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1 Introduction

This document describes the basic PKCS#11 token interface and token behavior.

The PKCS#11 standard specifies an application programming interface (API), called “Cryptoki,” for
devices that hold cryptographic information and perform cryptographic functions. Cryptoki follows a
simple object based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a common,
logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application requiring cryptographic
services using the ANSI C programming language. The supplier of a Cryptoki library implementation
typically provides these data types and functions via ANSI C header files. Generic ANSI C header files
for Cryptoki are available from the PKCS#11 web page. This document and up-to-date errata for Cryptoki
will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface and/or bindings
between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application does not
have to change to interface to a different type of device or to run in a different environment; thus, the
application is portable. How Cryptoki provides this isolation is beyond the scope of this document,
although some conventions for the support of multiple types of device will be addressed here and
possibly in a separate document.

Details of cryptographic mechanisms (algorithms) may be found in the associated PKCS#11 Mechanisms
documents.

1.1 Definitions

For the purposes of this standard, the following definitions apply:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

AES Advanced Encryption Standard, as defined in FIPS PUB 197.
API Application programming interface.
Application Any computer program that calls the Cryptoki interface.

ASN.1 Abstract Syntax Notation One, as defined in X.680.

Attribute A characteristic of an object.
BER Basic Encoding Rules, as defined in X.690.
BLOWFISH The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

CAMELLIA The Camellia encryption algorithm, as defined in RFC 3713.
CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.
Certificate A signed message binding a subject name and a public key, or a

subject name and a set of attributes.

CDMF Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and
based on DES.

CMAC Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

CMS Cryptographic Message Syntax (see RFC 5652)

Copyright © OASIS Open 2022. All Rights Reserved.
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72
73
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80
81
82

Cryptographic Device

Cryptoki
Cryptoki library
CT-KIP

DER

DES

DSA

EC

ECB

ECDH

ECDSA

ECMQV

GOST 28147-89

GOST R 34.11-94

GOST R 34.10-2001

v

MAC
Mechanism
MQv

OAEP
Object

PIN
PKCS
PRF
PTD
RSA
Reader
Session
SHA-1

SHA-224
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A device storing cryptographic information and possibly performing
cryptographic functions. May be implemented as a smart card,
smart disk, PCMCIA card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this standard.
A library that implements the functions specified in this standard.

Cryptographic Token Key Initialization Protocol (as defined in [CT-
KIP])

Distinguished Encoding Rules, as defined in X.690.

Data Encryption Standard, as defined in FIPS PUB 46-3.
Digital Signature Algorithm, as defined in FIPS PUB 186-4.
Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB 81.
Elliptic Curve Diffie-Hellman.

Elliptic Curve DSA, as in ANSI X9.62.

Elliptic Curve Menezes-Qu-Vanstone

The encryption algorithm, as defined in Part 2 [GOST 28147-89]
and [RFC 4357] [RFC 4490], and RFC [4491].

Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

Initialization Vector.

Message Authentication Code.

A process for implementing a cryptographic operation.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a certificate, or a
key.

Personal Identification Number.

Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD

The RSA public-key cryptosystem.

The means by which information is exchanged with a device.
A logical connection between an application and a token.

The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.
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91
92

93
94
95
96

97
98
99

100

101

102
103

104
105

SHA-256

SHA-384

SHA-512

Slot
SSL

Subject Name

SO
TLS
Token
User
UTF-8

WTLS

The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

A logical reader that potentially contains a token.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a key is
assigned.

A Security Officer user.

Transport Layer Security.

The logical view of a cryptographic device defined by Cryptoki.
The person using an application that interfaces to Cryptoki.

Universal Character Set (UCS) transformation format (UTF) that
represents 1ISO 10646 and UNICODE strings with a variable number
of octets.

Wireless Transport Layer Security.

1.2 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description

C_ Function

CK_ Data type or general constant
CKA_ Attribute

CKC_ Certificate type

CKD_ Key derivation function

CKF_ Bit flag

CKG_ Mask generation function

CKH_ Hardware feature type

CKK_ Key type

CKM_ Mechanism type

CKN_ Notification

CKO_ Object class
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Prefix | Description

CKP_ Pseudo-random function
CKS_ Session state

CKR_ Return value

CKU_ User type

CKZ_ Salt/Encoding parameter source
h a handle

ul a CK_ULONG

p a pointer

pb a pointer to a CK_BYTE

ph a pointer to a handle

pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK CHAR;

/* an 8-bit UTF-8 character */
typedef CK BYTE CK_UTFSCHAR;

/* a BYTE-sized Boolean flag */
typedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK ULONG;

/* a signed value, the same size as a CK ULONG */
typedef long int CK LONG;

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type void, which are
implementation-dependent. These pointer types are:

CK_BYTE PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG_PTR /* Pointer to a CK ULONG */
CK_VOID PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-dependent:

CK_VOID PTR PTR /* Pointer to a CK_VOID PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid pointer:

NULL PTR /* A NULL pointer */
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It follows that many of the data and pointer types will vary somewhat from one environment to another
(e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However, these details
should not affect an application, assuming it is compiled with Cryptoki header files consistent with the
Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by “0x”, in
which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:
Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZabcd
efghijklmnopqgrstuvwxyz

Numbers 0123456789

Graphic characters V#% & () +,-./:;<=>2[\]"_{]|}~

Blank character ‘f

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in RFC2279. UTF-
8 allows internationalization while maintaining backward compatibility with the Local String definition of
PKCS #11 version 2.01.

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A zero value means
false, and a nonzero value means true. Similarly, an individual bit flag, CKF_..., can also be set (true) or
unset (false). For convenience, Cryptoki defines the following macros for use with values of type
CK_BBOOL:

#define CK FALSE 0
#define CK TRUE 1

For backwards compatibility, header files for this version of Cryptoki also define TRUE and FALSE as
(CK_DISABLE_TRUE_FALSE may be set by the application vendor):

#ifndef CK DISABLE TRUE FALSE
#ifndef FALSE

#define FALSE CK FALSE
#endif

#ifndef TRUE

#define TRUE CK TRUE
#endif

#endif
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2 Platform- and compiler-dependent directives for C
or C++

There is a large array of Cryptoki-related data types that are defined in the Cryptoki header files. Certain
packing and pointer-related aspects of these types are platform and compiler-dependent; these aspects
are therefore resolved on a platform-by-platform (or compiler-by-compiler) basis outside of the Cryptoki
header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives MUST be issued before
including a Cryptoki header file. These directives are described in the remainder of this section.

Plattform specific implementation hints can be found in the pkcs11.h header file.

2.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. Cryptoki structures SHALL be
packed with 1-byte alignment.

2.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different types of pointers,
the following 6 macros SHALL be set outside the scope of Cryptoki:

¢+ CK_PTR

CK_PTRis the “indirection string” a given platform and compiler uses to make a pointer to an object. Itis
used in the following fashion:

typedef CK BYTE CK PTR CK BYTE PTR;

¢ CK_DECLARE_FUNCTION

CK DECLARE FUNCTION (returnType, name), when followed by a parentheses-enclosed
list of arguments and a semicolon, declares a Cryptoki API function in a Cryptoki library. returnType is
the return type of the function, and name is its name. It SHALL be used in the following fashion:

CK DECLARE FUNCTION (CK RV, C Initialize) (
CK_VOID PTR pReserved
)i

¢ CK_DECLARE_FUNCTION_POINTER

CK DECLARE FUNCTION POINTER (returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to
a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its
name. It SHALL be used in either of the following fashions to define a function pointer variable,
myC_Initialize, which can point to a C_Initialize function in a Cryptoki library (note that neither of the
following code snippets actually assigns a value to myC_Initialize):

CK DECLARE FUNCTION POINTER(CK RV, myC Initialize) (
CK VOID PTR pReserved
)i

or:

typedef CK DECLARE FUNCTION POINTER (CK RV, myC InitializeType) (
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CK VOID PTR pReserved
)
myC InitializeType myC Initialize;

¢ CK_CALLBACK_FUNCTION

CK CALLBACK FUNCTION (returnType, name), when followed by a parentheses-enclosed
list of arguments and a semicolon, declares a variable or type which is a pointer to an application callback
function that can be used by a Cryptoki API function in a Cryptoki library. returnType is the return type of
the function, and name is its name. It SHALL be used in either of the following fashions to define a
function pointer variable, myCallback, which can point to an application callback which takes arguments
args and returns a CK_RYV (note that neither of the following code snippets actually assigns a value to
myCallback):

CK CALLBACK FUNCTION (CK RV, myCallback) (args);

or:
typedef CK CALLBACK FUNCTION (CK RV, myCallbackType) (args);
myCallbackType myCallback;

¢ NULL_PTR

NULL _ PTR is the value of a NULL pointer. In any ANSI C environment—and in many others as well—
NULL PTR SHALL be defined simply as 0.
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3 General data types

The general Cryptoki data types are described in the following subsections. The data types for holding
parameters for various mechanisms, and the pointers to those parameters, are not described here; these
types are described with the information on the mechanisms themselves, in Section 6.

A C or C++ source file in a Cryptoki application or library can define all these types (the types described
here and the types that are specifically used for particular mechanism parameters) by including the top-
level Cryptoki include file, pkcs11.h. pkecsll.h, in turn, includes the other Cryptoki include files, pkcs1lt.h
and pkcs11f.h. A source file can also include just pkcs11t.h (instead of pkcs11.h); this defines most (but
not all) of the types specified here.

When including either of these header files, a source file MUST specify the preprocessor directives
indicated in Section 2.

3.1 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library, or an
SSL or TLS implementation, or the hardware or firmware version of a slot or token. It is defined as
follows:

typedef struct CK VERSION ({
CK _BYTE major;
CK BYTE minor;

} CK_VERSION;

The fields of the structure have the following meanings:
major major version number (the integer portion of the version)
minor minor version number (the hundredths portion of the version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and minor = 10. Table 4
below lists the major and minor version values for the officially published Cryptoki specifications.

Table 4, Major and minor version values for published Cryptoki specifications

Version major minor
1.0 0x01 0x00
2.01 0x02 0x01
210 0x02 0x0a
211 0x02 0x0b
2.20 0x02 0x14
2.30 0x02 Ox1e
240 0x02 0x28
3.0 0x03 0x00

Minor revisions of the Cryptoki standard are always upwardly compatible within the same major version
number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

¢ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:
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typedef struct CK INFO {
CK VERSION cryptokiVersion;
CK _UTF8CHAR manufacturerID[32];
CK FLAGS flags;
CK UTF8CHAR libraryDescription[32];
CK VERSION libraryVersion;
} CK_INFO;

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility with future
revisions of this interface

manufacturerlD ID of the Cryptoki library manufacturer. MUST be padded with the
blank character (‘ ). Should not be null-terminated.

flags bit flags reserved for future versions. MUST be zero for this version

libraryDescription character-string description of the library. MUST be padded with the
blank character (* ). Should not be null-terminated.

libraryVersion Cryptoki library version number

For libraries written to this document, the value of cryptokiVersion should match the version of this
specification; the value of libraryVersion is the version number of the library software itself.

CK_INFO_PTR is a pointer to a CK_INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It is defined
as follows:

typedef CK ULONG CK NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:

CKN SURRENDER

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of a function executing in a
session so that the application may perform other operations. After
performing any desired operations, the application should indicate
to Cryptoki whether to continue or cancel the function (see Section
5.21.1).

3.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows:

typedef CK ULONG CK SLOT ID;

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of CK_SLOT_ID can be a valid
slot identifier—in particular, a system may have a slot identified by the value 0. It need not have such a
slot, however.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 424



563
564
565

566

567

CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT INFO {
CK UTF8CHAR slotDescription([64];
CK UTF8CHAR manufacturerID[32];
CK FLAGS flags;
CK _VERSION hardwareVersion;
CK _VERSION firmwareVersion;

} CK _SLOT INFO;

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. MUST be padded with the
blank character (‘ ). MUST NOT be null-terminated.

manufacturerlD ID of the slot manufacturer. MUST be padded with the blank
character (‘ ). MUST NOT be null-terminated.

flags bits flags that provide capabilities of the slot. The flags are defined

below
hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’s firmware

The following table defines the flags field:
Table 5, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 | True if a token is present in the slot (e.g.,
a device is in the reader)

CKF_REMOVABLE_DEVICE 0x00000002 | True if the reader supports removable
devices

CKF_HW_SLOT 0x00000004 | True if the slot is a hardware slot, as

opposed to a software slot implementing
a “soft token”

For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes. In addition, if this flag
is not set for a given slot, then the CKF_TOKEN_PRESENT flag for that slot is always set. That is, if a
slot does not support a removable device, then that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK TOKEN INFO ({
CKiUTF8CHAR label[32];
CK_UTFSCHAR manufacturerID[32];
CK UTF8CHAR model[16];
CK CHAR serialNumber([16];
CK FLAGS flags;
CK ULONG ulMaxSessionCount;
CK_ULONG ulSessionCount;
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CK ULONG ulMaxRwSessionCount;
CK _ULONG ulRwSessionCount;

CK ULONG ulMaxPinLen;

CK _ULONG ulMinPinLen;

CK ULONG ulTotalPublicMemory;
CK _ULONG ulFreePublicMemory;
CK ULONG ulTotalPrivateMemory;
CK ULONG ulFreePrivateMemory;
CK _VERSION hardwareVersion;

CK _VERSION firmwareVersion;

CK CHAR utcTime[16];
} CK_TOKEN INFO;

The fields of the structure have the following meanings:

label application-defined label, assigned during token initialization. MUST
be padded with the blank character (‘ ). MUST NOT be null-
terminated.
manufacturerlD ID of the device manufacturer. MUST be padded with the blank
character (‘). MUST NOT be null-terminated.
model model of the device. MUST be padded with the blank character (* ).
MUST NOT be null-terminated.
serialNumber character-string serial number of the device. MUST be padded with
the blank character (‘ ). MUST NOT be null-terminated.
flags bit flags indicating capabilities and status of the device as defined
below
ulMaxSessionCount maximum number of sessions that can be opened with the token at
one time by a single application (see CK_TOKEN_INFO Note
below)
ulSessionCount number of sessions that this application currently has open with the
token (see CK_TOKEN_INFO Note below)
ulMaxRwSessionCount maximum number of read/write sessions that can be opened with
the token at one time by a single application (see
CK_TOKEN_INFO Note below)
ulRwSessionCount number of read/write sessions that this application currently has
open with the token (see CK_TOKEN_INFO Note below)
ulMaxPinLen maximum length in bytes of the PIN
ulMinPinLen minimum length in bytes of the PIN
ulTotalPublicMemory the total amount of memory on the token in bytes in which public
objects may be stored (see CK_TOKEN_INFO Note below)
ulFreePublicMemory the amount of free (unused) memory on the token in bytes for public
objects (see CK_TOKEN_INFO Note below)
ulTotalPrivateMemory the total amount of memory on the token in bytes in which private
objects may be stored (see CK_TOKEN_INFO Note below)
ulFreePrivateMemory the amount of free (unused) memory on the token in bytes for
private objects (see CK_TOKEN_INFO Note below)
hardwareVersion version number of hardware
firmware Version version number of firmware
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627
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629

630
631

utcTime

current time as a character-string of length 16, represented in the

format YYYYMMDDhhmmssxx (4 characters for the year; 2
characters each for the month, the day, the hour, the minute, and
the second; and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a clock, as
indicated in the token information flags (see below)

The following table defines the flags field:

Table 6, Token Information Flags

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

True if the token has its own
random number generator

CKF_WRITE_PROTECTED

0x00000002

True if the token is write-
protected (see below)

CKF_LOGIN_REQUIRED

0x00000004

True if there are some
cryptographic functions that a
user MUST be logged in to
perform

CKF_USER_PIN_INITIALIZED

0x00000008

True if the normal user’s PIN
has been initialized

CKF_RESTORE_KEY_NOT_NEEDED

0x00000020

True if a successful save of a
session’s cryptographic
operations state always
contains all keys needed to
restore the state of the session

CKF_CLOCK_ON_TOKEN

0x00000040

True if token has its own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PA
TH

0x00000100

True if token has a “protected
authentication path”, whereby
a user can log into the token
without passing a PIN through
the Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

True if a single session with
the token can perform dual
cryptographic operations (see
Section 5.14)

CKF_TOKEN_INITIALIZED

0x00000400

True if the token has been
initialized using C_InitToken or
an equivalent mechanism
outside the scope of this
standard. Calling C_lInitToken
when this flag is set will cause
the token to be reinitialized.

CKF_SECONDARY_AUTHENTICATION

0x00000800

True if the token supports
secondary authentication for
private key objects.
(Deprecated; new
implementations MUST NOT
set this flag)

CKF_USER_PIN_COUNT_LOW

0x00010000

True if an incorrect user login

PIN has been entered at least
once since the last successful
authentication.
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Bit Flag Mask Meaning

CKF_USER_PIN_FINAL_TRY 0x00020000 True if supplying an incorrect
user PIN will cause it to
become locked.

CKF_USER_PIN_LOCKED 0x00040000 True if the user PIN has been
locked. User login to the token
is not possible.

CKF_USER_PIN_TO_BE_CHANGED 0x00080000 True if the user PIN value is
the default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF_SO_PIN_COUNT_LOW 0x00100000 True if an incorrect SO login
PIN has been entered at least
once since the last successful
authentication.

CKF_SO_PIN_FINAL_TRY 0x00200000 True if supplying an incorrect
SO PIN will cause it to
become locked.

CKF_SO_PIN_LOCKED 0x00400000 True if the SO PIN has been
locked. SO login to the token
is not possible.

CKF_SO_PIN_TO_BE_CHANGED 0x00800000 True if the SO PIN value is the
default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF ERROR STATE 0x01000000 True if the token failed a FIPS
- - 140-2 self-test and entered an
error state.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An application may
be unable to perform certain actions on a write-protected token; these actions can include any of the
following, among others:

e Creating/modifying/deleting any object on the token.

e Creating/modifying/deleting a token object on the token.

e Changing the SO’s PIN.

e Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending on the session state
to implement its object management policy. For instance, the token may set the
CKF_WRITE_PROTECTED flag unless the session state is R/W SO or R/W User to implement a policy

that does not allow any objects, public or private, to be created, modified, or deleted unless the user has
successfully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_FINAL_TRY,
and CKF_SO_PIN_FINAL_TRY flags may always be set to false if the token does not support the
functionality or will not reveal the information because of its security policy.

The CKF_USER_PIN_TO_BE_CHANGED and CKF_SO_PIN_TO_BE_CHANGED flags may always be
set to false if the token does not support the functionality. If a PIN is set to the default value, or has
expired, the appropriate CKF_USER_PIN_TO_BE_CHANGED or CKF_SO_PIN_TO_BE_CHANGED
flag is set to true. When either of these flags are true, logging in with the corresponding PIN will succeed,
but only the C_SetPIN function can be called. Calling any other function that required the user to be
logged in will cause CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.
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653 CK_TOKEN_INFO Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,

654  ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and

655 ulFreePrivateMemory can have the special value CK_UNAVAILABLE_INFORMATION, which means that
656  the token and/or library is unable or unwilling to provide that information. In addition, the fields

657 ulMaxSessionCount and ulMaxRwSessionCount can have the special value

658 CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the number of sessions
659 (resp. R/W sessions) an application can have open with the token.

660 It is important to check these fields for these special values. This is particularly true for

661 CK_EFFECTIVELY_INFINITE, since an application seeing this value in the ulMaxSessionCount or
662  ulMaxRwSessionCount field would otherwise conclude that it can’t open any sessions with the token,
663  which is far from being the case.

664  The upshot of all this is that the correct way to interpret (for example) the ulMaxSessionCount field is
665 something along the lines of the following:

666 CK_TOKEN INFO info;

669 if ((CK_LONG) info.ulMaxSessionCount
670 == CK_UNAVAILABLE INFORMATION) {
671 /* Token refuses to give value of ulMaxSessionCount */

674 } else if (info.ulMaxSessionCount == CK EFFECTIVELY INFINITE) {
675 /* Application can open as many sessions as it wants */

678 } élse {

679 /* ulMaxSessionCount really does contain what it should */

684  CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

685 3.3 Session types

686  Cryptoki represents session information with the following types:

687 ¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

688 CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as follows:

689 typedef CK ULONG CK_SESSION HANDLE;
690

691 Valid session handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
692 defines the following symbolic value:

693 CK_INVALID HANDLE
694

695 CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

696 ¢ CK_USER_TYPE

697 CK_USER_TYPE holds the types of Cryptoki users described in [PKCS11-UG] and, in addition, a
698 context-specific type described in Section 4.9. It is defined as follows:

699 typedef CK ULONG CK USER TYPE;
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700

701 For this version of Cryptoki, the following types of users are defined:

702 CKU_SO
703 CKU_USER
704 CKU_CONTEXT SPECIFIC

705 ¢ CK_STATE

706 CK_STATE holds the session state, as described in [PKCS11-UG]. It is defined as follows:

707 typedef CK _ULONG CK_STATE;

708

709 For this version of Cryptoki, the following session states are defined:
710 CKS_RO_PUBLIC_ SESSION

711 CKS_RO_USER_FUNCTIONS

712 CKS_RW_PUBLIC SESSION

713 CKS_RW USER_FUNCTIONS

714 CKS_RW_SO_FUNCTIONS

715 o CK_SESSION_INFO; CK_SESSION_INFO_PTR

716 CK_SESSION_INFO provides information about a session. It is defined as follows:

717 typedef struct CK_SESSION INFO {

718 CK SLOT ID slotID;

719 CK_STATE state;

720 CK_FLAGS flags;

721 CK_ULONG ulDeviceError;

722 } CK_SESSION_ INFO;

723

724

725  The fields of the structure have the following meanings:

726 slotiD ID of the slot that interfaces with the token

727 state the state of the session

728 flags bit flags that define the type of session; the flags are defined below
729 ulDeviceError an error code defined by the cryptographic device. Used for errors
730 not covered by Cryptoki.

731  The following table defines the flags field:

732 Table 7, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | True if the session is read/write; false if the
session is read-only

CKF_SERIAL_SESSION 0x00000004 | This flag is provided for backward compatibility,
and should always be set to true

733 CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

734 3.4 Object types

735 Cryptoki represents object information with the following types:
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¢ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:

typedef CK ULONG CK_OBJECT HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an object handle for
that application’s sessions to use to access it. A particular object on a token does not necessarily have a
handle which is fixed for the lifetime of the object; however, if a particular session can use a particular
handle to access a particular object, then that session will continue to be able to use that handle to
access that object as long as the session continues to exist, the object continues to exist, and the object
continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
defines the following symbolic value:

CK_INVALID HANDLE

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.

+ CK_OBJECT CLASS; CK_OBJECT CLASS PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki recognizes.
It is defined as follows:

typedef CK ULONG CK_OBJECT CLASS;

Object classes are defined with the objects that use them. The type is specified on an object through the
CKA_CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDOR DEFINED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a device. It is defined as
follows:

typedef CK_ULONG CK_HW FEATURE TYPE;

Hardware feature types are defined with the objects that use them. The type is specified on an object
through the CKA_HW_FEATURE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR DEFINED

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their feature types through the PKCS process.
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¢ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

typedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is specified on an
object through the CKA_KEY_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKK_VENDOR DEFINED

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their key types through the PKCS process.

¢ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:

typedef CK ULONG CK CERTIFICATE TYPE;

Certificate types are defined with the objects and mechanisms that use them. The certificate type is
specified on an object through the CKA_CERTIFICATE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDOR DEFINED

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their certificate types through the PKCS process.

¢ CK_CERTIFICATE_CATEGORY

CK_CERTIFICATE_CATEGORY is a value that identifies a certificate category. It is defined as follows:

typedef CK ULONG CK CERTIFICATE CATEGORY;

For this version of Cryptoki, the following certificate categories are defined:

Constant Value Meaning
CK_CERTIFICATE_CATEGORY_UNSPECIFIED 0x00000000UL | No category specified
CK_CERTIFICATE_CATEGORY_TOKEN_USER 0x00000001UL | Certificate belongs to
owner of the token
CK_CERTIFICATE_CATEGORY_AUTHORITY 0x00000002UL | Certificate belongs to a
certificate authority

CK_CERTIFICATE_CATEGORY_OTHER_ENTITY | 0x00000003UL | Certificate belongs to
an end entity (i.e.: not a
CA)

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

typedef CK ULONG CK ATTRIBUTE TYPE;
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Attributes are defined with the objects and mechanisms that use them. Attributes are specified on an
object as a list of type, length value items. These are often specified as an attribute template.

Vendor defined values for this type may also be specified.

CKA_VENDOR DEFINED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their attribute types through the PKCS process.

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. It is defined as
follows:

typedef struct CK ATTRIBUTE ({
CK_ATTRIBUTE TYPE type;
CK VOID PTR pValue;
CK _ULONG ulValuelen;

} CK_ATTRIBUTE;

The fields of the structure have the following meanings:
type the attribute type

pValue pointer to the value of the attribute
ulValuelLen length in bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant. An array of
CK_ATTRIBUTEsS is called a “template” and is used for creating, manipulating and searching for objects.
The order of the attributes in a template never matters, even if the template contains vendor-specific
attributes. Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and Cryptoki library MUST ensure that the pointer can be safely cast to the expected type
(i.e., without word-alignment errors).

The constant CK_UNAVAILABLE_INFORMATION is used in the ulValueLen field to denote an invalid or
unavailable value. See C_GetAttributeValue for further details.

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

¢ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK DATE {
CK_CHAR year([4];
CK CHAR month([2];
CK CHAR dayl[2];

} CK DATE;

The fields of the structure have the following meanings:
year the year (“1900” - “9999”)

month the month (“01” - “127)
day the day (“01” - “317)

The fields hold numeric characters from the character set in Table 3, not the literal byte values.
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When a Cryptoki object carries an attribute of this type, and the default value of the attribute is specified
to be "empty," then Cryptoki libraries SHALL set the attribute's u/ValueLen to O.

Note that implementations of previous versions of Cryptoki may have used other methods to identify an
"empty" attribute of type CK_DATE, and applications that needs to interoperate with these libraries
therefore have to be flexible in what they accept as an empty value.

¢ CK_PROFILE_ID; CK_PROFILE_ID_PTR

CK_PROFILE_ID is an unsigend ulong value represting a specific token profile. It is defined as follows:

typedef CK ULONG CK PROFILE ID;

Profiles are defines in the PKCS #11 Cryptographic Token Interface Profiles document. s. ID's greater
than Oxffffffff may cause compatibility issues on platforms that have CK_ULONG values of 32 bits, and
should be avoided.

Vendor defined values for this type may also be specified.

CKP_VENDOR DEFINED

Profile IDs CKP_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

Valid Profile IDs in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki defines
the following symbolic value:

CKP_INVALID ID

CK_PROFILE_ID_PTR is a pointer to a CK_PROFILE_ID.

¢ CK_JAVA_MIDP_SECURITY_DOMAIN

CK_JAVA_MIDP_SECURITY_DOMAIN is a value that identifies the Java MIDP security domain of a
certificate. It is defined as follows:

typedef CK ULONG CK_JAVA MIDP SECURITY DOMAIN;

For this version of Cryptoki, the following security domains are defined. See the Java MIDP specification
for further information:

Constant Value Meaning

CK_SECURITY_DOMAIN_UNSPECIFIED 0x00000000UL | No domain specified

CK_SECURITY_DOMAIN_MANUFACTURER 0x00000001UL | Manufacturer protection
domain

CK_SECURITY_DOMAIN_OPERATOR 0x00000002UL | Operator protection
domain

CK_SECURITY_DOMAIN_THIRD_PARTY 0x00000003UL | Third party protection
domain

3.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:
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¢ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:

typedef CK ULONG CK MECHANISM TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.
Vendor defined values for this type may also be specified.

CKM_VENDOR DEFINED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their mechanism types through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

¢ CK_MECHANISM;

CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any parameters it requires. It

is defined as follows:

typedef struct CK MECHANISM {
CK MECHANISM TYPE mechanism;
CK_VOID_PTR pParameter;
CK ULONG ulParameterLen;

} CK_MECHANISM;

The fields of the structure have the following meanings:

mechanism the type of mechanism

pParameter pointer to the parameter if required by the mechanism

ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the application
and the Cryptoki library MUST ensure that the pointer can be safely cast to the expected type (i.e.,
without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

¢ CK_MECHANISM_

INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism. It is

defined as follows:

typedef struct CK MECHANISM INFO {
CK ULONG ulMinKeySize;
CK_ULONG ulMaxKeySize;

CK FLAGS flags;

} CK MECHANISM INFO;

The fields of the structure have the following meanings:

ulMinKeySize the minimum size of the key for the mechanism (whether this is
measured in bits or in bytes is mechanism-dependent)
ulMaxKeySize the maximum size of the key for the mechanism (whether this is

pkcsll-spec-v3.1-csd01
Standards Track Work Product

measured in bits or in bytes is mechanism-dependent)

flags bit flags specifying mechanism capabilities

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 42 of 424



925
926
927

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.

The following table defines the flags field:

Table 8, Mechanism Information Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 True if the mechanism is performed by
the device; false if the mechanism is
performed in software

CKF_MESSAGE_ENCRYPT 0x00000002 | True if the mechanism can be used with
C_MessageEncryptinit

CKF_MESSAGE_DECRYPT 0x00000004 | True if the mechanism can be used with
C_MessageDecryptinit

CKF_MESSAGE_SIGN 0x00000008 | True if the mechanism can be used with
C_MessageSigninit

CKF_MESSAGE_VERIFY 0x00000010 | True if the mechanism can be used with
C_MessageVerifylnit

CKF_MULTI_MESSAGE 0x00000020 | True if the mechanism can be used with
C_*MessageBegin. One of
CKF_MESSAGE_* flag must also be
set.

CKF_FIND_OBJECTS 0x00000040 | This flag can be passed in as a
parameter to C_SessionCancel to
cancel an active object search
operation. Any other use of this flag is
outside the scope of this standard.

CKF_ENCRYPT 0x00000100 | True if the mechanism can be used with
C_Encryptinit

CKF_DECRYPT 0x00000200 | True if the mechanism can be used with
C_Decryptinit

CKF_DIGEST 0x00000400 | True if the mechanism can be used with
C_DigestlInit

CKF_SIGN 0x00000800 | True if the mechanism can be used with
C_Signinit

CKF_SIGN_RECOVER 0x00001000 | True if the mechanism can be used with
C_SignRecoverlnit

CKF_VERIFY 0x00002000 | True if the mechanism can be used with
C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | True if the mechanism can be used with
C_VerifyRecoverlnit

CKF_GENERATE 0x00008000 | True if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PAIR 0x00010000 | True if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x00020000 | True if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x00040000 | True if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x00080000 | True if the mechanism can be used with

C_DeriveKey
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Bit Flag Mask Meaning

CKF_EXTENSION 0x80000000 | True if there is an extension to the
flags; false if no extensions. MUST be
false for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

3.6 Function types

Cryptoki represents information about functions with the following data types:

¢+ CK RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:

typedef CK ULONG CK_RV;

Vendor defined values for this type may also be specified.

CKR_VENDOR DEFINED

Section 5.1 defines the meaning of each CK_RV value. Return values CKR_VENDOR_DEFINED and
above are permanently reserved for token vendors. For interoperability, vendors should register their
return values through the PKCS process.

¢ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification callbacks. It is
defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK NOTIFY) (
CK_SESSION HANDLE hSession,

CK_NOTIFICATION event,

CK _VOID PTR pApplication

)7

The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback

event The type of notification callback

pApplication An application-defined value. This is the same value as was passed
to C_OpenSession to open the session performing the callback

¢ CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function C_XXX in the
Cryptoki API (see Section 4.12 for detailed information about each of them), Cryptoki defines a type
CK_C_XXX, which is a pointer to a function with the same arguments and return value as C_XXX has.
An appropriately-set variable of type CK_C_XXX may be used by an application to call the Cryptoki
function C_XXX.
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¢ CK_FUNCTION_LIST;
CK_FUNCTION_LIST PTR_PTR

CK_FUNCTION_LIST_PTR;

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to each

function in the Cryptoki API. It is defined as follows:

typedef struct CK FUNCTION LIST {
CK _VERSION version;
CK C Initialize C Initialize;
CK C Finalize C Finalize;
CK C GetInfo C GetInfo;
CK C GetFunctionList C GetFunctionList;
CK_C GetSlotList C_GetSlotList;
CK C GetSlotInfo C GetSlotInfo;
CK C GetTokenInfo C GetTokenInfo;
CK C GetMechanismList C GetMechanismList;
CK C GetMechanismInfo C GetMechanismInfo;
CK C InitToken C InitToken;
CK_C InitPIN C InitPIN;
CK_C _SetPIN C_SetPIN;
CK _C OpenSession C OpenSession;
CK C CloseSession C CloseSession;
CK C CloseAllSessions C CloseAllSessions;
CK C GetSessionInfo C GetSessionInfo;

CK C GetOperationState C GetOperationState;
CK C SetOperationState C SetOperationState;
CK C Login C Login;

CK C Logout C Logout;

CK C CreateObject C CreateObject;

CK C CopyObject C CopyObject;

CK C DestroyObject C DestroyObject;

CK C GetObjectSize C GetObjectSize;

CK C GetAttributeValue C GetAttributeValue;
CK C SetAttributeValue C SetAttributeValue;
CK C FindObjectsInit C FindObjectsInit;
CK_C FindObjects C FindObjects;

CK C FindObjectsFinal C FindObjectsFinal;
CK _C EncryptInit C EncryptInit;

CK _C Encrypt C Encrypt;

CK C EncryptUpdate C EncryptUpdate;

CK _C EncryptFinal C EncryptFinal;

CK C DecryptInit C DecryptInit;

CK C Decrypt C Decrypt;

CK C DecryptUpdate C DecryptUpdate;

CK C DecryptFinal C DecryptFinal;

CK C DigestInit C DigestInit;

CK C Digest C Digest;

CK C DigestUpdate C DigestUpdate;

CK C DigestKey C DigestKey;

CK C DigestFinal C DigestFinal;
CK_C_SignInit C_SignInit;

CK C Sign C_Sign;

CK C SignUpdate C SignUpdate;

CK C SignFinal C SignFinal;

CK C SignRecoverInit C SignRecoverInit;

CK C SignRecover C_SignRecover;

CK C VerifyInit C VerifyInit;

CK C Verify C Verify;

CK C VerifyUpdate C VerifyUpdate;

CK C VerifyFinal C VerifyFinal;

CK C VerifyRecoverInit C VerifyRecoverInit;
CK C VerifyRecover C VerifyRecover;
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CK C DigestEncryptUpdate C DigestEncryptUpdate;
CK C DecryptDigestUpdate C DecryptDigestUpdate;
CK C SignEncryptUpdate C SignEncryptUpdate;
CK C DecryptVerifyUpdate C DecryptVerifyUpdate;
CK _C GenerateKey C GenerateKey;
CK C GenerateKeyPair C GenerateKeyPair;
CK C WrapKey C WrapKey;
CK_C UnwrapKey C UnwrapKey;
CK C DeriveKey C DeriveKey;
CK C SeedRandom C SeedRandom;
CK C GenerateRandom C GenerateRandom;
CK C GetFunctionStatus C GetFunctionStatus;
CK C CancelFunction C CancelFunction;
CK C WaitForSlotEvent C WaitForSlotEvent;
} CK _FUNCTION LIST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it (or to a copy of it
which is also owned by the library) may be obtained by the C_GetFunctionList function (see Section
5.2). The value that this pointer points to can be used by an application to quickly find out where the
executable code for each function in the Cryptoki APl is located. Every function in the Cryptoki API
MUST have an entry point defined in the Cryptoki library’'s CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for that function in the
library’s CK_FUNCTION_LIST structure should point to a function stub which simply returns
CKR_FUNCTION_NOT_SUPPORTED.

In this structure ‘version’ is the cryptoki specification version number. The major and minor versions must
be set to 0x02 and 0x28 indicating a version 2.40 compatible structure. The updated function list table for
this version of the specification may be returned via C_GetlnterfaceList or C_Getinterface.

An application may or may not be able to modify a Cryptoki library’s static CK_FUNCTION_LIST
structure. Whether or not it can, it should never attempt to do so.

PKCS #11 modules must not add new functions at the end of the CK_FUNCTION_LIST that are not
contained within the defined structure. If a PKCS#11 module needs to define additional functions, they
should be placed within a vendor defined interface returned via C_GetlInterfaceList or C_Getinterface.
CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

¢ CK_FUNCTION_LIST_3_0; CK_FUNCTION_LIST 3 0_PTR;
CK_FUNCTION_LIST 3 0_PTR_PTR

CK_FUNCTION_LIST_3_0 is a structure which contains the same function pointers as in
CK_FUNCTION_LIST and additional functions added to the end of the structure that were defined in
Cryptoki version 3.0. It is defined as follows:

typedef struct CK FUNCTION LIST 3 0 ({
CK VERSION version;
CK C Initialize C Initialize;
CK C Finalize C Finalize;
CK C GetInfo C GetInfo;
CK C GetFunctionList C GetFunctionList;
CK C GetSlotList C GetSlotList;
CK C GetSlotInfo C GetSlotInfo;
CK C GetTokenInfo C GetTokenInfo;
CK C GetMechanismList C GetMechanismList;
CK_C GetMechanismInfo C_GetMechanismInfo;
CK_C_InitToken C_InitToken;
CKicilnitPIN CilnitPIN;
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CK C SetPIN C SetPIN;

CK _C OpenSession C OpenSession;

CK C CloseSession C CloseSession;

CK C CloseAllSessions C CloseAllSessions;
CK C GetSessionInfo C GetSessionInfo;

CK C GetOperationState C GetOperationState;
CK C SetOperationState C SetOperationState;
CK C Login C Login;

CK C Logout C Logout;

CK C CreateObject C CreateObject;

CK C CopyObject C CopyObject;

CK C DestroyObject C DestroyObject;

CK C GetObjectSize C GetObjectSize;

CK C GetAttributeValue C GetAttributeValue;
CK C SetAttributeValue C SetAttributeValue;
CK C FindObjectsInit C FindObjectsInit;

CK C FindObjects C FindObjects;

CK C FindObjectsFinal C FindObjectsFinal;
CK C EncryptInit C EncryptInit;

CK C Encrypt C Encrypt;

CK C EncryptUpdate C EncryptUpdate;

CK C EncryptFinal C EncryptFinal;

CK C DecryptInit C DecryptInit;

CK C Decrypt C Decrypt;

CK C DecryptUpdate C DecryptUpdate;

CK C DecryptFinal C DecryptFinal;

CK C DigestInit C DigestInit;

CK C Digest C Digest;

CK C DigestUpdate C DigestUpdate;

CK C DigestKey C DigestKey;

CK C DigestFinal C DigestFinal;

CK C SignInit C SignInit;

CK C Sign C_Sign;

CK C SignUpdate C SignUpdate;

CK C SignFinal C SignFinal;

CK _C SignRecoverInit C SignRecoverInit;

CK C SignRecover C_SignRecover;

CK C VerifyInit C VerifyInit;

CK C Verify C Verify;

CK C VerifyUpdate C VerifyUpdate;

CK C VerifyFinal C VerifyFinal;

CK_C VerifyRecoverInit C VerifyRecoverInit;
CK C VerifyRecover C VerifyRecover;

CK C DigestEncryptUpdate C DigestEncryptUpdate;
CK C DecryptDigestUpdate C DecryptDigestUpdate;
CK C SignEncryptUpdate C SignEncryptUpdate;
CK C DecryptVerifyUpdate C DecryptVerifyUpdate;
CK_C GenerateKey C GenerateKey;

CK _C GenerateKeyPair C GenerateKeyPair;

CK _C WrapKey C WrapKey;

CK C UnwrapKey C UnwrapKey;

CK C DeriveKey C DeriveKey;

CK C SeedRandom C SeedRandom;

CK C GenerateRandom C GenerateRandom;

CK_C GetFunctionStatus C GetFunctionStatus;
CK C CancelFunction C CancelFunction;

CK _C WaitForSlotEvent C WaitForSlotEvent;
CK C GetInterfacelList C_GetInterfacelist;
CK C GetInterface C GetInterface;

CK C LoginUser C LoginUser;

CK _C SessionCancel C_ SessionCancel;

CK C MessageEncryptInit C MessageEncryptInit;
CK C EncryptMessage C EncryptMessage;

CK C EncryptMessageBegin C EncryptMessageBegin;

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 47 of 424



CK _C EncryptMessageNext C EncryptMessageNext;
CK C MessageEncryptFinal C MessageEncryptFinal;
CK C MessageDecryptInit C MessageDecryptInit;
CK_C DecryptMessage C DecryptMessage;
CK C DecryptMessageBegin C DecryptMessageBegin;
CK_C DecryptMessageNext C DecryptMessageNext;
CK C MessageDecryptFinal C MessageDecryptFinal;
CK C MessageSignInit C MessageSignInit;
CK C SignMessage C_SignMessage;
CK C SignMessageBegin C SignMessageBegin;
CK C SignMessageNext C SignMessageNext;
CK C MessageSignFinal C MessageSignFinal;
CK C MessageVerifyInit C MessageVerifyInit;
CK C VerifyMessage C VerifyMessage;
CK C VerifyMessageBegin C VerifyMessageBegin;
CK C VerifyMessageNext C VerifyMessageNext;
CK C MessageVerifyFinal C MessageVerifyFinal;

} CK_FUNCTION LIST 3 0;

For a general description of CK_FUNCTION_LIST_3_0 see CK_FUNCTION_LIST.

In this structure, version is the cryptoki specification version number. It should match the value of
cryptokiVersion returned in the CK_INFO structure, but must be 3.0 at minimum.

This function list may be returned via C_GetlInterfaceList or C_Getinterface
CK_FUNCTION_LIST_3_0_PTR is a pointer to a CK_FUNCTION_LIST_3_0.
CK_FUNCTION_LIST_3_0_PTR_PTR is a pointer to a CK_FUNCTION_LIST_3_0_PTR.

¢ CK_INTERFACE; CK_INTERFACE_PTR; CK_INTERFACE_PTR_PTR

CK_INTERFACE is a structure which contains an interface name with a function list and flag.
It is defined as follows:

typedef struct CK INTERFACE ({
CK UTF8CHAR PTR pInterfaceName;
CK VOID PTR pFunctionList;
CK FLAGS flags;

} CK_INTERFACE;

The fields of the structure have the following meanings:
plnterfaceName the name of the interface

pFunctionList the interface function list which must always begin with a
CK_VERSION structure as the first field

flags bit flags specifying interface capabilities
The interface name “PKCS 11" is reserved for use by interfaces defined within the cryptoki specification.

Interfaces starting with the string: “Vendor " are reserved for vendor use and will not oetherwise be
defined as interfaces in the PKCS #11 specification. Vendors should supply new functions with interface
names of “Vendor {vendor name}’. For example “Vendor ACME Inc”.

The following table defines the flags field:
Table 9, CK_INTERFACE Flags
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1187
1188

1189

1190
1191

1192

1193
1194

1195
1196
1197
1198

1199
1200

1201
1202

1203

1204
1205

1206
1207
1208
1209

1210
1211

1212
1213
1214

Bit Flag Mask Meaning

CKF_INTERFACE_FORK_SAFE 0x00000001 The returned interface will have
fork tolerant semantics. When
the application forks, each
process will get its own copy of
all session objects, session
states, login states, and
encryption states. Each
process will also maintain
access to token objects with
their previously supplied
handles.

CK_INTERFACE_PTR is a pointer to a CK_INTERFACE.
CK_INTERFACE_PTR_PTR is a pointer to a CK_INTERFACE_PTR.

3.7 Locking-related types

The types in this section are provided solely for applications which need to access Cryptoki from multiple
threads simultaneously. Applications which will not do this need not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which creates a new
mutex object and returns a pointer to it. It is defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK_CREATEMUTEX) (
CK_VOID PTR PTR ppMutex
)i

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in the location pointed
to by ppMutex. Such a function should return one of the following values:

CKR OK, CKR GENERAL ERROR
CKR HOST MEMORY

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function which destroys an
existing mutex object. It is defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK_DESTROYMUTEX) (
CK_VOID PTR pMutex
)7

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be destroyed. Such
a function should return one of the following values:

CKR_OK, CKR GENERAL ERROR
CKR_HOST_ MEMORY
CKR_MUTEX BAD
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¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which locks an existing
mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-supplied function which
unlocks an existing mutex object. The proper behavior for these types of functions is as follows:

e |fa CK_LOCKMUTEX function is called on a mutex which is not locked, the calling thread obtains a
lock on that mutex and returns.

e |fa CK_LOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the calling thread blocks and waits for that mutex to be unlocked.

e |faCK_LOCKMUTEX function is called on a mutex which is locked by the calling thread, the
behavior of the function call is undefined.

e |fa CK_UNLOCKMUTEX function is called on a mutex which is locked by the calling thread, that
mutex is unlocked and the function call returns. Furthermore:

o If exactly one thread was blocking on that particular mutex, then that thread stops blocking,
obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.

o If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threads is selected somehow. That lucky thread stops blocking, obtains a lock on
the mutex, and its CK_LOCKMUTEX call returns. All other threads blocking on that particular
mutex continue to block.

e Ifa CK_UNLOCKMUTEX function is called on a mutex which is not locked, then the function call
returns the error code CKR_MUTEX_NOT_LOCKED.

e Ifa CK_UNLOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:
typedef CK CALLBACK FUNCTION (CK RV, CK LOCKMUTEX) (

CK_VOID PTR pMutex
)i

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked. Such a
function should return one of the following values:

CKR OK, CKR GENERAL ERROR
CKR_HOST_MEMORY,
CKR_MUTEX BAD

CK_UNLOCKMUTEX is defined as follows:

typedef CK _CALLBACK FUNCTION (CK RV, CK_UNLOCKMUTEX) (
CK_VOID PTR pMutex
)i

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be unlocked. Such a
function should return one of the following values:

CKR_OK, CKR GENERAL ERROR
CKR_HOST_ MEMORY
CKR_MUTEX BAD
CKR_MUTEX NOT LOCKED
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¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the C_Initialize function.
For this version of Cryptoki, these optional arguments are all concerned with the way the library deals
with threads. CK_C_INITIALIZE_ARGS is defined as follows:

typedef struct CK C INITIALIZE ARGS ({
CK _CREATEMUTEX CreateMutex;
CK_DESTROYMUTEX DestroyMutex;

CK_ LOCKMUTEX LockMutex;

CK_UNLOCKMUTEX UnlockMutex;

CK_FLAGS flags;

CK VOID PTR pReserved;

} CK C_INITIALIZE ARGS;

The fields of the structure have the following meanings:

CreateMutex
DestroyMutex
LockMutex
UnlockMutex
flags

pReserved

pointer to a function to use for creating mutex objects
pointer to a function to use for destroying mutex objects
pointer to a function to use for locking mutex objects
pointer to a function to use for unlocking mutex objects

bit flags specifying options for C_lInitialize; the flags are defined
below

reserved for future use. Should be NULL_PTR for this version of
Cryptoki

The following table defines the flags field:

Table 10, C_Initialize Parameter Flags

Bit Flag

Mask Meaning

CKF_LIBRARY_CANT_CREATE_OS_THREADS 0x00000001 | True if application

threads which are
executing calls to
the library may not
use native
operating system
calls to spawn
new threads; false
if they may

CKF_OS_LOCKING_OK

0x00000002 | True if the library
can use the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.
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1285
1286
1287
1288

1289
1290

1291
1292
1293

1294
1295
1296
1297

1298
1299
1300
1301

1302

1303
1304
1305

1306
1307

1308

1309
1310

4 Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type.
An object consists of a set of attributes, each of which has a given value. Each attribute that an object
possesses has precisely one value. The following figure illustrates the high-level hierarchy of the
Cryptoki objects and some of the attributes they support:

Object
A/Class \
Storage Hardware feature Mechanism
Feature type Mechanism type

Token
Private
Label Domain Profile

\4 K

e
Data y

Application
Object Identifier
Value Certificate

Figure 1, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and for obtaining and
modifying the values of their attributes. Some of the cryptographic functions (e.g., C_GenerateKey) also
create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all required attributes,
and the attributes are always consistent with one another from the time the object is created. This
contrasts with some object-based paradigms where an object has no attributes other than perhaps a
class when it is created, and is uninitialized for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 4 define each Cryptoki attribute in terms of the data type of the
attribute value and the meaning of the attribute, which may include a default initial value. Some of the
data types are defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attribute values may also take
the following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTESs representing an unsigned integer of arbitrary
size, most-significant byte first (e.g., the integer 32768 is
represented as the 2-byte string 0x80 0x00)

Local string an unpadded string of CK_CHARs (see Table 3) with no null-
termination

RFC2279 string an unpadded string of CK_UTF8CHARSs with no null-termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to have exactly the
same values for all their attributes.
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1314
1315

1316
1317

1318

1319
1320
1321
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1323
1324
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1327
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1331
1332

1333
1334
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1337
1338
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1340
1341
1342
1343
1344
1345
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1347
1348
1349
1350

1351
1352
1353
1354
1355
1356
1357
1358

In most cases each type of object in the Cryptoki specification possesses a completely well-defined set of
Cryptoki attributes. Some of these attributes possess default values, and need not be specified when
creating an object; some of these default values may even be the empty string (*”). Nonetheless, the
object possesses these attributes. A given object has a single value for each attribute it possesses, even
if the attribute is a vendor-specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes
whose meanings and values are not specified by Cryptoki.

4.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their arguments,
where the template specifies attribute values. Cryptographic functions that create objects (see Section
5.18) may also contribute some additional attribute values themselves; which attributes have values
contributed by a cryptographic function call depends on which cryptographic mechanism is being
performed (see [PKCS11-Curr] and [PKCS11-Hist] for specification of mechanisms for PKCS #11). In
any case, all the required attributes supported by an object class that do not have default values MUST
be specified when an object is created, either in the template or by the function itself.

4.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 5.7), C_GenerateKey,
C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see Section 5.18). In addition, copying an
existing object (with the function C_CopyObiject) also creates a new object, but we consider this type of
object creation separately in Section 4.1.3.

Attempting to create an object with any of these functions requires an appropriate template to be
supplied.

1. |If the supplied template specifies a value for an invalid attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute is valid if it is either one of the attributes
described in the Cryptoki specification or an additional vendor-specific attribute supported by the library
and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the attempt should fail with
the error code CKR_ATTRIBUTE_VALUE_INVALID. The valid values for Cryptoki attributes are
described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a given Cryptoki attribute is read-only is
explicitly stated in the Cryptoki specification; however, a particular library and token may be even more
restrictive than Cryptoki specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some combinations of
other attributes) for a particular library and token. Whether or not a given non-Cryptoki attribute is read-
only is obviously outside the scope of Cryptoki.

4. |If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are insufficient to fully
specify the object to create, then the attempt should fail with the error code
CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are inconsistent, then the
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT. A set of attribute values is
inconsistent if not all of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be using a template
which specifies two different values for the same attribute. Another example would be trying to create
a secret key object with an attribute which is appropriate for various types of public keys or private keys,
but not for secret keys. A final example would be a template with an attribute that violates some token
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specific requirement. Note that this final example of an inconsistent template is token-dependent—on
a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than once (or the
template specifies the same value for a particular attribute that the object-creation function itself
contributes to the object), then the behavior of Cryptoki is not completely specified. The attempt to
create an object can either succeed—thereby creating the same object that would have been created
if the multiply-specified attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make their libraries behave
as though the attribute had only appeared once in the template; application developers are strongly
encouraged never to put a particular attribute into a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object, then the error
code returned from the attempt can be any of the error codes from above that applies.

4.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 5.7). The
template supplied to C_SetAttributeValue can contain new values for attributes which the object already
possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may not. In
addition, attributes which Cryptoki specifies are modifiable may actually not be modifiable on some
tokens. That is, if a Cryptoki attribute is described as being modifiable, that really means only that it is
modifiable insofar as the Cryptoki specification is concerned. A particular token might not actually
support modification of some such attributes. Furthermore, whether or not a particular attribute of an
object on a particular token is modifiable might depend on the values of certain attributes of the object.
For example, a secret key object's CKA_SENSITIVE attribute can be changed from CK_FALSE to
CK_TRUE, but not the other way around.

All the scenarios in Section 4.1.1—and the error codes they return—apply to modifying objects with
C_SetAttributeValue, except for the possibility of a template being incomplete.

4.1.3 Copying objects

Unless an object's CKA_COPYABLE (see Table 17) attribute is set to CK_FALSE, it may be copied with
the Cryptoki function C_CopyObject (see Section 5.7). In the process of copying an object,
C_CopyObiject also modifies the attributes of the newly-created copy according to an application-
supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObiject operation are the
same as the Cryptoki attributes which are described as being modifiable, plus the four special attributes
CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE and CKA_DESTROYABLE. To be more precise,
these attributes are modifiable during the course of a C_CopyObject operation insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of some such
attributes during the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a C_CopyObject operation
might depend on the values of certain attributes of the object. For example, a secret key object’s
CKA_SENSITIVE attribute can be changed from CK_FALSE to CK_TRUE during the course of a
C_CopyObiject operation, but not the other way around.

If the CKA_COPYABLE attribute of the object to be copied is set to CK_FALSE, C_CopyObiject returns
CKR_ACTION_PROHIBITED. Otherwise, the scenarios described in 10.1.1 - and the error codes they
return - apply to copying objects with C_CopyObject, except for the possibility of a template being
incomplete.

4.2 Common attributes

Table 11, Common footnotes for object attribute tables
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1408
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1410

1411

1412
1413

1414

1415
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1417
1418
1419
1420

1421

1422

1 MUST be specified when object is created with C_CreateObject.
2 MUST not be specified when object is created with C_CreateObject.
3 MUST be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 MUST not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

5 MUST be specified when object is unwrapped with C_UnwrapKey.
8 MUST not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of
copying object with a C_CopyObject call. However, it is possible that a particular token may
not permit modification of the attribute during the course of a C_CopyObiject call.

9 Default value is token-specific, and may depend on the values of other attributes.
10Can only be set to CK_TRUE by the SO user.

11 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.
12 Attribute cannot be changed once set to CK_FALSE. It becomes a read only attribute.

Table 12, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS Object class (type)

Refer to Table 11 for footnotes
The above table defines the attributes common to all objects.

4.3 Hardware Feature Objects

4.3.1 Definitions

This section defines the object class CKO_HW_FEATURE for type CK_OBJECT_CLASS as used in the

CKA_CLASS attribute of objects.

4.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They provide an easily

expandable method for introducing new value-based features to the Cryptoki interface.

When searching for objects using C_FindObjectsinit and C_FindObjects, hardware feature objects are
not returned unless the CKA_CLASS attribute in the template has the value CKO_HW_FEATURE. This

protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

Table 13, Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE_TYPE! CK_HW_FEATURE_TYPE | Hardware feature (type)

“Refer to Table 11 for footnotes
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1423 4.3.3 Clock

1424  4.3.3.1 Definition

1425  The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type
1426 CK_HW_FEATURE_TYPE.

1427 4.3.3.2 Description

1428  Clock objects represent real-time clocks that exist on the device. This represents the same clock source
1429 as the utcTime field in the CK_TOKEN_INFO structure.

1430 Table 14, Clock Object Attributes

Attribute Data Type Meaning

CKA _VALUE CK_CHAR([16] Current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters).

1431  The CKA_VALUE attribute may be set using the C_SetAttributeValue function if permitted by the
1432 device. The session used to set the time MUST be logged in. The device may require the SO to be the
1433 user logged in to modify the time value. C_SetAttributeValue will return the error

1434 CKR_USER_NOT_LOGGED IN to indicate that a different user type is required to set the value.

1435 4.3.4 Monotonic Counter Objects

1436 4.3.4.1 Definition

1437  The CKA_HW_FEATURE_TYPE attribute takes the value CKH_MONOTONIC_COUNTER of type
1438 CK_HW_FEATURE_TYPE.

1439  4.3.4.2 Description

1440 Monotonic counter objects represent hardware counters that exist on the device. The counter is
1441 guaranteed to increase each time its value is read, but not necessarily by one. This might be used by an
1442 application for generating serial numbers to get some assurance of uniqueness per token.

1443 Table 15, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET_ON_INIT? CK_BBOOL The value of the counter will reset to a
previously returned value if the token is
initialized using C_InitToken.

CKA HAS_ RESET' CK_BBOOL The value of the counter has been reset at
least once at some point in time.
CKA_VALUE' Byte Array The current version of the monotonic counter.

The value is returned in big endian order.

1444  'Read Only
1445  The CKA_VALUE attribute may not be set by the client.

1446  4.3.5 User Interface Objects

1447  4.3.5.1 Definition

1448 The CKA_HW_FEATURE_TYPE attribute takes the value CKH_USER_INTERFACE of type
1449 CK_HW_FEATURE_TYPE.
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4.3.5.2 Description

User interface objects represent the presentation capabilities of the device.
Table 16, User Interface Object Attributes

Attribute Data type Meaning

CKA_PIXEL_X CK_ULONG Screen resolution (in pixels) in X-axis
(e.g. 1280)

CKA_PIXEL_Y CK_ULONG Screen resolution (in pixels) in Y-axis
(e.g. 1024)

CKA_RESOLUTION CK_ULONG DPI, pixels per inch

CKA_CHAR_ROWS CK_ULONG For character-oriented displays; number
of character rows (e.g. 24)

CKA_CHAR_COLUMNS CK_ULONG For character-oriented displays: number

of character columns (e.g. 80). If display
is of proportional-font type, this is the
width of the display in “em”-s (letter “M”),

see CC/PP Struct.
CKA_COLOR CK_BBOOL Color support
CKA_BITS_PER_PIXEL CK_ULONG The number of bits of color or grayscale
information per pixel.
CKA_CHAR_SETS RFC 2279 String indicating supported character
string sets, as defined by IANA MIBenum sets

(www.iana.org). Supported character
sets are separated with “;”. E.g. a token
supporting is0-8859-1 and US-ASCII

would set the attribute value to “4;3”.

CKA_ENCODING_METHODS RFC 2279 String indicating supported content

string transfer encoding methods, as defined by
IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and base64

could set the attribute value to

“7bit;8bit;base64”.
CKA_MIME_TYPES RFC 2279 String indicating supported (presentable)
string MIME-types, as defined by IANA

(www.iana.org). Supported types are
separated with “;”. E.g. a token
supporting MIME types "a/b", "a/c" and
"a/d" would set the attribute value to

“alb;alc;a/d”.

The selection of attributes, and associated data types, has been done in an attempt to stay as aligned
with RFC 2534 and CC/PP Struct as possible. The special value CK_UNAVAILABLE_INFORMATION
may be used for CK_ULONG-based attributes when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the application needs to
send MIME objects with encoded content to the token.

4.4 Storage Objects

This is not an object class; hence no CKO_ definition is required. It is a category of object classes with
common attributes for the object classes that follow.
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1462

1463
1464
1465

1466

1467
1468

1469
1470

1471
1472
1473

1474
1475

1476

1477
1478
1479
1480
1481

1482
1483
1484

1485

Table 17, Common Storage Object Attributes

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL CK_TRUE if object is a token object;
CK_FALSE if object is a session object.
Default is CK_FALSE.

CKA_PRIVATE CK_BBOOL CK_TRUE if object is a private object;
CK_FALSE if object is a public object.
Default value is token-specific, and may
depend on the values of other attributes of

the object.
CKA_MODIFIABLE CK_BBOOL CK_TRUE if object can be modified
Default is CK_TRUE.
CKA_LABEL RFC2279 string Description of the object (default empty).
CKA_COPYABLE CK_BBOOL CK_TRUE if object can be copied using

C_CopyObiject. Defaults to CK_TRUE.
Can'’t be set to TRUE once it is set to
FALSE.

CKA _DESTROYABLE | CK BBOOL CK_TRUE if the object can be destroyed
using C_DestroyObject. Default is
CK_TRUE.

CKA_UNIQUE_ID?+6 RFC2279 string The unique identifier assigned to the
object.

Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN,
CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying an object,
however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object until the user has
been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.
The CKA_LABEL attribute is intended to assist users in browsing.

The value of the CKA_COPYABLE attribute determines whether or not an object can be copied. This
attribute can be used in conjunction with CKA_MODIFIABLE to prevent changes to the permitted usages
of keys and other objects.

The value of the CKA_DESTROYABLE attribute determines whether the object can be destroyed using
C_DestroyObiject.

4.4.1 The CKA_UNIQUE_ID attribute

Any time a new object is created, a value for CKA_UNIQUE_ID MUST be generated by the token and
stored with the object. The specific algorithm used to generate unique ID values for objects is token-
specific, but values generated MUST be unique across all objects visible to any particular session, and
SHOULD be unique across all objects created by the token. Reinitializing the token, such as by calling
C_InitToken, MAY cause reuse of CKA_UNIQUE_ID values.

Any attempt to modify the CKA_UNIQUE_ID attribute of an existing object or to specify the value of the
CKA_UNIQUE_ID attribute in the template for an operation that creates one or more objects MUST fail.
Operations failing for this reason return the error code CKR_ATTRIBUTE_READ_ONLY.
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1517
1518

1519

1520
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4.5 Data objects

4.5.1 Definitions

This section defines the object class CKO_DATA for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application. Other than providing
access to it, Cryptoki does not attach any special meaning to a data object. The following table lists the
attributes supported by data objects, in addition to the common attributes defined for this object class:

Table 18, Data Object Attributes

Attribute Data type Meaning
CKA_APPLICATION RFC2279 Description of the application that manages the
string object (default empty)
CKA_OBJECT_ID Byte Array DER-encoding of the object identifier indicating the
data object type (default empty)
CKA _VALUE Byte array Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate ownership of the data
objects they manage. Cryptoki does not provide a means of ensuring that only a particular application has
access to a data object, however.

The CKA_OBJECT_ID attribute provides an application independent and expandable way to indicate the
type of the data object value. Cryptoki does not provide a means of insuring that the data object identifier
matches the data value.

The following is a sample template containing attributes for creating a data object:

CK OBJECT CLASS class = CKO_DATA;
CK _UTF8CHAR label[] = “A data object”;
CK UTF8CHAR application[] = “An application”;
CK BYTE data[] = “Sample data”;
CK_BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA APPLICATION, application, sizeof (application)-1},
{CKA VALUE, data, sizeof (data)}

4.6 Certificate objects

4.6.1 Definitions

This section defines the object class CKO_CERTIFICATE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other than
providing access to certificate objects, Cryptoki does not attach any special meaning to certificates. The
following table defines the common certificate object attributes, in addition to the common attributes
defined for this object class:
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Table 19, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE | CK_CERTIFICATE_TYPE | Type of certificate
;

CKA_TRUSTED1 CK_BBOOL The certificate can be trusted for the
application that it was created.

GORY GORY CK_CERTIFICATE_CATEGORY_UNSP
ECIFIED)

CKA _CHECK VALUE Byte array Checksum

CKA_START_DATE CK_DATE Start date for the certificate (default
empty)

CKA_END _DATE CK_DATE End date for the certificate (default
empty)

CKA_PUBLIC_KEY_INFO Byte Array DER-encoding of the

SubjectPublicKeylInfo for the public key
contained in this certificate (default

empty)

“Refer to Table 11 for footnotes

Cryptoki does not enforce the relationship of the CKA_PUBLIC_KEY_INFO to the public key in the
certificate, but does recommend that the key be extracted from the certificate to create this value.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created. This version of
Cryptoki supports the following certificate types:

e X.509 public key certificate
e WTLS public key certificate
o  X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It MUST be set by a token
initialization application or by the token’s SO. Trusted certificates cannot be modified.

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored certificate is a user
certificate for which the corresponding private key is available on the token (“token user”), a CA certificate
(“authority”), or another end-entity certificate (“other entity”). This attribute may not be modified after an
object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will together be used to map to
the categorization of the certificates.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by taking the first three
bytes of the SHA-1 hash of the certificate object's CKA_VALUE attribute.

The CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does not
attach any special meaning to them. When present, the application is responsible to set them to values
that match the certificate’s encoded “not before” and “not after” fields (if any).

4.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following
table defines the X.509 certificate object attributes, in addition to the common attributes defined for this
object class:

Table 20, X.509 Certificate Object Attributes
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Attribute Data type Meaning

CKA_SUBJECT! Byte array | DER-encoding of the certificate
subject name

CKA_ID Byte array Key identifier for public/private key
pair (default empty)

CKA_ISSUER Byte array | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER Byte array | DER-encoding of the certificate serial
number (default empty)

CKA_VALUE? Byte array | BER-encoding of the certificate

CKA_URL? RFC2279 If not empty this attribute gives the

string URL where the complete certificate

can be obtained (default empty)

CKA_HASH_OF_SUBJECT_PUB | Byte array | Hash of the subject public key (default
LIC_KEY* empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF ISSUER_PUBLI | Byte array | Hash of the issuer public key (default
C_KEY* empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_JAVA_MIDP_SECURITY_D | CK_JAVA_ | Java MIDP security domain. (default

OMAIN MIDP_SEC | CK_SECURITY_DOMAIN_UNSPECI
URITY_DO | FIED)
MAIN
CKA_NAME_HASH_ALGORITH CK_MECH | Defines the mechanism used to
M ANISM_TY | calculate
PE CKA_HASH_OF_SUBJECT_PUBLIC
_KEY and

CKA_HASH_OF_ISSUER_PUBLIC_K
EY. If the attribute is not present then
the type defaults to SHA-1.

IMUST be specified when the object is created.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.

SMUST be non-empty if CKA_VALUE is empty.
4Can only be empty if CKA_URL is empty.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified after the
object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key pairs held
by the same subject (whether stored in the same token or not). (Since the keys are distinguished by
subject name as well as identifier, it is possible that keys for different subjects may have the same
CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a certificate will
be the same as those for the corresponding public and private keys (though it is not required that all be
stored in the same token). However, Cryptoki does not enforce this association, or even the unigueness
of the key identifier for a given subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7 and
Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509 certificates, the key
identifier may be carried in the certificate. It is intended that the CKA_ID value be identical to the key
identifier in such a certificate extension, although this will not be enforced by Cryptoki.
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The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with a Java MIDP security
domain.

The following is a sample template for creating an X.509 certificate object:

CK OBJECT CLASS class = CKO CERTIFICATE;
CK_CERTIFICATE TYPE certType = CKC X 509;
CK UTF8CHAR label[] = “A certificate object”;
CK BYTE subject([] = {...};
CK BYTE id[] = {123};
CK BYTE certificate[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof (certificate)}
b

4.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The following
table defines the WTLS certificate object attributes, in addition to the common attributes defined for this
object class.

Table 21: WTLS Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT! Byte array WTLS-encoding (ldentifier type) of
the certificate subject

CKA_ISSUER Byte array WTLS-encoding (ldentifier type) of
the certificate issuer (default empty)

CKA_VALUE? Byte array WTLS-encoding of the certificate

CKA_URL3 RFC2279 If not empty this attribute gives the

string URL where the complete certificate

can be obtained

CKA_HASH_OF_SUBJECT_PU | Byte array SHA-1 hash of the subject public key

BLIC_KEY* (default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_PUB | Byte array SHA-1 hash of the issuer public key

LIC_KEY* (default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_NAME_HASH_ALGORITH | CK_MECHANI | Defines the mechanism used to

M SM_TYPE calculate
CKA HASH OF SUBJECT PUBLIC
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Attribute Data type Meaning

_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_
KEY. If the attribute is not present
then the type defaults to SHA-1.

IMUST be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.
SMUST be non-empty if CKA_VALUE is empty.

4Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes can be found in
[WTLS].

The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The following is a sample template for creating a WTLS certificate object:

CK _OBJECT CLASS class = CKO CERTIFICATE;
CK CERTIFICATE TYPE certType = CKC WTLS;

CK UTF8CHAR label[] = “A certificate object”;
CK _BYTE subject[] = {...};
CK BYTE certificate[] = {...};

CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] =
{
{CKA CLASS, &class, sizeof (class)},
{CKA CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA VALUE, certificate, sizeof (certificate)}
}i

4.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X_509_ATTR_CERT) hold X.509 attribute
certificates. The following table defines the X.509 attribute certificate object attributes, in addition to the
common attributes defined for this object class:
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Table 22, X.509 Attribute Certificate Object Attributes

Attribute Data Type | Meaning

CKA_OWNER' Byte Array | DER-encoding of the attribute certificate's subject
field. This is distinct from the CKA_SUBJECT
attribute contained in CKC_X 509 certificates
because the ASN.1 syntax and encoding are
different.

CKA_AC_ISSUER Byte Array | DER-encoding of the attribute certificate's issuer
field. This is distinct from the CKA_ISSUER
attribute contained in CKC_X 509 certificates
because the ASN.1 syntax and encoding are
different. (default empty)

CKA_SERIAL_NUMBER Byte Array | DER-encoding of the certificate serial number.
(default empty)
CKA_ATTR_TYPES Byte Array | BER-encoding of a sequence of object identifier

values corresponding to the attribute types
contained in the certificate. When present, this field
offers an opportunity for applications to search for a
particular attribute certificate without fetching and
parsing the certificate itself. (default empty)

CKA_VALUE! Byte Array | BER-encoding of the certificate.

IMUST be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES attributes may be
modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK _OBJECT CLASS class = CKO CERTIFICATE;
CK CERTIFICATE TYPE certType = CKC X 509 ATTR CERT;
CK_UTF8CHAR label[] = "An attribute certificate object";
CK BYTE owner[] = {...};
CK BYTE certificate[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA_CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA OWNER, owner, sizeof (owner)},
{CKA VALUE, certificate, sizeof (certificate)}
}i

4.7 Key objects

4.7.1 Definitions

There is no CKO_ definition for the base key object class, only for the key types derived from it.

This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE_KEY and
CKO_SECRET_KEY for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

4.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret
keys. The following common footnotes apply to all the tables describing attributes of keys:

The following table defines the attributes common to public key, private key and secret key classes, in
addition to the common attributes defined for this object class:
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Table 23, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE"S CK_KEY_TYPE Type of key

CKA_ID?® Byte array Key identifier for key (default empty)

CKA_START_DATES? CK_DATE Start date for the key (default empty)

CKA_END_DATES® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL CK_TRUE if key supports key derivation
(i.e., if other keys can be derived from
this one (default CK_FALSE)

CKA_LOCAL?#6 CK_BBOOL CK_TRUE only if key was either

e generated locally (i.e., on the token)
with a C_GenerateKey or
C_GenerateKeyPair call

e created with a C_CopyObject call
as a copy of a key which had its
CKA_LOCAL attribute set to
CK_TRUE

CKA_KEY_GEN_
MECHANISM246

CK_MECHANISM
_TYPE

Identifier of the mechanism used to
generate the key material.

CKA_ALLOWED_MECHANI

CK_MECHANISM

A list of mechanisms allowed to be used

SMS _TYPE _PTR, with this key. The number of
pointer to a mechanisms in the array is the
CK_MECHANISM | ulValueLen component of the attribute
_TYPE array divided by the size

of CK_MECHANISM_TYPE.

“Refer to Table 11 for footnotes

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and private keys,
this field assists in handling multiple keys held by the same subject; the key identifier for a public key and
its corresponding private key should be the same. The key identifier should also be the same as for the
corresponding certificate, if one exists. Cryptoki does not enforce these associations, however. (See
Section 4.6 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does
not attach any special meaning to them. In particular, it does not restrict usage of a key according to the
dates; doing this is up to the application.

The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to derive other keys from
the key.

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key was originally
generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

The CKA_KEY_GEN_MECHANISM attribute identifies the key generation mechanism used to generate
the key material. It contains a valid value only if the CKA_LOCAL attribute has the value CK_TRUE. If
CKA_LOCAL has the value CK_FALSE, the value of the attribute is
CK_UNAVAILABLE_INFORMATION.

4.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following table defines the
attributes common to all public keys, in addition to the common attributes defined for this object class:
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Table 24, Common Public Key Attributes

Attribute Data type Meaning

CKA _SUBJECT? Byte array DER-encoding of the key subject
name (default empty)

CKA_ENCRYPT?® CK_BBOOL CK_TRUE if key supports
encryption®

CKA_VERIFY?® CK_BBOOL CK_TRUE if key supports verification
where the signature is an appendix
to the data®

CKA_VERIFY_RECOVER? CK_BBOOL CK_TRUE if key supports verification
where the data is recovered from the
signature®

CKA_WRAP? CK_BBOOL CK_TRUE if key supports wrapping
(i.e., can be used to wrap other
keys)®

CKA_TRUSTED" CK _BBOOL The key can be trusted for the

application that it was created.

The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED set
to CK_TRUE.

CKA_WRAP_TEMPLATE

CK_ATTRIBUTE_PTR

For wrapping keys. The attribute
template to match against any keys
wrapped using this wrapping key.
Keys that do not match cannot be
wrapped. The number of attributes in
the array is the ulValueLen
component of the attribute divided by
the size of CK_ATTRIBUTE.

CKA_PUBLIC_KEY_INFO

Byte array

DER-encoding of the
SubjectPublicKeylnfo for this public
key. (MAY be empty, DEFAULT
derived from the underlying public
key data)

“Refer to Table 11 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a public key will
be the same as those for the corresponding certificate and private key. However, Cryptoki does not

enforce this, and it is not required that the certificate and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS #11 attributes for

public keys, use the following table.
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Table 25, Mapping of X.509 key usage flags to Cryptoki attributes for public keys

Key usage flags for public keys in X.509 Corresponding cryptoki attributes for
public key certificates public keys.

dataEncipherment CKA_ENCRYPT

digitalSignature, keyCertSign, cRLSign CKA_VERIFY

digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER
keyAgreement CKA_DERIVE

keyEncipherment CKA_WRAP

nonRepudiation CKA_VERIFY

nonRepudiation CKA_VERIFY_RECOVER

The value of the CKA_PUBLIC_KEY_INFO attribute is the DER encoded value of SubjectPublicKeylnfo:
SubjectPublicKeylnfo  ::= SEQUENCE {

algorithm
subjectPublicKey

Algorithmldentifier,
BIT_STRING }

The encodings for the subjectPublicKey field are specified in the description of the public key types in the
appropriate [PKCS11-Curr] document for the key types defined within this specification.

4.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The following table defines the
attributes common to all private keys, in addition to the common attributes defined for this object class:

Table 26, Common Private Key Attributes

Attribute

Data type

Meaning

CKA_SUBJECT®

Byte array

DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE&

CK_BBOOL

CK_TRUE if key is sensitive®

CKA_DECRYPT?

CK_BBOOL

CK_TRUE if key supports
decryption®

CKA_SIGN®

CK_BBOOL

CK_TRUE if key supports
signatures where the signature
is an appendix to the data®

CKA_SIGN_RECOVERS®

CK_BBOOL

CK_TRUE if key supports
signatures where the data can
be recovered from the signature®

CKA_UNWRAPS

CK_BBOOL

CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)?

CKA_EXTRACTABLE?S12

CK_BBOOL

CK_TRUE if key is extractable
and can be wrapped

CKA_ALWAYS_SENSITIVE248

CK_BBOOL

CK_TRUE if key has always had
the CKA_SENSITIVE attribute
setto CK_TRUE

CKA_NEVER_EXTRACTABLE?46

CK_BBOOL

CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH_TRUSTED"

CK_BBOOL

CK_TRUE if the key can only be
wrapped with a wrapping key
that has CKA_TRUSTED set to
CK_TRUE.
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Attribute Data type Meaning
Default is CK_FALSE.

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE.

CKA_ALWAYS_AUTHENTICATE CK_BBOOL If CK_TRUE, the user has to
supply the PIN for each use
(sign or decrypt) with the key.
Default is CK_FALSE.

CKA_PUBLIC_KEY_INFO8 Byte Array DER-encoding of the
SubjectPublicKeylnfo for the
associated public key (MAY be
empty; DEFAULT derived from
the underlying private key data;
MAY be manually set for specific
key types; if set; MUST be
consistent with the underlying
private key data)

CKA_DERIVE_TEMPLATE CK_ATTRIBUTE_PTR | For deriving keys. The attribute
template to match against any
keys derived using this
derivation key. Any user
supplied template is applied after
this template as if the object has
already been created. The
number of attributes in the array
is the ulValueLen component of
the attribute divided by the size
of CK_ATTRIBUTE.

~Refer to Table 11 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a private key
will be the same as those for the corresponding certificate and public key. However, this is not enforced
by Cryptoki, and it is not required that the certificate and public key also be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the private key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of private key in the attribute table in the section describing
that type of key.

The CKA_ALWAYS_AUTHENTICATE attribute can be used to force re-authentication (i.e. force the user
to provide a PIN) for each use of a private key. “Use” in this case means a cryptographic operation such
as sign or decrypt. This attribute may only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE.

Re-authentication occurs by calling C_Login with userType set to CKU_CONTEXT_SPECIFIC
immediately after a cryptographic operation using the key has been initiated (e.g. after C_Signlinit). In
this call, the actual user type is implicitly given by the usage requirements of the active key. If C_Login
returns CKR_OK the user was successfully authenticated and this sets the active key in an authenticated
state that lasts until the cryptographic operation has successfully or unsuccessfully been completed (e.g.
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by C_Sign, C_SignFinal,..). A return value CKR_PIN_INCORRECT from C_Login means that the user
was denied permission to use the key and continuing the cryptographic operation will result in a behavior
as if C_Login had not been called. In both of these cases the session state will remain the same,
however repeated failed re-authentication attempts may cause the PIN to be locked. C_Login returns in
this case CKR_PIN_LOCKED and this also logs the user out from the token. Failing or omitting to re-
authenticate when CKA_ALWAYS_ AUTHENTICATE is set to CK_TRUE will result in
CKR_USER_NOT_LOGGED_IN to be returned from calls using the key. C_Login will return
CKR_OPERATION_NOT _INITIALIZED, but the active cryptographic operation will not be affected, if an
attempt is made to re-authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_FALSE.

The CKA_PUBLIC_KEY_INFO attribute represents the public key associated with this private key. The
data it represents may either be stored as part of the private key data, or regenerated as needed from the
private key.

If this attribute is supplied as part of a template for C_CreateObject, C_CopyObject or
C_SetAttributeValue for a private key, the token MUST verify correspondence between the private key
data and the public key data as supplied in CKA_PUBLIC_KEY_INFO. This can be done either by
deriving a public key from the private key and comparing the values, or by doing a sign and verify
operation. If there is a mismatch, the command SHALL return CKR_ATTRIBUTE_VALUE_INVALID. A
token MAY choose not to support the CKA_PUBLIC_KEY_INFO attribute for commands which create
new private keys. If it does not support the attribute, the command SHALL return
CKR_ATTRIBUTE_TYPE_INVALID.

As a general guideline, private keys of any type SHOULD store sufficient information to retrieve the public
key information. In particular, the RSA private key description has been modified in PKCS #11 V2.40 to
add the CKA_PUBLIC_EXPONENT to the list of attributes required for an RSA private key. All other
private key types described in this specification contain sufficient information to recover the associated
public key.

4.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following table defines the
attributes common to all secret keys, in addition to the common attributes defined for this object class:

Table 27, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVES® " CK_BBOOL CK_TRUE if object is sensitive
(default CK_FALSE)

CKA_ENCRYPT? CK_BBOOL CK_TRUE if key supports
encryption®

CKA_DECRYPT® CK_BBOOL CK_TRUE if key supports
decryption®

CKA_SIGN? CK_BBOOL CK_TRUE if key supports

signatures (i.e., authentication
codes) where the signature is an
appendix to the data®

CKA_VERIFY® CK_BBOOL CK_TRUE if key supports
verification (i.e., of authentication
codes) where the signature is an
appendix to the data®
CKA_WRAP? CK_BBOOL CK_TRUE if key supports
wrapping (i.e., can be used to
wrap other keys)?
CKA_UNWRAPS CK_BBOOL CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)?
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Attribute Data type Meaning

CKA _EXTRACTABLE? 2 CK_BBOOL CK_TRUE if key is extractable
and can be wrapped °
CKA_ALWAYS_SENSITIVE246 CK_BBOOL CK_TRUE if key has always had

the CKA_SENSITIVE attribute
set to CK_TRUE

CKA_NEVER_EXTRACTABLE246 | CK_BBOOL CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_CHECK_VALUE Byte array Key checksum

CKA_WRAP_WITH_TRUSTED" CK_BBOOL CK_TRUE if the key can only be
wrapped with a wrapping key
that has CKA_TRUSTED set to
CK_TRUE.

Default is CK_FALSE.

CKA_TRUSTED" CK _BBOOL The wrapping key can be used
to wrap keys with

CKA WRAP_WITH_TRUSTED
set to CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to match against any
keys wrapped using this
wrapping key. Keys that do not
match cannot be wrapped. The
number of attributes in the array
is the

ulValuelLen component of the
attribute divided by the size of

CK_ATTRIBUTE

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE.

A_DERIVE_TEMPLATE CK_ATTRIBUTE_PTR | For deriving keys. The attribute
template to match against any
keys derived using this
derivation key. Any user
supplied template is applied after
this template as if the object has
already been created. The
number of attributes in the array
is the ulValueLen component of
the attribute divided by the size
of CK_ATTRIBUTE.

1751 “Refer to Table 11 for footnotes
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If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the secret key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of secret key in the attribute table in the section describing
that type of key.

The key check value (KCV) attribute for symmetric key objects to be called CKA_CHECK_VALUE, of
type byte array, length 3 bytes, operates like a fingerprint, or checksum of the key. They are intended to
be used to cross-check symmetric keys against other systems where the same key is shared, and as a
validity check after manual key entry or restore from backup. Refer to object definitions of specific key
types for KCV algorithms.

Properties:
1. For two keys that are cryptographically identical the value of this attribute should be identical.

2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.

3. Non-unigueness. Two different keys can have the same CKA_CHECK_VALUE. This is unlikely
(the probability can easily be calculated) but possible.

The attribute is optional, but if supported, regardless of how the key object is created or derived, the value
of the attribute is always supplied. It SHALL be supplied even if the encryption operation for the key is
forbidden (i.e. when CKA_ENCRYPT is set to CK_FALSE).

If a value is supplied in the application template (allowed but never necessary) then, if supported, it MUST
match what the library calculates it to be or the library returns a CKR_ATTRIBUTE_VALUE_INVALID. If
the library does not support the attribute then it should ignore it. Allowing the attribute in the template this
way does no harm and allows the attribute to be treated like any other attribute for the purposes of key
wrap and unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute in the template as
a no-value (0 length) entry. The application can query the value at any time like any other attribute using
C_GetAttributeValue. C_SetAttributeValue may be used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived from the key
object by taking the first three bytes of an encryption of a single block of null (0x00) bytes, using the
default cipher and mode (e.g. ECB) associated with the key type of the secret key object.

4.11 Domain parameter objects

4.11.1 Definitions

This section defines the object class CKO_DOMAIN_PARAMETERS for type CK_OBJECT_CLASS as
used in the CKA_CLASS attribute of objects.

4.11.2 Overview

This object class was created to support the storage of certain algorithm's extended parameters. DSA
and DH both use domain parameters in the key-pair generation step. In particular, some libraries support
the generation of domain parameters (originally out of scope for PKCS11) so the object class was added.

To use a domain parameter object you MUST extract the attributes into a template and supply them (still
in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public domain parameters.

The following table defines the attributes common to domain parameter objects in addition to the common
attributes defined for this object class:

Table 28, Common Domain Parameter Attributes
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Attribute Data Type Meaning

CKA_KEY_TYPE' CK_KEY_TYPE Type of key the domain parameters can be
used to generate.

CKA_LOCAL24 CK_BBOOL CK_TRUE only if domain parameters were
either

e generated locally (i.e., on the token)
with a C_GenerateKey

e created with a C_CopyObiject call as a
copy of domain parameters which had
its CKA_LOCAL attribute set to
CK_TRUE

“Refer to Table 11 for footnotes

The CKA_LOCAL attribute has the value CK_TRUE if and only if the values of the domain parameters
were originally generated on the token by a C_GenerateKey call.

4.12 Mechanism objects

4.12.1 Definitions

This section defines the object class CKO_MECHANISM for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.12.2 Overview

Mechanism objects provide information about mechanisms supported by a device beyond that given by
the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsinit and C_FindObjects, mechanism objects are not
returned unless the CKA_CLASS attribute in the template has the value CKO_MECHANISM. This
protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

Table 29, Common Mechanism Attributes

Attribute Data Type Meaning
CKA_MECHANISM_TYPE CK_MECHANISM_TYPE The type of mechanism
object

The CKA_MECHANISM_TYPE attribute may not be set.

4.13 Profile objects

4.13.1 Definitions

This section defines the object class CKO_PROFILE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.13.2 Overview

Profile objects (object class CKO_PROFILE) describe which PKCS #11 profiles the token implements.
Profiles are defined in the OASIS PKCS #11 Cryptographic Token Interface Profiles document. A given
token can contain more than one profile ID. The following table lists the attributes supported by profile
objects, in addition to the common attributes defined for this object class:

Table 30, Profile Object Attributes
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CKA_PROFILE_ID

CK_PROFILE_ID

ID of the supported profile.

The CKA_PROFILE_ID attribute identifies a profile that the token supports.
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5 Functions

Cryptoki's functions are organized into the following categories:

general-purpose functions (4 functions)

slot and token management functions (9 functions)
session management functions (8 functions)

object management functions (9 functions)

encryption functions (4 functions)

message-based encryption functions (5 functions)
decryption functions (4 functions)

message digesting functions (5 functions)

signing and MACing functions (6 functions)

functions for verifying signatures and MACs (6 functions)

dual-purpose cryptographic functions (4 functions)

key management functions (5 functions)

random number generation functions (2 functions)

parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to notify an

application of certain events, and can also use application-supplied functions to handle mutex objects for

safe multi-threaded library access.
The Cryptoki API functions are presented in the following table:

Table 31, Summary of Cryptoki Functions
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Category Function Description
General C_lInitialize initializes Cryptoki
purpose C_Finalize clean up miscellaneous Cryptoki-associated
functions resources
C_Getinfo obtains general information about Cryptoki

C_GetFunctionList

obtains entry points of Cryptoki library
functions

C_GetlinterfacelList

obtains list of interfaces supported by Cryptoki
library

C_Getlinterface

obtains interface specific entry points to
Cryptoki library functions

Slot and token
management
functions

C_GetSlotList

obtains a list of slots in the system

C_GetSlotinfo

obtains information about a particular slot

C_GetTokenlInfo

obtains information about a particular token

C_WaitForSlotEvent

waits for a slot event (token insertion,
removal, etc.) to occur

C_GetMechanismList

obtains a list of mechanisms supported by a
token

C_GetMechanisminfo

obtains information about a particular
mechanism

C_InitToken

initializes a token

C_InitPIN

initializes the normal user’s PIN
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Category Function Description
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an application
management and a particular token or sets up an
functions application callback for token insertion
C_CloseSession closes a session
C_CloseAllSessions closes all sessions with a token
C_GetSessionlinfo obtains information about the session
C_SessionCancel terminates active session based operations
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations state of a
session
C_Login logs into a token
C_LoginUser logs into a token with explicit user name
C_Logout logs out from a token
Object C_CreateObiject creates an object
management C_CopyObiject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObijectslnit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data

C_EncryptUpdate

continues a multiple-part encryption operation

C_EncryptFinal

finishes a multiple-part encryption operation

Message-based | C_MessageEncryptinit

initializes a message-based encryption

Encryption process
Functions C_EncryptMessage encrypts a single-part message
C_EncryptMessageBegin begins a multiple-part message encryption
operation
C_EncryptMessageNext continues or finishes a multiple-part message
encryption operation
C_MessageEncryptFinal finishes a message-based encryption process
Decryption C_Decryptlnit initializes a decryption operation
Functions C_Decrypt decrypts single-part encrypted data

C_DecryptUpdate

continues a multiple-part decryption operation

C_DecryptFinal

finishes a multiple-part decryption operation

Message-based | C_MessageDecryptinit

initializes a message decryption operation

Decryption C_DecryptMessage

decrypts single-part data

Functions C_DecryptMessageBegin

starts a multiple-part message decryption
operation

C_DecryptMessageNext

Continues and finishes a multiple-part
message decryption operation
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Category Function Description
C_MessageDecryptFinal finishes a message decryption operation
Message C_Digestlnit initializes a message-digesting operation
Digesting C_Digest digests single-part data
Functions C_DigestUpdate continues a multiple-part digesting operation
C_DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting operation
Signing C_Signlnit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover

signs single-part data, where the data can be
recovered from the signature

Message-based
Signature
functions

C_MessageSigninit

initializes a message signature operation

C_SignMessage

signs single-part data

C_SignMessageBegin

starts a multiple-part message signature
operation

C_SignMessageNext

continues and finishes a multiple-part
message signature operation

C_MessageSignFinal

finishes a message signature operation

Functions for
verifying
signatures
and MACs

C_Verifylnit initializes a verification operation

C_Verify verifies a signature on single-part data
C_VerifyUpdate continues a multiple-part verification operation
C_VerifyFinal finishes a multiple-part verification operation

C_VerifyRecoverlnit

initializes a verification operation where the
data is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data, where
the data is recovered from the signature

Message-based
Functions for
verifying
signatures and
MACs

C_MessageVerifylnit

initializes a message verification operation

C_VerifyMessage

verifies single-part data

C_VerifyMessageBegin

starts a multiple-part message verification
operation

C_VerifyMessageNext

continues and finishes a multiple-part
message verification operation

C_MessageVerifyFinal

finishes a message verification operation

Dual-purpose

C_DigestEncryptUpdate

continues simultaneous multiple-part digesting

cryptographic and encryption operations
functions C_DecryptDigestUpdate continues simultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations
C_DecryptVerifyUpdate continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
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Category Function Description
functions C_WrapKey wraps (encrypts) a key
C_UnwrapKey unwraps (decrypts) a key
C_DeriveKey derives a key from a base key
Random number | C_SeedRandom mixes in additional seed material to the
generation random number generator
functions C_GenerateRandom generates random data
Parallel function | C_GetFunctionStatus legacy function which always returns
management CKR_FUNCTION_NOT_PARALLEL
functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL
Callback function application-supplied function to process
notifications from Cryptoki

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function call accomplishes
either its entire goal, or nothing at all.

o If a Cryptoki function executes successfully, it returns the value CKR_OK.

e If a Cryptoki function does not execute successfully, it returns some value other than CKR_OK, and
the token is in the same state as it was in prior to the function call. If the function call was supposed
to modify the contents of certain memory addresses on the host computer, these memory addresses
may have been modified, despite the failure of the function.

¢ Inunusual (and extremely unpleasant!) circumstances, a function can fail with the return value
CKR_GENERAL_ERROR. When this happens, the token and/or host computer may be in an
inconsistent state, and the goals of the function may have been partially achieved.

There are a small number of Cryptoki functions whose return values do not behave precisely as
described above; these exceptions are documented individually with the description of the functions
themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even an unsupported
function MUST have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s CK_FUNCTION_LIST
structure (as obtained by C_GetFunctionList) should point to this stub function (see Section 3.6).

5.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section 5.1, we
enumerate the various possible return values for Cryptoki functions; most of the remainder of Section 5.1
details the behavior of Cryptoki functions, including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki applications
attempt to give some leeway when interpreting Cryptoki functions’ return values. We have attempted to
specify the behavior of Cryptoki functions as completely as was feasible; nevertheless, there are
presumably some gaps. For example, it is possible that a particular error code which might apply to a
particular Cryptoki function is unfortunately not actually listed in the description of that function as a
possible error code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be somewhat ungraceful
if a Cryptoki application using that library were to terminate by abruptly dumping core upon receiving that
error code for that function. It would be far preferable for the application to examine the function’s return
value, see that it indicates some sort of error (even if the application doesn’t know precisely what kind of
error), and behave accordingly.

See Section 5.1.8 for some specific details on how a developer might attempt to make an application that
accommodates a range of behaviors from Cryptoki libraries.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 424



1879

1880

1881
1882
1883

1884
1885

1886
1887
1888
1889
1890
1891
1892

1893
1894
1895

1896
1897
1898

1899
1900

1901
1902
1903

1904

1905
1906
1907

1908

1909
1910
1911
1912
1913
1914

1915
1916
1917

1918
1919
1920

1921

1922
1923
1924

1925
1926

5.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

e CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst case, it is
possible that the function only partially succeeded, and that the computer and/or token is in an
inconsistent state.

e CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient memory
to perform the requested function.

e CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed information
about why not is not available in this error return. If the failed function uses a session, it is possible
that the CK_SESSION_INFO structure that can be obtained by calling C_GetSessioninfo will hold
useful information about what happened in its ulDeviceError field. In any event, although the function
call failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the error actually was, it
is possible that an attempt to make the exact same function call again would succeed.

e CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a “universal” return
value; in particular, the legacy functions C_GetFunctionStatus and C_CancelFunction (see Section
5.20) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then
CKR_GENERAL_ERROR should be returned.

5.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki function
except for C_lInitialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotinfo,
C_GetTokenlInfo, C_WaitForSlotEvent, C_GetMechanismList, C_GetMechanisminfo, C_InitToken,

C_OpenSession, and C_CloseAllSessions) can return the following values:

e CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that the
function was invoked. Note that this can happen if the session’s token is removed before the function
invocation, since removing a token closes all sessions with it.

¢ CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

e CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note that,
as stated in [PKCS11-UG], the behavior of Cryptoki is undefined if multiple threads of an application
attempt to access a common Cryptoki session simultaneously. Therefore, there is actually no
guarantee that a function invocation could ever return the value CKR_SESSION_CLOSED. An
example of multiple threads accessing a common session simultaneously is where one thread is
using a session when another thread closes that same session.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate error return,
then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function execution.

5.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for C_Initialize,
C_Finalize, C_Getinfo, C_GetFunctionList, C_GetSlotList, C_GetSlotinfo, or C_WaitForSlotEvent)
can return any of the following values:

e CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the requested
function.
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e CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error code can
be returned by more than just the functions mentioned above; in particular, it is possible for
C_GetSlotInfo to return CKR_DEVICE_ERROR.

e CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the function was
invoked.

e CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then
CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function execution.

5.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual Cryptoki API,
but which may be returned by an application-supplied callback function. It is:

e CKR_CANCEL: When a function executing in serial with an application decides to give the application
a chance to do some work, it calls an application-supplied function with a CKN_SURRENDER
callback (see Section 5.21). If the callback returns the value CKR_CANCEL, then the function aborts
and returns CKR_FUNCTION_CANCELED.

5.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual Cryptoki
functions. These values may be returned by application-supplied mutex-handling functions, and they may
safely be ignored by application developers who are not using their own threading model. They are:

e CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions that are passed a
bad mutex object as an argument. Unfortunately, it is possible for such a function not to recognize a
bad mutex object. There is therefore no guarantee that such a function will successfully detect bad
mutex objects and return this value.

e CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking functions. It
indicates that the mutex supplied to the mutex-unlocking function was not locked.

5.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the descriptions
of particular error codes, there are in general no particular priorities among the errors listed below, i.e., if
more than one error code might apply to an execution of a function, then the function may return any
applicable error code.

e CKR_ACTION_PROHIBITED: This value can only be returned by C_CopyObject,
C_SetAttributeValue and C_DestroyObiject. It denotes that the action may not be taken, either
because of underlying policy restrictions on the token, or because the object has the relevant
CKA_COPYABLE, CKA_MODIFIABLE or CKA_DESTROYABLE policy attribute set to CK_FALSE.

e CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not appropriate.

¢ CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which may not
be set by the application, or which may not be modified by the application. See Section 4.1 for more
information.

e CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of an object
which cannot be satisfied because the object is either sensitive or un-extractable.
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CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template. See
Section 4.1 for more information.

CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a particular attribute in a
template. See Section 4.1 for more information.

CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the supplied buffer.

CKR_CANT_LOCK: This value can only be returned by C_lInitialize. It means that the type of locking
requested by the application for thread-safety is not available in this library, and so the application
cannot make use of this library in the specified fashion.

CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by C_lInitialize. It
means that the Cryptoki library has already been initialized (by a previous call to C_lInitialize which
did not have a matching C_Finalize call).

CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function other than
C_lInitialize, C_GetFunctionList, C_GetinterfaceList and C_Getinterface. It indicates that the
function cannot be executed because the Cryptoki library has not yet been initialized by a call to
C_lInitialize.

CKR_CURVE_NOT_SUPPORTED: This curve is not supported by this token. Used with Elliptic
Curve mechanisms.

CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. This return
value has lower priority than CKR_DATA_LEN_RANGE.

CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad length.
Depending on the operation’s mechanism, this could mean that the plaintext data is too short, too
long, or is not a multiple of some particular block size. This return value has higher priority than
CKR_DATA_INVALID.

CKR_DOMAIN_PARAMS_INVALID: Invalid or unsupported domain parameters were supplied to the
function. Which representation methods of domain parameters are supported by a given mechanism
can vary from token to token.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has been
determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

CKR_ENCRYPTED_DATA LEN_RANGE: The ciphertext input to a decryption operation has been
determined to be invalid ciphertext solely on the basis of its length. Depending on the operation’s
mechanism, this could mean that the ciphertext is too short, too long, or is not a multiple of some
particular block size. This return value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key pair generation, domain
parameter generation etc.) failed because we have exceeded the maximum number of iterations.
This error code has precedence over CKR_FUNCTION_FAILED. Examples of iterative algorithms
include DSA signature generation (retry if either r = 0 or s = 0) and generation of DSA primes p and q
specified in FIPS 186-4.

CKR_FIPS_SELF_TEST_FAILED: A FIPS 140-2 power-up self-test or conditional self-test failed.
The token entered an error state. Future calls to cryptographic functions on the token will return
CKR_GENERAL_ERROR. CKR_FIPS_SELF_TEST_FAILED has a higher precedence over
CKR_GENERAL_ERROR. This error may be returned by C_Initialize, if a power-up self-test failed,
by C_GenerateRandom or C_SeedRandom, if the continuous random number generator test failed,
or by C_GenerateKeyPair, if the pair-wise consistency test failed.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This happens to a

cryptographic function if the function makes a CKN_SURRENDER application callback which returns
CKR_CANCEL (see CKR_CANCEL). It also happens to a function that performs PIN entry through a
protected path. The method used to cancel a protected path PIN entry operation is device dependent.

CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in the
specified session. This is a legacy error code which is only returned by the legacy functions
C_GetFunctionStatus and C_CancelFunction.
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CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this Cryptoki
library. Even unsupported functions in the Cryptoki API should have a “stub” in the library; this stub
should simply return the value CKR_FUNCTION_NOT_SUPPORTED.

CKR_FUNCTION_REJECTED: The signature request is rejected by the user.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained because the
token considers it sensitive, and is not able or willing to reveal it.

CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It indicates that one of
the keys specified is not the same key that was being used in the original saved session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a
cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to use a key
for performing encryption, that key MUST have its CKA_ENCRYPT attribute set to CK_TRUE (the
fact that the key MUST have a CKA_ENCRYPT attribute implies that the key cannot be a private
key). This return value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case that the
specified handle is a valid handle for an object which is not a key. We reiterate here that 0 is never a
valid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey. It indicates that
the value of the specified key cannot be digested for some reason (perhaps the key isn’t a secret key,
or perhaps the token simply can’t digest this kind of key).

CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It indicates that the
session state cannot be restored because C_SetOperationState needs to be supplied with one or
more keys that were being used in the original saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For
example, an attempt was made to restore a session that had been performing a message digesting
operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have its
CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the token) is unable to wrap the key as
requested (possibly the token can only wrap a given key with certain types of keys, and the wrapping
key specified is not one of these types). Compare with CKR_KEY_UNEXTRACTABLE.

CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation could in principle
be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied key's
size is outside the range of key sizes that it can handle.

CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use with the
specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because its
CKA_EXTRACTABLE attribute is set to CK_FALSE. Compare with CKR_KEY_NOT_WRAPPABLE.

CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a dependent shared library.

CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic operation.
This error code is an appropriate return value if an unknown mechanism was specified or if the
mechanism specified cannot be used in the selected token with the selected function.

CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the mechanism specified
to the cryptographic operation. Which parameter values are supported by a given mechanism can
vary from token to token.

CKR_NEED_TO_CREATE_THREADS: This value can only be returned by C_lInitialize. It is
returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library that application
threads executing calls to the library cannot use native operating system methods to spawn new
threads.
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2. The library cannot function properly without being able to spawn new threads in the above
fashion.

CKR_NO_EVENT: This value can only be returned by C_WaitForSlotEvent. Itis returned when
C_WaitForSlotEvent is called in non-blocking mode and there are no new slot events to return.

CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate here that 0
is never a valid object handle.

CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the specified operation. For example, an active
object-searching operation would prevent Cryptoki from activating an encryption operation with
C_Encryptinit. Or, an active digesting operation and an active encryption operation would prevent
Cryptoki from activating a signature operation. Or, on a token which doesn’t support simultaneous
dual cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO structure), an active signature
operation would prevent Cryptoki from activating an encryption operation.

CKR_OPERATION_NOT _INITIALIZED: There is no active operation of an appropriate type in the
specified session. For example, an application cannot call C_Encrypt in a session without having
called C_Encryptlinit first to activate an encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation cannot be carried
out unless C_SetPIN is called to change the PIN value. Whether or not the normal user’s PIN on a
token ever expires varies from token to token.

CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN stored on the
token. More generally-- when authentication to the token involves something other than a PIN-- the
attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only applies to
functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only applies to
functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is, because some
particular number of failed authentication attempts has been reached, the token is unwilling to permit
further attempts at authentication. Depending on the token, the specified PIN may or may not remain
locked indefinitely.

CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could be easy to guess. If the PIN is
too short, CKR_PIN_LEN_RANGE should be returned instead. This return code only applies to
functions which attempt to set a PIN.

CKR_PUBLIC_KEY_INVALID: The public key fails a public key validation. For example, an EC
public key fails the public key validation specified in Section 5.2.2 of ANSI X9.62. This error code may
be returned by C_CreateObject, when the public key is created, or by C_Verifylnit or
C_VerifyRecoverlnit, when the public key is used. It may also be returned by C_DeriveKey, in
preference to CKR_MECHANISM_PARAM_INVALID, if the other party's public key specified in the
mechanism's parameters is invalid.

CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number generator.
This return value has higher priority than CKR_RANDOM_SEED_NOT_SUPPORTED.

CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by C_SeedRandom.
It indicates that the token’s random number generator does not accept seeding from an application.
This return value has lower priority than CKR_RANDOM_NO_RNG.

CKR_SAVED_STATE_INVALID: This value can only be returned by C_SetOperationState. It
indicates that the supplied saved cryptographic operations state is invalid, and so it cannot be
restored to the specified session.
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CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It indicates that the
attempt to open a session failed, either because the token has too many sessions already open, or
because the token has too many read/write sessions already open.

CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates that a
session with the token is already open, and so the token cannot be initialized.

CKR_SESSION_PARALLEL _NOT_SUPPORTED: The specified token does not support parallel
sessions. This is a legacy error code—in Cryptoki Version 2.01 and up, no token supports parallel
sessions. CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is called in a particular [deprecated]
way.

CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired action
because it is a read-only session. This return value has lower priority than
CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO cannot
be logged in.

CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a
read-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid solely on
the basis of its length. This return value has higher priority than CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value has lower
priority than CKR_SIGNATURE_LEN_RANGE.

CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session cannot be
saved for some reason (possibly the token is simply unable to save the current state). This return
value has lower priority than CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is incomplete, and
lacks some necessary attributes. See Section 4.1 for more information.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has conflicting
attributes. See Section 4.1 for more information.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the token in
the slot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because the
token is write-protected. This return value has higher priority than CKR_SESSION_READ_ONLY.

CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_UnwrapKey.
It indicates that the key handle specified to be used to unwrap another key is not valid.

CKR_UNWRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that although the requested unwrapping operation could in principle be carried out, this
Cryptoki library (or the token) is unable to actually do it because the supplied key’s size is outside the
range of key sizes that it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by
C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is not consistent
with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It indicates that
the specified user cannot be logged into the session, because it is already logged into the session.
For example, if an application has an open SO session, and it attempts to log the SO into it, it will
receive this error code.

CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It
indicates that the specified user cannot be logged into the session, because another user is already
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logged into the session. For example, if an application has an open SO session, and it attempts to
log the normal user into it, it will receive this error code.

e CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the appropriate
user (or an appropriate user) is not logged in. One example is that a session cannot be logged out
unless it is logged in. Another example is that a private object cannot be created on a token unless
the session attempting to create it is logged in as the normal user. A final example is that
cryptographic operations on certain tokens cannot be performed unless the normal user is logged in.

e CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by C_Login. It indicates that
the normal user’s PIN has not yet been initialized with C_InitPIN.

e CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct users simultaneously
logged into the token than the token and/or library permits. For example, if some application has an
open SO session, and another application attempts to log the normal user into a session, the attempt
may return this error. It is not required to, however. Only if the simultaneous distinct users cannot be
supported does C_Login have to return this value. Note that this error code generalizes to true multi-
user tokens.

e CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid types are
CKU_SO, CKU_USER, and CKU_CONTEXT_SPECIFIC.

¢ CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey. It indicates
that the provided wrapped key is not valid. If a call is made to C_UnwrapKey to unwrap a particular
type of key (i.e., some particular key type is specified in the template provided to C_UnwrapKey),
and the wrapped key provided to C_UnwrapKey is recognizably not a wrapped key of the proper
type, then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return value has
lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

¢ CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that the provided wrapped key can be seen to be invalid solely on the basis of its length.
This return value has higher priority than CKR_WRAPPED_KEY_INVALID.

¢ CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_WrapKey. It
indicates that the key handle specified to be used to wrap another key is not valid.

¢ CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_WrapKey. It indicates
that although the requested wrapping operation could in principle be carried out, this Cryptoki library
(or the token) is unable to actually do it because the supplied wrapping key's size is outside the range
of key sizes that it can handle.

¢ CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by C_WrapKey. It
indicates that the type of the key specified to wrap another key is not consistent with the mechanism
specified for wrapping.

¢ CKR_OPERATION_CANCEL_FAILED: This value can only be returned by C_SessionCancel. It
means that one or more of the requested operations could not be cancelled for implementation or
vendor-specific reasons.

5.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 5.1.1 (other than CKR_OK) take
precedence over error codes from Section 5.1.2, which take precedence over error codes from Section
5.1.3, which take precedence over error codes from Section 5.1.6. One minor implication of this is that
functions that use a session handle (i.e., most functions!) never return the error code
CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID instead). Other than
these precedences, if more than one error code applies to the result of a Cryptoki call, any of the
applicable error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.
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5.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers might want to be
aware of:

1. As mentioned in Sections 5.1.2 and 5.1.3, a Cryptoki library may not be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function invocation.

2. As mentioned in Section 5.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA _LEN_RANGE can be somewhat
subtle. Unless an application needs to be able to distinguish between these return values, it is best to
always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between CKR_WRAPPED_KEY_INVALID and
CKR_WRAPPED_KEY_LEN_RANGE, can be subtle, and it may be best to treat these return values
equivalently.

5. Even with the guidance of Section 4.1, it can be difficult for a Cryptoki library developer to know which
of CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, or
CKR_TEMPLATE_INCONSISTENT to return. When possible, it is recommended that application
developers be generous in their interpretations of these error codes.

5.2 Conventions for functions returning output in a variable-length
buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic mechanism.
The amount of output returned by these functions is returned in a variable-length application-supplied
buffer. An example of a function of this sort is C_Encrypt, which takes some plaintext as an argument,
and outputs a buffer full of ciphertext.

These functions have some common calling conventions, which we describe here. Two of the arguments
to the function are a pointer to the output buffer (say pBuf) and a pointer to a location which will hold the
length of the output produced (say pulBufLen). There are two ways for an application to call such a
function:

1. If pBufis NULL_PTR, then all that the function does is return (in *pulBufLen) a number of bytes which
would suffice to hold the cryptographic output produced from the input to the function. This number
may somewhat exceed the precise number of bytes needed, but should not exceed it by a large
amount. CKR_OK is returned by the function.

2. If pBufis not NULL_PTR, then *pulBufLen MUST contain the size in bytes of the buffer pointed to by
pBuf. If that buffer is large enough to hold the cryptographic output produced from the input to the
function, then that cryptographic output is placed there, and CKR_OK is returned by the function and
*pulBufLen is set to the exact number of bytes returned. If the buffer is not large enough, then
CKR_BUFFER_TOO_SMALL is returned and *pulBufLen is set to at least the number of bytes
needed to hold the cryptographic output produced from the input to the function.

NOTE: This is a change from previous specs. The problem is that in some decrypt cases, the token
doesn’t know how big a buffer is needed until the decrypt completes. The act of doing decrypt can mess
up the internal encryption state. Many tokens already implement this relaxed behavior, tokens which
implement the more precise behavior are still compliant. The one corner case is applications using a
token that knows exactly how big the decryption is (through some out of band means), could get
CKR_BUFFER_TOO_SMALL returned when it supplied a buffer exactly big enough to hold the decrypted
value when it may previously have succeeded.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always return as much
output as can be computed from what has been passed in to them thus far. As an example, consider a
session which is performing a multiple-part decryption operation with DES in cipher-block chaining mode
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with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate
function. The block size of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some string of length at
least 8 bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a single
additional byte of ciphertext is supplied by a subsequent call to C_DecryptUpdate, then that call should
return 8 bytes of plaintext (one full DES block).

5.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in Cryptoki. Most functions
will be shown in use in at least one sample code snippet. For the sake of brevity, sample code will
frequently be somewhat incomplete. In particular, sample code will generally ignore possible error
returns from C library functions, and also will not deal with Cryptoki error returns in a realistic fashion.
5.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

5.4.1 C_Initialize

CK_DECLARE FUNCTION (CK RV, C Initialize) {
CK _VOID PTR pInitArgs
) i

C_lInitialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR or points to a
CK_C_INITIALIZE_ARGS structure containing information on how the library should deal with multi-
threaded access. If an application will not be accessing Cryptoki through multiple threads simultaneously,
it can generally supply the value NULL_PTR to C_lInitialize (the consequences of supplying this value will
be explained below).

If pInitArgs is non-NULL_PTR, C_lInitialize should cast it to a CK_C_INITIALIZE_ARGS_PTR and then
dereference the resulting pointer to obtain the CK_C_INITIALIZE_ARGS fields CreateMutex,
DestroyMutex, LockMutex, UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of
pReserved thereby obtained MUST be NULL_PTR; if it's not, then C_lInitialize should return with the
value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set, that indicates that
application threads which are executing calls to the Cryptoki library are not permitted to use the native
operation system calls to spawn off new threads. In other words, the library’s code may not create its
own threads. If the library is unable to function properly under this restriction, C_Initialize should return
with the value CKR_NEED_TO_CREATE_THREADS.

A call to C_lInitialize specifies one of four different ways to support multi-threaded access via the value of
the CKF_OS_LOCKING_OK flag in the flags field and the values of the CreateMutex, DestroyMutex,
LockMutex, and UnlockMutex function pointer fields:

1. Ifthe flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application won’t be accessing the Cryptoki library from multiple
threads simultaneously.

2. Ifthe flag is set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki access, and
the library needs to use the native operating system primitives to ensure safe multi-threaded access.
If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.

3. Ifthe flag isn’t set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR
values), that means that the application will be performing multi-threaded Cryptoki access, and the
library needs to use the supplied function pointers for mutex-handling to ensure safe multi-threaded
access. If the library is unable to do this, C_lInitialize should return with the value
CKR_CANT_LOCK.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 424




2313 4. |Ifthe flag is set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR

2314 values), that means that the application will be performing multi-threaded Cryptoki access, and the
2315 library needs to use either the native operating system primitives or the supplied function pointers for
2316 mutex-handling to ensure safe multi-threaded access. If the library is unable to do this, C_lInitialize
2317 should return with the value CKR_CANT_LOCK.

2318 If some, but not all, of the supplied function pointers to C_lInitialize are non-NULL_PTR, then C_lInitialize
2319 should return with the value CKR_ARGUMENTS_BAD.

2320  Acall to C_lInitialize with plnitArgs setto NULL_PTR is treated like a call to C_lInitialize with p/nitArgs
2321 pointing to a CK_C_INITIALIZE_ARGS which has the CreateMutex, DestroyMutex, LockMutex,
2322 UnlockMutex, and pReserved fields set to NULL_PTR, and has the flags field set to 0.

2323 C_lInitialize should be the first Cryptoki call made by an application, except for calls to

2324  C_GetFunctionList, C_GetinterfaceList, or C_Getinterface. What this function actually does is
2325 implementation-dependent; typically, it might cause Cryptoki to initialize its internal memory buffers, or
2326  any other resources it requires.

2327 If several applications are using Cryptoki, each one should call C_lInitialize. Every call to C_Initialize
2328 should (eventually) be succeeded by a single call to C_Finalize. See [PKCS11-UG] for further details.

2329 Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK,
2330 CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
2331 CKR_HOST_MEMORY, CKR_NEED_TO_CREATE_THREADS, CKR_OK.

2332 Example: see C_Getinfo.

2333 b5.4.2 C Finalize

2334 | CK_DECLARE FUNCTION (CK RV, C Finalize) (
2335 CK_VOID PTR pReserved
2336 );

2337 C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should be the
2338 last Cryptoki call made by an application. The pReserved parameter is reserved for future versions; for
2339  this version, it should be setto NULL_PTR (if C_Finalize is called with a non-NULL_PTR value for
2340  pReserved, it should return the value CKR_ARGUMENTS_BAD.

2341 If several applications are using Cryptoki, each one should call C_Finalize. Each application’s call to
2342 C_Finalize should be preceded by a single call to C_lInitialize; in between the two calls, an application
2343 can make calls to other Cryptoki functions. See [PKCS11-UG] for further details.

2344  Despite the fact that the parameters supplied to C_Initialize can in general allow for safe multi-threaded
2345  access to a Cryptoki library, the behavior of C_Finalize is nevertheless undefined if it is called by an
2346  application while other threads of the application are making Cryptoki calls. The exception to this

2347 exceptional behavior of C_Finalize occurs when a thread calls C_Finalize while another of the

2348 application’s threads is blocking on Cryptoki’s C_WaitForSlotEvent function. When this happens, the
2349 blocked thread becomes unblocked and returns the value CKR_CRYPTOKI_NOT_INITIALIZED. See
2350 C_WaitForSlotEvent for more information.

2351 Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
2352 CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

2353 Example: see C_GetlInfo.

2354 5.4.3 C_Getinfo

2355 | CK_DECLARE FUNCTION (CK RV, C GetInfo) (
2356 CK_INFO PTR pInfo
2357 | );

2358 C_GetlInfo returns general information about Cryptoki. p/nfo points to the location that receives the
2359 information.
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Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INFO info;
CK RV rv;
CK C INITIALIZE ARGS InitArgs;

InitArgs.CreateMutex = &MyCreateMutex;
InitArgs.DestroyMutex = &MyDestroyMutex;
InitArgs.LockMutex = &MyLockMutex;
InitArgs.UnlockMutex = &MyUnlockMutex;
InitArgs.flags = CKF_0S LOCKING OK;
InitArgs.pReserved = NULL PTR;

rv = C Initialize ((CK_VOID PTR)&InitArgs);
assert (rv == CKR _OK) ;

rv = C_GetInfo(&info);
assert (rv == CKR _OK) ;
if(info.cryptokiVersion.major == 2) {

/* Do lots of interesting cryptographic things with the token */

rv = C_Finalize (NULL PTR);
assert (rv == CKR OK) ;

5.4.4 C_GetFunctionList

CK_DECLARE FUNCTION (CK RV, C_ GetFunctionList) (
CK_FUNCTION LIST PTR PTR ppFunctionList
)7

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers. ppFunctionList
points to a value which will receive a pointer to the library’s CK_FUNCTION_LIST structure, which in turn
contains function pointers for all the Cryptoki API routines in the library. The pointer thus obtained may
point into memory which is owned by the Cryptoki library, and which may or may not be writable.
Whether or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList, C_GetInterfaceList, and C_GetlInterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK_FUNCTION LIST PTR pFunctionList;
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CK C Initialize pC Initialize;
CK RV rv;

/* It’s OK to call C GetFunctionList before calling C Initialize */
rv = C_GetFunctionList (&pFunctionList);
assert (rv == CKR _OK) ;

pC Initialize = pFunctionList -> C Initialize;

/* Call the C Initialize function in the library */
rv = (*pC Initialize) (NULL PTR);

5.4.5 C_GetinterfaceList

CK_DECLARE FUNCTION (CK RV, C GetInterfacelList) (
CK_INTERFACE PTR pInterfacelist,
CK_ULONG_PTR pulCount

)

C_GetinterfaceL.ist is used to obtain a list of interfaces supported by a Cryptoki library. pulCount points
to the location that receives the number of interfaces.

There are two ways for an application to call C_GetinterfaceList:

1. |If pinterfaceList is NULL_PTR, then all that C_GetlnterfaceList does is return (in *pul/Count) the
number of interfaces, without actually returning a list of interfaces. The contents of *pulCount on
entry to C_GetlnterfaceList has no meaning in this case, and the call returns the value CKR_OK.

2. If pintrerfaceList is not NULL_PTR, then *pulCount MUST contain the size (in terms of
CK_INTERFACE elements) of the buffer pointed to by pinterfaceList. If that buffer is large enough to
hold the list of interfaces, then the list is returned in it, and CKR_OK is returned. If not, then the call
to C_GetlnterfaceList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value
*pulCount is set to hold the number of interfaces.

Because C_GetinterfaceList does not allocate any space of its own, an application will often call
C_GetiInterfaceList twice. However, this behavior is by no means required.

C_GetInterfaceList obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of
function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki
library, and which may or may not be writable. Whether or not this is the case, no attempt should be
made to write to this memory. The same caveat applies to the interface names returned.

C_GetFunctionList, C_GetInterfaceList, and C_Getinterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK

Example:

CK_ULONG ulCount=0;

CK_INTERFACE PTR interfaceList=NULL;
CK_RV rv;

int I;

/* get number of interfaces */
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rv = C GetInterfaceList (NULL, &ulCount) ;
if (rv == CKR_OK) {
/* get copy of interfaces */
interfacelList = (CK_INTERFACE PTR)malloc (ulCount*sizeof (CK_INTERFACE)) ;
rv = C_GetlInterfacelist (interfacelist, &ulCount)
for (i=0;i<ulCount;i++) {
printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",
interfacelist[i].pInterfaceName,
((CK_VERSION *)interfacelList[i].pFunctionList)->major,
((CK_VERSION *)interfacelList[i].pFunctionList)->minor,
interfacelist[i] .pFunctionList,

interfacelist[i].flags);

5.4.6 C_Getinterface

CK _DECLARE FUNCTION (CK_RV,C GetInterface) (

CK _UTF8CHAR PTR pInterfaceName,
CK_VERSION PTR pVersion,
CK_INTERFACE PTR PTR pplInterface,
CK_FLAGS flags

)7

C_Getlinterface is used to obtain an interface supported by a Cryptoki library. plnterfaceName specifies
the name of the interface, pVersion specifies the interface version, pplnterface points to the location that
receives the interface, flags specifies the required interface flags.

There are multiple ways for an application to specify a particular interface when calling C_Getinterface:

1. |If pinterfaceName is not NULL_PTR, the name of the interface returned must match. If
pinterfaceName is NULL_PTR, the cryptoki library can return a default interface of its choice

2. If pVersion is not NULL_PTR, the version of the interface returned must match. If pVersion is
NULL_PTR, the cryptoki library can return an interface of any version

3. |If flags is non-zero, the interface returned must match all of the supplied flag values (but may include
additional flags not specified). If flags is 0, the cryptoki library can return an interface with any flags

C_Getlnterface obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of
function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki
library, and which may or may not be writable. Whether or not this is the case, no attempt should be
made to write to this memory. The same caveat applies to the interface names returned.

C_GetFunctionList, C_GetlInterfaceList, and C_GetInterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INTERFACE PTR interface;
CK RV rv;
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CK_VERSION version;
CK_FLAGS flagS=CKF_ INTERFACE FORK SAFE;

/* get default interface */

rv = C_GetInterface (NULL,NULL, &éinterface, flags);

if (rv == CKR_OK) {

printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",

interface->pInterfaceName,
((CK_VERSION *)interface->pFunctionList)->major,
((CK_VERSION *)interface->pFunctionList)->minor,
interface->pFunctionList,

interface->flags);

/* get default standard interface */

rv = C_GetInterface ((CK UTF8CHAR PTR)"PKCS 11",NULL, &interface, flags);

if (rv == CKR OK) {

printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",

interface->pInterfaceName,
((CK_VERSION *)interface->pFunctionList)->major,
((CK_VERSION *)interface->pFunctionList)->minor,
interface->pFunctionlist,

interface->flags);

/* get specific standard version interface */
version.major=3;
version.minor=0;
rv = C_GetInterface ((CK _UTF8CHAR PTR)"PKCS 11", &version, &interface, flags);
if (rv == CKR OK) {
CK_FUNCTION LIST 3 0 PTR pkcsll=interface->pFunctionList;

/* ... use the new functions */

pkcsll->C LoginUser (hSession,userType, pPin,ulPinlLen,
pUsername, ulUsernamelen) ;

/* get specific vendor version interface */
version.major=1;
version.minor=0;
rv = C_GetInterface ((CK_UTF8CHAR PTR)
"Vendor VendorName", &version, &interface, flags);
if (rv == CKR OK) ({
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CK_FUNCTION LIST VENDOR 1 0 PTR pkcsll=interface->pFunctionList;

/* ... use vendor specific functions */

pkcsll->C VendorFunctionl (paraml,param2, param3) ;

5.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

5.5.1 C_GetSlotList

CK_DECLARE FUNCTION (CK RV, C GetSlotList) (
CK BBOOL tokenPresent,
CK_SLOT ID PTR pSlotList,
CK_ULONG_PTR pulCount

)

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list
obtained includes only those slots with a token present (CK_TRUE), or all slots (CK_FALSE); pulCount
points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotListis NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the number of
slots, without actually returning a list of slots. The contents of the buffer pointed to by pulCount on
entry to C_GetSlotList has no meaning in this case, and the call returns the value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_SLOT_ID
elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of slots,
then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetSlotList returns
the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number
of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often call
C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all slots
with a token present, then the number of such slots can (unfortunately) change between when the
application asks for how many such slots there are and when the application asks for the slots
themselves). However, multiple calls to C_GetSlotList are by no means required.

All slots which C_GetSlotList reports MUST be able to be queried as valid slots by C_GetSlotinfo.
Furthermore, the set of slots accessible through a Cryptoki library is checked at the time that
C_GetSlotList, for list length prediction (NULL pSlotList argument) is called. If an application calls
C_GetSlotList with a non-NULL pSlotList, and then the user adds or removes a hardware device, the
changed slot list will only be visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the changed slot list will be
successfully recognized depending on the library implementation. On some platforms, or earlier PKCS11
compliant libraries, it may be necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK _ULONG ulSlotCount, ulSlotWithTokenCount;
CK _SLOT ID PTR pSlotList, pSlotWithTokenList;
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CK RV rv;

/* Get list of all slots */
rv = C_GetSlotList (CK_FALSE, NULL PTR, &ulSlotCount);
if (rv == CKR_OK) {
pSlotList =
(CK_SLOT ID PTR) malloc(ulSlotCount*sizeof (CK SLOT ID)):;
rv = C _GetSlotList (CK_FALSE, pSlotList, &ulSlotCount);
if (rv == CKR_OK) {
/* Now use that list of all slots */

free (pSlotList);

/* Get list of all slots with a token present */
pSlotWithTokenList = (CK _SLOT_ID PTR) malloc(0);
ulSlotWithTokenCount = 0;
while (1) {
rv = C_GetSlotList(
CK_TRUE, pSlotWithTokenList, &ulSlotWithTokenCount);
if (rv != CKR _BUFFER TOO SMALL)
break;
pSlotWithTokenList = realloc(
pSlotWithTokenList,
ulSlotWithTokenList*sizeof (CK _SLOT ID));

if (rv == CKR OK) {

/* Now use that list of all slots with a token present */

free(pSlotWithTokenList) ;

5.5.2 C_GetSlotIinfo

CK_DECLARE FUNCTION(CK RV, C GetSlotInfo) (
CK_SLOT ID slotlID,
CK_SLOT INFO PTR plnfo

)7
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C_GetSlotlInfo obtains information about a particular slot in the system. slotiD is the ID of the slot; pinfo
points to the location that receives the slot information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenlnfo.

5.5.3 C_GetTokeninfo

CK_DECLARE FUNCTION (CK RV, C_GetTokenInfo) (
CK_SLOT ID slotID,
CK_TOKEN INFO_PTR pInfo

);

C_GetTokenlInfo obtains information about a particular token in the system. slot/D is the ID of the
token’s slot; pinfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK _ULONG ulCount;

CK _SLOT ID PTR pSlotList;
CK SLOT_ INFO slotInfo;

CK _TOKEN_ INFO tokenInfo;
CK RV rv;

rv = C_GetSlotList (CK_FALSE, NULL PTR, &ulCount);

if ((rv == CKR OK) && (ulCount > 0)) {
pSlotList = (CK SLOT ID PTR) malloc(ulCount*sizeof (CK _SLOT ID));
rv = C_GetSlotList (CK_FALSE, pSlotList, &ulCount);
assert (rv == CKR OK) ;

/* Get slot information for first slot */
rv = C_GetSlotInfo(pSlotList[0], &slotInfo);
assert (rv == CKR OK);

/* Get token information for first slot */
rv = C_GetTokenInfo (pSlotList[0], &tokenInfo);
if (rv == CKR TOKEN NOT PRESENT) {

free (pSlotList);
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5.5.4 C_WaitForSlotEvent

CK_DECLARE FUNCTION(CK RV, C WaitForSlotEvent) (
CK FLAGS flags,
CK_SLOT ID PTR pSlot,
CK _VOID PTR pReserved

)7

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to occur. flags
determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits for a slot event to occur); pSlot
points to a location which will receive the ID of the slot that the event occurred in. pReserved is reserved
for future versions; for this version of Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track whether or not any
unrecognized events involving that slot have occurred. When an application initially calls C_lInitialize,
every slot's event flag is cleared. Whenever a slot event occurs, the flag corresponding to the slot in
which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and some
slot’s event flag is set, then that event flag is cleared, and the call returns with the ID of that slot in the
location pointed to by pSlot. If more than one slot’s event flag is set at the time of the call, one such slot
is chosen by the library to have its event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and no
slot's event flag is set, then the call returns with the value CKR_NO_EVENT. In this case, the contents of
the location pointed to by pSlot when C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags argument, then the
call behaves as above, except that it will block. That is, if no slot’'s event flag is set at the time of the call,
C_WaitForSlotEvent will wait until some slot’s event flag becomes set. If a thread of an application has
a C_WaitForSlotEvent call blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_lInitialize can in general allow for safe multi-threaded access to a
Cryptoki library, C_WaitForSlotEvent is exceptional in that the behavior of Cryptoki is undefined if
multiple threads of a single application make simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NO_EVENT,
CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT ID slotID;

CK _SLOT_ INFO slotInfo;
CK_RV rv;

/* Block and wait for a slot event */
rv = C WaitForSlotEvent (flags, &slotID, NULL PTR);
assert (rv == CKR OK);

/* See what’s up with that slot */
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rv = C GetSlotInfo(slotID, &slotInfo);
assert (rv == CKR OK) ;

5.5.5 C_GetMechanismList

CK_DECLARE FUNCTION (CK RV, C GetMechanismList) (
CK_SLOT_ID slotID,
CK_MECHANISM TYPE PTR pMechanismList,
CK_ULONG_ PTR pulCount

);

C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is the ID
of the token'’s slot; pulCount points to the location that receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in *pulCount)
the number of mechanisms, without actually returning a list of mechanisms. The contents of
*pulCount on entry to C_GetMechanismList has no meaning in this case, and the call returns the
value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount MUST contain the size (in terms of
CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. If that buffer is large
enough to hold the list of mechanisms, then the list is returned in it, and CKR_OK is returned. If not,
then the call to C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value *pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application will often call
C_GetMechanismList twice. However, this behavior is by no means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;

CK_ULONG ulCount;

CK _MECHANISM TYPE PTR pMechanismList;
CK RV rv;

rv = C_GetMechanismList (slotID, NULL PTR, &ulCount);
if ((rv == CKR OK) && (ulCount > 0)) {
pMechanismList =
(CK_MECHANISM TYPE PTR)
malloc (ulCount*sizeof (CK MECHANISM TYPE));
rv = C_GetMechanismList (slotID, pMechanismList, &ulCount);
if (rv == CKR OK) {
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}

free (pMechanismList) ;

5.5.6 C_GetMechanisminfo

CK_DECLARE FUNCTION (CK RV, C_ GetMechanismInfo) (
CK_SLOT ID slotID,
CK_MECHANISM TYPE type,
CK_MECHANISM INFO PTR pInfo

);

C_GetMechanismlinfo obtains information about a particular mechanism possibly supported by a token.
slotiD is the ID of the token’s slot; type is the type of mechanism; p/nfo points to the location that receives
the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_OK, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK SLOT ID slotID;
CK_MECHANISM INFO info;
CK RV rv;

/* Get information about the CKM MD2 mechanism for this token */
rv = C_GetMechanismInfo(slotID, CKM MD2, &info);
if (rv == CKR_OK) {

if (info.flags & CKF _DIGEST) {

5.5.7 C_InitToken

CK _DECLARE FUNCTION (CK RV, C InitToken) (
CK _SLOT ID slotID,
CK UTF8CHAR PTR pPin,
CK_ULONG ulPinLen,
CK_UTF8CHAR PTR pLabel
) ;

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO'’s initial PIN
(which need not be null-terminated); ulPinLen is the length in bytes of the PIN; pLabel points to the 32-
byte label of the token (which MUST be padded with blank characters, and which MUST not be null-
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terminated). This standard allows PIN values to contain any valid UTF8 character, but the token may
impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter becomes the
initial value of the SO PIN. If the token is being reinitialized, the pPin parameter is checked against the
existing SO PIN to authorize the initialization operation. In both cases, the SO PIN is the value pPin after
the function completes successfully. If the SO PIN is lost, then the card MUST be reinitialized using a
mechanism outside the scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from calling C_InitToken. If set, the token
will be reinitialized, and the client MUST supply the existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for
“indestructible” objects such as keys built into the token). Also, access by the normal user is disabled
until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created,
and attributes of some objects may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having the application send a
PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PINpad on the
token itself, or on the slot device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of C_InitToken, the SO’s PIN will
be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent whether
or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session with it; when a
call to C_InitToken is made under such circumstances, the call fails with error CKR_SESSION_EXISTS.
Unfortunately, it may happen when C_InitToken is called that some other application does have an open
session with the token, but Cryptoki cannot detect this, because it cannot detect anything about other
applications using the token. If this is the case, then the consequences of the C_InitToken call are
undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In these situations,
an initialization mechanism outside the scope of Cryptoki MUST be employed. The definition of “complex
token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT ID slotID;

CK UTF8CHAR pin[] = {“MyPIN”};
CK UTF8CHAR label[32];

CK RV rv;

memset (label, ‘' ', sizeof (label));

memcpy (label, “My first token”, strlen(“My first token”));
rv = C InitToken(slotID, pin, strlen(pin), label);

if (rv == CKR OK) {
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5.5.8 C_InitPIN

CK_DECLARE FUNCTION (CK RV, C_InitPIN) (
CK_SESSION HANDLE hSession,

CK UTF8CHAR PTR pPin,

CK_ULONG ulPinLen

);

C_InitPIN initializes the normal user’'s PIN. hSession is the session’s handle; pPin points to the normal
user’s PIN; ulPinLen is the length in bytes of the PIN. This standard allows PIN values to contain any
valid UTF8 character, but the token may impose subset restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a session in any
other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To initialize the normal user’s PIN on a token with such a protected authentication
path, the pPin parameter to C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO
will enter the new PIN through the protected authentication path.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_InitPIN can be used to initialize the normal user’s token access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;

CK_UTFSCHAR newPin[]= {“NewPIN”};

CK RV rv;

rv = C_InitPIN(hSession, newPin, sizeof (newPin)-1);
if (rv == CKR_OK) {

5.5.9 C_SetPIN

CK_DECLARE_FUNCTION(CK_RV, C_SetPIN) (
CK_SESSION HANDLE hSession,
CK_UTF8CHAR_PTR pOl1dPin,
CK_ULONG ulOldLen,
CK UTF8CHAR PTR pNewPin,
CK _ULONG ulNewLen

);
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C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER PIN if the session is
not logged in. hSession is the session’s handle; pOIdPin points to the old PIN; ulOldLen is the length in
bytes of the old PIN; pNewPin points to the new PIN; ulNewLen is the length in bytes of the new PIN. This
standard allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions” state, or “R/W User
Functions” state. An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To modify the current user’s PIN on a token with such a protected authentication path,
the pOIdPin and pNewPin parameters to C_SetPIN should be NULL_PTR. During the execution of
C_SetPIN, the current user will enter the old PIN and the new PIN through the protected authentication
path. It is not specified how the PIN pad should be used to enter two PINs; this varies.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK SESSION HANDLE hSession;

CK UTF8CHAR oldPin[] = {“OldPIN”};
CK UTF8CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(
hSession, o0ldPin, sizeof(oldPin)-1, newPin, sizeof (newPin)-1);

if (rv == CKR OK) {

5.6 Session management functions

A typical application might perform the following series of steps to make use of a token (note that there
are other reasonable sequences of events that an application might perform):

1. Select a token.
2. Make one or more calls to C_OpenSession to obtain one or more sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application has with a token have a
shared login state, C_Login only needs to be called for one of the sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or call
C_CloseAllSessions to close all the application’s sessions simultaneously.
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As has been observed, an application may have concurrent sessions with more than one token. It is also
possible for a token to have concurrent sessions with more than one application.

Cryptoki provides the following functions for session management:

5.6.1 C_OpenSession

CK_DECLARE FUNCTION (CK RV, C OpenSession) (
CK_SLOT ID slotID,
CK FLAGS flags,
CK VOID PTR pApplication,
CK _NOTIFY Notify,
CK_SESSION HANDLE PTR phSession
);

C_OpenSession opens a session between an application and a token in a particular slot. slotID is the
slot’s ID; flags indicates the type of session; pApplication is an application-defined pointer to be passed to
the notification callback; Notify is the address of the notification callback function (see Section 5.21);
phSession points to the location that receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical OR of zero or
more bit flags defined in the CK_SESSION_INFO data type. For legacy reasons, the
CKF_SERIAL_SESSION bit MUST always be set; if a call to C_OpenSession does not have this bit set,
the call should return unsuccessfully with the error code
CKR_SESSION_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessions an application may have with the token, which
may depend on whether the session is “read-only” or “read/write”. An attempt to open a session which
does not succeed because there are too many existing sessions of some type should return
CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-only
sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the token, then any
attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see [PKCS11-UG] for further details).

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify
parameter. See Section 5.21 for more information about application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_COUNT,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example: see C_CloseSession.

5.6.2 C_CloseSession

CK DECLARE FUNCTION(CK RV, C CloseSession) (
CK _SESSION HANDLE hSession
)i

C_CloseSession closes a session between an application and a token. hSession is the session’s
handle.

When a session is closed, all session objects created by the session are destroyed automatically, even if
the application has other sessions “using” the objects (see [PKCS11-UG] for further details).
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If this function is successful and it closes the last session between the application and the token, the login
state of the token for the application returns to public sessions. Any new sessions to the token opened by
the application will be either R/O Public or R/W Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It actually indicates the (probably somewhat unlikely) event
that while this function call was executing, another call was made to C_CloseSession to close this
particular session, and that call finished executing first. Such uses of sessions are a bad idea, and
Cryptoki makes little promise of what will occur in general if an application indulges in this sort of
behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT ID slotID;

CK _BYTE application;
CK_NOTIFY MyNotify;
CK_SESSION HANDLE hSession;
CK RV rv;

application = 17;
MyNotify = &EncryptionSessionCallback;
rv = C_OpenSession (
slotID, CKF_SERIAL SESSION \ CKF_RW_SESSION,
(CK_VOID PTR) é&application, MyNotify,
&hSession) ;
if (rv == CKR_OK) {

C CloseSession (hSession);

5.6.3 C_CloseAllSessions

CK DECLARE FUNCTION (CK RV, C CloseAllSessions) (
CK SLOT ID slotID
)i

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the token'’s slot.
When a session is closed, all session objects created by the session are destroyed automatically.

After successful execution of this function, the login state of the token for the application returns to public
sessions. Any new sessions to the token opened by the application will be either R/O Public or R/W
Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).
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Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:

CK SLOT ID slotID;
CK RV rv;

rv = C CloseAllSessions (slotID);

5.6.4 C_GetSessioninfo

CK_DECLARE FUNCTION (CK RV, C _GetSessionInfo) (
CK_SESSION HANDLE hSession,
CK_SESSION INFO PTR pInfo

);

C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pinfo points to
the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;
CK _SESSION INFO info;
CK RV rv;

rv = C_GetSessionInfo (hSession, &info);
if (rv == CKR_OK) ({
if (info.state == CKS_RW USER FUNCTIONS) {

5.6.5 C_SessionCancel

CK _DECLARE FUNCTION (CK RV, C SessionCancel) (
CK_SESSION HANDLE hSession

CK _FLAGS flags

);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 424




3074
3075

3076
3077

3078

3079
3080

3081
3082
3083
3084
3085

3086
3087

3088
3089
3090
3091

3092
3093
3094
3095

3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119

C_SessionCancel terminates active session based operations. hSession is the session’s handle; flags
indicates the operations to cancel.

To identify which operation(s) should be terminated, the flags parameter should be assigned the logical
bitwise OR of one or more of the bit flags defined in the CK_MECHANISM_INFO structure.

If no flags are set, the session state will not be modified and CKR_OK will be returned.

If a flag is set for an operation that has not been initialized in the session, the operation flag will be
ignored and C_SessionCancel will behave as if the operation flag was not set.

If any of the operations indicated by the flags parameter cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned. If multiple operation flags were set and
CKR_OPERATION_CANCEL_FAILED is returned, this function does not provide any information about
which operation(s) could not be cancelled. If an application desires to know if any single operation could
not be cancelled, the application should not call C_SessionCancel with multiple flags set.

If C_SessionCancel is called from an application callback (see Section 5.21), no action will be taken by
the library and CKR_FUNCTION_FAILED must be returned.

If C_SessionCancel is used to cancel one half of a dual-function operation, the remaining operation
should still be left in an active state. However, it is expected that some Cryptoki implementations may not
support this and return CKR_OPERATION_CANCEL_FAILED unless flags for both operations are
provided.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_CANCEL_FAILED,
CKR_TOKEN_NOT_PRESENT.

Example:

CK_SESSION HANDLE hSession;
CK RV rv;

rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv != CKR _OK)

rv = C_SessionCancel (hSession, CKF ENCRYPT) ;
if (rv != CKR OK)
{

rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv != CKR_OK)
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Below are modifications to existing API descriptions to allow an alternate method of cancelling individual
operations. The additional text is highlighted.

5.6.6 C_GetOperationState

CK_DECLARE FUNCTION (CK RV, C GetOperationState) (
CK_SESSION HANDLE hSession,

CK BYTE PTR pOperationState,

CK _ULONG_PTR pulOperationStatelLen

) i

C_GetOperationState obtains a copy of the cryptographic operations state of a session, encoded as a
string of bytes. hSession is the session’s handle; pOperationState points to the location that receives the
state; pulOperationStateLen points to the location that receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a “cryptographic
mechanism”, C_GetOperationState nonetheless uses the convention described in Section 5.2 on
producing output.

Precisely what the “cryptographic operations state” this function saves is varies from token to token;
however, this state is what is provided as input to C_SetOperationState to restore the cryptographic
activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the session is
using the CKM_SHA_1 mechanism). Suppose that the message digest operation was initialized
properly, and that precisely 80 bytes of data have been supplied so far as input to SHA-1. The
application now wants to “save the state” of this digest operation, so that it can continue it later. In this
particular case, since SHA-1 processes 512 bits (64 bytes) of input at a time, the cryptographic
operations state of the session most likely consists of three distinct parts: the state of SHA-1's 160-bit
internal chaining variable; the 16 bytes of unprocessed input data; and some administrative data
indicating that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing operation at a later
time.

Consider next a session which is performing an encryption operation with DES (a block cipher with a
block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the CKM_DES_CBC
mechanism). Suppose that precisely 22 bytes of data (in addition to an 1V for the CBC mode) have been
supplied so far as input to DES, which means that the first two 8-byte blocks of ciphertext have already
been produced and output. In this case, the cryptographic operations state of the session most likely
consists of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for cipher-
block chaining to produce the next block of ciphertext); the 6 bytes of data still awaiting encryption; some
administrative data indicating that this saved state comes from a session which was performing DES
encryption in CBC mode; and possibly the DES key being used for encryption (see C_SetOperationState
for more information on whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section 5.14), then the
cryptographic operations state of the session will contain all the necessary information to restore both
operations.

An attempt to save the cryptographic operations state of a session which does not currently have some
active savable cryptographic operation(s) (encryption, decryption, digesting, signing without message
recovery, verification without message recovery, or some legal combination of two of these) should fail
with the error CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an appropriate
cryptographic operation (or two), but which cannot be satisfied for any of various reasons (certain
necessary state information and/or key information can’t leave the token, for example) should fail with the
error CKR_STATE_UNSAVEABLE.
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Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_STATE_UNSAVEABLE, CKR_ARGUMENTS_BAD.

Example: see C_SetOperationState.

5.6.7 C_SetOperationState

CK_DECLARE FUNCTION (CK RV, C SetOperationState) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pOperationState,
CK _ULONG ulOperationStatelLen,
CK_OBJECT HANDLE hEncryptionKey,
CK_OBJECT HANDLE hAuthenticationKey
);

C_SetOperationState restores the cryptographic operations state of a session from a string of bytes
obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points to the
location holding the saved state; ulOperationStateLen holds the length of the saved state;
hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or decryption
operation in the restored session (or O if no encryption or decryption key is needed, either because no
such operation is ongoing in the stored session or because all the necessary key information is present in
the saved state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or O if no such key is needed, either
because no such operation is ongoing in the stored session or because all the necessary key information
is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it is being
restored to (the “destination session”). However, the source session and destination session should have
a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token.
There is also no guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state which it can
determine is not valid saved state (or is cryptographic operations state from a session with a different
session state, or is cryptographic operations state from a different token), it fails with the error
CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain information about keys
in use for ongoing cryptographic operations. If a saved cryptographic operations state has an ongoing
encryption or decryption operation, and the key in use for the operation is not saved in the state, then it
MUST be supplied to C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. |If the key in use for the
operation is saved in the state, then it can be supplied in the hEncryptionKey argument, but this is not
required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or verification
operation, and the key in use for the operation is not saved in the state, then it MUST be supplied to
C_SetOperationState in the hAuthenticationKey argument. If it is not, then C_SetOperationState will
fail with the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can
be supplied in the hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is submitted in
the hEncryptionKey argument, but the saved cryptographic operations state supplied does not have an
ongoing encryption or decryption operation, then C_SetOperationState fails with the error
CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can somehow
detect that this key was not the key being used in the source session for the supplied cryptographic
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operations state (it may be able to detect this if the key or a hash of the key is present in the saved state,
for example), then C_SetOperationState fails with the error CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the
CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles to
C_SetOperationState calls. If this flag is true, then a call to C_SetOperationState never needs a key
handle to be supplied to it. If this flag is false, then at least some of the time, C_SetOperationState
requires a key handle, and so the application should probably always pass in any relevant key handles
when restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session even if that
session has active cryptographic or object search operations when C_SetOperationState is called (the
ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_CHANGED, CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED,
CKR_OK, CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;
CK_MECHANISM digestMechanism;
CK_BYTE PTR pState;

CK _ULONG ulStateLen;

CK BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK BYTE data2[] = {0x02, 0x04, 0x08};
CK BYTE data3[] = {0x10, 0xOF, 0xOE, 0xOD, 0xO0C};

CK_BYTE pDigest[20];
CK _ULONG ulDigestLen;
CK RV rv;

/* Initialize hash operation */
rv = C _DigestInit (hSession, &digestMechanism);

assert (rv == CKR OK) ;

/* Start hashing */
rv = C_DigestUpdate (hSession, datal, sizeof(datal)):;
assert (rv == CKR OK);

/* Find out how big the state might be */
rv = C_GetOperationState (hSession, NULL PTR, &ulStateLen);
assert (rv == CKR OK) ;

/* Allocate some memory and then get the state */
pState = (CK BYTE PTR) malloc(ulStatelen);
rv = C _GetOperationState (hSession, pState, &ulStatelLen);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 424




3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288

3289

3290
3291
3292
3293
3294
3295

3296
3297
3298

3299
3300
3301
3302
3303

3304
3305
3306
3307
3308
3309
3310
3311
3312
3313

/* Continue hashing */
rv = C_DigestUpdate (hSession, data2, sizeof (data2));
assert (rv == CKR _OK) ;

/* Restore state. No key handles needed */
rv = C_SetOperationState (hSession, pState, ulStateLen, 0, 0);
assert (rv == CKR OK) ;

/* Continue hashing from where we saved state */
rv = C_DigestUpdate (hSession, data3, sizeof (data3l));
assert (rv == CKR _OK) ;

/* Conclude hashing operation */
ulDigestLen = sizeof (pDigest);
rv = C_DigestFinal (hSession, pDigest, &ulDigestLen):;
if (rv == CKR OK) {
/* pDigest[] now contains the hash of 0x01030507100F0EODOC */

5.6.8 C_Login

CK_DECLARE FUNCTION (CK RV, C Login) (
CK_SESSION HANDLE hSession,
CK _USER _TYPE userType,
CK _UTF8CHAR PTR pPin,
CK_ULONG ulPinLen
)i

C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin points to
the user’s PIN; ulPinLen is the length of the PIN. This standard allows PIN values to contain any valid
UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's
sessions will enter either the "R/W SO Functions" state, the "R/W User Functions" state, or the "R/O User
Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_Login depends on the
context in which it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin
parameter to C_Login should be NULL_PTR. When C_Login returns, whatever authentication method
supported by the token will have been performed; a return value of CKR_OK means that the user was
successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.
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If there are any active cryptographic or object finding operations in an application’s session, and then
C_Login is successfully executed by that application, it may or may not be the case that those operations
are still active. Therefore, before logging in, any active operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be unable to log the
SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error code
CKR_SESSION_READ_ONLY_EXISTS.

C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the
CKA_ALWAYS AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do
cryptographic operation on this key. See further Section 4.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.

Example: see C_Logout.

5.6.9 C_LoginUser

CK_DECLARE FUNCTION (CK RV, C LoginUser) (
CK_SESSION HANDLE hSession,
CK _USER_TYPE userType,
CK _UTF8CHAR PTR pPin,
CK_ULONG ulPinLen,
CK_UTFSCHAR_PTR pUsername,
CK _ULONG ulUsernamelLen
) ;

C_LoginUser logs a user into a token. hSession is a session handle; userType is the user type; pPin
points to the user’s PIN; ulPinLen is the length of the PIN, pUsername points to the user name,
ulUsernamelLen is the length of the user name. This standard allows PIN and user name values to
contain any valid UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's
sessions will enter either the "R/W SO Functions"” state, the "R/W User Functions" state, or the "R/O User
Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_LoginUser depends
on the context in which it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. The user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin
parameter to C_LoginUser should be NULL_PTR. When C_LoginUser returns, whatever authentication
method supported by the token will have been performed; a return value of CKR_OK means that the user
was successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s session, and then
C_LoginUser is successfully executed by that application, it may or may not be the case that those
operations are still active. Therefore, before logging in, any active operations should be finished.

If the application calling C_LoginUser has a R/O session open with the token, then it will be unable to log
the SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error
code CKR_SESSION_READ_ONLY_EXISTS.
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C_LoginUser may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the
CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do
cryptographic operation on this key. See further Section 4.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.

Example:

CK_SESSION HANDLE hSession;

CK _UTF8CHAR userPin[] = {“MyPIN”};

CK UTF8CHAR userName[] = {“MyUserName”};

CK RV rv;

rv = C_LoginUser (hSession, CKU USER, userPin, sizeof (userPin)-1, userName,

sizeof (userName) -1) ;

if (rv == CKR_OK) {

rv = C_Logout (hSession);
if (rv == CKR_OK) {

5.6.10 C_Logout

CK_DECLARE_FUNCTION(CK_RV, C_Logout) (
CK_SESSION HANDLE hSession
)i

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions will enter
either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private objects become invalid
(even if a user is later logged back into the token, those handles remain invalid). In addition, all private
session objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session, and then
C_Logout is successfully executed by that application, it may or may not be the case that those
operations are still active. Therefore, before logging out, any active operations should be finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_|IN.

Example:
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CK_SESSION HANDLE hSession;
CK UTF8CHAR userPin[] = {“MyPIN”};
CK RV rv;

rv = C_Login (hSession, CKU USER, userPin, sizeof (userPin)-1);

if (rv == CKR_OK) {

rv = C_Logout (hSession);
if (rv == CKR_OK) {

5.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions provided specifically
for managing key objects are described in Section 5.18.

5.7.1 C_CreateObject

CK_DECLARE FUNCTION (CK RV, C CreateObject) (
CK_SESSION HANDLE hSession,
CK_ATTRIBUTE PTR pTemplate,

CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phObject

) i

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the object’s
template; ulCount is the number of attributes in the template; phObject points to the location that receives
the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail and return without
creating any object.

If C_CreateObiject is used to create a key object, the key object will have its CKA_LOCAL attribute set to
CK_FALSE. If that key object is a secret or private key then the new key will have the
CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE
attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Whenever an object is created, a value for CKA_UNIQUE_ID is generated and assigned to the new
object (See Section 4.4.1).

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:
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CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE
hData,
hCertificate,
hKey;
CK_OBJECT_ CLASS
dataClass = CKO_DATA,
certificateClass = CKO _CERTIFICATE,
keyClass = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK RSA;
CK UTF8CHAR application[] = {“My Application”};
CK BYTE dataValue[] = {...};

CK_BYTE subject[] = {...};

CK_BYTE id[] = {...};

CK BYTE certificatevalue[] = {...};
CK_BYTE modulus[] = {...};

CK BYTE exponent[] = {...};
CK _BBOOL true = CK _TRUE;
CK ATTRIBUTE dataTemplate[] = {
{CKA CLASS, é&dataClass, sizeof(dataClass)},
{CKA TOKEN, &true, sizeof (true)},
{CKA_ APPLICATION, application, sizeof (application)-1},
{CKA VALUE, dataValue, sizeof (dataValue)}
}i
CK ATTRIBUTE certificateTemplate[] = {
{CKA CLASS, é&certificateClass, sizeof (certificateClass)},
{CKA TOKEN, &true, sizeof (true)},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA VALUE, certificateValue, sizeof(certificateValue)}
}i
CK_ATTRIBUTE keyTemplate[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, ¢&true, sizeof (true)},
{CKA MODULUS, modulus, sizeof (modulus)},
{CKA PUBLIC EXPONENT, exponent, sizeof (exponent) }
}i
CK_RV rv;

/* Create a data object */
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rv = C CreateObject (hSession, dataTemplate, 4, &hData);
if (rv == CKR_OK) {

/* Create a certificate object */
rv = C CreateObject (

hSession, certificateTemplate, 5, &hCertificate);
if (rv == CKR_OK) {

/* Create an RSA public key object */
rv = C _CreateObject (hSession, keyTemplate, 5, &hKey);
if (rv == CKR OK) ({

5.7.2 C_CopyObject

CK_DECLARE FUNCTION (CK RV, C_CopyObject) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK _ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phNewObject
)i

C_CopyObiject copies an object, creating a new object for the copy. hSession is the session’s handle;
hObject is the object’'s handle; pTemplate points to the template for the new object; u/lCount is the number
of attributes in the template; phNewObject points to the location that receives the handle for the copy of
the object.

The template may specify new values for any attributes of the object that can ordinarily be modified (e.g.,
in the course of copying a secret key, a key’'s CKA_EXTRACTABLE attribute may be changed from
CK_TRUE to CK_FALSE, but not the other way around. If this change is made, the new key's
CKA_NEVER_EXTRACTABLE attribute will have the value CK_FALSE. Similarly, the template may
specify that the new key’'s CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same
value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new values of
the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the
template specifies a value of an attribute which is incompatible with other existing attributes of the object,
the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail and return without
creating any object. If the object indicated by hObject has its CKA_COPYABLE attribute set to
CK_FALSE, C_CopyObject will return CKR_ACTION_PROHIBITED.

Whenever an object is copied, a new value for CKA_UNIQUE_ID is generated and assigned to the new
object (See Section 4.4.1).
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Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: , CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;

CK OBJECT_ HANDLE hKey, hNewKey;

CK_OBJECT CLASS keyClass = CKO_SECRET KEY;

CK_KEY TYPE keyType = CKK DES;

CK BYTE id[] = {...};

CK BYTE keyValue[] = {...};

CK BBOOL false = CK_FALSE;

CK_BBOOL true = CK_TRUE;

CK ATTRIBUTE keyTemplate[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &false, sizeof(false)},
{CKA_ID, id, sizeof (id)},
{CKA VALUE, keyValue, sizeof (keyValue)}

}i

CK _ATTRIBUTE copyTemplate[] = {
{CKA TOKEN, &true, sizeof (true)}

}i

CK RV rv;

/* Create a DES secret key session object */
rv = C_CreateObject (hSession, keyTemplate, 5, &hKey);
if (rv == CKR OK) {

/* Create a copy which is a token object */

rv = C_CopyObject (hSession, hKey, copyTemplate, 1, &hNewKey):;

5.7.3 C_DestroyObject

CK _DECLARE FUNCTION (CK RV, C DestroyObject) (
CK_SESSION HANDLE hSession,
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CK_OBJECT HANDLE hObject
);

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s
handle.

Only session objects can be destroyed during a read-only session. Only public objects can be destroyed
unless the normal user is logged in.

Certain objects may not be destroyed. Calling C_DestroyObject on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_DESTROYABLE
attribute to determine if an object may be destroyed or not.

Return values: CKR_ACTION_PROHIBITED, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

5.7.4 C_GetObjectSize

CK _DECLARE FUNCTION (CK RV, C GetObjectSize) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK_ULONG_PTR pulSize

) i

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the
object’s handle; pulSize points to the location that receives the size in bytes of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is some measure
of how much token memory the object takes up. If an application deletes (say) a private object of size S,
it might be reasonable to assume that the ulFreePrivateMemory field of the token’s CK_TOKEN_INFO
structure increases by approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK OBJECT CLASS dataClass = CKO_DATA;
CK UTF8CHAR application[]
CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &dataClass, sizeof(dataClass)},
{CKA TOKEN, &true, sizeof (true)},

{“My Application”};

{CKA APPLICATION, application, sizeof (application)-1},
{CKA VALUE, value, sizeof (value)}

}i

CK_ULONG ulSize;
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CK RV rv;

rv = C_CreateObject (hSession, template, 4, &hObject);
if (rv == CKR_OK) {
rv = C _GetObjectSize (hSession, hObject, &ulSize);
if (rv != CKR_INFORMATION SENSITIVE) {

rv = C_DestroyObject (hSession, hObject);

5.7.5 C_GetAttributeValue

CK_DECLARE FUNCTION (CK RV, C GetAttributevalue) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
) ;

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be obtained, and receives the attribute values; u/lCount is the number of attributes in the
template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue performs the following
algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be revealed
because the object is sensitive or unextractable, then the ulValueLen field in that triple is modified to
hold the value CK_UNAVAILABLE_INFORMATION.

2. Otherwise, if the specified value for the object is invalid (the object does not possess such an
attribute), then the ulValueLen field in that triple is modified to hold the value
CK_UNAVAILABLE_INFORMATION.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ul/ValueLen field is modified to hold
the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in u/ValueLen is large enough to hold the value of the specified
attribute for the object, then that attribute is copied into the buffer located at pValue, and the
ulValueLen field is modified to hold the exact length of the attribute.

5. Otherwise, the ulValueLen field is modified to hold the value CK_UNAVAILABLE_INFORMATION.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call should
return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 applies to any of the requested attributes,
then the call should return the value CKR_BUFFER_TOO_SMALL. As usual, if more than one of these
error codes is applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.
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In the special case of an attribute whose value is an array of attributes, for example
CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, the length specified in ulValueLen
MUST be large enough to hold all attributes in the array. If the pValue of elements within the array is
NULL_PTR then the ulValueLen of elements within the array will be set to the required length. If the
pValue of elements within the array is not NULL_PTR, then the ulValueLen element of attributes within
the array MUST reflect the space that the corresponding pValue points to, and pValue is filled in if there is
sufficient room. Therefore it is important to initialize the contents of a buffer before calling
C_GetAttributeValue to get such an array value. Note that the type element of attributes within the array
MUST be ignored on input and MUST be set on output. If any ulValueLen within the array isn't large
enough, it will be set to CK_UNAVAILABLE_INFORMATION and the function will return
CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too
small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute
type having the CKF_ARRAY_ATTRIBUTE bit set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID, and
CKR_BUFFER_TOO_SMALL do not denote true errors for C_GetAttributeValue. If a call to
C_GetAttributeValue returns any of these three values, then the call MUST nonetheless have processed
every attribute in the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK BYTE PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {

{CKA MODULUS, NULL PTR, 0},

{CKA PUBLIC EXPONENT, NULL PTR, 0}
}i
CK_RV rv;

rv = C_GetAttributeValue (hSession, hObject, template, 2);

if (rv == CKR OK) {
pModulus = (CK_BYTE PTR) malloc (template[0].ulValuelen) ;
template[0] .pValue = pModulus;
/* template[0].ulValuelLen was set by C_GetAttributeValue */

pExponent = (CK BYTE PTR) malloc(template[l].ulValueLen);
template[l] .pValue = pExponent;
/* template[l].ulValuelLen was set by C_GetAttributeValue */

rv = C_GetAttributeValue (hSession, hObject, template, 2);
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if (rv == CKR_OK) {

}
free (pModulus) ;

free (pExponent) ;

5.7.6 C_SetAttributeValue

CK _DECLARE FUNCTION (CK RV, C SetAttributeValue) (
CK_SESSION HANDLE hSession,
CK _OBJECT HANDLE hObject,
CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
) ;

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be modified and their new values; ulCount is the number of attributes in the template.

Certain objects may not be modified. Calling C_SetAttributeValue on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_MODIFIABLE
attribute to determine if an object may be modified or not.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified. If the template
specifies a value of an attribute which is incompatible with other existing attributes of the object, the call
fails with the return code CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 4.1.2 for more details.

Return values: CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hObject;
CK _UTF8CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {

{CKA LABEL, label, sizeof (label)-1}
}i
CK RV rv;

rv = C_SetAttributeValue (hSession, hObject, template, 1);
if (rv == CKR OK) ({
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3779
3780
3781 }

3782 5.7.7 C_FindObjectslinit

3783 | CK _DECLARE FUNCTION (CK RV, C FindObjectsInit) (
3784 CK_SESSION_ HANDLE hSession,

3785 CK_ATTRIBUTE PTR pTemplate,

3786 CK_ULONG ulCount

3787 ) ;

3788 C_FindObjectsinit initializes a search for token and session objects that match a template. hSession is
3789 the session’s handle; pTemplate points to a search template that specifies the attribute values to match;
3790 ulCount is the number of attributes in the search template. The matching criterion is an exact byte-for-
3791 byte match with all attributes in the template. To find all objects, set u/lCount to 0.

3792  After calling C_FindObjectslnit, the application may call C_FindObjects one or more times to obtain
3793 handles for objects matching the template, and then eventually call C_FindObjectsFinal to finish the
3794  active search operation. At most one search operation may be active at a given time in a given session.

3795 The object search operation will only find objects that the session can view. For example, an object
3796  search in an “R/W Public Session” will not find any private objects (even if one of the attributes in the
3797  search template specifies that the search is for private objects).

3798 If a search operation is active, and objects are created or destroyed which fit the search template for the
3799 active search operation, then those objects may or may not be found by the search operation. Note that
3800 this means that, under these circumstances, the search operation may return invalid object handles.

3801  Even though C_FindObjectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and

3802 CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search template
3803  with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a
3804  search operation which will match no objects and return CKR_OK.

3805 If the CKA_UNIQUE_ID attribute is present in the search template, either zero or one objects will be
3806 found, since at most one object can have any particular CKA_UNIQUE_ID value.

3807 Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,

3808 CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
3809 CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

3810 CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,

3811 CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

3812  Example: see C_FindObjectsFinal.

3813 5.7.8 C_FindObjects

3814 | CK_DECLARE_FUNCTION (CK RV, C_FindObjects) (
3815 CK _SESSION HANDLE hSession,

3816 CK_OBJECT HANDLE PTR phObject,

3817 CK_ULONG ulMaxObjectCount,

3818 CK_ULONG_PTR pulObjectCount

3819 ) ;

3820 C_FindObjects continues a search for token and session objects that match a template, obtaining

3821 additional object handles. hSession is the session’s handle; phObject points to the location that receives
3822  the list (array) of additional object handles; ulMaxObjectCount is the maximum number of object handles
3823  to be returned; pulObjectCount points to the location that receives the actual number of object handles
3824 returned.

3825 If there are no more objects matching the template, then the location that pulObjectCount points to
3826 receives the value 0.
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The search MUST have been initialized with C_FindObjectsinit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

5.7.9 C_FindObjectsFinal

CK_DECLARE FUNCTION (CK RV, C_FindObjectsFinal) (
CK_SESSION HANDLE hSession
)7

C_FindObjectsFinal terminates a search for token and session objects. hSession is the session’s
handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK_ULONG ulObjectCount;

CK RV rv;

rv = C_FindObjectsInit (hSession, NULL PTR, O0);

assert (rv == CKR OK);

while (1) {
rv = C_FindObjects (hSession, &hObject, 1, &ulObjectCount);
if (rv != CKR _OK || ulObjectCount == 0)

break;

rv = C_FindObjectsFinal (hSession);
assert (rv == CKR OK);

5.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

5.8.1 C_Encryptinit

CK_DECLARE FUNCTION (CK_RV, C_EncryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
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CK_OBJECT HANDLE hKey
);

C_Encryptinit initializes an encryption operation. hSession is the session’s handle; pMechanism points
to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, MUST be CK_TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt data in a single part; or
call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts.
The encryption operation is active until the application uses a call to C_Encrypt or C_EncryptFinal to
actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the
application MUST call C_Encryptlnit again.

C_Encryptinit can be called with pMechanism set to NULL_PTR to terminate an active encryption
operation. If an active operation operations cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_EncryptFinal.

5.8.2 C_Encrypt

CK_DECLARE FUNCTION (CK RV, C Encrypt) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK BYTE PTR pEncryptedData,
CK ULONG PTR pulEncryptedDatalLen
) ;

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
ulDatalen is the length in bytes of the data; pEncryptedData points to the location that receives the
encrypted data; pulEncryptedDatalen points to the location that holds the length in bytes of the encrypted
data.

C_Encrypt uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptinit. A call to C_Encrypt always
terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

C_Encrypt cannot be used to terminate a multi-part operation, and MUST be called after C_Encryptinit
without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints (either because
the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input
data MUST consist of an integral number of blocks). If these constraints are not satisfied, then
C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData point to
the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate operations followed
by C_EncryptFinal.
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Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

5.8.3 C_EncryptUpdate

CK_DECLARE FUNCTION (CK RV, C EncryptUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK_ULONG ulPartLen,
CK BYTE PTR pEncryptedPart,
CK ULONG PTR pulEncryptedPartLen
) i

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part;
pEncryptedPart points to the location that receives the encrypted data part; pulEncryptedPartLen points
to the location that holds the length in bytes of the encrypted data part.

C_EncryptUpdate uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptlnit. This function may be called
any number of times in succession. A call to C_EncryptUpdate which results in an error other than
CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart point to
the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

5.8.4 C_EncryptFinal

CK_DECLARE FUNCTION (CK_RV, C_EncryptFinal)(
CK_SESSION HANDLE hSession,

CK BYTE PTR pLastEncryptedPart,

CK _ULONG_PTR pulLastEncryptedPartLen

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptinit. A call to C_EncryptFinal
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length constraints,
because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints
are not satisfied, then C_EncryptFinal will fail with return code CKR_DATA_LEN_RANGE.
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Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT BUF Sz 200
#define CIPHERTEXT BUF SZ 256

CK _ULONG firstPiecelLen, secondPiecelen;
CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM DES CBC PAD, iv, sizeof (iv)
bi
CK BYTE data[PLAINTEXT BUF SZ];
CK BYTE encryptedData [CIPHERTEXT BUF SZ];
CK _ULONG ulEncryptedDatalLen;
CK _ULONG ulEncryptedDataZLen;
CK_ULONG ulEncryptedData3Len;
CK RV rv;

firstPiecelen = 90;
secondPiecelLen = PLAINTEXT BUF SZ-firstPiecelen;
rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {
/* Encrypt first piece */
ulEncryptedDatallen = sizeof (encryptedData);
rv = C_EncryptUpdate (
hSession,
&data[0], firstPiecelen,
&encryptedData[0], &ulEncryptedDatallen);
if (rv != CKR _OK) {

/* Encrypt second piece */
ulEncryptedData2len = sizeof (encryptedData)-ulEncryptedDatallen;
rv = C_EncryptUpdate (

hSession,
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&data[firstPiecelen], secondPiecelen,
&encryptedData[ulEncryptedDatallen], &ulEncryptedData2Len);
if (rv != CKR_OK) {

/* Get last little encrypted bit */
ulEncryptedData3len =
sizeof (encryptedData) -ulEncryptedDatallen-ulEncryptedData2len;
rv = C_EncryptFinal (
hSession,
&encryptedData[ulEncryptedDatallentulEncryptedData2len],
&ulEncryptedData3len) ;
if (rv != CKR _OK) {

5.9 Message-based encryption functions

Message-based encryption refers to the process of encrypting multiple messages using the same
encryption mechanism and encryption key. The encryption mechanism can be either an authenticated
encryption with associated data (AEAD) algorithm or a pure encryption algorithm.

Cryptoki provides the following functions for message-based encryption:

5.9.1 C_MessageEncryptinit

CK_DECLARE FUNCTION (CK RV, C MessageEncryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) ;

C_MessageEncryptinit prepares a session for one or more encryption operations that use the same
encryption mechanism and encryption key. hSession is the session’s handle; pMechanism points to the
encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption,
MUST be CK_TRUE.

After calling C_MessageEncryptlnit, the application can either call C_EncryptMessage to encrypt a
message in a single part, or call C_EncryptMessageBegin, followed by C_EncryptMessageNext one or
more times, to encrypt a message in multiple parts. This may be repeated several times. The message-
based encryption process is active until the application calls C_MessageEncryptFinal to finish the
message-based encryption process.

C_MessageEncryptinit can be called with pMechanism set to NULL_PTR to terminate a message-based
encryption process. If a multi-part message encryption operation is active, it will also be terminated. If an
active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.
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Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,

CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.9.2 C_EncryptMessage

CK _DECLARE FUNCTION (CK_ RV, C EncryptMessage) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,
CK _ULONG ulAssociatedDatalen,
CK BYTE PTR pPlaintext,

CK _ULONG ulPlaintextLen,

CK BYTE PTR pCiphertext,

CK _ULONG_PTR pulCiphertextLen

) i

C_EncryptMessage encrypts a message in a single part. hSession is the session’s handle; pParameter
and ulParameterLen specify any mechanism-specific parameters for the message encryption operation;
pAssociatedData and ulAssociatedDatalen specify the associated data for an AEAD mechanism;
pPlaintext points to the plaintext data; ulPlaintextLen is the length in bytes of the plaintext data;
pCiphertext points to the location that receives the encrypted data; pulCiphertextLen points to the location

that holds the length in bytes of the encrypted data.

Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter
passed to C_MessageEncryptinit, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV

generator will be output to the pParameter buffer.

If the encryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and

should be set to (NULL, 0).
C_EncryptMessage uses the convention described in Section 5.2 on producing output.

The message-based encryption process MUST have been initialized with C_MessageEncryptinit. A call

to C_EncryptMessage begins and terminates a message encryption operation.

C_EncryptMessage cannot be called in the middle of a multi-part message encryption operation.

For some encryption mechanisms, the input plaintext data has certain length constraints (either because
the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input
data MUST consist of an integral number of blocks). If these constraints are not satisfied, then
C_EncryptMessage will fail with return code CKR_DATA_LEN_RANGE. The plaintext and ciphertext can

be in the same place, i.e., it is OK if pPlaintext and pCiphertext point to the same location.

For most mechanisms, C_EncryptMessage is equivalent to C_EncryptMessageBegin followed by a

sequence of C_EncryptMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5.9.3 C_EncryptMessageBegin

CK_DECLARE FUNCTION (CK RV, C EncryptMessageBegin) (
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CK_SESSION HANDLE hSession,

CK _VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,

CK_ULONG ulAssociatedDataLen
);

C_EncryptMessageBegin begins a multiple-part message encryption operation. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message encryption operation; pAssociatedData and ulAssociatedDatal en specify the associated data
for an AEAD mechanism.

Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter
passed to C_MessageEncryptlnit, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV
generator will be output to the pParameter buffer.

If the mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and should be
set to (NULL, 0).

After calling C_EncryptMessageBegin, the application should call C_EncryptMessageNext one or
more times to encrypt the message in multiple parts. The message encryption operation is active until the
application uses a call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE to actually
obtain the final piece of ciphertext. To process additional messages (in single or multiple parts), the
application MUST call C_EncryptMessage or C_EncryptMessageBegin again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

5.9.4 C_EncryptMessageNext

CK_DECLARE_FUNCTION(CK_RV, C_EncryptMessageNext)(
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK BYTE PTR pPlaintextPart,
CK _ULONG ulPlaintextPartLen,
CK BYTE PTR pCiphertextPart,
CK _ULONG_PTR pulCiphertextPartLen,
CK FLAGS flags
) ;

C_EncryptMessageNext continues a multiple-part message encryption operation, processing another
message part. hSession is the session’s handle; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message encryption operation; pPlaintextPart points to the
plaintext message part; ulPlaintextPartLen is the length of the plaintext message part; pCiphertextPart
points to the location that receives the encrypted message part; pulCiphertextPartLen points to the
location that holds the length in bytes of the encrypted message part; flags is set to 0 if there is more
plaintext data to follow, or set to CKF_END_OF MESSAGE fif this is the last plaintext part.

Typically, pParameter is an initialization vector (V) or nonce. Depending on the mechanism parameter
passed to C_EncryptMessageNext, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV
generator will be output to the pParameter buffer.

C_EncryptMessageNext uses the convention described in Section 5.2 on producing output.

The message encryption operation MUST have been started with C_EncryptMessageBegin. This
function may be called any number of times in succession. A call to C_EncryptMessageNext with flags=0
which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message
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encryption operation. A call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE always
terminates the active message encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

Although the last C_EncryptMessageNext call ends the encryption of a message, it does not finish the
message-based encryption process. Additional C_EncryptMessage or C_EncryptMessageBegin and
C_EncryptMessageNext calls may be made on the session.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPlaintextPart and pCiphertextPart
point to the same location.

For some multi-part encryption mechanisms, the input plaintext data has certain length constraints,
because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints
are not satisfied when the final message part is supplied (i.e., with flags=CKF_END_OF_MESSAGE),
then C_EncryptMessageNext will fail with return code CKR_DATA_LEN_RANGE.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5.9.5 C_MessageEncryptFinal

CK_DECLARE FUNCTION (CK RV, C MessageEncryptFinal) (
CK_SESSION HANDLE hSession
);

C_MessageEncryptFinal finishes a message-based encryption process. hSession is the session’s
handle.

The message-based encryption process MUST have been initialized with C_MessageEncryptlinit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT BUF_Sz 200
#define AUTH BUF SZ 100
#define CIPHERTEXT BUF_SZ 256

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hKey;
CK BYTE iv[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
CK_BYTE tag[l6];
CK _GCM MESSAGE PARAMS gcmParams = {
iv,
sizeof (iv) * 8,
0,
CKG_NO_GENERATE,
tag,
sizeof (tag) * 8
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4203 }i

4204 CK_MECHANISM mechanism = {

4205 CKM AES GCM, &gcmParams, sizeof (gcmParams)

4206 }s

4207 CK_BYTE datal2] [PLAINTEXT BUF SZ];

4208 | CK _BYTE auth([2] [AUTH BUF SZ];

4209 CK_BYTE encryptedData[2] [CIPHERTEXT BUF SZ];

4210 CK_ULONG ulEncryptedDatalLen, ulFirstEncryptedDatalen;
4211 CK_ULONG firstPiecelen = PLAINTEXT BUF SZ / 2;

4212
4213 /* error handling is omitted for better readability */
4214
4215
4216 C MessageEncryptInit (hSession, &mechanism, hKey);
4217 /* encrypt message en bloc with given IV */

4218 ulEncryptedDatalen = sizeof (encryptedDatal[0]);
4219 C_EncryptMessage (hSession,

4220 &gcmParams, sizeof (gcmParams),

4221 &auth[0]1[0], sizeof (auth[0]),

4222 &data[0]1[0], sizeof(datal0]),

4223 sencryptedData[0] [0], &ulEncryptedDatalen) ;
4224 /* iv and tag are set now for message */

4225

4226 /* encrypt message in two steps with generated IV */
4227 gcmParams.ivGenerator = CKG_GENERATE;
4228 C EncryptMessageBegin (hSession,

4229 &gcmParams, sizeof (gcmParams),
4230 &auth[1][0], sizeof (auth[1l])
4231 ) ;

4232 /* encrypt first piece */
4233 ulFirstEncryptedDatalen = sizeof (encryptedDatall]);
4234 C_EncryptMessageNext (hSession,

4235 &gcmParams, sizeof (gcmParams),

4236 &data[l][0], firstPiecelen,

4237 &encryptedData[l] [0], &ulFirstEncryptedDatalen,

4238 0

4239 ) ;

4240 /* encrypt second piece */

4241 ulEncryptedDatalen = sizeof (encryptedData[l]) - ulFirstEncryptedDatalen;

4242 C_EncryptMessageNext (hSession,

4243 &gcmParams, sizeof (gcmParams),

4244 &data[l] [firstPiecelen], sizeof(data[l])-firstPiecelen,

4245 &encryptedData[l] [ulFirstEncryptedDatalen], &ulEncryptedDatalen,
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CKF_END OF MESSAGE
)7

/* tag is set now for message */

/* finalize */

C MessageEncryptFinal (hSession) ;

5.10 Decryption functions

Cryptoki provides the following functions for decrypting data:

5.10.1 C_Decryptinit

CK_DECLARE FUNCTION (CK RV, C DecryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) i

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle; pMechanism points to
the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, MUST be CK_TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt data in a single part; or
call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data in multiple parts.
The decryption operation is active until the application uses a call to C_Decrypt or C_DecryptFinal to
actually obtain the final piece of plaintext. To process additional data (in single or multiple parts), the
application MUST call C_Decryptlnit again.

C_Decryptlnit can be called with pMechanism set to NULL_PTR to terminate an active decryption
operation. If an active operation cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be
returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED

Example: see C_DecryptFinal.

5.10.2 C_Decrypt

CK _DECLARE FUNCTION (CK RV, C Decrypt) (
CK _SESSION HANDLE hSession,
CK BYTE PTR pEncryptedData,
CK _ULONG ulEncryptedDatalen,
CK_BYTE PTR pData,
CK _ULONG_PTR pulDatalLen
) ;

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle; pEncryptedData
points to the encrypted data; ulEncryptedDatalen is the length of the encrypted data; pData points to the
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location that receives the recovered data; pulDatalen points to the location that holds the length of the
recovered data.

C_Decrypt uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptlnit. A call to C_Decrypt always
terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

C_Decrypt cannot be used to terminate a multi-part operation, and MUST be called after C_Decryptinit
without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData point to
the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate operations followed
by C_DecryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_|IN.

Example: see C_DecryptFinal for an example of similar functions.

5.10.3 C_DecryptUpdate

CK _DECLARE FUNCTION (CK RV, C DecryptUpdate) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK BYTE PTR pPart,
CK _ULONG_PTR pulPartLen
)

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data
part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part;
ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that receives the
recovered data part; pulPartLen points to the location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptlnit. This function may be called
any number of times in succession. A call to C_DecryptUpdate which results in an error other than
CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart point to
the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_|IN.

Example: See C_DecryptFinal.
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5.10.4 C_DecryptFinal

CK _DECLARE FUNCTION(CK RV, C DecryptFinal) (
CK_SESSION HANDLE hSession,

CK_BYTE PTR pLastPart,

CK _ULONG_ PTR pulLastPartLen

)

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen points to
the location that holds the length of the last recovered data part.

C_DecryptFinal uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptinit. A call to C_DecryptFinal
always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

Example:

#define CIPHERTEXT BUF SZ 256
#define PLAINTEXT BUF SZ 256

CK _ULONG firstEncryptedPiecelen, secondEncryptedPiecelen;
CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM DES CBC PAD, iv, sizeof (iv)
}i
CK BYTE data[PLAINTEXT BUF SZ];
CK BYTE encryptedData [CIPHERTEXT BUF SZz];
CK ULONG ulDatalLen, ulDataZLen, ulData3Len;
CK RV rv;

firstEncryptedPiecelen = 90;
secondEncryptedPiecelLen = CIPHERTEXT BUF SZ-firstEncryptedPiecelLen;
rv = C DecryptInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {
/* Decrypt first piece */
ulDatallen = sizeof (data);
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rv = C DecryptUpdate (
hSession,
&encryptedData[0], firstEncryptedPiecelen,
&data[0], &ulDatalLen);

if (rv != CKR_OK) {

/* Decrypt second piece */

ulData?2len = sizeof (data)-ulDatallen;

rv = C DecryptUpdate (
hSession,
&encryptedData[firstEncryptedPiecelen],
secondEncryptedPiecelen,
&data[ulDatallLen], &ulData2Len);

if (rv != CKR _OK) {

/* Get last little decrypted bit */
ulData3lLen = sizeof (data)-ulDatallen-ulData2Len;
rv = C DecryptFinal (

hSession,
&data[ulDatallLen+ulData2Len], &ulData3Len):;
if (rv != CKR_OK) {

5.11 Message-based decryption functions

Message-based decryption refers to the process of decrypting multiple encrypted messages using the
same decryption mechanism and decryption key. The decryption mechanism can be either an
authenticated encryption with associated data (AEAD) algorithm or a pure encryption algorithm.

Cryptoki provides the following functions for message-based decryption.

5.11.1 C_MessageDecryptinit

CK_DECLARE FUNCTION (CK RV, C MessageDecryptInit) (
CK_SESSION HANDLE hSession,

CK _MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) 7
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C_MessageDecryptlnit initializes a message-based decryption process, preparing a session for one or
more decryption operations that use the same decryption mechanism and decryption key. hSession is
the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the
decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption,
MUST be CK_TRUE.

After calling C_MessageDecryptinit, the application can either call C_DecryptMessage to decrypt an
encrypted message in a single part; or call C_DecryptMessageBegin, followed by
C_DecryptMessageNext one or more times, to decrypt an encrypted message in multiple parts. This
may be repeated several times. The message-based decryption process is active until the application
uses a call to C_MessageDecryptFinal to finish the message-based decryption process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.11.2 C_DecryptMessage

CK _DECLARE FUNCTION (CK RV, C DecryptMessage) (
CK_SESSION HANDLE hSession,
CK VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,
CK_ULONG ulAssociatedDatalen,
CK _BYTE PTR pCiphertext,

CK _ULONG ulCiphertextLen,

CK BYTE PTR pPlaintext,

CK _ULONG_PTR pulPlaintextLen

) ;

C_DecryptMessage decrypts an encrypted message in a single part. hSession is the session’s handle;
pParameter and ulParameterLen specify any mechanism-specific parameters for the message decryption
operation; pAssociatedData and ulAssociatedDatal en specify the associated data for an AEAD
mechanism; pCiphertext points to the encrypted message; ulCiphertextLen is the length of the encrypted
message; pPlaintext points to the location that receives the recovered message; pulPlaintextLen points to
the location that holds the length of the recovered message.

Typically, pParameter is an initialization vector (1V) or nonce. Unlike the pParameter parameter of
C_EncryptMessage, pParameter is always an input parameter.

If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and
should be set to (NULL, 0).

C_DecryptMessage uses the convention described in Section 5.2 on producing output.

The message-based decryption process MUST have been initialized with C_MessageDecryptlnit. A call
to C_DecryptMessage begins and terminates a message decryption operation.

C_DecryptMessage cannot be called in the middle of a multi-part message decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertext and pPlaintext point to
the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or
ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned.
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For most mechanisms, C_DecryptMessage is equivalent to C_DecryptMessageBegin followed by a
sequence of C_DecryptMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.11.3 C_DecryptMessageBegin

CK _DECLARE FUNCTION (CK RV, C DecryptMessageBegin) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK _BYTE PTR pAssociatedData,
CK_ULONG ulAssociatedDataLen
) i

C_DecryptMessageBegin begins a multiple-part message decryption operation. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message decryption operation; pAssociatedData and ulAssociatedDatalen specify the associated data
for an AEAD mechanism.

Typically, pParameter is an initialization vector (IV) or nonce. Unlike the pParameter parameter of
C_EncryptMessageBegin, pParameter is always an input parameter.

If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and
should be set to (NULL, 0).

After calling C_DecryptMessageBegin, the application should call C_DecryptMessageNext one or
more times to decrypt the encrypted message in multiple parts. The message decryption operation is
active until the application uses a call to C_DecryptMessageNext with flags=CKF_END_OF_ MESSAGE
to actually obtain the final piece of plaintext. To process additional encrypted messages (in single or
multiple parts), the application MUST call C_DecryptMessage or C_DecryptMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

5.11.4 C_DecryptMessageNext

CK DECLARE FUNCTION (CK RV, C DecryptMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK BYTE PTR pCiphertextPart,
CK _ULONG ulCiphertextPartLen,
CK BYTE PTR pPlaintextPart,
CK _ULONG_PTR pulPlaintextPartlen,
CK FLAGS flags
) i

C_DecryptMessageNext continues a multiple-part message decryption operation, processing another
encrypted message part. hSession is the session’s handle; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message decryption operation; pCiphertextPart points to the
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encrypted message part; ulCiphertextPartLen is the length of the encrypted message part; pPlaintextPart
points to the location that receives the recovered message part; pulPlaintextPartLen points to the location
that holds the length of the recovered message part; flags is set to 0 if there is more ciphertext data to
follow, or setto CKF_END_OF MESSAGE if this is the last ciphertext part.

Typically, pParameter is an initialization vector (1V) or nonce. Unlike the pParameter parameter of
C_EncryptMessageNext, pParameter is always an input parameter.

C_DecryptMessageNext uses the convention described in Section 5.2 on producing output.

The message decryption operation MUST have been started with C_DecryptMessageBegin. This
function may be called any number of times in succession. A call to C_DecryptMessageNext with
flags=0 which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message
decryption operation. A call to C_DecryptMessageNext with flags=CKF_END_OF_MESSAGE always
terminates the active message decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertextPart and pPlaintextPart
point to the same location.

Although the last C_DecryptMessageNext call ends the decryption of a message, it does not finish the
message-based decryption process. Additional C_DecryptMessage or C_DecryptMessageBegin and
C_DecryptMessageNext calls may be made on the session.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned by
the last C_DecryptMessageNext call.

If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or
ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned by the last
C_DecryptMessageNext call.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|N.

5.11.5 C_MessageDecryptFinal

CK_DECLARE FUNCTION (CK RV, C MessageDecryptFinal) (
CK_SESSION HANDLE hSession
)i

C_MessageDecryptFinal finishes a message-based decryption process. hSession is the session’s
handle.

The message-based decryption process MUST have been initialized with C_MessageDecryptlnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.12 Message digesting functions

Cryptoki provides the following functions for digesting data:
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5.12.1 C_Digestinit

CK _DECLARE FUNCTION (CK RV, C DigestInit) (
CK_SESSION HANDLE hSession,
CK _MECHANISM PTR pMechanism

);

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle; pMechanism
points to the digesting mechanism.

After calling C_Digestlnit, the application can either call C_Digest to digest data in a single part; or call
C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in multiple parts. The
message-digesting operation is active until the application uses a call to C_Digest or C_DigestFinal to
actually obtain the message digest. To process additional data (in single or multiple parts), the
application MUST call C_Digestlnit again.

C_Digestlinit can be called with pMechanism set to NULL_PTR to terminate an active message-digesting
operation. If an operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_DigestFinal.

5.12.2 C_Digest

CK_DECLARE FUNCTION (CK RV, C Digest) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK _ULONG ulbatalen,
CK_BYTE PTR pDigest,
CK _ULONG_PTR pulDigestLen
) ;

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
ulDatal en is the length of the data; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_Digest uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_Digestlnit. A call to C_Digest always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message
digest.

C_Digest cannot be used to terminate a multi-part operation, and MUST be called after C_DigestlInit
without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point to the
same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by C_DigestFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
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Example: see C_DigestFinal for an example of similar functions.

5.12.3 C_DigestUpdate

CK_DECLARE FUNCTION (CK RV, C DigestUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK _ULONG ulPartLen

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The message-digesting operation MUST have been initialized with C_Digestlnit. Calls to this function
and C_DigestKey may be interspersed any number of times in any order. A call to C_DigestUpdate
which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

5.12.4 C_DigestKey

CK_DECLARE FUNCTION (CK RV, C_DigestKey) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hKey

) ;

C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a secret
key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.

The message-digesting operation MUST have been initialized with C_Digestlnit. Calls to this function
and C_DigestUpdate may be interspersed any number of times in any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

5.12.5 C_DigestFinal

CK_DECLARE FUNCTION (CK RV, C DigestFinal) (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pDigest,
CK_ULONG_PTR pulDigestLen

) ;

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest.
hSession is the session’s handle; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_Digestlnit. A call to C_DigestFinal always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 137 of 424




4669
4670

4671
4672
4673
4674
4675

4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710

call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message

digest.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_MECHANISM mechanism = {
CKM _MD5, NULL PTR, O

}i

CK BYTE datal] = {...};

CK _BYTE digest[16];

CK _ULONG ulDigestLen;

CK RV rv;

rv = C _DigestInit (hSession, &mechanism);
if (rv != CKR _OK) {

rv = C_DigestUpdate (hSession, data, sizeof (data)):;
if (rv != CKR _OK) {

rv = C_DigestKey (hSession, hKey):;

if (rv != CKR _OK) {
}
ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);
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5.13 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these operations
also encompass message authentication codes).

5.13.1 C_Signinit

CK_DECLARE FUNCTION (CK RV, C_SignInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

);

C_Signinit initializes a signature operation, where the signature is an appendix to the data. hSession is
the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature
key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with
appendix, MUST be CK_TRUE.

After calling C_Signlnit, the application can either call C_Sign to sign in a single part; or call
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The signature
operation is active until the application uses a call to C_Sign or C_SignFinal to actually obtain the
signature. To process additional data (in single or multiple parts), the application MUST call C_Signinit
again.

C_Signlnit can be called with pMechanism set to NULL_PTR to terminate an active signature operation.
If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_SignFinal.

5.13.2 C_Sign

CK_DECLARE FUNCTION(CK RV, C_Sign) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK _BYTE PTR pSignature,
CK_ULONG_PTR pulSignatureLen

) ;

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; ulDatalLen is the length of the data; pSignature points to the
location that receives the signature; pulSignatureLen points to the location that holds the length of the
signature.

C_Sign uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_Signlnit. A call to C_Sign always terminates
the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e.,
one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.
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C_Sign cannot be used to terminate a multi-part operation, and MUST be called after C_SignlInit without
intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations followed by
C_SignFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_SignFinal for an example of similar functions.

5.13.3 C_SignUpdate

CK_DECLARE_FUNCTION(CK_RV, C_SignUpdate) (
CK_SESSION HANDLE hSession,

CK_BYTE PTR pPart,

CK _ULONG ulPartLen

);

C_SignUpdate continues a multiple-part signature operation, processing another data part. hSession is
the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The signature operation MUST have been initialized with C_SignlInit. This function may be called any
number of times in succession. A call to C_SignUpdate which results in an error terminates the current
signature operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_SignFinal.

5.13.4 C_SignFinal

CK_DECLARE FUNCTION (CK RV, C_SignFinal) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pSignature,
CK _ULONG_PTR pulSignatureLen

) i

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; pulSignatureLen points to
the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_Signlnit. A call to C_SignFinal always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
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CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;

CK OBJECT_ HANDLE hKey;

CK _MECHANISM mechanism = {
CKM DES MAC, NULL PTR, O

}i

CK_BYTE datal] = {...};

CK BYTE mac[4];

CK_ULONG ulMacLen;

CK RV rv;

rv = C_SignInit (hSession, &mechanism, hKey):;
if (rv == CKR_OK) {
rv = C_SignUpdate (hSession, data, sizeof(data)):

ulMacLen = sizeof (mac);

rv = C_SignFinal (hSession, mac, &ulMacLen);

5.13.5 C_SignRecoverlnit

CK DECLARE FUNCTION (CK RV, C SignRecoverInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) ;

C_SignRecoverlnit initializes a signature operation, where the data can be recovered from the signature.
hSession is the session’s handle; pMechanism points to the structure that specifies the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports
signatures where the data can be recovered from the signature, MUST be CK_TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a single part. The
signature operation is active until the application uses a call to C_SignRecover to actually obtain the
signature. To process additional data in a single part, the application MUST call C_SignRecoverlnit
again.

C_SignRecoverlnit can be called with pMechanism set to NULL_PTR to terminate an active signature
with data recovery operation. If an active operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
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CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_SignRecover.

5.13.6 C_SignRecover

CK_DECLARE FUNCTION (CK_RV, C_SignRecover) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK BYTE PTR pSignature,
CK _ULONG_PTR pulSignatureLen
) i

C_SignRecover signs data in a single operation, where the data can be recovered from the signature.
hSession is the session’s handle; pData points to the data; uLDatalLen is the length of the data;
pSignature points to the location that receives the signature; pulSignatureLen points to the location that
holds the length of the signature.

C_SignRecover uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_SignRecoverlnit. A call to C_SignRecover
always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_MECHANISM mechanism = {
CKM RSA 9796, NULL _PTR, 0

}i

CK BYTE datal] = {...};

CK BYTE signature[128];

CK _ULONG ulSignatureLen;

CK_RV rv;

rv = C_SignRecoverInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {

ulSignaturelLen = sizeof (signature);
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rv = C_SignRecover (
hSession, data, sizeof(data), signature, &ulSignaturelen);
if (rv == CKR_OK) {

5.14 Message-based signing and MACing functions

Message-based signature refers to the process of signing multiple messages using the same signature
mechanism and signature key.

Cryptoki provides the following functions for for signing messages (for the purposes of Cryptoki, these
operations also encompass message authentication codes).

5.14.1 C_MessageSignlinit

CK _DECLARE FUNCTION (CK RV, C MessageSignInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) i

C_MessageSignlnit initializes a message-based sighature process, preparing a session for one or more
signature operations (where the signature is an appendix to the data) that use the same signature
mechanism and signature key. hSession is the session’s handle; pMechanism points to the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with
appendix, MUST be CK_TRUE.

After calling C_MessageSignlinit, the application can either call C_SignMessage to sign a message in a
single part; or call C_SignMessageBegin, followed by C_SignMessageNext one or more times, to sign
a message in multiple parts. This may be repeated several times. The message-based signature process
is active until the application calls C_MessageSignFinal to finish the message-based signature process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.14.2 C_SignMessage

CK _DECLARE FUNCTION (CK RV, C_SignMessage) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK_BYTE PTR pData,
CK _ULONG ulbDatalLen,
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CK BYTE PTR pSignature,
CK _ULONG PTR pulSignatureLen
) i

C_SignMessage signs a message in a single part, where the signature is an appendix to the message.
C_MessageSignlnit must previously been called on the session. hSession is the session’s handle;
pParameter and ulParameterLen specify any mechanism-specific parameters for the message signature
operation; pData points to the data; ulDatalen is the length of the data; pSignature points to the location
that receives the signature; pulSignatureLen points to the location that holds the length of the signature.

Depending on the mechanism parameter passed to C_MessageSignlnit, pParameter may be either an
input or an output parameter.

C_SignMessage uses the convention described in Section 5.2 on producing output.

The message-based signing process MUST have been initialized with C_MessageSignlnit. A call to
C_SignMessage begins and terminates a message signing operation unless it returns
CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to hold the signature, oris a
successful call (i.e., one which returns CKR_OK).

C_SignMessage cannot be called in the middle of a multi-part message signing operation.

C_SignMessage does not finish the message-based signing process. Additional C_SignMessage or
C_SignMessageBegin and C_SignMessageNext calls may be made on the session.

For most mechanisms, C_SignMessage is equivalent to C_SignMessageBegin followed by a sequence
of C_SignMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.3 C_SignMessageBegin

CK_DECLARE FUNCTION (CK RV, C_SignMessageBegin) (
CK_SESSION HANDLE hSession,
CK VOID PTR pParameter,
CK _ULONG ulParameterLen

) i

C_SignMessageBegin begins a multiple-part message signature operation, where the signature is an
appendix to the message. C_MessageSignlnit must previously been called on the session. hSession is
the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for
the message signature operation.

Depending on the mechanism parameter passed to C_MessageSignlnit, pParameter may be either an
input or an output parameter.

After calling C_SignMessageBegin, the application should call C_SignMessageNext one or more times
to sign the message in multiple parts. The message signature operation is active until the application
uses a call to C_SignMessageNext with a non-NULL pulSignatureLen to actually obtain the signature.
To process additional messages (in single or multiple parts), the application MUST call C_SignMessage
or C_SignMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
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CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.4 C_SignMessageNext

CK DECLARE FUNCTION (CK RV, C SignMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen,
CK BYTE PTR pDataPart,
CK _ULONG ulbDataPartLen,
CK BYTE PTR pSignature,
CK_ULONG_PTR pulSignatureLen
) i

C_SignMessageNext continues a multiple-part message signature operation, processing another data
part, or finishes a multiple-part message signature operation, returning the signature. hSession is the
session’s handle, pDataPart points to the data part; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message signature operation; ulDataPartLen is the length of the
data part; pSignature points to the location that receives the signature; pulSignatureLen points to the
location that holds the length of the signature.

The pulSignatureLen argument is set to NULL if there is more data part to follow, or set to a non-NULL
value (to receive the signature length) if this is the last data part.

C_SignMessageNext uses the convention described in Section 5.2 on producing output.

The message signing operation MUST have been started with C_SignMessageBegin. This function may
be called any number of times in succession. A call to C_SignMessageNext with a NULL
pulSignatureLen which results in an error terminates the current message signature operation. A call to
C_SignMessageNext with a non-NULL pulSignatureLen always terminates the active message signing
operation unless it returns CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to
hold the signature, or is a successful call (i.e., one which returns CKR_OK).

Although the last C_SignMessageNext call ends the signing of a message, it does not finish the
message-based signing process. Additional C_SignMessage or C_SignMessageBegin and
C_SignMessageNext calls may be made on the session.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.5 C_MessageSignFinal

CK_DECLARE FUNCTION (CK RV, C MessageSignFinal) (
CK_SESSION HANDLE hSession
) i

C_MessageSignFinal finishes a message-based signing process. hSession is the session’s handle.
The message-based signing process MUST have been initialized with C_MessageSignlnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
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CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.15 Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

5.15.1 C_Verifylnit

CK _DECLARE FUNCTION (CK RV, C VerifyInit) (
CK_SESSION HANDLE hSession,

CK _MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) i

C_Verifylnit initializes a verification operation, where the signature is an appendix to the data. hSession
is the session’s handle; pMechanism points to the structure that specifies the verification mechanism;
hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification
where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_Verifylnit, the application can either call C_Verify to verify a signature on data in a single
part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify a signature on data
in multiple parts. The verification operation is active until the application calls C_Verify or C_VerifyFinal.
To process additional data (in single or multiple parts), the application MUST call C_Verifylnit again.

C_Verifylnit can be called with pMechanism set to NULL_PTR to terminate an active verification
operation. If an active operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_VerifyFinal.

5.15.2 C_Verify

CK_DECLARE FUNCTION (CK RV, C Verify) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pData,
CK_ULONG ulbDatalen,
CK BYTE PTR pSignature,
CK _ULONG ulSignatureLen
)7

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDatalLen is the length of the data;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_Verifylnit. A call to C_Verify always
terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the
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signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active signing operation
is terminated.

C_Verify cannot be used to terminate a multi-part operation, and MUST be called after C_Verifylnit
without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations followed by
C_VerifyFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_VerifyFinal for an example of similar functions.

5.15.3 C_VerifyUpdate

CK_DECLARE FUNCTION (CK RV, C VerifyUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK _ULONG ulPartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part. hSession
is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The verification operation MUST have been initialized with C_Verifylnit. This function may be called any
number of times in succession. A call to C_VerifyUpdate which results in an error terminates the current
verification operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_VerifyFinal.

5.15.4 C_VerifyFinal

CK_DECLARE FUNCTION (CK RV, C VerifyFinal) (
CK_SESSION HANDLE hSession,

CK _BYTE PTR pSignature,

CK _ULONG ulSignaturelLen

) ;

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is the
session’s handle; pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_Verifylnit. A call to C_VerifyFinal always
terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the
signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active verifying
operation is terminated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
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CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;
CK OBJECT_ HANDLE hKey;
CK_MECHANISM mechanism = {

CKM DES MAC, NULL PTR, 0
b

CK_BYTE datall = {...};

CK BYTE mac[4];

CK RV rv;

rv = C VerifyInit (hSession, &mechanism, hKey);
if (rv == CKR_OK) {

rv = C_VerifyUpdate (hSession, data, sizeof(data)):

rv = C VerifyFinal (hSession, mac, sizeof (mac));

5.15.5 C_VerifyRecoverlnit

CK_DECLARE FUNCTION (CK RV, C VerifyRecoverInit) (
CK_SESSION HANDLE hSession,

CK_MECHANISM PTR pMechanism,

CK_OBJECT HANDLE hKey

) ;

C_VerifyRecoverlnit initializes a signature verification operation, where the data is recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports
verification where the data is recovered from the signature, MUST be CK_TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify a sighature on
data in a single part. The verification operation is active until the application uses a call to
C_VerifyRecover to actually obtain the recovered message.

C_VerifyRecoverlnit can be called with pMechanism set to NULL_PTR to terminate an active verification
with data recovery operation. If an active operations has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
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5178 CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,

5179 CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
5180 CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
5181 CKR_OPERATION_CANCEL_FAILED.

5182 Example: see C_VerifyRecover.

5183 5.15.6 C_VerifyRecover

5184 | CK DECLARE FUNCTION (CK RV, C VerifyRecover) (
5185 CK_SESSION_ HANDLE hSession,

5186 CK_BYTE PTR pSignature,

5187 CK_ULONG ulSignaturelen,

5188 CK_BYTE PTR pData,

5189 CK_ULONG_PTR pulDatalLen

5190 |);

5191 C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the
5192  signature. hSession is the session’s handle; pSignature points to the signature; ulSignaturelLen is the
5193 length of the signature; pData points to the location that receives the recovered data; and pulDatalLen
5194  points to the location that holds the length of the recovered data.

5195 C_VerifyRecover uses the convention described in Section 5.2 on producing output.

5196  The verification operation MUST have been initialized with C_VerifyRecoverlnit. A call to

5197  C_VerifyRecover always terminates the active verification operation unless it returns

5198 CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the
5199 length of the buffer needed to hold the recovered data.

5200 A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the

5201  supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is
5202 invalid). If the signature can be seen to be invalid purely on the basis of its length, then

5203 CKR_SIGNATURE_LEN_RANGE should be returned. The return codes CKR_SIGNATURE_INVALID
5204  and CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code

5205 CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid signature, it will never
5206 return CKR_BUFFER_TOO_SMALL.

5207 Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

5208 CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,

5209 CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

5210 CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

5211 CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
5212 CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID,
5213 CKR_TOKEN_RESOURCE_EXCEEDED.

5214 Example:

5215 | CK_SESSION HANDLE hSession;
5216 | CK OBJECT HANDLE hKey;
5217 | CK_MECHANISM mechanism = {

5218 CKM RSA 9796, NULL PTR, 0
5219 | };
5220 | CK _BYTE datal]l = {...};

5221 | CK_ULONG ulDatalLen;
5222 CK _BYTE signature[128];
5223 | CK_RV rv;

5224
5225
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rv = C VerifyRecoverInit (hSession, &mechanism, hKey);
if (rv == CKR_OK) {

ulDatalen = sizeof (data);

rv = C_VerifyRecover (

hSession, signature, sizeof (signature), data, &ulDatalen);

5.16 Message-based functions for verifying signatures and MACs

Message-based verification refers to the process of verifying signatures on multiple messages using the
same verification mechanism and verification key.

Cryptoki provides the following functions for verifying signatures on messages (for the purposes of
Cryptoki, these operations also encompass message authentication codes).

5.16.1 C_MessageVerifylnit

CK_DECLARE FUNCTION (CK RV, C MessageVerifyInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hKey

) i

C_MessageVerifylnit initializes a message-based verification process, preparing a session for one or
more verification operations (where the signature is an appendix to the data) that use the same
verification mechanism and verification key. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification
where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_MessageVerifylnit, the application can either call C_VerifyMessage to verify a signature
on a message in a single part; or call C_VerifyMessageBegin, followed by C_VerifyMessageNext one
or more times, to verify a signature on a message in multiple parts. This may be repeated several times.
The message-based verification process is active until the application calls C_MessageVerifyFinal to
finish the message-based verification process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.16.2 C_VerifyMessage

CK_DECLARE FUNCTION (CK RV, C VerifyMessage) (
CK _SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK_BYTE PTR pData,
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CK _ULONG ulbatalen,

CK BYTE PTR pSignature,

CK_ULONG ulSignatureLen
) ;

C_VerifyMessage verifies a signature on a message in a single part operation, where the signature is an
appendix to the data. C_MessageVerifylnit must previously been called on the session. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message verification operation; pData points to the data; ulDataLen is the length of the data; pSignature
points to the signature; ulSignatureLen is the length of the signature.

Unlike the pParameter parameter of C_SignMessage, pParameter is always an input parameter.

The message-based verification process MUST have been initialized with C_MessageVerifylnit. A call to
C_VerifyMessage starts and terminates a message verification operation.

A successful call to C_VerifyMessage should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is
invalid). If the signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned.

C_VerifyMessage does not finish the message-based verification process. Additional C_VerifyMessage
or C_VerifyMessageBegin and C_VerifyMessageNext calls may be made on the session.

For most mechanisms, C_VerifyMessage is equivalent to C_VerifyMessageBegin followed by a
sequence of C_VerifyMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

5.16.3 C_VerifyMessageBegin

CK_DECLARE FUNCTION (CK RV, C VerifyMessageBegin) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen

) ;

C_VerifyMessageBegin begins a multiple-part message verification operation, where the signature is an
appendix to the message. C_MessageVerifylnit must previously been called on the session. hSession is
the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for
the message verification operation.

Unlike the pParameter parameter of C_SignMessageBegin, pParameter is always an input parameter.

After calling C_VerifyMessageBegin, the application should call C_VerifyMessageNext one or more
times to verify a signature on a message in multiple parts. The message verification operation is active
until the application calls C_VerifyMessageNext with a non-NULL pSignature. To process additional
messages (in single or multiple parts), the application MUST call C_VerifyMessage or
C_VerifyMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.
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5.16.4 C_VerifyMessageNext

CK_DECLARE FUNCTION (CK RV, C VerifyMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen,
CK_BYTE PTR pDataPart,
CK ULONG ulbDataPartLen,
CK BYTE PTR pSignature,
CK_ULONG ulSignatureLen
)

C_VerifyMessageNext continues a multiple-part message verification operation, processing another data
part, or finishes a multiple-part message verification operation, checking the signature. hSession is the
session’s handle, pParameter and ulParameterLen specify any mechanism-specific parameters for the
message verification operation, pPart points to the data part; ulPartLen is the length of the data part;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The pSignature argument is set to NULL if there is more data part to follow, or set to a non-NULL value
(pointing to the signature to verify) if this is the last data part.

The message verification operation MUST have been started with C_VerifyMessageBegin. This function
may be called any number of times in succession. A call to C_VerifyMessageNext with a NULL
pSignature which results in an error terminates the current message verification operation. A call to
C_VerifyMessageNext with a non-NULL pSignature always terminates the active message verification
operation.

A successful call to C_VerifyMessageNext with a non-NULL pSignature should return either the value
CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that
the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its
length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
message verifying operation is terminated.

Although the last C_VerifyMessageNext call ends the verification of a message, it does not finish the
message-based verification process. Additional C_VerifyMessage or C_VerifyMessageBegin and
C_VerifyMessageNext calls may be made on the session.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

5.16.5 C_MessageVerifyFinal

CK_DECLARE_ FUNCTION (CK RV,C MessageVerifyFinal) (
CK_SESSION HANDLE hSession
) ;

C_MessageVerifyFinal finishes a message-based verification process. hSession is the session’s handle.
The message-based verification process MUST have been initialized with C_MessageVerifylnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
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CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_TOKEN_RESOURCE_EXCEEDED.
5.17 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations “simultaneously” within
a session. These functions are provided so as to avoid unnecessarily passing data back and forth to and
from a token.

5.17.1 C_DigestEncryptUpdate

CK _DECLARE FUNCTION (CK RV, C DigestEncryptUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK_ULONG ulPartLen,
CK BYTE PTR pEncryptedPart,
CK ULONG_ PTR pulEncryptedPartLen
) i

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the
data part; pEncryptedPart points to the location that receives the digested and encrypted data part;
pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_DigestEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active digest operation.

Digest and encryption operations MUST both be active (they MUST have been initialized with
C_Digestlnit and C_Encryptlinit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and C_EncryptUpdate calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK BYTE iv[8];

CK_MECHANISM digestMechanism = {
CKM MD5, NULL PTR, 0

}i

CK MECHANISM encryptionMechanism = ({
CKM_DES ECB, iv, sizeof (iv)

}i

CK _BYTE encryptedData[BUF_SZ7];

CK _ULONG ulEncryptedDatalen;
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CK BYTE digest[16];

CK _ULONG ulDigestLen;
CK_BYTE datal[ (2*BUF_SZ)+8];
CK RV rv;

int 1i;

memset (iv, 0, sizeof(iv));

memset (data, ‘A’, ((2*BUF_SZ)+5));

rv = C_EncryptInit (hSession, &encryptionMechanism, hKey);
if (rv != CKR_OK) {

}

rv = C DigestInit (hSession, &digestMechanism);
if (rv != CKR OK) {

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_DigestEncryptUpdate (

hSession,

&datal[0], BUF Sz,

encryptedData, &ulEncryptedDatalen);

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_DigestEncryptUpdate (

hSession,

&data[BUF Sz], BUF SZ,

encryptedData, &ulEncryptedDatalen);

/*

* The last portion of the buffer needs to be
* handled with separate calls to deal with

* padding issues in ECB mode

*/

/* First, complete the digest on the buffer */

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 154 of 424




5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477

5478

5479
5480
5481
5482
5483
5484
5485

5486
5487
5488
5489
5490

5491
5492
5493
5494

5495
5496

rv = C_DigestUpdate (hSession, &datal[BUF Sz*2], 5);

ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);

/* Then, pad last part with 3 0x00 bytes, and complete encryption */
for (1=0;1<3;1i++)
datal[ ((BUF_Sz*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptUpdate (

hSession,

&data[BUF _Sz*2], 8,

encryptedData, &ulEncryptedDatalen) ;

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptFinal (hSession, encryptedData, &ulEncryptedDatalen);

5.17.2 C_DecryptDigestUpdate

CK_DECLARE FUNCTION (CK RV, C DecryptDigestUpdate) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK _BYTE PTR pPart,
CK ULONG_PTR pulPartLen
) 7

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation,
processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that
receives the recovered data part; pulPartLen points to the location that holds the length of the recovered
data part.

C_DecryptDigestUpdate uses the convention described in Section 5.2 on producing output. If a
C_DecryptDigestUpdate call does not produce decrypted output (because an error occurs, or because
pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire decrypted part
output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations MUST both be active (they MUST have been initialized with
C_Decryptlnit and C_Digestlnit, respectively). This function may be called any number of times in
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succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and C_DigestKey calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because when
C_DigestEncryptUpdate is called, precisely the same input is passed to both the active digesting
operation and the active encryption operation; however, when C_DecryptDigestUpdate is called, the
input passed to the active digesting operation is the output of the active decryption operation. This issue
comes up only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
ciphertext and digest the original plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-byte ciphertext (3 DES
blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns exactly 16 bytes of plaintext,
since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
decryption and digesting operations are linked only through the C_DecryptDigestUpdate call, these 2
bytes of plaintext are not passed on to be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the
plaintext, not the message digest of the entire plaintext. Itis crucial that, before C_DigestFinal is called,
the last 2 bytes of plaintext get passed into the active digesting operation via a C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active digesting
operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_BYTE iv[8];

CK _MECHANISM decryptionMechanism = {
CKM DES ECB, iv, sizeof (iv)

}i

CK _MECHANISM digestMechanism = {
CKM MD5, NULL PTR, O

}i

CK _BYTE encryptedDatal (2*BUF_SZ)+8];

CK BYTE digest[16];

CK _ULONG ulDigestLen;

CK_BYTE data[BUF SZ];
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CK _ULONG ulDatalen, ullastUpdateSize;
CK RV rv;

memset (iv, 0, sizeof (iv));

memset (encryptedbData, ‘A’, ((2*BUF _SZz)+8));

rv = C DecryptInit (hSession, &decryptionMechanism, hKey);
if (rv != CKR _OK) {

}

rv = C_DigestInit (hSession, &digestMechanism);
if (rv != CKR_OK) {

}

ulDatalen = sizeof (data);

rv = C_DecryptDigestUpdate (
hSession,
&encryptedData[0], BUF_SZ,
data, &ulDatalLen);

ulDatalen = sizeof (data);

rv = C_DecryptDigestUpdate (
hSession,
&encryptedbData [BUF SZ], BUF_SZ,
data, &ulDatalLen);

/*
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB mode

*/

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof (data);
rv = C DecryptUpdate (

hSession,

&encryptedbData [BUF Sz*2], 8,
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data, &ulLastUpdateSize);

/* Get last piece of plaintext (should have length 0, here) */
ulDatalen = sizeof (data)-ullLastUpdateSize;

rv = C_DecryptFinal (hSession, &datal[ullLastUpdateSize], &ulDatalen):;
if (rv != CKR _OK) {

/* Digest last bit of plaintext */
rv = C_DigestUpdate (hSession, data, 5);
if (rv != CKR_OK) {

}

ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);
if (rv != CKR_OK) {

5.17.3 C_SignEncryptUpdate

CK_DECLARE FUNCTION (CK RV, C SignEncryptUpdate) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pPart,
CK _ULONG ulPartlLen,
CK BYTE PTR pEncryptedPart,
CK ULONG_ PTR pulEncryptedPartLen
) i

C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation,

processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is
the length of the data part; pEncryptedPart points to the location that receives the digested and encrypted
data part; and pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active signing operation.

Signature and encryption operations MUST both be active (they MUST have been initialized with
C_Signlinit and C_Encryptlnit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK
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CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER_NOT_LOGGED_IN.
Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hEncryptionKey, hMacKey;

CK_BYTE iv[8];

CK_MECHANISM signMechanism = ({
CKM DES MAC, NULL PTR, O

bi

CK_MECHANISM encryptionMechanism = ({
CKM DES ECB, iv, sizeof (iv)

bi

CK BYTE encryptedData[BUF_SZ];

CK _ULONG ulEncryptedDatalLen;

CK BYTE MAC[4];

CK_ULONG ulMacLen;

CK_BYTE datal (2*BUF_SZz)+8];

CK RV rv;

int 1i;

memset (iv, 0, sizeof (iv));

memset (data, ‘A’, ((2*BUF _SZ)+5));

rv = C_EncryptInit (hSession, &encryptionMechanism, hEncryptionKey) ;

if (rv != CKR_OK) {

}

rv = C_SignInit (hSession, &signMechanism, hMacKey);
if (rv != CKR_OK) {

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_SignEncryptUpdate (

hSession,

&datal[0], BUF _SZ,

encryptedData, &ulEncryptedDatalen);
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ulEncryptedDatalen = sizeof (encryptedData);
rv = C_SignEncryptUpdate (

hSession,

&data[BUF Sz], BUF Sz,

encryptedData, &ulEncryptedDatalen);

/*
* The last portion of the buffer needs to be handled with
* gseparate calls to deal with padding issues in ECB mode

*/

/* First, complete the signature on the buffer */
rv = C_SignUpdate (hSession, &datal[BUF Sz*2], 5);

ulMaclLen = sizeof (MAC) ;
rv = C_SignFinal (hSession, MAC, &ulMacLen);

/* Then pad last part with 3 0x00 bytes, and complete encryption */
for (1i=0;1<3;1i++)
data[ ((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptUpdate (

hSession,

&data [BUF Sz*2], 8,

encryptedData, &ulEncryptedDatalen);

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptFinal (hSession, encryptedData, &ulEncryptedDatalen);
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5719 5.17.4 C_DecryptVerifyUpdate

5720 CK_DECLARE_FUNCTION (CK RV, C DecryptVerifyUpdate) (
5721 CK_SESSION HANDLE hSession,

5722 CK_BYTE PTR pEncryptedPart,

5723 CK_ULONG ulEncryptedPartLen,

5724 CK_BYTE PTR pPart,

5725 CK_ULONG_PTR pulPartLen

5726 ) ;

5727 C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification operation,

5728 processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
5729 data; ulEncryptedPartLen is the length of the encrypted data; pPart points to the location that receives the
5730 recovered data; and pulPartLen points to the location that holds the length of the recovered data.

5731 C_DecryptVerifyUpdate uses the convention described in Section 5.2 on producing output. If a

5732 C_DecryptVerifyUpdate call does not produce decrypted output (because an error occurs, or because
5733  pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire encrypted part
5734  output), then no plaintext is passed to the active verification operation.

5735 Decryption and signature operations MUST both be active (they MUST have been initialized with
5736 C_Decryptlnit and C_Verifylnit, respectively). This function may be called any number of times in
5737 succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.

5738 Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using

5739 C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when

5740 C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing operation
5741 and the active encryption operation; however, when C_DecryptVerifyUpdate is called, the input passed
5742 to the active verifying operation is the output of the active decryption operation. This issue comes up only
5743 when the mechanism used for decryption performs padding.

5744 In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
5745 DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
5746 ciphertext and verify a sighature on the original plaintext thereby obtained.

5747 After initializing decryption and verification operations, the application passes the 24-byte ciphertext (3
5748 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly 16 bytes of

5749  plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
5750 ciphertext held any padding. These 16 bytes of plaintext are passed into the active verification operation.

5751 Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
5752 no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
5753 decryption and verification operations are linked only through the C_DecryptVerifyUpdate call, these 2
5754 bytes of plaintext are not passed on to the verification mechanism.

5755 A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid signature
5756 on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before C_VerifyFinal is
5757 called, the last 2 bytes of plaintext get passed into the active verification operation via a C_VerifyUpdate
5758 call.

5759 Because of this, it is critical that when an application uses a padded decryption mechanism with

5760 C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active

5761  verification operation. Extreme caution is warranted when using a padded decryption mechanism with
5762 C_DecryptVerifyUpdate.

5763 Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

5764 CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,

5765 CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,

5766 CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
5767 CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
5768 CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5769 Example:

5770 #define BUF _SZ 512
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CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hDecryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = ({
CKM_DES ECB, iv, sizeof (iv)
}i
CK _MECHANISM verifyMechanism = ({
CKM DES MAC, NULL PTR, O
}i
CK BYTE encryptedDatal[ (2*BUF_SZ)+8];
CK BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[BUF SZz];
CK _ULONG ulDatalLen, ulLastUpdateSize;
CK RV rv;

memset (iv, 0, sizeof(iv));

memset (encryptedbData, ‘A’, ((2*BUF _SZ)+8));

rv = C DecryptInit (hSession, &decryptionMechanism, hDecryptionKey) ;
if (rv != CKR _OK) {

}

rv = C VerifyInit (hSession, &verifyMechanism, hMacKey);
if (rv != CKR_OK) {

ulDatalen = sizeof (data);

rv = C DecryptVerifyUpdate (
hSession,
&encryptedbata[0], BUF SZ,
data, &ulDatalLen);

ulDatalen = sizeof (data);

rv = C DecryptVerifyUpdate (
hSession,
&encryptedbData [BUF SZ], BUF_SZ,
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data, &ulDatalen);

/*
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB mode

*/

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof (data);
rv = C DecryptUpdate (

hSession,

&encryptedbData [BUF Sz*2], 8,

data, &ulLastUpdateSize);

/* Get last little piece of plaintext. Should have length 0 */
ulDatalen = sizeof (data)-ullastUpdateSize;

rv = C_DecryptFinal (hSession, &datal[ullastUpdateSize], &ulDatalen);

if (rv != CKR_OK) {

/* Send last bit of plaintext to verification operation */
rv = C VerifyUpdate (hSession, data, 5);
if (rv != CKR_OK) {

}
rv = C VerifyFinal (hSession, MAC, ulMacLen);
if (rv == CKR_SIGNATURE_INVALID) {

5.18 Key management functions

Cryptoki provides the following functions for key management:

5.18.1 C_GenerateKey

CK_DECLARE FUNCTION (CK_RV, C_ GenerateKey) (
CK_SESSION HANDLE hSession

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 163 of 424




5855
5856
5857
5858
5859

5860
5861
5862
5863

5864
5865

5866
5867
5868
5869

5870
5871

5872
5873
5874

5875
5876
5877
5878
5879
5880
5881
5882
5883
5884

5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899

CK_MECHANISM PTR pMechanism,

CK_ATTRIBUTE PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_ HANDLE PTR phKey
);

C_GenerateKey generates a secret key or set of domain parameters, creating a new object. hSession is
the session’s handle; pMechanism points to the generation mechanism; pTemplate points to the template
for the new key or set of domain parameters; ulCount is the number of attributes in the template; phKey
points to the location that receives the handle of the new key or set of domain parameters.

If the generation mechanism is for domain parameter generation, the CKA_CLASS attribute will have the
value CKO_DOMAIN_PARAMETERS; otherwise, it will have the value CKO_SECRET_KEY.

Since the type of key or domain parameters to be generated is implicit in the generation mechanism, the
template does not need to supply a key type. If it does supply a key type which is inconsistent with the
generation mechanism, C_GenerateKey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail and return without
creating an object.

The object created by a successful call to C_GenerateKey will have its CKA_LOCAL attribute set to
CK_TRUE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_|IN.

Example:

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hKey;
CK_MECHANISM mechanism = {

CKM DES KEY GEN, NULL PTR, 0
}i
CK RV rv;

rv = C_GenerateKey (hSession, &mechanism, NULL PTR, 0, &hKey);
if (rv == CKR OK) ({
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5.18.2 C_GenerateKeyPair

CK DECLARE FUNCTION (CK RV, C GenerateKeyPair) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK _ATTRIBUTE PTR pPublicKeyTemplate,
CK _ULONG ulPublicKeyAttributeCount,
CK_ATTRIBUTE PTR pPrivateKeyTemplate,
CK _ULONG ulPrivateKeyAttributeCount,
CK_OBJECT HANDLE PTR phPublicKey,
CK_OBJECT HANDLE PTR phPrivateKey

);

C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points to
the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the public-key
template; pPrivateKeyTemplate points to the template for the private key; ulPrivateKeyAttributeCount is
the number of attributes in the private-key template; phPublicKey points to the location that receives the
handle of the new public key; phPrivateKey points to the location that receives the handle of the new
private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism, the templates
do not need to supply key types. If one of the templates does supply a key type which is inconsistent with
the key generation mechanism, C_GenerateKeyPair fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fail and return
without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail, and create no
keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL
attributes set to CK_TRUE. In addition, the key objects created will both have values for
CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).

Note carefully the order of the arguments to C_GenerateKeyPair. The last two arguments do not have
the same order as they did in the original Cryptoki Version 1.0 document. The order of these two
arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {

CKM RSA PKCS KEY PAIR GEN, NULL PTR, O
bi
CK _ULONG modulusBits = 3072;
CK_BYTE publicExponent[] = { 3 };
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CK BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA VERIFY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof (true)},
{CKA MODULUS BITS, é&modulusBits, sizeof (modulusBits)},
{CKA PUBLIC EXPONENT, publicExponent, sizeof (publicExponent) }
}i
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA TOKEN, &true, sizeof (true)},
{CKA PRIVATE, &true, sizeof (true)},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DECRYPT, &true, sizeof (true)},
{CKA SIGN, &true, sizeof (true)},
{CKA UNWRAP, &true, sizeof(true)}
}i
CK RV rv;

rv = C_GenerateKeyPair (
hSession, &mechanism,
publicKeyTemplate, 5,
privateKeyTemplate, 8,
&hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {

5.18.3 C_WrapKey

CK _DECLARE FUNCTION (CK RV, C WrapKey) (
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hWrappingKey,
CK_OBJECT_ HANDLE hKey,

CK BYTE PTR pWrappedKey,
CK _ULONG_ PTR pulWrappedKeyLen

) i

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle; pMechanism
points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle
of the key to be wrapped; pWrappedKey points to the location that receives the wrapped key; and
pulWrappedKeyLen points to the location that receives the length of the wrapped key.
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C_WrapKey uses the convention described in Section 5.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be
CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism
solely because of its length, then C_WrapKey fails with error code CKR_KEY_SIZE RANGE.

C_WrapKey can be used in the following situations:
e To wrap any secret key with a public key that supports encryption and decryption.

e To wrap any secret key with any other secret key. Consideration MUST be given to key size and
mechanism strength or the token may not allow the operation.

e To wrap a private key with any secret key.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute
CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be
compared against the attributes of the key to be wrapped. If all attributes match according to the
C_FindObiject rules of attribute matching then the wrap will proceed. The value of this attribute is an
attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If
this attribute is not supplied then any template is acceptable. If an attribute is not present, it will not be
checked. If any attribute mismatch occurs on an attempt to wrap a key then the function SHALL return
CKR_KEY_HANDLE_INVALID.

Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM DES3 ECB, NULL PTR, O
}i
CK BYTE wrappedKey([8];
CK _ULONG ulWrappedKeyLen;
CK_RV rv;

ulWrappedKeyLen = sizeof (wrappedKey) ;
rv = C _WrapKey (

hSession, &mechanism,

hWrappingKey, hKey,
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wrappedKey, &ulWrappedKeylen) ;
if (rv == CKR_OK) {

5.18.4 C_UnwrapKey

CK _DECLARE FUNCTION (CK_ RV, C UnwrapKey) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hUnwrappingKey,

CK BYTE PTR pWrappedKey,

CK ULONG ulWrappedKeyLen,

CK ATTRIBUTE PTR pTemplate,

CK_ULONG ulAttributeCount,

CK_OBJECT HANDLE PTR phKey
) i

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key object.
hSession is the session’s handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is
the handle of the unwrapping key; pWrappedKey points to the wrapped key; ulWrappedKeyLen is the
length of the wrapped key; pTemplate points to the template for the new key; ulAttributeCount is the
number of attributes in the template; phKey points to the location that receives the handle of the
recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, MUST be CK_TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the
CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by
default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the
same time that the key is unwrapped.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail and return without
creating any key object.

The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute set to
CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be
added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied
attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
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CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM DES3 ECB, NULL PTR, 0
b
CK BYTE wrappedKey[8] = {...};
CK_OBJECT CLASS keyClass = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK DES;
CK _BBOOL true = CK_ TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA DECRYPT, &true, sizeof (true)}
}i
CK RV rv;

rv = C _UnwrapKey (

hSession, &mechanism, hUnwrappingKey,

wrappedKey, sizeof (wrappedKey), template, 4, &hKey);
if (rv == CKR OK) {

5.18.5 C_DeriveKey

CK_DECLARE FUNCTION (CK_RV, C_DeriveKey) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,

CK _ULONG ulAttributeCount,
CK_OBJECT HANDLE PTR phKey
) ;

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is the
handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is the number
of attributes in the template; and phKey points to the location that receives the handle of the derived key.
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The values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes can hold
for the newly-derived key. See the description of each particular key-derivation mechanism in Section
5.21.2 for any constraints of this type.

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail and return without
creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute set to
CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

To partition the derivation keys so they can only derive a subset of keys the attribute
CKA_DERIVE_TEMPLATE can be used on the derivation keys to specify an attribute set that will be
added to attributes of the key to be derived. If the attributes do not conflict with the user supplied attribute
template, in ‘pTemplate’, then the derivation will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the base derivation keys then no additional attributes will be added. If any
attribute conflict occurs on an attempt to derive a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_|IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {
CKM DH PKCS KEY PAIR GEN, NULL PTR, O
}i
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE publicValue[128];
CK _BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
CKM DH PKCS DERIVE, otherPublicValue, sizeof (otherPublicValue)
}i
CK_ATTRIBUTE template[] = {
{CKA VALUE, é&publicValue, sizeof (publicValue)}
}i
CK _OBJECT CLASS keyClass = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK DES;
CK _BBOOL true = CK TRUE;
CK ATTRIBUTE publicKeyTemplate[] = {
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{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)}
}i
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA DERIVE, &true, sizeof(true)}
}i
CK ATTRIBUTE derivedKeyTemplate[] = {
{CKA CLASS, &keyClass, sizeof (keyClass)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA ENCRYPT, é&true, sizeof (true)},
{CKA DECRYPT, é&true, sizeof (true)}
}i
CK RV rv;

rv = C_GenerateKeyPair (
hSession, &keyPairMechanism,
publicKeyTemplate, 2,
privateKeyTemplate, 1,
&hPublicKey, &hPrivateKey);
if (rv == CKR _OK) {

rv = C_GetAttributeValue (hSession, hPublicKey, template, 1);

if (rv == CKR_OK) ({
/* Put other guy’s public value in otherPublicValue */

rv = C_DeriveKey(

hSession, &mechanism,

hPrivateKey, derivedKeyTemplate, 4, &hKey);
if (rv == CKR OK) {

5.19 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

5.19.1 C_SeedRandom

CK_DECLARE FUNCTION (CK_RV, C_SeedRandom) (
CK_SESSION HANDLE hSession,
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CK_BYTE PTR pSeed,
CK _ULONG ulSeedLen
)

C_SeedRandom mixes additional seed material into the token’s random number generator. hSession is
the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in bytes of the seed
material.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_GenerateRandom.

5.19.2 C_GenerateRandom

CK _DECLARE FUNCTION (CK_RV, C_ GenerateRandom) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pRandomData,
CK_ULONG ulRandomLen

) ;

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s handle;
pRandomData points to the location that receives the random data; and u/lRandomLen is the length in
bytes of the random or pseudo-random data to be generated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

Example:

CK_SESSION HANDLE hSession;
CK BYTE seed[] = {...};

CK BYTE randomDatal[] = {...};
CK RV rv;

rv = C_SeedRandom(hSession, seed, sizeof (seed));
if (rv != CKR OK) {

rv = C_GenerateRandom(hSession, randomData, sizeof (randomData));
if (rv == CKR_OK) {

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 172 of 424




6271

6272
6273

6274

6275
6276
6277

6278
6279
6280

6281
6282
6283

6284

6285
6286
6287

6288
6289
6290

6291
6292
6293

6294

6295
6296

6297

6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308

6309
6310
6311
6312

6313

5.20 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of cryptographic functions.
These functions exist only for backwards compatibility.

5.20.1 C_GetFunctionStatus

CK_DECLARE FUNCTION (CK RV, C GetFunctionStatus) (
CK_SESSION HANDLE hSession
);

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function running in
parallel with an application. Now, however, C_GetFunctionStatus is a legacy function which should
simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

5.20.2 C_CancelFunction

CK _DECLARE FUNCTION (CK RV, C CancelFunction) (
CK_SESSION HANDLE hSession
);

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in parallel with an
application. Now, however, C_CancelFunction is a legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

5.21 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the application of certain
events.

5.21.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories: encryption functions;
decryption functions; message digesting functions; signing and MACing functions; functions for verifying
signatures and MACSs; dual-purpose cryptographic functions; key management functions; random number
generation functions) executing in Cryptoki sessions can periodically surrender control to the application
who called them if the session they are executing in had a notification callback function associated with it
when it was opened. They do this by calling the session’s callback with the arguments (hSession,
CKN_SURRENDER, pApplication), where hSession is the session’s handle and pApplication was
supplied to C_OpenSession when the session was opened. Surrender callbacks should return either the
value CKR_OK (to indicate that Cryptoki should continue executing the function) or the value
CKR_CANCEL (to indicate that Cryptoki should abort execution of the function). Of course, before
returning one of these values, the callback function can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback during a lengthy key
pair generation operation. Each time the application receives a callback, it could display an additional “.”
to the user. It might also examine the keyboard’s activity since the last surrender callback, and abort the

key pair generation operation (probably by returning the value CKR_CANCEL) if the user hit <ESCAPE>.
A Cryptoki library is not required to make any surrender callbacks.
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5.21.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension capability,
application-supplied notification callback routines should examine each callback they receive, and if they
are unfamiliar with the type of that callback, they should immediately give control back to the library by
returning with the value CKR_OK.
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6 Mechanisms

6.1 RSA

Table 32, Mechanisms vs. Functions

Mechanism

Functions

Encrypt

Decrypt

Sign

Verify

SR

VR

Digest

Gen.

Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_X9_31_KEY_PAIR_GEN

CKM_RSA_PKCS

CKM_RSA_PKCS_OAEP

CKM_RSA_PKCS_PSS

CKM_RSA 9796

CKM_RSA_X_509

CKM_RSA X9 _31

CKM_SHA1_RSA_PKCS

CKM_SHA224_RSA_PKCS

CKM_SHA256_RSA_PKCS

CKM_SHA384_RSA_PKCS

CKM_SHA512_RSA_PKCS

CKM_SHA1_RSA_PKCS_PSS

CKM_SHA224_RSA_PKCS_PSS

CKM_SHA256_RSA_PKCS_PSS

CKM_SHA384_RSA_PKCS_PSS

CKM_SHA512_RSA_PKCS_PSS

CKM_SHA1_RSA X9 _31

N R R R ARRERA

CKM_RSA_PKCS_TPM_1_1

V2

CKM_RSA_PKCS_OAEP_TPM_1_1

v'2

CKM_SHA3_224 RSA_PKCS

CKM_SHA3_256_RSA_PKCS

CKM_SHA3_384_RSA_PKCS

CKM_SHA3_512_RSA_PKCS

CKM_SHA3_224 RSA_PKCS_PSS

CKM_SHA3_256_RSA_PKCS_PSS

CKM_SHA3_384_RSA_PKCS_PSS

ANIRNIRNERNERN RN RN RN

CKM_SHA3_512_RSA_PKCS_PSS

6.1.1 Definitions

This section defines the RSA key type “CKK_RSA" for type CK_KEY_TYPE as used in the

CKA_KEY_TYPE attribute of RSA key objects.

Mechanisms:

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_PKCS
CKM_RSA_9796
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6350
6351
6352
6353
6354
6355
6356
6357
6358
6359

6360

6361

6362
6363
6364

6365

6366

CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA224 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMD128_RSA_PKCS
CKM_RIPEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP

CKM_RSA_X9 31 _KEY_PAIR_GEN

CKM_RSA X9 31
CKM_SHA1_RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHA1_RSA_PKCS_PSS
CKM_SHA224 RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384 RSA_PKCS_PSS
CKM_RSA_PKCS_TPM_1_1

CKM_RSA_PKCS_OAEP_TPM_1 1

CKM_RSA_AES_KEY_WRAP
CKM_SHA3_224 RSA_PKCS
CKM_SHA3_256_RSA_PKCS
CKM_SHA3_384 RSA_PKCS
CKM_SHA3_512_RSA_PKCS

CKM_SHA3_224 RSA_PKCS_PSS
CKM_SHA3_256_RSA_PKCS_PSS
CKM_SHA3_384 RSA_PKCS_PSS
CKM_SHA3_512_RSA_PKCS_PSS

6.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
The following table defines the RSA public key object attributes, in addition to the common attributes

defined for this object class:

Table 33, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS"#4 Big integer Modulus n
CKA_MODULUS BITS?23 CK_ULONG Length in bits of modulus n
CKA_PUBLIC_EXPONENT Big integer Public exponent e

-Refer to Table 11 for footnotes
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Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK RSA;
CK UTF8CHAR labell[] “An RSA public key object”;
CK _BYTE modulus([] = {...};
CK BYTE exponent[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA WRAP, &true, sizeof (true)},
{CKA ENCRYPT, &true, sizeof (true)},
{CKA MODULUS, modulus, sizeof (modulus) },
{CKA PUBLIC EXPONENT, exponent, sizeof (exponent) }
}i

—~

6.1.3 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 34, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS"46 Big integer Modulus n

CKA PUBLIC_EXPONENT"46 Big integer Public exponent e
CKA_PRIVATE_EXPONENT"467 Big integer Private exponent d
CKA_PRIME_1487 Big integer Prime p

CKA_PRIME_2467 Big integer Prime q
CKA_EXPONENT_1467 Big integer Private exponent d modulo p-1
CKA_EXPONENT_2467 Big integer Private exponent d modulo g-1
CKA_COEFFICIENT#487 Big integer CRT coefficient g' mod p

“Refer to Table 11 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST
also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 34 it keeps track of. Later, if an application
asks for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose
values it can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request
fails). Note that a Cryptoki implementation may or may not be able and/or willing to supply various
attributes of RSA private keys which are not actually stored on the token. E.g., if a particular token stores
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values only for the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then
Cryptoki is certainly able to report values for all the attributes above (since they can all be computed
efficiently from these three values). However, a Cryptoki implementation may or may not actually do this
extra computation. The only attributes from Table 34 for which a Cryptoki implementation is required to
be able to return values are CKA_MODULUS, CKA_PUBLIC_EXPONENT and
CKA_PRIVATE_EXPONENT. A token SHOULD also be able to return CKA_PUBLIC_KEY_INFO for an
RSA private key.

If an RSA private key object is created on a token, and more attributes from Table 34 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK RSA;

CK UTF8CHAR label[] = “An RSA private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK _BYTE modulus([] = {...};

CK BYTE publicExponent[] = {...};

CK BYTE privateExponent[] = {...};

CK BYTE primel[] = {...};

CK BYTE prime2[] = {...
CK BYTE exponentl[] = {...};
CK BYTE exponent2[] = {...};
CK BYTE coefficient[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA SUBJECT, subject, sizeof (subject)},

{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, ¢&true, sizeof (true)},

{CKA DECRYPT, &true, sizeof (true)},

{CKA SIGN, &true, sizeof(true)},

{CKA MODULUS, modulus, sizeof (modulus)},

{CKA PUBLIC EXPONENT, publicExponent,

sizeof (publicExponent) },
{CKA PRIVATE EXPONENT, privateExponent,
sizeof (privateExponent) },

{CKA PRIME 1, primel, sizeof(primel)},

{CKA_PRIME 2, prime2, sizeof (prime2)},

{CKA EXPONENT 1, exponentl, sizeof (exponentl)},

{CKA EXPONENT 2, exponent2, sizeof (exponent2)},

{CKA COEFFICIENT, coefficient, sizeof (coefficient)}

}s
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}s

6.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it
may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which
functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and g values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.
6.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports
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single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA; it does not compute a message digest or a Digestinfo encoding as specified for
the md2withRSAEncryption and md5withRSAEnNcryption algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 35, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length
C_Encrypt' RSA public key < k-11 k block type 02
C_Decrypt! RSA private key k < k-11 block type 02
C_Sign’ RSA private key < k-11 k block type 01
C_SignRecover RSA private key < k-11 k block type 01
C_Verify! RSA public key <k-11, k2 N/A block type 01
C_VerifyRecover RSA public key k < k-1 block type 01
C_WrapKey RSA public key < k-11 k block type 02
C_UnwrapKey RSA private key k < k-11 block type 02

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.7 PKCS #1 RSA OAEP mechanism parameters

¢ CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Mask Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS MGF TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined functions.
Table 36, PKCS #1 Mask Generation Functions
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Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL
CKG_MGF1_SHA224 0x00000005UL
CKG_MGF1_SHA256 0x00000002UL
CKG_MGF1_SHA384 0x00000003UL
CKG_MGF1_SHA512 0x00000004UL
CKG_MGF1_SHA3 224 0x00000006UL
CKG_MGF1_SHA3 256 0x00000007UL
CKG_MGF1_SHA3 384 0x00000008UL
CKG_MGF1_SHA3 512 0x00000009UL

CK_RSA_PKCS_MGF _TYPE_PTR is a pointer to a CK_RSA_PKCS_MGF_TYPE.

¢ CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS OAEP SOURCE TYPE;

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 37, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL | Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatal en must be zero.

CK_RSA_PKCS_OAEP_SOURCE _TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

¢ CK_RSA_PKCS_OAEP_PARAMS; CK_RSA_PKCS_OAEP_PARAMS_PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS OAEP PARAMS ({

CK MECHANISM TYPE hashAlg;

CK _RSA PKCS MGF TYPE mgf;

CK _RSA PKCS OAEP SOURCE TYPE source;

CK VOID PTR pSourceData;
CK_ULONG ulSourceDatalen;

} CK_RSA PKCS OAEP PARAMS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

mgf mask generation function to use on the encoded block
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source source of the encoding parameter

pSourceData data used as the input for the encoding parameter source

ulSourceDatalLen length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

6.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.

Table 38, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt' RSA public key < k-2-2hLen k
C_Decrypt! RSA private key k < k-2-2hLen
C_WrapKey RSA public key < k-2-2hLen k
C_UnwrapKey RSA private key k < k-2-2hLen

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.9 PKCS #1 RSA PSS mechanism parameters

¢ CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:
typedef struct CK RSA PKCS PSS PARAMS {
CK MECHANISM TYPE hashAlg;
CK_RSA PKCS MGF TYPE mgf;
CK_ULONG sLen;
}  CK _RSA PKCS PSS PARAMS;

The fields of the structure have the following meanings:
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hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value must
be the mechanism used by the application to generate the message
hash; if the signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the signature
mechanism

mgf mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

6.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the
part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA.

Table 39, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input length Output
length

C_Sign’ RSA private key hLen k

C_Verify! RSA public key hlLen, k N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.11 ISOI/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left with O to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.
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Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 40, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length
C_Sign' RSA private key <|ki2] k
C_SignRecover RSA private key <l k2] k
C_Verify! RSA public key <|ki2], k2 N/A
C_VerifyRecover RSA public key k <|k2]

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these
operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first,
applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first.
The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply them when
unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with O-valued bytes. In effect, to encrypt the
sequence of plaintext bytes b1 b2 ... bn (n < k), Cryptoki forms P=2"1b1+2"2b2+...+bn. This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 41, X.509 (Raw) RSA: Key And Data Length
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Function Key type Input Output length
length

C_Encrypt' RSA public key <k k

C_Decrypt! RSA private key k k

C_Sign’ RSA private key <k k

C_SignRecover RSA private key <k k

C_Verify! RSA public key <k, k? N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC
9796 block formats.

6.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,
the following transformations are performed:

o Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least
128 and a multiple of 32 as specified in ANSI X9.31.

Table 42, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign’ RSA private key <k-2 k

C_Verify! RSA public key < k-2, k? N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.
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6.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEncryption, and as in the scheme RSASSA-PKCS1-v1 5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEnNcryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
shalWithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object
identifiers sha256WithRSAEnNcryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128_ RSA_PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same
operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other
underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

Table 43, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, k2 N/A block type 01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

6.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signhature with SHA-224 mechanism, denoted CKM_SHA224_ RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash
function.

6.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS_PSS,
performs similarly as the other CKM_SHAX_RSA_ PKCS_PSS mechanisms but uses the SHA-224 hash
function.

6.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS_PSS,

performs single- and multiple-part digital signatures and verification operations without message
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recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS_PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the SHA-256, SHA-
384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k* is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

Table 44, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k2 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.18 PKCS #1 v1.5 RSA signature with SHA3

The PKCS #1 v1.5 RSA signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS, CKM_SHA3_256_RSA_PKCS, CKM_SHA3_384_RSA_PKCS,
and CKM_SHA3_512 RSA_PKCS respectively, performs similarly as the other
CKM_SHAX_RSA_PKCS mechanisms but uses the corresponding SHAS3 hash functions.

6.1.19 PKCS #1 RSA PSS signature with SHA3

The PKCS #1 RSA PSS signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS_PSS, CKM_SHA3_256_RSA_PKCS_PSS,
CKM_SHA3_384_RSA_PKCS_PSS, and CKM_SHA3_512 RSA_PKCS_PSS respectively, performs
similarly as the other CKM_SHAX_RSA_PKCS_PSS mechanisms but uses the corresponding SHA-3
hash functions.

6.1.20 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 45, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k? N/A

2 Data length, signature length.
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For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

6.1.21 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS TPM_1 1,isa
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 46, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt! RSA public key <k-11-5 k
C_Decrypt! RSA private key k <k-11-5
C_WrapKey RSA public key < k-11-5 k
C_UnwrapKey RSA private key k < k-11-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.22 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA
TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be
accepted.
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This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 47, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt! RSA public key < k-2-40-5 k
C_Decrypt! RSA private key k < k-2-40-5
C_WrapKey RSA public key < k-2-40-5 k
C_UnwrapKey RSA private key k < k-2-40-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.23 RSA AES KEY WRAP

The RSA AES key wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP, is a mechanism based on
the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA
key.
- Atemporary AES key is used for wrapping the target key using
CKM_AES_KEY_WRAP_KWP mechanism.
- The temporary AES key is wrapped with the wrapping RSA key using
CKM_RSA _PKCS_OAEP mechanism.

For wrapping, the mechanism -

e Generates a temporary random AES key of ul/AESKeyBits length. This key is not accessible to the
user - no handle is returned.

e Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

e Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
e Zeroizes the temporary AES key

e Concatenates two wrapped keys and outputs the concatenated blob. The first is the wrapped AES
key, and the second is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeylnfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown
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For unwrapping, the mechanism -

e Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

e Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP.

e Zeroizes the temporary AES key.

e Returns the handle to the newly unwrapped target key.
Table 48, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & |Digest | Key/ & Derive
Decrypt | Verify | /g1 Key | Unwrap
Pair
CKM_RSA AES_KEY_WRAP v
1SR = SignRecover, VR = VerifyRecover

6.1.24 RSA AES KEY WRAP mechanism parameters
¢ CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK RSA AES KEY WRAP PARAMS ({
CK_ULONG ulAESKeyBits;
CK_RSA PKCS OAEP PARAMS PTR pOAEPParams;
}  CK_RSA AES KEY WRAP PARAMS;

The fields of the structure have the following meanings:

ulAESKeyBits length of the temporary AES key in bits. Can be only 128, 192 or
256.

pOAEPParams pointer to the parameters of the temporary AES key wrapping. See
also the description of PKCS #1 RSA OAEP mechanism
parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

6.1.25 FIPS 186-4

When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,
2048, or 3072 bits.

6.2 DSA

Table 49, DSA Mechanisms vs. Functions
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Functions

CKM_DSA_SHA3 512

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verif | VR Key | Unwrap

y Pair
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA PARAMETER_GEN v
CKM_DSA_PROBABILISTIC_P v
ARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR _ v
PARAMETER_GEN
CKM_DSA FIPS_G_GEN v
CKM_DSA %
CKM_DSA_SHA1 v
CKM_DSA SHA224 v
CKM_DSA_SHA256 v
CKM_DSA SHA384 v
CKM_DSA SHA512 v
CKM_DSA_SHA3_224 v
CKM_DSA_SHA3_256 v
CKM_DSA_SHA3_384 v

v

6.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of DSA key objects.

Mechanisms:
CKM_DSA_KEY_PAIR_GEN
CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512
CKM_DSA_SHA3_ 224
CKM_DSA SHA3_256
CKM_DSA SHA3 384
CKM_DSA SHA3 512
CKM_DSA_PARAMETER_GEN

CKM_DSA_PROBABILISTIC_PARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN

CKM_DSA _FIPS_G_GEN
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¢ CK_DSA_PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure which provides and returns parameters for the
NIST FIPS 186-4 parameter generating algorithms.

CK_DSA_PARAMETER_GEN_PARAM_PTR is a pointer to a CK_DSA_PARAMETER_GEN_PARAM.

typedef struct CK DSA PARAMETER GEN PARAM {
CK_MECHANISM TYPE hash;

CK _BYTE PTR pSeed;
CK_ULONG ulSeedLen;
CK_ULONG ulIndex;

} CK _DSA PARAMETER GEN PARAM;

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA 1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA PROBABILISTIC_PARAMETER_GEN,
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, and passed
into CKM_DSA_FIPS_G_GEN.

ulSeedLen Length of seed value.

ullndex Index value for generating G. Input for CKM_DSA FIPS_G_GEN.
Ignored by CKM_DSA_PROBABILISTIC_PARAMETER_GEN and
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN.

6.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 50, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"3 Big integer Prime p (512 to 3072 bits, in steps of 64 bits)
CKA_SUBPRIME"3 Big integer Subprime q (160, 224 bits, or 256 bits)
CKA_BASE"? Big integer Base g

CKA_VALUE"#4 Big integer Public value y

-Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT CLASS class = CKO_PUBLIC KEY;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = “A DSA public key object”;
CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};
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CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

i

6.2.3 DSA Key Restrictions

FIPS PUB 186-4 specifies permitted combinations of prime and sub-prime lengths. They are:
e Prime: 1024 bits, Subprime: 160
o Prime: 2048 bits, Subprime: 224
e Prime: 2048 bits, Subprime: 256
e Prime: 3072 bits, Subprime: 256

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementation that is compliant to FIPS 186-4 does not permit the use of primes of
any length less than 1024 bits.

6.2.4 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 51, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"46 Big integer Subprime g (160 bits, 224 bits, or 256 bits)
CKA _BASE'46 Big integer Base g

CKA_VALUE"487 Big integer Private value x

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA
domain parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:
CK_OBJECT CLASS class = CKO_ PRIVATE KEY;
CK_KEY TYPE keyType = CKK DSA;
CK UTF8CHAR label[] = ™A DSA private key object”;
CK BYTE subject[] = {...};
CK BYTE id[] = {123};
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CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};

CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA SIGN, &true, sizeof(true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

}i

6.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 52, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME"4 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"# Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA_BASE'* Big integer Base g

CKA_PRIME_BITS?3 CK_ULONG Length of the prime value.

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA domain parameters.

To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to
C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows:

o |f CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits
¢ If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
¢ If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = “A DSA domain parameter object”;
CK BYTE prime[] = {...};
CK BYTE subprime([] = {...};
CK BYTE base[] = {...};
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CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
i

6.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation
mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private
key types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA
domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABILISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.
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The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism
based on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.2
Construction and Validation of Provable Primes p and g.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-4,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 53, DSA: Key And Data Length
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Function Key type Input length | Output length
C_Sign’ DSA private key 20, 28, 32, 2*length of
48, or 64 subprime
bytes
C_Verify! DSA public key (20, 28, 32, N/A
48, or 64
bytes),
(2*length of
subprime)?

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 54, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and g, represented by L
and N, SHALL be used:

L =1024,N =160
L =2048, N = 224
L =2048, N = 256
L =3072, N = 256

6.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.
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7160
7161

7162
7163
7164

7165

7166
7167

7168

7169
7170
7171

7172
7173

7174
7175
7176

7177

7178

7179
7180
7181

7182
7183

7184
7185
7186

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 55, DSA with SHA-244: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 56, DSA with SHA-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

6.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 57, DSA with SHA-384: Key And Data Length
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Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7187 2 Data length, signature length.

7188  6.2.17 DSA with SHA-512

7189  The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
7190 part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
7191  This mechanism computes the entire DSA specification, including the hashing with SHA-512.

7192 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7193 the concatenation of the DSA values r and s, each represented most-significant byte first.

7194  This mechanism does not have a parameter.
7195 Constraints on key types and the length of data are summarized in the following table:
7196 Table 58, DSA with SHA-512: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7197 2 Data length, signature length.

7198 6.2.18 DSA with SHA3-224

7199 The DSA with SHA3-224 mechanism, denoted CKM_DSA_SHA3_224, is a mechanism for single- and
7200 multiple-part signatures and verification based on the Digital Sighature Algorithm defined in FIPS PUB
7201 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-224.

7202 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7203  the concatenation of the DSA values r and s, each represented most-significant byte first.

7204 This mechanism does not have a parameter.
7205 Constraints on key types and the length of data are summarized in the following table:
7206 Table 59, DSA with SHA3-224: Key And Data Length

Function Key type Input length Output length
C_Sign DSA private key any 2*subprime length
C_Verify DSA public key any, N/A
2*subprime
length?

7207 2 Data length, signature length.

7208 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
7209  specify the supported range of DSA prime sizes, in bits.
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7210 6.2.19 DSA with SHA3-256

7211  The DSA with SHA3-256 mechanism, denoted CKM_DSA_SHA3_256, is a mechanism for single- and
7212 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7213 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-256.

7214 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7215  the concatenation of the DSA values r and s, each represented most-significant byte first.

7216  This mechanism does not have a parameter.
7217 Constraints on key types and the length of data are summarized in the following table:
7218 Table 60, DSA with SHA3-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7219 2 Data length, signature length.

7220 6.2.20 DSA with SHA3-384

7221  The DSA with SHA3-384 mechanism, denoted CKM_DSA_SHA3_384, is a mechanism for single- and
7222 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7223 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-384.

7224 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7225  the concatenation of the DSA values r and s, each represented most-significant byte first.

7226  This mechanism does not have a parameter.
7227 Constraints on key types and the length of data are summarized in the following table:
7228 Table 61, DSA with SHA3-384: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7229 2 Data length, signature length.

7230 6.2.21 DSA with SHA3-512

7231  The DSA with SHA3-512 mechanism, denoted CKM_DSA_SHA3_512, is a mechanism for single- and
7232 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7233 186-4. This mechanism computes the entire DSA specification, including the hashing with SH3A-512.

7234 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7235  the concatenation of the DSA values r and s, each represented most-significant byte first.

7236  This mechanism does not have a parameter.
7237 Constraints on key types and the length of data are summarized in the following table:
7238 Table 62, DSA with SHA3-512: Key And Data Length
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7239
7240

7241

7242
7243

7244
7245
7246
7247
7248

7249
7250

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

6.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem in this document was originally based on the one described in the

ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

The EC cryptosystem developed by the ANSI X9F1 working group was created at a time when EC curves
were always represented in their Weierstrass form. Since that time, new curves represented in Edwards

form (RFC 8032) and Montgomery form (RFC 7748) have become more common. To support these new
curves, the EC cryptosystem in this document has been extended from the original.
generation mechanisms have been added as well as an additional signature generation mechanism.

Table 63, Elliptic Curve Mechanisms vs. Functions

Additional key

Mechanism

Functions

Encrypt Sign SR
& & &
Decrypt | Verify | VR’

Digest

Gen.
Key/
Key
Pair

Wrap

Unwrap

& Derive

CKM_EC_KEY_PAIR_GEN

CKM_EC_KEY_PAIR_GEN_W_
EXTRA_BITS

CKM_EC_EDWARDS_KEY_PAl
R_GEN

_PAIR_GEN

CKM_EC_MONTGOMERY_KEY

CKM_ECDSA

A
N

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224

CKM_ECDSA_SHA256

CKM_ECDSA_SHA384

CKM_ECDSA_SHA512

CKM_ECDSA_SHA3_224

CKM_ECDSA_SHA3_256

CKM_ECDSA_SHA3_384

CKM_ECDSA_SHA3_512

CKM_EDDSA

CKM_XEDDSA

ANERNIRNERNIENIRNERNERN I NERNERN

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DE
RIVE

v

CKM_ECMQV_DERIVE

v
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7251
7252
7253

7254
7255
7256

7257

7258
7259
7260
7261

7262
7263

7264
7265
7266
7267
7268
7269
7270

7271
7272
7273
7274

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR’ Key Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP v
Table 64, Mechanism Information Flags
CKF_EC F P 0x00100000UL | True if the mechanism can be used
with EC domain parameters over F,
CKF_EC_F_2M 0x00200000UL | True if the mechanism can be used
with EC domain parameters over Fam
CKF_EC_ECPARAMETERS 0x00400000UL | True if the mechanism can be used

with EC domain parameters of the
choice ecParameters
CKF_EC_OID 0x00800000UL | True if the mechanism can be used
with EC domain parameters of the
choice old
CKF_EC_UNCOMPRESS 0x01000000UL | True if the mechanism can be used
with Elliptic Curve point
uncompressed
CKF_EC_COMPRESS 0x02000000UL | True if the mechanism can be used
with Elliptic Curve point compressed
CKF_EC_CURVENAME 0x04000000UL | True of the mechanism can be used
with EC domain parameters of the
choice curveName

Note: CKF_EC_NAMEDCURVE is deprecated with PKCS#11 3.00. It is replaced by CKF_EC_OID.
In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using afield of characteristic two (i.e. the finite field Fom).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a
Cryptoki library supporting EC keys over Fom. A Cryptoki library that can perform EC mechanisms must
set either or both of these flags for each EC mechanism.

In these specifications there are also four representation methods to define the domain parameters for an
EC key. Only the ecParameters, the old and the curveName choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_OID flag identifies a Cryptoki library
supporting the old choice, and the CKF_EC_CURVENAME flag identifies a Cryptoki library supporting
the curveName choice. A Cryptoki library that can perform EC mechanisms must set the appropriate
flag(s) for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library
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7275
7276

7277
7278
7279

7280
7281
7282
7283
7284
7285

7286

7287
7288
7289
7290
7291
7292
7293
7294

7295
7296

7297
7298
7299
7300
7301
7302
7303

7304
7305
7306
7307

7308

7309
7310

7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321

supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

6.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,
the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

An EdDSA signature is an octet string of even length which is two times nLen octets, where nLen is
calculated as EdDSA parameter b divided by 8. The signature octets correspond to the concatenation of
the EDDSA values R and S as defined in [RFC 8032], both represented as an octet string of equal length
of nLen bytes in little endian order.

6.3.2 Definitions

This section defines the key types “CKK_EC”, “CKK_EC_EDWARDS” and “CKK_EC_MONTGOMERY”
for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.

Note: CKK_ECDSA is deprecated. It is replaced by CKK_EC.
Mechanisms:

CKM_EC_KEY_PAIR_GEN
CKM_EC_EDWARDS_KEY_PAIR_GEN
CKM_EC_MONTGOMERY_KEY_PAIR_GEN
CKM_ECDSA

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224
CKM_ECDSA_SHA256
CKM_ECDSA_SHA384
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7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356

7357

7358
7359
7360

7361

CKM_ECDSA_SHA512
CKM_ECDSA_SHA3_224
CKM_ECDSA_SHA3_256
CKM_ECDSA_SHA3_384
CKM_ECDSA_SHA3_512
CKM_EDDSA

CKM_XEDDSA
CKM_ECDH1_DERIVE
CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHA512_KDF
CKD_SHA3_224 KDF
CKD_SHA3_256_KDF
CKD_SHA3_384_KDF
CKD_SHA3_512_KDF
CKD_SHA1_KDF_SP800
CKD_SHA224 KDF_SP800
CKD_SHA256_KDF_SP800
CKD_SHA384_KDF_SP800
CKD_SHA512_KDF_SP800
CKD_SHA3_224_KDF_SP800
CKD_SHA3_256_KDF_SP800
CKD_SHA3_384_KDF_SP800
CKD_SHA3_512_KDF_SP800
CKD_BLAKE2B_160_KDF
CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF

6.3.3 Short Weierstrass Elliptic Curve public key objects

Short Weierstrass EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC) hold EC
public keys. The following table defines the EC public key object attributes, in addition to the common
attributes defined for this object class:

Table 65, Elliptic Curve Public Key Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 204 of 424



7362
7363

7364
7365
7366
7367
7368
7369
7370
7371

7372

7373
7374
7375
7376
7377
7378

7379

7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393

7394

7395
7396
7397

7398

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of an ANSI X9.62 Parameters
value

CKA_EC_POINT"# Byte array | DER-encoding of ANSI X9.62 ECPoint value
Q

“Refer to Table 11 for footnotes
Note: CKA_ECDSA_PARAMS is deprecated. It is replaced by CKA_EC_PARAMS.

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.

The following is a sample template for creating an short Weierstrass EC public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC;

CK_UTF8CHAR label[]

“An EC public key object”;

CK BYTE ecParams[] = {...};
CK BYTE ecPoint[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

}s

{CKA CLASS, &class, sizeof (class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}

6.3.4 Short Weierstrass Elliptic Curve private key objects

Short Weierstrass EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC) hold
EC private keys. See Section 6.3 for more information about EC. The following table defines the EC
private key object attributes, in addition to the common attributes defined for this object class:

Table 66, Elliptic Curve Private Key Object Attributes
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7399

7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414

7415
7416

7417

7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437

7438

7439
7440
7441

Attribute Data type Meaning

CKA_EC_PARAMS"46 Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_VALUE"#467 Big integer | ANSI X9.62 private value d

“Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.Note that when generating an EC private key, the EC domain parameters are not specified in
the key’s template. This is because EC private keys are only generated as part of an EC key pair, and
the EC domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an short Weierstrass EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC;

CK UTF8CHAR label[] = “An EC private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA _EC PARAMS, ecParams, sizeof (ecParams)},
{CKA VALUE, value, sizeof (value)}

i

6.3.5 Edwards Elliptic Curve public key objects

Edwards EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_EDWARDS) hold
Edwards EC public keys. The following table defines the Edwards EC public key object attributes, in
addition to the common attributes defined for this object class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 206 of 424



7442

7443

7444
7445
7446
7447
7448
7449
7450
7451
7452
7453

7454
7455

7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472

7473

7474
7475
7476
1477

7478

Table 67, Edwards Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"4 Byte array | Public key bytes in little endian order as
defined in RFC 8032

~Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

}

Edwards EC public keys only support the use of the curveName selection to specify a curve name as
defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

The following is a sample template for creating an Edwards EC public key object with Edwards25519
being specified as curveName:

CK OBJECT CLASS class = CKO PUBLIC KEY;

CK_KEY TYPE keyType = CKK EC EDWARDS;

CK UTF8CHAR label[] = “An Edwards EC public key object”;

CK BYTE ecParams[] = {0x13, OxOc, Ox65, 0Ox64, 0x77, Ox6l,
0x72, 0x64, 0x73, 0x32, 0x35, 0x35, 0x31, 0x39};

CK BYTE ecPoint[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}

}i

6.3.6 Edwards Elliptic Curve private key objects

Edwards EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_EDWARDS)
hold Edwards EC private keys. See Section 6.3 for more information about EC. The following table
defines the Edwards EC private key object attributes, in addition to the common attributes defined for this
object class:

Table 68, Edwards Elliptic Curve Private Key Object Attributes
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7479

7480
7481
7482
7483
7484
7485
7486
7487
7488
7489

7490
7491

7492
7493
7494
7495

7496

7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515

7516

7517
7518
7519
7520

Attribute Data type Meaning

CKA_EC_PARAMS"46 Byte array DER-encoding of a Parameters value as
defined above
CKA_VALUE'487 Big integer Private key bytes in little endian order as

defined in RFC 8032

“Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

}

Edwards EC private keys only support the use of the curveName selection to specify a curve name as
defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdJDSA algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

Note that when generating an Edwards EC private key, the EC domain parameters are not specified in
the key’s template. This is because Edwards EC private keys are only generated as part of an Edwards
EC key pair, and the EC domain parameters for the pair are specified in the template for the Edwards EC
public key.

The following is a sample template for creating an Edwards EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC EDWARDS;

CK UTF8CHAR label[] = “An Edwards EC private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}

}i

6.3.7 Montgomery Elliptic Curve public key objects

Montgomery EC public key objects (object class CKO_PUBLIC_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC public keys. The following table defines the
Montgomery EC public key object attributes, in addition to the common attributes defined for this object
class:
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7554

7555

7556

Table 69, Montgomery Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"4 Byte array | Public key bytes in little endian order as
defined in RFC 7748

~Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

}

Montgomery EC public keys only support the use of the curveName selection to specify a curve name as
defined in [RFC7748] and the use of the olID selection to specify a curve through an ECDH algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

The following is a sample template for creating a Montgomery EC public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC MONTGOMERY;
CK UTF8CHAR label[] = “A Montgomery EC public key object”;
CK BYTE ecParams[] = {...};
CK BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}
i

6.3.8 Montgomery Elliptic Curve private key objects

Montgomery EC private key objects (object class CKO_PRIVATE_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC private keys. See Section 6.3 for more information
about EC. The following table defines the Montgomery EC private key object attributes, in addition to the
common attributes defined for this object class:

Table 70, Montgomery Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS"#46 Byte array DER-encoding of a Parameters value as
defined above

CKA_VALUE"487 Big integer Private key bytes in little endian order as
defined in RFC 7748

“Refer to Table 11 for footnotes
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The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4" choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA  NULL,
curveName PrintableString

}

Montgomery EC private keys only support the use of the curveName selection to specify a curve name
as defined in [RFC7748] and the use of the olD selection to specify a curve through an ECDH algorithm
as defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

Note that when generating a Montgomery EC private key, the EC domain parameters are not specified in
the key's template. This is because Montgomery EC private keys are only generated as part of a
Montgomery EC key pair, and the EC domain parameters for the pair are specified in the template for the
Montgomery EC public key.

The following is a sample template for creating a Montgomery EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC MONTGOMERY;
CK UTF8CHAR label[] = “A Montgomery EC private key object”;
CK BYTE subject[] = {...};
CK BYTE id[] = {123};
CK BYTE ecParams|[] = {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DERIVE, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
}i

6.3.9 Elliptic Curve key pair generation

The short Weierstrass ECkey pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN, is a key
pair generation mechanism that uses the method defined by the ANSI X9.62 and X9.63 standards.

The short Weierstrass EC key pair generation mechanism, denoted
CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS, is a key pair generation mechanism that uses the method
defined by FIPS 186-4 Appendix B.4.1.

These mechanisms do not have a parameter.

These mechanisms generate EC public/private key pairs with particular EC domain parameters, as
specified in the CKA_EC_PARAMS attribute of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these EC domain parameters.
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These mechanism contribute the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2200 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

6.3.10 Edwards Elliptic Curve key pair generation

The Edwards EC key pair generation mechanism, denoted CKM_EC_EDWARDS_KEY_PAIR_GEN, is a
key pair generation mechanism for EC keys over curves represented in Edwards form.

This mechanism does not have a parameter.

The mechanism can only generate EC public/private key pairs over the curves edwards25519 and
edwards448 as defined in RFC 8032 or the curves id-Ed25519 and id-Ed448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or the olD methods. Attempts to generate keys over these curves using any other
EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the Edwards EC public and private key
types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.11 Montgomery Elliptic Curve key pair generation

The Montgomery EC key pair generation mechanism, denoted
CKM_EC_MONTGOMERY_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over
curves represented in Montgomery form.

This mechanism does not have a parameter.

The mechanism can only generate Montgomery EC public/private key pairs over the curves curve25519
and curve448 as defined in RFC 7748 or the curves id-X25519 and id-X448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or old methods. Attempts to generate keys over these curves using any other EC
key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 7748 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.
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6.3.12 ECDSA without hashing

Refer section 6.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 71, ECDSA without hashing: Key and Data Length

Function Key type Input length Output length
C_Sign' CKK_EC private key any?® 2nLen
C_Verify! CKK_EC public key any?, <2nlLen 2 N/A

1 Single-part operations only.
2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in
binary notation, the number 22% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

6.3.13 ECDSA with hashing

Refer to section 6.3.1 for signature encoding.

The ECDSA with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512 mechanism, denoted
CKM_ECDSA_[SHA1|SHA224|SHA256|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_51
2] respectively, is a mechanism for single- and multiple-part signatures and verification for ECDSA. This
mechanism computes the entire ECDSA specification, including the hashing with SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512 respectively.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 72, ECDSA with hashing: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_EC private key any 2nLen
C_Verify CKK_EC public key any, <2nlLen? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).
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6.3.14 EdDSA

The EdADSA mechanism, denoted CKM_EDDSA, is a mechanism for single-part and multipart signatures
and verification for EODSA. This mechanism implements the five EADSA signature schemes defined in
RFC 8032 and RFC 8410.

For curves according to RFC 8032, this mechanism has an optional parameter, a CK_EDDSA_PARAMS
structure. The absence or presence of the parameter as well as its content is used to identify which
signature scheme is to be used. The following table enumerates the five signature schemes defined in
RFC 8032 and all supported permutations of the mechanism parameter and its content.

Table 73, Mapping to RFC 8032 Signature Schemes

Signature Scheme | Mechanism Param phFlag Context Data
Ed25519 Not Required N/A N/A
Ed25519ctx Required False Optional
Ed25519ph Required True Optional
Ed448 Required False Optional
Ed448ph Required True Optional

For curves according to RFC 8410, the mechanism is implicitly given by the curve, which is EADSA in
pure mode.

Constraints on key types and the length of data are summarized in the following table:
Table 74, EADSA: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_EC_EDWARDS private key any 2blen
C_Verify CKK_EC_EDWARDS public key any, <2blen ? N/A

2 Data length, signature length.

Note that for EADSA in pure mode, Ed25519 and Ed448 the data must be processed twice. Therefore, a
token might need to cache all the data, especially when used with C_SignUpdate/C_VerifyUpdate. If
tokens are unable to do so they can return CKR_TOKEN_RESOURCE_EXCEEDED.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032and RFC 8410 only define curves of
these two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.15 XEdDSA

The XEdDSA mechanism, denoted CKM_XEDDSA, is a mechanism for single-part signatures and
verification for XEADSA. This mechanism implements the XEADSA signature scheme defined in
[XEDDSA]. CKM_XEDDSA operates on CKK_EC_MONTGOMERY type EC keys, which allows these
keys to be used both for signing/verification and for Diffie-Hellman style key-exchanges. This double use
is necessary for the Extended Triple Diffie-Hellman where the long-term identity key is used to sign short-
term keys and also contributes to the DH key-exchange.

This mechanism has a parameter, a CK_XEDDSA_PARAMS structure.
Table 75, XEADSA: Key and Data Length
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[Function Key type Input length | Output length
C_Sign’ CKK_EC_MONTGOMERY private key any?® 2b

C_Verify' CKK_EC_MONTGOMERY public key any3, <2b ? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as [XEDDSA] only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.16 EC mechanism parameters
¢+ CK_EDDSA PARAMS, CK_EDDSA PARAMS_PTR

CK_EDDSA_PARAMS is a structure that provides the parameters for the CKM_EDDSA signature
mechanism. The structure is defined as follows:

typedef struct CK EDDSA PARAMS ({
CK BBOOL phFlag;
CK_ULONG ulContextDatalen;
CK BYTE PTR pContextData;

} CK_EDDSA PARAMS;

The fields of the structure have the following meanings:
phFlaga Boolean value which indicates if Prehashed variant of EdDSA should used
ulContextDataLenthe length in bytes of the context data where 0 <= ulContextDataLen <= 255.
pContextDatacontext data shared between the signer and verifier
CK_EDDSA_PARAMS_PTR is a pointer to a CK_EDDSA_PARAMS.

¢ CK XEDDSA_ PARAMS, CK_XEDDSA_ PARAMS_PTR

CK_XEDDSA_PARAMS is a structure that provides the parameters for the CKM_XEDDSA signature
mechanism. The structure is defined as follows:

typedef struct CK XEDDSA PARAMS ({
CK _XEDDSA HASH TYPE hash;
} CK_XEDDSA PARAMS;

The fields of the structure have the following meanings:
hash a Hash mechanism to be used by the mechanism.

CK_XEDDSA_PARAMS_PTR is a pointer to a CK_XEDDSA_PARAMS.

¢ CK _XEDDSA HASH_TYPE, CK_XEDDSA_HASH_TYPE_PTR

CK_XEDDSA_HASH_TYPE is used to indicate the hash function used in XEDDSA. It is defined as
follows:

typedef CK ULONG CK XEDDSA HASH TYPE;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 214 of 424



7758
7759

7760
7761
7762
7763

7764
7765
7766

7767
7768
7769
7770

The following table lists the defined functions.

Table 76, EC: Key Derivation Functions

Source Identifier

CKM_BLAKE2B_256

CKM_BLAKE2B_512

CKM_SHA3_256

CKM_SHA3 512

CKM_SHA256

CKM_SHA512

CK_XEDDSA_HASH_TYPE_PTR is a pointer to a CK_XEDDSA HASH_TYPE.

¢ CK_EC _KDF_TYPE, CK_EC_KDF TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is

defined as follows:

typedef CK ULONG CK _EC_KDF TYPE;

The following table lists the defined functions.

Table 77, EC: Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1_KDF

CKD_SHA224_KDF

CKD_SHA256_KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

CKD_SHA3_224 KDF

CKD_SHA3_256_KDF

CKD_SHA3_384_KDF

CKD_SHA3 512_KDF

CKD_SHA1_KDF_SP800

CKD_SHA224_KDF_SP800

CKD_SHA256_KDF_SP800

CKD_SHA384_KDF_SP800

CKD_SHA512_KDF_SP800

CKD_SHA3_224_KDF_SP800

CKD_SHA3_256_KDF_SP800

CKD_SHA3_384_KDF_SP800

CKD_SHA3_512_KDF_SP800

CKD_BLAKE2B_160_KDF
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CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function.

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF, which are
based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [ANSI X9.63].

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800,
which are based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1.

The key derivation functions CKD_BLAKE2B_[160]|256|384|512]_KDF, which are based on the Blake2b
family of hashes, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1. CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

¢ CK_ECDH1 DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where
each party contributes one key pair. The structure is defined as follows:
typedef struct CK ECDH1 DERIVE PARAMS ({
CK _EC KDF TYPE kdf;

CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK_ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;

} CK ECDH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s EC public key
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pPublicData’ pointer to other party’s EC public key value. For short Weierstrass
EC keys: a token MUST be able to accept this value encoded as a
raw octet string (as per section A.5.2 of [ANSI X9.62]). A token
MAY, in addition, support accepting this value as a DER-encoded
ECPoint (as per section E.6 of [ANSI X9.62]) i.e. the same as a
CKA_EC_POINT encoding. The calling application is responsible
for converting the offered public key to the compressed or
uncompressed forms of these encodings if the token does not
support the offered form.
For Montgomery keys: the public key is provided as bytes in little
endian order as defined in RFC 7748.

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an
optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalLen must be zero.

CK_ECDH1 DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.
¢ CK_ECDH2_DERIVE_PARAMS, CK_ECDH2 DERIVE_PARAMS_PTR

CK_ECDH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK ECDH2Z DERIVE PARAMS ({
CK_EC_KDF_TYPE kdf;
CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK _ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
CK _ULONG ulPrivateDatalen;
CK _OBJECT HANDLE hPrivateData;
CK _ULONG ulPublicDatalLenZ2;
CK BYTE PTR pPublicDataZ2;
} CK_ECDH2 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first EC public key

pPublicData pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

ulPrivateDatalLen the length in bytes of the second EC private key

1 The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding

(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.
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hPrivateData key handle for second EC private key value
ulPublicDatalLen2 the length in bytes of the other party’s second EC public key

pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDatal.en must be zero.

CK_ECDH2_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH2_DERIVE_PARAMS.

¢ CK_ECMQV_DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK_ECMQV DERIVE PARAMS ({
CK_EC KDF TYPE kdf;

CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;

CK_ ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;

CK_ ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK _ULONG ulPublicDatalen2;
CK_BYTE PTR pPublicData?2;

CK_OBJECT HANDLE publicKey;
} CK _ECMQV DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first EC public key

pPublicData pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

ulPrivateDatalLen the length in bytes of the second EC private key
hPrivateData key handle for second EC private key value
ulPublicDatalL.en2 the length in bytes of the other party’s second EC public key

pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatal en must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an
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optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalL.en must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

6.3.17 Elliptic Curve Diffie-Hellman key derivation

The Elliptic Curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is
a mechanism for key derivation based on the Diffie-Hellman version of the Elliptic Curve key agreement
scheme, as defined in ANSI X9.63 for short Weierstrass EC keys and RFC 7748 for Montgomery keys,
where each party contributes one key pair all using the same EC domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 22%°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%°
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 78: ECDH: Allowed Key Types

Function Key type
C_Derive CKK_EC or CKK_EC_MONTGOMERY

6.3.18 Elliptic Curve Diffie-Hellman with cofactor key derivation

The Elliptic Curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the Elliptic Curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.
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This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 220°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%°
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 79: ECDH with cofactor: Allowed Key Types

Function Key type
C_Derive CKK_EC

6.3.19 Elliptic Curve Menezes-Qu-Vanstone key derivation

The Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the Elliptic Curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 229
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
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the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 80: ECDH MQV: Allowed Key Types

Function Key type

C_Derive CKK_EC

6.3.20 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on Elliptic Curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap an asymmetric target key of any length and type using an EC

key.

- Atemporary AES key is derived from a temporary EC key and the wrapping EC key
using the CKM_ECDH1_DERIVE mechanism.

- The derived AES key is used for wrapping the target key using the
CKM_AES_KEY_WRAP_KWP mechanism.

For wrapping, the mechanism -

Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDatalLen
and pSharedData using the private key of the transport EC key and the public key of wrapping EC
key and gets the first uAESKeyBits bits of the derived key to be the temporary AES key.

Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
Zeroizes the temporary AES key and EC transport private key.

Concatenates public key material of the transport key and output the concatenated blob. The first
part is the public key material of the transport key and the second part is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown.

For unwrapping, the mechanism -

Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the public
key material of the unwrapping EC key.

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDatalLen
and pSharedData using the private part of unwrapping EC key and the public part of the transport
EC key and gets first uAESKeyBits bits of the derived key to be the temporary AES key.
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e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP.

e Zeroizes the temporary AES key.

Table 81, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt| Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify vR! Key Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP v

TSR = SignRecover, VR = VerifyRecover

Constraints on key types are summarized in the following table:
Table 82: ECDH AES Key Wrap: Allowed Key Types

Function Key type
C_Wrap/ CKK_EC or CKK_EC_MONTGOMERY
C_Unwrap

6.3.21 ECDH AES KEY WRAP mechanism parameters

¢+ CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK ECDH AES KEY WRAP PARAMS {
CK_ULONG
CK_EC_KDF TYPE
CK_ULONG
CK_BYTE_PTR

} CK _ECDH AES KEY WRAP PARAMS;

ulAESKeyBits;
kdf;
ulSharedDatalen;
pSharedData;

The fields of the structure have the following meanings:

ulAESKeyBits

kdf

ulSharedDatalen
pSharedData

length of the temporary AES key in bits. Can be only 128, 192 or
256.

key derivation function used on the shared secret value to generate
AES key.

the length in bytes of the shared info

Some data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_ECDH_AES_KEY_WRAP_PARAMS.
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6.3.22 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by
ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521
K-163, B-163, K-233, B-233
K-283, B-283, K-409, B-409
K-571, B-571

6.4 Diffie-Hellman

Table 83, Diffie-Hellman Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR’ Key | Unwrap

Pair

CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS_DERIVE v
CKM_X9 42 DH_KEY_PAIR_GEN v
CKM_X9 42 DH_PARAMETER_GEN v
CKM_X9 42 DH _DERIVE v
CKM_X9_42 DH_HYBRID_DERIVE 4
CKM_X9_42_MQV_DERIVE v

6.4.1 Definitions

This section defines the key type “CKK_DH?” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of [DH] key objects.
Mechanisms:

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_PARAMETER_GEN

CKM_DH_PKCS_DERIVE

CKM_X9_42 DH_KEY_PAIR_GEN

CKM_X9_42_DH_PARAMETER_GEN

CKM_X9_42_DH_DERIVE

CKM_X9_42_DH_HYBRID_DERIVE

CKM_X9_42_MQV_DERIVE
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6.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

Table 84, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME"3 Big integer Prime p
CKA_BASE"3 Big integer Base g
CKA_VALUE"4 Big integer Public value y

“Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR labell[] “A Diffie-Hellman public key object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

6.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

Table 85, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA PRIME'3 Big integer Prime p (> 1024 bits, in steps of 256 bits)
CKA_BASE"3 Big integer Base g

CKA_SUBPRIME"? Big integer Subprime g (= 160 bits)

CKA_VALUE'4 Big integer Public value y

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. See the ANSI X9.42 standard for more information on X9.42 Diffie-
Hellman keys.
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The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK OBJECT CLASS class = CKO PUBLIC KEY;
CK KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] “A X9.42 Diffie-Hellman public key
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE subprime[] {...
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

}s

6.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

Table 86, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p

CKA _BASE'46 Big integer Base g

CKA_VALUE"487 Big integer Private value x

CKA VALUE_BITS2¢ CK_ULONG Length in bits of private value x

“Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in
the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-
Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the
Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK_DH;

CK UTF8CHAR label[] = “A Diffie-Hellman private key object”;
CK BYTE subject[] = {...};
CK_BYTE id[] {123};

CK BYTE prime[] = {...};
CK BYTE base[] = {...};

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 225 of 424



8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171

8172

8173
8174
8175

8176

8177

8178
8179
8180

8181
8182
8183
8184

8185

8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

i

6.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

Table 87, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA _BASE'46 Big integer Base g

CKA_SUBPRIME"48 Big integer Subprime g (> 160 bits)
CKA_VALUE"467 Big integer Private value x

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain
parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain
parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK X9 42 DH;

CK UTF8CHAR label[] = ™A X9.42 Diffie-Hellman private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE prime[] = {...};

CK BYTE base[] = {...};

CK BYTE subprime[] = {...};

CK BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
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{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, &true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

6.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain
parameter object attributes, in addition to the common attributes defined for this object class:

Table 88, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_ PRIME"4 Big integer Prime p

CKA _BASE"' Big integer Base g
CKA_PRIME_BITS?23 CK_ULONG Length of the prime value.

~Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman domain parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR labell[] “A Diffie-Hellman domain parameters
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
i

6.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42
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Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 89, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_ PRIME"4 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE' Big integer Base g

CKA_SUBPRIME"4 Big integer Subprime g (= 160 bits)
CKA_PRIME_BITS?23 CK_ULONG Length of the prime value.
CKA_SUBPRIME_BITS?3 CK_ULONG Length of the subprime value.

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain
parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman
domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain
parameters object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE subprime[] = {...};
CK BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
i

6.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I". It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.
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6.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain
parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

6.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls “phase II”.

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

This mechanism has the following rules about key sensitivity and extractability?:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 229 of 424



8318 6.4.11 X9.42 Diffie-Hellman mechanism parameters
8319 ¢ CK X9 42 DH_KDF_TYPE, CK_X9 42 DH_KDF_TYPE PTR

8320 CK _X9_42 DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
8321  keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
8322 key agreement schemes. It is defined as follows:

8323 typedef CK ULONG CK X9 42 DH KDF TYPE;
8324 a I

8325 The following table lists the defined functions.

8326 Table 90, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL
CKD_SHA1_KDF_ASN1
CKD_SHA1_KDF_CONCATENATE

8327 The key derivation function CKD_NULL produces a raw shared secret value without applying any key
8328 derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and

8329 CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the
8330 shared secret value as defined in the ANSI X9.42 standard.

8331 CK_X9_42 DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

8332 ¢ CK_X9_42_DH1_DERIVE_PARAMS, CK_X9 42 _DH1_DERIVE_PARAMS_PTR

8333 CK_X9_42 DH1 DERIVE_PARAMS is a structure that provides the parameters to the
8334 CKM_X9_42 DH_DERIVE key derivation mechanism, where each party contributes one key pair. The
8335 structure is defined as follows:

8336 typedef struct CK X9 42 DH1 DERIVE PARAMS ({

8337 CK X9 42 DH KDF TYPE kdf;

8338 CK _ULONG ulOtherInfolen;

8339 CK BYTE PTR pOtherInfo;

8340 CK_ULONG ulPublicDatalen;

8341 CK_BYTE PTR pPublicData;

8342 }  CK X9 42 DH1 DERIVE PARAMS;

8343

8344  The fields of the structure have the following meanings:

8345 kdf key derivation function used on the shared secret value
8346 ulOtherinfoLen the length in bytes of the other info

8347 pOtherinfo some data shared between the two parties

8348 ulPublicDatalen the length in bytes of the other party’s X9.42 Diffie-Hellman public
8349 key

8350 pPublicData pointer to other party’s X9.42 Diffie-Hellman public key value

8351  With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherInfoLen must be zero.
8352  With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
8353 an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
8354  the two parties intending to share the shared secret. With the key derivation function

8355 CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
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data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9 42 DH1 DERIVE_PARAMS_PTR is a pointer to a CK_X9 42 DH1 DERIVE_PARAMS.

o CK_X9 42_DH2_DERIVE_PARAMS, CK_X9 42 _DH2_DERIVE_PARAMS_PTR

CK_X9_42 DH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:

typedef struct CK X9 42 DH2 DERIVE PARAMS {

CK_X9 42 DH KDF TYPE kdf;
CK_ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;

CK_ ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;
CK_ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK ULONG ulPublicDatalLen2;
CK BYTE PTR pPublicDataz;

} CK X9 42 DH2 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatal.en the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalLen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.
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e CK_X9_42_MQV_DERIVE_PARAMS, CK_X9 42 MQV_DERIVE_PARAMS_PTR

CK_X9_42_ MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK X9 42 MQV DERIVE PARAMS ({
CK X9 42 DH KDF TYPE kdf;

CK_ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;
CK_ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
CK_ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK _ULONG ulPublicDatalen2;
CK_BYTE PTR pPublicData?2;
CK_OBJECT HANDLE publicKey;

}  CK X9 42 MQV DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info

pOtherinfo some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalLen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_ MQV_DERIVE_PARAMS.

6.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42 DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.
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The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template
for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9_42_DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the
template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

6.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.

CKM_SHA_1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.
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For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted

CKM_X9_42 DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9_42_MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.

CKM_SHA_1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
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derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.5 Extended Triple Diffie-Hellman (x3dh)

The Extended Triple Diffie-Hellman mechanism described here is the one described in

[SIGNAL].

Table 91, Extended Triple Diffie-Hellman Mechanisms vs. Functions

Functions
Encrypt | Sign SR Gen. Wrap | Derive
Mechanism & & & | Digest | Key/ &
Decrypt | Verify | VR' Key | Unwr
Pair ap
CKM_X3DH_INITIALIZE v
CKM_X3DH_RESPOND v

6.5.1 Definitions

Mechanisms:
CKM_X3DH_INITIALIZE
CKM_X3DH_RESPOND

6.5.2 Extended Triple Diffie-Hellman key objects

Extended Triple Diffie-Hellman uses Elliptic Curve keys in Montgomery representation
(CKK_EC_MONTGOMERY). Three different kinds of keys are used, they differ in their lifespan:

e identity keys are long-term keys, which identify the peer,

e prekeys are short-term keys, which should be rotated often (weekly to hourly)
e onetime prekeys are keys, which should be used only once.

Any peer intending to be contacted using X3DH must publish their so-called prekey-bundle, consisting of

their:

e public Identity key,

e current prekey, signed using XEDDSA with their identity key
e optionally a batch of One-time public keys.

6.5.3 Initiating an Extended Triple Diffie-Hellman key exchange

Initiating an Extended Triple Diffie-Hellman key exchange starts by retrieving the following required public

keys (the so-called prekey-bundle) of the other peer: the Identity key, the signed public Prekey, and

optionally one One-time public key.

When the necessary key material is available, the initiating party calls CKM_X3DH_INITIALIZE, also

providing the following additional parameters:

e the initiators identity key
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e the initiators ephemeral key (a fresh, one-time CKK_EC_MONTGOMERY type key)

CK_X3DH_INITIATE_PARAMS is a structure that provides the parameters to the
CKM_X3DH_INITIALIZE key exchange mechanism. The structure is defined as follows:

typedef struct CK X3DH INITIATE PARAMS ({

CK_X3DH KDF TYPE
CK_OBJECT_ HANDLE
CK_OBJECT_ HANDLE
CK_BYTE PTR

CK_BYTE_PTR

CK_OBJECT_ HANDLE
CK_OBJECT HANDLE

kdf;

pPeer identity;
pPeer prekey;
pPrekey signature;
pOnetime key;
pOwn_ identity;
pOwn ephemeral;

} CK X3DH INITIATE PARAMS;

Table 92, Extended Triple Diffie-Hellman Initiate Message parameters:

Parameter Data type Meaning

kdf CK_X3DH_KDF_TYPE Key derivation function

pPeer_identity Key handle Peers public Identity key (from the prekey-
bundle)

pPeer_prekey Key Handle Peers public prekey (from the prekey-bundle)

pPrekey_signature Byte array XEDDSA signature of PEER_PREKEY (from
prekey-bundle)

pOnetime_key Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

pOwn_identity Key Handle Initiators Identity key

pOwn_ephemeral Key Handle Initiators ephemeral key

6.5.4 Responding to an Extended Triple Diffie-Hellman key exchange

Responding an Extended Triple Diffie-Hellman key exchange is done by executing a
CKM_X3DH_RESPOND mechanism. CK_X3DH_RESPOND_PARAMS is a structure that provides the
parameters to the CKM_X3DH_RESPOND key exchange mechanism. All these parameter should be
supplied by the Initiator in a message to the responder. The structure is defined as follows:

typedef struct CK X3DH RESPOND PARAMS ({

CK_X3DH KDF_TYPE

CK_BYTE_PTR
CK_BYTE_PTR
CK_BYTE_PTR

CK _OBJECT HANDLE

CK_BYTE_ PTR

kdf;
pldentity id;
pPrekey id;
pOnetime id;

pInitiator identity;

pInitiator ephemeral;
} CK _X3DH RESPOND PARAMS;

Table 93, Extended Triple Diffie-Hellman 1st Message parameters:
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Parameter Data type Meaning
kdf CK_X3DH_KDF__ | Key derivation function
TYPE

pldentity id Byte array Peers public Identity key identifier (from the
prekey-bundle)

pPrekey id Byte array Peers public prekey identifier (from the
prekey-bundle)

pOnetime_id Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

plnitiator_identity Key handle Initiators Identity key

plnitiator_ephemeral Byte array Initiators ephemeral key

Where the *_id fields are identifiers marking which key has been used from the prekey-bundle, these
identifiers could be the keys themselves.

This mechanism has the following rules about key sensitivity and extractability®:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

2 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

3 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

6.5.5 Extended Triple Diffie-Hellman parameters

o CK_X3DH_KDF_TYPE, CK_X3DH_KDF_TYPE_PTR

CK_X3DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying
data from a shared secret. The key derivation function will be used by the X3DH key agreement
schemes. It is defined as follows:

typedef CK ULONG CK X3DH KDF TYPE;

The following table lists the defined functions.
Table 94, X3DH: Key Derivation Functions

Source Identifier
CKD_NULL

CKD_BLAKE2B 256 KDF
CKD_BLAKE2B 512 KDF
CKD_SHA3 256 KDF

3 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.
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CKD_SHA256_KDF
CKD_SHA3_512_KDF
CKD_SHA512_KDF

6.6 Double Ratchet

The Double Ratchet is a key management algorithm managing the ongoing renewal and maintenance of
short-lived session keys providing forward secrecy and break-in recovery for encrypt/decrypt operations.
The algorithm is described in [DoubleRatchet]. The Signal protocol uses X3DH to exchange a shared
secret in the first step, which is then used to derive a Double Ratchet secret key.

Table 95, Double Ratchet Mechanisms vs. Functions

Functions

Encrypt| Sign | SR | Digest | Gen. Wrap Derive
Mechanism & & & Key/ &

Decrypt| Verify 1 Key Unwrap

VR Pair

CKM_X2RATCHET _INITIALIZE V4
CKM_X2RATCHET_RESPOND v
CKM_X2RATCHET_ENCRYPT V4 V4
CKM_X2RATCHET_DECRYPT V4 V4

6.6.1 Definitions
This section defines the key type “CKK_X2RATCHET" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_X2RATCHET_INITIALIZE
CKM_X2RATCHET_RESPOND
CKM_X2RATCHET_ENCRYPT
CKM_X2RATCHET_DECRYPT

6.6.2 Double Ratchet secret key objects

Double Ratchet secret key objects (object class CKO_SECRET_KEY, key type CKK_X2RATCHET) hold
Double Ratchet keys. Double Ratchet secret keys can only be derived from shared secret keys using the
mechanism CKM_X2RATCHET _INITIALIZE or CKM_X2RATCHET_RESPOND. In the Signal protocol
these are seeded with the shared secret derived from an Extended Triple Diffie-Hellman [X3DH] key-
exchange. The following table defines the Double Ratchet secret key object attributes, in addition to the
common attributes defined for this object class:

Table 96, Double Ratchet Secret Key Object Attributes

Attribute Data type Meaning
CKA_X2RATCHET_RK Byte array Root key
CKA_X2RATCHET_HKS Byte array Sender Header key
CKA_X2RATCHET_HKR Byte array Receiver Header key
CKA_X2RATCHET_NHKS Byte array Next Sender Header Key
CKA_X2RATCHET_NHKR Byte array Next Receiver Header Key
CKA_X2RATCHET_CKS Byte array Sender Chain key
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Attribute Data type Meaning

CKA_X2RATCHET_CKR Byte array Receiver Chain key
CKA_X2RATCHET_DHS Byte array Sender DH secret key
CKA_X2RATCHET_DHP Byte array Sender DH public key
CKA_X2RATCHET_DHR Byte array Receiver DH public key
CKA_X2RATCHET_NS ULONG Message number send
CKA_X2RATCHET_NR ULONG Message number receive

CKA X2RATCHET_PNS ULONG Previous message number send
CKA_X2RATCHET_BOBS1STMSG BOOL Is this bob and has he ever sent a message?
CKA_X2RATCHET_ISALICE BOOL Is this Alice?
CKA_X2RATCHET_BAGSIZE ULONG How many out-of-order keys do we store
CKA_X2RATCHET_BAG Byte array Out-of-order keys

6.6.3 Double Ratchet key derivation

The Double Ratchet key derivation mechanisms depend on who is the initiating party, and who the
receiving, denoted CKM_X2RATCHET_INITIALIZE and CKM_X2RATCHET_RESPOND, are the key
derivation mechanisms for the Double Ratchet. Usually the keys are derived from a shared secret by
executing a X3DH key exchange.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Additionally the attribute flags indicating which functions the key supports are also contributed by the

mechanism.

For this mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these
two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

e CK_X2RATCHET_INITIALIZE_PARAMS;

CK_X2RATCHET_INITIALIZE_PARAMS_PTR

CK_X2RATCHET_INITIALIZE_PARAMS provides the parameters to the
CKM_X2RATCHET_INITIALIZE mechanism. It is defined as follows:

typedef struct CK X2RATCHET INITIALIZE PARAMS ({

CK_BYTE_ PTR

CK _OBJECT HANDLE
CK _OBJECT HANDLE
CK_OBJECT HANDLE

CK_BBOOL
CK_ULONG

CK_MECHANISM TYPE
CK_X2RATCHET KDF TYPE

sk;

peer public prekey;
peer public identity;
own public identity;

bEncryptedHeader;
eCurve;

aeadMechanism;
kdfMechanism;

} CK XZ2RATCHET INITIALIZE PARAMS;

The fields of the structure have the following meanings:

peers_public_prekey

peers_public_identity

pkcsll-spec-v3.1-csd01
Standards Track Work Product

sk the shared secret with peer (derived using X3DH)

Peers public prekey which the Initiator used in the X3DH

Peers public identity which the Initiator used in the X3DH

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 239 of 424




8679

8680

8681

8682

8683
8684

8685
8686

8687
8688

8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699

8700
8701

8702

8703

8704

8705

8706

8707

8708
8709

8710

8711
8712
8713

own_public_identity
bEncryptedHeader
eCurve
aeadMechanism

kdfMechanism

Initiators public identity as used in the X3DH
whether the headers are encrypted

255 for curve 25519 or 448 for curve 448

a mechanism supporting AEAD encryption

a Key Derivation Mechanism, such as
CKD_BLAKE2B 512 _KDF

e CK_X2RATCHET_RESPOND_PARAMS;
CK_X2RATCHET_RESPOND_PARAMS_PTR

CK_X2RATCHET_RESPOND_PARAMS provides the parameters to the
CKM_X2RATCHET_RESPOND mechanism. It is defined as follows:

typedef struct CK X2RATCHET RESPOND PARAMS {

CK_BYTE PTR

CK OBJECT HANDLE
CK _OBJECT HANDLE
CK _OBJECT HANDLE

CK_BBOOL
CK_ULONG

CK_MECHANISM TYPE
CK_X2RATCHET KDF TYPE

sk;

own prekey;
initiator identity;
own public identity;
bEncryptedHeader;
eCurve;
aeadMechanism;
kdfMechanism;

} CK_X2RATCHET RESPOND PARAMS;

The fields of the structure have the following meanings:

sk

own_prekey
initiator_identity
own_public_identity
bEncryptedHeader
eCurve
aeadMechanism

kdfMechanism

shared secret with the Initiator

Own Prekey pair that the Initiator used

Initiators public identity key used

as used in the prekey bundle by the initiator in the X3DH
whether the headers are encrypted

255 for curve 25519 or 448 for curve 448

a mechanism supporting AEAD encryption

a Key Derivation Mechanism, such as
CKD_BLAKE2B 512 KDF

6.6.4 Double Ratchet Encryption mechanism

The Double Ratchet encryption mechanism, denoted CKM_X2RATCHET_ENCRYPT and
CKM_X2RATCHET_DECRYPT, are a mechanisms for single part encryption and decryption based on
the Double Ratchet and its underlying AEAD cipher.
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6.6.5 Double Ratchet parameters

o CK_X2RATCHET_KDF_TYPE, CK_X2RATCHET_KDF_TYPE_PTR

CK_X2RATCHET_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the X key derivation
scheme. Itis defined as follows:

typedef CK ULONG CK X2RATCHET KDF TYPE;

The following table lists the defined functions.
Table 97, X2RATCHET: Key Derivation Functions

Source Identifier
CKD_NULL
CKD_BLAKE2B 256 KDF
CKD_BLAKE2B 512 KDF
CKD_SHA3 256 KDF
CKD_SHA256_KDF
CKD_SHA3 512 KDF

CKD_SHA512_KDF

6.7 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, short Weierstrass EC private keys
and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS #8'’s
PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The
object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER

{ pkecs-3 1 1}

dhpublicnumber OBJECT IDENTIFIER ::= { 1iso(l) member-body(2)
us (840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(l) member-body(2)
us (840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {
iso (1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

where
pkcs-1 OBJECT IDENTIFIER ::= {
iso(l) member-body(2) US(840) rsadsi(113549) pkcs(l) 1 }

pkcs-3 OBJECT IDENTIFIER ::= {
iso(l) member-body(2) US(840) rsadsi(113549) pkcs(l) 3 }

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 241 of 424



8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784

8785
8786
8787

8788
8789

8790

8791
8792
8793
8794
8795
8796

8797

These parameters for the algorithm identifiers have the
following types, respectively:

NULL

DHParameter ::= SEQUENCE {
prime INTEGER, --p
base INTEGER, -- g

privateValuelength INTEGER OPTIONAL
}

DomainParameters ::= SEQUENCE {
prime INTEGER, -- p
base INTEGER, -- g
subprime INTEGER, -- g
cofactor INTEGER OPTIONAL, -- ]
validationParms ValidationParms OPTIONAL
}
ValidationParms ::= SEQUENCE {
Seed BIT STRING, —-- seed
PGenCounter INTEGER -- parameter verification
}
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

Dss—-Parms ::= SEQUENCE ({
p INTEGER,
g INTEGER,
g INTEGER

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeylInfo type:

e RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1 type. This type
requires values to be present for all the attributes specific to Cryptoki’'s RSA private key objects. In
other words, if a Cryptoki library does not have values for an RSA private key’s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT values, it must not create an
RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.

o Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
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o X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

e Short Weierstrass EC private keys are BER-encoded according to SECG SEC 1 ECPrivateKey
ASN.1 type:

ECPrivateKey ::= SEQUENCE {
Version INTEGER { ecPrivkeyVerl (1) }
(ecPrivkeyVerl),
privateKey OCTET STRING,
parameters [0] Parameters OPTIONAL,
publicKey [1] BIT STRING OPTIONAL

Since the EC domain parameters are placed in the PKCS #8's privateKeyAlgorithm field, the optional
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to
unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

o DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption is defined in the section for the respective key wrapping
mechanism.

Unwrapping a wrapped private key undoes the above procedure. The ciphertext is decrypted as defined
for the respective key unwrapping mechanism. The data thereby obtained are parsed as a
PrivateKeylInfo type. An error will result if the original wrapped key does not decrypt properly, or if the
decrypted data does not parse properly, or its type does not match the key type specified in the template
for the new key. The unwrapping mechanism contributes only those attributes specified in the
PrivateKeylInfo type to the newly-unwrapped key; other attributes must be specified in the template, or will
take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier
DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
iso(l) identifier-organization(3) oiw(1l4) secsig(3)
algorithm(2) }

with associated parameters

DSAParameters ::= SEQUENCE {
primel INTEGER, -- modulus p
prime2 INTEGER, -- modulus g
base INTEGER -- base g

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

6.8 Generic secret key

Table 98, Generic Secret Key Mechanisms vs. Functions
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Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt Verify VR’ Key Unwrap
Pair
CKM_GENERIC v
_SECRET_KEY
_GEN

6.8.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN

6.8.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.
Table 99, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"'467 Byte array Key value (arbitrary
length)

CKA_VALUE_LENZ23 CK_ULONG Length in bytes of key
value

“Refer to Table 11 for footnotes
The following is a sample template for creating a generic secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK GENERIC SECRET;

CK UTF8CHAR label[] = “A generic secret key object”;
CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA DERIVE, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the SHA-1 hash of the generic secret key object's CKA_VALUE attribute.
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6.8.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key
to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies
an object type and a class, they must have the following values:

CK OBJECT CLASS = CKO SECRET KEY;
CK _KEY TYPE = CKK GENERIC SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

6.9 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description. The HMAC secret key shall correspond
to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism definition).
Such keys, for use with HMAC operations can be created using C_CreateObject or C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

6.9.1 General block cipher mechanism parameters

e CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of
the DES, DESS3 (triple-DES), AES, Camellia, SEED, and ARIA ciphers. It also provides the parameters to
the general-length HMACing mechanisms (i.e.,.SHA-1, SHA-256, SHA-384, SHA-512, and SHA-512/T
family) and the two SSL 3.0 MACing mechanisms, (i.e., MD5 and SHA-1). It holds the length of the MAC
that these mechanisms produce. It is defined as follows:

typedef CK ULONG CK MAC GENERAL PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.

6.10 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
Table 100, AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_AES_KEY_GEN v
CKM_AES_ECB v v
CKM_AES_CBC v v
CKM_AES_CBC_PAD v v
CKM_AES_MAC_GENERAL v
pkcsll-spec-v3.1-csd01 16 February 2022
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Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_MAC v
CKM_AES_OFB v v
CKM_AES_CFB64 v v
CKM_AES_CFB8 v v
CKM_AES_CFB128 v v
CKM_AES_CFB1 v v
CKM_AES_XCBC_MAC v
CKM_AES_XCBC_MAC_96 v

6.10.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.
Mechanisms:

CKM_AES_KEY_GEN

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC

CKM_AES_MAC_GENERAL

CKM_AES_CBC_PAD

CKM_AES_OFB

CKM_AES_CFB64

CKM_AES_CFBS

CKM_AES_CFB128

CKM_AES_CFB1

CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96

6.10.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined

for this object class:

Table 101, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"487 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LENZ236 CK_ULONG Length in bytes of key

value

“Refer to Table 11 for footnotes

The following is a sample template for creating an AES secret key object:
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CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK AES;
CK UTF8CHAR labell[] “An AES secret key object”;
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.10.3 AES key generation

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for
NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.4 AES-ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 102, AES-ECB: Key And Data Length
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Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.5 AES-CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 103, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.
6.10.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-
part encryption and decryption; key wrapping; and key unwrapping, based on NIST's Advanced
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Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS
#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, short Weierstrass EC and DSA private keys (see Section 6.7 for
details). The entries in the table below for data length constraints when wrapping and unwrapping keys
do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 104, AES-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size bytes
block size shorter than input length
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 105, AES-OFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

6.10.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES CFB8, CKM_AES CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.
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Constraints on key types and the length of data are summarized in the following table:

Table 106, AES-CFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

6.10.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 107, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES any 1-block size, as specified in parameters
C_Verify AES any 1-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.10 AES-MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 108, AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 2 block size (8 bytes)
C_Verify AES Any Y2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.11 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 109, AES-XCBC-MAC: Key And Data Length
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Function Key type Data length Signature length
C_Sign AES Any 16 bytes
C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.12 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC_96, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 110, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 12 bytes
C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.11 AES with Counter

Table 111, AES with Counter Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_CTR v v

6.11.1 Definitions

Mechanisms:
CKM_AES_CTR

6.11.2 AES with Counter mechanism parameters

¢ CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.
It is defined as follows:
typedef struct CK AES CTR PARAMS {
CK ULONG ulCounterBits;
CK BYTE cb[l6];
} CK_AES CTR PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that O < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.
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It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:
0 1 2 3
0123456789 01234567890123456789¢01
R e e e e e e i R e e e e al it
\ Nonce |
Fot—t—F—t -ttt -ttt —F—F -t —F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+—+
\ Initialization Vector (IV)

\ \
+—F—t—F—F—t—F—F—t—F—F—t—F—F—F—F—F—F—F—F—F—F—F—F -t —F -+ —F -+ —+—+
\ Block Counter \
+—F—t—F—F—t—F—F—t—F—F—t—F—t—F—F—F—F—F—F—F—F—F—F -t —F -+ —F—+—+—+

This construction permits each packet to consist of up to 2%2-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR_PARAMS.

6.11.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits,
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the
final post increment of the counter to overflow (if it implements it this way) but not allow any further
processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of
data can be processed.

6.12 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS]

This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to
the same length of cipher text.

Table 112, AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_CTS v v
6.12.1 Definitions
Mechanisms:
CKM_AES_CTS
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6.12.2 AES CTS mechanism parameters

It has a parameter, a 16-byte initialization vector.
Table 113, AES-CTS: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES Any, = block same as input length no final part
size (16 bytes)
C_Decrypt AES any, = block same as input length no final part
size (16 bytes)

6.13 Additional AES Mechanisms

Table 114, Additional AES Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR' Key | Unwrap

Pair

CKM_AES_GCM v v
CKM_AES_CCM v v
CKM_AES_GMAC v

6.13.1 Definitions

Mechanisms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC

Generator Functions:
CKG_NO_GENERATE
CKG_GENERATE
CKG_GENERATE_COUNTER
CKG_GENERATE_RANDOM
CKG_GENERATE_COUNTER_XOR

6.13.2 AES-GCM Authenticated Encryption | Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses
CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and
MessageDecrypt.

Encrypt:
e Setthe IV length ullvLen in the parameter block.

e Setthe IV data plv in the parameter block.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 253 of 424



9149
9150

9151
9152

9153
9154

9155
9156
9157

9158
9159

9160
9161

9162
9163
9164

9165
9166

9167
9168
9169

9170
9171

9172
9173

9174

9175
9176

9177
9178
9179
9180
9181
9182

9183
9184

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Encrypt(), or C_EncryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Decryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()*! C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data
should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the IV length ullvLen in the parameter block.

Set plv to hold the IV data returned from C_EncryptMessage() and C_EncryptMessageBegin(). If
ullvFixedBits is not zero, then the most significant bits of p/V contain the fixed IV. If ivGenerator is
set to CKG_NO_GENERATE, plv is an input parameter with the full IV.

Set the ullvFixedBits and ivGenerator fields in the parameter block.
Set the tag length ulTagBits in the parameter block.

Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_GCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*>.
The mechanism parameter is passed to all three of these functions.

Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

Set the IV length ullvLen in the parameter block.

Set the IV data plv in the parameter block.

The ullvFixedBits and ivGenerator fields are ignored.
Set the tag length ulTagBits in the parameter block.

Set the tag data pTag in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

4 “*" indicates 0 or more calls may be made as required

5 “*" indicates 0 or more calls may be made as required
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e Call C_MessageDecryptlnit() for CKM_AES_GCM mechanism key K.

e Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*.
The mechanism parameter is passed to all three of these functions.
e Call C_MessageDecryptFinal() to close the message decryption.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is
passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the 1V is generated by the module
internally using a PRNG. In any case the entire 1V, including the fixed portion, is returned in p/V.

Modules must implement CKG_GENERATE. Modules may also reject ullvFixedBits values which are too
large. Zero is always an acceptable value for ullvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in
the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag
field of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_EncryptInit()/C_Decryptinit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

6.13.3 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and
CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.

Encrypt:
e Set the message/data length ulDatalLen in the parameter block.
e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
UlAADLen is O.

e Setthe MAC length ulMACLen in the parameter block.
e Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Encrypt(), C_EncryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining the final
ciphertext output and the MAC. The total length of data processed must be ulDatalLen. The output
length will be ulDatalLen + ulMACLen.

Decrypt:

6 “*" indicates 0 or more calls may be made as required
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Set the message/data length ulDatalLen in the parameter block. This length must not include the
length of the MAC that is appended to the cipher text.

Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the MAC length uIMACLen in the parameter block.
Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalen
+ UIMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the message/data length ulDatalen in the parameter block.
Set the nonce length u/NonceLen.

Set pNonce to hold the nonce data returned from C_EncryptMessage() and
C_EncryptMessageBegin(). If ulNonceFixedBits is not zero, then the most significant bits of pNonce
contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input
parameter with the full nonce.

Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.
Set the MAC length uIMACLen in the parameter block.

Set pMAC to hold the MAC data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_CCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*"-.
The mechanism parameter is passed to all three functions.

Call C_MessageEncryptFinal() to close the message encryption.
The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.

MessageDecrypt:

Set the message/data length ulDatalLen in the parameter block.

Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block
The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
Set the MAC length uIMACLen in the parameter block.

Set the MAC data pMAC in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

Call C_MessageDecryptinit() for CKM_AES_CCM mechanism key K.

Call C_DecryptMessage(), or C_DecryptMessageBegin() followed by C_DecryptMessageNext()*8.
The mechanism parameter is passed to all three functions.

7 “*" indicates 0 or more calls may be made as required

8 “*" indicates 0 or more calls may be made as required
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e Call C_MessageDecryptFinal() to close the message decryption.

In pNonce the least significant bit of the nonce is the rightmost bit. u/lNonceLen is the length of the nonce
in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE

means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject uINonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost uIMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptlnit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

6.13.4 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When GMAC is used with C_Sign or C_Verify, pData points to the AAD. GMAC does not
use plaintext or ciphertext.

The signature produced by GMAC, also referred to as a Tag, the tag’s length is determined by the
CK_GCM_PARAMS field ulTagBits.

The IV length is determined by the CK_GCM_PARAMS field ullvLen.
Constraints on key types and the length of data are summarized in the following table:
Table 115, AES-GMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES < 2’64 Depends on param’s ulTagBits
C_Verify CKK_AES < 264 Depends on param’s ulTagBits

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.13.5 AES GCM and CCM Mechanism parameters

¢ CK_GENERATOR_FUNCTION

Functions to generate unique IVs and nonces.
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typedef CK ULONG CK GENERATOR FUNCTION;

¢+ CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK GCM PARAMS ({
CK BYTE PTR plv;

CK_ULONG ulIvlen;
CK_ULONG ulIvBits;
CK_BYTE PTR  pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

The fields of the structure have the following meanings:

plv
ullvLen

ullvBits

pAAD

ulAADLen

ulTagBits

pointer to initialization vector

length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2432) - 1. 96-bit (12
byte) IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

length of initialization vector in bits. Do no use ullvBits to specify the
length of the initialization vector, but ullvLen instead.

pointer to additional authentication data. This data is authenticated
but not encrypted.

length of pAAD in bytes. The length of the AAD can be any number
between 0 and (2732) — 1.

length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

¢ CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK GCM MESSAGE PARAMS ({
CK _BYTE PTR plv;
CK ULONG ulIvLen;
CK_ULONG ullIvFixedBits;
CK_GENERATOR FUNCTION ivGenerator;
CK _BYTE PTR pTag;
CK_ULONG ulTagBits;
} CK_GCM MESSAGE PARAMS;

The fields of the structure have the following meanings:

plv
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ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2*32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

ullvFixedBits number of bits of the original IV to preserve when generating an
new |V. These bits are counted from the Most significant bits (to the
right).

ivGenerator Function used to generate a new IV. Each IV must be unique for a
given session.

pTag location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

ulTagBits length of authentication tag in bits. Can be any value between 0 and
128.

CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.

¢ CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for Encrypt or Decrypt. Itis defined as follows:

typedef struct CK CCM PARAMS ({

CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK_BYTE PTR pNonce;

CK_ULONG ulNoncelen;

CK_BYTE PTR pAAD;

CK_ULONG ulAADLen;

CK ULONG ulMACLen;

} CK_CCM PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDataLen length of the data where 0 <= ulDataLen < 2*(8L).

pNonce the nonce.

ulNonceLen length of pNonce in bytes where 7 <= ulNonceLen <= 13.
pAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAAD in bytes where 0 <= ulAADLen <= (2/32) - 1.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

¢ CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR

CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK CCM MESSAGE PARAMS {
CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK _BYTE PTR pNonce;
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CK_ULONG ulNonceLen;
CK_ULONG ulNonceFixedBits;
CK_GENERATOR FUNCTION nonceGenerator;
CK_BYTE PTR pMAC;
CK_ULONG ulMACLen;

}  CK CCM MESSAGE PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDatalLen length of the data where 0 <= ulDatalLen < 2*(8L).
pNonce the nonce.
ulNonceLen length of pNonce in bytes where 7 <= ulNoncelLen <= 13.

ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).

nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.

pMAC location of the CCM MAC returned on MessageEncrypt, provided on
MessageDecrypt

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.

6.14 AES CMAC

Table 116, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_AES_CMAC_GENERAL v
CKM_AES_CMAC v

1 SR = SignRecover, VR = VerifyRecover

6.14.1 Definitions

Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

6.14.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.
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6.14.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST SP800-38B] and [RFC 4493].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 117, General-length AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any 1-block size, as specified in parameters
C_Verify CKK_AES any 1-block size, as specified in parameters

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.14.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAUC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:
Table 118, AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any Block size (16 bytes)
C_Verify CKK_AES any Block size (16 bytes)

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’'s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.15 AES XTS
Table 119, Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_AES_XTS v v
CKM_AES_XTS KEY_GEN v
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6.15.1 Definitions

This section defines the key type “CKK_AES_XTS” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_AES_XTS
CKM_AES XTS KEY_GEN

6.15.2 AES-XTS secret key objects
Table 120, AES-XTS Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'487 Byte array Key value (32 or 64 bytes)
CKA_VALUE_LENZ238 | CK_ULONG | Length in bytes of key value

~Refer to Table 11 for footnotes

6.15.3 AES-XTS key generation

The double-length AES-XTS key generation mechanism, denoted CKM_AES_XTS_KEY_GEN, is a key
generation mechanism for double-length AES-XTS keys.

The mechanism generates AES-XTS keys with a particular length in bytes as specified in the
CKA_VALUE_LEN attributes of the template for the key.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length AES-XTS key type (specifically, the flags indicating

which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES-XTS key sizes, in bytes.

6.15.4 AES-XTS

AES-XTS (XEX-based Tweaked CodeBook mode with CipherText Stealing), denoted CKM_AES_XTS,
isa mechanism for single- and multiple-part encryption and decryption. It is specified in NIST SP800-38E.

Its single parameter is a Data Unit Sequence Number 16 bytes long. Supported key lengths are 32 and
64 bytes. Keys are internally split into half-length sub-keys of 16 and 32 bytes respectively. Constraintson
key types and the length of data are summarized in the following table:

Table 121, AES-XTS: Key And Data Length

Function Key type Input length Output length Comments

C_Encrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

C_Decrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

6.16 AES Key Wrap

Table 122, AES Key Wrap Mechanisms vs. Functions
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9479

9480
9481
9482
9483
9484

9485

9486
9487
9488
9489

9490
9491
9492

9493

9494
9495

9496

9497
9498
9499
9500

9501

9502
9503

9504

9505
9506
9507
9508
9509

Functions

Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & |[Digest| Key/ & Derive

Decrypt| Verify | R Key | Unwrap

Pair

CKM_AES_KEY_WRAP v v
CKM_AES_KEY_WRAP_PAD v 4
CKM_AES_KEY_WRAP_KWP v v
CKM_AES_KEY_WRAP_PKCS7 v v
TSR = SignRecover, VR = VerifyRecover

6.16.1 Definitions

Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD
CKM_AES_KEY_WRAP_KWP
CKM_AES_KEY_WRAP_PKCS7

6.16.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes for CKM_AES_KEY_WRAP and
CKM_AES_KEY_WRAP_PKCS7, resp. 4 bytes for CKM_AES_KEY_WRAP_KWP; and, if NULL, will use
the default initial value defined in Section 4.3 resp. 6.2 / 6.3 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL; or 8 for CKM_AES_KEY_WRAP and
CKM_AES_KEY_WRAP_PKCS7, resp. 4 for CKM_AES_KEY_WRAP_KWP, and the pointer non-NULL.

6.16.3 AES Key Wrap

The mechanisms support only single-part operations, i.e. single part wrapping and unwrapping, and
single-part encryption and decryption.

¢ CKM_AES_KEY_WRAP

The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A secret key whose length is not
a multiple of the AES Key Wrap semiblock size (8 bytes) will be zero padded to fit. Semiblock size is
defined in Section 5.2 of [AES KEYWRAP]. A private key will be encoded as defined in section 6.7; the
encoded private key will be zero padded to fit if necessary.

The CKM_AES_KEY_WRAP mechanism can only encrypt a block of data whose size is an exact multiple
of the AES Key Wrap algorithm semiblock size.

For unwrapping, the mechanism decrypts the wrapped key. In case of a secret key, it truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it,
the CKA_VALUE_LEN attribute of the template. The length specified in the template must not be less
than n-7 bytes, where n is the length of the wrapped key. In case of a private key, the mechanism parses
the encoding as defined in section 6.7 and ignores trailing zero bytes.
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9510 ¢ CKM_AES_KEY_WRAP_PAD

9511 The CKM_AES_KEY_WRAP_PAD mechanism is deprecated. CKM_AES_KEY_WRAP_KWP resp.
9512 CKM_AES_KEY_WRAP_PKCS7 shall be used instead.

9513 ¢ CKM_AES_KEY_WRAP_KWP

9514  The CKM_AES_KEY_WRAP_KWP mechanism can wrap a key or encrypt block of data of any length.
9515  The input is zero-padded and wrapped / encrypted as defined in Section 6.3 of [AES KEYWRAP], which
9516 produces same results as RFC 5649.

9517 ¢ CKM_AES_KEY_WRAP_PKCS7

9518 The CKM_AES_KEY_WRAP_PKCS7 mechanism can wrap a key or encrypt a block of data of any
9519 length. It does the padding detailed in PKCS #7 of inputs (keys or data blocks) up to a semiblock size to
9520 make it an exact multiple of AES Key Wrap algorithum semiblock size (8bytes), always producing

9521  wrapped output that is larger than the input key/data to be wrapped. This padding is done by the token
9522 before being passed to the AES key wrap algorithm, which then wraps / encrypts the padded block of
9523 data as defined in Section 6.2 of [AES KEYWRAP].

9524 6.17 Key derivation by data encryption - DES & AES

9525 These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
9526 They are for use with the C_DeriveKey function.

9527 Table 123, Key derivation by data encryption Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_DES _ECB_ENCRYPT_DATA v
CKM_DES CBC_ENCRYPT_DATA v
CKM_DES3_ECB_ENCRYPT_DATA v
CKM_DES3_CBC_ENCRYPT_DATA v
CKM_AES_ECB_ENCRYPT_DATA v
CKM_AES_CBC_ENCRYPT_DATA v
9528 6.17.1 Definitions
9529 Mechanisms:
9530 CKM_DES_ECB_ENCRYPT_DATA
9531 CKM_DES _CBC_ENCRYPT_DATA
9532 CKM_DES3_ECB_ENCRYPT_DATA
9533 CKM_DES3 CBC_ENCRYPT_DATA
9534 CKM_AES_ECB_ENCRYPT_DATA
9535 CKM_AES_CBC_ENCRYPT_DATA
9536
9537 typedef struct CK DES CBC ENCRYPT DATA PARAMS {
9538 CK_BYTE ivisl; -
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9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553

9554

9555
9556

9557

9558
9559
9560
9561
9562

9563
9564

9565
9566

9567
9568

CK BYTE PTR pData;
CK_ULONG length;
}  CK DES CBC ENCRYPT DATA PARAMS;

typedef CK DES CBC ENCRYPT DATA PARAMS CK PTR
CK_DES_CBC_ENCRYPT DATA PARAMS PTR;

typedef struct CK AES CBC ENCRYPT DATA PARAMS {

CK BYTE ivi[lo];
CK BYTE PTR pData;
CK_ULONG length;

} CK AES CBC ENCRYPT DATA PARAMS;

typedef CK AES CBC ENCRYPT DATA PARAMS CK PTR
CK_AES CBC_ENCRYPT DATA PARAMS PTR;

6.17.2 Mechanism Parameters
Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 6.43.2

Table 124, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
CKM_DES3_ECB_ENCRYPT_DATA structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.
CKM_AES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.
CKM_DES_CBC_ENCRYPT_DATA Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.
CKM DES3 CBC ENCRYPT DATA Parameter is an 8 byte IV value followed by the data.
- - B The data value part must be a multiple of 8 bytes long.
CKM_AES_CBC_ENCRYPT_DATA Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 bytes long.

6.17.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using the base key.
The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text
is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 6.20.5.

If the data is too short to make the requested key then the mechanism returns
CKR_DATA_LEN_RANGE.

6.18 Double and Triple-length DES

Table 125, Double and Triple-Length DES Mechanisms vs. Functions
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9569

9570
9571

9572
9573
9574
9575
9576
9577
9578
9579

9580

9581
9582
9583

9584

9585

9586
9587
9588

9589

9590
9591
9592
9593
9594
9595
9596
9597

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR Key | Unwrap

Pair

CKM_DES2_KEY_GEN v
CKM_DES3_KEY_GEN v
CKM_DES3_ECB v v
CKM_DES3_CBC v v
CKM_DES3_CBC_PAD v v
CKM_DES3_MAC_GENERAL v
CKM_DES3_MAC v

6.18.1 Definitions

This section defines the key type “CKK_DES2” and “CKK_DES3” for type CK_KEY_TYPE as used in the

CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

6.18.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 126, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'467 Byte array Key value (always 16 bytes long)

~Refer to Table 11 for footnotes

DESZ2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;

CK_KEY TYPE keyType = CKK DES2;

CK UTF8CHAR label[] = “A DES2Z secret key object”;

CK BYTE value[l6] = {...};

CK BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
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9598
9599
9600
9601
9602

9603

9604
9605
9606

9607

9608
9609
9610

9611

9612

9613
9614
9615

9616

9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629

9630

9631
9632
9633

9634

9635
9636
9637

9638

9639
9640

{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}

}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.18.3 DES3 secret key objects

DESS secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 127, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'467 Byte array Key value (always 24 bytes long)

“Refer to Table 11 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DESS3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK DES3;
CK UTF8CHAR label[] = “A DES3 secret key object”;
CK BYTE value[24] = {...};
CK_BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.18.4 Double-length DES key generation

The double-length DES ke