
CK_BYTE value[32] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the SHA-1 hash of the ChaCha20 secret key object’s CKA_VALUE attribute.
6.58.3 [bookmark: _Toc8118605][bookmark: _Toc30061580][bookmark: _Toc90376833][bookmark: _Toc111203818][bookmark: _Toc148962660][bookmark: _Toc195693697]ChaCha20 mechanism parameters
· CK_CHACHA20_PARAMS; CK_CHACHA20_PARAMS_PTR
CK_CHACHA20_PARAMS provides the parameters to the CKM_CHACHA20 mechanism. It is defined as follows:
typedef struct CK_CHACHA20_PARAMS {
	CK_BYTE_PTR	pBlockCounter;
	CK_ULONG	blockCounterBits;
	CK_BYTE_PTR	pNonce;
	CK_ULONG	ulNonceBits;
} CK_CHACHA20_PARAMS;
The fields of the structure have the following meanings:
	pBlockCounter	pointer to block counter
	ulblockCounterBits	length of block counter in bits (can be either 32 or 64)
	pNonce	nonce (This should be never re-used with the same key.)
	ulNonceBits	length of nonce in bits (is 64 for original, 96 for IETF and 192 for xchacha20 variant)
The block counter is used to address 512 bit blocks in the stream. In certain settings (e.g. disk encryption) it is necessary to address these blocks in random order, thus this counter is exposed here.
CK_CHACHA20_PARAMS_PTR is a pointer to CK_CHACHA20_PARAMS.
6.58.4 [bookmark: _Toc8118606][bookmark: _Toc30061581][bookmark: _Toc90376834][bookmark: _Toc111203819][bookmark: _Toc148962661][bookmark: _Toc195693698]ChaCha20 key generation
The ChaCha20 key generation mechanism, denoted CKM_CHACHA20_KEY_GEN, is a key generation mechanism for ChaCha20.
It does not have a parameter.
The mechanism generates ChaCha20 keys of 256 bits.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes in bytes. As a practical matter, the key size for ChaCha20 is fixed at 256 bits.
6.58.5 [bookmark: _Toc8118607][bookmark: _Toc30061582][bookmark: _Toc90376835][bookmark: _Toc111203820][bookmark: _Toc148962662][bookmark: _Toc195693699]ChaCha20 mechanism
ChaCha20, denoted CKM_CHACHA20, is a mechanism for single and multiple-part encryption and decryption based on the ChaCha20 stream cipher. It comes in 3 variants, which only differ in the size and handling of their nonces, affecting the safety of using random nonces and the maximum size that can be encrypted safely.
Chacha20 has a parameter, CK_CHACHA20_PARAMS, which indicates the nonce and initial block counter value.
Constraints on key types and the length of input and output data are summarized in the following table:
[bookmark: _Toc25853582]Table 255, ChaCha20: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	ChaCha20
	Any / only up to 256 GB in case of IETF variant
	Same as input length
	No final part

	C_Decrypt
	ChaCha20
	Any / only up to 256 GB in case of IETF variant
	Same as input length
	No final part


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ChaCha20 key sizes, in bits.
[bookmark: _Toc25853583]Table 256, ChaCha20: Nonce and block counter lengths
	Variant
	Nonce
	Block counter
	Maximum message
	Nonce generation

	original
	64 bit
	64 bit
	Virtually unlimited
	1st msg: nonce0=random
nth msg: noncen-1++

	IETF
	96 bit
	32 bit
	Max ~256 GB
	1st msg: nonce0=random
nth msg: noncen-1++

	XChaCha20
	192 bit
	64 bit
	Virtually unlimited
	Each nonce can be randomly generated.


Nonces must not ever be reused with the same key. However due to the birthday paradox the first two variants cannot guarantee that randomly generated nonces are never repeating. Thus the recommended way to handle this is to generate the first nonce randomly, then increase this for follow-up messages. Only the last (XChaCha20) has large enough nonces so that it is virtually impossible to trigger with randomly generated nonces the birthday paradox. 
6.59 [bookmark: _Toc8118608][bookmark: _Toc30061583][bookmark: _Toc90376836][bookmark: _Toc111203821][bookmark: _Toc148962663][bookmark: _Toc195693700]Salsa20
Salsa20 is a secret-key stream cipher described in [SALSA].
[bookmark: _Toc25853584]Table 257, Salsa20 Mechanisms vs. Functions
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6.59.1 [bookmark: _Toc8118609][bookmark: _Toc30061584][bookmark: _Toc90376837][bookmark: _Toc111203822][bookmark: _Toc148962664][bookmark: _Toc195693701]Definitions
This section defines the key type “CKK_SALSA20” and “CKK_SALSA20” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SALSA20_KEY_GEN
CKM_SALSA20
6.59.2 [bookmark: _Toc8118610][bookmark: _Toc30061585][bookmark: _Toc90376838][bookmark: _Toc111203823][bookmark: _Toc148962665][bookmark: _Toc195693702]Salsa20 secret key objects
Salsa20 secret key objects (object class CKO_SECRET_KEY, key type CKK_SALSA20) hold Salsa20 keys. The following table defines the Salsa20 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853585]Table 258, ChaCha20 Secret Key Object
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key length is fixed at 256 bits. Bit length restricted to a byte array.

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


The following is a sample template for creating a Salsa20 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SALSA20;
CK_UTF8CHAR label[] = “A Salsa20 secret key object”;
CK_BYTE value[32] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCRYPT, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};
CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the SHA-1 hash of the ChaCha20 secret key object’s CKA_VALUE attribute.
6.59.3 [bookmark: _Toc8118611][bookmark: _Toc30061586][bookmark: _Toc90376839][bookmark: _Toc111203824][bookmark: _Toc148962666][bookmark: _Toc195693703]Salsa20 mechanism parameters
· CK_SALSA20_PARAMS; CK_SALSA20_PARAMS_PTR
CK_SALSA20_PARAMS provides the parameters to the CKM_SALSA20 mechanism. It is defined as follows:
typedef struct CK_SALSA20_PARAMS {
	CK_BYTE_PTR	pBlockCounter;
	CK_BYTE_PTR	pNonce;
	CK_ULONG	ulNonceBits;
} CK_SALSA20_PARAMS;

The fields of the structure have the following meanings:
	pBlockCounter	pointer to block counter (64 bits)
	pNonce	nonce 
	ulNonceBits	size of the nonce in bits (64 for classic and 192 for XSalsa20)
The block counter is used to address 512 bit blocks in the stream. In certain settings (e.g. disk encryption) it is necessary to address these blocks in random order, thus this counter is exposed here.
CK_SALSA20_PARAMS_PTR is a pointer to CK_SALSA20_PARAMS.
6.59.4 [bookmark: _Toc8118612][bookmark: _Toc30061587][bookmark: _Toc90376840][bookmark: _Toc111203825][bookmark: _Toc148962667][bookmark: _Toc195693704]Salsa20 key generation
The Salsa20 key generation mechanism, denoted CKM_SALSA20_KEY_GEN, is a key generation mechanism for Salsa20.
It does not have a parameter.
The mechanism generates Salsa20 keys of 256 bits.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes in bytes. As a practical matter, the key size for Salsa20 is fixed at 256 bits.
6.59.5 [bookmark: _Toc8118613][bookmark: _Toc30061588][bookmark: _Toc90376841][bookmark: _Toc111203826][bookmark: _Toc148962668][bookmark: _Toc195693705]Salsa20 mechanism
Salsa20, denoted CKM_SALSA20, is a mechanism for single and multiple-part encryption and decryption based on the Salsa20 stream cipher. Salsa20 comes in two variants which only differ in the size and handling of their nonces, affecting the safety of using random nonces.
Salsa20 has a parameter, CK_SALSA20_PARAMS, which indicates the nonce and initial block counter value.
Constraints on key types and the length of input and output data are summarized in the following table:
[bookmark: _Toc25853586]Table 259, Salsa20: Key and Data Length
	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	Salsa20
	Any
	Same as input length
	No final part

	C_Decrypt
	Salsa20
	Any
	Same as input length
	No final part


For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ChaCha20 key sizes, in bits.
[bookmark: _Toc25853587]Table 260, Salsa20: Nonce sizes
	Variant
	Nonce
	Maximum message
	Nonce generation

	original
	64 bit
	Virtually unlimited
	1st msg: nonce0=random
nth msg: noncen-1++

	XSalsa20
	192 bit
	Virtually unlimited
	Each nonce can be randomly generated.


Nonces must not ever be reused with the same key. However due to the birthday paradox the original variant cannot guarantee that randomly generated nonces are never repeating. Thus the recommended way to handle this is to generate the first nonce randomly, then increase this for follow-up messages. Only the XSalsa20 has large enough nonces so that it is virtually impossible to trigger with randomly generated nonces the birthday paradox. 
6.60 [bookmark: _Toc8118614][bookmark: _Toc30061589][bookmark: _Toc90376842][bookmark: _Toc111203827][bookmark: _Toc148962669][bookmark: _Toc195693706]Poly1305
Poly1305 is a message authentication code designed by D.J Bernsterin [POLY1305]. Poly1305 takes a 256 bit key and a message and produces a 128 bit tag that is used to verify the message.
[bookmark: _Toc25853588]Table 261, Poly1305 Mechanisms vs. Functions
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6.60.1 [bookmark: _Toc8118615][bookmark: _Toc30061590][bookmark: _Toc90376843][bookmark: _Toc111203828][bookmark: _Toc148962670][bookmark: _Toc195693707]Definitions
This section defines the key type “CKK_POLY1305” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_POLY1305_KEY_GEN
CKM_POLY1305 
6.60.2 [bookmark: _Toc8118616][bookmark: _Toc30061591][bookmark: _Toc90376844][bookmark: _Toc111203829][bookmark: _Toc148962671][bookmark: _Toc195693708]Poly1305 secret key objects
Poly1305 secret key objects (object class CKO_SECRET_KEY, key type CKK_POLY1305) hold Poly1305 keys. The following table defines the Poly1305 secret key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc25853589]Table 262, Poly1305 Secret Key Object
	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key length is fixed at 256 bits. Bit length restricted to a byte array.

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value


The following is a sample template for creating a Poly1305 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_POLY1305;
CK_UTF8CHAR label[] = “A Poly1305 secret key object”;
CK_BYTE value[32] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_VALUE, value, sizeof(value)}
};

6.60.3 [bookmark: _Toc8118617][bookmark: _Toc30061592][bookmark: _Toc90376845][bookmark: _Toc111203830][bookmark: _Toc148962672][bookmark: _Toc195693709]Poly1305 mechanism
Poly1305, denoted CKM_POLY1305, is a mechanism for producing an output tag based on a 256 bit key and arbitrary length input.
It has no parameters.
Signatures (MACs) produced by this mechanism will be fixed at 128 bits in size.
[bookmark: _Toc25853590]Table 263, Poly1305: Key and Data Length
	Function
	Key type
	Data length
	Signature Length

	C_Sign
	Poly1305
	Any
	128 bits

	C_Verify
	Poly1305
	Any
	128 bits


6.61 [bookmark: _Toc8118618][bookmark: _Toc30061593][bookmark: _Toc90376846][bookmark: _Toc111203831][bookmark: _Toc148962673][bookmark: _Toc195693710]Chacha20/Poly1305 and Salsa20/Poly1305 Authenticated Encryption / Decryption
The stream ciphers Salsa20 and ChaCha20 are normally used in conjunction with the Poly1305 authenticator, in such a construction they also provide Authenticated Encryption with Associated Data (AEAD). This section defines the combined mechanisms and their usage in an AEAD setting.
[bookmark: _Toc25853591][bookmark: _Toc8118619]Table 264, Poly1305 Mechanisms vs. Functions
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6.61.1 [bookmark: _Toc30061594][bookmark: _Toc90376847][bookmark: _Toc111203832][bookmark: _Toc148962674][bookmark: _Toc195693711]Definitions
Mechanisms:
CKM_CHACHA20_POLY1305
CKM_SALSA20_POLY1305
6.61.2 [bookmark: _Toc8118620][bookmark: _Toc30061595][bookmark: _Toc90376848][bookmark: _Toc111203833][bookmark: _Toc148962675][bookmark: _Toc195693712]Usage
Generic ChaCha20, Salsa20, Poly1305 modes are described in [CHACHA], [SALSA] and [POLY1305]. To set up for ChaCha20/Poly1305 or Salsa20/Poly1305 use the following process. ChaCha20/Poly1305 and Salsa20/Poly1305 both use CK_SALSA20_CHACHA20_POLY1305_PARAMS for Encrypt, Decrypt and CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS for MessageEncrypt, and MessageDecrypt.
Encrypt:
· Set the Nonce length ulNonceLen in the parameter block. (this affects which variant of Chacha20 will be used: 64 bits → original, 96 bits → IETF, 192 bits → XChaCha20)
· Set the Nonce data pNonce in the parameter block.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Call C_EncryptInit for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305 mechanism with parameters and key K.
· Call C_Encrypt, or C_EncryptUpdate*[footnoteRef:11] C_EncryptFinal, for the plaintext obtaining ciphertext and authentication tag output. [11:  “*” indicates 0 or more calls may be made as required] 

Decrypt:
· Set the Nonce length ulNonceLen in the parameter block. (this affects which variant of Chacha20 will be used: 64 bits → original, 96 bits → IETF, 192 bits → XChaCha20)
· Set the Nonce data pNonce in the parameter block.
· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.
· Call C_DecryptInit for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305 mechanism with parameters and key K.
· Call C_Decrypt, or C_DecryptUpdate*1 C_DecryptFinal, for the ciphertext, including the appended tag, obtaining plaintext output. Note: since CKM_CHACHA20_POLY1305 and CKM_SALSA20_POLY1305 are AEAD ciphers, no data should be returned until C_Decrypt or C_DecryptFinal.
MessageEncrypt:
· Set the Nonce length ulNonceLen in the parameter block. (this affects which variant of Chacha20 will be used: 64 bits → original, 96 bits → IETF, 192 bits → XChaCha20)
· Set the Nonce data pNonce in the parameter block.
· Set pTag to hold the tag data returned from C_EncryptMessage or the final C_EncryptMessageNext.
· Call C_MessageEncryptInit for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305 mechanism with key K.
· Call C_EncryptMessage, or C_EncryptMessageBegin followed by C_EncryptMessageNext*[footnoteRef:12]. The mechanism parameter is passed to all three of these functions. [12:  “*” indicates 0 or more calls may be made as required] 

· Call C_MessageEncryptFinal to close the message decryption.
MessageDecrypt:
· Set the Nonce length ulNonceLen in the parameter block. (this affects which variant of Chacha20 will be used: 64 bits → original, 96 bits → IETF, 192 bits → XChaCha20)
· Set the Nonce data pNonce in the parameter block.
· Set the tag data pTag in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext
· Call C_MessageDecryptInit for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305 mechanism with key K.
· Call C_DecryptMessage, or C_DecryptMessageBegin followed by C_DecryptMessageNext*[footnoteRef:13]. The mechanism parameter is passed to all three of these functions. [13:  “*” indicates 0 or more calls may be made as required] 

· Call C_MessageDecryptFinal to close the message decryption

ulNonceLen is the length of the nonce in bits.
In Encrypt and Decrypt the tag is appended to the ciphertext. In MessageEncrypt the tag is returned in the pTag filed of CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS. In MesssageDecrypt the tag is provided by the pTag field of CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS. The application must provide 16 bytes of space for the tag.
The key type for K must be compatible with CKM_CHACHA20 or CKM_SALSA20 respectively and the C_EncryptInit/C_DecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_CHACHA20 or CKM_SALSA20, K and NULL parameters.
Unlike the atomic Salsa20/ChaCha20 mechanism the AEAD mechanism based on them does not expose the block counter, as the AEAD construction is based on a message metaphor in which random access is not needed.
6.61.3 [bookmark: _Toc8118621][bookmark: _Toc30061596][bookmark: _Toc90376849][bookmark: _Toc111203834][bookmark: _Toc148962676][bookmark: _Toc195693713]ChaCha20/Poly1305 and Salsa20/Poly1305 Mechanism parameters
· CK_SALSA20_CHACHA20_POLY1305_PARAMS; CK_SALSA20_CHACHA20_POLY1305_PARAMS_PTR
CK_SALSA20_CHACHA20_POLY1305_PARAMS is a structure that provides the parameters to the CKM_CHACHA20_POLY1305 and CKM_SALSA20_POLY1305 mechanisms. It is defined as follows:
typedef struct CK_SALSA20_CHACHA20_POLY1305_PARAMS {
  CK_BYTE_PTR	pNonce;
  CK_ULONG	ulNonceLen;
  CK_BYTE_PTR	pAAD;
  CK_ULONG	ulAADLen;
} CK_SALSA20_CHACHA20_POLY1305_PARAMS;
The fields of the structure have the following meanings:
	pNonce	nonce (This should be never re-used with the same key.)
	ulNonceLen	length of nonce in bits (is 64 for original, 96 for IETF (only for chacha20) and 192 for xchacha20/xsalsa20 variant)
	pAAD	pointer to additional authentication data. This data is authenticated but not encrypted.
	ulAADLen	length of pAAD in bytes.
CK_SALSA20_CHACHA20_POLY1305_PARAMS_PTR is a pointer to a CK_SALSA20_CHACHA20_POLY1305_PARAMS.
· CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS; CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS_PTR
CK_CHACHA20POLY1305_PARAMS is a structure that provides the parameters to the CKM_CHACHA20_POLY1305 mechanism. It is defined as follows:
typedef struct CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS {
  CK_BYTE_PTR	pNonce;
  CK_ULONG	ulNonceLen;
  CK_BYTE_PTR	pTag;
} CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS;
The fields of the structure have the following meanings:
	pNonce	pointer to nonce
	ulNonceLen	length of nonce in bits. The length of the influences which variant of the ChaCha20 will be used (64 original, 96 IETF(only for ChaCha20), 192 XChaCha20/XSalsa20)
	pTag	location of the authentication tag which is returned on MessageEncrypt, and provided on MessageDecrypt.
CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS_PTR is a pointer to a CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS.
6.62 [bookmark: _Toc8118632][bookmark: _Toc30061597][bookmark: _Toc90376850][bookmark: _Toc111203835][bookmark: _Toc148962677][bookmark: _Toc195693714]HKDF Mechanisms
Details for HKDF key derivation mechanisms can be found in [RFC 5869]. 

[bookmark: _Toc25853592]Table 265, HKDF Mechanisms vs. Functions
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6.62.1 [bookmark: __RefHeading___Toc408227089][bookmark: _Toc8118633][bookmark: _Toc30061598][bookmark: _Toc90376851][bookmark: _Toc111203836][bookmark: _Toc148962678][bookmark: _Toc195693715]Definitions
Mechanisms:
CKM_HKDF_DERIVE
CKM_HKDF_DATA
CKM_HKDF_KEY_GEN

Key Types:
CKK_HKDF
6.62.2 [bookmark: __RefHeading___Toc408227090][bookmark: _Ref7278783][bookmark: _Toc8118634][bookmark: _Toc30061599][bookmark: _Toc90376852][bookmark: _Toc111203837][bookmark: _Toc148962679][bookmark: _Toc195693716]HKDF mechanism parameters
· CK_HKDF_PARAMS; CK_HKDF_PARAMS_PTR
CK_HKDF_PARAMS is a structure that provides the parameters to the CKM_HKDF_DERIVE and CKM_HKDF_DATA mechanisms. It is defined as follows:
typedef struct CK_HKDF_PARAMS {
  CK_BBOOL bExtract;
  CK_BBOOL bExpand;
  CK_MECHANISM_TYPE prfHashMechanism;
  CK_ULONG ulSaltType;
  CK_BYTE_PTR pSalt;
  CK_ULONG ulSaltLen;
  CK_OBJECT_HANDLE hSaltKey;
  CK_BYTE_PTR pInfo;
  CK_ULONG ulInfoLen;
} CK_HKDF_PARAMS;

The fields of the structure have the following meanings:
	bExtract	execute the extract portion of HKDF.
	bExpand	execute the expand portion of HKDF.
	prfHashMechanism	base hash used for the HMAC in the underlying HKDF operation.
	ulSaltType	specifies how the salt for the extract portion of the KDF is supplied. 
		CKF_HKDF_SALT_NULL no salt is supplied.
		CKF_HKDF_SALT_DATA salt is supplied as a data in pSalt with length ulSaltLen.
		CKF_HKDF_SALT_KEY salt is supplied as a key in hSaltKey.
	pSalt	pointer to the salt.
	ulSaltLen	length of the salt pointed to in pSalt.
	hSaltKey	object handle to the salt key.
	pInfo	info string for the expand stage.
	ulInfoLen	length of the info string for the expand stage.

CK_HKDF_PARAMS_PTR is a pointer to a CK_HKDF_PARAMS.
6.62.3 [bookmark: __RefHeading___Toc408227092][bookmark: _Toc8118635][bookmark: _Toc30061600][bookmark: _Toc90376853][bookmark: _Toc111203838][bookmark: _Toc148962680][bookmark: _Toc195693717]HKDF derive
HKDF derivation implements the HKDF as specified in [RFC 5869]. The two booleans bExtract and bExpand control whether the extract section of the HKDF or the expand section of the HKDF is in use. 
It has a parameter, a CK_HKDF_PARAMS structure, which allows for the passing of the salt and or the expansion info. The structure contains the bools bExtract and bExpand which control whether the extract or expand portions of the HKDF is to be used. This structure is defined in section 6.62.2.
The input key must be of type CKK_HKDF or CKK_GENERIC_SECRET and the length must be the size of the underlying hash function specified in prfHashMechanism. The exception is a data object which has the same size as the underlying hash function, and which may be supplied as an input key. In this case bExtract should be true and non-null salt should be supplied.
Either bExtract or bExpand must be set to true. If they are both set to true, input key is first extracted then expanded. The salt is used in the extraction stage. If bExtract is set to true and no salt is given, a ‘zero’ salt (salt whose length is the same as the underlying hash and values all set to zero) is used as specified by the RFC. If bExpand is set to true, CKA_VALUE_LEN should be set to the desired key length. If it is false CKA_VALUE_LEN may be set to the length of the hash, but that is not necessary as the mechanism will supply this value. The salt should be ignored if bExtract is false. The pInfo should be ignored if bExpand is set to false.
The mechanism also contributes the CKA_CLASS, and CKA_VALUE attributes to the new key. Other attributes may be specified in the template, or else are assigned default values.
The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY. However, since these facts are all implicit in the mechanism, there is no need to specify any of them.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
6.62.4 [bookmark: __RefHeading___Toc408227093][bookmark: _Toc8118636][bookmark: _Toc30061601][bookmark: _Toc90376854][bookmark: _Toc111203839][bookmark: _Toc148962681][bookmark: _Toc195693718]HKDF Data
HKDF Data derive mechanism, denoted CKM_HKDF_DATA, is identical to HKDF Derive except the output is a CKO_DATA object whose value is the result to the derive operation. Some tokens may restrict what data may be successfully derived based on the pInfo portion of the CK_HKDF_PARAMS. Tokens may reject requests based on the pInfo values. Allowed pInfo values are specified in the profile document and applications could then query the appropriate profile before depending on the mechanism.
6.62.5 [bookmark: _Toc8118637][bookmark: _Toc30061602][bookmark: _Toc90376855][bookmark: _Toc111203840][bookmark: _Toc148962682][bookmark: _Toc195693719]HKDF Key gen
HKDF key gen, denoted CKM_HKDF_KEY_GEN generates a new random HKDF key. CKA_VALUE_LEN must be set in the template.
6.63 [bookmark: _Toc8118638][bookmark: _Toc30061603][bookmark: _Toc90376856][bookmark: _Toc111203841][bookmark: _Toc148962683][bookmark: _Toc195693720][bookmark: _Hlk171510732]NULL Mechanism
CKM_NULL is a mechanism used to implement the trivial pass-through function. 

[bookmark: _Toc25853593]Table 266, CKM_NULL Mechanisms vs. Functions
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6.63.1 [bookmark: _Toc8118639][bookmark: _Toc30061604][bookmark: _Toc90376857][bookmark: _Toc111203842][bookmark: _Toc148962684][bookmark: _Toc195693721]Definitions
Mechanisms:
CKM_NULL
6.63.2 [bookmark: _Toc8118640][bookmark: _Toc30061605][bookmark: _Toc90376858][bookmark: _Toc111203843][bookmark: _Toc148962685][bookmark: _Toc195693722]CKM_NULL mechanism parameters
CKM_NULL does not have a parameter. 

When used for encrypting / decrypting data, the input data is copied unchanged to the output data.
When used for signing, the input data is copied to the signature. When used for signature verification, it compares the input data and the signature, and returns CKR_OK (indicating that both are identical) or CKR_SIGNATURE_INVALID.
When used for digesting data, the input data is copied to the message digest.
When used for wrapping a private or secret key object, the wrapped key will be identical to the key to be wrapped. When used for unwrapping, a new object with the same value as the wrapped key will be created.
When used for deriving a key, the derived key has the same value as the base key.
When used for key encapsulation, the encapsulated key will be identical to the secret key to be encapsulated. When used for key decapsulation, a new object with the same value as the encapsulated key will be created.
6.64 [bookmark: _Toc90376859][bookmark: _Toc111203844][bookmark: _Toc148962686][bookmark: _Toc195693723]IKE Mechanisms
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6.64.1 [bookmark: _Toc90376860][bookmark: _Toc111203845][bookmark: _Toc148962687][bookmark: _Toc195693724]Definitions
Mechanisms:
CKM_IKE2_PRF_PLUS_DERIVE
CKM_IKE_PRF_DERIVE
CKM_IKE1_PRF_DERIVE
CKM_IKE1_EXTENDED_DERIVE

6.64.2 [bookmark: _Toc90376861][bookmark: _Toc111203846][bookmark: _Toc148962688][bookmark: _Toc195693725]IKE mechanism parameters
· CK_IKE2_PRF_PLUS_DERIVE_PARAMS; CK_IKE2_PRF_PLUS_DERIVE_PARAMS_PTR
CK_IKE2_PRF_PLUS_DERIVE_PARAMS is a structure that provides the parameters to the CKM_IKE2_PRF_PLUS_DERIVE mechanism. It is defined as follows:
typedef struct CK_IKE2_PRF_PLUS_DERIVE_PARAMS {
  CK_MECHANISM_TYPE  prfMechanism;
  CK_BBOOL  bHasSeedKey;
  CK_OBJECT_HANDLE  hSeedKey;
  CK_BYTE_PTR  pSeedData;
  CK_ULONG  ulSeedDataLen;
} CK_IKE2_PRF_PLUS_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	prfMechanism	underlying MAC mechanism used to generate the prf
	bHasSeedKey	hSeed key is present
	hSeedKey	optional seed from key
	pSeedData		optional seed from data
	ulSeedDataLen		length of optional seed data. If no seed data is present this value is 0
CK_IKE2_PRF_PLUS_DERIVE_PARAMS_PTR is a pointer to a CK_IKE2_PRF_PLUS_DERIVE_PARAMS.

· CK_IKE_PRF_DERIVE_PARAMS; CK_IKE_PRF_DERIVE_PARAMS_PTR
CK_IKE_PRF_DERIVE_PARAMS is a structure that provides the parameters to the CKM_IKE_PRF_DERIVE mechanism. It is defined as follows:

typedef struct CK_IKE_PRF_DERIVE_PARAMS {
  CK_MECHANISM_TYPE  prfMechanism;
  CK_BBOOL  bDataAsKey;
  CK_BBOOL  bRekey;
  CK_BYTE_PTR  pNi;
  CK_ULONG  ulNiLen;
  CK_BYTE_PTR  pNr;
  CK_ULONG  ulNrLen;
  CK_OBJECT_HANDLE  hNewKey;
 } CK_IKE_PRF_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	prfMechanism	underlying MAC mechanism used to generate the prf
	bDataAsKey	Ni||Nr is used as the key for the prf rather than baseKey
	bRekey	rekey operation. hNewKey must be present
	pNi	Ni value
	ulNiLen	length of Ni
	pNr	Nr value
	ulNrLen	length of Nr 
	hNewKey	New key value to drive the rekey.
CK_IKE_PRF_DERIVE_PARAMS_PTR is a pointer to a CK_IKE_PRF_DERIVE_PARAMS.

· CK_IKE1_PRF_DERIVE_PARAMS; CK_IKE1_PRF_DERIVE_PARAMS_PTR
CK_IKE1_PRF_DERIVE_PARAMS is a structure that provides the parameters to the CKM_IKE1_PRF_DERIVE mechanism. It is defined as follows:
typedef struct CK_IKE1_PRF_DERIVE_PARAMS {
  CK_MECHANISM_TYPE  prfMechanism;
  CK_BBOOL  bHasPrevKey;
  CK_OBJECT_HANDLE  hKeygxy;
  CK_OBJECT_HANDLE  hPrevKey;
  CK_BYTE_PTR  pCKYi;
  CK_ULONG  ulCKYiLen;
  CK_BYTE_PTR  pCKYr;
  CK_ULONG  ulCKYrLen;
  CK_BYTE  keyNumber;
 } CK_IKE1_PRF_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	prfMechanism	underlying MAC mechanism used to generate the prf
	bHasPrevkey	hPrevKey is present
	hKeygxy	handle to the exchanged g^xy key
	hPrevKey	handle to the previously derived key
	pCKYi	CKYi value
	ulCKYiLen	length of CKYi
	pCKYr	CKYr value
	ulCKYrLen	length of CKYr 
	keyNumber	unique number for this key derivation
CK_IKE1_PRF_DERIVE_PARAMS_PTR is a pointer to a CK_IKE1_PRF_DERIVE_PARAMS.

· CK_IKE1_EXTENDED_DERIVE_PARAMS; CK_IKE1_EXTENDED_DERIVE_PARAMS_PTR
CK_IKE1_EXTENDED_DERIVE_PARAMS is a structure that provides the parameters to the CKM_IKE1_EXTENDED_DERIVE mechanism. It is defined as follows:

typedef struct CK_IKE1_EXTENDED_DERIVE_PARAMS {
    CK_MECHANISM_TYPE  prfMechanism;
    CK_BBOOL  bHasKeygxy;
    CK_OBJECT_HANDLE  hKeygxy;
    CK_BYTE_PTR  pExtraData;
    CK_ULONG  ulExtraDataLen;
} CK_IKE1_EXTENDED_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	prfMechanism	underlying MAC mechanism used to generate the prf
	bHasKeygxy		hKeygxy key is present
	hKeygxy	optional key g^xy
	pExtraData		optional extra data
	ulExtraDataLen	length of optional extra data. If no extra data is present this value is 0
CK_IKE2_PRF_PLUS_DERIVE_PARAMS_PTR is a pointer to a CK_IKE2_PRF_PLUS_DERIVE_PARAMS.

6.64.3 [bookmark: _Toc90376862][bookmark: _Toc111203847][bookmark: _Toc148962689][bookmark: _Toc195693726]IKE PRF DERIVE
The IKE PRF Derive mechanism denoted CKM_IKE_PRF_DERIVE is used in IPSEC both IKEv1 and IKEv2 to generate an initial key that is used to generate additional keys. It takes a CK_IKE_PRF_DERIVE_PARAMS as a mechanism parameter. baseKey is the base key passed into C_DeriveKey. baseKey must be of type CKK_GENERIC_SECRET if bDataAsKey is TRUE and the key type of the underlying prf if bDataAsKey is FALSE. hNewKey must be of type CKK_GENERIC_SECRET. Depending on the parameter settings, it generates keys with a CKA_VALUE of:

    1. prf(pNi|pNr, baseKey); (bDataAsKey=TRUE, bRekey=FALSE)
    2. prf(baseKey, pNi|pNr); (bDataAsKkey=FALSE, bRekey=FALSE)
    3. prf(baseKey, ValueOf(hNewKey)| pNi | pNr); (bDataAsKey=FALSE, bRekey=TRUE)
The resulting output key is always the length of the underlying prf. The combination of bDataAsKey=TRUE and bRekey=TRUE is not allowed. If both are set, CKR_ARGUMENTS_BAD is returned.
Case 1 is used in
     a. ikev2 ([RFC 5996]) baseKey is called g^ir, the output is called SKEYSEED
     b. ikev1 ([RFC 2409]) baseKey is called g^ir, the output is called SKEYID
Case 2 is used in ikev1 ([RFC 2409]) inkey is called pre-shared-key, output is called SKEYID
Case 3 is used in ikev2 ([RFC 5996]) rekey case, baseKey is SK_d, hNewKey is g^ir (new), the output is called SKEYSEED. The derived key will have a length of the length of the underlying prf. If CKA_VALUE_LEN is specified, it must equal the underlying prf or CKR_KEY_SIZE_RANGE is returned. If CKA_KEY_TYPE is not specified in the template, it will be the underlying key type of the prf.
6.64.4 [bookmark: _Toc90376863][bookmark: _Toc111203848][bookmark: _Toc148962690][bookmark: _Toc195693727]IKEv1 PRF DERIVE
The IKEv1 PRF Derive mechanism denoted CKM_IKE1_PRF_DERIVE is used in IPSEC IKEv1 to generate various additional keys from the initial SKEYID. It takes a CK_IKE1_PRF_DERIVE_PARAMS as a mechanism parameter. SKEYID is the base key passed into C_DeriveKey. 

This mechanism derives a key with CKA_VALUE set to either:
     prf(baseKey, ValueOf(hKeygxy) || pCKYi || pCKYr || key_number)
 or
     prf(baseKey, ValueOf(hPrevKey) || ValueOf(hKeygxy) || pCKYi || pCKYr || key_number)
depending on the state of bHasPrevKey.
The key type of baseKey must be the key type of the prf, and the key type of hKeygxy must be CKK_GENERIC_SECRET. The key type of hPrevKey can be any key type.
 
This is defined in [RFC 2409]. For each of the following keys.
   baseKey is  SKEYID,    hKeygxy is g^xy
   for outKey = SKEYID_d, bHasPrevKey = false, key_number = 0
   for outKey = SKEYID_a, hPrevKey= SKEYID_d,   key_number = 1
   for outKey = SKEYID_e, hPrevKey= SKEYID_a,   key_number = 2
If CKA_VALUE_LEN is not specified, the resulting key will be the length of the prf. If CKA_VALUE_LEN is greater then the prf, CKR_KEY_SIZE_RANGE is returned. If it is less the key is truncated taking the left most bytes. The value CKA_KEY_TYPE must be specified in the template or CKR_TEMPLATE_INCOMPLETE is returned.

6.64.5 [bookmark: _Toc90376864][bookmark: _Toc111203849][bookmark: _Toc148962691][bookmark: _Toc195693728]IKEv2 PRF PLUS DERIVE
The IKEv2 PRF PLUS Derive mechanism denoted CKM_IKE2_PRF_PLUS_DERIVE is used in IPSEC IKEv2 to derive various additional keys from the initial SKEYSEED. It takes a CK_IKE2_PRF_PLUS_DERIVE_PARAMS as a mechanism parameter. SKEYSEED is the base key passed into C_DeriveKey. The key type of baseKey must be the key type of the underlying prf. This mechanism uses the base key and a feedback version of the prf to generate a single key with sufficient bytes to cover all additional keys. The application will then use CKM_EXTRACT_KEY_FROM_KEY several times to pull out the various keys. CKA_VALUE_LEN must be set in the template and its value must not be bigger than 255 times the size of the prf function output or CKR_KEY_SIZE_RANGE will be returned. If CKA_KEY_TYPE is not specified, the output key type will be CKK_GENERIC_SECRET.

This mechanism derives a key with a CKA_VALUE of (from [RFC 5996]):
 
prfplus = T1 | T2 | T3 | T4 |... Tn
 where:
     T1 = prf(K, S  | 0x01)
     T2 = prf(K, T1 | S | 0x02)
     T3 = prf(K, T3 | S | 0x03)
     T4 = prf(K, T4 | S | 0x04)
          .
     Tn = prf(K, T(n-1) | n)
     K = baseKey, S = valueOf(hSeedKey) | pSeedData
6.64.6 [bookmark: _Toc90376865][bookmark: _Toc111203850][bookmark: _Toc148962692][bookmark: _Toc195693729]IKEv1 Extended Derive
The IKE Extended Derive mechanism denoted CKM_IKE1_EXTENDED_DERIVE is used in IPSEC IKEv1 to derive longer keys than CKM_IKE1_EXTENDED_DERIVE can from the initial SKEYID. It is used to support [RFC 2409] appendix B and section 5.5 (Quick Mode). It takes a CK_IKE1_EXTENDED_DERIVE_PARAMS as a mechanism parameter. SKEYID is the base key passed into C_DeriveKey. CKA_VALUE_LEN must be set in the template and its value must not be bigger than 255 times the size of the prf function output or CKR_KEY_SIZE_RANGE will be returned. If CKA_KEY_TYPE is not specified, the output key type will be CKK_GENERIC_SECRET. The key type of SKEYID must be the key type of the prf, and the key type of hKeygxy (if present) must be CKK_GENERIC_SECRET.

This mechanism derives a key with CKA_VALUE (from [RFC 2409] appendix B and section 5.5):
 Ka = K1 | K2 | K3 | K4 |... Kn
 where:
       K1 = prf(K, valueOf(hKeygxy)|pExtraData) or prf(K,0x00) if bHashKeygxy is FALSE and ulExtraData is 0
       K2 = prf(K, K1|valueOf(hKeygxy)|pExtraData)
       K3 = prf(K, K2|valueOf(hKeygxy)|pExtraData)
       K4 = prf(K, K3|valueOf(hKeygxy)|pExtraData)
            .
       Kn = prf(K, K(n-1)|valueOf(hKeygxy)|pExtraData)
       K = baseKey

If CKA_VALUE_LEN is less then or equal to the prf length and bHasKeygxy is CK_FALSE, then the new key is simply the base key truncated to CKA_VALUE_LEN (specified in RFC 2409 appendix B). Otherwise the prf is executed and the derived keys value is CKA_VALUE_LEN bytes of the resulting prf.
6.65 [bookmark: _Toc90376866][bookmark: _Toc111203851][bookmark: _Toc148962693][bookmark: _Toc195693730]HSS
HSS is a mechanism for single-part signatures and verification, following the digital signature algorithm defined in [RFC 8554] and [NIST SP800-208].

Table 268, HSS Mechanisms vs. Functions
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1 Single-part operations only

6.65.1 [bookmark: _Toc10561260][bookmark: _Toc90376867][bookmark: _Toc111203852][bookmark: _Toc148962694][bookmark: _Toc195693731]Definitions 
This section defines the key type CKK_HSS for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects and domain parameter objects.
Mechanisms:
CKM_HSS_KEY_PAIR_GEN
CKM_HSS
6.65.2 [bookmark: _Toc90376868][bookmark: _Toc111203853][bookmark: _Toc148962695][bookmark: _Toc195693732]HSS public key objects
HSS public key objects (object class CKO_PUBLIC_KEY, key type CKK_HSS) hold HSS public keys.
The following table defines the HSS public key object attributes, in addition to the common attributes defined for this object class:
Table 269, HSS Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_HSS_LEVELS2,4
	CK_ULONG
	The number of levels in the HSS scheme.

	CKA_HSS_LMS_TYPE2,4
	CK_ULONG
	The encoding for the Merkle tree heights of the top level LMS tree in the hierarchy.

	CKA_HSS_LMOTS_TYPE2,4
	CK_ULONG
	The encoding for the Winternitz parameter of the one-time-signature scheme of the top level LMS tree.

	CKA_VALUE1,4
	Byte array
	XDR-encoded public key as defined in [RFC8554]. 


- Refer to Table 13 for footnotes

The following is a sample template for creating an HSS public key object:

CK_OBJECT_CLASS keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_HSS;
CK_UTF8CHAR label[] = “An HSS public key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;

CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &keyClass, sizeof(keyClass)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &false, sizeof(false)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_VALUE, value, sizeof(value)},
    {CKA_VERIFY, &true, sizeof(true)}
};
6.65.3 [bookmark: _Toc90376869][bookmark: _Toc111203854][bookmark: _Toc148962696][bookmark: _Toc195693733]HSS private key objects
HSS private key objects (object class CKO_PRIVATE_KEY, key type CKK_HSS) hold HSS private keys. 
The following table defines the HSS private key object attributes, in addition to the common attributes defined for this object class:

Table 270, HSS Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	[bookmark: _Hlk70232819]CKA_HSS_LEVELS1,3
	CK_ULONG
	The number of levels in the HSS scheme.

	CKA_HSS_LMS_TYPES1,3
	CK_ULONG_PTR
	A list of encodings for the Merkle tree heights of the LMS trees in the hierarchy from top to bottom. The number of encodings in the array is the ulValueLen component of the attribute divided by the size of CK_ULONG. This number must match the CKA_HSS_LEVELS attribute value.

	CKA_HSS_LMOTS_TYPES1,3
	CK_ULONG_PTR
	A list of encodings for the Winternitz parameter of the one-time-signature scheme of the LMS trees in the hierarchy from top to bottom. The number of encodings in the array is the ulValueLen component of the attribute divided by the size of CK_ULONG. This number must match the CKA_HSS_LEVELS attribute value.

	CKA_VALUE1,4,6,7
	Byte array
	Vendor defined, must include state information.
Note that exporting this value is dangerous as it would allow key reuse.

	CKA_HSS_KEYS_REMAINING2,4
	CK_ULONG
	The minimum of the following two values: 1) The number of one-time private keys remaining; 2) 2^32-1


- Refer to Table 13 for footnotes

The encodings for CKA_HSS_LMOTS_TYPES and CKA_HSS_LMS_TYPES are defined in [RFC 8554] and [NIST SP800-208].

The following is a sample template for creating an LMS private key object:

CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_HSS;
CK_UTF8CHAR label[] = “An HSS private key object”;
CK_ULONG hssLevels = 123;
CK_ULONG lmsTypes[] = {123,...};
CK_ULONG lmotsTypes[] = {123,...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;
CK_ATTRIBUTE template[] = {
    {CKA_CLASS, &keyClass, sizeof(keyClass)},
    {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
    {CKA_TOKEN, &true, sizeof(true)},
    {CKA_LABEL, label, sizeof(label)-1},
    {CKA_SENSITIVE, &true, sizeof(true)},
    {CKA_EXTRACTABLE, &false, sizeof(true)},
    {CKA_HSS_LEVELS, &hssLevels, sizeof(hssLevels)},
    {CKA_HSS_LMS_TYPES, lmsTypes, sizeof(lmsTypes)},
    {CKA_HSS_LMOTS_TYPES, lmotsTypes, sizeof(lmotsTypes)},
    {CKA_VALUE, value, sizeof(value)},
    {CKA_SIGN, &true, sizeof(true)}
};

CKA_SENSITIVE MUST be true, CKA_EXTRACTABLE MUST be false, and CKA_COPYABLE MUST be false for this key. 
6.65.4 [bookmark: _Toc90376870][bookmark: _Toc111203855][bookmark: _Toc148962697][bookmark: _Toc195693734]HSS key pair generation
The HSS key pair generation mechanism, denoted CKM_HSS_KEY_PAIR_GEN, is a key pair generation mechanism for HSS.
This mechanism does not have a parameter.
The mechanism generates HSS public/private key pairs for the scheme specified by the CKA_HSS_LEVELS, CKA_HSS_LMS_TYPES, and CKA_HSS_LMOTS_TYPES attributes of the template for the private key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_HSS_LEVELS, CKA_HSS_LMS_TYPE, CKA_HSS_LMOTS_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and CKA_HSS_KEYS_REMAINING attributes to the new private key.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used and must be set to 0.
6.65.5 [bookmark: _Toc90376871][bookmark: _Toc111203856][bookmark: _Toc148962698][bookmark: _Toc195693735]HSS without hashing
The HSS without hashing mechanism, denoted CKM_HSS, is a mechanism for single-part signatures and verification for HSS. (This mechanism corresponds only to the part of LMS that processes the hash value, which may be of any length; it does not compute the hash value.)
This mechanism does not have a parameter.
For the purposes of these mechanisms, an HSS signature is a byte string with length depending on CKA_HSS_LEVELS, CKA_HSS_LMS_TYPES, CKA_HSS_LMOTS_TYPES as described in the following table.
Table 271, HSS without hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	HSS Private Key
	any
	1296-749882

	C_Verify1
	HSS Public Key
	any, 1296-749882
	N/A


1 Single-part operations only.
2 4+(levels-1)*56+levels*(8+(36+32*p)+h*32) where p has values (265, 133, 67, 34) for lmots type (W1, W2, W4, W8) and h is the number of levels in the LMS Merkle trees.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used and must be set to 0.
If the number of signatures is exhausted, CKR_KEY_EXHAUSTED will be returned.
[bookmark: _Toc195693736]XMSS and XMSSMT
XMSS and XMSSMT are mechanisms for single-part signatures and verification, following the digital signature algorithm defined in [RFC 8391].

Table 272, XMSS and XMSSMT Mechanisms vs. Functions
	Mechanism
	Functions

	
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive
	Encap
sulate
&
Decap
sulate

	CKM_XMSS_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_XMSS
	
	1
	
	
	
	
	
	

	CKM_XMSSMT_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_XMSSMT
	
	1
	
	
	
	
	
	


1 Single-part operations only

[bookmark: _Toc195693737]Definitions
This section defines the key type CKK_XMSS and CKK_XMSSMT for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects and domain parameter objects.
Mechanisms:
CKM_XMSS_KEY_PAIR_GEN
CKM_XMSS
CKM_XMSSMT_KEY_PAIR_GEN
CKM_XMSSMT

[bookmark: _Ref179460513][bookmark: _Toc195693738]XMSS public key objects
XMSS public key objects (object class CKO_PUBLIC_KEY, key type CKK_XMSS) hold XMSS public keys.
The following table defines the XMSS public key object attributes, in addition to the common attributes defined for this object class:
Table 273, XMSS Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,3
	CK_XMSS_PARAMETER_SET_TYPE
	XMSS parameter set as defined below.

	CKA_VALUE1,4
	Byte array
	4+2*N bytes; a 4 byte integer in big-endian order encoding an algorithm OID, an N byte string (the Merkle tree root hash value), an N byte string (the public SEED).


- Refer to Table 13 for footnotes

typedef CK_ULONG CK_XMSS_PARAMETER_SET_TYPE;
where CK_XMSS_PARAMETER_SET_TYPE is the numeric identifier of the XMSS parameter set defined in [NIST SP800-208].

The following is a sample template for creating an XMSS public key object:
CK_OBJECT_CLASS keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_XMSS;
CK_UTF8CHAR label[] = “An XMSS public key object”;
CK_XMSS_PARAMETER_SET_TYPE xmss_param = 0x01;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;

CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &false, sizeof(false)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PARAMETER_SET, &xmss_param, sizeof(xmss_param)},
  {CKA_VALUE, value, sizeof(value)},
  {CKA_VERIFY, &true, sizeof(true)}
};
[bookmark: _Ref179460733][bookmark: _Toc195693739]XMSSMT public key objects
XMSSMT public key objects (object class CKO_PUBLIC_KEY, key type CKK_XMSSMT) hold XMSSMT public keys.
The following table defines the XMSSMT public key object attributes, in addition to the common attributes defined for this object class:
Table 274, XMSSMT Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,3
	CK_XMSSMT_PARAMETER_SET_TYPE
	XMSSMT parameter set as defined below.

	CKA_VALUE1,4
	Byte array
	4+2*N bytes; a 4 byte integer in big-endian order encoding an algorithm OID, an N byte string (the Merkle tree root hash value), an N byte string (the public SEED).


- Refer to Table 13 for footnotes

typedef CK_ULONG CK_XMSSMT_PARAMETER_SET_TYPE;
where CK_XMSSMT_PARAMETER_SET_TYPE is the numeric identifier of the XMSSMT parameter set defined in [NIST SP800-208].

The following is a sample template for creating an XMSSMT public key object:
CK_OBJECT_CLASS keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_XMSSMT;
CK_UTF8CHAR label[] = “An XMSSMT public key object”;
CK_XMSSMT_PARAMETER_SET_TYPE xmss_mt_param = 0x01;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;

CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &false, sizeof(false)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PARAMETER_SET, &xmss_mt_param, sizeof(xmss_mt_param)},
  {CKA_VALUE, value, sizeof(value)},
  {CKA_VERIFY, &true, sizeof(true)}
};
[bookmark: _Toc10561262][bookmark: _Toc195693740]XMSS private key objects
XMSS private key objects (object class CKO_PRIVATE_KEY, key type CKK_XMSS) hold XMSS private keys.
The following table defines the XMSS private key object attributes, in addition to the common attributes defined for this object class:
Table 275, XMSS Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET 1,4,6
	CK_XMSS_PARAMETER_SET_TYPE
	Numeric identifier of the XMSS parameter set as defined in section 6.66.2.

	CKA_VALUE1,4,6,7
	Byte array
	Vendor defined.

Note that exporting this value is dangerous as it would allow key reuse.


- Refer to Table 13 for footnotes

The following is a sample template for creating an XMSS private key object:
CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_XMSS;
CK_UTF8CHAR label[] = “An XMSS private key object”;
CK_XMSS_PARAMETER_SET_TYPE xmss_param = 0x01;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_EXTRACTABLE, &false, sizeof(true)},
  {CKA_PARAMETER_SET, &xmss_param, sizeof(xmss_param)},
  {CKA_VALUE, value, sizeof(value)}
  {CKA_SIGN, &true, sizeof(true)}
};
CKA_SENSITIVE MUST be true and CKA_EXTRACTABLE MUST be false for this key.
[bookmark: _Toc195693741]XMSSMT private key objects
XMSSMT private key objects (object class CKO_PRIVATE_KEY, key type CKK_XMSSMT) hold XMSSMT private keys.
The following table defines the XMSSMT private key object attributes, in addition to the common attributes defined for this object class:
Table 276, XMSSMT Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET 1,4,6
	CK_XMSSMT_PARAMETER_SET_TYPE
	Numeric identifier of the XMSSMT parameter set as defined in section 6.66.3.

	CKA_VALUE1,4,6,7
	Byte array
	Vendor defined.

Note that exporting this value is dangerous as it would allow key reuse.


- Refer to Table 13 for footnotes

The following is a sample template for creating an XMSSMT private key object:
CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_XMSS;
CK_UTF8CHAR label[] = “An XMSSMT private key object”;
CK_XMSSMT_PARAMETER_SET_TYPE xmss_mt_param = 0x01;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_BBOOL false = CK_FALSE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &keyClass, sizeof(keyClass)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_EXTRACTABLE, &false, sizeof(true)},
  {CKA_PARAMETER_SET, &xmss_mt_param, sizeof(xmss_mt_param)},
  {CKA_VALUE, value, sizeof(value)}
  {CKA_SIGN, &true, sizeof(true)}
};
CKA_SENSITIVE MUST be true and CKA_EXTRACTABLE MUST be false for this key.
[bookmark: _Toc10561265][bookmark: _Ref169100734][bookmark: _Toc195693742]XMSS key pair generation
[bookmark: _Hlk35335748]The XMSS key pair generation mechanism, denoted CKM_XMSS_KEY_PAIR_GEN, is a key pair generation mechanism for XMSS.
This mechanism does not have a parameter.
The mechanism generates XMSS public/private key pairs using an oid, as specified in the CKA_PARAMETER_SET attribute of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and CKA_PARAMETER_SET attributes to the new private key.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used and must be set to 0.
[bookmark: _Toc195693743]XMSSMT key pair generation
The XMSSMT key pair generation mechanism, denoted CKM_XMSSMT_KEY_PAIR_GEN, is the key pair generation mechanism for XMSSMT.
The mechanism generates XMSSMT public/private key pairs using an oid, as specified in the CKA_PARAMETER_SET attribute of the template for the public key.
All other restrictions detailed in section 6.66.6 apply, using XMSSMT types where necessary.
[bookmark: _Toc10561266][bookmark: _Toc195693744]XMSS and XMSSMT without hashing
The XMSS and XMSSMT without hashing mechanisms, denoted CKM_XMSS and CKM_XMSSMT respectively, are mechanisms for single-part signatures and verification.
These mechanisms do not have parameters.
For the purposes of these mechanisms, an XMSS or XMSSMT signature is a byte string with a length depending on the oid provided.
Table 277, XMSS without hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	XMSS Private Key
	any
	2500-97322

	C_Verify1
	XMSS Public Key
	any, 2500-97322
	N/A


1 Single-part operations only.
2 Smallest and largest signature sizes from [RFC 8391], including optional parameter sets.
[bookmark: _Toc762098371]Table 278, XMSSMT without hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	XMSSMT Private Key
	any
	4963-1045202

	C_Verify1
	XMSSMT Public Key
	any, 4963-1045202
	N/A


1 Single-part operations only.
2 Smallest and largest signature sizes from [RFC 8391], including optional parameter sets.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are not used and must be set to 0.
[bookmark: _Ref174603044][bookmark: _Ref174603062][bookmark: _Toc195693745]ML-DSA
ML-DSA and HashML-DSA are mechanisms for signatures and verification, following the digital signature algorithm defined in [FIPS 204].
Table 279, ML-DSA Mechanisms vs. Functions
	Mechanism
	Functions

	
	Encrypt
&
Decrypt
	Sign
&
Verify
	Sign
Recover
&
Verify
Recover
	
Digest
	Gen.
Key/
Key
Pair
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&
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sulate

	CKM_ML_DSA_KEY_PAIR_GEN
	
	
	
	
	
	
	
	

	CKM_ML_DSA
	
	1
	
	
	
	
	
	

	CKM_HASH_ML_DSA
	
	2
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA224
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA256
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA384
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA512
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA3_224
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA3_256
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA3_384
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHA3_512
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHAKE128
	
	
	
	
	
	
	
	

	CKM_HASH_ML_DSA_SHAKE256
	
	
	
	
	
	
	
	


1 Verification is only for single part verifications or multipart verifications when the C_VerifySignatureInit interface is used
2 Single-part operations only

[bookmark: _Ref179886547][bookmark: _Toc195693746]Definitions
[bookmark: _Hlk169794810]This section defines the key type CKK_ML_DSA for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of all ML-DSA key objects.
Mechanisms:
CKM_ML_DSA_KEY_PAIR_GEN
CKM_ML_DSA
CKM_HASH_ML_DSA
CKM_HASH_ML_DSA_SHA224
CKM_HASH_ML_DSA_SHA256
CKM_HASH_ML_DSA_SHA384
CKM_HASH_ML_DSA_SHA512
CKM_HASH_ML_DSA_SHA3_224
CKM_HASH_ML_DSA_SHA3_256
CKM_HASH_ML_DSA_SHA3_384
CKM_HASH_ML_DSA_SHA3_512
CKM_HASH_ML_DSA_SHAKE128
CKM_HASH_ML_DSA_SHAKE256

CK_ML_DSA_PARAMETER_SET_TYPE is used to indicate which ML-DSA parameter set the keys belong to.
typedef CK_ULONG CK_ML_DSA_PARAMETER_SET_TYPE;

Parameter set types:
CKP_ML_DSA_44
CKP_ML_DSA_65
CKP_ML_DSA_87

CK_HEDGE_TYPE is used to indicate how hedge or deterministic signature variants are handled.
typedef CK_ULONG CK_HEDGE_TYPE;

Hedge types:
CKH_HEDGE_PREFERRED
CKH_HEDGE_REQUIRED
CKH_DETERMINISTIC_REQUIRED

CK_SIGN_ADDITIONAL_CONTEXT is used in the mechanism parameters to supply a NIST defined context string in signature scheme.
typedef struct CK_SIGN_ADDITIONAL_CONTEXT {
  CK_HEDGE_TYPE  hedgeVariant;
  CK_BYTE_PTR    pContext;
  CK_ULONG       ulContextLen;
} CK_SIGN_ADDITIONAL_CONTEXT;
;

CK_HASH_SIGN_ADDITIONAL_CONTEXT is used in the mechanism parameters to supply a NIST defined context string in signature scheme and the hash algorithm.
typedef struct CK_HASH_SIGN_ADDITIONAL_CONTEXT {
  CK_HEDGE_TYPE      hedgeVariant;
  CK_BYTE_PTR        pContext;
  CK_ULONG           ulContextLen;
  CK_MECHANISM_TYPE  hash;
} CK_HASH_SIGN_ADDITIONAL_CONTEXT;
;

[bookmark: _Toc195693747]ML-DSA public key objects
ML-DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_ML_DSA) hold ML-DSA public keys.
The following table defines the ML-DSA public key object attributes, in addition to the common attributes defined for this object class:
Table 280, ML-DSA Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,3
	CK_ML_DSA_PARAMETER_SET_TYPE
	ML-DSA parameter set

	CKA_VALUE1,4
	Byte array
	Public key as defined in [FIPS 204]


- Refer to Table 13 for footnotes

The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and public key sizes. Tokens may support a subset of the defined parameter sets.

The following is a sample template for creating an ML-DSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_ML_DSA;
CK_UTF8CHAR label[] = “A ML-DSA public key object”;
CK_ML_DSA_PARAMETER_SET_TYPE param_set = CKP_ML_DSA_44;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc195693748]ML-DSA private key objects
ML-DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_ML_DSA) hold ML-DSA private keys.
The following table defines the ML-DSA private key object attributes, in addition to the common attributes defined for this object class:
Table 281, ML-DSA Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,4,6
	CK_ML_DSA_PARAMETER_SET_TYPE
	ML-DSA parameter set

	CKA_SEED4,6,7
	Byte array
	Seed value (𝜉) as defined in ML-DSA.Keygen in [FIPS 204]

	CKA_VALUE1,4,6,7
	Byte array
	Private key (sk) as defined in ML-DSA.Keygen-internal in [FIPS 204]


- Refer to Table 13 for footnotes
At least one of CKA_SEED and CKA_VALUE must be specified on C_CreateObject. Tokens may reject creation requests that only specify one of these values. For highest compatibility applications should set both.
The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and private key sizes. Tokens may support a subset of the defined parameter sets.
Note that when generating a ML-DSA private key, the parameter set is not specified in the key’s template. This is because ML-DSA private keys are only generated as part of a ML-DSA key pair, and the parameter set for the pair is specified in the template for the ML-DSA public key.

The following is a sample template for creating an ML-DSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_ML_DSA;
CK_UTF8CHAR label[] = “A ML-DSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_ML_DSA_PARAMETER_SET_TYPE param_set = CKP_ML_DSA_44;
CK_BYTE seed[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_SEED, seed, sizeof(seed)}
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc195693749]ML-DSA key pair generation
The ML-DSA key pair generation mechanism, denoted CKM_ML_DSA_KEY_PAIR_GEN, is a key pair generation mechanism using ML-DSA.KeyGen() as defined in section 5.1 of [FIPS 204].
It does not have a parameter.
The mechanism generates ML-DSA public/private key pairs with a parameter set, as specified in the CKA_PARAMETER_SET attribute of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PARAMETER_SET, CKA_SEED and CKA_VALUE attributes to the new private key; other attributes required by the ML-DSA public and private key types must be specified in the templates.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-DSA public key in bytes.
[bookmark: _Toc195693750]ML-DSA Signature
The ML-DSA signature mechanism, denoted CKM_ML_DSA, is a mechanism for generating and verifying ML-DSA signatures as defined in sections 5.2 and 5.3 of [FIPS 204], Algorithm 2 ML-DSA.Sign and Algorithm 3 ML-DSA.Verify, using SHAKE256 as hash function. The data passed in is the message M.
It has an optional parameter CK_SIGN_ADDITIONAL_CONTEXT. If no parameter is supplied the hedgeVariant will be CKH_HEDGE_PREFERRED, ulContextLen will be zero and pContext will be NULL. On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 204]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the ML-DSA signature.
Table 282, ML-DSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	ML-DSA Private Key
	any
	k

	C_Verify1
	ML-DSA Public Key
	any, k
	N/A

	C_VerifySignature
	ML-DSA Public Key
	any, k
	N/A


1 Single-part operations only.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-DSA public keys in bytes.
[bookmark: _Toc195693751]HashML-DSA Signature
[bookmark: _Hlk191291870]The HashML-DSA signature mechanism, denoted CKM_HASH_ML_DSA is a single part mechanism for generating and verifying pre-hash ML-DSA signatures as defined in section 5.4 of [FIPS 204], Algorithm 4 HashML-DSA.Sign and Algorithm 5 HashML-DSA.Verify, using the hash function specified in CK_HASH_SIGN_ADDITIONAL_CONTEXT. The data passed in is an already hashed message PHM.
It has a parameter CK_HASH_SIGN_ADDITIONAL_CONTEXT. On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 204]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the ML-DSA signature.
Table 283, HashML-DSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	ML-DSA Private Key
	Length of hash
	k

	C_Verify1
	ML-DSA Public Key
	any, k
	N/A


1 Single-part operations only.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-DSA public keys in bytes.
[bookmark: _Toc195693752]HashML-DSA Signature with hashing
The HashML-DSA with hashing mechanism, denoted CKM_HASH_ML_DSA_<hash> where <hash> identifies a hash function as per Table 284, is a mechanism for single- and multiple-part signatures and verification for pre-hash ML-DSA signatures as defined in section 5.4 of [FIPS 204], Algorithm 4 HashML-DSA.Sign and Algorithm 5 HashML-DSA.Verify. This mechanism computes the entire HashML-DSA specification, including the hashing on token. The data passed in is the message M.

[bookmark: _Ref179882617][bookmark: _Ref179882567]Table 284, HashML-DSA with hashing: mechanisms and hash functions
	Mechanism
	Hash function

	CKM_HASH_ML_DSA_SHA224
	SHA-224

	CKM_HASH_ML_DSA_SHA256
	SHA-256

	CKM_HASH_ML_DSA_SHA384
	SHA-384

	CKM_HASH_ML_DSA_SHA512
	SHA-512

	CKM_HASH_ML_DSA_SHA3_224
	SHA3-224

	CKM_HASH_ML_DSA_SHA3_256
	SHA3-256

	CKM_HASH_ML_DSA_SHA3_384
	SHA3-384

	CKM_HASH_ML_DSA_SHA3_512
	SHA3-512

	CKM_HASH_ML_DSA_SHAKE128
	SHAKE128

	CKM_HASH_ML_DSA_SHAKE256
	SHAKE256



These mechanisms have an optional parameter CK_SIGN_ADDITIONAL_CONTEXT. If no parameter is supplied the hedgeVariant will be CKH_HEDGE_PREFERRED, ulContextLen will be zero and pContext will be NULL. On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 204]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the ML-DSA signature.
Table 285, HashML-DSA with hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	ML-DSA Private Key
	any
	k

	C_Verify
	ML-DSA Public Key
	any, k
	N/A

	C_VerifySignature
	ML-DSA Public Key
	any, k
	N/A



For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-DSA public keys in bytes.
[bookmark: _Ref174603073][bookmark: _Ref174603078][bookmark: _Toc195693753]ML-KEM
ML-KEM is a mechanism for key encapsulation, following the key encapsulation algorithm defined in [FIPS 203].
Table 286, ML-KEM Mechanisms vs. Functions
	Mechanism
	Functions
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[bookmark: _Toc195693754]Definitions
This section defines the key type CKK_ML_KEM for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of all ML-KEM key objects.
Mechanisms:
CKM_ML_KEM_KEY_PAIR_GEN
CKM_ML_KEM

CK_ML_KEM_PARAMETER_SET_TYPE is used to indicate which ML-KEM parameter set the keys belong to.
typedef CK_ULONG CK_ML_KEM_PARAMETER_SET_TYPE;

Parameter set types:
CKP_ML_KEM_512
CKP_ML_KEM_768
CKP_ML_KEM_1024
[bookmark: _Toc195693755]ML-KEM public key objects
ML-KEM public key objects (object class CKO_PUBLIC_KEY, key type CKK_ML_KEM) hold ML-KEM public keys.
The following table defines the ML-KEM public key object attributes, in addition to the common attributes defined for this object class:
Table 287, ML-KEM Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,3
	CK_ML_KEM_PARAMETER_SET_TYPE
	ML-KEM parameter set

	CKA_VALUE1,4
	Byte array
	Public value i.e. encapsulation key ek as defined in [FIPS 203]


- Refer to Table 13 for footnotes

The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and public key sizes. Tokens may support a subset of the defined parameter sets.

The following is a sample template for creating an ML-KEM public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_ML_KEM;
CK_UTF8CHAR label[] = “A ML-KEM public key object”;
CK_ML_KEM_PARAMETER_SET_TYPE param_set = CKP_ML_KEM_512;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_ENCAPSULATE, &true, sizeof(true)},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc195693756]ML-KEM private key objects
ML-KEM private key objects (object class CKO_PRIVATE_KEY, key type CKK_ML_KEM) hold ML-KEM private keys.
The following table defines the ML-KEM private key object attributes, in addition to the common attributes defined for this object class:
Table 288, ML-KEM Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,4,6
	CK_ML_KEM_PARAMETER_SET_TYPE
	ML-KEM parameter set

	CKA_SEED4,6,7
	Byte array
	Randomness value (d||z) as defined in ML-KEM.Keygen in [FIPS 203]

	CKA_VALUE1,4,6,7
	Byte array
	Private value i.e. decapsulation key dk as defined in [FIPS 203]


- Refer to Table 13 for footnotes

At least one of CKA_SEED and CKA_VALUE must be specified on C_CreateObject. Tokens may reject creation requests that only specify one of these values. For highest compatibility applications should set both.
The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and private key sizes. Tokens may support a subset of the defined parameter sets.
Note that when generating a ML-KEM private key, the parameter set is not specified in the key’s template. This is because ML-KEM private keys are only generated as part of a ML-KEM key pair, and the parameter set for the pair is specified in the template for the ML-KEM public key.

The following is a sample template for creating an ML-KEM private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_ML_KEM;
CK_UTF8CHAR label[] = “A ML-KEM private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_ML_KEM_PARAMETER_SET_TYPE param_set = CKP_ML_KEM_512;
CK_BYTE seed[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_DECAPSULATE, &true, sizeof(true)},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_SEED, seed, sizeof(seed)}
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Hlk170919492][bookmark: _Toc195693757]ML-KEM key pair generation
[bookmark: _Hlk170919617][bookmark: _Hlk170919561]The ML-KEM key pair generation mechanism, denoted CKM_ML_KEM_KEY_PAIR_GEN, is a key pair generation mechanism using Algorithm 19 ML-KEM.KeyGen as defined in [FIPS 203].
It does not have a parameter.
The mechanism generates ML-KEM public/private key pairs with a parameter set, as specified in the CKA_PARAMETER_SET attribute of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PARAMETER_SET, CKA_SEED and CKA_VALUE attributes to the new private key; other attributes required by the ML-KEM public and private key types must be specified in the templates.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-KEM public key in bytes.
[bookmark: _Toc195693758]ML-KEM Key Agreement
[bookmark: _Hlk170919747]The ML-KEM Key Agreement mechanism, denoted CKM_ML_KEM, is a mechanism for key encapsulation and decapsulation using Algorithm 20 ML-KEM.Encaps and Algorithm 21 ML-KEM.Decaps respectively. Both are defined in [FIPS 203].
It has no parameters.
When used in C_EncapsulateKey, this mechanism generates a secret key and an encapsulated ciphertext from a ML-KEM public key using ML-KEM.Encaps.
When used in C_DecapsulateKey, this mechanism generates a secret key from an encapsulated ciphertext and a ML-KEM private key using ML-KEM.Decaps.
The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of ML-KEM public keys in bytes.
[bookmark: _Ref174603090][bookmark: _Ref174603093][bookmark: _Toc195693759]SLH-DSA
SLH-DSA and HashSLH-DSA are mechanisms for signatures and verification, following the digital signature algorithm defined in [FIPS 205].
[bookmark: _Ref172641947]Table 289, SLH-DSA Mechanisms vs. Functions
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1.Verification is only for single part verifications or multipart verifications when the C_VerifySignatureInit interface is used
2 Single-part operations only.

[bookmark: _Toc195693760]Definitions
This section defines the key type CKK_SLH_DSA for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of all SLH-DSA key objects.
Mechanisms:
CKM_SLH_DSA_KEY_PAIR_GEN
CKM_SLH_DSA
CKM_HASH_SLH_DSA
CKM_HASH_SLH_DSA_SHA224
CKM_HASH_SLH_DSA_SHA256
CKM_HASH_SLH_DSA_SHA384
CKM_HASH_SLH_DSA_SHA512
CKM_HASH_SLH_DSA_SHA3_224
CKM_HASH_SLH_DSA_SHA3_256
CKM_HASH_SLH_DSA_SHA3_384
CKM_HASH_SLH_DSA_SHA3_512
CKM_HASH_SLH_DSA_SHAKE128
CKM_HASH_SLH_DSA_SHAKE256

CK_SLH_DSA_PARAMETER_SET_TYPE is used to indicate which SLH-DSA parameter set the keys belong to.
typedef CK_ULONG CK_SLH_DSA_PARAMETER_SET_TYPE;

Parameter set types:
CKP_SLH_DSA_SHA2_128S
CKP_SLH_DSA_SHAKE_128S
CKP_SLH_DSA_SHA2_128F
CKP_SLH_DSA_SHAKE_128F
CKP_SLH_DSA_SHA2_192S
CKP_SLH_DSA_SHAKE_192S
CKP_SLH_DSA_SHA2_192F
CKP_SLH_DSA_SHAKE_192F
CKP_SLH_DSA_SHA2_256S
CKP_SLH_DSA_SHAKE_256S
CKP_SLH_DSA_SHA2_256F
CKP_SLH_DSA_SHAKE_256S
[bookmark: _Toc195693761]SLH-DSA public key objects
SLH-DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_SLH_DSA) hold SLH-DSA public keys.
The following table defines the SLH-DSA public key object attributes, in addition to the common attributes defined for this object class:
Table 290, SLH-DSA Public Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,3
	CK_SLH_DSA_PARAMETER_SET_TYPE
	SLH-DSA parameter set

	CKA_VALUE1,4
	Byte array
	Public key as defined in [FIPS 205]


- Refer to Table 13 for footnotes

The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and public key sizes. Tokens may support a subset of the defined parameter sets.

The following is a sample template for creating an SLH-DSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_SLH_DSA;
CK_UTF8CHAR label[] = “A SLH-DSA public key object”;
CK_SLH_DSA_PARAMETER_SET_TYPE param_set = CKP_SLH_DSA_SHAKE_128S;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc195693762]SLH-DSA private key objects
SLH-DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_SLH_DSA) hold SLH-DSA private keys.
The following table defines the SLH-DSA private key object attributes, in addition to the common attributes defined for this object class:
Table 291, SLH-DSA Private Key Object Attributes
	Attribute
	Data Type
	Meaning

	CKA_PARAMETER_SET1,4,6
	CK_SLH_DSA_PARAMETER_SET_TYPE
	SLH-DSA parameter set

	CKA_VALUE1,4,6,7
	Byte array
	Private key as defined in [FIPS 205]


- Refer to Table 13 for footnotes

The CKA_PARAMETER_SET attribute value selects a predefined set of parameters specified by NIST. The parameter set will select the security level and private key sizes. Tokens may support a subset of the defined parameter sets.
Note that when generating a SLH-DSA private key, the parameter set is not specified in the key’s template. This is because SLH-DSA private keys are only generated as part of a SLH-DSA key pair, and the parameter set for the pair is specified in the template for the SLH-DSA public key.

The following is a sample template for creating an SLH-DSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_SLH_DSA;
CK_UTF8CHAR label[] = “A SLH-DSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_SLH_DSA_PARAMETER_SET_TYPE param_set = CKP_SLH_DSA_SHAKE_128S;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
  {CKA_CLASS, &class, sizeof(class)},
  {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
  {CKA_TOKEN, &true, sizeof(true)},
  {CKA_LABEL, label, sizeof(label)-1},
  {CKA_SUBJECT, subject, sizeof(subject)},
  {CKA_ID, id, sizeof(id)},
  {CKA_SENSITIVE, &true, sizeof(true)},
  {CKA_SIGN, &true, sizeof(true)},
  {CKA_PARAMETER_SET, &param_set, sizeof(param_set)},
  {CKA_VALUE, value, sizeof(value)}
};
[bookmark: _Toc195693763]SLH-DSA key pair generation
The SLH-DSA key pair generation mechanism, denoted CKM_SLH_DSA_KEY_PAIR_GEN, is a key pair generation mechanism as defined in Algorithm 21 of [FIPS 205].
It does not have a parameter.
The mechanism generates SLH-DSA public/private key pairs with a parameter set, as specified in the CKA_PARAMETER_SET attribute of the template for the public key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PARAMETER_SET, and CKA_VALUE attributes to the new private key; other attributes required by the SLH-DSA public and private key types must be specified in the templates.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of SLH-DSA public key in bytes.
[bookmark: _Toc195693764]SLH-DSA Signature
[bookmark: _Hlk191292886]The SLH-DSA signature mechanism, denoted CKM_SLH_DSA, is a mechanism for generating and verifying SLH-DSA signatures as defined in Algorithm 22 slh_sign and Algorithm 24 slh_verify of [FIPS 205], using the hash function determined from CK_SLH_DSA_PARAMETER_SET_TYPE and section 11 of [FIPS 205]. The data passed in is the message M. Verification is only for single part verifications or multipart verifications when the C_VerifySignatureInit interface is used.
It has an optional parameter CK_SIGN_ADDITIONAL_CONTEXT (see section 6.67.1). If no parameter is supplied ulContextLen will be zero and pContext will be NULL. On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 205]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the SLH-DSA signature.
[bookmark: _Toc10561261]Table 292, SLH-DSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	SLH-DSA Private Key
	any
	k

	C_Verify1
	SLH-DSA Public Key
	any, k
	N/A

	C_VerifySignature
	SLH-DSA Public Key
	any, k
	N/A


1 Single-part operations only.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of SLH-DSA public keys in bytes.
[bookmark: _Toc195693765]HashSLH-DSA Signature
[bookmark: _Hlk191292927]The HashSLH-DSA signature mechanism, denoted CKM_HASH_SLH_DSA, is a single part mechanism for generating and verifying pre-hash SLH-DSA signatures defined in Algorithm 23 hash_slh_sign of [FIPS 205], using the hash function specified in CK_HASH_SIGN_ADDITIONAL_CONTEXT. The data passed in is an already hashed message PHM.
It has a parameter CK_HASH_SIGN_ADDITIONAL_CONTEXT (see section 6.67.1). On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 205]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the SLH-DSA signature.
Table 293, HashSLH-DSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	SLH-DSA Private Key
	Length of hash
	k

	C_Verify1
	SLH-DSA Public Key
	any, k
	N/A


1 Single-part operations only.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of SLH-DSA public keys in bytes.
[bookmark: _Toc195693766]HashSLH-DSA Signature with hashing
The HashSLH-DSA with hashing mechanism, denoted CKM_HASH_SLH_DSA_<hash> where <hash> identifies a hash function as per Table 294, is a mechanism for single- and multiple-part signatures and verification for HashSLH-DSA. This mechanism computes the entire HashSLH-DSA specification, including the hashing on token. The data passed in is the message M.

[bookmark: _Ref187739243]Table 294, HashSLH-DSA with hashing: mechanisms and hash functions
	Mechanism
	Hash function

	CKM_HASH_SLH_DSA_SHA224
	SHA-224

	CKM_HASH_SLH_DSA_SHA256
	SHA-256

	CKM_HASH_SLH_DSA_SHA384
	SHA-384

	CKM_HASH_SLH_DSA_SHA512
	SHA-512

	CKM_HASH_SLH_DSA_SHA3_224
	SHA3-224

	CKM_HASH_SLH_DSA_SHA3_256
	SHA3-256

	CKM_HASH_SLH_DSA_SHA3_384
	SHA3-384

	CKM_HASH_SLH_DSA_SHA3_512
	SHA3-512

	CKM_HASH_SLH_DSA_SHAKE128
	SHAKE128

	CKM_HASH_SLH_DSA_SHAKE256
	SHAKE256



These mechanisms have an optional parameter CK_SIGN_ADDITIONAL_CONTEXT. If no parameter is supplied the hedgeVariant will be CKH_HEDGE_PREFERRED, ulContextLen will be zero and pContext will be NULL. On signing, if hedgeVariant is set to CKH_HEDGE_PREFERRED, the token may create either a hedged signature or a deterministic signature as specified in [FIPS 205]. If hedgeVariant is set to CKH_HEDGE_REQUIRED, the token must produce a hedged signature or fail. If the hedgeVariant is set to CKH_DETERMINISTIC_REQUIRED, the token must produce a deterministic signature or fail. On verification the hedgeVariant parameter is ignored.
Constraints on key types and the length of the data are summarized in the following table. In the table, k is the length in bytes of the SLH-DSA signature.
Table 295, Hash SLH-DSA with hashing: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	SLH-DSA Private Key
	any
	k

	C_Verify
	SLH-DSA Public Key
	any, k
	N/A

	C_VerifySignature
	SLH-DSA Public Key
	any, k
	N/A



For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of SLH-DSA public keys in bytes.
7 [bookmark: _Toc90376872][bookmark: _Toc111203857][bookmark: _Toc148962699][bookmark: _Toc195693767]PKCS #11 Implementation Conformance
7.1 [bookmark: _Toc90376873][bookmark: _Toc111203858][bookmark: _Toc148962700][bookmark: _Toc195693768]PKCS #11 Consumer Implementation Conformance 
An implementation is a conforming PKCS #11 Consumer if the implementation meets the conditions specified in one or more consumer profiles specified in [PKCS11-Prof].
A PKCS #11 consumer implementation SHALL be a conforming PKCS #11 Consumer.
If a PKCS #11 consumer implementation claims support for a particular consumer profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.
7.2 [bookmark: _Toc90376874][bookmark: _Toc111203859][bookmark: _Toc148962701][bookmark: _Toc195693769]PKCS #11 Provider Implementation Conformance
An implementation is a conforming PKCS #11 Provider if the implementation meets the conditions specified in one or more provider profiles specified in [PKCS11-Prof].
A PKCS #11 provider implementation SHALL be a conforming PKCS #11 Provider.
[bookmark: _Toc148962702][bookmark: _Ref174603114][bookmark: _Ref174603118][bookmark: _Toc195693770]References
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