JOASISOPEN

PKCS #11 Specification Version 3.1

Committee Specification Draft 01

16 February 2022

This stage:

https://docs.oasis-open.org/pkcs11/pkesll-spec/v3.1/csd01/pkecsll-spec-v3.1-csd01.pdf (Authoritative)
https://docs.oasis-open.org/pkcs11/pkcsll-spec/v3.1/csd01/pkecsll-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkesl1-spec/v3.1/csd01/pkesll-spec-v3.1-csd01.docx

Previous stage:
N/A

Latest stage:

https://docs.oasis-open.org/pkcs11/pkesl1-spec/v3.1/pkesll-spec-v3.1.pdf (Authoritative)
https://docs.oasis-open.org/pkcs11/pkesll-spec/v3.1/pkesll-spec-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkesll-spec-v3.1.docx

Technical Committee:
OASIS PKCS 11 TC

Chair:
Robert Relyea (rrelyea@redhat.com), Red Hat

Editors:
Dieter Bong (dieter.bong@utimaco.com), Utimaco IS GmbH
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

e PKCS #11 header files:
https://docs.oasis-open.org/pkcs11/pkesll-spec/v3.1/csd0l1/include/pkes11-v3.1/

Related work:

This specification replaces or supersedes:

e PKCS #11 Cryptographic Token Interface Base Specification Version 3.0. Edited by Chris Zimman
and Dieter Bong. Latest stage: https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcsll-base-
v3.0.html.

e PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 3.0. Edited by
Chris Zimman and Dieter Bong. Latest stage: https://docs.oasis-open.org/pkcs11/pkes11-
curr/v3.0/pkcs11-curr-v3.0.html.

This specification is related to:
e PKCS #11 Profiles Version 3.1. Edited by Tim Hudson. Latest stage: https://docs.oasis-
open.org/pkcsl11/pkesll-profiles/v3.1/pkcs11-profiles-v3.1.html.

Abstract:
This document defines data types, functions and other basic components of the PKCS #11 Cryptoki
interface.

Status:

This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of
this document. Any other numbered Versions and other technical work produced by the Technical

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 1 of 424

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.docx
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkcs11-spec-v3.1.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkcs11-spec-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkcs11-spec-v3.1.docx
https://www.oasis-open.org/committees/pkcs11/
mailto:rrelyea@redhat.com
http://www.redhat.com/
mailto:dieter.bong@utimaco.com
https://hsm.utimaco.com/
mailto:tony.cox@cryptsoft.com
https://cryptsoft.com/
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/include/pkcs11-v3.1/
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.1/pkcs11-profiles-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.1/pkcs11-profiles-v3.1.html

Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical.

TC members should send comments on this document to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send
A Comment" button on the TC's web page at https://www.oasis-open.org/committees/pkcs11/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/pkcs11/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Citation format:
When referencing this document, the following citation format should be used:

[PKCS11-Spec-v3.1]

PKCS #11 Specification Version 3.1. Edited by Dieter Bong and Tony Cox. 16 February 2022. OASIS
Committee Specification Draft 01. https://docs.oasis-open.org/pkcs11/pkesll-spec/v3.1/csd01/pkesll-
spec-v3.1-csd01.html. Latest stage: https://docs.oasis-open.org/pkcs11/pkesll-spec/v3.1/pkcsll-spec-
v3.1.html.

Notices:
Copyright © OASIS Open 2022. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy, [https://www.oasis-open.org/policies-quidelines/ipr/].
For complete copyright information please see the full Notices section in an Appendix below.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 2 of 424

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkcs11-spec-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/pkcs11-spec-v3.1.html
https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents

1 1] (o o [UTox o o AN RSP RPRPI 18
I = 1 T1 o PR 18
1.2 Symbols and abbreviations..............ueiiiie i 20
1.3 NOIMALIVE REFEIENCESveiiiiiiiiie ettt e st e e sttt e e e aabe e e e e snbbe e e e sbbeeeesnbreeeeans 22
1.4 NON-NOrMatiVe REFEIENCES ...t e e e e st e e e e e e e e e nneeees 25

2 Platform- and compiler-dependent directives for C OF CH+....uiiviiiiiiiiiiiiice e 28
2.1 SEUCKTUIE PACKING ... etteeeeiiteee ettt ettt ettt e e skt e e ekttt e e sk b et e e e kb s et e s b b e et e s bbb e e e s nbn e e e s nnnneeas 28
A e o] 1 (=] g =1 F= (=T g 4 F= ol {01 PRSP 28

3 GENETAl ALA TYPES ..eeee ittt ettt e ettt e e e et e e e e a bt e e e aa b et e e e st et e e e st e e e e e anbe e e e e anbe e e e e nees 30
T R 1= T = TN a1 (0] 1. = Ui o [PR PRRRR 30
3.2 SIOt AN tOKEN LY PES .. e —————————— 31
3.3 SESSION TYPES .. etiiieiiitiiie ettt ettt ettt bt e b bt e o b bt e e ek bt e e e R b bt e e e Rb et e e e R bn e e e e nbe e e e e anrne s 36
G0 @ o = ox Y o= 37
3.5 Data types fOr MECHANISMSviiiiiiiie et aaenee s 41
G T UL ot T T 17 1= 44
3.7 LOCKING-TEIatEU Ty PSS ... i ——————— 49

4 10 o] =To! £ O TSP PP PUP PR PPPPRON 52
4.1 Creating, modifying, and copying ODJECEScooviiiiiiiii 53

o R O =1 1] T o] o] [=Tod £ PO OP PP UPUPPRPPPPP 53
4.1.2 MOdifying ODJECES....cce e 54
4.1.3 COPYING ODJECES ... 54
4.2 COMMON AIDULES ...eeiiiie et e e e s e et e e e e e e s e st eeeeeeeeeannntennneeaens 54
4.3 Hardware Feature ODJECES.........ccoii i 55
I = 1T 1o) 1 55

2, 3.2 OVEIVIEW. ... cieeeieiie i e e et et e e e ettt et s e e e e e e e e et e eeeeeesestab s eeeeeeesstannaseaesessbasannaeesesesstannaaeaneenns 55
T T O [T 56
R R T N B 1< 11011 1o o T 56
e e T2 B =TT 1 o o o F O PO PTP PP PPPRPP 56
4.3.4 Monotonic Counter ODJECES........ccoo i 56
3 I R 0 T 11 o) o PP EETR SO PRPRRRN 56
N B =Lt ol o] (o] o HA PP PP POPPTPPPRPPRN 56
4.3.5 USer INterface ODJECES.eeiiiiiiie ettt e e e e e e s e e e e e e e e 56
T N B 1<) 1101 [o W OSSPSR 56
e N STl B L=t 1) [o o F O PP PPPPROP 57

] (o] = 1o [@ o] =Tt T PRSP 57
4.4.1 The CKA _UNIQUE_ID attriDULEcceeivieiiee ettt a e e e e e e e e e e s e 58
N B - = Wo] o] [T o £ T UUPT PP 59
N I =T 1 o) o PSS 59
5.2 OVEIVIEBW....ciii ittt ettt oottt e e e o4 4o e b e bt ettt e e e a4 e oA bbb ettt e e e e e e e aabbbee e e e e e e e e e nbnbeeeeaeeeesannnneees 59

Y N o= g 1] {Tor= 1 (o] o] [=Tod £ PRSP 59
0 A =T 1 o) o SRS 59
Z.68.2 OVEIVIEW....ceii ittt ettt e oottt et e oo oottt e e o4 4o e s bbb ettt e e e e a4 e e aba b e e et e ee e a4 aanbbbee e e e e e e e s e nbnbeeeeaeeeesanrnbnees 59
4.6.3 X.509 public key certificate ODJECLSocuuiiiiiiiiee e 60
4.6.4 WTLS public key certificate ODJECES.couii i 62
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 3 of 424

4.6.5 X.509 attribute certificate ODJECESccoiiiiiiiiie e 63

o 1= Vo] o] [T £ S PP 64
o 1= T o1 o] o F PSRRI 64
G @ Y= V1 PSRRI 64

I Vo] [Tl 2= Yo] 1Yo £ PR 65

4.9 Private KEY ODJECES ... ettt 67

O IS Tod {1 B =)V o o] (= ox £ PP 69

4.11 DOMAIN PArAMELET ODJECES. ...ciiiiiiiie ittt et e s e et e e e e ne e e e neee 71
o O R 1= 1 1 T L= PRI 71
o A @ Y= V= PRI 71

4.12 MECNANISIM ODJECTSeeii ettt ettt e s e bt e e e s b et e e e st e e e e enbneeeeneee 72
o 2 R 1= 1 11T L PRSP 72
I @ Y= V1= SRR S 72

413 Profile ODJECES ..o 72
T 0 I =1 1o) SRR 72
T @ Y= V1= SRR 72

5 FUNCHIONS ..ottt et e oo ookttt e e e e e s e ab bbbt et e e e e e s e nb bbb e et e e e e e sannbbbneeeaeeseann 74

5.1 FUNCHON FEIUIN VAIUESeeiiieiiee ettt ettt e e s e ettt e e e e e s e sae bttt e e e e e e s e nsnbaeeeeeeeessnnsnbaeeeeaeeeannn 77
5.1.1 Universal Cryptoki function return VaIUES.........ccoooeii i 78
5.1.2 Cryptoki function return values for functions that use a session handle............c.cccccovvviiennn.n. 78
5.1.3 Cryptoki function return values for functions that use atokencccccooeee i, 78
5.1.4 Special return value for application-supplied callbackscccceiiii 79
5.1.5 Special return values for mutex-handling fUNCLIONScooiiiiiiiiie e 79
5.1.6 All other Cryptoki function return ValuESsccoooi i 79
5.1.7 More on relative priorities Of CryptoKi €ITOrScueviiiiiiiiiiiie e 84
B.1.8 ErrOr COAE “QOICNAS ... oo ———————— 85

5.2 Conventions for functions returning output in a variable-length buffer.............................l, 85

5.3 Disclaimer concerning SAMPIE COUEccoiuuiiiiiiiiii ittt e e aba e nanneeas 86

5.4 General-purpose fUNCLIONScccooiiieieie e 86
B4 L C_INIANZE ..ottt 86
B2 € FINALIZE. ... e ——————— 87
e O 1= 1 11 (o O OOV PURPPPPR 87
B5.4.4 C_GEFUNCHONLIST....ceiiiitiiei ittt ettt e b e e e e st e e e e anbae e e e neee 88
B.4.5 C _GetINEIfAaCELIST ... ———————— 89
B5.4.6 C_GELINIEITACE ...ttt ettt e et e bt e e e anbae e e e neee 90

5.5 Slot and token management FUNCHIONSoouuiiiiiiie et e e e e e e e 92
T R O 1= 151 (o] PRSPPI 92
B.5.2 C G etSIOtINTO e —————————— 93
B5.5.3 C _GetTOKENINTO ... 94
5.5.4 C_WaAItFOISIOIEVENTeeiiiiiieiee ettt e et e e neee 95
B5.5.5 C_GetMECNANISIMLISTo 96
5.5.6 C_GetMeChaniSMINTO........cooiiiiiiii e 97
B.5.7 € INIETOKEN .. ———— 97
LS TR = T S 1111 2 1 RSP PPPR 99
RSN O ST= 1 = | TSRS PPPR 99

5.6 Session management FUNCHIONS.uuuiiiii et e e e e e e eeeae s 100

pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 4 of 424

5.6.1 C_OPENSESSION ...utiiieiiitiiee ettt e ettt e e st e e e sa bt e e e sa b et e e e aabe e e e e aab e e e e e st e e e e e et e e e e e abee e e e aabbeeeeannreeeean 101

N O 1 o 1= 1S =T (o] o P 101
5.6.3 C_ClOSEAIISESSIONScetiiiiiieeeie ittt e ettt e e e e e e ettt e e e e e e s e sabbbeeeeaae s e s nnbasneeeaeessaannsneaeeeeens 102
5.6.4 C_GetSESSIONINTO ..ot e e e e e et e e e e e s b aeeaae s 103
N I O 7= =1 (o] O T Lo =1 P 103
5.6.6 C_GetOPeratiONSIALEeiiiiiiiiee ittt e e st e e e st e e e e st e e e s sbr e e e e e nbreeeeaa 105
5.6.7 C_SEtOPEratiONSIALEuueiiieeeiiiiiiiieee e e e e e st e e e e e s s s e e e e e e s s st te e e e e e e s s ssateaaeeeeeessasnnrrnneeeaes 106
G I O o T || o E T PP PP O PP PP PUPPPTRPPPPPPT 108
LG I O o T |11 = SR 109
TG0 KO O oo o 11 | PP PP PUPURPPRPR 110
5.7 Object management fUNCHIONSouuiiiiiiiiie ettt eenbe e e e 111
L A A O O =T 1 (=1 @]] 1T o P 111
B5.7.2 C_COPYODJECT ...ttt ettt e et e e b e et e e et e e e e aneeeean 113
B5.7.3 C _DESIIOY OB ECT ... —————— 114
B5.7.4 C_GEtODJECISIZEeeiiiitiieee ittt e st e e e st e e e sbb e e e s bb e e e e abbeeeean 115
5.7.5 C_GEtANDULEVAIUEoeeiiiiiiiie ettt e et e e e e breeeean 116
B5.7.6 C_SEtARMNBULEVAIUEo 118
B5.7.7 C_FiNAODJECISINIT.....ceiiitiiiee ittt e e e st e e e sbe e e e e s bbeeeeabneeeean 119
B.7.8 C _FINUOD OIS ... e —————— 119
5.7.9 C_FiNAODJECISFINGL.....tiiiiiiiiiie ettt e et e e e s bneeeeans 120
5.8 ENCIYPLioN fUNCLIONS ... 120
B.8. 1 G ENC Y PN ... ——————————— 120
S I O =l (o] Y/ o | PP P T PR T P PPPPPPPIN 121
LS T T O =t Tor o o1 (0 o > = 122
B5.8.4 C_ENCIYPIFINGL ...ttt ettt et et e e st e e e s bb e e e e aneeeean 122
5.9 Message-based encryption fUNCLONSccooiiiiiii i 124
5.9.1 C_MeSSagEENCIYPLINIL ... —————— 124
5.9.2 C_ENCIYPIMESSAQEetitieiie e e ettt ettt e e e e e e e e s e e e e e et e e e e s e e s 125
5.9.3 C_ENCIYPtMESSAgEBEUINcci i ———————— 125
5.9.4 C_ENCIYPIMESSAGENEXL.ciiiiiiiiiitiiiieie ettt e e e e e s et e e e e e neeeee s 126
5.9.5 C_MeSSageENCIYPLFINGLcccoi i ————————— 127
5.10 DECIYPLON FUNCHONS ...ciiiiiiiiie ittt ettt e e e e s et e e e e abae e e e neee 129
N 0I5 R O BT Tox oY/ o 11 [SR PP P OPPPPPPPPP 129
LT KO 2 O B 1= Tox o Y/ o | RSP 129
5.10.3 C_DECIYPLUPUALEcitiieei ittt ettt et e e st e e e st et e e e aaba e e e e s bbeeeeanbneeeean 130

T O O BT o o] 1 T o = | TP UUTUP PRI 131
5.11 Message-based decryption fUNCHONSoooiiiiiiiiiie e 132
5.11.1 C_MeSSAQEDECIYPLINILceiiiiiiiitiiiiei ettt e et e e e e e e bbb e e e e e e e s annbreneeeaens 132
5.11.2 C_DECIYPIMESSAGE ... 133
5.11.3 C_DeCryptMESSAGEBEGIN.ciiiiiiieie ittt ettt et et e e et e e et e e et e e e abaeeeean 134
5.11.4 C_DeCryptMESSAGENEXL ... 134
5.11.5 C_MeSSageDECIYPFINGLeeiiiiiiiiii ettt ettt st e sbae e e 135
5.12 Message digesting fUNCHONS ..ot e et e e e e e e s e eeeeae s 135
L 2 R O B o =21 1 1 o | TP EUT TR PO 136
N O B T [S PR UPPRRPPPPRP 136
5.12.3 C_DigESIUPAALE ...ttt ettt e e e e sttt e e e e e e e s bbb e e e e e e e e s e annbreneeaae s 137
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 5 of 424

B5.12.4 C_DIgESIKEY ...ttt ettt e b e e b e e e s b e e e e b e e s b b e e e e arreeeean 137

LN ST O o =Ty T - | P 137
5.13 Signing and MACING FUNCHIONS.......ouuiiiiiiiii et 139
I R O S o o1 o T TP 139

ST 7 O 1o [OO PR PURPURRPPRN 139
B5.13.3 C_SIGNUPUALEeeeeiiitiieee ittt e ettt e e et e e e st e e e e e st e e e e e aaba e e e e abbeeeeanbneeeean 140
LN B O O S To T i = RSP 140
5.13.5 C_SIGNRECOVETINIT ...ttt ettt e et e e e st e e e e st e e e e sbb e e e e anbneeeeans 141

L B G O S o [a1 =TT 0 Y= TP 142
5.14 Message-based signing and MACING fUNCHONSccoiiiiiiiiiie e 143
5.14.1 C_MESSAGESIGNINILutiieiiiiiiie ettt e et e e st e e e st e e e e e sabe e e e e sbr e e e e abneeeean 143

LN B O S o [1\ (=TT Vo [P 143
5.14.3 C_SIgNMESSAGEBEGINceiiiutiiiiiitiiee ittt ettt et e e e st e e et e e e nreeeean 144
5.14.4 C_SIgNMESSAGENEXL......ciiiie i ———— 145
5.14.5 C_MeSSAGESIGNFINGLeoiiiiiiiiiiiiiie ettt e et b e e e s bneeeean 145
5.15 Functions for verifying Signatures and MACSocciiieiiiiieiee e 146
I R R O Y L= 41 Y/ 1 11 SO PP PP PURPURRPPRN 146
I O L1 | Y PSPPSRI 146
5.15.3 C_VEerNTYUPAALEo ———— 147
B5.15.4 C_VElYFINAL ..ccoiiiiiieiiie ettt et e et e e e e e e 147
5.15.5 C_VerifyRECOVEIINIL ... 148
B5.15.6 C_VEIHIYRECOVEN ...t 149
5.16 Message-based functions for verifying signatures and MACScccccovriiieiiiiiee i 150
5.16.1 C_MeSSagEVEITYINIT ... ————— 150
B5.16.2 C_VElfYIMESSAGE ...ceeiiutiieee it ettt ettt et e et e e e et et e e st bt e e e et bt e e e aabae e e e abbeeeeanbneeeean 150
5.16.3 C_VerifyMeSSAgEBEQINccco i i —————— 151
5.16.4 C_VerifyMESSAGENEXL......cccci it ————— 152
5.16.5 C_MeSSAgEVEITYFINGLcoiuiiiiiiiiiii ettt e e bne e e 152
5.17 Dual-function cryptographiC fUNCLIONScccooiiiiii i 153
5.17.1 C_DigeStENCIYPIUDPUALEeeiiiiiiiiie ittt et e e et ee e e sbneeeean 153
5.17.2 C_DeCryptDIgeStUPAte.cccoe i 155
5.17.3 C_SIGNENCIYPIUPAALEcoiiiiiiieiiiiiie ittt ettt e et e e e sbb e e e s bneeeean 158
5.17.4 C_DeCryptVerifyUPAate.ueiiiiiiiiieiieiee ettt ettt e e snreea e 161
5.18 Key management fUNCLIONSccooiiiiii i 163
5.18.1 C_GENEIAIEKEY ...ttt ettt e e e e e e e et e e e e ea e 163
5.18.2 C_GENEIAIEKEYPAIN ...ttt e et e e e e et b e e e e e e e e e annbreaeeaae s 165
5.18.3 C WWIAPKEY .eteeeieeeieiit ettt ettt ettt e e e s e et e e e e s e et e e e e e e e et e e e n e e e s 166
5.18.4 C_UNWIAPKEY .o 168
5.18.5 C _DEIVEKEY ...eiiiiiiiiiiiieie ettt et e ettt e e e e e e et bbbt e e e e e e e e nabbbee e e e e e e s e annbreaeeeaens 169
5.19 Random number generation fUNCHONScoouiiiiiiiiiiei e 171
B5.19.1 C_SEEURANUOM 171
5.19.2 C_GeNerateRANUOIMccoiiiiiiiiiiie ittt et e e e st e e e s sbb e e e sbbeeeean 172
5.20 Parallel function management FUNCHONS.uiiiiiii i 173
5.20.1 C_GetFUNCHONSIAIUS 173
A O O 07 T (o= | U o Tox 1T o PP TURPPPPRP 173
5.21 CallDACK FUNCHONS ...ttt e e e e ettt e e e e e e e e et e e e e e e e e e s e s nnbbeeeeaaens 173
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 6 of 424

LI N ST [=] gL [T o= 1| o F=Tod T 173

5.21.2 Vendor-defined CallDaCKScoiiiiiiiieiii e 174
6 [T=Tod Fo T 1] 1 0 TP PP PP PP PP PTPPPP 175
LT Y PRSP RPUR 175
LT 0 A T 0 1T] OO PR PURR VPSPPI 175
6.1.2 RSA PUDIIC KEY ODJECES....eeiiiiiiiie ettt e e e e e e s nreee e 176
6.1.3 RSA Private KEY ODJECES ...ueviiii it e e s s e e e e e e s rareeee s 177
6.1.4 PKCS #1 RSA KeY Pair GENETALION ...ccoiuviiieiiiiiiieeitiiee ettt ettt et e et e e sbne e e e sbneeeesnnneeeeans 179
6.1.5 X9.31 RSA KeY PaIl GENEIALIONuuviiiiieeeiiiiiiiiieeee e e s seiieee e e e e e s s st e e e e e e e s snateaaeeeeeesssnnnraaneeeees 179
6.1.6 PKCS #L VLD RSA ..ottt ettt b e s e ne e e nnn e e sn e e snreeenee e 179
6.1.7 PKCS #1 RSA OAEP mMechaniSm Parametersccoiuireeiiiireeeiiieeeesiieeeesieeeessneeeessnneeeeans 180
6.1.8 PKCS #L RSA OAEP ...ttt nee e 182
6.1.9 PKCS #1 RSA PSS mMechaniSm Parametersceeoiiieeeiiiieeeeiiieeeesiieee e siieeessnneeessnineeeeans 182
6.1.10 PKCS #1 RSA PSS ...ttt ettt sttt s e e b e e s br e e sb e e e snneeeneeen 183
B.1.11 ISO/EC 9796 RSA ... ittt ettt e et e e st et e e e st e e e e e saba e e e e snbbeeeeanbbeeeean 183
6.1.12 X.509 (FAW) RSA .ottt e ettt e e e b e e s b e e e st b e e e st e e e e e areeeean 184
B.1.13 ANSI XO.3L RSA ittt ettt ettt ekt s et sk bt e e h b e e e b et e sa b e e e be e e e nr e e e nbr e e snreeenee e 185
6.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPE-
MD 128 OF RIPE-MD 160octiiiiiiiieiiiiie ettt ettt e ettt e e e nn e e e e st e e e s anbne e e e nneee 186
6.1.15 PKCS #1 v1.5 RSA signature With SHA-224ccccciiiiiiieie et 186
6.1.16 PKCS #1 RSA PSS signature With SHA-224cooiiiiiiiiii e 186
6.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512.........c.cccceeeee 186
6.1.18 PKCS #1 v1.5 RSA signature With SHASB ..o 187
6.1.19 PKCS #1 RSA PSS signature With SHAS ... 187
6.1.20 ANSI X9.31 RSA signature With SHA-Lcciiiiiiiicii e 187
6.1.21 TPM 1.1b and TPM 1.2 PKCS #1 V1.5 RSA ...ttt 188
6.1.22 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEPcoiiiiiii ittt 188
6.1.23 RSA AES KEY WRAP ...ttt ettt ettt s e e b e e sbb e e st e e e snbeeebeeen 189
6.1.24 RSA AES KEY WRAP mMechaniSm Parameterscueeeiiiieeeiiiiieeeiiieeeesiieeessieeeessieeeeeans 190
B.1.25 FIPS L186-4coiiiiiieiii ettt ettt ettt ekttt h e h e b et s bt bt et b e e b e e nnbe e ere e 190
L B Y NPT TPRP 190
B.2.0 DETINITIONS ...t ettt et e e ettt e e et et e e s e e e e e E e e e e an e e e e e e e anreeeeaa 191
6.2.2 DSA PUBIIC KEY ODJECES... .. 192
6.2.3 DSA KEY RESIICHONSteiieiiitiiee ettt e et e e e et e e e saba e e e sbb e e e e sbbeeeean 193
6.2.4 DSA Private KEY ODJECES ... ————— 193
6.2.5 DSA domain parameter ODJECEScoiiiiiiiiiiiiiiee ettt e st e b e 194
6.2.6 DSA KEY PAIl GENEIALIONeeiiiiiiiiitiiiieie ettt e e e ettt e e e e e e s bbb eeee e e e e e s nabbbeeeeaeeesannbreneeeaens 195
6.2.7 DSA domain parameter gENEIALION..........uiiiiiiiee ittt et e et e e e s sbneeeean 195
6.2.8 DSA probabilistic domain parameter gENEration...........ccueeiiiieeeeiiiiee et e e 195
6.2.9 DSA Shawe-Taylor domain parameter geNerationccooiiuuiiieieeeiniiiiiieee e e e aiieeeeeee s 196
6.2.10 DSA base domain parameter gENEIatiONccuuiiiiiiiiee ittt e e sreeee e 196
6.2.11 DSA WIthOUL NASNINGeeeiiiie e e e e e eeeeaeas 196
B.2.12 DSA WIth SHA-L ...ttt e st e e e st e e e snba e e e e sbbeeaesnbbeeeean 197
B.2. 13 FIPS L18B-4eeeeiiiiiiie ittt ettt ettt ettt e e et e e et e e e e b e e e e e ba e e e e e ba e e e e abbe e e e abaeeeean 197
6.2.14 DSA WIth SHA-224 ... ettt st sb e et sbe e e bee e 197
6.2.15 DSA WIth SHA-256 ...ttt ettt ettt e e st e e s abb e e e e breeeean 198
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 7 of 424

6.2.16 DSA WIth SHA-384ottt e et e et e e e s abreeeean 198

6.2.17 DSA WIth SHA-5L2 ...ttt e e n e e snn e sn e e s e enee e 199
6.2.18 DSA WIth SHAS-224 ...ttt e e st e e s nbreee e 199
6.2.19 DSA WIth SHAS-256ooiiiiiiiiiiiiiie ittt e et e e et e e sb b e e e s nbreeeean 200
6.2.20 DSA WIth SHAS-384 ..ottt nn e s e nee e 200
6.2.21 DSA WIth SHAS-512ottt e et e e e st e e e e sbr e e e e sabneeeean 200
LRSI 1170} (o3 OB [- USRI 201
B.3.1 EC SIGNALUIES ...cciutiiieiiitiie ettt ettt ettt e e sttt e e s st e e e sa kbt e e e aab e e e e e st et e e e aabe e e e e aabbe e e e abbeeeeabneeeean 203
LR T2 B T 101 (T] OO P R PURPURRPPRN 203
6.3.3 Short Weierstrass Elliptic Curve public key 0bJeCtSccvvviiiiiiiiiiiee e, 204
6.3.4 Short Weierstrass Elliptic Curve private Key ODJECES.........cooiiiiiiiiiiiiiiiee e 205
6.3.5 Edwards Elliptic Curve public K&Y 0DJECESuuiiiii e 206
6.3.6 Edwards Elliptic Curve private Key ODJECLSccoiiuiiiiiiiiieeiiiee e 207
6.3.7 Montgomery Elliptic Curve public Key ObJECtS.......cccoeie i, 208
6.3.8 Montgomery Elliptic Curve private Key ODJECEScoiiiiiiiiiiiiiii e 209
6.3.9 Elliptic Curve Key Pair GENETALIONcuuiii ittt e e b e e e sbneeeeans 210
6.3.10 Edwards Elliptic Curve key pair generation..........ccoooeie i 211
6.3.11 Montgomery Elliptic Curve key pair generation............c.ceeoiuieeeeiiieeeeiiiiee et sieeee e sireee e 211
6.3.12 ECDSA Without hasShingcccooii i 212
6.3.13 ECDSA With NASHINGeeiiiiiiiiiiii et e e 212
B.3. 14 EUDSA ...ttt E e st E e e Rt R et e aR R et e Re e e e Rr e e s b e e e nnre e nree e 213
B.3.15 XEADSA ..ttt ettt etttk R Rt h bR et e aa et R et e e Rr e s nr e e nnre e areeea 213
6.3.16 EC MeChaniSm PAramMeLerSocuuiii ittt et e et e e sbe e e e abneeeean 214
6.3.17 Elliptic Curve Diffie-Hellman key derivation ..., 219
6.3.18 Elliptic Curve Diffie-Hellman with cofactor key derivationcccooieiiiiiieiciniiee e 219
6.3.19 Elliptic Curve Menezes-Qu-Vanstone key derivation...........ccccoeeeee oo, 220
6.3.20 ECDH AES KEY WRAP ... oottt ettt ettt ettt st e b e e sbb e e sbe e e snbeeeneeen 221
6.3.21 ECDH AES KEY WRAP mechaniSm Parameterscooiiieeeiiiiiee i siieeessiieeeesieeee e 222
B.3.22 FIPS 186-4 ...ttt ettt b et b et e e bt ah bt e s be e e nnbe e areeea 223
6.4 DIffIE-HEIIMAN ...ttt e ettt e et e e s et e e e e ebbe e e e e neee 223
L R D 1= 11 011 1T] I PP P TP PP PUPPRTPPPPRPT 223
6.4.2 Diffie-Hellman public KEY ODJECESccoiiiiiiiiiiie e 224
6.4.3 X9.42 Diffie-Hellman public KeY ODJECESouiiiiiiiiii e 224
6.4.4 Diffie-Hellman private KeY ODJECESccooii i 225
6.4.5 X9.42 Diffie-Hellman private Key ODJECESeiiiiiiiiiiiiiee e 226
6.4.6 Diffie-Hellman domain parameter ODJECEScoiiii i 227
6.4.7 X9.42 Diffie-Hellman domain parameters ObJECES.........cceoiiiiiiiiiiiii e 227
6.4.8 PKCS #3 Diffie-Hellman key pair geNerationcccuuueieiiieiiiiiiiiiieee e 228
6.4.9 PKCS #3 Diffie-Hellman domain parameter generationcccueeeveeeiriiiiiiieeeeenssniiieeeeenns 229
6.4.10 PKCS #3 Diffie-Hellman Key derivation..............oouiiiiiiiiiiiieeiiee e 229
6.4.11 X9.42 Diffie-Hellman mechaniSm parameters..........ccuueiiiiieiiiiiiiieiee e 230
6.4.12 X9.42 Diffie-Hellman Key pair geNeration............cueeeiiiiiieiiiiiee it e steeeeesnieeee e 232
6.4.13 X9.42 Diffie-Hellman domain parameter generationooccuuveeeieeeiniiiiieeeee e eiiieeeeeens 233
6.4.14 X9.42 Diffie-Hellman Key deriVationeueiiiiiiiiiiiiii e 233
6.4.15 X9.42 Diffie-Hellman hybrid Key deriVationccoouiiiiiiiiieeiiiieeieee e 234
6.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation.............cccoecvvieeeieeeniiniiieeenenn. 234
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 8 of 424

6.5 Extended Triple Diffie-Hellman (X3dh)..........cooi e 235

LT A BT 01T] o OO PURRURRPPRN 235
6.5.2 Extended Triple Diffie-Hellman Key ODJECLSocuuiiiiiiiiiiiiiee e 235
6.5.3 Initiating an Extended Triple Diffie-Hellman key exchange...........cccccoviiiiiiiii e 235
6.5.4 Responding to an Extended Triple Diffie-Hellman key exchange............ccccovvveveeeviiivvnnnnnnn, 236
6.5.5 Extended Triple Diffie-Hellman parameters ... 237
6.6 DOUDIE RAICNELeiiiiiiieeee ettt e e n e s e e e e nnne s 238
LSRN = 11011 1o o PSPPI 238
6.6.2 Double Ratchet SECret K&Y ODJECIS.....uivii i 238
6.6.3 Double Ratchet Key deriVationcccceiiiiiiiiiiiie e e e s snraaneeee s 239
6.6.4 Double Ratchet ENcryption MeChaNISIMeiiiiiiiiiiiiiiee e 240
6.6.5 Double RAtChet PArAMELEISc..uviiiiiee i r e e e s s s e e e e e e s s snnreaneeeees 241
6.7 Wrapping/unWrapping PriVALE KEYSccciiuiiieiiiiiieiitiie ettt ettt sib e e s aebe e e e asbe e e e e nees 241
6.8 GENEIIC SECIBL KBY ... ———— 243
LSS < 11 011 1o o USSP 244
6.8.2 GENETIC SECIEL KEY ODJECESviiieiiiiiiee ettt et e e sbneeeean 244
6.8.3 Generic secret KeY generationcccooiiiiii i 245
6.9 HMAGC MECNANISIMNS ..oie ittt e e et e et e e e s s ettt e e e e e e s e s anbeaeeeaeeesaanssbasaeeeaeeseannnsanneeeeens 245
6.9.1 General block cipher mechanism parameters..........cccooove i 245
LT 0 USSR 245
6.10.1 DEIINITIONSeeeee ittt e et e e s et e e s n et e s s e e e e s nn e e e s arr e e e e anreeeeaa 246
6.10.2 AES SECTEL KEY ODJECLS ... 246
6.10.3 AES KEY GENEIALIONeeiiiiiiiiiie ettt ettt ettt e e st e e e st bt e e e st b e e e e sabb e e e e snbeeeeeanbneeeean 247
B.00.4 AES-ECB..... ..ottt b bbbt E e b et bt e e h bt e st e e snr e ere e 247
B.10.5 AES-CBC ...ttt ettt ettt e sttt e e e e e e et e e ettt e e be e e aR et e te e e tee e e aeeeeneeeaneeeateeeanteeenneeans 248
6.10.6 AES-CBC With PKCS PAOAING ...eiuteieiiieiiiieiitie ittt esnee e 248
B.00.7 AES-OFBi......ooi ittt bbbttt b et be e hr e e st e e anre e areeea 249
B.10.8 AES-CIB ...ttt ettt et e e ettt et e ee e e ket e e ae e e nneeeaneeeateeeanteeeneeens 249
6.10.9 General-length AES-MAC ... 250
B.10.10 AES-MAC ..ottt ettt e et e ettt et et ea et e et e e tae e e aeeeaneeeaneeeateeeanteeaneeens 250
6.10.11 AES-XCBC-MAC ..ottt ettt ettt ettt s hb e s ab e st et e sabe e e abe e e sbb e e abreesnbeeeneeen 250
6.10.12 AES-XCBC-MAC-96......citiieiieeeitie e e atee et e ateeasteeessteeesaeeeaneeeantaeesnteeesaeeeanseeanneeeanseeenseeens 251

L I R SRV o T @ 11 = 251
L I I B = 11 1] £ PP PP PP RPPUPPRTPPPPRPT 251
6.11.2 AES with Counter mechaniSm ParamEtersSc.ueeeeiiiiee ittt ee e aieeee e 251
6.11.3 AES with Counter ENcryption / DECIYPLION......cciiiiiiiiiiiiii et 252
6.12 AES CBC with Cipher Text Stealing CTS......ocuuiiiiiiiie et 252
Lo 2 B = 11 T1 1 o] o TP UUT TR POPTPPPI 252
6.12.2 AES CTS MeChaniSM PAraMELEISccoiiiuiiiiiieie ettt e et ee e e et e e e e e e e aenbreaeeeae s 253
6.13 Additional AES MECHANISIMSccoiieiiiiiiiie e ie ettt e e s s e e e e e s s s eeer e e e e e s s snnreaeeeeeeeseasnraneneeees 253
LS B 0 B = 11 T1 (o] PP PO 253
6.13.2 AES-GCM Authenticated ENcryption / DECIYPLONceeiiiiiiiiiiiiieie et 253
6.13.3 AES-CCM authenticated Encryption / DECIYPLION.........eeiiiiiiiiiiiiiieiee e 255
B.13.4 AES-GMAC ...ttt ettt bt b e bt s R bt a bt e bt e b et e bt e e e ab e e abe e e snbe e ebeeen 257
6.13.5 AES GCM and CCM MechaniSm ParameterS.........ccoucueieiiiieeeeiiiieeeiiieeeesiieeessteeeessieeeeeans 257
B.14 AES CIMAC ...ttt ettt a e btk bt o ket e e a b e e b et R Rt e e b et e eR b e e e bt e e be e e snbe e e nnbeenaaeas 260
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 9 of 424

ST R B T 1 1140 = 260

LS B Y 1= Tod o P T T 1Y T o F= U= L 1 =T =T S 260
6.14.3 General-length AES-CIMAC ...ttt e e sbreeeean 261
B.14.4 AES-CIMAC.....ciiiitite ettt ettt e ettt e st e e e st e e e st e e e e s bt e e e e astbeeee s tbeeeeanbaeaeeantaeeeeataeeeeataeeeeans 261
SR AN ST 1S T PO 261
Lo ST = 11 T1 (o] 1 PRSPPI 262
6.15.2 AES-XTS SECIret KEY ODJECLSuviiiiiiiie e e e s rraeeeee s 262
6.15.3 AES-XTS KEY GENETALIONeeeiiiiitiiiieiiiiee ittt ettt ettt ettt e st e e e st e e e sbe e e e e sbr e e e e abneeeeans 262
R Y S T I TR UURPPPPRR 262
B.16 AES KEY WIAP ...ciiiiitiiieeiiiiee ittt sttt sttt e e sttt e e s sttt e e s st e e s aa bt e e e anbbe e e e ensbe e e e ansbe e e e anbeeeeenbeeeeenees 262
Lo G0 = {1 T1 (o 1T POPTPPPI 263
6.16.2 AES Key Wrap MechanisSm ParametersS...........ceeeeiiiiiiiiiieeee e iiiiiieeee e e e s s ssinsneeee e e s s snnsnnneeeees 263
6.16.3 AES KBY WIAP .oieiiiiiiitiiiii ettt e e e e e e e e s et e e e e e e e e s 263
6.17 Key derivation by data encryption — DES & AES ... 264
L0 A = 1 T1 (o TSSO 264
6.17.2 MeCh@NISM PArAMELEIScceiiiiiiiiiiiiie ettt s e e e e e e e e st e e e e s e snnbraee e e e e e s s annreeaeeeeens 265
6.17.3 MeChaniSM DESCIIPLIONo 265
6.18 Double and Triple-1ength DESooi e e 265
B.18. 1 DEIINITIONS ...ttt ettt et e e e e ettt e e e e e s e bbb e e e e e e e e s s nnbb b e e e e e e e e s annnbnneeeaeeas 266
6.18.2 DES2 SECret KEY ODJECLSviiiiiiiiiee ettt e e sbn e e e 266
6.18.3 DESS3 SECIEt KEY ODJECLS ... 267
6.18.4 Double-length DES KeY gENEIatiONcccooiiii i 267
6.18.5 Triple-length DES Order Of OPerationSeiiiiuiieeiiiiiee e iiieee et e et e st e nineeeeans 268
6.18.6 Triple-length DES in CBC MOUEcoooiiiiiiee e 268
6.18.7 DES and Triple length DES in OFB MOAEccooouiiiiiiiiiieiiiieee et 268
6.18.8 DES and Triple length DES in CFB MOUE........ccooiiiiie e 269
6.19 Double and Triple-length DES CMAC ..o 269
L0 = 1 T1 (o o OSSP 269
6.19.2 MEChaNISM PAramMEIEIS ————— 269
6.19.3 General-length DES3-MAC ...ttt ettt e st e e e sbaeeeeans 270
B.19.4 DESSB-CMAC ...cciitiiie ittt ettt ettt e e sttt e e e ss bt e e e ss bt e e e an bt e e e e anteeeeeaabaeeeeanbaeeeeantbeeeeabbeeeeennneeeeans 270
B.20 SH A L .ttt — e e ——— e e ——— e e s o ——e e e e ——— e e e e ——teeaataeeeaanraeeeannrreaeeannes 270
L2 0 0 = {1 T1 o o 1SS 271
OS] o Ve o 1o =) PSP UUSRPRPRR 271
6.20.3 General-length SHA-L-HMACoooiiiie ettt e e sbaee e 271
B.20.4 SHA-L-HMAC ...ttt ettt e st e e e st e e e sttt e e e antae e e e snbaeaeesnbaeeeesntbeeeesnbbeeaeansbeeanans 272
6.20.5 SHA-L KEY UEIVALION.eeiiiiiiiei ittt e et e e e st e e e sba e e e e snbeeeaeabneeeean 272
6.20.6 SHA-1 HMAGC KEY GENEIALION.uitiiiiaeiiiiiiietie e e ettt e et e e e e e et e e e e e e e s annbeeeeeaaens 272
B.21 SHA-224 ...ttt et e e bt e e R be e e e et bee e e e s bt e e e e nraeeeanreeaeeanees 273
L2 I = 1 T1 o] o SO 273
B.21.2 SHA-224 STveeeeeiiiiee ettt e e e ettt e e st e e e sttt e e e st e e e s tb e e e e bae e e e ataeeeeantbreaeenraeeeeans 273
6.21.3 General-length SHA-224-HMACocuuiiiiiiiie ettt et e st ee e sbaeeeeans 273
B.21.4 SHA-224-HMACcoiiiteiee ettt ettt st e e st e e e et e e e e antt e e e e sata e e e e anbaeeeesntaeeeessbeeaeansbeeaeans 274
6.21.5 SHA-224 KEY TEIVALION.....ciiiiiiiiitiiiiiie ettt ettt e ettt e e e e e s bbb e e e e e e e e annbeeeeeeaeas 274
6.21.6 SHA-224 HMAC KEY GENEIALION.ceiiiiiieeiiitiiee e itite e ettt e st ee e et e e e st e e s sbae e e e sbeeeeesbaeeeeans 274
B.22 SHA-256ooeiiiiiiee ittt eet ettt e e — e — e — e e o ——— e e e e nbe e e e e nbe e e e e s re e e e e s raeeeannreeaeeanees 274
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 10 of 424

SR N B 1< 1114 (0] = 275

B.22.2 SHA-256 TIESE ... veeeiiiiiiie ittt s bttt ettt e st e e et e e e st e e e st e e e e s bae e e e abbe e e e snbbeeeeanbreeeeans 275
6.22.3 General-length SHA-256-HMACcuuiiiiiiiiie ettt e e 275
B.22.4 SHA-256-HMACttt et e e e ettt e e e e e s et b be e e e e e e e e s nnbeaaeeeaeeesaannsreeeeeaens 276
6.22.5 SHA-256 KEY EIVALION.....ciiiiiiiiiiiiiiiie ettt e e e s e r e e e e s st e e e e e e s s st e ae e e e e e e s s annrenneeeees 276
6.22.6 SHA-256 HMAC KEY GENEIALION.ceiiiiiiieiiitiiee ittt ettt ettt et e e st e e e st e e s sbr e e e s sbneeeeans 276
B.23 SHA-384 ...ttt e et e e e e e e et e e e e e e e r e et e e e e e eeaees 276
L2 I B = {111 (o] o 1P EUP TR POPTPPI 276
B.23.2 SHA-384 dIgESE ... eeeiiiitiiie ittt ettt e e et e e e st e e e st e e e et e e e e ba e e e e s bbeeeeanareeeeans 277
6.23.3 General-length SHA-384-HMACcoooo oot e e e e e e s sanraaaeeeee s 277
B.23.4 SHA-3BA-HMACottt e e et ettt e e e e e s et b beeee e e e e e s nbeaeeeeeeeesaannrreeeeeaens 277
6.23.5 SHA-384 KEY EIIVALION.....ciiiiiiiiiiiiiiii et ee et s s e e e e e s s e e e e e s saate e e e e e e s s snnrenneeeees 277
6.23.6 SHA-384 HMAC KEY GENEIALION.cciiitiieeiiiiiieeitiie e ettt e sttt e e st e et e e e sbn e e e s sbneeeesnneeeeans 278
B.24 SHA-DL2 ettt e e e e h e et e e e e e e e b e e e et e e e e e brereeaaens 278
L2 = {1 11 (o] o USROS 278
B.24.2 SHA-5L2 IS ... eeeeeiitiieee ittt ettt ettt e e st e b e e e st b e e e e e bb e e e nneeeean 278
6.24.3 General-length SHA-512-HMAC ..o 279
B.24.4 SHA-S5L12-HMACttt e et e e e e ettt et e e e e e s st e e e e e e e e e s s nnteaaeeeeeeesannnteeaneeeens 279
6.24.5 SHA-512 KEY UEINVALION.....cccii i 279
6.24.6 SHA-512 HMAC KEY GENEIALION.ceiiiiiiiiiiiiieeeitiie e ettt ettt et e e et e e et e e e sbeeeeesbneeaeans 279
B.25 SHA-BL2/224 ...ttt e e e s e e e e e e e e e reaae s 280
B.25.1 DEIINITIONS ...ttt e oo e ettt e e e e e e e bbb e e et e e e e e s aabe b e e e e e e e e s annnbneeeeeeens 280
6.25.2 SHA-512/224 QIgEST .. .ueeieiiieie ittt e e st e e e e e e s st e e e e e s s nbea e e e e e e e e e nnnrareeeeee s 280
6.25.3 General-length SHA-512/224-HMAC ...ttt 280
6.25.4 SHA-512/224-HMACeteeeee ettt e e e e ettt e e e e e e s st e ee e e e e s s nntaaneeeeeeeeannnsreneeeeens 281
6.25.5 SHA-512/224 KeY AEIVALION.utiiiiiiee ittt e e e e et e e e e e e e sanbreeeeeeeas 281
6.25.6 SHA-512/224 HMAC KEY gENEIALIONccceiiiiie ittt 281
O IS o Ve I 1 TSP 281
LSO G A B = 1111 1 o] o TP PP TT P POPPPPPIN 282
6.26.2 SHA-512/256 QIgEST ... uveieeiiitiiie ettt ettt ettt e e st e e e st et e e e st e e e s abb e e e e e nbreeeean 282
6.26.3 General-length SHA-512/256-HMACuuiiiiiiiiaiiiie et 282
6.26.4 SHA-512/256-HMACoeeeiieeeie ittt e e e ettt e e e e e s e st e eeaeessannteaaneeeeeesannnssenneeeens 283
6.26.5 SHA-512/256 KEY UEIVALION.ccitiiiiiiiiiie ittt ettt et e e et e e e abneeeean 283
6.26.6 SHA-512/256 HMAC KEY QENEIAtIONccoeieii ittt 283
L S o N I | 283
LI 8 B = 1111 1 o] o 1T TR PO 284
B.27.2 SHA-BL2/E IS ...eeeiiiiiieee ittt ettt e st e e e st e e e st e e e e abb e e e abaeeeean 284
6.27.3 General-length SHA-512/t-HMAC ..ot 284
B.27.4 SHA-SL2/T-HMAC ...ttt ettt e e e e e e ettt e e e e e e st e ba e e e e e e e s aannbbeneeaaens 284
6.27.5 SHA-512/t KEY EIVALION.......eeiiiiiiiii ittt ettt e et e e st ee e e sbneeeean 285
6.27.6 SHA-512/t HMAC KEY gENEIALIONceiiiiiiiiiiiiiieie ettt ettt e e e e e nnnbreeeeeae s 285
LS S N E S 285
LS S I B = 11 11 (o] o PP PO 285
6.28.2 SHAB-224 QGBS ...ttt e e et e e e e e e e e e e s e nbraaeaaae s 286
6.28.3 General-length SHA3-224-HMACouoiiiiiiiee ettt bbee e anneee e 286
6.28.4 SHAB-224-HMAC ... ettt ettt e e e e e e e bbbt e e e e e e e s abbbe e e e e e e e s aannbreaeeeaens 286
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 11 of 424

6.28.5 SHA3-224 KEY dEIVALION.eiiiiiiiii ittt ettt e e sb e e e sbneeeean 286

6.28.6 SHA3-224 HMAC KEY gENETALION ...eevieeiiiiiiiiiieee e e e seeiiite e e e e e s s st e e e e e e s s snntnaan e e e e e e s s nnnnraneeeees 286
B.29 SHAB-256ieiiiiiitiit ettt et e e h e e e e e R et e e b et e e e n et e e e nbe e e e 287
LS R B = {1 11 1 o] 1R PRPPPPI 287
6.29.2 SHAS-256 QIgESTveeeiiieiiiie ettt 287
6.29.3 General-length SHA3-256-HMACooiiiiiiiieiiiiee ittt e e nne e 287
6.29.4 SHASB-256-HMAC ...ttt ettt e st e s s r e e e s s e e e s s enre e e e s enreeeean 288
6.29.5 SHA3-256 KEY dEIIVALION........ciiiiiiiiiiiiiiie ettt e e e e snreee e 288
6.29.6 SHA3-256 HMAC KEY gENEIALION ...eeviieiiiiiiiiieeeee e e ceeiiiet e e e e e s s st e e e e e e e s ssntnaae e e e e e e s s snnrrnaeeeees 288
B.30 SHAB-384 ...t r e 288
B.30.1 DEIINITIONS ...ttt ekt e e et et e e st e e e e sk e e e e e aabe e e e e anbreeeeabreeeean 289
6.30.2 SHAS-384 dIgESTeeeeiiieiiii ettt 289
6.30.3 General-length SHA3-384-HMACooiiiiiiiieiiiie ettt e e i e 289
6.30.4 SHASB-384-HMAC ...ttt ettt e st e s s r e e e e anr e e e s anr e e e e annneeeean 290
6.30.5 SHA3-384 KeY dEIVALION........eiiiiiiiiiiiiiii ettt e et e e e sbneeeean 290
6.30.6 SHA3-384 HMAC KEY gENETALION ...ccouviieiiiiiiiieeiiiie ettt ettt ettt e et e et e e e bne e e e s nbneeeeans 290
B.31 SHAB-5L2 ...ttt e e e 290
LS X I R B = 11 T 1o F- PP PP PP UUPPPPRPPPPPPT 290
6.31.2 SHASB-512 QISeeeiiriieeiiriiee ettt et e e st e e e e e e e e e e 201
6.31.3 General-length SHA3-512-HMACouiiiiiiiiie ittt e e ene e 291
6.31.4 SHASB-512-HMAC ...ttt ettt e st r et e e s e e s s n e e e e anae e e s s nnr e e e e annneeeean 201
6.31.5 SHAS-512 KEY UEIVALION......ccciiie e 291
6.31.6 SHA3-512 HMAC KEY GENETALION ...ccouviiieiiiiiiieeiiiiee ettt ettt ettt e ettt e e et e e e s nbneeeeans 291
B.32 SHAKE ... ettt st s e s 292
LR 22 I = {11 T1 (o] o 1SS 292
6.32.2 SHAKE K@Y DEIVALIONcccieie ittt 292
6.33 BLAKEZB-160.....cciitieiiiiieite ettt ettt ettt e e 293
B.33.1 DEFINITIONS ...ttt et e e ettt e e st et e e e aabb e e e e sbb e e e e abneeeean 293
6.33.2 BLAKEZB-160 QIgEST......eeiiirieieiitiiee ittt et e st e s st e s s e e e s snne e e s anneeeesnneeeean 293
6.33.3 General-length BLAKE2B-160-HMACcuiiiiiiiiiieiiiiiee ettt 293
6.33.4 BLAKEZB-160-HMACcoiiitiiiiiitiiee ittt ettt e st e s e e e e e e s snn e e e e nnneeeean 294
6.33.5 BLAKE2B-160 KeY ENVALIONveiiiiiiiiie ittt ee e e e 294
6.33.6 BLAKE2B-160 HMAC KEY gENEIAtIONccciiitiiiiiiiiiieeeitiie ettt e sttt ettt e et e e bbeee s snneeeean 294
6.34 BLAKEZB-256.......ctieiiiiitiie ettt ettt 294
B.34. 1 DEFINILIONS ...ttt ettt e e st et e e st bt e e e aaba e e e e anbbeeeeabneeeean 295
6.34.2 BLAKEZB-256 TIgEST......ceeiitiiieiiiiiee it ettt ettt e et e st e e e sb e e e st e e e s ann e e e e anneeeean 295
6.34.3 General-length BLAKEZ2B-256-HMACcuuiiiiiiiiiai ettt e sniaeee e 295
6.34.4 BLAKEZB-256-HMACooiitiiiiiitiiee sttt ettt et et e s abr e e e e anreeeean 295
6.34.5 BLAKE2B-256 KeY AEIIVALIONuueiiiiiiiiiiiiiieee ettt e e eeeeeeeas 295
6.34.6 BLAKE2B-256 HMAC KEY gENEIAtIONcceiiutiieeiiiiieeeiiiiee ettt e sttee e staee et e et eaeannneeeeans 296
6.35 BLAKEZB-384 ...ttt 296
B.35.1 DEFINILIONS ...ttt e sttt e et bt e e e st et e e e snbb e e e e sbb e e e e abeeeeean 296
6.35.2 BLAKEZB-384 digEST......eeiiitiiieiitiiee ittt ettt e st e e st e e e st e e e s sn e e e nnneeeean 296
6.35.3 General-length BLAKEZ2B-384-HMAC ..ottt ettt 297
6.35.4 BLAKEZB-384-HMACcooiitiiiiiitiiee ittt sttt ettt e e e sttt e e e st e e e snbae e e e snbbeeeeanbneeeean 297
6.35.5 BLAKE2B-384 KeY AerIVALIONuuuiiiiieiiiiiiiiie ettt e e e e eeeeeeeas 297
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 12 of 424

6.35.6 BLAKE2B-384 HMAC KEY GENEIAtIONceciiutiiieiiitiieeeitiiee e ettt e e st e st e et e e s b e e e snnneeeean 297

6.36 BLAKEZB-512.......ctiiiiiieiiie ittt ettt E et nn e r e 297
LSRG T B = {111 1o o 1= PRSP TRPOPPPPI 298
6.36.2 BLAKEZ2B-512 QIgESt......cciitiiiiiiiiiiieiiiee ettt stee ettt sttt ettt e e sae e e sabe s sbee e snbeeaneaen 298
6.36.3 General-length BLAKE2B-512-HMACccooiiiiiiiiiie e 298
6.36.4 BLAKE2B-512-HMAC ...ttt ettt sttt sttt e bt sabe e sbe e e sabe e s beeesabeeaneaea 299
6.36.5 BLAKE2B-512 KeY UerIVALIONccvviiiiieiiiieiiie ettt 299
6.36.6 BLAKE2B-512 HMAC KEY GENEIALIONceciiutiiieiitiieeeitiiee ettt e e st et e et ee s abre e e e snnneeeeen 299

6.37 PKCS #5 and PKCS #5-style password-based encryption (PBE).........cccccccoovvviiiieeieeeiiiiiiineeeenn, 299
B.37. 1 DEFINILIONS ...ttt e e r e s e r e e e 300
6.37.2 Password-based encryption/authentication mechanism parameters..........ccccceevvveeeeiiieeeens 300
6.37.3 PKCS #5 PBKDF2 key generation mechanism parameterscccccceevevccivieeeeeeeessscvvnnneeens 301
6.37.4 PKCS #5 PBKD2 KEY gENEIALION ...ceciiutiiieiiitiiieeitiie ettt e sttt e st ee e sbae e e s sbbe e e s sbbeeesannneeeeans 303

6.38 PKCS #12 password-based encryption/authentication mechanisms..............cccccce e, 303
6.38.1 SHA-1-PBE for 3-Key triple-DES-CBCc..oiiiiiiiiiiiiiee ettt 304
6.38.2 SHA-1-PBE for 2-Key triple-DES-CBCc..oiiiiiiiiiiiiiiec et 304
6.38.3 SHA-1-PBA fOr SHA-L-HMAGC ...ttt s sn e snee e 304

LTRSS 1] SRR 304
6.39. 1 DEIINITIONSeeeie ittt e et e e st e e st e e s r e e e e ar e e e e a e e e e anneeeeaa 305
6.39.2 SSL MeChaniSM PAraMELEISuviiiiiiiie ettt et e e et e e e sbneeeeans 305
6.39.3 Pre-master KEY gENEIAtIONcccoeie i 307
6.39.4 MaSter KEY AerIVALIONcccce i 307
6.39.5 Master key derivation for Diffie-Hellman ... 308
6.39.6 Key and MAC AeIVALION.......ccoeie i 309
6.39.7 MD5 MACING iN SSL 3.0 ... ieiieiiii ettt tee et e et e e st e et e et e e smte e e saeeesneeeaeeeeanteeenneaens 310
6.39.8 SHA-1 MACING IN SSL 3.0 ..eiiiiiiiiiieiie ettt sttt e et e e sare e snee e 310

6.40 TLS 1.2 MECNANISIMS ...ttt ittt ettt s et e s e e st e s e st e s e et e e ennn e e e e nnes 310
L0 L0 = {1 T1 (o o 1SS 311
6.40.2 TLS 1.2 MmeChanisSm Parametersccooeioiiiiie e 311
Lo L0 TR T I 0 |V 314
6.40.4 Master KEY AerIVALIONccceiiie i 314
6.40.5 Master key derivation for Diffie-Hellman ... 315
6.40.6 Key and MAC dEIVALION.........ciiiiiiiiii ittt et e et e e s sbe e e e e abbeeeean 316
6.40.7 CKM_TLS12_KEY_SAFE_DERIVE......cccii ittt 316
6.40.8 Generic Key Derivation using the TLS PRFc.uiiiiiiiiiiie et 317
6.40.9 Generic Key Derivation using the TLS12 PRF ...t 317

L0 0 T I 318
Lo I B = 11 11 1o TR POPTPPPI 318
6.41.2 WTLS MeChaNiSM PAraMELEISuiiiii ittt e e ettt e et e e e e e e et e e e e e e e e annbreeeeaae s 319
6.41.3 Pre master secret key generation for RSA key exchange suite...........cccccovieeiiiiee e 321
6.41.4 Master secret KeY deriVAtiONcouii it e e aeeeee s 322
6.41.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography 322
6.41.6 WTLS PRF (pseudorandom fUNCHON)ueeiiiieiiiiiiiiii et ee s 323
6.41.7 Server Key and MAC AerIVALIONccuii ittt a e e e aeibreeeeee s 323
6.41.8 Client key and MAC deriVationocuueeiiiiiiieiiiiiee ettt et e e st ee e e sbneeeeans 324

6.42 SP 800-108 KEY DEIVALION ...ceieeiiiiiiiiiieiteeaae ittt e e e sttt e e e e e e s s aibb e e et e e e e e s e asnbeteeeaaeesaannrbeneeeaens 325

pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 13 of 424

SR A N B 1< 11140 = 325

6.42.2 MeChaniSIM Par@mMELEISuuiiiiiiiiee it ettt ettt ettt e et e e e st e e s st e e s snbaeeeesnbeeeeeanbbeeeeans 326
6.42.3 CoUNEr MOOE KDF ...t e e e e ettt e e e e e st e e e e e e e s s ennrreaeeeeens 331
6.42.4 FEedbDaCK MOAE KDF ...ttt ettt e e e e e st e e e e e e e s annbreeeeaeens 331
6.42.5 Double PIpeling Mo KDFuuuiiiiieiiiiiiiiie e s st r e e e s s st e e e e e s s st aae e e e e e s s snnranneeeees 332
6.42.6 Deriving AItIONAl KEYSoiiiiiiiieie ittt e et e e sbneee e 333
6.42.7 Key Derivation AHDULE RUIESooviiiiiiiiiieec e e e sraaee e 334
6.42.8 Constructing PRF INPUE DALAcoiiiiiiiiiiiiiie ittt e e 334
6.42.8.1 Sample Counter MO KDF ...t e e e e e e e e e e e s e e e e e e e s e e aarraeeas 334
6.42.8.2 Sample SCPO3 Counter MOAE KDF...........ooiiiiiiieiieie ettt 335
6.42.8.3 Sample Feedback Mode KDFooiiiiiiiiiiiicc et e e e e e e e eaarraee s 336
6.42.8.4 Sample Double-Pipeling MOAE KDFoooiiiiiiieeee et e e e e e e e nneeeeeeas 338

6.43 Miscellaneous simple key derivation MmechaniSms ... 339
L 5 0 = {1 T1 (o] o 1TSS 339
6.43.2 Parameters for miscellaneous simple key derivation mechanisms................ccccoe e, 339
6.43.3 Concatenation of a base key and another KeY ... 340
6.43.4 Concatenation of a base key and data.............ccoooeiiii i 340
6.43.5 Concatenation of data and @ base KeY........c..eoiiiiiiiiiiiiii e 341
6.43.6 XORINg of a key and dataccooeiiieii i 342
6.43.7 Extraction of one key from another KeY........ccoooiioiiii i 343
L 1Y SRR 343
Lo R B = 11 11 1 o] o TSP PP TP POPPPPPPN 344
6.44.2 CMS Signature MechaniSm ODJECESccoiiiiiiiiiiiie et 344
6.44.3 CMS MEChANISM PAraMEIEIScc i 344
LS O A |V ISR o F= L0 = 345
LT LS 2] o1] o S 346
Lo LT A B = 11 11 (o] o TSP T TP PPN 347
6.45.2 BLOWFISH SECret KEY ODJECESiiiiiiiiie ittt e e 347
6.45.3 Blowfish K€Y QENEIatioNcccooiiiii e 348

L LI 2] (011 {1 = S 348
6.45.5 Blowfish-CBC With PKCS PaUAiNGceiiiiiiiiiiiiiieiiiiee ettt e e 348
B.46 TWOTISI...ceiiiii ettt ettt e et e e e s e s bbb et e e e e e e e e bbb et e e e e e e e e e nabrereeaee s 349
L LGP = {1 T1 (o] o 1SS 349
6.46.2 TWOTiSh SECret KEY ODJECLS ... 349
6.46.3 TWOTISh KEY GENEIALION ...ccoiiiiiiiiieiee ettt e e sbneee e 350
6.46.4 TWOTISN =CBC ..ottt ettt e e e e e e e bttt e e e e e e s abebae e e e e e e s aannbbeaeeaaens 350
6.46.5 Twofish-CBC With PKCS PAAINGccoeoiiiiiiiiiiiiieee ittt 350

L A O N 1Y A S 350
Lo A B = 11 11 (o] o TP EUT TP 351
6.47.2 Camellia SECTEt KEY ODJECES .. .iiiiiiiii ittt et e e sanee e 351
6.47.3 Camellia K&Y gENEIALIONciii it e e et e e e e e e e enbreeeeeae s 352

L A - Vg =Y - T = SO 352

L SR @14 =Y - O = SO 353
6.47.6 Camellia-CBC With PKCS PaddiNgccoiiiiiiiiiiiieeeiiiii ettt e e s 353
6.47.7 CAMELLIA with Counter mechaniSm ParamMeters...........cooiuieeeiiiiiiee et e sieeee e 354
6.47.8 General-length Camellia-MACo e eee e e s 355
B.47.9 CAMEIIA-IMACoei et r e e e e e s et e e e e e e e s et et er e e e e e et e aanereeeeeannrrrareeees 355
pkcs11-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 14 of 424

6.48 Key derivation by data encryption - Camelliaeoeiiiiiiiiiiie e 356

L T R B = {1 T T o PR UPURRPPPRR 356
6.48.2 MeChANISM PArGMELEIScciiiiiiiiiiiiie ettt e e e e st e e e e s e st e e e e e e s e snnbreeeeeeens 356

L LB Y] O UERTTPI 356
e T R B = {1 T 1o o =R TPPRRTPPPRR 357
6.49.2 Aria SECTEL KEY ODJECLS ...eeiiiiiiie ettt e et e e e s bneeeean 357
6.49.3 ARIA KEY GENEIALIONuuviiiieeeisiciiieieee e e e e sttt e e e e e e s st e e e e e e e s s st teeeeaeessssnntanaeeeeeessannnsanneeeees 358
B.49.4 ARIA-ECB. ...ttt e ettt e e e e e e e — e ee e e e e e e b et e et e e e e e e annrraeaaaeens 358
B.49.5 ARIA-CBC ..ottt e et e e e e e e et e e e e e e b e et e e e e e e neeae s 358
6.49.6 ARIA-CBC With PKCS PAAUINGvvviiiiiiiie ittt e ettt e e sbeee e e snbaeea e e 359
6.49.7 General-length ARIA-MAC ...t e et e e e sbreee e 360
B.49.8 ARIA-MAC ...ttt e e e s e bt et e e e e e s e b e e et e e e e e e r b e e e e e e e e e e b e e eaeeas 360
6.50 Key derivation by data encryption - ARIAuiiiiiii e 360
6.50.1 DEIINITIONS ...ttt ee ettt ettt et e e e e e bbbt e e e e e e e a bbb b e et e e e e e s anbbbe e e e e e e e s annnbeneeeaeens 361
6.50.2 MEeCh@ANISM PAIGMELEIScceiiiiiiiiiiieie et et e e e e e e s e e e e s s senta e e e e e e s s annraeaeeeeens 361
B.5L SEED ..eeiiiiiiiiiiiiiiit e e e et — et e e e e e e —— e —reaeeeae e n bt aateaeeeaa e nnbaateeeeeeaaannnraareeaees 361
Lo I B = 11 11 1 o] o TSP UUT TR PPPPPPPP 362
6.51.2 SEED SECIet KEY ODJECEStiiiiiiiiiie ittt et e et e e sbneeeean 362
6.51.3 SEED KEY QENEIAtION ———— 363
B.51.4 SEED-ECBuiiiiiiiiiiiiiiiit ettt e e s e st e e e e e e e e r e e e e e e et — e e ee e e e e e e trrareaeeeaeannnrraneaaees 363
B.51.5 SEED-CBC ...ttt ettt e e et e e e e e e e e e e e e e rreaaa s 363
6.51.6 SEED-CBC With PKCS PAAINGettiiieiiiiiiiiiiee ettt e e e eeeeee s 363
6.51.7 General-length SEED-MAC........ccuuiii ittt et e e e sbneee e 364
B.51.8 SEED-MAC.....ceeiiiiiiiitt ettt e e e e e bbb e e e e e e e s bbb et e e e e e e s e b aeeaaa s 364
6.52 Key derivation by data encryption - SEEDccooiiiiiiiiiiiii e 364
SRS yZ I B = 1111 1 o] o TSP UUTT R POPPPPPP 364
6.52.2 MeChANISM PAIBMELEIScciiiiiiiiiiiiii ettt e e e e s et b b e e e e e e e s annbreeeeeee s 364
LTS3 T 1 N = SR 365
(SR F0 R W 7= To [T 01 V7= T VT 365
6.53.2 Case 1: Generation Of OTP VAIUESooicuviiiiiieeeieiiiiir e ee e e e steaee e e e e e e s e nnneaeaeeeee s 365
6.53.3 Case 2: Verification of provided OTP ValUEScccooiiiiii i, 366
6.53.4 Case 3: Generation 0f OTP KEYSoouiiiiiiiiiie ettt 366
B.53.5 OTP ODJECLSceiiiiiiie ittt et e e e st bt e e e aba e e e e abb e e e e abneeeean 367
(SRS IC BT A (=) VA o] o 1= £ PP PUPT PO 367
6.53.6 OTP-related NOtfICAtIONScoii e e e e e reeeeeee s 370
6.53.7 OTP MECNANISINIS ...ttt e et e e e e e e s e bbb et et e e e e e s nabbbeeeeaeeeeaannbaeneeeaens 370
6.53.7.1 OTP MEChaNiSIM PATAMELETSeiiiiiiieiiiiee ettt a bt e s e e e b e e abee e e s nanes 370
B.53.8 RSA SECUIIDciiiiiiiiiteti ittt et e e e ettt e e e e e o e st bbb e ee e e e e e s nnbebbeeeaeeeeaannbbeneeeaens 374
6.53.8.1 RSA SeCUrID SECIet KEY ODJECEScouueiiiiiiiii ettt 374
6.53.8.2 RSA SeCUID KEY gENEIALIONccoiieiiieiei ettt ettt e e et e e e e e e s e r e e e e e e e e nnneeeeeas 375
6.53.8.3 SecurlD OTP generation and Validation..............ccoouiiiiiiiieaeiiice e e 375
6.53.8.4 REIUIN VAIUEBS.......uuiiiiie ittt e et e e e e e e sttt e e e e e e s s bbbt e eeae e e s et bbeeeeaeeesanssstaeeeeeeeanssnseneeas 376
5.53.9 OATH HOTP...eeeiieiiee ettt ettt e e e e e s e s bbb et ee e e e e e s nnbbba e e e e e e e s aannbreneaeaens 376
6.53.9.1 OATH HOTP SECIet K&Y ODJECScoueiiiiiiiiie ettt 376
6.53.9.2 HOTP KEY GENEIALIONeeiiiiiieeeiiite ettt e e e ettt e e e e e s ekt e e e e e e e e nbb bt e e e e e e e aannneeeeeas 377
6.53.9.3 HOTP OTP generation and Validation.............cuviiiieieiiiiieeiie et 377
6.53.10 ACHVIAENTIEY ACT.cciiiiiieee ittt ettt st e e st e e e e sbb e e e snbae e e e snbbeeeeabneeeean 377
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 15 of 424

6.53.10.1 ACTI SECIEt KEY ODJECLSeiiiiiiiiieiii ettt e e e e et e e e e e e e et er e e e e e e e eanneeeeens 377

6.53.10.2 ACTI KEY GENEIALIONuviiiiiieeeieeiiiet e e et e e e e e e e e e e e e s et e e e e e e s etbaaaeeaeessaasaasbereeeesaannnrreeeas 378
6.53.10.3 ACTI OTP generation and Validationooieeeiiiiiiiiieee e e e e e e e 378

LIRS N O I | = SRR 379
6.54.1 PrinCiples Of OPEIatiONcciiiiiiiiiiiiiie e ee e e e e e s e e e e s s seateea e e e e e e s s annrrnneeeaes 379
O S V1= ol F= g 1] o PP OUUSPPPPRP 379
SRS B B = {111 (o] o 1P EUT TR POPPPPI 380
6.54.4 CT-KIP MeChaniSm ParameELEIScuieeiiiiiiiiiieeeeeeiieiitieee e e e e s ssstnteeee e e e e s ssntasaeeeeeessansnrenneeeees 380
6.54.5 CT-KIP KEY EINVALIONcciiitiiiiiiiiiii ittt e et e et e e sb e e e e s bneeeean 380
6.54.6 CT-KIP key Wrap and KEY UNWIAPcciiiiurrrireeeeeiiiiiieeereeessssstnteeeeesessssssnsnessesssssnsnssssseeeees 381
6.54.7 CT-KIP SIgNature gENEIALIONuuetiiitieeeeitiiee ettt e sttt e et e et e e e e st er e e s sbe e e e s sbreeeesbreeeeaas 381
B.55 GOST 28LA7-89 ..oeeiiieiiiiiiiiiiie ettt e et ettt et e e e s e s e bttt e e ee e e e e e asbeeeeeeae e e e e snbeteeeaeeeaaannraereeaeens 381
B.55. 1 DEIINITIONS ...ttt ettt e e e et e e e e e e s e bbb e e e e e e e e e s aabbbe e et e e e e s annbneeeeaaeas 381
6.55.2 GOST 28147-89 SECIret KEY ODJECESveiiiiiiiiie ittt 382
6.55.3 GOST 28147-89 domain parameter ODJECESccoeeeieie i 382
6.55.4 GOST 28147-89 KEY GENETALIONeeiiiiiiiieiiiiiiee et e e eteee ettt ettt e et e e e e sba e e s sbneee s sbneeeeans 383
6.55.5 GOST 28147-89-ECBootiiiiiiiiitiiiieie e e ettt e e e e e e sttt e e e e e ss e beeeeeeesssnnteaaeeeeeessannssaeaeeeeens 384
6.55.6 GOST 28147-89 encryption mode exCept ECB ..., 384
6.55.7 GOST 281LA7-8O-IMACeeiiie et et e e e e e et e e e e e e s sa st ateeeeaeesssnnteaaeeaeeessannsteeaeeeeens 385
6.55.8 GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89ccooeeveevveieieee e, 385
B.56 GOST R B4.10-94 ...ttt ettt e e e s e et e et e e e s e s s beaeeeaeeese e ssbataeeeaeeseannsraneeeeaens 386
B.56.1 DEIINITIONSeeteeeeee ettt ettt e e e e e et et e e e e e e e ab bbb e e e e e e e e s anbbbeeeee e e s e annbneeeeaeeas 386
6.56.2 GOST R 34.11-94 domain parameter ObJECES........ccoeieie e 386
6.56.3 GOST R 34.11-94 digEST..ceiiieiiiitiiiiiiee e e ettt et e e s sttt r e e e e e s st e e e e e e s s snnteaeeeeeeeesannrreeeeeeens 387
6.56.4 GOST R 34.11-94 HMAGCooiiiiiiiiee ittt cete ettt ettt e st e e e st e e s st e e e sntaeeeeantaeeeeantneeeeans 388
B.57 GOST R 34.10-2001 ieiiieieeeee ettt et e e e e e et e e e e e e s s assteaeeeaeeessaansteaareaeeesaansssaaaeeeaeesaaannsnnnneeees 388
B.57. 1 DEIINITIONS ...ttt ettt e ettt e e e e e e et bbb et e e e e e e s aab bt e e e e e e e e s annbneeeeaaeas 388
6.57.2 GOST R 34.10-2001 publiC KEY ODJECLSviiieiiiiiieeiiiie et 389
6.57.3 GOST R 34.10-2001 private KeY ODJECESeeiiiiiiiiiiiiiie ittt 390
6.57.4 GOST R 34.10-2001 domain parameter ObJECES........ccooieiiieie e 392
6.57.5 GOST R 34.10-2001 mechaniSm Parameters...........oouieiiiiiiee et e steee e sineee e 393
6.57.6 GOST R 34.10-2001 Key pair gENEIatION......cccoeieie i ie e 394
6.57.7 GOST R 34.10-2001 Without hashingcoooiiiiiiiiiii e 394
6.57.8 GOST R 34.10-2001 With GOST R 34.11-94itiiiiiiiiiie ettt 395
6.57.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001ccceeeeeeeennn. 395
6.57.10 Common key derivation with assistance of GOST R 34.10-2001 KeYScccevvvveeeriiineeennns 395
LR 1 T 01 o T- 101 o - V2 0 PSR PR 396
LSS T8 = 1 T1 o] o 1SS 396
6.58.2 ChaCha20 Secret KEY ODJECLSeiiiiiiiiiiiie e e e s 396
6.58.3 ChaCha20 mechaniSm ParameEterSooiueueiiiiieei ittt e e e e ebreeeeeae s 397
6.58.4 ChaCha20 KeY gENEIALION.ccciuuiieiiiiiee e itieee et e e ettt e e e st e e e sbb e e s sbae e e e sbreeeesbeeeeeabneeeeans 397
6.58.5 ChaCha20 MECNANISIMcciiiiiiiitii et e et e e e e e et b b e e e e e e e e annbeeeeeaaens 397
LTS ST | E57= V2 0 SO 398
LOTST R B = 11 11 (o] o TP ORI 399
6.59.2 SalSa20 SECIret KEY ODJECES.....cciiiiiiii ittt ettt e et e e e sbaeeeeans 399
6.59.3 Salsa20 MeChaniSM PArAMELEISicuuiii ettt e et e e sbeeeeeans 400
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 16 of 424

6.59.4 SalSA20 KEY GENETALIONvieieiiiiiee et ettt ettt et e e e st b e e e sbe e e e e sbee e e e sbreeeeanneeeeaa 400

6.59.5 SalSA20 MECNANISIMviiiii e e et e e st e e e st e e s snbeeeeesnbbeeeeans 400

LG Ol o] Y T 0L T PSSR 401

Lo CT0 8 B = {1 T1 (o] o 1 EUTTRPOPPPI 401
6.60.2 Poly1305 SECret KEY ODJECLS........uiiiiiiie e e e e e e s s raaneeeee s 401
6.60.3 POIYL1305 MECHANISI ...eiiiiiiiiie ettt e et e e st e e e sbneeeean 402

6.61 Chacha20/Poly1305 and Salsa20/Poly1305 Authenticated Encryption / Decryption................... 402

Lo C 3 I = {1 T1 (o 1P RUTTR R PRPPI 403

(O) 2 U - T [PSSP PTPPP 403
6.61.3 ChaCha20/Poly1305 and Salsa20/Poly1305 Mechanism parametersccccccceeevvvvvneennnnn. 404

6.62 HKDF MECIHANISIMS ...ttt ettt et e e e e e e sttt e e e e e e s s ansnbe e e e e eaeeseannnraeeeeeaens 405
LGy R = {1 T T o =P UUPRRPPPRR 406
6.62.2 HKDF MeChaniSm ParameEtersScooiiiiii ittt ettt e st e e sbneeeean 406
B.62.3 HIKDF EIVE ...ttt ettt ettt st e e e st e e e st e e e st b e e e e snbaeeeesbbeeeesbbeeeeansbeeeeans 407

O Sy N o LD] I T | - 407
6.62.5 HKDF KEY BN ..ciiiiiiiiiiie ittt e e e e e s e e e e e e e e s e et e e e e s e rneeeee s 407

6.63 NULL MECRANISIM ..ottt ettt e e e ettt e e e e s e s bbb e e e e e e e s e annbrereeeeeas 407
LG 0 = {1 T1 (o] o TSSO 408
6.63.2 CKM_NULL mechanism parameters ..ot 408

6.64 IKE MECRNANISIMSciiiiiiiiiiiiiiee ettt e e e e e e e e ettt e e e e e e s e s anbe e e e eaeeseansnbaaeeeeeeeseannnrnnnaeaeeas 408
OGN B = 1111 1 o] o TSP TP PPPPPPPIN 408
6.64.2 IKE MEChANISIM PAr@MELEISo ii i 409
6.64.3 IKE PRI DERIVEottt ettt e e e e et e s e e e e e e e e e a e e e e e e en st e e s 411
6.64.4 IKEVL PRF DERIVEooiiiiitiiie sttt sttt ettt ettt e e e st e e e st e e e antae e e e antaeeaeannneeeeans 412
6.64.5 IKEV2 PRF PLUS DERIVEottt e e e e e et s e e e e e e e e a e 412
6.64.6 IKEVL EXIENAEA DEIIVEcoiiiiiiiiiiieieeie ettt ettt e e et e e e e e e e s aeebreeeeeeeas 413

LG 1S 1S 1S T PSSR 413
LG 170 = 1 T1 (o] o 1SS 414
6.65.2 HSS pubIliC KEY ODJECLS.o 414
6.65.3 HSS Private KEY ODJECESuviiiiiiiiiee ittt ettt et e e e sbbeee e 415
6.65.4 HSS KeY Pair QENEIALIONcceie i 416
6.65.5 HSS WithOUt NaShINGcooiiiiii e 416

7 PKCS #11 Implementation CONfOIMANCEcoiuiiiiiiiiieeiiiite ettt 418
7.1 PKCS#11 Consumer Implementation Conformance............coooeoeie i, 418
7.2 PKCS#11 Provider Implementation COoNfOrManCeoocuuiiiiiiiiiiiiiiee et 418
AppPeNdiX A. ACKNOWIBAGMENESeiiiiiiiieii ittt ettt e e e e e s e e b e e et e e e e e s nbbbeeeeeaeseaannbbeneeaaeas 419
Appendix B. ManifESt CONSTANTSiuuiiiiiiiiie ittt e e e s e e e s sebre e e s snneeeas 421
APPENIX C. REVISION HISTOIY ...ttt e e e e e e st e e e e e e e s e e nnnbereeeaaeas 422
APPENTIX D. NOTICES. ..ttt e oottt e e e e s e o b e b ettt e e e e e s s s bebe e et e e e e e sannbbbeeeeeaeseannbbeeaeaeeas 424
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 17 of 424

O oo brh,wWw N BB

22
23
24
25
26
27
28
29

30
31

32
33

34
35

36
37
38

39
40

41

1 Introduction

This document describes the basic PKCS#11 token interface and token behavior.

The PKCS#11 standard specifies an application programming interface (API), called “Cryptoki,” for
devices that hold cryptographic information and perform cryptographic functions. Cryptoki follows a
simple object based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a common,
logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application requiring cryptographic
services using the ANSI C programming language. The supplier of a Cryptoki library implementation
typically provides these data types and functions via ANSI C header files. Generic ANSI C header files
for Cryptoki are available from the PKCS#11 web page. This document and up-to-date errata for Cryptoki
will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface and/or bindings
between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application does not
have to change to interface to a different type of device or to run in a different environment; thus, the
application is portable. How Cryptoki provides this isolation is beyond the scope of this document,
although some conventions for the support of multiple types of device will be addressed here and
possibly in a separate document.

Details of cryptographic mechanisms (algorithms) may be found in the associated PKCS#11 Mechanisms
documents.

1.1 Definitions

For the purposes of this standard, the following definitions apply:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

AES Advanced Encryption Standard, as defined in FIPS PUB 197.
API Application programming interface.
Application Any computer program that calls the Cryptoki interface.

ASN.1 Abstract Syntax Notation One, as defined in X.680.

Attribute A characteristic of an object.
BER Basic Encoding Rules, as defined in X.690.
BLOWFISH The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

CAMELLIA The Camellia encryption algorithm, as defined in RFC 3713.
CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.
Certificate A signed message binding a subject name and a public key, or a

subject name and a set of attributes.

CDMF Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and
based on DES.

CMAC Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

CMS Cryptographic Message Syntax (see RFC 5652)

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 18 of 424

http://www.schneier.com/

42
43
44
45

46
47

48
49

50
51
52
53
54
55
56
57

58
59

60
61

62
63

64
65
66
67
68

69
70

71
72
73
74
75
76
77

78
79

80
81
82

Cryptographic Device

Cryptoki
Cryptoki library
CT-KIP

DER

DES

DSA

EC

ECB

ECDH

ECDSA

ECMQV

GOST 28147-89

GOST R 34.11-94

GOST R 34.10-2001

v

MAC
Mechanism
MQv

OAEP
Object

PIN
PKCS
PRF
PTD
RSA
Reader
Session
SHA-1

SHA-224

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

A device storing cryptographic information and possibly performing
cryptographic functions. May be implemented as a smart card,
smart disk, PCMCIA card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this standard.
A library that implements the functions specified in this standard.

Cryptographic Token Key Initialization Protocol (as defined in [CT-
KIP])

Distinguished Encoding Rules, as defined in X.690.

Data Encryption Standard, as defined in FIPS PUB 46-3.
Digital Signature Algorithm, as defined in FIPS PUB 186-4.
Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB 81.
Elliptic Curve Diffie-Hellman.

Elliptic Curve DSA, as in ANSI X9.62.

Elliptic Curve Menezes-Qu-Vanstone

The encryption algorithm, as defined in Part 2 [GOST 28147-89]
and [RFC 4357] [RFC 4490], and RFC [4491].

Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

Initialization Vector.

Message Authentication Code.

A process for implementing a cryptographic operation.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a certificate, or a
key.

Personal Identification Number.

Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD

The RSA public-key cryptosystem.

The means by which information is exchanged with a device.
A logical connection between an application and a token.

The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.

16 February 2022
Page 19 of 424

83
84

85
86

87
88

89
90

91
92

93
94
95
96

97
98
99

100

101

102
103

104
105

SHA-256

SHA-384

SHA-512

Slot
SSL

Subject Name

SO
TLS
Token
User
UTF-8

WTLS

The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

A logical reader that potentially contains a token.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a key is
assigned.

A Security Officer user.

Transport Layer Security.

The logical view of a cryptographic device defined by Cryptoki.
The person using an application that interfaces to Cryptoki.

Universal Character Set (UCS) transformation format (UTF) that
represents 1ISO 10646 and UNICODE strings with a variable number
of octets.

Wireless Transport Layer Security.

1.2 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description

C_ Function

CK_ Data type or general constant
CKA_ Attribute

CKC_ Certificate type

CKD_ Key derivation function

CKF_ Bit flag

CKG_ Mask generation function

CKH_ Hardware feature type

CKK_ Key type

CKM_ Mechanism type

CKN_ Notification

CKO_ Object class

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 20 of 424

Prefix | Description

CKP_ Pseudo-random function
CKS_ Session state

CKR_ Return value

CKU_ User type

CKZ_ Salt/Encoding parameter source
h a handle

ul a CK_ULONG

p a pointer

pb a pointer to a CK_BYTE

ph a pointer to a handle

pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK CHAR;

/* an 8-bit UTF-8 character */
typedef CK BYTE CK_UTFSCHAR;

/* a BYTE-sized Boolean flag */
typedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK ULONG;

/* a signed value, the same size as a CK ULONG */
typedef long int CK LONG;

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type void, which are
implementation-dependent. These pointer types are:

CK_BYTE PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG_PTR /* Pointer to a CK ULONG */
CK_VOID PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-dependent:

CK_VOID PTR PTR /* Pointer to a CK_VOID PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid pointer:

NULL PTR /* A NULL pointer */

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 21 of 424

144
145
146
147

148
149

150
151

174

175
176

177
178
179

180
181
182

183
184
185

It follows that many of the data and pointer types will vary somewhat from one environment to another
(e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However, these details
should not affect an application, assuming it is compiled with Cryptoki header files consistent with the
Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by “0x”, in
which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:
Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZabcd
efghijklmnopqgrstuvwxyz

Numbers 0123456789

Graphic characters V#% & () +,-./:;<=>2[\]"_{]|}~

Blank character ‘f

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in RFC2279. UTF-
8 allows internationalization while maintaining backward compatibility with the Local String definition of
PKCS #11 version 2.01.

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A zero value means
false, and a nonzero value means true. Similarly, an individual bit flag, CKF_..., can also be set (true) or
unset (false). For convenience, Cryptoki defines the following macros for use with values of type
CK_BBOOL:

#define CK FALSE 0
#define CK TRUE 1

For backwards compatibility, header files for this version of Cryptoki also define TRUE and FALSE as
(CK_DISABLE_TRUE_FALSE may be set by the application vendor):

#ifndef CK DISABLE TRUE FALSE
#ifndef FALSE

#define FALSE CK FALSE
#endif

#ifndef TRUE

#define TRUE CK TRUE
#endif

#endif

1.3 Normative References

[ARIA] National Security Research Institute, Korea, “Block Cipher Algorithm ARIA”,
URL.: https://www.ietf.org/rfc/rfc5794.txt

[BLOWFISH] B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish),
December 1993.
URL: https://www.schneier.com/paper-blowfish-fse.html

[CAMELLIA] M. Matsui, J. Nakajima, S. Moriai. A Description of the Camellia Encryption Algorithm,
April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt

[CDMF]Johnson, D.B The Commercial Data Masking Facility (CDMF) data privacy algorithm, March
1994.
URL.: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 22 of 424

https://www.ietf.org/rfc/rfc5794.txt
https://www.schneier.com/paper-blowfish-fse.html
http://www.ietf.org/rfc/rfc3713.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

186 [CHACHA] D. Bernstein, ChaCha, a variant of Salsa20, Jan 2008.
187 URL: http://cr.yp.to/chacha/chacha-20080128.pdf

188 [DH] W. Diffie, M. Hellman. New Directions in Cryptography. Nov, 1976.
189 URL: http://www-ee.stanford.edu/~hellman/publications/24.pdf

190 [FIPS PUB 46-3] NIST. FIPS 46-3: Data Encryption Standard. October 1999.
191 URL: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

192 [FIPS PUB 81] NIST. FIPS 81: DES Modes of Operation. December 1980.
193 URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm

194 [FIPS PUB 186-4] NIST. FIPS 186-4: Digital Signature Standard. July, 2013.
195 URL: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

196 [FIPS SP 800-56A] NIST. Special Publication 800-56A Revision 2: Recommendation for Pair-Wise
197 Key Establishment Schemes Using Discrete Logarithm Cryptography, May 2013.
198 URL: http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

199 [FIPS SP 800-108] NIST. Special Publication 800-108 (Revised): Recommendation for Key
200 Derivation Using Pseudorandom Functions, October 2009.
201 URL.: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf

202 [GOST]V. Dolmatov, A. Degtyarev. GOST R. 34.11-2012: Hash Function. August 2013.
203 URL.: https://tools.ietf.org/html/rfc6986

204 [MD2] B. Kaliski. RSA Laboratories. The MD2 Message-Digest Algorithm. April, 1992.
205 URL: https://www.ietf.org/rfc/rfc1319.txt

206 [MD5] RSA Data Security. R. Rivest. The MD5 Message-Digest Algorithm. April, 1992.
207 URL: https://www.ietf.org/rfc/rfc1321.txt

208 [NIST 802-208] NIST Special Publication 800-208: Recommendation for Stateful Hash-Based Signature
209 Schemes, October 2020.
210 URL: https://csrc.nist.gov/publications/detail/sp/800-208/final

211 [OAEP]M. Bellare, P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt with RSA. Nov 19,
212 1995.

213 [PKCS11-Hist] PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version
214 3.1. Work in progress. Latest stage: <URL>

215 [PKCS11-Prof] PKCS #11 Profiles Version 3.1. Edited by Tim Hudson. Latest stage: https://docs.oasis-
216 open.org/pkcs1l/pkesll-profiles/v3.1/pkcsll-profiles-v3.1.html.

217 [PKCS #1] RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.
218 URL: https:/ftools.ietf.org/html/rfc8017

219 [PKCS #3] RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4, November 1993.
220 URL: ftp://ftp.rsasecurity.com/pub/pkcs/doc/pkcs-3.doc

221 [PKCS #5] RSA Laboratories. Password-Based Encryption Standard. v2.0, March 25, 1999
222 URL: https:/ftools.ietf.org/html/rfc8018

223 [PKCS #7] RSA Laboratories. Cryptographic Message Syntax Standard. v1.5, November 1993
224 URL : https:/itools.ietf.org/html/rfc2315

225 [PKCS #8] RSA Laboratories. Private-Key Information Syntax Standard. v1.2, November 1993.
226 URL: https:/itools.ietf.org/html/rfc5958

227 [PKCS #12] RSA Laboratories. Personal Information Exchange Syntax Standard. v1.0, June 1999.
228 URL: https://tools.ietf.org/html/rfc7292

229 [POLY1305] D.J. Bernstein. The Poly1305-AES message-authentication code. Jan 2005.
230 URL: https://cr.yp.to/mac/poly1305-20050329.pdf

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 23 of 424

http://cr.yp.to/chacha/chacha-20080128.pdf
http://www-ee.stanford.edu/~hellman/publications/24.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://tools.ietf.org/html/rfc6986
https://www.ietf.org/rfc/rfc1319.txt
https://www.ietf.org/rfc/rfc1321.txt
https://csrc.nist.gov/publications/detail/sp/800-208/final
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.1/pkcs11-profiles-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.1/pkcs11-profiles-v3.1.html
https://cr.yp.to/mac/poly1305-20050329.pdf

231
232

233
234
235

236
237
238

239
240
241

242
243

244
245
246

247
248
249

250
251
252

253
254

255
256

257
258
259

260
261

262
263

264
265
266
267

268
269
270

271
272
273

274
275

276
277

[RFC 2409] D. Harkins, D.Carrel. RFC 2409: The Internet Key Exchange (IKE), November 1998.
URL: https://tools.ietf.org/html/rfc2409

[RFC 2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC
2119, March 1997.
URL: http://www.ietf.org/rfc/rfc2119.txt.

[RFC 2279] F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646 Alis Technologies,
January 1998.
URL.: http://www.ietf.org/rfc/rfc2279.txt

[RFC 2534] Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media Features for Display,
Print, and Fax. March 1999.
URL: http://www.ietf.org/rfc/rfc2534.txt

[RFC 5652] R. Housley. RFC 5652: Cryptographic Message Syntax. Septmber 2009. URL:
http://www.ietf.org/rfc/rfc5652.txt

[RFC 5707] Rescorla, E., “The Keying Material Exporters for Transport Layer Security (TLS)”, RFC
5705, March 2010.
URL.: http://www.ietf.org/rfc/rfc5705.txt

[RFC 5996] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen. RFC 5996: Internet Key Exchange Protocol
Version 2 (IKEv2), September 2010.
URL.: https://tools.ietf.org/html/rfc5996

[RFC 8554] D. McGrew, m. Curcio, S. Fluhrer. RFC 8554 Leighton-Micali Hash-Based Signatures,
April 2019.
URL: https://tools.ietf.org/html/rfc8554

[RIPEMD] H. Dobbertin, A. Bosselaers, B. Preneel. The hash function RIPEMD-160, Feb 13, 2012.
URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

[SALSA] D. Bernstein, ChaCha, a variant of Salsa20, Jan 2008.
URL: http://cr.yp.to/chacha/chacha-20080128.pdf

[SEED] KISA. SEED 128 Algorithm Specification. Sep 2003.
URL.: http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128 Specification_englis
h_M.pdf

[SHA-1] NIST. FIPS 180-4: Secure Hash Standard. March 2012.
URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
[SHA-2] NIST. FIPS 180-4: Secure Hash Standard. March 2012.

URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[TLS] [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January 1999.
URL: http://www.ietf.org/rfc/rfc2246.txt, superseded by [RFC4346] Dierks, T. and E. Rescorla, "The
Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006. URL:
http://www.ietf.org/rfc/rfc4346.txt, which was superseded by [TLS12].

[TLS12] [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol
Version 1.2", RFC 5246, August 2008.
URL: http://www.ietf.org/rfc/rfc5246.txt

[TWOFISH] B. Schneier, J. Kelsey, D. Whiting, C. Hall, N. Ferguson. Twofish: A 128-Bit Block
Cipher. June 15, 1998.
URL: https://www.schneier.com/academic/twofish/

[X.500] ITU-T. Information Technology — Open Systems Interconnection — The Directory: Overview of
Concepts, Models and Services. February 2001. Identical to ISO/IEC 9594-1

[X.509] ITU-T. Information Technology — Open Systems Interconnection — The Directory: Public-key
and Attribute Certificate Frameworks. March 2000. Identical to ISO/IEC 9594-8

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 24 of 424

https://tools.ietf.org/html/rfc2409
http://www.ietf.org/rfc/rfc2119.txt
http://ietf.org/rfc/rfc2279.txt
http://ietf.org/rfc/rfc2534.txt
http://www.ietf.org/rfc/rfc5652.txt
https://tools.ietf.org/html/rfc5996
https://tools.ietf.org/html/rfc8554
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://cr.yp.to/chacha/chacha-20080128.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.schneier.com/academic/twofish/

278
279

280
281
282

283

284

285
286

287
288
289

290

201
292

293
294

295
296

297
298
299

300
301

302
303
304

305
306

307
308

309
310

311
312

313
314

315
316

317
318
319

320
321

[X.680] ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1): Specification of Basic
Notation. July 2002. Identical to ISO/IEC 8824-1

[X.690] ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). July 2002. Identical
to ISO/IEC 8825-1

1.4 Non-Normative References

[CAP-1.2] Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.
URL.: http://docs.oasis-open.org/emergency/cap/vl.2/CAP-v1.2-0s.html

[AES KEYWRAP] National Institute of Standards and Technology, NIST Special Publication 800-
38F, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, December
2012, http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[ANSI C] ANSI/ISO. American National Standard for Programming Languages — C. 1990.

[ANSI X9.31] Accredited Standards Committee X9. Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA). 1998.

[ANSI X9.42] Accredited Standards Committee X9. Public Key Cryptography for the Financial Services
Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography. 2003.

[ANSI X9.62] Accredited Standards Committee X9. Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998.

[ANSI X9.63] Accredited Standards Committee X9. Public Key Cryptography for the Financial Services
Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography. 2001.
URL: http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011

[BRAINPOOL] ECC Brainpool Standard Curves and Curve Generation, v1.0, 19.10.2005
URL: http://www.ecc-brainpool.org

[CCIPP] W3C. Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies.
World Wide Web Consortium, January 2004.
URL: http://www.w3.0org/TR/CCPP-struct-vocab/

[CDPD] Ameritech Mobile Communications et al. Cellular Digital Packet Data System Specifications: Part
406: Airlink Security. 1993.

[CT-KIP] RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,
December 2005.

[GCS-API] X/Open Company Ltd. Generic Cryptographic Service APl (GCS-API), Base - Draft 2.
February 14, 1995.

[ISO/IEC 7816-1] ISO. Information Technology — Identification Cards — Integrated Circuit(s) with
Contacts — Part 1: Physical Characteristics. 1998.

[ISO/IEC 7816-4] ISO. Information Technology — Identification Cards — Integrated Circuit(s) with
Contacts — Part 4: Interindustry Commands for Interchange. 1995.

[ISO/IEC 8824-1] ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

[ISO/IEC 8825-1] ISO. Information Technology—ASN.1 Encoding Rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER).
2002.

[ISO/IEC 9594-1] ISO. Information Technology — Open Systems Interconnection — The Directory:
Overview of Concepts, Models and Services. 2001.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 25 of 424

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011
http://www.w3.org/TR/CCPP-struct-vocab/

322
323

324
325

326
327
328

329
330
331

332
333
334

335
336
337
338

339
340

341
342
343

344
345
346

347
348
349

350
351
352

353
354

355
356

357
358
359

360
361
362

363
364
365
366

367
368
369

[ISO/IEC 9594-8] ISO. Information Technology — Open Systems Interconnection — The Directory:
Public-key and Attribute Certificate Frameworks. 2001

[ISO/IEC 9796-2] ISO. Information Technology — Security Techniques — Digital Signature
Scheme Giving Message Recovery — Part 2: Integer factorization based mechanisms. 2002.

[Java MIDP] Java Community Process. Mobile Information Device Profile for Java 2 Micro Edition.
November 2002.
URL.: http://jcp.org/jsr/detail/118.jsp

[LEGIFRANCE]AVvis relatif aux parameétres de courbes elliptiques définis par I'Etat francais (Publication of
Elliptic Curve parameters by the French state)
URL: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024668816

[MeT-PTD] MeT. MeT PTD Definition — Personal Trusted Device Definition, Version 1.0, February
2003.
URL: http://www.mobiletransaction.org

[NIST AES CTS] National Institute of Standards and Technology, Addendum to NIST Special
Publication 800-38A, “Recommendation for Block Cipher Modes of Operation: Three Variants of
Ciphertext Stealing for CBC Mode”

URL.: http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf

[PCMCIA] Personal Computer Memory Card International Association. PC Card Standard,
Release 2.1,. July 1993.

[RFC 2865] Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF RFC2865,
June 2000.
URL: http://www.ietf.org/rfc/rfc2865.txt.

[RFC 3686] Housley, “Using Advanced Encryption Standard (AES) Counter Mode With IPsec
Encapsulating Security Payload (ESP),” IETF RFC 3686, January 2004.
URL: http://www.ietf.org/rfc/rfc3686.txt.

[RFC 3717] Matsui, et al, "A Description of the Camellia Encryption Algorithm,” IETF RFC 3717, April
2004.
URL: http://www.ietf.org/rfc/rfc3713.txt.

[RFC 3610] Whiting, D., Housley, R., and N. Ferguson, “Counter with CBC-MAC (CCM)", IETF RFC
3610, September 2003.
URL.: http://www.ietf.org/rfc/rfc3610.txt

[RFC 3874] Smit et al, “A 224-bit One-way Hash Function: SHA-224,” IETF RFC 3874, June 2004.
URL: http://www.ietf.org/rfc/rfc3874.txt.

[RFC 3748] Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June 2004.
URL: http://www.ietf.org/rfc/rfc3748.txt.

[RFC 4269] South Korean Information Security Agency (KISA) “The SEED Encryption Algorithm”,
December 2005.
URL: https://ftp.rfc-editor.org/in-notes/rfc4269.txt

[RFC 4309] Housley, R., “Using Advanced Encryption Standard (AES) CCM Mode with IPsec
Encapsulating Security Payload (ESP),” IETF RFC 4309, December 2005.
URL: http://www.ietf.org/rfc/rfc4309.txt

[RFC 4357] V. Popov, I. Kurepkin, S. Leontiev “Additional Cryptographic Algorithms for Use with
GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms”, January
2006.

URL: http://www.ietf.org/rfc/rfc4357.txt

[RFC 4490] S. Leontiev, Ed. G. Chudov, Ed. “Using the GOST 28147-89, GOST R 34.11-94,GOST
R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic Message Syntax (CMS)”, May 2006.
URL: http://www.ietf.org/rfc/rfc4490.txt

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 26 of 424

http://jcp.org/jsr/detail/118.jsp
http://www.mobiletransaction.org/
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://ietf.org/rfc/rfc2865.txt
http://ietf.org/rfc/rfc3686.txt
http://ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3610.txt
http://ietf.org/rfc/rfc3874.txt
http://ietf.org/rfc/rfc3748.txt
https://ftp.rfc-editor.org/in-notes/rfc4269.txt
http://ietf.org/rfc/rfc4309.txt
http://www.ietf.org/rfc/rfc4357.txt
http://www.ietf.org/rfc/rfc4490.txt

370
371
372
373

374
375

376
377
378

379
380
381

382
383

384
385

386
387
388

389
390

391
392

393
394

395
396
397

398
399

400
401

402
403

404
405
406

[RFC 4491] S. Leontiev, Ed., D. Shefanovski, Ed., “Using the GOST R 34.10-94, GOST R 34.10-
2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate and
CRL Profile”, May 2006.

URL.: http://www.ietf.org/rfc/rfc4491.txt

[RFC 4493] J. Song et al. RFC 4493: The AES-CMAC Algorithm. June 2006.
URL: http://www.ietf.org/rfc/rfc4493.txt

[RFC 5705] Rescorla, E., “The Keying Material Exporters for Transport Layer Security (TLS)”, RFC
5705, March 2010.
URL: http://www.ietf.org/rfc/rfc5705.txt

[RFC 5869] H. Krawczyk, P. Eronen, “HMAC-based Extract-and-Expand Key Derivation Function
(HKDF)*, May 2010
URL.: http://www.ietf.org/rfc/rfc5869.txt

[RFC 7539] Y Nir, A. Langley. RFC 7539: ChaCha20 and Poly1305 for IETF Protocols, May 2015
URL: https://tools.ietf.org/rfc/rfc7539.txt

[RFC 7748] Aboba et al, “Elliptic Curves for Security”, IETF RFC 7748, January 2016
URL.: https://tools.ietf.org/html/rfc7748

[RFC 8032] Aboba et al, “Edwards-Curve Digital Signature Algorithm (EdADSA)”, IETF RFC 8032,
January 2017
URL: https://tools.ietf.org/html/rfc8032

[SEC 1]Standards for Efficient Cryptography Group (SECG). Standards for Efficient Cryptography (SEC)
1: Elliptic Curve Cryptography. Version 1.0, September 20, 2000.

[SEC 2]Standards for Efficient Cryptography Group (SECG). Standards for Efficient Cryptography (SEC)
2: Recommended Elliptic Curve Domain Parameters. Version 1.0, September 20, 2000.

[WTLS]WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-20010406-a. April 2001.
URL: http://openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf

[XEDDSA] The XEdDSA and VXEdDSA Signature Schemes - Revision 1, 2016-10-20, Trevor Perrin
(editor)
URL.: https://signal.org/docs/specifications/xeddsa/

[X.500] ITU-T. Information Technology — Open Systems Interconnection — The Directory: Overview of
Concepts, Models and Services. February 2001. Identical to ISO/IEC 9594-1

[X.509] ITU-T. Information Technology — Open Systems Interconnection — The Directory: Public-key
and Attribute Certificate Frameworks. March 2000. Identical to ISO/IEC 9594-8

[X.680] ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1): Specification of Basic
Notation. July 2002. Identical to ISO/IEC 8824-1

[X.690] ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). July 2002. Identical
to ISO/IEC 8825-1

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 27 of 424

http://www.ietf.org/rfc/rfc4491.txt
http://www.ietf.org/rfc/rfc4493.txt
http://www.ietf.org/rfc/rfc5869.txt
https://tools.ietf.org/rfc/rfc7539.txt
https://tools.ietf.org/html/rfc7748
http://openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
https://signal.org/docs/specifications/xeddsa/

407

408

409
410
411
412

413
414

415

416

417
418

419

420
421

422

423
424

425

426

427
428
429

430
432

433

434

435
436
437
438
439

440

442
443

444
445

2 Platform- and compiler-dependent directives for C
or C++

There is a large array of Cryptoki-related data types that are defined in the Cryptoki header files. Certain
packing and pointer-related aspects of these types are platform and compiler-dependent; these aspects
are therefore resolved on a platform-by-platform (or compiler-by-compiler) basis outside of the Cryptoki
header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives MUST be issued before
including a Cryptoki header file. These directives are described in the remainder of this section.

Plattform specific implementation hints can be found in the pkcs11.h header file.

2.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. Cryptoki structures SHALL be
packed with 1-byte alignment.

2.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different types of pointers,
the following 6 macros SHALL be set outside the scope of Cryptoki:

¢+ CK_PTR

CK_PTRis the “indirection string” a given platform and compiler uses to make a pointer to an object. Itis
used in the following fashion:

typedef CK BYTE CK PTR CK BYTE PTR;

¢ CK_DECLARE_FUNCTION

CK DECLARE FUNCTION (returnType, name), when followed by a parentheses-enclosed
list of arguments and a semicolon, declares a Cryptoki API function in a Cryptoki library. returnType is
the return type of the function, and name is its name. It SHALL be used in the following fashion:

CK DECLARE FUNCTION (CK RV, C Initialize) (
CK_VOID PTR pReserved
)i

¢ CK_DECLARE_FUNCTION_POINTER

CK DECLARE FUNCTION POINTER (returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to
a Cryptoki API function in a Cryptoki library. returnType is the return type of the function, and name is its
name. It SHALL be used in either of the following fashions to define a function pointer variable,
myC_Initialize, which can point to a C_Initialize function in a Cryptoki library (note that neither of the
following code snippets actually assigns a value to myC_Initialize):

CK DECLARE FUNCTION POINTER(CK RV, myC Initialize) (
CK VOID PTR pReserved
)i

or:

typedef CK DECLARE FUNCTION POINTER (CK RV, myC InitializeType) (

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 28 of 424

446
447
448

449

450
451
452
453
454
455
456

457
458

459

460
461

462

463
464

CK VOID PTR pReserved
)
myC InitializeType myC Initialize;

¢ CK_CALLBACK_FUNCTION

CK CALLBACK FUNCTION (returnType, name), when followed by a parentheses-enclosed
list of arguments and a semicolon, declares a variable or type which is a pointer to an application callback
function that can be used by a Cryptoki API function in a Cryptoki library. returnType is the return type of
the function, and name is its name. It SHALL be used in either of the following fashions to define a
function pointer variable, myCallback, which can point to an application callback which takes arguments
args and returns a CK_RYV (note that neither of the following code snippets actually assigns a value to
myCallback):

CK CALLBACK FUNCTION (CK RV, myCallback) (args);

or:
typedef CK CALLBACK FUNCTION (CK RV, myCallbackType) (args);
myCallbackType myCallback;

¢ NULL_PTR

NULL _ PTR is the value of a NULL pointer. In any ANSI C environment—and in many others as well—
NULL PTR SHALL be defined simply as 0.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 29 of 424

465

466
467
468

469
470
471
472
473

474
475

476
477

478

479
480
481

482
483

485
486

487
488
489

490
491

492

493
494

495

496

497

3 General data types

The general Cryptoki data types are described in the following subsections. The data types for holding
parameters for various mechanisms, and the pointers to those parameters, are not described here; these
types are described with the information on the mechanisms themselves, in Section 6.

A C or C++ source file in a Cryptoki application or library can define all these types (the types described
here and the types that are specifically used for particular mechanism parameters) by including the top-
level Cryptoki include file, pkcs11.h. pkecsll.h, in turn, includes the other Cryptoki include files, pkcs1lt.h
and pkcs11f.h. A source file can also include just pkcs11t.h (instead of pkcs11.h); this defines most (but
not all) of the types specified here.

When including either of these header files, a source file MUST specify the preprocessor directives
indicated in Section 2.

3.1 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library, or an
SSL or TLS implementation, or the hardware or firmware version of a slot or token. It is defined as
follows:

typedef struct CK VERSION ({
CK _BYTE major;
CK BYTE minor;

} CK_VERSION;

The fields of the structure have the following meanings:
major major version number (the integer portion of the version)
minor minor version number (the hundredths portion of the version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and minor = 10. Table 4
below lists the major and minor version values for the officially published Cryptoki specifications.

Table 4, Major and minor version values for published Cryptoki specifications

Version major minor
1.0 0x01 0x00
2.01 0x02 0x01
210 0x02 0x0a
211 0x02 0x0b
2.20 0x02 0x14
2.30 0x02 Ox1e
240 0x02 0x28
3.0 0x03 0x00

Minor revisions of the Cryptoki standard are always upwardly compatible within the same major version
number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

¢ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 30 of 424

518
519
520

521
522

523

524
525

526

527
528
529
530
531

532
533

534

535

536
537

538
539
540

typedef struct CK INFO {
CK VERSION cryptokiVersion;
CK _UTF8CHAR manufacturerID[32];
CK FLAGS flags;
CK UTF8CHAR libraryDescription[32];
CK VERSION libraryVersion;
} CK_INFO;

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility with future
revisions of this interface

manufacturerlD ID of the Cryptoki library manufacturer. MUST be padded with the
blank character (‘). Should not be null-terminated.

flags bit flags reserved for future versions. MUST be zero for this version

libraryDescription character-string description of the library. MUST be padded with the
blank character (*). Should not be null-terminated.

libraryVersion Cryptoki library version number

For libraries written to this document, the value of cryptokiVersion should match the version of this
specification; the value of libraryVersion is the version number of the library software itself.

CK_INFO_PTR is a pointer to a CK_INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It is defined
as follows:

typedef CK ULONG CK NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:

CKN SURRENDER

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of a function executing in a
session so that the application may perform other operations. After
performing any desired operations, the application should indicate
to Cryptoki whether to continue or cancel the function (see Section
5.21.1).

3.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows:

typedef CK ULONG CK SLOT ID;

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of CK_SLOT_ID can be a valid
slot identifier—in particular, a system may have a slot identified by the value 0. It need not have such a
slot, however.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 31 of 424

563
564
565

566

567

CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT INFO {
CK UTF8CHAR slotDescription([64];
CK UTF8CHAR manufacturerID[32];
CK FLAGS flags;
CK _VERSION hardwareVersion;
CK _VERSION firmwareVersion;

} CK _SLOT INFO;

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. MUST be padded with the
blank character (‘). MUST NOT be null-terminated.

manufacturerlD ID of the slot manufacturer. MUST be padded with the blank
character (‘). MUST NOT be null-terminated.

flags bits flags that provide capabilities of the slot. The flags are defined

below
hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’s firmware

The following table defines the flags field:
Table 5, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 | True if a token is present in the slot (e.g.,
a device is in the reader)

CKF_REMOVABLE_DEVICE 0x00000002 | True if the reader supports removable
devices

CKF_HW_SLOT 0x00000004 | True if the slot is a hardware slot, as

opposed to a software slot implementing
a “soft token”

For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes. In addition, if this flag
is not set for a given slot, then the CKF_TOKEN_PRESENT flag for that slot is always set. That is, if a
slot does not support a removable device, then that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK TOKEN INFO ({
CKiUTF8CHAR label[32];
CK_UTFSCHAR manufacturerID[32];
CK UTF8CHAR model[16];
CK CHAR serialNumber([16];
CK FLAGS flags;
CK ULONG ulMaxSessionCount;
CK_ULONG ulSessionCount;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 32 of 424

CK ULONG ulMaxRwSessionCount;
CK _ULONG ulRwSessionCount;

CK ULONG ulMaxPinLen;

CK _ULONG ulMinPinLen;

CK ULONG ulTotalPublicMemory;
CK _ULONG ulFreePublicMemory;
CK ULONG ulTotalPrivateMemory;
CK ULONG ulFreePrivateMemory;
CK _VERSION hardwareVersion;

CK _VERSION firmwareVersion;

CK CHAR utcTime[16];
} CK_TOKEN INFO;

The fields of the structure have the following meanings:

label application-defined label, assigned during token initialization. MUST
be padded with the blank character (‘). MUST NOT be null-
terminated.
manufacturerlD ID of the device manufacturer. MUST be padded with the blank
character (‘). MUST NOT be null-terminated.
model model of the device. MUST be padded with the blank character (*).
MUST NOT be null-terminated.
serialNumber character-string serial number of the device. MUST be padded with
the blank character (‘). MUST NOT be null-terminated.
flags bit flags indicating capabilities and status of the device as defined
below
ulMaxSessionCount maximum number of sessions that can be opened with the token at
one time by a single application (see CK_TOKEN_INFO Note
below)
ulSessionCount number of sessions that this application currently has open with the
token (see CK_TOKEN_INFO Note below)
ulMaxRwSessionCount maximum number of read/write sessions that can be opened with
the token at one time by a single application (see
CK_TOKEN_INFO Note below)
ulRwSessionCount number of read/write sessions that this application currently has
open with the token (see CK_TOKEN_INFO Note below)
ulMaxPinLen maximum length in bytes of the PIN
ulMinPinLen minimum length in bytes of the PIN
ulTotalPublicMemory the total amount of memory on the token in bytes in which public
objects may be stored (see CK_TOKEN_INFO Note below)
ulFreePublicMemory the amount of free (unused) memory on the token in bytes for public
objects (see CK_TOKEN_INFO Note below)
ulTotalPrivateMemory the total amount of memory on the token in bytes in which private
objects may be stored (see CK_TOKEN_INFO Note below)
ulFreePrivateMemory the amount of free (unused) memory on the token in bytes for
private objects (see CK_TOKEN_INFO Note below)
hardwareVersion version number of hardware
firmware Version version number of firmware

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 33 of 424

624
625
626
627
628
629

630
631

utcTime

current time as a character-string of length 16, represented in the

format YYYYMMDDhhmmssxx (4 characters for the year; 2
characters each for the month, the day, the hour, the minute, and
the second; and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a clock, as
indicated in the token information flags (see below)

The following table defines the flags field:

Table 6, Token Information Flags

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

True if the token has its own
random number generator

CKF_WRITE_PROTECTED

0x00000002

True if the token is write-
protected (see below)

CKF_LOGIN_REQUIRED

0x00000004

True if there are some
cryptographic functions that a
user MUST be logged in to
perform

CKF_USER_PIN_INITIALIZED

0x00000008

True if the normal user’s PIN
has been initialized

CKF_RESTORE_KEY_NOT_NEEDED

0x00000020

True if a successful save of a
session’s cryptographic
operations state always
contains all keys needed to
restore the state of the session

CKF_CLOCK_ON_TOKEN

0x00000040

True if token has its own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PA
TH

0x00000100

True if token has a “protected
authentication path”, whereby
a user can log into the token
without passing a PIN through
the Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

True if a single session with
the token can perform dual
cryptographic operations (see
Section 5.14)

CKF_TOKEN_INITIALIZED

0x00000400

True if the token has been
initialized using C_InitToken or
an equivalent mechanism
outside the scope of this
standard. Calling C_lInitToken
when this flag is set will cause
the token to be reinitialized.

CKF_SECONDARY_AUTHENTICATION

0x00000800

True if the token supports
secondary authentication for
private key objects.
(Deprecated; new
implementations MUST NOT
set this flag)

CKF_USER_PIN_COUNT_LOW

0x00010000

True if an incorrect user login

PIN has been entered at least
once since the last successful
authentication.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 34 of 424

632
633
634

635
636
637
638

639
640
641
642
643

644
645
646

647
648
649
650
651
652

Bit Flag Mask Meaning

CKF_USER_PIN_FINAL_TRY 0x00020000 True if supplying an incorrect
user PIN will cause it to
become locked.

CKF_USER_PIN_LOCKED 0x00040000 True if the user PIN has been
locked. User login to the token
is not possible.

CKF_USER_PIN_TO_BE_CHANGED 0x00080000 True if the user PIN value is
the default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF_SO_PIN_COUNT_LOW 0x00100000 True if an incorrect SO login
PIN has been entered at least
once since the last successful
authentication.

CKF_SO_PIN_FINAL_TRY 0x00200000 True if supplying an incorrect
SO PIN will cause it to
become locked.

CKF_SO_PIN_LOCKED 0x00400000 True if the SO PIN has been
locked. SO login to the token
is not possible.

CKF_SO_PIN_TO_BE_CHANGED 0x00800000 True if the SO PIN value is the
default value set by token
initialization or manufacturing,
or the PIN has been expired
by the card.

CKF ERROR STATE 0x01000000 True if the token failed a FIPS
- - 140-2 self-test and entered an
error state.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An application may
be unable to perform certain actions on a write-protected token; these actions can include any of the
following, among others:

e Creating/modifying/deleting any object on the token.

e Creating/modifying/deleting a token object on the token.

e Changing the SO’s PIN.

e Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending on the session state
to implement its object management policy. For instance, the token may set the
CKF_WRITE_PROTECTED flag unless the session state is R/W SO or R/W User to implement a policy

that does not allow any objects, public or private, to be created, modified, or deleted unless the user has
successfully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_FINAL_TRY,
and CKF_SO_PIN_FINAL_TRY flags may always be set to false if the token does not support the
functionality or will not reveal the information because of its security policy.

The CKF_USER_PIN_TO_BE_CHANGED and CKF_SO_PIN_TO_BE_CHANGED flags may always be
set to false if the token does not support the functionality. If a PIN is set to the default value, or has
expired, the appropriate CKF_USER_PIN_TO_BE_CHANGED or CKF_SO_PIN_TO_BE_CHANGED
flag is set to true. When either of these flags are true, logging in with the corresponding PIN will succeed,
but only the C_SetPIN function can be called. Calling any other function that required the user to be
logged in will cause CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 35 of 424

653 CK_TOKEN_INFO Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,

654 ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and

655 ulFreePrivateMemory can have the special value CK_UNAVAILABLE_INFORMATION, which means that
656 the token and/or library is unable or unwilling to provide that information. In addition, the fields

657 ulMaxSessionCount and ulMaxRwSessionCount can have the special value

658 CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the number of sessions
659 (resp. R/W sessions) an application can have open with the token.

660 It is important to check these fields for these special values. This is particularly true for

661 CK_EFFECTIVELY_INFINITE, since an application seeing this value in the ulMaxSessionCount or
662 ulMaxRwSessionCount field would otherwise conclude that it can’t open any sessions with the token,
663 which is far from being the case.

664 The upshot of all this is that the correct way to interpret (for example) the ulMaxSessionCount field is
665 something along the lines of the following:

666 CK_TOKEN INFO info;

669 if ((CK_LONG) info.ulMaxSessionCount
670 == CK_UNAVAILABLE INFORMATION) {
671 /* Token refuses to give value of ulMaxSessionCount */

674 } else if (info.ulMaxSessionCount == CK EFFECTIVELY INFINITE) {
675 /* Application can open as many sessions as it wants */

678 } élse {

679 /* ulMaxSessionCount really does contain what it should */

684 CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

685 3.3 Session types

686 Cryptoki represents session information with the following types:

687 ¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

688 CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as follows:

689 typedef CK ULONG CK_SESSION HANDLE;
690

691 Valid session handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
692 defines the following symbolic value:

693 CK_INVALID HANDLE
694

695 CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

696 ¢ CK_USER_TYPE

697 CK_USER_TYPE holds the types of Cryptoki users described in [PKCS11-UG] and, in addition, a
698 context-specific type described in Section 4.9. It is defined as follows:

699 typedef CK ULONG CK USER TYPE;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 36 of 424

700

701 For this version of Cryptoki, the following types of users are defined:

702 CKU_SO
703 CKU_USER
704 CKU_CONTEXT SPECIFIC

705 ¢ CK_STATE

706 CK_STATE holds the session state, as described in [PKCS11-UG]. It is defined as follows:

707 typedef CK _ULONG CK_STATE;

708

709 For this version of Cryptoki, the following session states are defined:
710 CKS_RO_PUBLIC_ SESSION

711 CKS_RO_USER_FUNCTIONS

712 CKS_RW_PUBLIC SESSION

713 CKS_RW USER_FUNCTIONS

714 CKS_RW_SO_FUNCTIONS

715 o CK_SESSION_INFO; CK_SESSION_INFO_PTR

716 CK_SESSION_INFO provides information about a session. It is defined as follows:

717 typedef struct CK_SESSION INFO {

718 CK SLOT ID slotID;

719 CK_STATE state;

720 CK_FLAGS flags;

721 CK_ULONG ulDeviceError;

722 } CK_SESSION_ INFO;

723

724

725 The fields of the structure have the following meanings:

726 slotiD ID of the slot that interfaces with the token

727 state the state of the session

728 flags bit flags that define the type of session; the flags are defined below
729 ulDeviceError an error code defined by the cryptographic device. Used for errors
730 not covered by Cryptoki.

731 The following table defines the flags field:

732 Table 7, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | True if the session is read/write; false if the
session is read-only

CKF_SERIAL_SESSION 0x00000004 | This flag is provided for backward compatibility,
and should always be set to true

733 CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

734 3.4 Object types

735 Cryptoki represents object information with the following types:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 37 of 424

736

737

738
739

740
741
742
743
744
745

746
747

748
749

750

751

752
753

754
755

756
757
758

759
760

761
762

763

764

765
766

767
768

769
770

771

772
773

774
775

¢ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:

typedef CK ULONG CK_OBJECT HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an object handle for
that application’s sessions to use to access it. A particular object on a token does not necessarily have a
handle which is fixed for the lifetime of the object; however, if a particular session can use a particular
handle to access a particular object, then that session will continue to be able to use that handle to
access that object as long as the session continues to exist, the object continues to exist, and the object
continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
defines the following symbolic value:

CK_INVALID HANDLE

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.

+ CK_OBJECT CLASS; CK_OBJECT CLASS PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki recognizes.
It is defined as follows:

typedef CK ULONG CK_OBJECT CLASS;

Object classes are defined with the objects that use them. The type is specified on an object through the
CKA_CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDOR DEFINED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a device. It is defined as
follows:

typedef CK_ULONG CK_HW FEATURE TYPE;

Hardware feature types are defined with the objects that use them. The type is specified on an object
through the CKA_HW_FEATURE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR DEFINED

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their feature types through the PKCS process.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 38 of 424

776

777

778
779

780
781

782

783
784

785
786

787

788

789
790

791
792

793

794
795

796
797

798

799

800
801

802

803

804

805
806

¢ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

typedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is specified on an
object through the CKA_KEY_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKK_VENDOR DEFINED

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their key types through the PKCS process.

¢ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:

typedef CK ULONG CK CERTIFICATE TYPE;

Certificate types are defined with the objects and mechanisms that use them. The certificate type is
specified on an object through the CKA_CERTIFICATE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDOR DEFINED

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their certificate types through the PKCS process.

¢ CK_CERTIFICATE_CATEGORY

CK_CERTIFICATE_CATEGORY is a value that identifies a certificate category. It is defined as follows:

typedef CK ULONG CK CERTIFICATE CATEGORY;

For this version of Cryptoki, the following certificate categories are defined:

Constant Value Meaning
CK_CERTIFICATE_CATEGORY_UNSPECIFIED 0x00000000UL | No category specified
CK_CERTIFICATE_CATEGORY_TOKEN_USER 0x00000001UL | Certificate belongs to
owner of the token
CK_CERTIFICATE_CATEGORY_AUTHORITY 0x00000002UL | Certificate belongs to a
certificate authority

CK_CERTIFICATE_CATEGORY_OTHER_ENTITY | 0x00000003UL | Certificate belongs to
an end entity (i.e.: not a
CA)

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

typedef CK ULONG CK ATTRIBUTE TYPE;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 39 of 424

807
808

809

810
811

812
813

814

815
816

817
819
820

821
822

823
824

825
826

827
828
829
830
831
832

833
834
835

836
837

838

839
840

842
843
844
845

846
847
848
849
850

Attributes are defined with the objects and mechanisms that use them. Attributes are specified on an
object as a list of type, length value items. These are often specified as an attribute template.

Vendor defined values for this type may also be specified.

CKA_VENDOR DEFINED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their attribute types through the PKCS process.

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. It is defined as
follows:

typedef struct CK ATTRIBUTE ({
CK_ATTRIBUTE TYPE type;
CK VOID PTR pValue;
CK _ULONG ulValuelen;

} CK_ATTRIBUTE;

The fields of the structure have the following meanings:
type the attribute type

pValue pointer to the value of the attribute
ulValuelLen length in bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant. An array of
CK_ATTRIBUTEsS is called a “template” and is used for creating, manipulating and searching for objects.
The order of the attributes in a template never matters, even if the template contains vendor-specific
attributes. Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and Cryptoki library MUST ensure that the pointer can be safely cast to the expected type
(i.e., without word-alignment errors).

The constant CK_UNAVAILABLE_INFORMATION is used in the ulValueLen field to denote an invalid or
unavailable value. See C_GetAttributeValue for further details.

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

¢ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK DATE {
CK_CHAR year([4];
CK CHAR month([2];
CK CHAR dayl[2];

} CK DATE;

The fields of the structure have the following meanings:
year the year (“1900” - “9999”)

month the month (“01” - “127)
day the day (“01” - “317)

The fields hold numeric characters from the character set in Table 3, not the literal byte values.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 40 of 424

851
852

853
854
855

856

857

858
859

860
861
862

863

864
865

866
867

868

869
870

871
872

873

874
875

876

877
878

879

880
881

When a Cryptoki object carries an attribute of this type, and the default value of the attribute is specified
to be "empty," then Cryptoki libraries SHALL set the attribute's u/ValueLen to O.

Note that implementations of previous versions of Cryptoki may have used other methods to identify an
"empty" attribute of type CK_DATE, and applications that needs to interoperate with these libraries
therefore have to be flexible in what they accept as an empty value.

¢ CK_PROFILE_ID; CK_PROFILE_ID_PTR

CK_PROFILE_ID is an unsigend ulong value represting a specific token profile. It is defined as follows:

typedef CK ULONG CK PROFILE ID;

Profiles are defines in the PKCS #11 Cryptographic Token Interface Profiles document. s. ID's greater
than Oxffffffff may cause compatibility issues on platforms that have CK_ULONG values of 32 bits, and
should be avoided.

Vendor defined values for this type may also be specified.

CKP_VENDOR DEFINED

Profile IDs CKP_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

Valid Profile IDs in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki defines
the following symbolic value:

CKP_INVALID ID

CK_PROFILE_ID_PTR is a pointer to a CK_PROFILE_ID.

¢ CK_JAVA_MIDP_SECURITY_DOMAIN

CK_JAVA_MIDP_SECURITY_DOMAIN is a value that identifies the Java MIDP security domain of a
certificate. It is defined as follows:

typedef CK ULONG CK_JAVA MIDP SECURITY DOMAIN;

For this version of Cryptoki, the following security domains are defined. See the Java MIDP specification
for further information:

Constant Value Meaning

CK_SECURITY_DOMAIN_UNSPECIFIED 0x00000000UL | No domain specified

CK_SECURITY_DOMAIN_MANUFACTURER 0x00000001UL | Manufacturer protection
domain

CK_SECURITY_DOMAIN_OPERATOR 0x00000002UL | Operator protection
domain

CK_SECURITY_DOMAIN_THIRD_PARTY 0x00000003UL | Third party protection
domain

3.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 41 of 424

882

883

884
885

886
887

888
889

890
891
892

893

894
895

896
897
898
899
900
901
902

903
904
905

906
907
908

909

910

911
912

913
914
915
916

918

919

920
921

922
923

924

¢ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:

typedef CK ULONG CK MECHANISM TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.
Vendor defined values for this type may also be specified.

CKM_VENDOR DEFINED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their mechanism types through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

¢ CK_MECHANISM;

CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any parameters it requires. It

is defined as follows:

typedef struct CK MECHANISM {
CK MECHANISM TYPE mechanism;
CK_VOID_PTR pParameter;
CK ULONG ulParameterLen;

} CK_MECHANISM;

The fields of the structure have the following meanings:

mechanism the type of mechanism

pParameter pointer to the parameter if required by the mechanism

ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the application
and the Cryptoki library MUST ensure that the pointer can be safely cast to the expected type (i.e.,
without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

¢ CK_MECHANISM_

INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism. It is

defined as follows:

typedef struct CK MECHANISM INFO {
CK ULONG ulMinKeySize;
CK_ULONG ulMaxKeySize;

CK FLAGS flags;

} CK MECHANISM INFO;

The fields of the structure have the following meanings:

ulMinKeySize the minimum size of the key for the mechanism (whether this is
measured in bits or in bytes is mechanism-dependent)
ulMaxKeySize the maximum size of the key for the mechanism (whether this is

pkcsll-spec-v3.1-csd01
Standards Track Work Product

measured in bits or in bytes is mechanism-dependent)

flags bit flags specifying mechanism capabilities

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 42 of 424

925
926
927

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.

The following table defines the flags field:

Table 8, Mechanism Information Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 True if the mechanism is performed by
the device; false if the mechanism is
performed in software

CKF_MESSAGE_ENCRYPT 0x00000002 | True if the mechanism can be used with
C_MessageEncryptinit

CKF_MESSAGE_DECRYPT 0x00000004 | True if the mechanism can be used with
C_MessageDecryptinit

CKF_MESSAGE_SIGN 0x00000008 | True if the mechanism can be used with
C_MessageSigninit

CKF_MESSAGE_VERIFY 0x00000010 | True if the mechanism can be used with
C_MessageVerifylnit

CKF_MULTI_MESSAGE 0x00000020 | True if the mechanism can be used with
C_*MessageBegin. One of
CKF_MESSAGE_* flag must also be
set.

CKF_FIND_OBJECTS 0x00000040 | This flag can be passed in as a
parameter to C_SessionCancel to
cancel an active object search
operation. Any other use of this flag is
outside the scope of this standard.

CKF_ENCRYPT 0x00000100 | True if the mechanism can be used with
C_Encryptinit

CKF_DECRYPT 0x00000200 | True if the mechanism can be used with
C_Decryptinit

CKF_DIGEST 0x00000400 | True if the mechanism can be used with
C_DigestlInit

CKF_SIGN 0x00000800 | True if the mechanism can be used with
C_Signinit

CKF_SIGN_RECOVER 0x00001000 | True if the mechanism can be used with
C_SignRecoverlnit

CKF_VERIFY 0x00002000 | True if the mechanism can be used with
C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | True if the mechanism can be used with
C_VerifyRecoverlnit

CKF_GENERATE 0x00008000 | True if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PAIR 0x00010000 | True if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x00020000 | True if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x00040000 | True if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x00080000 | True if the mechanism can be used with

C_DeriveKey

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 43 of 424

928

929
930

931

932

933
934

935

936
937

938
939
940

941

942
943

944
945
946
947
948
949

950
951
952

953
954

955

956
957
958
959
960

Bit Flag Mask Meaning

CKF_EXTENSION 0x80000000 | True if there is an extension to the
flags; false if no extensions. MUST be
false for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

3.6 Function types

Cryptoki represents information about functions with the following data types:

¢+ CK RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:

typedef CK ULONG CK_RV;

Vendor defined values for this type may also be specified.

CKR_VENDOR DEFINED

Section 5.1 defines the meaning of each CK_RV value. Return values CKR_VENDOR_DEFINED and
above are permanently reserved for token vendors. For interoperability, vendors should register their
return values through the PKCS process.

¢ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification callbacks. It is
defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK NOTIFY) (
CK_SESSION HANDLE hSession,

CK_NOTIFICATION event,

CK _VOID PTR pApplication

)7

The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback

event The type of notification callback

pApplication An application-defined value. This is the same value as was passed
to C_OpenSession to open the session performing the callback

¢ CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function C_XXX in the
Cryptoki API (see Section 4.12 for detailed information about each of them), Cryptoki defines a type
CK_C_XXX, which is a pointer to a function with the same arguments and return value as C_XXX has.
An appropriately-set variable of type CK_C_XXX may be used by an application to call the Cryptoki
function C_XXX.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 44 of 424

961
962

¢ CK_FUNCTION_LIST;
CK_FUNCTION_LIST PTR_PTR

CK_FUNCTION_LIST_PTR;

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to each

function in the Cryptoki API. It is defined as follows:

typedef struct CK FUNCTION LIST {
CK _VERSION version;
CK C Initialize C Initialize;
CK C Finalize C Finalize;
CK C GetInfo C GetInfo;
CK C GetFunctionList C GetFunctionList;
CK_C GetSlotList C_GetSlotList;
CK C GetSlotInfo C GetSlotInfo;
CK C GetTokenInfo C GetTokenInfo;
CK C GetMechanismList C GetMechanismList;
CK C GetMechanismInfo C GetMechanismInfo;
CK C InitToken C InitToken;
CK_C InitPIN C InitPIN;
CK_C _SetPIN C_SetPIN;
CK _C OpenSession C OpenSession;
CK C CloseSession C CloseSession;
CK C CloseAllSessions C CloseAllSessions;
CK C GetSessionInfo C GetSessionInfo;

CK C GetOperationState C GetOperationState;
CK C SetOperationState C SetOperationState;
CK C Login C Login;

CK C Logout C Logout;

CK C CreateObject C CreateObject;

CK C CopyObject C CopyObject;

CK C DestroyObject C DestroyObject;

CK C GetObjectSize C GetObjectSize;

CK C GetAttributeValue C GetAttributeValue;
CK C SetAttributeValue C SetAttributeValue;
CK C FindObjectsInit C FindObjectsInit;
CK_C FindObjects C FindObjects;

CK C FindObjectsFinal C FindObjectsFinal;
CK _C EncryptInit C EncryptInit;

CK _C Encrypt C Encrypt;

CK C EncryptUpdate C EncryptUpdate;

CK _C EncryptFinal C EncryptFinal;

CK C DecryptInit C DecryptInit;

CK C Decrypt C Decrypt;

CK C DecryptUpdate C DecryptUpdate;

CK C DecryptFinal C DecryptFinal;

CK C DigestInit C DigestInit;

CK C Digest C Digest;

CK C DigestUpdate C DigestUpdate;

CK C DigestKey C DigestKey;

CK C DigestFinal C DigestFinal;
CK_C_SignInit C_SignInit;

CK C Sign C_Sign;

CK C SignUpdate C SignUpdate;

CK C SignFinal C SignFinal;

CK C SignRecoverInit C SignRecoverInit;

CK C SignRecover C_SignRecover;

CK C VerifyInit C VerifyInit;

CK C Verify C Verify;

CK C VerifyUpdate C VerifyUpdate;

CK C VerifyFinal C VerifyFinal;

CK C VerifyRecoverInit C VerifyRecoverInit;
CK C VerifyRecover C VerifyRecover;

pkcsll-spec-v3.1-csd01

16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 45 of 424

CK C DigestEncryptUpdate C DigestEncryptUpdate;
CK C DecryptDigestUpdate C DecryptDigestUpdate;
CK C SignEncryptUpdate C SignEncryptUpdate;
CK C DecryptVerifyUpdate C DecryptVerifyUpdate;
CK _C GenerateKey C GenerateKey;
CK C GenerateKeyPair C GenerateKeyPair;
CK C WrapKey C WrapKey;
CK_C UnwrapKey C UnwrapKey;
CK C DeriveKey C DeriveKey;
CK C SeedRandom C SeedRandom;
CK C GenerateRandom C GenerateRandom;
CK C GetFunctionStatus C GetFunctionStatus;
CK C CancelFunction C CancelFunction;
CK C WaitForSlotEvent C WaitForSlotEvent;
} CK _FUNCTION LIST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it (or to a copy of it
which is also owned by the library) may be obtained by the C_GetFunctionList function (see Section
5.2). The value that this pointer points to can be used by an application to quickly find out where the
executable code for each function in the Cryptoki APl is located. Every function in the Cryptoki API
MUST have an entry point defined in the Cryptoki library’'s CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for that function in the
library’s CK_FUNCTION_LIST structure should point to a function stub which simply returns
CKR_FUNCTION_NOT_SUPPORTED.

In this structure ‘version’ is the cryptoki specification version number. The major and minor versions must
be set to 0x02 and 0x28 indicating a version 2.40 compatible structure. The updated function list table for
this version of the specification may be returned via C_GetlnterfaceList or C_Getinterface.

An application may or may not be able to modify a Cryptoki library’s static CK_FUNCTION_LIST
structure. Whether or not it can, it should never attempt to do so.

PKCS #11 modules must not add new functions at the end of the CK_FUNCTION_LIST that are not
contained within the defined structure. If a PKCS#11 module needs to define additional functions, they
should be placed within a vendor defined interface returned via C_GetlInterfaceList or C_Getinterface.
CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

¢ CK_FUNCTION_LIST_3_0; CK_FUNCTION_LIST 3 0_PTR;
CK_FUNCTION_LIST 3 0_PTR_PTR

CK_FUNCTION_LIST_3_0 is a structure which contains the same function pointers as in
CK_FUNCTION_LIST and additional functions added to the end of the structure that were defined in
Cryptoki version 3.0. It is defined as follows:

typedef struct CK FUNCTION LIST 3 0 ({
CK VERSION version;
CK C Initialize C Initialize;
CK C Finalize C Finalize;
CK C GetInfo C GetInfo;
CK C GetFunctionList C GetFunctionList;
CK C GetSlotList C GetSlotList;
CK C GetSlotInfo C GetSlotInfo;
CK C GetTokenInfo C GetTokenInfo;
CK C GetMechanismList C GetMechanismList;
CK_C GetMechanismInfo C_GetMechanismInfo;
CK_C_InitToken C_InitToken;
CKicilnitPIN CilnitPIN;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 46 of 424

CK C SetPIN C SetPIN;

CK _C OpenSession C OpenSession;

CK C CloseSession C CloseSession;

CK C CloseAllSessions C CloseAllSessions;
CK C GetSessionInfo C GetSessionInfo;

CK C GetOperationState C GetOperationState;
CK C SetOperationState C SetOperationState;
CK C Login C Login;

CK C Logout C Logout;

CK C CreateObject C CreateObject;

CK C CopyObject C CopyObject;

CK C DestroyObject C DestroyObject;

CK C GetObjectSize C GetObjectSize;

CK C GetAttributeValue C GetAttributeValue;
CK C SetAttributeValue C SetAttributeValue;
CK C FindObjectsInit C FindObjectsInit;

CK C FindObjects C FindObjects;

CK C FindObjectsFinal C FindObjectsFinal;
CK C EncryptInit C EncryptInit;

CK C Encrypt C Encrypt;

CK C EncryptUpdate C EncryptUpdate;

CK C EncryptFinal C EncryptFinal;

CK C DecryptInit C DecryptInit;

CK C Decrypt C Decrypt;

CK C DecryptUpdate C DecryptUpdate;

CK C DecryptFinal C DecryptFinal;

CK C DigestInit C DigestInit;

CK C Digest C Digest;

CK C DigestUpdate C DigestUpdate;

CK C DigestKey C DigestKey;

CK C DigestFinal C DigestFinal;

CK C SignInit C SignInit;

CK C Sign C_Sign;

CK C SignUpdate C SignUpdate;

CK C SignFinal C SignFinal;

CK _C SignRecoverInit C SignRecoverInit;

CK C SignRecover C_SignRecover;

CK C VerifyInit C VerifyInit;

CK C Verify C Verify;

CK C VerifyUpdate C VerifyUpdate;

CK C VerifyFinal C VerifyFinal;

CK_C VerifyRecoverInit C VerifyRecoverInit;
CK C VerifyRecover C VerifyRecover;

CK C DigestEncryptUpdate C DigestEncryptUpdate;
CK C DecryptDigestUpdate C DecryptDigestUpdate;
CK C SignEncryptUpdate C SignEncryptUpdate;
CK C DecryptVerifyUpdate C DecryptVerifyUpdate;
CK_C GenerateKey C GenerateKey;

CK _C GenerateKeyPair C GenerateKeyPair;

CK _C WrapKey C WrapKey;

CK C UnwrapKey C UnwrapKey;

CK C DeriveKey C DeriveKey;

CK C SeedRandom C SeedRandom;

CK C GenerateRandom C GenerateRandom;

CK_C GetFunctionStatus C GetFunctionStatus;
CK C CancelFunction C CancelFunction;

CK _C WaitForSlotEvent C WaitForSlotEvent;
CK C GetInterfacelList C_GetInterfacelist;
CK C GetInterface C GetInterface;

CK C LoginUser C LoginUser;

CK _C SessionCancel C_ SessionCancel;

CK C MessageEncryptInit C MessageEncryptInit;
CK C EncryptMessage C EncryptMessage;

CK C EncryptMessageBegin C EncryptMessageBegin;

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 47 of 424

CK _C EncryptMessageNext C EncryptMessageNext;
CK C MessageEncryptFinal C MessageEncryptFinal;
CK C MessageDecryptInit C MessageDecryptInit;
CK_C DecryptMessage C DecryptMessage;
CK C DecryptMessageBegin C DecryptMessageBegin;
CK_C DecryptMessageNext C DecryptMessageNext;
CK C MessageDecryptFinal C MessageDecryptFinal;
CK C MessageSignInit C MessageSignInit;
CK C SignMessage C_SignMessage;
CK C SignMessageBegin C SignMessageBegin;
CK C SignMessageNext C SignMessageNext;
CK C MessageSignFinal C MessageSignFinal;
CK C MessageVerifyInit C MessageVerifyInit;
CK C VerifyMessage C VerifyMessage;
CK C VerifyMessageBegin C VerifyMessageBegin;
CK C VerifyMessageNext C VerifyMessageNext;
CK C MessageVerifyFinal C MessageVerifyFinal;

} CK_FUNCTION LIST 3 0;

For a general description of CK_FUNCTION_LIST_3_0 see CK_FUNCTION_LIST.

In this structure, version is the cryptoki specification version number. It should match the value of
cryptokiVersion returned in the CK_INFO structure, but must be 3.0 at minimum.

This function list may be returned via C_GetlInterfaceList or C_Getinterface
CK_FUNCTION_LIST_3_0_PTR is a pointer to a CK_FUNCTION_LIST_3_0.
CK_FUNCTION_LIST_3_0_PTR_PTR is a pointer to a CK_FUNCTION_LIST_3_0_PTR.

¢ CK_INTERFACE; CK_INTERFACE_PTR; CK_INTERFACE_PTR_PTR

CK_INTERFACE is a structure which contains an interface name with a function list and flag.
It is defined as follows:

typedef struct CK INTERFACE ({
CK UTF8CHAR PTR pInterfaceName;
CK VOID PTR pFunctionList;
CK FLAGS flags;

} CK_INTERFACE;

The fields of the structure have the following meanings:
plnterfaceName the name of the interface

pFunctionList the interface function list which must always begin with a
CK_VERSION structure as the first field

flags bit flags specifying interface capabilities
The interface name “PKCS 11" is reserved for use by interfaces defined within the cryptoki specification.

Interfaces starting with the string: “Vendor " are reserved for vendor use and will not oetherwise be
defined as interfaces in the PKCS #11 specification. Vendors should supply new functions with interface
names of “Vendor {vendor name}’. For example “Vendor ACME Inc”.

The following table defines the flags field:
Table 9, CK_INTERFACE Flags

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 48 of 424

1186
1187
1188

1189

1190
1191

1192

1193
1194

1195
1196
1197
1198

1199
1200

1201
1202

1203

1204
1205

1206
1207
1208
1209

1210
1211

1212
1213
1214

Bit Flag Mask Meaning

CKF_INTERFACE_FORK_SAFE 0x00000001 The returned interface will have
fork tolerant semantics. When
the application forks, each
process will get its own copy of
all session objects, session
states, login states, and
encryption states. Each
process will also maintain
access to token objects with
their previously supplied
handles.

CK_INTERFACE_PTR is a pointer to a CK_INTERFACE.
CK_INTERFACE_PTR_PTR is a pointer to a CK_INTERFACE_PTR.

3.7 Locking-related types

The types in this section are provided solely for applications which need to access Cryptoki from multiple
threads simultaneously. Applications which will not do this need not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which creates a new
mutex object and returns a pointer to it. It is defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK_CREATEMUTEX) (
CK_VOID PTR PTR ppMutex
)i

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in the location pointed
to by ppMutex. Such a function should return one of the following values:

CKR OK, CKR GENERAL ERROR
CKR HOST MEMORY

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function which destroys an
existing mutex object. It is defined as follows:

typedef CK CALLBACK FUNCTION (CK RV, CK_DESTROYMUTEX) (
CK_VOID PTR pMutex
)7

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be destroyed. Such
a function should return one of the following values:

CKR_OK, CKR GENERAL ERROR
CKR_HOST_ MEMORY
CKR_MUTEX BAD

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 49 of 424

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which locks an existing
mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-supplied function which
unlocks an existing mutex object. The proper behavior for these types of functions is as follows:

e |fa CK_LOCKMUTEX function is called on a mutex which is not locked, the calling thread obtains a
lock on that mutex and returns.

e |fa CK_LOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the calling thread blocks and waits for that mutex to be unlocked.

e |faCK_LOCKMUTEX function is called on a mutex which is locked by the calling thread, the
behavior of the function call is undefined.

e |fa CK_UNLOCKMUTEX function is called on a mutex which is locked by the calling thread, that
mutex is unlocked and the function call returns. Furthermore:

o If exactly one thread was blocking on that particular mutex, then that thread stops blocking,
obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.

o If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threads is selected somehow. That lucky thread stops blocking, obtains a lock on
the mutex, and its CK_LOCKMUTEX call returns. All other threads blocking on that particular
mutex continue to block.

e Ifa CK_UNLOCKMUTEX function is called on a mutex which is not locked, then the function call
returns the error code CKR_MUTEX_NOT_LOCKED.

e Ifa CK_UNLOCKMUTEX function is called on a mutex which is locked by some thread other than the
calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:
typedef CK CALLBACK FUNCTION (CK RV, CK LOCKMUTEX) (

CK_VOID PTR pMutex
)i

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked. Such a
function should return one of the following values:

CKR OK, CKR GENERAL ERROR
CKR_HOST_MEMORY,
CKR_MUTEX BAD

CK_UNLOCKMUTEX is defined as follows:

typedef CK _CALLBACK FUNCTION (CK RV, CK_UNLOCKMUTEX) (
CK_VOID PTR pMutex
)i

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be unlocked. Such a
function should return one of the following values:

CKR_OK, CKR GENERAL ERROR
CKR_HOST_ MEMORY
CKR_MUTEX BAD
CKR_MUTEX NOT LOCKED

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 50 of 424

1283

¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the C_Initialize function.
For this version of Cryptoki, these optional arguments are all concerned with the way the library deals
with threads. CK_C_INITIALIZE_ARGS is defined as follows:

typedef struct CK C INITIALIZE ARGS ({
CK _CREATEMUTEX CreateMutex;
CK_DESTROYMUTEX DestroyMutex;

CK_ LOCKMUTEX LockMutex;

CK_UNLOCKMUTEX UnlockMutex;

CK_FLAGS flags;

CK VOID PTR pReserved;

} CK C_INITIALIZE ARGS;

The fields of the structure have the following meanings:

CreateMutex
DestroyMutex
LockMutex
UnlockMutex
flags

pReserved

pointer to a function to use for creating mutex objects
pointer to a function to use for destroying mutex objects
pointer to a function to use for locking mutex objects
pointer to a function to use for unlocking mutex objects

bit flags specifying options for C_lInitialize; the flags are defined
below

reserved for future use. Should be NULL_PTR for this version of
Cryptoki

The following table defines the flags field:

Table 10, C_Initialize Parameter Flags

Bit Flag

Mask Meaning

CKF_LIBRARY_CANT_CREATE_OS_THREADS 0x00000001 | True if application

threads which are
executing calls to
the library may not
use native
operating system
calls to spawn
new threads; false
if they may

CKF_OS_LOCKING_OK

0x00000002 | True if the library
can use the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

pkcsll-spec-v3.1-csd01

16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 51 of 424

1284

1285
1286
1287
1288

1289
1290

1291
1292
1293

1294
1295
1296
1297

1298
1299
1300
1301

1302

1303
1304
1305

1306
1307

1308

1309
1310

4 Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type.
An object consists of a set of attributes, each of which has a given value. Each attribute that an object
possesses has precisely one value. The following figure illustrates the high-level hierarchy of the
Cryptoki objects and some of the attributes they support:

Object
A/Class \
Storage Hardware feature Mechanism
Feature type Mechanism type

Token
Private
Label Domain Profile

\4 K

e
Data y

Application
Object Identifier
Value Certificate

Figure 1, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and for obtaining and
modifying the values of their attributes. Some of the cryptographic functions (e.g., C_GenerateKey) also
create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all required attributes,
and the attributes are always consistent with one another from the time the object is created. This
contrasts with some object-based paradigms where an object has no attributes other than perhaps a
class when it is created, and is uninitialized for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 4 define each Cryptoki attribute in terms of the data type of the
attribute value and the meaning of the attribute, which may include a default initial value. Some of the
data types are defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attribute values may also take
the following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTESs representing an unsigned integer of arbitrary
size, most-significant byte first (e.g., the integer 32768 is
represented as the 2-byte string 0x80 0x00)

Local string an unpadded string of CK_CHARs (see Table 3) with no null-
termination

RFC2279 string an unpadded string of CK_UTF8CHARSs with no null-termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to have exactly the
same values for all their attributes.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 52 of 424

1311
1312
1313
1314
1315

1316
1317

1318

1319
1320
1321
1322
1323
1324
1325

1326

1327
1328
1329
1330

1331
1332

1333
1334
1335
1336

1337
1338
1339

1340
1341
1342
1343
1344
1345
1346

1347
1348
1349
1350

1351
1352
1353
1354
1355
1356
1357
1358

In most cases each type of object in the Cryptoki specification possesses a completely well-defined set of
Cryptoki attributes. Some of these attributes possess default values, and need not be specified when
creating an object; some of these default values may even be the empty string (*”). Nonetheless, the
object possesses these attributes. A given object has a single value for each attribute it possesses, even
if the attribute is a vendor-specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific attributes
whose meanings and values are not specified by Cryptoki.

4.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their arguments,
where the template specifies attribute values. Cryptographic functions that create objects (see Section
5.18) may also contribute some additional attribute values themselves; which attributes have values
contributed by a cryptographic function call depends on which cryptographic mechanism is being
performed (see [PKCS11-Curr] and [PKCS11-Hist] for specification of mechanisms for PKCS #11). In
any case, all the required attributes supported by an object class that do not have default values MUST
be specified when an object is created, either in the template or by the function itself.

4.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 5.7), C_GenerateKey,
C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see Section 5.18). In addition, copying an
existing object (with the function C_CopyObiject) also creates a new object, but we consider this type of
object creation separately in Section 4.1.3.

Attempting to create an object with any of these functions requires an appropriate template to be
supplied.

1. |If the supplied template specifies a value for an invalid attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute is valid if it is either one of the attributes
described in the Cryptoki specification or an additional vendor-specific attribute supported by the library
and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the attempt should fail with
the error code CKR_ATTRIBUTE_VALUE_INVALID. The valid values for Cryptoki attributes are
described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt should fail with the
error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a given Cryptoki attribute is read-only is
explicitly stated in the Cryptoki specification; however, a particular library and token may be even more
restrictive than Cryptoki specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some combinations of
other attributes) for a particular library and token. Whether or not a given non-Cryptoki attribute is read-
only is obviously outside the scope of Cryptoki.

4. |If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are insufficient to fully
specify the object to create, then the attempt should fail with the error code
CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute values and any
attribute values contributed to the object by the object-creation function itself, are inconsistent, then the
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT. A set of attribute values is
inconsistent if not all of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be using a template
which specifies two different values for the same attribute. Another example would be trying to create
a secret key object with an attribute which is appropriate for various types of public keys or private keys,
but not for secret keys. A final example would be a template with an attribute that violates some token

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 53 of 424

1359
1360

1361
1362
1363
1364
1365
1366
1367
1368

1369
1370

1371

1372
1373
1374

1375
1376
1377
1378
1379
1380
1381
1382

1383
1384

1385

1386
1387
1388
1389

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

1400
1401
1402
1403

1404
1405

specific requirement. Note that this final example of an inconsistent template is token-dependent—on
a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than once (or the
template specifies the same value for a particular attribute that the object-creation function itself
contributes to the object), then the behavior of Cryptoki is not completely specified. The attempt to
create an object can either succeed—thereby creating the same object that would have been created
if the multiply-specified attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make their libraries behave
as though the attribute had only appeared once in the template; application developers are strongly
encouraged never to put a particular attribute into a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object, then the error
code returned from the attempt can be any of the error codes from above that applies.

4.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 5.7). The
template supplied to C_SetAttributeValue can contain new values for attributes which the object already
possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may not. In
addition, attributes which Cryptoki specifies are modifiable may actually not be modifiable on some
tokens. That is, if a Cryptoki attribute is described as being modifiable, that really means only that it is
modifiable insofar as the Cryptoki specification is concerned. A particular token might not actually
support modification of some such attributes. Furthermore, whether or not a particular attribute of an
object on a particular token is modifiable might depend on the values of certain attributes of the object.
For example, a secret key object's CKA_SENSITIVE attribute can be changed from CK_FALSE to
CK_TRUE, but not the other way around.

All the scenarios in Section 4.1.1—and the error codes they return—apply to modifying objects with
C_SetAttributeValue, except for the possibility of a template being incomplete.

4.1.3 Copying objects

Unless an object's CKA_COPYABLE (see Table 17) attribute is set to CK_FALSE, it may be copied with
the Cryptoki function C_CopyObject (see Section 5.7). In the process of copying an object,
C_CopyObiject also modifies the attributes of the newly-created copy according to an application-
supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObiject operation are the
same as the Cryptoki attributes which are described as being modifiable, plus the four special attributes
CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE and CKA_DESTROYABLE. To be more precise,
these attributes are modifiable during the course of a C_CopyObject operation insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of some such
attributes during the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a C_CopyObject operation
might depend on the values of certain attributes of the object. For example, a secret key object’s
CKA_SENSITIVE attribute can be changed from CK_FALSE to CK_TRUE during the course of a
C_CopyObiject operation, but not the other way around.

If the CKA_COPYABLE attribute of the object to be copied is set to CK_FALSE, C_CopyObiject returns
CKR_ACTION_PROHIBITED. Otherwise, the scenarios described in 10.1.1 - and the error codes they
return - apply to copying objects with C_CopyObject, except for the possibility of a template being
incomplete.

4.2 Common attributes

Table 11, Common footnotes for object attribute tables

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 54 of 424

1406
1407

1408
1409

1410

1411

1412
1413

1414

1415
1416

1417
1418
1419
1420

1421

1422

1 MUST be specified when object is created with C_CreateObject.
2 MUST not be specified when object is created with C_CreateObject.
3 MUST be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 MUST not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

5 MUST be specified when object is unwrapped with C_UnwrapKey.
8 MUST not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of
copying object with a C_CopyObject call. However, it is possible that a particular token may
not permit modification of the attribute during the course of a C_CopyObiject call.

9 Default value is token-specific, and may depend on the values of other attributes.
10Can only be set to CK_TRUE by the SO user.

11 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.
12 Attribute cannot be changed once set to CK_FALSE. It becomes a read only attribute.

Table 12, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS Object class (type)

Refer to Table 11 for footnotes
The above table defines the attributes common to all objects.

4.3 Hardware Feature Objects

4.3.1 Definitions

This section defines the object class CKO_HW_FEATURE for type CK_OBJECT_CLASS as used in the

CKA_CLASS attribute of objects.

4.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They provide an easily

expandable method for introducing new value-based features to the Cryptoki interface.

When searching for objects using C_FindObjectsinit and C_FindObjects, hardware feature objects are
not returned unless the CKA_CLASS attribute in the template has the value CKO_HW_FEATURE. This

protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

Table 13, Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE_TYPE! CK_HW_FEATURE_TYPE | Hardware feature (type)

“Refer to Table 11 for footnotes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 55 of 424

1423 4.3.3 Clock

1424 4.3.3.1 Definition

1425 The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type
1426 CK_HW_FEATURE_TYPE.

1427 4.3.3.2 Description

1428 Clock objects represent real-time clocks that exist on the device. This represents the same clock source
1429 as the utcTime field in the CK_TOKEN_INFO structure.

1430 Table 14, Clock Object Attributes

Attribute Data Type Meaning

CKA _VALUE CK_CHAR([16] Current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters).

1431 The CKA_VALUE attribute may be set using the C_SetAttributeValue function if permitted by the
1432 device. The session used to set the time MUST be logged in. The device may require the SO to be the
1433 user logged in to modify the time value. C_SetAttributeValue will return the error

1434 CKR_USER_NOT_LOGGED IN to indicate that a different user type is required to set the value.

1435 4.3.4 Monotonic Counter Objects

1436 4.3.4.1 Definition

1437 The CKA_HW_FEATURE_TYPE attribute takes the value CKH_MONOTONIC_COUNTER of type
1438 CK_HW_FEATURE_TYPE.

1439 4.3.4.2 Description

1440 Monotonic counter objects represent hardware counters that exist on the device. The counter is
1441 guaranteed to increase each time its value is read, but not necessarily by one. This might be used by an
1442 application for generating serial numbers to get some assurance of uniqueness per token.

1443 Table 15, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET_ON_INIT? CK_BBOOL The value of the counter will reset to a
previously returned value if the token is
initialized using C_InitToken.

CKA HAS_ RESET' CK_BBOOL The value of the counter has been reset at
least once at some point in time.
CKA_VALUE' Byte Array The current version of the monotonic counter.

The value is returned in big endian order.

1444 'Read Only
1445 The CKA_VALUE attribute may not be set by the client.

1446 4.3.5 User Interface Objects

1447 4.3.5.1 Definition

1448 The CKA_HW_FEATURE_TYPE attribute takes the value CKH_USER_INTERFACE of type
1449 CK_HW_FEATURE_TYPE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 56 of 424

1450
1451
1452

1453
1454
1455

1456

1457
1458

1459

1460
1461

4.3.5.2 Description

User interface objects represent the presentation capabilities of the device.
Table 16, User Interface Object Attributes

Attribute Data type Meaning

CKA_PIXEL_X CK_ULONG Screen resolution (in pixels) in X-axis
(e.g. 1280)

CKA_PIXEL_Y CK_ULONG Screen resolution (in pixels) in Y-axis
(e.g. 1024)

CKA_RESOLUTION CK_ULONG DPI, pixels per inch

CKA_CHAR_ROWS CK_ULONG For character-oriented displays; number
of character rows (e.g. 24)

CKA_CHAR_COLUMNS CK_ULONG For character-oriented displays: number

of character columns (e.g. 80). If display
is of proportional-font type, this is the
width of the display in “em”-s (letter “M”),

see CC/PP Struct.
CKA_COLOR CK_BBOOL Color support
CKA_BITS_PER_PIXEL CK_ULONG The number of bits of color or grayscale
information per pixel.
CKA_CHAR_SETS RFC 2279 String indicating supported character
string sets, as defined by IANA MIBenum sets

(www.iana.org). Supported character
sets are separated with “;”. E.g. a token
supporting is0-8859-1 and US-ASCII

would set the attribute value to “4;3”.

CKA_ENCODING_METHODS RFC 2279 String indicating supported content

string transfer encoding methods, as defined by
IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and base64

could set the attribute value to

“7bit;8bit;base64”.
CKA_MIME_TYPES RFC 2279 String indicating supported (presentable)
string MIME-types, as defined by IANA

(www.iana.org). Supported types are
separated with “;”. E.g. a token
supporting MIME types "a/b", "a/c" and
"a/d" would set the attribute value to

“alb;alc;a/d”.

The selection of attributes, and associated data types, has been done in an attempt to stay as aligned
with RFC 2534 and CC/PP Struct as possible. The special value CK_UNAVAILABLE_INFORMATION
may be used for CK_ULONG-based attributes when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the application needs to
send MIME objects with encoded content to the token.

4.4 Storage Objects

This is not an object class; hence no CKO_ definition is required. It is a category of object classes with
common attributes for the object classes that follow.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 57 of 424

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/

1462

1463
1464
1465

1466

1467
1468

1469
1470

1471
1472
1473

1474
1475

1476

1477
1478
1479
1480
1481

1482
1483
1484

1485

Table 17, Common Storage Object Attributes

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL CK_TRUE if object is a token object;
CK_FALSE if object is a session object.
Default is CK_FALSE.

CKA_PRIVATE CK_BBOOL CK_TRUE if object is a private object;
CK_FALSE if object is a public object.
Default value is token-specific, and may
depend on the values of other attributes of

the object.
CKA_MODIFIABLE CK_BBOOL CK_TRUE if object can be modified
Default is CK_TRUE.
CKA_LABEL RFC2279 string Description of the object (default empty).
CKA_COPYABLE CK_BBOOL CK_TRUE if object can be copied using

C_CopyObiject. Defaults to CK_TRUE.
Can'’t be set to TRUE once it is set to
FALSE.

CKA _DESTROYABLE | CK BBOOL CK_TRUE if the object can be destroyed
using C_DestroyObject. Default is
CK_TRUE.

CKA_UNIQUE_ID?+6 RFC2279 string The unique identifier assigned to the
object.

Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN,
CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying an object,
however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object until the user has
been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.
The CKA_LABEL attribute is intended to assist users in browsing.

The value of the CKA_COPYABLE attribute determines whether or not an object can be copied. This
attribute can be used in conjunction with CKA_MODIFIABLE to prevent changes to the permitted usages
of keys and other objects.

The value of the CKA_DESTROYABLE attribute determines whether the object can be destroyed using
C_DestroyObiject.

4.4.1 The CKA_UNIQUE_ID attribute

Any time a new object is created, a value for CKA_UNIQUE_ID MUST be generated by the token and
stored with the object. The specific algorithm used to generate unique ID values for objects is token-
specific, but values generated MUST be unique across all objects visible to any particular session, and
SHOULD be unique across all objects created by the token. Reinitializing the token, such as by calling
C_InitToken, MAY cause reuse of CKA_UNIQUE_ID values.

Any attempt to modify the CKA_UNIQUE_ID attribute of an existing object or to specify the value of the
CKA_UNIQUE_ID attribute in the template for an operation that creates one or more objects MUST fail.
Operations failing for this reason return the error code CKR_ATTRIBUTE_READ_ONLY.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 58 of 424

1486

1487

1488
1489

1490

1491
1492
1493

1494

1515

1516

1517
1518

1519

1520
1521
1522
1523

4.5 Data objects

4.5.1 Definitions

This section defines the object class CKO_DATA for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application. Other than providing
access to it, Cryptoki does not attach any special meaning to a data object. The following table lists the
attributes supported by data objects, in addition to the common attributes defined for this object class:

Table 18, Data Object Attributes

Attribute Data type Meaning
CKA_APPLICATION RFC2279 Description of the application that manages the
string object (default empty)
CKA_OBJECT_ID Byte Array DER-encoding of the object identifier indicating the
data object type (default empty)
CKA _VALUE Byte array Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate ownership of the data
objects they manage. Cryptoki does not provide a means of ensuring that only a particular application has
access to a data object, however.

The CKA_OBJECT_ID attribute provides an application independent and expandable way to indicate the
type of the data object value. Cryptoki does not provide a means of insuring that the data object identifier
matches the data value.

The following is a sample template containing attributes for creating a data object:

CK OBJECT CLASS class = CKO_DATA;
CK _UTF8CHAR label[] = “A data object”;
CK UTF8CHAR application[] = “An application”;
CK BYTE data[] = “Sample data”;
CK_BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA APPLICATION, application, sizeof (application)-1},
{CKA VALUE, data, sizeof (data)}

4.6 Certificate objects

4.6.1 Definitions

This section defines the object class CKO_CERTIFICATE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates. Other than
providing access to certificate objects, Cryptoki does not attach any special meaning to certificates. The
following table defines the common certificate object attributes, in addition to the common attributes
defined for this object class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 59 of 424

1524

1525

1526
1527

1528
1529

1530
1531
1532

1533
1534

1535
1536
1537
1538

1539
1540

1541
1542

1543
1544
1545

1546

1547
1548
1549

1550

Table 19, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE | CK_CERTIFICATE_TYPE | Type of certificate
;

CKA_TRUSTED1 CK_BBOOL The certificate can be trusted for the
application that it was created.

GORY GORY CK_CERTIFICATE_CATEGORY_UNSP
ECIFIED)

CKA _CHECK VALUE Byte array Checksum

CKA_START_DATE CK_DATE Start date for the certificate (default
empty)

CKA_END _DATE CK_DATE End date for the certificate (default
empty)

CKA_PUBLIC_KEY_INFO Byte Array DER-encoding of the

SubjectPublicKeylInfo for the public key
contained in this certificate (default

empty)

“Refer to Table 11 for footnotes

Cryptoki does not enforce the relationship of the CKA_PUBLIC_KEY_INFO to the public key in the
certificate, but does recommend that the key be extracted from the certificate to create this value.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created. This version of
Cryptoki supports the following certificate types:

e X.509 public key certificate
e WTLS public key certificate
o X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It MUST be set by a token
initialization application or by the token’s SO. Trusted certificates cannot be modified.

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored certificate is a user
certificate for which the corresponding private key is available on the token (“token user”), a CA certificate
(“authority”), or another end-entity certificate (“other entity”). This attribute may not be modified after an
object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will together be used to map to
the categorization of the certificates.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by taking the first three
bytes of the SHA-1 hash of the certificate object's CKA_VALUE attribute.

The CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does not
attach any special meaning to them. When present, the application is responsible to set them to values
that match the certificate’s encoded “not before” and “not after” fields (if any).

4.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The following
table defines the X.509 certificate object attributes, in addition to the common attributes defined for this
object class:

Table 20, X.509 Certificate Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 60 of 424

1551
1552

1553
1554

1555
1556

1557
1558
1559
1560

1561
1562
1563
1564

1565
1566
1567
1568

Attribute Data type Meaning

CKA_SUBJECT! Byte array | DER-encoding of the certificate
subject name

CKA_ID Byte array Key identifier for public/private key
pair (default empty)

CKA_ISSUER Byte array | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER Byte array | DER-encoding of the certificate serial
number (default empty)

CKA_VALUE? Byte array | BER-encoding of the certificate

CKA_URL? RFC2279 If not empty this attribute gives the

string URL where the complete certificate

can be obtained (default empty)

CKA_HASH_OF_SUBJECT_PUB | Byte array | Hash of the subject public key (default
LIC_KEY* empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF ISSUER_PUBLI | Byte array | Hash of the issuer public key (default
C_KEY* empty). Hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_JAVA_MIDP_SECURITY_D | CK_JAVA_ | Java MIDP security domain. (default

OMAIN MIDP_SEC | CK_SECURITY_DOMAIN_UNSPECI
URITY_DO | FIED)
MAIN
CKA_NAME_HASH_ALGORITH CK_MECH | Defines the mechanism used to
M ANISM_TY | calculate
PE CKA_HASH_OF_SUBJECT_PUBLIC
_KEY and

CKA_HASH_OF_ISSUER_PUBLIC_K
EY. If the attribute is not present then
the type defaults to SHA-1.

IMUST be specified when the object is created.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.

SMUST be non-empty if CKA_VALUE is empty.
4Can only be empty if CKA_URL is empty.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified after the
object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key pairs held
by the same subject (whether stored in the same token or not). (Since the keys are distinguished by
subject name as well as identifier, it is possible that keys for different subjects may have the same
CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a certificate will
be the same as those for the corresponding public and private keys (though it is not required that all be
stored in the same token). However, Cryptoki does not enforce this association, or even the unigueness
of the key identifier for a given subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7 and
Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509 certificates, the key
identifier may be carried in the certificate. It is intended that the CKA_ID value be identical to the key
identifier in such a certificate extension, although this will not be enforced by Cryptoki.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 61 of 424

The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with a Java MIDP security
domain.

The following is a sample template for creating an X.509 certificate object:

CK OBJECT CLASS class = CKO CERTIFICATE;
CK_CERTIFICATE TYPE certType = CKC X 509;
CK UTF8CHAR label[] = “A certificate object”;
CK BYTE subject([] = {...};
CK BYTE id[] = {123};
CK BYTE certificate[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof (certificate)}
b

4.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The following
table defines the WTLS certificate object attributes, in addition to the common attributes defined for this
object class.

Table 21: WTLS Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT! Byte array WTLS-encoding (ldentifier type) of
the certificate subject

CKA_ISSUER Byte array WTLS-encoding (ldentifier type) of
the certificate issuer (default empty)

CKA_VALUE? Byte array WTLS-encoding of the certificate

CKA_URL3 RFC2279 If not empty this attribute gives the

string URL where the complete certificate

can be obtained

CKA_HASH_OF_SUBJECT_PU | Byte array SHA-1 hash of the subject public key

BLIC_KEY* (default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_PUB | Byte array SHA-1 hash of the issuer public key

LIC_KEY* (default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_NAME_HASH_ALGORITH | CK_MECHANI | Defines the mechanism used to

M SM_TYPE calculate
CKA HASH OF SUBJECT PUBLIC

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 62 of 424

Attribute Data type Meaning

_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_
KEY. If the attribute is not present
then the type defaults to SHA-1.

IMUST be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2MUST be specified when the object is created. MUST be non-empty if CKA_URL is empty.
SMUST be non-empty if CKA_VALUE is empty.

4Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes can be found in
[WTLS].

The CKA_URL attribute enables the support for storage of the URL where the certificate can be found
instead of the certificate itself. Storage of a URL instead of the complete certificate is often used in mobile
environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY
attributes are used to store the hashes of the public keys of the subject and the issuer. They are
particularly important when only the URL is available to be able to correlate a certificate with a private key
and when searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The following is a sample template for creating a WTLS certificate object:

CK _OBJECT CLASS class = CKO CERTIFICATE;
CK CERTIFICATE TYPE certType = CKC WTLS;

CK UTF8CHAR label[] = “A certificate object”;
CK _BYTE subject[] = {...};
CK BYTE certificate[] = {...};

CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] =
{
{CKA CLASS, &class, sizeof (class)},
{CKA CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA VALUE, certificate, sizeof (certificate)}
}i

4.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X_509_ATTR_CERT) hold X.509 attribute
certificates. The following table defines the X.509 attribute certificate object attributes, in addition to the
common attributes defined for this object class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 63 of 424

1637

1657

1658

1659
1660

1661

1662
1663

1664
1665

Table 22, X.509 Attribute Certificate Object Attributes

Attribute Data Type | Meaning

CKA_OWNER' Byte Array | DER-encoding of the attribute certificate's subject
field. This is distinct from the CKA_SUBJECT
attribute contained in CKC_X 509 certificates
because the ASN.1 syntax and encoding are
different.

CKA_AC_ISSUER Byte Array | DER-encoding of the attribute certificate's issuer
field. This is distinct from the CKA_ISSUER
attribute contained in CKC_X 509 certificates
because the ASN.1 syntax and encoding are
different. (default empty)

CKA_SERIAL_NUMBER Byte Array | DER-encoding of the certificate serial number.
(default empty)
CKA_ATTR_TYPES Byte Array | BER-encoding of a sequence of object identifier

values corresponding to the attribute types
contained in the certificate. When present, this field
offers an opportunity for applications to search for a
particular attribute certificate without fetching and
parsing the certificate itself. (default empty)

CKA_VALUE! Byte Array | BER-encoding of the certificate.

IMUST be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES attributes may be
modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK _OBJECT CLASS class = CKO CERTIFICATE;
CK CERTIFICATE TYPE certType = CKC X 509 ATTR CERT;
CK_UTF8CHAR label[] = "An attribute certificate object";
CK BYTE owner[] = {...};
CK BYTE certificate[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA_CERTIFICATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA OWNER, owner, sizeof (owner)},
{CKA VALUE, certificate, sizeof (certificate)}
}i

4.7 Key objects

4.7.1 Definitions

There is no CKO_ definition for the base key object class, only for the key types derived from it.

This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE_KEY and
CKO_SECRET_KEY for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

4.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private keys, or secret
keys. The following common footnotes apply to all the tables describing attributes of keys:

The following table defines the attributes common to public key, private key and secret key classes, in
addition to the common attributes defined for this object class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 64 of 424

1666

1667

1668
1669
1670
1671
1672

1673

1674
1675
1676

1677
1678

1679
1680

1681
1682
1683
1684

1685

1686
1687

Table 23, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE"S CK_KEY_TYPE Type of key

CKA_ID?® Byte array Key identifier for key (default empty)

CKA_START_DATES? CK_DATE Start date for the key (default empty)

CKA_END_DATES® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL CK_TRUE if key supports key derivation
(i.e., if other keys can be derived from
this one (default CK_FALSE)

CKA_LOCAL?#6 CK_BBOOL CK_TRUE only if key was either

e generated locally (i.e., on the token)
with a C_GenerateKey or
C_GenerateKeyPair call

e created with a C_CopyObject call
as a copy of a key which had its
CKA_LOCAL attribute set to
CK_TRUE

CKA_KEY_GEN_
MECHANISM246

CK_MECHANISM
_TYPE

Identifier of the mechanism used to
generate the key material.

CKA_ALLOWED_MECHANI

CK_MECHANISM

A list of mechanisms allowed to be used

SMS _TYPE _PTR, with this key. The number of
pointer to a mechanisms in the array is the
CK_MECHANISM | ulValueLen component of the attribute
_TYPE array divided by the size

of CK_MECHANISM_TYPE.

“Refer to Table 11 for footnotes

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and private keys,
this field assists in handling multiple keys held by the same subject; the key identifier for a public key and
its corresponding private key should be the same. The key identifier should also be the same as for the
corresponding certificate, if one exists. Cryptoki does not enforce these associations, however. (See
Section 4.6 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference only; Cryptoki does
not attach any special meaning to them. In particular, it does not restrict usage of a key according to the
dates; doing this is up to the application.

The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to derive other keys from
the key.

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key was originally
generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

The CKA_KEY_GEN_MECHANISM attribute identifies the key generation mechanism used to generate
the key material. It contains a valid value only if the CKA_LOCAL attribute has the value CK_TRUE. If
CKA_LOCAL has the value CK_FALSE, the value of the attribute is
CK_UNAVAILABLE_INFORMATION.

4.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following table defines the
attributes common to all public keys, in addition to the common attributes defined for this object class:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 65 of 424

1688

1689

1690
1691
1692

1693
1694

Table 24, Common Public Key Attributes

Attribute Data type Meaning

CKA _SUBJECT? Byte array DER-encoding of the key subject
name (default empty)

CKA_ENCRYPT?® CK_BBOOL CK_TRUE if key supports
encryption®

CKA_VERIFY?® CK_BBOOL CK_TRUE if key supports verification
where the signature is an appendix
to the data®

CKA_VERIFY_RECOVER? CK_BBOOL CK_TRUE if key supports verification
where the data is recovered from the
signature®

CKA_WRAP? CK_BBOOL CK_TRUE if key supports wrapping
(i.e., can be used to wrap other
keys)®

CKA_TRUSTED" CK _BBOOL The key can be trusted for the

application that it was created.

The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED set
to CK_TRUE.

CKA_WRAP_TEMPLATE

CK_ATTRIBUTE_PTR

For wrapping keys. The attribute
template to match against any keys
wrapped using this wrapping key.
Keys that do not match cannot be
wrapped. The number of attributes in
the array is the ulValueLen
component of the attribute divided by
the size of CK_ATTRIBUTE.

CKA_PUBLIC_KEY_INFO

Byte array

DER-encoding of the
SubjectPublicKeylnfo for this public
key. (MAY be empty, DEFAULT
derived from the underlying public
key data)

“Refer to Table 11 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a public key will
be the same as those for the corresponding certificate and private key. However, Cryptoki does not

enforce this, and it is not required that the certificate and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS #11 attributes for

public keys, use the following table.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 66 of 424

1695

1696
1697
1698
1699

1700
1701

1702

1703
1704

1705

Table 25, Mapping of X.509 key usage flags to Cryptoki attributes for public keys

Key usage flags for public keys in X.509 Corresponding cryptoki attributes for
public key certificates public keys.

dataEncipherment CKA_ENCRYPT

digitalSignature, keyCertSign, cRLSign CKA_VERIFY

digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER
keyAgreement CKA_DERIVE

keyEncipherment CKA_WRAP

nonRepudiation CKA_VERIFY

nonRepudiation CKA_VERIFY_RECOVER

The value of the CKA_PUBLIC_KEY_INFO attribute is the DER encoded value of SubjectPublicKeylnfo:
SubjectPublicKeylnfo ::= SEQUENCE {

algorithm
subjectPublicKey

Algorithmldentifier,
BIT_STRING }

The encodings for the subjectPublicKey field are specified in the description of the public key types in the
appropriate [PKCS11-Curr] document for the key types defined within this specification.

4.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The following table defines the
attributes common to all private keys, in addition to the common attributes defined for this object class:

Table 26, Common Private Key Attributes

Attribute

Data type

Meaning

CKA_SUBJECT®

Byte array

DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE&

CK_BBOOL

CK_TRUE if key is sensitive®

CKA_DECRYPT?

CK_BBOOL

CK_TRUE if key supports
decryption®

CKA_SIGN®

CK_BBOOL

CK_TRUE if key supports
signatures where the signature
is an appendix to the data®

CKA_SIGN_RECOVERS®

CK_BBOOL

CK_TRUE if key supports
signatures where the data can
be recovered from the signature®

CKA_UNWRAPS

CK_BBOOL

CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)?

CKA_EXTRACTABLE?S12

CK_BBOOL

CK_TRUE if key is extractable
and can be wrapped

CKA_ALWAYS_SENSITIVE248

CK_BBOOL

CK_TRUE if key has always had
the CKA_SENSITIVE attribute
setto CK_TRUE

CKA_NEVER_EXTRACTABLE?46

CK_BBOOL

CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH_TRUSTED"

CK_BBOOL

CK_TRUE if the key can only be
wrapped with a wrapping key
that has CKA_TRUSTED set to
CK_TRUE.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 67 of 424

1706

1707
1708
1709

1710
1711
1712
1713

1714
1715
1716

1717
1718
1719
1720
1721

Attribute Data type Meaning
Default is CK_FALSE.

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE.

CKA_ALWAYS_AUTHENTICATE CK_BBOOL If CK_TRUE, the user has to
supply the PIN for each use
(sign or decrypt) with the key.
Default is CK_FALSE.

CKA_PUBLIC_KEY_INFO8 Byte Array DER-encoding of the
SubjectPublicKeylnfo for the
associated public key (MAY be
empty; DEFAULT derived from
the underlying private key data;
MAY be manually set for specific
key types; if set; MUST be
consistent with the underlying
private key data)

CKA_DERIVE_TEMPLATE CK_ATTRIBUTE_PTR | For deriving keys. The attribute
template to match against any
keys derived using this
derivation key. Any user
supplied template is applied after
this template as if the object has
already been created. The
number of attributes in the array
is the ulValueLen component of
the attribute divided by the size
of CK_ATTRIBUTE.

~Refer to Table 11 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier for a private key
will be the same as those for the corresponding certificate and public key. However, this is not enforced
by Cryptoki, and it is not required that the certificate and public key also be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the private key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of private key in the attribute table in the section describing
that type of key.

The CKA_ALWAYS_AUTHENTICATE attribute can be used to force re-authentication (i.e. force the user
to provide a PIN) for each use of a private key. “Use” in this case means a cryptographic operation such
as sign or decrypt. This attribute may only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE.

Re-authentication occurs by calling C_Login with userType set to CKU_CONTEXT_SPECIFIC
immediately after a cryptographic operation using the key has been initiated (e.g. after C_Signlinit). In
this call, the actual user type is implicitly given by the usage requirements of the active key. If C_Login
returns CKR_OK the user was successfully authenticated and this sets the active key in an authenticated
state that lasts until the cryptographic operation has successfully or unsuccessfully been completed (e.g.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 68 of 424

1722
1723
1724
1725
1726
1727
1728
1729
1730

1731
1732
1733

1734
1735
1736
1737
1738
1739
1740
1741

1742
1743
1744
1745
1746

1747

1748
1749

1750

by C_Sign, C_SignFinal,..). A return value CKR_PIN_INCORRECT from C_Login means that the user
was denied permission to use the key and continuing the cryptographic operation will result in a behavior
as if C_Login had not been called. In both of these cases the session state will remain the same,
however repeated failed re-authentication attempts may cause the PIN to be locked. C_Login returns in
this case CKR_PIN_LOCKED and this also logs the user out from the token. Failing or omitting to re-
authenticate when CKA_ALWAYS_ AUTHENTICATE is set to CK_TRUE will result in
CKR_USER_NOT_LOGGED_IN to be returned from calls using the key. C_Login will return
CKR_OPERATION_NOT _INITIALIZED, but the active cryptographic operation will not be affected, if an
attempt is made to re-authenticate when CKA_ALWAYS_AUTHENTICATE is set to CK_FALSE.

The CKA_PUBLIC_KEY_INFO attribute represents the public key associated with this private key. The
data it represents may either be stored as part of the private key data, or regenerated as needed from the
private key.

If this attribute is supplied as part of a template for C_CreateObject, C_CopyObject or
C_SetAttributeValue for a private key, the token MUST verify correspondence between the private key
data and the public key data as supplied in CKA_PUBLIC_KEY_INFO. This can be done either by
deriving a public key from the private key and comparing the values, or by doing a sign and verify
operation. If there is a mismatch, the command SHALL return CKR_ATTRIBUTE_VALUE_INVALID. A
token MAY choose not to support the CKA_PUBLIC_KEY_INFO attribute for commands which create
new private keys. If it does not support the attribute, the command SHALL return
CKR_ATTRIBUTE_TYPE_INVALID.

As a general guideline, private keys of any type SHOULD store sufficient information to retrieve the public
key information. In particular, the RSA private key description has been modified in PKCS #11 V2.40 to
add the CKA_PUBLIC_EXPONENT to the list of attributes required for an RSA private key. All other
private key types described in this specification contain sufficient information to recover the associated
public key.

4.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following table defines the
attributes common to all secret keys, in addition to the common attributes defined for this object class:

Table 27, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVES® " CK_BBOOL CK_TRUE if object is sensitive
(default CK_FALSE)

CKA_ENCRYPT? CK_BBOOL CK_TRUE if key supports
encryption®

CKA_DECRYPT® CK_BBOOL CK_TRUE if key supports
decryption®

CKA_SIGN? CK_BBOOL CK_TRUE if key supports

signatures (i.e., authentication
codes) where the signature is an
appendix to the data®

CKA_VERIFY® CK_BBOOL CK_TRUE if key supports
verification (i.e., of authentication
codes) where the signature is an
appendix to the data®
CKA_WRAP? CK_BBOOL CK_TRUE if key supports
wrapping (i.e., can be used to
wrap other keys)?
CKA_UNWRAPS CK_BBOOL CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)?

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 69 of 424

Attribute Data type Meaning

CKA _EXTRACTABLE? 2 CK_BBOOL CK_TRUE if key is extractable
and can be wrapped °
CKA_ALWAYS_SENSITIVE246 CK_BBOOL CK_TRUE if key has always had

the CKA_SENSITIVE attribute
set to CK_TRUE

CKA_NEVER_EXTRACTABLE246 | CK_BBOOL CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_CHECK_VALUE Byte array Key checksum

CKA_WRAP_WITH_TRUSTED" CK_BBOOL CK_TRUE if the key can only be
wrapped with a wrapping key
that has CKA_TRUSTED set to
CK_TRUE.

Default is CK_FALSE.

CKA_TRUSTED" CK _BBOOL The wrapping key can be used
to wrap keys with

CKA WRAP_WITH_TRUSTED
set to CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to match against any
keys wrapped using this
wrapping key. Keys that do not
match cannot be wrapped. The
number of attributes in the array
is the

ulValuelLen component of the
attribute divided by the size of

CK_ATTRIBUTE

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_PTR | For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE.

A_DERIVE_TEMPLATE CK_ATTRIBUTE_PTR | For deriving keys. The attribute
template to match against any
keys derived using this
derivation key. Any user
supplied template is applied after
this template as if the object has
already been created. The
number of attributes in the array
is the ulValueLen component of
the attribute divided by the size
of CK_ATTRIBUTE.

1751 “Refer to Table 11 for footnotes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 70 of 424

1752
1753
1754
1755

1756
1757
1758
1759
1760

1761
1762

1763

1764
1765

1766
1767
1768

1769
1770
1771
1772
1773

1774
1775
1776

1777
1778
1779

1780

1781

1782
1783

1784

1785
1786
1787

1788
1789

1790

1791
1792

1793

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE attribute is CK_FALSE,
then certain attributes of the secret key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of secret key in the attribute table in the section describing
that type of key.

The key check value (KCV) attribute for symmetric key objects to be called CKA_CHECK_VALUE, of
type byte array, length 3 bytes, operates like a fingerprint, or checksum of the key. They are intended to
be used to cross-check symmetric keys against other systems where the same key is shared, and as a
validity check after manual key entry or restore from backup. Refer to object definitions of specific key
types for KCV algorithms.

Properties:
1. For two keys that are cryptographically identical the value of this attribute should be identical.

2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.

3. Non-unigueness. Two different keys can have the same CKA_CHECK_VALUE. This is unlikely
(the probability can easily be calculated) but possible.

The attribute is optional, but if supported, regardless of how the key object is created or derived, the value
of the attribute is always supplied. It SHALL be supplied even if the encryption operation for the key is
forbidden (i.e. when CKA_ENCRYPT is set to CK_FALSE).

If a value is supplied in the application template (allowed but never necessary) then, if supported, it MUST
match what the library calculates it to be or the library returns a CKR_ATTRIBUTE_VALUE_INVALID. If
the library does not support the attribute then it should ignore it. Allowing the attribute in the template this
way does no harm and allows the attribute to be treated like any other attribute for the purposes of key
wrap and unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute in the template as
a no-value (0 length) entry. The application can query the value at any time like any other attribute using
C_GetAttributeValue. C_SetAttributeValue may be used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived from the key
object by taking the first three bytes of an encryption of a single block of null (0x00) bytes, using the
default cipher and mode (e.g. ECB) associated with the key type of the secret key object.

4.11 Domain parameter objects

4.11.1 Definitions

This section defines the object class CKO_DOMAIN_PARAMETERS for type CK_OBJECT_CLASS as
used in the CKA_CLASS attribute of objects.

4.11.2 Overview

This object class was created to support the storage of certain algorithm's extended parameters. DSA
and DH both use domain parameters in the key-pair generation step. In particular, some libraries support
the generation of domain parameters (originally out of scope for PKCS11) so the object class was added.

To use a domain parameter object you MUST extract the attributes into a template and supply them (still
in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public domain parameters.

The following table defines the attributes common to domain parameter objects in addition to the common
attributes defined for this object class:

Table 28, Common Domain Parameter Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 71 of 424

1794

1795
1796

1797

1798

1799
1800

1801

1802
1803

1804
1805
1806
1807

1808

1809
1810

1811

1812

1813
1814

1815

1816
1817
1818
1819

1820

Attribute Data Type Meaning

CKA_KEY_TYPE' CK_KEY_TYPE Type of key the domain parameters can be
used to generate.

CKA_LOCAL24 CK_BBOOL CK_TRUE only if domain parameters were
either

e generated locally (i.e., on the token)
with a C_GenerateKey

e created with a C_CopyObiject call as a
copy of domain parameters which had
its CKA_LOCAL attribute set to
CK_TRUE

“Refer to Table 11 for footnotes

The CKA_LOCAL attribute has the value CK_TRUE if and only if the values of the domain parameters
were originally generated on the token by a C_GenerateKey call.

4.12 Mechanism objects

4.12.1 Definitions

This section defines the object class CKO_MECHANISM for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.12.2 Overview

Mechanism objects provide information about mechanisms supported by a device beyond that given by
the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsinit and C_FindObjects, mechanism objects are not
returned unless the CKA_CLASS attribute in the template has the value CKO_MECHANISM. This
protects applications written to previous versions of Cryptoki from finding objects that they do not
understand.

Table 29, Common Mechanism Attributes

Attribute Data Type Meaning
CKA_MECHANISM_TYPE CK_MECHANISM_TYPE The type of mechanism
object

The CKA_MECHANISM_TYPE attribute may not be set.

4.13 Profile objects

4.13.1 Definitions

This section defines the object class CKO_PROFILE for type CK_OBJECT_CLASS as used in the
CKA_CLASS attribute of objects.

4.13.2 Overview

Profile objects (object class CKO_PROFILE) describe which PKCS #11 profiles the token implements.
Profiles are defined in the OASIS PKCS #11 Cryptographic Token Interface Profiles document. A given
token can contain more than one profile ID. The following table lists the attributes supported by profile
objects, in addition to the common attributes defined for this object class:

Table 30, Profile Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 72 of 424

1821

Attribute

Data type

Meaning

CKA_PROFILE_ID

CK_PROFILE_ID

ID of the supported profile.

The CKA_PROFILE_ID attribute identifies a profile that the token supports.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 73 of 424

1822

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

1839
1840
1841

1842
1843

5 Functions

Cryptoki's functions are organized into the following categories:

general-purpose functions (4 functions)

slot and token management functions (9 functions)
session management functions (8 functions)

object management functions (9 functions)

encryption functions (4 functions)

message-based encryption functions (5 functions)
decryption functions (4 functions)

message digesting functions (5 functions)

signing and MACing functions (6 functions)

functions for verifying signatures and MACs (6 functions)

dual-purpose cryptographic functions (4 functions)

key management functions (5 functions)

random number generation functions (2 functions)

parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to notify an

application of certain events, and can also use application-supplied functions to handle mutex objects for

safe multi-threaded library access.
The Cryptoki API functions are presented in the following table:

Table 31, Summary of Cryptoki Functions

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Category Function Description
General C_lInitialize initializes Cryptoki
purpose C_Finalize clean up miscellaneous Cryptoki-associated
functions resources
C_Getinfo obtains general information about Cryptoki

C_GetFunctionList

obtains entry points of Cryptoki library
functions

C_GetlinterfacelList

obtains list of interfaces supported by Cryptoki
library

C_Getlinterface

obtains interface specific entry points to
Cryptoki library functions

Slot and token
management
functions

C_GetSlotList

obtains a list of slots in the system

C_GetSlotinfo

obtains information about a particular slot

C_GetTokenlInfo

obtains information about a particular token

C_WaitForSlotEvent

waits for a slot event (token insertion,
removal, etc.) to occur

C_GetMechanismList

obtains a list of mechanisms supported by a
token

C_GetMechanisminfo

obtains information about a particular
mechanism

C_InitToken

initializes a token

C_InitPIN

initializes the normal user’s PIN

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 74 of 424

Category Function Description
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an application
management and a particular token or sets up an
functions application callback for token insertion
C_CloseSession closes a session
C_CloseAllSessions closes all sessions with a token
C_GetSessionlinfo obtains information about the session
C_SessionCancel terminates active session based operations
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations state of a
session
C_Login logs into a token
C_LoginUser logs into a token with explicit user name
C_Logout logs out from a token
Object C_CreateObiject creates an object
management C_CopyObiject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObijectslnit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data

C_EncryptUpdate

continues a multiple-part encryption operation

C_EncryptFinal

finishes a multiple-part encryption operation

Message-based | C_MessageEncryptinit

initializes a message-based encryption

Encryption process
Functions C_EncryptMessage encrypts a single-part message
C_EncryptMessageBegin begins a multiple-part message encryption
operation
C_EncryptMessageNext continues or finishes a multiple-part message
encryption operation
C_MessageEncryptFinal finishes a message-based encryption process
Decryption C_Decryptlnit initializes a decryption operation
Functions C_Decrypt decrypts single-part encrypted data

C_DecryptUpdate

continues a multiple-part decryption operation

C_DecryptFinal

finishes a multiple-part decryption operation

Message-based | C_MessageDecryptinit

initializes a message decryption operation

Decryption C_DecryptMessage

decrypts single-part data

Functions C_DecryptMessageBegin

starts a multiple-part message decryption
operation

C_DecryptMessageNext

Continues and finishes a multiple-part
message decryption operation

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 75 of 424

Category Function Description
C_MessageDecryptFinal finishes a message decryption operation
Message C_Digestlnit initializes a message-digesting operation
Digesting C_Digest digests single-part data
Functions C_DigestUpdate continues a multiple-part digesting operation
C_DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting operation
Signing C_Signlnit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover

signs single-part data, where the data can be
recovered from the signature

Message-based
Signature
functions

C_MessageSigninit

initializes a message signature operation

C_SignMessage

signs single-part data

C_SignMessageBegin

starts a multiple-part message signature
operation

C_SignMessageNext

continues and finishes a multiple-part
message signature operation

C_MessageSignFinal

finishes a message signature operation

Functions for
verifying
signatures
and MACs

C_Verifylnit initializes a verification operation

C_Verify verifies a signature on single-part data
C_VerifyUpdate continues a multiple-part verification operation
C_VerifyFinal finishes a multiple-part verification operation

C_VerifyRecoverlnit

initializes a verification operation where the
data is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data, where
the data is recovered from the signature

Message-based
Functions for
verifying
signatures and
MACs

C_MessageVerifylnit

initializes a message verification operation

C_VerifyMessage

verifies single-part data

C_VerifyMessageBegin

starts a multiple-part message verification
operation

C_VerifyMessageNext

continues and finishes a multiple-part
message verification operation

C_MessageVerifyFinal

finishes a message verification operation

Dual-purpose

C_DigestEncryptUpdate

continues simultaneous multiple-part digesting

cryptographic and encryption operations
functions C_DecryptDigestUpdate continues simultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations
C_DecryptVerifyUpdate continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 76 of 424

1844

1845
1846

1847

1848
1849
1850
1851

1852
1853
1854

1855
1856
1857

1858
1859
1860
1861

1862

1863
1864
1865

1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

1877
1878

Category Function Description
functions C_WrapKey wraps (encrypts) a key
C_UnwrapKey unwraps (decrypts) a key
C_DeriveKey derives a key from a base key
Random number | C_SeedRandom mixes in additional seed material to the
generation random number generator
functions C_GenerateRandom generates random data
Parallel function | C_GetFunctionStatus legacy function which always returns
management CKR_FUNCTION_NOT_PARALLEL
functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL
Callback function application-supplied function to process
notifications from Cryptoki

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function call accomplishes
either its entire goal, or nothing at all.

o If a Cryptoki function executes successfully, it returns the value CKR_OK.

e If a Cryptoki function does not execute successfully, it returns some value other than CKR_OK, and
the token is in the same state as it was in prior to the function call. If the function call was supposed
to modify the contents of certain memory addresses on the host computer, these memory addresses
may have been modified, despite the failure of the function.

¢ Inunusual (and extremely unpleasant!) circumstances, a function can fail with the return value
CKR_GENERAL_ERROR. When this happens, the token and/or host computer may be in an
inconsistent state, and the goals of the function may have been partially achieved.

There are a small number of Cryptoki functions whose return values do not behave precisely as
described above; these exceptions are documented individually with the description of the functions
themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even an unsupported
function MUST have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s CK_FUNCTION_LIST
structure (as obtained by C_GetFunctionList) should point to this stub function (see Section 3.6).

5.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section 5.1, we
enumerate the various possible return values for Cryptoki functions; most of the remainder of Section 5.1
details the behavior of Cryptoki functions, including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki applications
attempt to give some leeway when interpreting Cryptoki functions’ return values. We have attempted to
specify the behavior of Cryptoki functions as completely as was feasible; nevertheless, there are
presumably some gaps. For example, it is possible that a particular error code which might apply to a
particular Cryptoki function is unfortunately not actually listed in the description of that function as a
possible error code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be somewhat ungraceful
if a Cryptoki application using that library were to terminate by abruptly dumping core upon receiving that
error code for that function. It would be far preferable for the application to examine the function’s return
value, see that it indicates some sort of error (even if the application doesn’t know precisely what kind of
error), and behave accordingly.

See Section 5.1.8 for some specific details on how a developer might attempt to make an application that
accommodates a range of behaviors from Cryptoki libraries.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 77 of 424

1879

1880

1881
1882
1883

1884
1885

1886
1887
1888
1889
1890
1891
1892

1893
1894
1895

1896
1897
1898

1899
1900

1901
1902
1903

1904

1905
1906
1907

1908

1909
1910
1911
1912
1913
1914

1915
1916
1917

1918
1919
1920

1921

1922
1923
1924

1925
1926

5.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

e CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst case, it is
possible that the function only partially succeeded, and that the computer and/or token is in an
inconsistent state.

e CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient memory
to perform the requested function.

e CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed information
about why not is not available in this error return. If the failed function uses a session, it is possible
that the CK_SESSION_INFO structure that can be obtained by calling C_GetSessioninfo will hold
useful information about what happened in its ulDeviceError field. In any event, although the function
call failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the error actually was, it
is possible that an attempt to make the exact same function call again would succeed.

e CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a “universal” return
value; in particular, the legacy functions C_GetFunctionStatus and C_CancelFunction (see Section
5.20) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then
CKR_GENERAL_ERROR should be returned.

5.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki function
except for C_lInitialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotinfo,
C_GetTokenlInfo, C_WaitForSlotEvent, C_GetMechanismList, C_GetMechanisminfo, C_InitToken,

C_OpenSession, and C_CloseAllSessions) can return the following values:

e CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that the
function was invoked. Note that this can happen if the session’s token is removed before the function
invocation, since removing a token closes all sessions with it.

¢ CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

e CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note that,
as stated in [PKCS11-UG], the behavior of Cryptoki is undefined if multiple threads of an application
attempt to access a common Cryptoki session simultaneously. Therefore, there is actually no
guarantee that a function invocation could ever return the value CKR_SESSION_CLOSED. An
example of multiple threads accessing a common session simultaneously is where one thread is
using a session when another thread closes that same session.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate error return,
then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function execution.

5.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for C_Initialize,
C_Finalize, C_Getinfo, C_GetFunctionList, C_GetSlotList, C_GetSlotinfo, or C_WaitForSlotEvent)
can return any of the following values:

e CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the requested
function.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 78 of 424

1927
1928
1929

1930
1931

1932

1933
1934
1935

1936
1937
1938

1939

1940
1941

1942
1943
1944
1945

1946

1947
1948
1949

1950
1951
1952
1953

1954
1955

1956

1957
1958
1959
1960

1961
1962
1963
1964

1965
1966

1967
1968
1969

1970
1971

e CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error code can
be returned by more than just the functions mentioned above; in particular, it is possible for
C_GetSlotInfo to return CKR_DEVICE_ERROR.

e CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the function was
invoked.

e CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then
CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function execution.

5.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual Cryptoki API,
but which may be returned by an application-supplied callback function. It is:

e CKR_CANCEL: When a function executing in serial with an application decides to give the application
a chance to do some work, it calls an application-supplied function with a CKN_SURRENDER
callback (see Section 5.21). If the callback returns the value CKR_CANCEL, then the function aborts
and returns CKR_FUNCTION_CANCELED.

5.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual Cryptoki
functions. These values may be returned by application-supplied mutex-handling functions, and they may
safely be ignored by application developers who are not using their own threading model. They are:

e CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions that are passed a
bad mutex object as an argument. Unfortunately, it is possible for such a function not to recognize a
bad mutex object. There is therefore no guarantee that such a function will successfully detect bad
mutex objects and return this value.

e CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking functions. It
indicates that the mutex supplied to the mutex-unlocking function was not locked.

5.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the descriptions
of particular error codes, there are in general no particular priorities among the errors listed below, i.e., if
more than one error code might apply to an execution of a function, then the function may return any
applicable error code.

e CKR_ACTION_PROHIBITED: This value can only be returned by C_CopyObject,
C_SetAttributeValue and C_DestroyObiject. It denotes that the action may not be taken, either
because of underlying policy restrictions on the token, or because the object has the relevant
CKA_COPYABLE, CKA_MODIFIABLE or CKA_DESTROYABLE policy attribute set to CK_FALSE.

e CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not appropriate.

¢ CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which may not
be set by the application, or which may not be modified by the application. See Section 4.1 for more
information.

e CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of an object
which cannot be satisfied because the object is either sensitive or un-extractable.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 79 of 424

1972
1973

1974
1975

1976

1977
1978
1979

1980
1981
1982

1983
1984
1985
1986

1987
1988

1989
1990

1991
1992
1993
1994

1995
1996
1997

1998
1999
2000

2001
2002
2003
2004

2005
2006
2007
2008
2009

2010
2011
2012
2013
2014
2015

2016
2017
2018
2019

2020
2021
2022

CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template. See
Section 4.1 for more information.

CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a particular attribute in a
template. See Section 4.1 for more information.

CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the supplied buffer.

CKR_CANT_LOCK: This value can only be returned by C_lInitialize. It means that the type of locking
requested by the application for thread-safety is not available in this library, and so the application
cannot make use of this library in the specified fashion.

CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by C_lInitialize. It
means that the Cryptoki library has already been initialized (by a previous call to C_lInitialize which
did not have a matching C_Finalize call).

CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function other than
C_lInitialize, C_GetFunctionList, C_GetinterfaceList and C_Getinterface. It indicates that the
function cannot be executed because the Cryptoki library has not yet been initialized by a call to
C_lInitialize.

CKR_CURVE_NOT_SUPPORTED: This curve is not supported by this token. Used with Elliptic
Curve mechanisms.

CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. This return
value has lower priority than CKR_DATA_LEN_RANGE.

CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad length.
Depending on the operation’s mechanism, this could mean that the plaintext data is too short, too
long, or is not a multiple of some particular block size. This return value has higher priority than
CKR_DATA_INVALID.

CKR_DOMAIN_PARAMS_INVALID: Invalid or unsupported domain parameters were supplied to the
function. Which representation methods of domain parameters are supported by a given mechanism
can vary from token to token.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has been
determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

CKR_ENCRYPTED_DATA LEN_RANGE: The ciphertext input to a decryption operation has been
determined to be invalid ciphertext solely on the basis of its length. Depending on the operation’s
mechanism, this could mean that the ciphertext is too short, too long, or is not a multiple of some
particular block size. This return value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key pair generation, domain
parameter generation etc.) failed because we have exceeded the maximum number of iterations.
This error code has precedence over CKR_FUNCTION_FAILED. Examples of iterative algorithms
include DSA signature generation (retry if either r = 0 or s = 0) and generation of DSA primes p and q
specified in FIPS 186-4.

CKR_FIPS_SELF_TEST_FAILED: A FIPS 140-2 power-up self-test or conditional self-test failed.
The token entered an error state. Future calls to cryptographic functions on the token will return
CKR_GENERAL_ERROR. CKR_FIPS_SELF_TEST_FAILED has a higher precedence over
CKR_GENERAL_ERROR. This error may be returned by C_Initialize, if a power-up self-test failed,
by C_GenerateRandom or C_SeedRandom, if the continuous random number generator test failed,
or by C_GenerateKeyPair, if the pair-wise consistency test failed.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This happens to a

cryptographic function if the function makes a CKN_SURRENDER application callback which returns
CKR_CANCEL (see CKR_CANCEL). It also happens to a function that performs PIN entry through a
protected path. The method used to cancel a protected path PIN entry operation is device dependent.

CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in the
specified session. This is a legacy error code which is only returned by the legacy functions
C_GetFunctionStatus and C_CancelFunction.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 80 of 424

2023
2024
2025

2026

2027
2028

2029
2030

2031
2032
2033
2034
2035

2036
2037
2038

2039
2040
2041

2042
2043
2044

2045
2046
2047

2048
2049
2050
2051

2052
2053
2054

2055
2056
2057

2058
2059

2060

2061
2062
2063

2064
2065
2066

2067
2068

2069
2070
2071

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this Cryptoki
library. Even unsupported functions in the Cryptoki API should have a “stub” in the library; this stub
should simply return the value CKR_FUNCTION_NOT_SUPPORTED.

CKR_FUNCTION_REJECTED: The signature request is rejected by the user.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained because the
token considers it sensitive, and is not able or willing to reveal it.

CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It indicates that one of
the keys specified is not the same key that was being used in the original saved session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a
cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to use a key
for performing encryption, that key MUST have its CKA_ENCRYPT attribute set to CK_TRUE (the
fact that the key MUST have a CKA_ENCRYPT attribute implies that the key cannot be a private
key). This return value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case that the
specified handle is a valid handle for an object which is not a key. We reiterate here that 0 is never a
valid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey. It indicates that
the value of the specified key cannot be digested for some reason (perhaps the key isn’t a secret key,
or perhaps the token simply can’t digest this kind of key).

CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It indicates that the
session state cannot be restored because C_SetOperationState needs to be supplied with one or
more keys that were being used in the original saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For
example, an attempt was made to restore a session that had been performing a message digesting
operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have its
CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the token) is unable to wrap the key as
requested (possibly the token can only wrap a given key with certain types of keys, and the wrapping
key specified is not one of these types). Compare with CKR_KEY_UNEXTRACTABLE.

CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation could in principle
be carried out, this Cryptoki library (or the token) is unable to actually do it because the supplied key's
size is outside the range of key sizes that it can handle.

CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use with the
specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because its
CKA_EXTRACTABLE attribute is set to CK_FALSE. Compare with CKR_KEY_NOT_WRAPPABLE.

CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a dependent shared library.

CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic operation.
This error code is an appropriate return value if an unknown mechanism was specified or if the
mechanism specified cannot be used in the selected token with the selected function.

CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the mechanism specified
to the cryptographic operation. Which parameter values are supported by a given mechanism can
vary from token to token.

CKR_NEED_TO_CREATE_THREADS: This value can only be returned by C_lInitialize. It is
returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library that application
threads executing calls to the library cannot use native operating system methods to spawn new
threads.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 81 of 424

2072
2073

2074
2075

2076
2077

2078
2079
2080
2081
2082
2083
2084
2085

2086
2087
2088

2089
2090
2091

2092
2093
2094

2095
2096

2097
2098

2099
2100
2101
2102

2103
2104
2105

2106
2107
2108
2109
2110
2111

2112
2113
2114

2115
2116
2117

2118
2119
2120

2. The library cannot function properly without being able to spawn new threads in the above
fashion.

CKR_NO_EVENT: This value can only be returned by C_WaitForSlotEvent. Itis returned when
C_WaitForSlotEvent is called in non-blocking mode and there are no new slot events to return.

CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate here that 0
is never a valid object handle.

CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the specified operation. For example, an active
object-searching operation would prevent Cryptoki from activating an encryption operation with
C_Encryptinit. Or, an active digesting operation and an active encryption operation would prevent
Cryptoki from activating a signature operation. Or, on a token which doesn’t support simultaneous
dual cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO structure), an active signature
operation would prevent Cryptoki from activating an encryption operation.

CKR_OPERATION_NOT _INITIALIZED: There is no active operation of an appropriate type in the
specified session. For example, an application cannot call C_Encrypt in a session without having
called C_Encryptlinit first to activate an encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation cannot be carried
out unless C_SetPIN is called to change the PIN value. Whether or not the normal user’s PIN on a
token ever expires varies from token to token.

CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN stored on the
token. More generally-- when authentication to the token involves something other than a PIN-- the
attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only applies to
functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only applies to
functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is, because some
particular number of failed authentication attempts has been reached, the token is unwilling to permit
further attempts at authentication. Depending on the token, the specified PIN may or may not remain
locked indefinitely.

CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could be easy to guess. If the PIN is
too short, CKR_PIN_LEN_RANGE should be returned instead. This return code only applies to
functions which attempt to set a PIN.

CKR_PUBLIC_KEY_INVALID: The public key fails a public key validation. For example, an EC
public key fails the public key validation specified in Section 5.2.2 of ANSI X9.62. This error code may
be returned by C_CreateObject, when the public key is created, or by C_Verifylnit or
C_VerifyRecoverlnit, when the public key is used. It may also be returned by C_DeriveKey, in
preference to CKR_MECHANISM_PARAM_INVALID, if the other party's public key specified in the
mechanism's parameters is invalid.

CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number generator.
This return value has higher priority than CKR_RANDOM_SEED_NOT_SUPPORTED.

CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by C_SeedRandom.
It indicates that the token’s random number generator does not accept seeding from an application.
This return value has lower priority than CKR_RANDOM_NO_RNG.

CKR_SAVED_STATE_INVALID: This value can only be returned by C_SetOperationState. It
indicates that the supplied saved cryptographic operations state is invalid, and so it cannot be
restored to the specified session.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 82 of 424

2121
2122
2123

2124
2125

2126
2127
2128
2129
2130

2131
2132
2133

2134
2135

2136
2137

2138
2139

2140
2141

2142

2143
2144
2145

2146
2147

2148
2149

2150
2151

2152
2153

2154
2155

2156
2157
2158
2159

2160
2161
2162

2163
2164
2165
2166

2167
2168

CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It indicates that the
attempt to open a session failed, either because the token has too many sessions already open, or
because the token has too many read/write sessions already open.

CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates that a
session with the token is already open, and so the token cannot be initialized.

CKR_SESSION_PARALLEL _NOT_SUPPORTED: The specified token does not support parallel
sessions. This is a legacy error code—in Cryptoki Version 2.01 and up, no token supports parallel
sessions. CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is called in a particular [deprecated]
way.

CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired action
because it is a read-only session. This return value has lower priority than
CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO cannot
be logged in.

CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a
read-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid solely on
the basis of its length. This return value has higher priority than CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value has lower
priority than CKR_SIGNATURE_LEN_RANGE.

CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session cannot be
saved for some reason (possibly the token is simply unable to save the current state). This return
value has lower priority than CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is incomplete, and
lacks some necessary attributes. See Section 4.1 for more information.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has conflicting
attributes. See Section 4.1 for more information.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the token in
the slot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because the
token is write-protected. This return value has higher priority than CKR_SESSION_READ_ONLY.

CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_UnwrapKey.
It indicates that the key handle specified to be used to unwrap another key is not valid.

CKR_UNWRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that although the requested unwrapping operation could in principle be carried out, this
Cryptoki library (or the token) is unable to actually do it because the supplied key’s size is outside the
range of key sizes that it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by
C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is not consistent
with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It indicates that
the specified user cannot be logged into the session, because it is already logged into the session.
For example, if an application has an open SO session, and it attempts to log the SO into it, it will
receive this error code.

CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It
indicates that the specified user cannot be logged into the session, because another user is already

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 83 of 424

2169
2170

2171
2172
2173
2174
2175

2176
2177

2178
2179
2180
2181
2182
2183

2184
2185

2186
2187
2188
2189
2190
2191

2192
2193
2194

2195
2196

2197
2198
2199
2200

2201
2202
2203

2204
2205
2206

2207

2208
2209
2210
2211
2212
2213
2214
2215

logged into the session. For example, if an application has an open SO session, and it attempts to
log the normal user into it, it will receive this error code.

e CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the appropriate
user (or an appropriate user) is not logged in. One example is that a session cannot be logged out
unless it is logged in. Another example is that a private object cannot be created on a token unless
the session attempting to create it is logged in as the normal user. A final example is that
cryptographic operations on certain tokens cannot be performed unless the normal user is logged in.

e CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by C_Login. It indicates that
the normal user’s PIN has not yet been initialized with C_InitPIN.

e CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct users simultaneously
logged into the token than the token and/or library permits. For example, if some application has an
open SO session, and another application attempts to log the normal user into a session, the attempt
may return this error. It is not required to, however. Only if the simultaneous distinct users cannot be
supported does C_Login have to return this value. Note that this error code generalizes to true multi-
user tokens.

e CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid types are
CKU_SO, CKU_USER, and CKU_CONTEXT_SPECIFIC.

¢ CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey. It indicates
that the provided wrapped key is not valid. If a call is made to C_UnwrapKey to unwrap a particular
type of key (i.e., some particular key type is specified in the template provided to C_UnwrapKey),
and the wrapped key provided to C_UnwrapKey is recognizably not a wrapped key of the proper
type, then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return value has
lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

¢ CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that the provided wrapped key can be seen to be invalid solely on the basis of its length.
This return value has higher priority than CKR_WRAPPED_KEY_INVALID.

¢ CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by C_WrapKey. It
indicates that the key handle specified to be used to wrap another key is not valid.

¢ CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_WrapKey. It indicates
that although the requested wrapping operation could in principle be carried out, this Cryptoki library
(or the token) is unable to actually do it because the supplied wrapping key's size is outside the range
of key sizes that it can handle.

¢ CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by C_WrapKey. It
indicates that the type of the key specified to wrap another key is not consistent with the mechanism
specified for wrapping.

¢ CKR_OPERATION_CANCEL_FAILED: This value can only be returned by C_SessionCancel. It
means that one or more of the requested operations could not be cancelled for implementation or
vendor-specific reasons.

5.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 5.1.1 (other than CKR_OK) take
precedence over error codes from Section 5.1.2, which take precedence over error codes from Section
5.1.3, which take precedence over error codes from Section 5.1.6. One minor implication of this is that
functions that use a session handle (i.e., most functions!) never return the error code
CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID instead). Other than
these precedences, if more than one error code applies to the result of a Cryptoki call, any of the
applicable error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 84 of 424

2216

2217
2218

2219
2220
2221

2222
2223

2224
2225
2226

2227
2228
2229
2230

2231
2232
2233
2234

2235
2236

2237
2238
2239
2240

2241
2242
2243
2244

2245
2246
2247
2248

2249
2250
2251
2252
2253
2254

2255
2256
2257
2258
2259
2260
2261

2262

2263
2264
2265

5.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers might want to be
aware of:

1. As mentioned in Sections 5.1.2 and 5.1.3, a Cryptoki library may not be able to make a distinction
between a token being removed before a function invocation and a token being removed during a
function invocation.

2. As mentioned in Section 5.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA _LEN_RANGE can be somewhat
subtle. Unless an application needs to be able to distinguish between these return values, it is best to
always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between CKR_WRAPPED_KEY_INVALID and
CKR_WRAPPED_KEY_LEN_RANGE, can be subtle, and it may be best to treat these return values
equivalently.

5. Even with the guidance of Section 4.1, it can be difficult for a Cryptoki library developer to know which
of CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, or
CKR_TEMPLATE_INCONSISTENT to return. When possible, it is recommended that application
developers be generous in their interpretations of these error codes.

5.2 Conventions for functions returning output in a variable-length
buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic mechanism.
The amount of output returned by these functions is returned in a variable-length application-supplied
buffer. An example of a function of this sort is C_Encrypt, which takes some plaintext as an argument,
and outputs a buffer full of ciphertext.

These functions have some common calling conventions, which we describe here. Two of the arguments
to the function are a pointer to the output buffer (say pBuf) and a pointer to a location which will hold the
length of the output produced (say pulBufLen). There are two ways for an application to call such a
function:

1. If pBufis NULL_PTR, then all that the function does is return (in *pulBufLen) a number of bytes which
would suffice to hold the cryptographic output produced from the input to the function. This number
may somewhat exceed the precise number of bytes needed, but should not exceed it by a large
amount. CKR_OK is returned by the function.

2. If pBufis not NULL_PTR, then *pulBufLen MUST contain the size in bytes of the buffer pointed to by
pBuf. If that buffer is large enough to hold the cryptographic output produced from the input to the
function, then that cryptographic output is placed there, and CKR_OK is returned by the function and
*pulBufLen is set to the exact number of bytes returned. If the buffer is not large enough, then
CKR_BUFFER_TOO_SMALL is returned and *pulBufLen is set to at least the number of bytes
needed to hold the cryptographic output produced from the input to the function.

NOTE: This is a change from previous specs. The problem is that in some decrypt cases, the token
doesn’t know how big a buffer is needed until the decrypt completes. The act of doing decrypt can mess
up the internal encryption state. Many tokens already implement this relaxed behavior, tokens which
implement the more precise behavior are still compliant. The one corner case is applications using a
token that knows exactly how big the decryption is (through some out of band means), could get
CKR_BUFFER_TOO_SMALL returned when it supplied a buffer exactly big enough to hold the decrypted
value when it may previously have succeeded.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always return as much
output as can be computed from what has been passed in to them thus far. As an example, consider a
session which is performing a multiple-part decryption operation with DES in cipher-block chaining mode

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 85 of 424

2266
2267
2268
2269
2270
2271

2272

2273
2274
2275
2276

2277
2278

2279

2280
2281
2282

2283
2284
2285
2286
2287

2288
2289
2290
2291
2292

2293
2294
2295
2296
2297

2298
2299
2300

2301
2302
2303

2304
2305
2306
2307

2308
2309
2310
2311
2312

with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate
function. The block size of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some string of length at
least 8 bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a single
additional byte of ciphertext is supplied by a subsequent call to C_DecryptUpdate, then that call should
return 8 bytes of plaintext (one full DES block).

5.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in Cryptoki. Most functions
will be shown in use in at least one sample code snippet. For the sake of brevity, sample code will
frequently be somewhat incomplete. In particular, sample code will generally ignore possible error
returns from C library functions, and also will not deal with Cryptoki error returns in a realistic fashion.
5.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

5.4.1 C_Initialize

CK_DECLARE FUNCTION (CK RV, C Initialize) {
CK _VOID PTR pInitArgs
) i

C_lInitialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR or points to a
CK_C_INITIALIZE_ARGS structure containing information on how the library should deal with multi-
threaded access. If an application will not be accessing Cryptoki through multiple threads simultaneously,
it can generally supply the value NULL_PTR to C_lInitialize (the consequences of supplying this value will
be explained below).

If pInitArgs is non-NULL_PTR, C_lInitialize should cast it to a CK_C_INITIALIZE_ARGS_PTR and then
dereference the resulting pointer to obtain the CK_C_INITIALIZE_ARGS fields CreateMutex,
DestroyMutex, LockMutex, UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of
pReserved thereby obtained MUST be NULL_PTR; if it's not, then C_lInitialize should return with the
value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set, that indicates that
application threads which are executing calls to the Cryptoki library are not permitted to use the native
operation system calls to spawn off new threads. In other words, the library’s code may not create its
own threads. If the library is unable to function properly under this restriction, C_Initialize should return
with the value CKR_NEED_TO_CREATE_THREADS.

A call to C_lInitialize specifies one of four different ways to support multi-threaded access via the value of
the CKF_OS_LOCKING_OK flag in the flags field and the values of the CreateMutex, DestroyMutex,
LockMutex, and UnlockMutex function pointer fields:

1. Ifthe flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application won’t be accessing the Cryptoki library from multiple
threads simultaneously.

2. Ifthe flag is set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki access, and
the library needs to use the native operating system primitives to ensure safe multi-threaded access.
If the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.

3. Ifthe flag isn’t set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR
values), that means that the application will be performing multi-threaded Cryptoki access, and the
library needs to use the supplied function pointers for mutex-handling to ensure safe multi-threaded
access. If the library is unable to do this, C_lInitialize should return with the value
CKR_CANT_LOCK.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 86 of 424

2313 4. |Ifthe flag is set, and the function pointer fields are supplied (i.e., they all have non-NULL_PTR

2314 values), that means that the application will be performing multi-threaded Cryptoki access, and the
2315 library needs to use either the native operating system primitives or the supplied function pointers for
2316 mutex-handling to ensure safe multi-threaded access. If the library is unable to do this, C_lInitialize
2317 should return with the value CKR_CANT_LOCK.

2318 If some, but not all, of the supplied function pointers to C_lInitialize are non-NULL_PTR, then C_lInitialize
2319 should return with the value CKR_ARGUMENTS_BAD.

2320 Acall to C_lInitialize with plnitArgs setto NULL_PTR is treated like a call to C_lInitialize with p/nitArgs
2321 pointing to a CK_C_INITIALIZE_ARGS which has the CreateMutex, DestroyMutex, LockMutex,
2322 UnlockMutex, and pReserved fields set to NULL_PTR, and has the flags field set to 0.

2323 C_lInitialize should be the first Cryptoki call made by an application, except for calls to

2324 C_GetFunctionList, C_GetinterfaceList, or C_Getinterface. What this function actually does is
2325 implementation-dependent; typically, it might cause Cryptoki to initialize its internal memory buffers, or
2326 any other resources it requires.

2327 If several applications are using Cryptoki, each one should call C_lInitialize. Every call to C_Initialize
2328 should (eventually) be succeeded by a single call to C_Finalize. See [PKCS11-UG] for further details.

2329 Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK,
2330 CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
2331 CKR_HOST_MEMORY, CKR_NEED_TO_CREATE_THREADS, CKR_OK.

2332 Example: see C_Getinfo.

2333 b5.4.2 C Finalize

2334 | CK_DECLARE FUNCTION (CK RV, C Finalize) (
2335 CK_VOID PTR pReserved
2336);

2337 C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should be the
2338 last Cryptoki call made by an application. The pReserved parameter is reserved for future versions; for
2339 this version, it should be setto NULL_PTR (if C_Finalize is called with a non-NULL_PTR value for
2340 pReserved, it should return the value CKR_ARGUMENTS_BAD.

2341 If several applications are using Cryptoki, each one should call C_Finalize. Each application’s call to
2342 C_Finalize should be preceded by a single call to C_lInitialize; in between the two calls, an application
2343 can make calls to other Cryptoki functions. See [PKCS11-UG] for further details.

2344 Despite the fact that the parameters supplied to C_Initialize can in general allow for safe multi-threaded
2345 access to a Cryptoki library, the behavior of C_Finalize is nevertheless undefined if it is called by an
2346 application while other threads of the application are making Cryptoki calls. The exception to this

2347 exceptional behavior of C_Finalize occurs when a thread calls C_Finalize while another of the

2348 application’s threads is blocking on Cryptoki’s C_WaitForSlotEvent function. When this happens, the
2349 blocked thread becomes unblocked and returns the value CKR_CRYPTOKI_NOT_INITIALIZED. See
2350 C_WaitForSlotEvent for more information.

2351 Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
2352 CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

2353 Example: see C_GetlInfo.

2354 5.4.3 C_Getinfo

2355 | CK_DECLARE FUNCTION (CK RV, C GetInfo) (
2356 CK_INFO PTR pInfo
2357 |);

2358 C_GetlInfo returns general information about Cryptoki. p/nfo points to the location that receives the
2359 information.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 87 of 424

2360
2361

2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

2387

2388
2389
2390
2391
2392
2393

2394
2395

2396
2397
2398

2399
2400

2401
2402

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INFO info;
CK RV rv;
CK C INITIALIZE ARGS InitArgs;

InitArgs.CreateMutex = &MyCreateMutex;
InitArgs.DestroyMutex = &MyDestroyMutex;
InitArgs.LockMutex = &MyLockMutex;
InitArgs.UnlockMutex = &MyUnlockMutex;
InitArgs.flags = CKF_0S LOCKING OK;
InitArgs.pReserved = NULL PTR;

rv = C Initialize ((CK_VOID PTR)&InitArgs);
assert (rv == CKR _OK) ;

rv = C_GetInfo(&info);
assert (rv == CKR _OK) ;
if(info.cryptokiVersion.major == 2) {

/* Do lots of interesting cryptographic things with the token */

rv = C_Finalize (NULL PTR);
assert (rv == CKR OK) ;

5.4.4 C_GetFunctionList

CK_DECLARE FUNCTION (CK RV, C_ GetFunctionList) (
CK_FUNCTION LIST PTR PTR ppFunctionList
)7

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers. ppFunctionList
points to a value which will receive a pointer to the library’s CK_FUNCTION_LIST structure, which in turn
contains function pointers for all the Cryptoki API routines in the library. The pointer thus obtained may
point into memory which is owned by the Cryptoki library, and which may or may not be writable.
Whether or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList, C_GetInterfaceList, and C_GetlInterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK_FUNCTION LIST PTR pFunctionList;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 88 of 424

2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2413

2414
2415
2416
2417
2418
2419
2420

2421
2422
2423

2424
2425
2426
2427
2428

2429
2430

2431
2432
2433
2434

2435

2436
2437
2438

2439
2440

2441
2442
2443
2444
2445
2446
2447

CK C Initialize pC Initialize;
CK RV rv;

/* It’s OK to call C GetFunctionList before calling C Initialize */
rv = C_GetFunctionList (&pFunctionList);
assert (rv == CKR _OK) ;

pC Initialize = pFunctionList -> C Initialize;

/* Call the C Initialize function in the library */
rv = (*pC Initialize) (NULL PTR);

5.4.5 C_GetinterfaceList

CK_DECLARE FUNCTION (CK RV, C GetInterfacelList) (
CK_INTERFACE PTR pInterfacelist,
CK_ULONG_PTR pulCount

)

C_GetinterfaceL.ist is used to obtain a list of interfaces supported by a Cryptoki library. pulCount points
to the location that receives the number of interfaces.

There are two ways for an application to call C_GetinterfaceList:

1. |If pinterfaceList is NULL_PTR, then all that C_GetlnterfaceList does is return (in *pul/Count) the
number of interfaces, without actually returning a list of interfaces. The contents of *pulCount on
entry to C_GetlnterfaceList has no meaning in this case, and the call returns the value CKR_OK.

2. If pintrerfaceList is not NULL_PTR, then *pulCount MUST contain the size (in terms of
CK_INTERFACE elements) of the buffer pointed to by pinterfaceList. If that buffer is large enough to
hold the list of interfaces, then the list is returned in it, and CKR_OK is returned. If not, then the call
to C_GetlnterfaceList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value
*pulCount is set to hold the number of interfaces.

Because C_GetinterfaceList does not allocate any space of its own, an application will often call
C_GetiInterfaceList twice. However, this behavior is by no means required.

C_GetInterfaceList obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of
function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki
library, and which may or may not be writable. Whether or not this is the case, no attempt should be
made to write to this memory. The same caveat applies to the interface names returned.

C_GetFunctionList, C_GetInterfaceList, and C_Getinterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK

Example:

CK_ULONG ulCount=0;

CK_INTERFACE PTR interfaceList=NULL;
CK_RV rv;

int I;

/* get number of interfaces */

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 89 of 424

2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

2463

2464
2465
2466
2467
2468
2469

2470
2471
2472

2473

2474
2475

2476
2477

2478
2479

2480
2481
2482
2483

2484
2485
2486

2487
2488

2489
2490
2491

rv = C GetInterfaceList (NULL, &ulCount) ;
if (rv == CKR_OK) {
/* get copy of interfaces */
interfacelList = (CK_INTERFACE PTR)malloc (ulCount*sizeof (CK_INTERFACE)) ;
rv = C_GetlInterfacelist (interfacelist, &ulCount)
for (i=0;i<ulCount;i++) {
printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",
interfacelist[i].pInterfaceName,
((CK_VERSION *)interfacelList[i].pFunctionList)->major,
((CK_VERSION *)interfacelList[i].pFunctionList)->minor,
interfacelist[i] .pFunctionList,

interfacelist[i].flags);

5.4.6 C_Getinterface

CK _DECLARE FUNCTION (CK_RV,C GetInterface) (

CK _UTF8CHAR PTR pInterfaceName,
CK_VERSION PTR pVersion,
CK_INTERFACE PTR PTR pplInterface,
CK_FLAGS flags

)7

C_Getlinterface is used to obtain an interface supported by a Cryptoki library. plnterfaceName specifies
the name of the interface, pVersion specifies the interface version, pplnterface points to the location that
receives the interface, flags specifies the required interface flags.

There are multiple ways for an application to specify a particular interface when calling C_Getinterface:

1. |If pinterfaceName is not NULL_PTR, the name of the interface returned must match. If
pinterfaceName is NULL_PTR, the cryptoki library can return a default interface of its choice

2. If pVersion is not NULL_PTR, the version of the interface returned must match. If pVersion is
NULL_PTR, the cryptoki library can return an interface of any version

3. |If flags is non-zero, the interface returned must match all of the supplied flag values (but may include
additional flags not specified). If flags is 0, the cryptoki library can return an interface with any flags

C_Getlnterface obtains (in *pFunctionList of each interface) a pointer to the Cryptoki library’s list of
function pointers. The pointer thus obtained may point into memory which is owned by the Cryptoki
library, and which may or may not be writable. Whether or not this is the case, no attempt should be
made to write to this memory. The same caveat applies to the interface names returned.

C_GetFunctionList, C_GetlInterfaceList, and C_GetInterface are the only Cryptoki functions which an
application may call before calling C_lInitialize. It is provided to make it easier and faster for applications
to use shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_BUFFER_TOO_SMALL, CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INTERFACE PTR interface;
CK RV rv;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 90 of 424

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524

2525
2526

2527
2528
2529
2530
2531
2532
2533
2534

CK_VERSION version;
CK_FLAGS flagS=CKF_ INTERFACE FORK SAFE;

/* get default interface */

rv = C_GetInterface (NULL,NULL, &éinterface, flags);

if (rv == CKR_OK) {

printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",

interface->pInterfaceName,
((CK_VERSION *)interface->pFunctionList)->major,
((CK_VERSION *)interface->pFunctionList)->minor,
interface->pFunctionList,

interface->flags);

/* get default standard interface */

rv = C_GetInterface ((CK UTF8CHAR PTR)"PKCS 11",NULL, &interface, flags);

if (rv == CKR OK) {

printf ("interface %s version %d.%d funcs %p flags 0x%lu\n",

interface->pInterfaceName,
((CK_VERSION *)interface->pFunctionList)->major,
((CK_VERSION *)interface->pFunctionList)->minor,
interface->pFunctionlist,

interface->flags);

/* get specific standard version interface */
version.major=3;
version.minor=0;
rv = C_GetInterface ((CK _UTF8CHAR PTR)"PKCS 11", &version, &interface, flags);
if (rv == CKR OK) {
CK_FUNCTION LIST 3 0 PTR pkcsll=interface->pFunctionList;

/* ... use the new functions */

pkcsll->C LoginUser (hSession,userType, pPin,ulPinlLen,
pUsername, ulUsernamelen) ;

/* get specific vendor version interface */
version.major=1;
version.minor=0;
rv = C_GetInterface ((CK_UTF8CHAR PTR)
"Vendor VendorName", &version, &interface, flags);
if (rv == CKR OK) ({

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 91 of 424

2535
2536
2537
2538
2539
2540

2541
2542

2543

2544
2545
2546
2547
2548

2549
2550
2551

2552

2553
2554
2555

2556
2557
2558
2559
2560

2561
2562
2563
2564
2565

2566
2567
2568
2569
2570
2571
2572
2573

2574

2575
2576
2577

2578
2579
2580

CK_FUNCTION LIST VENDOR 1 0 PTR pkcsll=interface->pFunctionList;

/* ... use vendor specific functions */

pkcsll->C VendorFunctionl (paraml,param2, param3) ;

5.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

5.5.1 C_GetSlotList

CK_DECLARE FUNCTION (CK RV, C GetSlotList) (
CK BBOOL tokenPresent,
CK_SLOT ID PTR pSlotList,
CK_ULONG_PTR pulCount

)

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list
obtained includes only those slots with a token present (CK_TRUE), or all slots (CK_FALSE); pulCount
points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotListis NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the number of
slots, without actually returning a list of slots. The contents of the buffer pointed to by pulCount on
entry to C_GetSlotList has no meaning in this case, and the call returns the value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount MUST contain the size (in terms of CK_SLOT_ID
elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of slots,
then the list is returned in it, and CKR_OK is returned. If not, then the call to C_GetSlotList returns
the value CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number
of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often call
C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all slots
with a token present, then the number of such slots can (unfortunately) change between when the
application asks for how many such slots there are and when the application asks for the slots
themselves). However, multiple calls to C_GetSlotList are by no means required.

All slots which C_GetSlotList reports MUST be able to be queried as valid slots by C_GetSlotinfo.
Furthermore, the set of slots accessible through a Cryptoki library is checked at the time that
C_GetSlotList, for list length prediction (NULL pSlotList argument) is called. If an application calls
C_GetSlotList with a non-NULL pSlotList, and then the user adds or removes a hardware device, the
changed slot list will only be visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the changed slot list will be
successfully recognized depending on the library implementation. On some platforms, or earlier PKCS11
compliant libraries, it may be necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK.

Example:

CK _ULONG ulSlotCount, ulSlotWithTokenCount;
CK _SLOT ID PTR pSlotList, pSlotWithTokenList;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 92 of 424

2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617

2618

2619
2620
2621
2622

CK RV rv;

/* Get list of all slots */
rv = C_GetSlotList (CK_FALSE, NULL PTR, &ulSlotCount);
if (rv == CKR_OK) {
pSlotList =
(CK_SLOT ID PTR) malloc(ulSlotCount*sizeof (CK SLOT ID)):;
rv = C _GetSlotList (CK_FALSE, pSlotList, &ulSlotCount);
if (rv == CKR_OK) {
/* Now use that list of all slots */

free (pSlotList);

/* Get list of all slots with a token present */
pSlotWithTokenList = (CK _SLOT_ID PTR) malloc(0);
ulSlotWithTokenCount = 0;
while (1) {
rv = C_GetSlotList(
CK_TRUE, pSlotWithTokenList, &ulSlotWithTokenCount);
if (rv != CKR _BUFFER TOO SMALL)
break;
pSlotWithTokenList = realloc(
pSlotWithTokenList,
ulSlotWithTokenList*sizeof (CK _SLOT ID));

if (rv == CKR OK) {

/* Now use that list of all slots with a token present */

free(pSlotWithTokenList) ;

5.5.2 C_GetSlotIinfo

CK_DECLARE FUNCTION(CK RV, C GetSlotInfo) (
CK_SLOT ID slotlID,
CK_SLOT INFO PTR plnfo

)7

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 93 of 424

2623
2624

2625
2626
2627

2628

2629

2630
2631
2632
2633
2634
2635

2636
2637
2638
2639

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665

C_GetSlotlInfo obtains information about a particular slot in the system. slotiD is the ID of the slot; pinfo
points to the location that receives the slot information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenlnfo.

5.5.3 C_GetTokeninfo

CK_DECLARE FUNCTION (CK RV, C_GetTokenInfo) (
CK_SLOT ID slotID,
CK_TOKEN INFO_PTR pInfo

);

C_GetTokenlInfo obtains information about a particular token in the system. slot/D is the ID of the
token’s slot; pinfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK _ULONG ulCount;

CK _SLOT ID PTR pSlotList;
CK SLOT_ INFO slotInfo;

CK _TOKEN_ INFO tokenInfo;
CK RV rv;

rv = C_GetSlotList (CK_FALSE, NULL PTR, &ulCount);

if ((rv == CKR OK) && (ulCount > 0)) {
pSlotList = (CK SLOT ID PTR) malloc(ulCount*sizeof (CK _SLOT ID));
rv = C_GetSlotList (CK_FALSE, pSlotList, &ulCount);
assert (rv == CKR OK) ;

/* Get slot information for first slot */
rv = C_GetSlotInfo(pSlotList[0], &slotInfo);
assert (rv == CKR OK);

/* Get token information for first slot */
rv = C_GetTokenInfo (pSlotList[0], &tokenInfo);
if (rv == CKR TOKEN NOT PRESENT) {

free (pSlotList);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 94 of 424

2666

2667

2668
2669
2670
2671
2672

2673
2674
2675
2676

2677

2678
2679
2680
2681

2682
2683
2684
2685

2686
2687
2688

2689
2690
2691
2692
2693

2694
2695
2696

2697
2698
2699

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711

|}

5.5.4 C_WaitForSlotEvent

CK_DECLARE FUNCTION(CK RV, C WaitForSlotEvent) (
CK FLAGS flags,
CK_SLOT ID PTR pSlot,
CK _VOID PTR pReserved

)7

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to occur. flags
determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits for a slot event to occur); pSlot
points to a location which will receive the ID of the slot that the event occurred in. pReserved is reserved
for future versions; for this version of Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track whether or not any
unrecognized events involving that slot have occurred. When an application initially calls C_lInitialize,
every slot's event flag is cleared. Whenever a slot event occurs, the flag corresponding to the slot in
which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and some
slot’s event flag is set, then that event flag is cleared, and the call returns with the ID of that slot in the
location pointed to by pSlot. If more than one slot’s event flag is set at the time of the call, one such slot
is chosen by the library to have its event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and no
slot's event flag is set, then the call returns with the value CKR_NO_EVENT. In this case, the contents of
the location pointed to by pSlot when C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags argument, then the
call behaves as above, except that it will block. That is, if no slot’'s event flag is set at the time of the call,
C_WaitForSlotEvent will wait until some slot’s event flag becomes set. If a thread of an application has
a C_WaitForSlotEvent call blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_lInitialize can in general allow for safe multi-threaded access to a
Cryptoki library, C_WaitForSlotEvent is exceptional in that the behavior of Cryptoki is undefined if
multiple threads of a single application make simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NO_EVENT,
CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT ID slotID;

CK _SLOT_ INFO slotInfo;
CK_RV rv;

/* Block and wait for a slot event */
rv = C WaitForSlotEvent (flags, &slotID, NULL PTR);
assert (rv == CKR OK);

/* See what’s up with that slot */

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 95 of 424

2712
2713
2714

2715

2716
2717
2718
2719
2720

2721
2722

2723

2724
2725
2726
2727

2728
2729
2730
2731
2732

2733
2734

2735
2736
2737
2738
2739

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756

rv = C GetSlotInfo(slotID, &slotInfo);
assert (rv == CKR OK) ;

5.5.5 C_GetMechanismList

CK_DECLARE FUNCTION (CK RV, C GetMechanismList) (
CK_SLOT_ID slotID,
CK_MECHANISM TYPE PTR pMechanismList,
CK_ULONG_ PTR pulCount

);

C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is the ID
of the token'’s slot; pulCount points to the location that receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in *pulCount)
the number of mechanisms, without actually returning a list of mechanisms. The contents of
*pulCount on entry to C_GetMechanismList has no meaning in this case, and the call returns the
value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount MUST contain the size (in terms of
CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. If that buffer is large
enough to hold the list of mechanisms, then the list is returned in it, and CKR_OK is returned. If not,
then the call to C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value *pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application will often call
C_GetMechanismList twice. However, this behavior is by no means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;

CK_ULONG ulCount;

CK _MECHANISM TYPE PTR pMechanismList;
CK RV rv;

rv = C_GetMechanismList (slotID, NULL PTR, &ulCount);
if ((rv == CKR OK) && (ulCount > 0)) {
pMechanismList =
(CK_MECHANISM TYPE PTR)
malloc (ulCount*sizeof (CK MECHANISM TYPE));
rv = C_GetMechanismList (slotID, pMechanismList, &ulCount);
if (rv == CKR OK) {

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 96 of 424

2757
2758
2759

2760

2761
2762
2763
2764
2765
2766

2767
2768

2769
2770
2771
2772

2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787

2788

2789
2790
2791
2792
2793
2794
2795

2796
2797

}

free (pMechanismList) ;

5.5.6 C_GetMechanisminfo

CK_DECLARE FUNCTION (CK RV, C_ GetMechanismInfo) (
CK_SLOT ID slotID,
CK_MECHANISM TYPE type,
CK_MECHANISM INFO PTR pInfo

);

C_GetMechanismlinfo obtains information about a particular mechanism possibly supported by a token.
slotiD is the ID of the token’s slot; type is the type of mechanism; p/nfo points to the location that receives
the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_OK, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK SLOT ID slotID;
CK_MECHANISM INFO info;
CK RV rv;

/* Get information about the CKM MD2 mechanism for this token */
rv = C_GetMechanismInfo(slotID, CKM MD2, &info);
if (rv == CKR_OK) {

if (info.flags & CKF _DIGEST) {

5.5.7 C_InitToken

CK _DECLARE FUNCTION (CK RV, C InitToken) (
CK _SLOT ID slotID,
CK UTF8CHAR PTR pPin,
CK_ULONG ulPinLen,
CK_UTF8CHAR PTR pLabel
) ;

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO'’s initial PIN
(which need not be null-terminated); ulPinLen is the length in bytes of the PIN; pLabel points to the 32-
byte label of the token (which MUST be padded with blank characters, and which MUST not be null-

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 97 of 424

2798
2799

2800
2801
2802
2803
2804
2805
2806

2807
2808
2809
2810

2811
2812
2813
2814
2815
2816
2817

2818
2819

2820
2821
2822
2823
2824
2825

2826
2827
2828

2829
2830
2831
2832
2833
2834

2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847

terminated). This standard allows PIN values to contain any valid UTF8 character, but the token may
impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter becomes the
initial value of the SO PIN. If the token is being reinitialized, the pPin parameter is checked against the
existing SO PIN to authorize the initialization operation. In both cases, the SO PIN is the value pPin after
the function completes successfully. If the SO PIN is lost, then the card MUST be reinitialized using a
mechanism outside the scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from calling C_InitToken. If set, the token
will be reinitialized, and the client MUST supply the existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for
“indestructible” objects such as keys built into the token). Also, access by the normal user is disabled
until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created,
and attributes of some objects may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having the application send a
PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PINpad on the
token itself, or on the slot device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of C_InitToken, the SO’s PIN will
be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent whether
or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session with it; when a
call to C_InitToken is made under such circumstances, the call fails with error CKR_SESSION_EXISTS.
Unfortunately, it may happen when C_InitToken is called that some other application does have an open
session with the token, but Cryptoki cannot detect this, because it cannot detect anything about other
applications using the token. If this is the case, then the consequences of the C_InitToken call are
undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In these situations,
an initialization mechanism outside the scope of Cryptoki MUST be employed. The definition of “complex
token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT ID slotID;

CK UTF8CHAR pin[] = {“MyPIN”};
CK UTF8CHAR label[32];

CK RV rv;

memset (label, ‘' ', sizeof (label));

memcpy (label, “My first token”, strlen(“My first token”));
rv = C InitToken(slotID, pin, strlen(pin), label);

if (rv == CKR OK) {

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 98 of 424

2848
2849

2850

2851
2852
2853
2854
2855

2856
2857
2858

2859
2860

2861
2862
2863
2864
2865
2866
2867

2868
2869

2870
2871
2872
2873
2874
2875

2876
2877
2878
2879
2880
2881
2882
2883
2884
2885

2886

2887
2888
2889
2890
2891
2892
2893

5.5.8 C_InitPIN

CK_DECLARE FUNCTION (CK RV, C_InitPIN) (
CK_SESSION HANDLE hSession,

CK UTF8CHAR PTR pPin,

CK_ULONG ulPinLen

);

C_InitPIN initializes the normal user’'s PIN. hSession is the session’s handle; pPin points to the normal
user’s PIN; ulPinLen is the length in bytes of the PIN. This standard allows PIN values to contain any
valid UTF8 character, but the token may impose subset restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a session in any
other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To initialize the normal user’s PIN on a token with such a protected authentication
path, the pPin parameter to C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO
will enter the new PIN through the protected authentication path.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_InitPIN can be used to initialize the normal user’s token access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;

CK_UTFSCHAR newPin[]= {“NewPIN”};

CK RV rv;

rv = C_InitPIN(hSession, newPin, sizeof (newPin)-1);
if (rv == CKR_OK) {

5.5.9 C_SetPIN

CK_DECLARE_FUNCTION(CK_RV, C_SetPIN) (
CK_SESSION HANDLE hSession,
CK_UTF8CHAR_PTR pOl1dPin,
CK_ULONG ulOldLen,
CK UTF8CHAR PTR pNewPin,
CK _ULONG ulNewLen

);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 99 of 424

2894
2895
2896
2897
2898

2899
2900
2901

2902
2903
2904
2905
2906
2907
2908
2909

2910
2911

2912
2913
2914
2915
2916
2917

2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929

2930

2931
2932

2933
2934

2935
2936

2937

2938
2939

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER PIN if the session is
not logged in. hSession is the session’s handle; pOIdPin points to the old PIN; ulOldLen is the length in
bytes of the old PIN; pNewPin points to the new PIN; ulNewLen is the length in bytes of the new PIN. This
standard allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions” state, or “R/W User
Functions” state. An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. To modify the current user’s PIN on a token with such a protected authentication path,
the pOIdPin and pNewPin parameters to C_SetPIN should be NULL_PTR. During the execution of
C_SetPIN, the current user will enter the old PIN and the new PIN through the protected authentication
path. It is not specified how the PIN pad should be used to enter two PINs; this varies.

If the token has a protected authentication path other than a PIN pad, then it is token-dependent whether
or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK SESSION HANDLE hSession;

CK UTF8CHAR oldPin[] = {“OldPIN”};
CK UTF8CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(
hSession, o0ldPin, sizeof(oldPin)-1, newPin, sizeof (newPin)-1);

if (rv == CKR OK) {

5.6 Session management functions

A typical application might perform the following series of steps to make use of a token (note that there
are other reasonable sequences of events that an application might perform):

1. Select a token.
2. Make one or more calls to C_OpenSession to obtain one or more sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application has with a token have a
shared login state, C_Login only needs to be called for one of the sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or call
C_CloseAllSessions to close all the application’s sessions simultaneously.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 100 of 424

2940
2941

2942

2943

2944
2945
2946
2947
2948
2949
2950

2951
2952
2953
2954

2955
2956
2957
2958
2959

2960
2961
2962
2963

2964
2965

2966
2967
2968

2969
2970
2971

2972
2973
2974
2975
2976
2977

2978

2979

2980
2981
2982

2983
2984

2985
2986

As has been observed, an application may have concurrent sessions with more than one token. It is also
possible for a token to have concurrent sessions with more than one application.

Cryptoki provides the following functions for session management:

5.6.1 C_OpenSession

CK_DECLARE FUNCTION (CK RV, C OpenSession) (
CK_SLOT ID slotID,
CK FLAGS flags,
CK VOID PTR pApplication,
CK _NOTIFY Notify,
CK_SESSION HANDLE PTR phSession
);

C_OpenSession opens a session between an application and a token in a particular slot. slotID is the
slot’s ID; flags indicates the type of session; pApplication is an application-defined pointer to be passed to
the notification callback; Notify is the address of the notification callback function (see Section 5.21);
phSession points to the location that receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical OR of zero or
more bit flags defined in the CK_SESSION_INFO data type. For legacy reasons, the
CKF_SERIAL_SESSION bit MUST always be set; if a call to C_OpenSession does not have this bit set,
the call should return unsuccessfully with the error code
CKR_SESSION_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessions an application may have with the token, which
may depend on whether the session is “read-only” or “read/write”. An attempt to open a session which
does not succeed because there are too many existing sessions of some type should return
CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-only
sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the token, then any
attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see [PKCS11-UG] for further details).

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify
parameter. See Section 5.21 for more information about application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_COUNT,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example: see C_CloseSession.

5.6.2 C_CloseSession

CK DECLARE FUNCTION(CK RV, C CloseSession) (
CK _SESSION HANDLE hSession
)i

C_CloseSession closes a session between an application and a token. hSession is the session’s
handle.

When a session is closed, all session objects created by the session are destroyed automatically, even if
the application has other sessions “using” the objects (see [PKCS11-UG] for further details).

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 101 of 424

2087
2988
2989

2990
2991

2992
2993
2994
2995
2996
2997

2998
2999
3000

3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020

3021

3022
3023
3024

3025
3026

3027
3028
3029

3030
3031

If this function is successful and it closes the last session between the application and the token, the login
state of the token for the application returns to public sessions. Any new sessions to the token opened by
the application will be either R/O Public or R/W Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It actually indicates the (probably somewhat unlikely) event
that while this function call was executing, another call was made to C_CloseSession to close this
particular session, and that call finished executing first. Such uses of sessions are a bad idea, and
Cryptoki makes little promise of what will occur in general if an application indulges in this sort of
behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT ID slotID;

CK _BYTE application;
CK_NOTIFY MyNotify;
CK_SESSION HANDLE hSession;
CK RV rv;

application = 17;
MyNotify = &EncryptionSessionCallback;
rv = C_OpenSession (
slotID, CKF_SERIAL SESSION \ CKF_RW_SESSION,
(CK_VOID PTR) é&application, MyNotify,
&hSession) ;
if (rv == CKR_OK) {

C CloseSession (hSession);

5.6.3 C_CloseAllSessions

CK DECLARE FUNCTION (CK RV, C CloseAllSessions) (
CK SLOT ID slotID
)i

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the token'’s slot.
When a session is closed, all session objects created by the session are destroyed automatically.

After successful execution of this function, the login state of the token for the application returns to public
sessions. Any new sessions to the token opened by the application will be either R/O Public or R/W
Public sessions.

Depending on the token, when the last open session any application has with the token is closed, the
token may be “ejected” from its reader (if this capability exists).

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 102 of 424

3032
3033
3034

3035
3036
3037
3038
3039
3040
3041

3042

3043
3044
3045
3046

3047
3048

3049
3050
3051
3052

3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068

3069

3070
3071
3072
3073

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:

CK SLOT ID slotID;
CK RV rv;

rv = C CloseAllSessions (slotID);

5.6.4 C_GetSessioninfo

CK_DECLARE FUNCTION (CK RV, C _GetSessionInfo) (
CK_SESSION HANDLE hSession,
CK_SESSION INFO PTR pInfo

);

C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pinfo points to
the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;
CK _SESSION INFO info;
CK RV rv;

rv = C_GetSessionInfo (hSession, &info);
if (rv == CKR_OK) ({
if (info.state == CKS_RW USER FUNCTIONS) {

5.6.5 C_SessionCancel

CK _DECLARE FUNCTION (CK RV, C SessionCancel) (
CK_SESSION HANDLE hSession

CK _FLAGS flags

);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 103 of 424

3074
3075

3076
3077

3078

3079
3080

3081
3082
3083
3084
3085

3086
3087

3088
3089
3090
3091

3092
3093
3094
3095

3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119

C_SessionCancel terminates active session based operations. hSession is the session’s handle; flags
indicates the operations to cancel.

To identify which operation(s) should be terminated, the flags parameter should be assigned the logical
bitwise OR of one or more of the bit flags defined in the CK_MECHANISM_INFO structure.

If no flags are set, the session state will not be modified and CKR_OK will be returned.

If a flag is set for an operation that has not been initialized in the session, the operation flag will be
ignored and C_SessionCancel will behave as if the operation flag was not set.

If any of the operations indicated by the flags parameter cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned. If multiple operation flags were set and
CKR_OPERATION_CANCEL_FAILED is returned, this function does not provide any information about
which operation(s) could not be cancelled. If an application desires to know if any single operation could
not be cancelled, the application should not call C_SessionCancel with multiple flags set.

If C_SessionCancel is called from an application callback (see Section 5.21), no action will be taken by
the library and CKR_FUNCTION_FAILED must be returned.

If C_SessionCancel is used to cancel one half of a dual-function operation, the remaining operation
should still be left in an active state. However, it is expected that some Cryptoki implementations may not
support this and return CKR_OPERATION_CANCEL_FAILED unless flags for both operations are
provided.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_CANCEL_FAILED,
CKR_TOKEN_NOT_PRESENT.

Example:

CK_SESSION HANDLE hSession;
CK RV rv;

rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv != CKR _OK)

rv = C_SessionCancel (hSession, CKF ENCRYPT) ;
if (rv != CKR OK)
{

rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv != CKR_OK)

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 104 of 424

3120

3121
3122
3123
3124
3125

3126

3127
3128
3129
3130
3131

3132
3133
3134

3135
3136
3137

3138
3139
3140

3141
3142
3143
3144
3145
3146
3147
3148
3149
3150

3151
3152
3153
3154
3155
3156
3157
3158
3159
3160

3161
3162
3163

3164
3165
3166
3167

3168
3169
3170
3171

Below are modifications to existing API descriptions to allow an alternate method of cancelling individual
operations. The additional text is highlighted.

5.6.6 C_GetOperationState

CK_DECLARE FUNCTION (CK RV, C GetOperationState) (
CK_SESSION HANDLE hSession,

CK BYTE PTR pOperationState,

CK _ULONG_PTR pulOperationStatelLen

) i

C_GetOperationState obtains a copy of the cryptographic operations state of a session, encoded as a
string of bytes. hSession is the session’s handle; pOperationState points to the location that receives the
state; pulOperationStateLen points to the location that receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a “cryptographic
mechanism”, C_GetOperationState nonetheless uses the convention described in Section 5.2 on
producing output.

Precisely what the “cryptographic operations state” this function saves is varies from token to token;
however, this state is what is provided as input to C_SetOperationState to restore the cryptographic
activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the session is
using the CKM_SHA_1 mechanism). Suppose that the message digest operation was initialized
properly, and that precisely 80 bytes of data have been supplied so far as input to SHA-1. The
application now wants to “save the state” of this digest operation, so that it can continue it later. In this
particular case, since SHA-1 processes 512 bits (64 bytes) of input at a time, the cryptographic
operations state of the session most likely consists of three distinct parts: the state of SHA-1's 160-bit
internal chaining variable; the 16 bytes of unprocessed input data; and some administrative data
indicating that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing operation at a later
time.

Consider next a session which is performing an encryption operation with DES (a block cipher with a
block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the CKM_DES_CBC
mechanism). Suppose that precisely 22 bytes of data (in addition to an 1V for the CBC mode) have been
supplied so far as input to DES, which means that the first two 8-byte blocks of ciphertext have already
been produced and output. In this case, the cryptographic operations state of the session most likely
consists of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for cipher-
block chaining to produce the next block of ciphertext); the 6 bytes of data still awaiting encryption; some
administrative data indicating that this saved state comes from a session which was performing DES
encryption in CBC mode; and possibly the DES key being used for encryption (see C_SetOperationState
for more information on whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section 5.14), then the
cryptographic operations state of the session will contain all the necessary information to restore both
operations.

An attempt to save the cryptographic operations state of a session which does not currently have some
active savable cryptographic operation(s) (encryption, decryption, digesting, signing without message
recovery, verification without message recovery, or some legal combination of two of these) should fail
with the error CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an appropriate
cryptographic operation (or two), but which cannot be satisfied for any of various reasons (certain
necessary state information and/or key information can’t leave the token, for example) should fail with the
error CKR_STATE_UNSAVEABLE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 105 of 424

3172
3173
3174
3175
3176

3177

3178

3179
3180
3181
3182
3183
3184
3185

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195

3196
3197
3198
3199
3200

3201
3202
3203
3204

3205
3206
3207
3208
3209
3210
3211

3212
3213
3214
3215
3216

3217
3218
3219
3220

3221
3222

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_STATE_UNSAVEABLE, CKR_ARGUMENTS_BAD.

Example: see C_SetOperationState.

5.6.7 C_SetOperationState

CK_DECLARE FUNCTION (CK RV, C SetOperationState) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pOperationState,
CK _ULONG ulOperationStatelLen,
CK_OBJECT HANDLE hEncryptionKey,
CK_OBJECT HANDLE hAuthenticationKey
);

C_SetOperationState restores the cryptographic operations state of a session from a string of bytes
obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points to the
location holding the saved state; ulOperationStateLen holds the length of the saved state;
hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or decryption
operation in the restored session (or O if no encryption or decryption key is needed, either because no
such operation is ongoing in the stored session or because all the necessary key information is present in
the saved state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or O if no such key is needed, either
because no such operation is ongoing in the stored session or because all the necessary key information
is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it is being
restored to (the “destination session”). However, the source session and destination session should have
a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a common token.
There is also no guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state which it can
determine is not valid saved state (or is cryptographic operations state from a session with a different
session state, or is cryptographic operations state from a different token), it fails with the error
CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain information about keys
in use for ongoing cryptographic operations. If a saved cryptographic operations state has an ongoing
encryption or decryption operation, and the key in use for the operation is not saved in the state, then it
MUST be supplied to C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. |If the key in use for the
operation is saved in the state, then it can be supplied in the hEncryptionKey argument, but this is not
required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or verification
operation, and the key in use for the operation is not saved in the state, then it MUST be supplied to
C_SetOperationState in the hAuthenticationKey argument. If it is not, then C_SetOperationState will
fail with the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can
be supplied in the hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is submitted in
the hEncryptionKey argument, but the saved cryptographic operations state supplied does not have an
ongoing encryption or decryption operation, then C_SetOperationState fails with the error
CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can somehow
detect that this key was not the key being used in the source session for the supplied cryptographic

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 106 of 424

3223
3224

3225
3226
3227
3228
3229
3230

3231
3232
3233

3234
3235
3236
3237
3238

3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268

operations state (it may be able to detect this if the key or a hash of the key is present in the saved state,
for example), then C_SetOperationState fails with the error CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the
CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles to
C_SetOperationState calls. If this flag is true, then a call to C_SetOperationState never needs a key
handle to be supplied to it. If this flag is false, then at least some of the time, C_SetOperationState
requires a key handle, and so the application should probably always pass in any relevant key handles
when restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session even if that
session has active cryptographic or object search operations when C_SetOperationState is called (the
ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_CHANGED, CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED,
CKR_OK, CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION HANDLE hSession;
CK_MECHANISM digestMechanism;
CK_BYTE PTR pState;

CK _ULONG ulStateLen;

CK BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK BYTE data2[] = {0x02, 0x04, 0x08};
CK BYTE data3[] = {0x10, 0xOF, 0xOE, 0xOD, 0xO0C};

CK_BYTE pDigest[20];
CK _ULONG ulDigestLen;
CK RV rv;

/* Initialize hash operation */
rv = C _DigestInit (hSession, &digestMechanism);

assert (rv == CKR OK) ;

/* Start hashing */
rv = C_DigestUpdate (hSession, datal, sizeof(datal)):;
assert (rv == CKR OK);

/* Find out how big the state might be */
rv = C_GetOperationState (hSession, NULL PTR, &ulStateLen);
assert (rv == CKR OK) ;

/* Allocate some memory and then get the state */
pState = (CK BYTE PTR) malloc(ulStatelen);
rv = C _GetOperationState (hSession, pState, &ulStatelLen);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 107 of 424

3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288

3289

3290
3291
3292
3293
3294
3295

3296
3297
3298

3299
3300
3301
3302
3303

3304
3305
3306
3307
3308
3309
3310
3311
3312
3313

/* Continue hashing */
rv = C_DigestUpdate (hSession, data2, sizeof (data2));
assert (rv == CKR _OK) ;

/* Restore state. No key handles needed */
rv = C_SetOperationState (hSession, pState, ulStateLen, 0, 0);
assert (rv == CKR OK) ;

/* Continue hashing from where we saved state */
rv = C_DigestUpdate (hSession, data3, sizeof (data3l));
assert (rv == CKR _OK) ;

/* Conclude hashing operation */
ulDigestLen = sizeof (pDigest);
rv = C_DigestFinal (hSession, pDigest, &ulDigestLen):;
if (rv == CKR OK) {
/* pDigest[] now contains the hash of 0x01030507100F0EODOC */

5.6.8 C_Login

CK_DECLARE FUNCTION (CK RV, C Login) (
CK_SESSION HANDLE hSession,
CK _USER _TYPE userType,
CK _UTF8CHAR PTR pPin,
CK_ULONG ulPinLen
)i

C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin points to
the user’s PIN; ulPinLen is the length of the PIN. This standard allows PIN values to contain any valid
UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's
sessions will enter either the "R/W SO Functions" state, the "R/W User Functions" state, or the "R/O User
Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_Login depends on the
context in which it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin
parameter to C_Login should be NULL_PTR. When C_Login returns, whatever authentication method
supported by the token will have been performed; a return value of CKR_OK means that the user was
successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 108 of 424

3314
3315
3316

3317
3318
3319

3320
3321
3322

3323
3324
3325
3326
3327
3328
3329
3330

3331

3332

3333
3334
3335
3336
3337
3338
3339
3340

3341
3342
3343
3344

3345
3346
3347
3348
3349

3350
3351
3352
3353
3354
3355
3356
3357
3358
3359

3360
3361
3362

3363
3364
3365

If there are any active cryptographic or object finding operations in an application’s session, and then
C_Login is successfully executed by that application, it may or may not be the case that those operations
are still active. Therefore, before logging in, any active operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be unable to log the
SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error code
CKR_SESSION_READ_ONLY_EXISTS.

C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the
CKA_ALWAYS AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do
cryptographic operation on this key. See further Section 4.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.

Example: see C_Logout.

5.6.9 C_LoginUser

CK_DECLARE FUNCTION (CK RV, C LoginUser) (
CK_SESSION HANDLE hSession,
CK _USER_TYPE userType,
CK _UTF8CHAR PTR pPin,
CK_ULONG ulPinLen,
CK_UTFSCHAR_PTR pUsername,
CK _ULONG ulUsernamelLen
) ;

C_LoginUser logs a user into a token. hSession is a session handle; userType is the user type; pPin
points to the user’s PIN; ulPinLen is the length of the PIN, pUsername points to the user name,
ulUsernamelLen is the length of the user name. This standard allows PIN and user name values to
contain any valid UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the application's
sessions will enter either the "R/W SO Functions"” state, the "R/W User Functions" state, or the "R/O User
Functions" state. If the user type is CKU_CONTEXT_SPECIFIC, the behavior of C_LoginUser depends
on the context in which it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means
that there is some way for a user to be authenticated to the token without having to send a PIN through
the Cryptoki library. One such possibility is that the user enters a PIN on a PIN pad on the token itself, or
on the slot device. The user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected authentication path, the pPin
parameter to C_LoginUser should be NULL_PTR. When C_LoginUser returns, whatever authentication
method supported by the token will have been performed; a return value of CKR_OK means that the user
was successfully authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s session, and then
C_LoginUser is successfully executed by that application, it may or may not be the case that those
operations are still active. Therefore, before logging in, any active operations should be finished.

If the application calling C_LoginUser has a R/O session open with the token, then it will be unable to log
the SO into a session (see [PKCS11-UG] for further details). An attempt to do this will result in the error
code CKR_SESSION_READ_ONLY_EXISTS.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 109 of 424

3366
3367
3368

3369
3370
3371
3372
3373
3374
3375
3376

3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393

3394

3395
3396
3397

3398

3399
3400

3401
3402
3403

3404
3405
3406

3407
3408
3409
3410

3411

C_LoginUser may be called repeatedly, without intervening C_Logout calls, if (and only if) a key with the
CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and the user needs to do
cryptographic operation on this key. See further Section 4.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TOO_MANY_TYPES, CKR_USER_TYPE_INVALID.

Example:

CK_SESSION HANDLE hSession;

CK _UTF8CHAR userPin[] = {“MyPIN”};

CK UTF8CHAR userName[] = {“MyUserName”};

CK RV rv;

rv = C_LoginUser (hSession, CKU USER, userPin, sizeof (userPin)-1, userName,

sizeof (userName) -1) ;

if (rv == CKR_OK) {

rv = C_Logout (hSession);
if (rv == CKR_OK) {

5.6.10 C_Logout

CK_DECLARE_FUNCTION(CK_RV, C_Logout) (
CK_SESSION HANDLE hSession
)i

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions will enter
either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private objects become invalid
(even if a user is later logged back into the token, those handles remain invalid). In addition, all private
session objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session, and then
C_Logout is successfully executed by that application, it may or may not be the case that those
operations are still active. Therefore, before logging out, any active operations should be finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_|IN.

Example:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 110 of 424

3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425

3426

3427
3428

3429

3430
3431
3432
3433
3434
3435

3436
3437
3438

3439
3440

3441
3442
3443
3444

3445
3446

3447
3448

3449
3450
3451
3452
3453
3454
3455
3456

3457

CK_SESSION HANDLE hSession;
CK UTF8CHAR userPin[] = {“MyPIN”};
CK RV rv;

rv = C_Login (hSession, CKU USER, userPin, sizeof (userPin)-1);

if (rv == CKR_OK) {

rv = C_Logout (hSession);
if (rv == CKR_OK) {

5.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions provided specifically
for managing key objects are described in Section 5.18.

5.7.1 C_CreateObject

CK_DECLARE FUNCTION (CK RV, C CreateObject) (
CK_SESSION HANDLE hSession,
CK_ATTRIBUTE PTR pTemplate,

CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phObject

) i

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the object’s
template; ulCount is the number of attributes in the template; phObject points to the location that receives
the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail and return without
creating any object.

If C_CreateObiject is used to create a key object, the key object will have its CKA_LOCAL attribute set to
CK_FALSE. If that key object is a secret or private key then the new key will have the
CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the CKA_NEVER_EXTRACTABLE
attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Whenever an object is created, a value for CKA_UNIQUE_ID is generated and assigned to the new
object (See Section 4.4.1).

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 111 of 424

3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE
hData,
hCertificate,
hKey;
CK_OBJECT_ CLASS
dataClass = CKO_DATA,
certificateClass = CKO _CERTIFICATE,
keyClass = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK RSA;
CK UTF8CHAR application[] = {“My Application”};
CK BYTE dataValue[] = {...};

CK_BYTE subject[] = {...};

CK_BYTE id[] = {...};

CK BYTE certificatevalue[] = {...};
CK_BYTE modulus[] = {...};

CK BYTE exponent[] = {...};
CK _BBOOL true = CK _TRUE;
CK ATTRIBUTE dataTemplate[] = {
{CKA CLASS, é&dataClass, sizeof(dataClass)},
{CKA TOKEN, &true, sizeof (true)},
{CKA_ APPLICATION, application, sizeof (application)-1},
{CKA VALUE, dataValue, sizeof (dataValue)}
}i
CK ATTRIBUTE certificateTemplate[] = {
{CKA CLASS, é&certificateClass, sizeof (certificateClass)},
{CKA TOKEN, &true, sizeof (true)},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA VALUE, certificateValue, sizeof(certificateValue)}
}i
CK_ATTRIBUTE keyTemplate[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, ¢&true, sizeof (true)},
{CKA MODULUS, modulus, sizeof (modulus)},
{CKA PUBLIC EXPONENT, exponent, sizeof (exponent) }
}i
CK_RV rv;

/* Create a data object */

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 112 of 424

3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520

3521

3522
3523
3524
3525
3526
3527
3528

3529
3530
3531
3532

3533
3534
3535
3536
3537
3538
3539
3540
3541

3542
3543
3544

3545
3546

rv = C CreateObject (hSession, dataTemplate, 4, &hData);
if (rv == CKR_OK) {

/* Create a certificate object */
rv = C CreateObject (

hSession, certificateTemplate, 5, &hCertificate);
if (rv == CKR_OK) {

/* Create an RSA public key object */
rv = C _CreateObject (hSession, keyTemplate, 5, &hKey);
if (rv == CKR OK) ({

5.7.2 C_CopyObject

CK_DECLARE FUNCTION (CK RV, C_CopyObject) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK _ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT HANDLE PTR phNewObject
)i

C_CopyObiject copies an object, creating a new object for the copy. hSession is the session’s handle;
hObject is the object’'s handle; pTemplate points to the template for the new object; u/lCount is the number
of attributes in the template; phNewObject points to the location that receives the handle for the copy of
the object.

The template may specify new values for any attributes of the object that can ordinarily be modified (e.g.,
in the course of copying a secret key, a key’'s CKA_EXTRACTABLE attribute may be changed from
CK_TRUE to CK_FALSE, but not the other way around. If this change is made, the new key's
CKA_NEVER_EXTRACTABLE attribute will have the value CK_FALSE. Similarly, the template may
specify that the new key’'s CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same
value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new values of
the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the
template specifies a value of an attribute which is incompatible with other existing attributes of the object,
the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail and return without
creating any object. If the object indicated by hObject has its CKA_COPYABLE attribute set to
CK_FALSE, C_CopyObject will return CKR_ACTION_PROHIBITED.

Whenever an object is copied, a new value for CKA_UNIQUE_ID is generated and assigned to the new
object (See Section 4.4.1).

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 113 of 424

3547
3548

3549
3550
3551
3552
3553
3554
3555
3556

3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587

3588

3589
3590

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: , CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;

CK OBJECT_ HANDLE hKey, hNewKey;

CK_OBJECT CLASS keyClass = CKO_SECRET KEY;

CK_KEY TYPE keyType = CKK DES;

CK BYTE id[] = {...};

CK BYTE keyValue[] = {...};

CK BBOOL false = CK_FALSE;

CK_BBOOL true = CK_TRUE;

CK ATTRIBUTE keyTemplate[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &false, sizeof(false)},
{CKA_ID, id, sizeof (id)},
{CKA VALUE, keyValue, sizeof (keyValue)}

}i

CK _ATTRIBUTE copyTemplate[] = {
{CKA TOKEN, &true, sizeof (true)}

}i

CK RV rv;

/* Create a DES secret key session object */
rv = C_CreateObject (hSession, keyTemplate, 5, &hKey);
if (rv == CKR OK) {

/* Create a copy which is a token object */

rv = C_CopyObject (hSession, hKey, copyTemplate, 1, &hNewKey):;

5.7.3 C_DestroyObject

CK _DECLARE FUNCTION (CK RV, C DestroyObject) (
CK_SESSION HANDLE hSession,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 114 of 424

3591
3592

3593
3594

3595
3596

3597
3598
3599

3600
3601
3602
3603
3604
3605

3606

3607

3608
3609
3610
3611
3612

3613
3614

3615
3616
3617
3618

3619
3620
3621
3622
3623

3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637

CK_OBJECT HANDLE hObject
);

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s
handle.

Only session objects can be destroyed during a read-only session. Only public objects can be destroyed
unless the normal user is logged in.

Certain objects may not be destroyed. Calling C_DestroyObject on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_DESTROYABLE
attribute to determine if an object may be destroyed or not.

Return values: CKR_ACTION_PROHIBITED, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

5.7.4 C_GetObjectSize

CK _DECLARE FUNCTION (CK RV, C GetObjectSize) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK_ULONG_PTR pulSize

) i

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the
object’s handle; pulSize points to the location that receives the size in bytes of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is some measure
of how much token memory the object takes up. If an application deletes (say) a private object of size S,
it might be reasonable to assume that the ulFreePrivateMemory field of the token’s CK_TOKEN_INFO
structure increases by approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK OBJECT CLASS dataClass = CKO_DATA;
CK UTF8CHAR application[]
CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &dataClass, sizeof(dataClass)},
{CKA TOKEN, &true, sizeof (true)},

{“My Application”};

{CKA APPLICATION, application, sizeof (application)-1},
{CKA VALUE, value, sizeof (value)}

}i

CK_ULONG ulSize;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 115 of 424

3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653

3654

3655
3656
3657
3658
3659
3660

3661
3662
3663
3664

3665
3666

3667
3668
3669

3670
3671
3672

3673
3674

3675
3676
3677

3678

3679
3680
3681
3682
3683
3684

CK RV rv;

rv = C_CreateObject (hSession, template, 4, &hObject);
if (rv == CKR_OK) {
rv = C _GetObjectSize (hSession, hObject, &ulSize);
if (rv != CKR_INFORMATION SENSITIVE) {

rv = C_DestroyObject (hSession, hObject);

5.7.5 C_GetAttributeValue

CK_DECLARE FUNCTION (CK RV, C GetAttributevalue) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hObject,
CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
) ;

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be obtained, and receives the attribute values; u/lCount is the number of attributes in the
template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue performs the following
algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be revealed
because the object is sensitive or unextractable, then the ulValueLen field in that triple is modified to
hold the value CK_UNAVAILABLE_INFORMATION.

2. Otherwise, if the specified value for the object is invalid (the object does not possess such an
attribute), then the ulValueLen field in that triple is modified to hold the value
CK_UNAVAILABLE_INFORMATION.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ul/ValueLen field is modified to hold
the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in u/ValueLen is large enough to hold the value of the specified
attribute for the object, then that attribute is copied into the buffer located at pValue, and the
ulValueLen field is modified to hold the exact length of the attribute.

5. Otherwise, the ulValueLen field is modified to hold the value CK_UNAVAILABLE_INFORMATION.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call should
return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 applies to any of the requested attributes,
then the call should return the value CKR_BUFFER_TOO_SMALL. As usual, if more than one of these
error codes is applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 116 of 424

3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697

3698
3699
3700
3701
3702
3703

3704
3705
3706
3707
3708
3709

3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732

In the special case of an attribute whose value is an array of attributes, for example
CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, the length specified in ulValueLen
MUST be large enough to hold all attributes in the array. If the pValue of elements within the array is
NULL_PTR then the ulValueLen of elements within the array will be set to the required length. If the
pValue of elements within the array is not NULL_PTR, then the ulValueLen element of attributes within
the array MUST reflect the space that the corresponding pValue points to, and pValue is filled in if there is
sufficient room. Therefore it is important to initialize the contents of a buffer before calling
C_GetAttributeValue to get such an array value. Note that the type element of attributes within the array
MUST be ignored on input and MUST be set on output. If any ulValueLen within the array isn't large
enough, it will be set to CK_UNAVAILABLE_INFORMATION and the function will return
CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too
small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute
type having the CKF_ARRAY_ATTRIBUTE bit set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID, and
CKR_BUFFER_TOO_SMALL do not denote true errors for C_GetAttributeValue. If a call to
C_GetAttributeValue returns any of these three values, then the call MUST nonetheless have processed
every attribute in the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK BYTE PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {

{CKA MODULUS, NULL PTR, 0},

{CKA PUBLIC EXPONENT, NULL PTR, 0}
}i
CK_RV rv;

rv = C_GetAttributeValue (hSession, hObject, template, 2);

if (rv == CKR OK) {
pModulus = (CK_BYTE PTR) malloc (template[0].ulValuelen) ;
template[0] .pValue = pModulus;
/* template[0].ulValuelLen was set by C_GetAttributeValue */

pExponent = (CK BYTE PTR) malloc(template[l].ulValueLen);
template[l] .pValue = pExponent;
/* template[l].ulValuelLen was set by C_GetAttributeValue */

rv = C_GetAttributeValue (hSession, hObject, template, 2);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 117 of 424

3733
3734
3735
3736
3737
3738
3739

3740

3741
3742
3743
3744
3745
3746

3747
3748
3749

3750
3751
3752

3753

3754
3755
3756

3757

3758
3759
3760
3761
3762
3763
3764
3765

3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778

if (rv == CKR_OK) {

}
free (pModulus) ;

free (pExponent) ;

5.7.6 C_SetAttributeValue

CK _DECLARE FUNCTION (CK RV, C SetAttributeValue) (
CK_SESSION HANDLE hSession,
CK _OBJECT HANDLE hObject,
CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
) ;

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute
values are to be modified and their new values; ulCount is the number of attributes in the template.

Certain objects may not be modified. Calling C_SetAttributeValue on such objects will result in the
CKR_ACTION_PROHIBITED error code. An application can consult the object's CKA_MODIFIABLE
attribute to determine if an object may be modified or not.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified. If the template
specifies a value of an attribute which is incompatible with other existing attributes of the object, the call
fails with the return code CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 4.1.2 for more details.

Return values: CKR_ACTION_PROHIBITED, CKR_ARGUMENTS_BAD,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hObject;
CK _UTF8CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {

{CKA LABEL, label, sizeof (label)-1}
}i
CK RV rv;

rv = C_SetAttributeValue (hSession, hObject, template, 1);
if (rv == CKR OK) ({

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 118 of 424

3779
3780
3781 }

3782 5.7.7 C_FindObjectslinit

3783 | CK _DECLARE FUNCTION (CK RV, C FindObjectsInit) (
3784 CK_SESSION_ HANDLE hSession,

3785 CK_ATTRIBUTE PTR pTemplate,

3786 CK_ULONG ulCount

3787) ;

3788 C_FindObjectsinit initializes a search for token and session objects that match a template. hSession is
3789 the session’s handle; pTemplate points to a search template that specifies the attribute values to match;
3790 ulCount is the number of attributes in the search template. The matching criterion is an exact byte-for-
3791 byte match with all attributes in the template. To find all objects, set u/lCount to 0.

3792 After calling C_FindObjectslnit, the application may call C_FindObjects one or more times to obtain
3793 handles for objects matching the template, and then eventually call C_FindObjectsFinal to finish the
3794 active search operation. At most one search operation may be active at a given time in a given session.

3795 The object search operation will only find objects that the session can view. For example, an object
3796 search in an “R/W Public Session” will not find any private objects (even if one of the attributes in the
3797 search template specifies that the search is for private objects).

3798 If a search operation is active, and objects are created or destroyed which fit the search template for the
3799 active search operation, then those objects may or may not be found by the search operation. Note that
3800 this means that, under these circumstances, the search operation may return invalid object handles.

3801 Even though C_FindObjectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and

3802 CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search template
3803 with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a
3804 search operation which will match no objects and return CKR_OK.

3805 If the CKA_UNIQUE_ID attribute is present in the search template, either zero or one objects will be
3806 found, since at most one object can have any particular CKA_UNIQUE_ID value.

3807 Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,

3808 CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
3809 CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

3810 CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,

3811 CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

3812 Example: see C_FindObjectsFinal.

3813 5.7.8 C_FindObjects

3814 | CK_DECLARE_FUNCTION (CK RV, C_FindObjects) (
3815 CK _SESSION HANDLE hSession,

3816 CK_OBJECT HANDLE PTR phObject,

3817 CK_ULONG ulMaxObjectCount,

3818 CK_ULONG_PTR pulObjectCount

3819) ;

3820 C_FindObjects continues a search for token and session objects that match a template, obtaining

3821 additional object handles. hSession is the session’s handle; phObject points to the location that receives
3822 the list (array) of additional object handles; ulMaxObjectCount is the maximum number of object handles
3823 to be returned; pulObjectCount points to the location that receives the actual number of object handles
3824 returned.

3825 If there are no more objects matching the template, then the location that pulObjectCount points to
3826 receives the value 0.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 119 of 424

3827

3828
3829
3830
3831

3832

3833

3834
3835
3836

3837
3838

3839
3840
3841
3842

3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862

3863
3864

3865

3866
3867
3868

The search MUST have been initialized with C_FindObjectsinit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

5.7.9 C_FindObjectsFinal

CK_DECLARE FUNCTION (CK RV, C_FindObjectsFinal) (
CK_SESSION HANDLE hSession
)7

C_FindObjectsFinal terminates a search for token and session objects. hSession is the session’s
handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hObject;
CK_ULONG ulObjectCount;

CK RV rv;

rv = C_FindObjectsInit (hSession, NULL PTR, O0);

assert (rv == CKR OK);

while (1) {
rv = C_FindObjects (hSession, &hObject, 1, &ulObjectCount);
if (rv != CKR _OK || ulObjectCount == 0)

break;

rv = C_FindObjectsFinal (hSession);
assert (rv == CKR OK);

5.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

5.8.1 C_Encryptinit

CK_DECLARE FUNCTION (CK_RV, C_EncryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 120 of 424

3869
3870

3871
3872

3873
3874

3875
3876
3877
3878
3879

3880
3881
3882

3883
3884
3885
3886
3887
3888
3889
3890

3891

3892

3893
3894
3895
3896
3897
3898
3899

3900
3901
3902
3903

3904

3905
3906
3907
3908

3909
3910

3911
3912
3913
3914

3915
3916

3917
3918

CK_OBJECT HANDLE hKey
);

C_Encryptinit initializes an encryption operation. hSession is the session’s handle; pMechanism points
to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, MUST be CK_TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt data in a single part; or
call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts.
The encryption operation is active until the application uses a call to C_Encrypt or C_EncryptFinal to
actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the
application MUST call C_Encryptlnit again.

C_Encryptinit can be called with pMechanism set to NULL_PTR to terminate an active encryption
operation. If an active operation operations cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_EncryptFinal.

5.8.2 C_Encrypt

CK_DECLARE FUNCTION (CK RV, C Encrypt) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK BYTE PTR pEncryptedData,
CK ULONG PTR pulEncryptedDatalLen
) ;

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
ulDatalen is the length in bytes of the data; pEncryptedData points to the location that receives the
encrypted data; pulEncryptedDatalen points to the location that holds the length in bytes of the encrypted
data.

C_Encrypt uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptinit. A call to C_Encrypt always
terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

C_Encrypt cannot be used to terminate a multi-part operation, and MUST be called after C_Encryptinit
without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints (either because
the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input
data MUST consist of an integral number of blocks). If these constraints are not satisfied, then
C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData point to
the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate operations followed
by C_EncryptFinal.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 121 of 424

3919
3920
3921
3922
3923
3924

3925

3926

3927
3928
3929
3930
3931
3932
3933

3934
3935
3936
3937

3938

3939
3940
3941

3942
3943

3944
3945
3946
3947
3948

3949

3950

3951
3952
3953
3954
3955

3956
3957
3958

3959

3960
3961
3962
3963

3964
3965
3966

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

5.8.3 C_EncryptUpdate

CK_DECLARE FUNCTION (CK RV, C EncryptUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK_ULONG ulPartLen,
CK BYTE PTR pEncryptedPart,
CK ULONG PTR pulEncryptedPartLen
) i

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data part;
pEncryptedPart points to the location that receives the encrypted data part; pulEncryptedPartLen points
to the location that holds the length in bytes of the encrypted data part.

C_EncryptUpdate uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptlnit. This function may be called
any number of times in succession. A call to C_EncryptUpdate which results in an error other than
CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart point to
the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

5.8.4 C_EncryptFinal

CK_DECLARE FUNCTION (CK_RV, C_EncryptFinal)(
CK_SESSION HANDLE hSession,

CK BYTE PTR pLastEncryptedPart,

CK _ULONG_PTR pulLastEncryptedPartLen

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 5.2 on producing output.

The encryption operation MUST have been initialized with C_Encryptinit. A call to C_EncryptFinal
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length constraints,
because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints
are not satisfied, then C_EncryptFinal will fail with return code CKR_DATA_LEN_RANGE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 122 of 424

3967
3968
3969
3970
3971

3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT BUF Sz 200
#define CIPHERTEXT BUF SZ 256

CK _ULONG firstPiecelLen, secondPiecelen;
CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM DES CBC PAD, iv, sizeof (iv)
bi
CK BYTE data[PLAINTEXT BUF SZ];
CK BYTE encryptedData [CIPHERTEXT BUF SZ];
CK _ULONG ulEncryptedDatalLen;
CK _ULONG ulEncryptedDataZLen;
CK_ULONG ulEncryptedData3Len;
CK RV rv;

firstPiecelen = 90;
secondPiecelLen = PLAINTEXT BUF SZ-firstPiecelen;
rv = C_EncryptInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {
/* Encrypt first piece */
ulEncryptedDatallen = sizeof (encryptedData);
rv = C_EncryptUpdate (
hSession,
&data[0], firstPiecelen,
&encryptedData[0], &ulEncryptedDatallen);
if (rv != CKR _OK) {

/* Encrypt second piece */
ulEncryptedData2len = sizeof (encryptedData)-ulEncryptedDatallen;
rv = C_EncryptUpdate (

hSession,

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 123 of 424

4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029

4030

4031
4032
4033

4034

4035

4036
4037
4038
4039
4040

4041
4042
4043

4044
4045

4046
4047
4048
4049
4050

4051
4052
4053
4054

&data[firstPiecelen], secondPiecelen,
&encryptedData[ulEncryptedDatallen], &ulEncryptedData2Len);
if (rv != CKR_OK) {

/* Get last little encrypted bit */
ulEncryptedData3len =
sizeof (encryptedData) -ulEncryptedDatallen-ulEncryptedData2len;
rv = C_EncryptFinal (
hSession,
&encryptedData[ulEncryptedDatallentulEncryptedData2len],
&ulEncryptedData3len) ;
if (rv != CKR _OK) {

5.9 Message-based encryption functions

Message-based encryption refers to the process of encrypting multiple messages using the same
encryption mechanism and encryption key. The encryption mechanism can be either an authenticated
encryption with associated data (AEAD) algorithm or a pure encryption algorithm.

Cryptoki provides the following functions for message-based encryption:

5.9.1 C_MessageEncryptinit

CK_DECLARE FUNCTION (CK RV, C MessageEncryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) ;

C_MessageEncryptinit prepares a session for one or more encryption operations that use the same
encryption mechanism and encryption key. hSession is the session’s handle; pMechanism points to the
encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption,
MUST be CK_TRUE.

After calling C_MessageEncryptlnit, the application can either call C_EncryptMessage to encrypt a
message in a single part, or call C_EncryptMessageBegin, followed by C_EncryptMessageNext one or
more times, to encrypt a message in multiple parts. This may be repeated several times. The message-
based encryption process is active until the application calls C_MessageEncryptFinal to finish the
message-based encryption process.

C_MessageEncryptinit can be called with pMechanism set to NULL_PTR to terminate a message-based
encryption process. If a multi-part message encryption operation is active, it will also be terminated. If an
active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 124 of 424

4055
4056
4057
4058
4059
4060
4061
4062

4063

4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074

4075
4076
4077
4078
4079
4080

4081
4082
4083
4084

4085
4086

4087

4088
4089

4090

4091
4092
4093
4094
4095

4096
4097

4098
4099
4100
4101
4102

4103
4104

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,

CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.9.2 C_EncryptMessage

CK _DECLARE FUNCTION (CK_ RV, C EncryptMessage) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,
CK _ULONG ulAssociatedDatalen,
CK BYTE PTR pPlaintext,

CK _ULONG ulPlaintextLen,

CK BYTE PTR pCiphertext,

CK _ULONG_PTR pulCiphertextLen

) i

C_EncryptMessage encrypts a message in a single part. hSession is the session’s handle; pParameter
and ulParameterLen specify any mechanism-specific parameters for the message encryption operation;
pAssociatedData and ulAssociatedDatalen specify the associated data for an AEAD mechanism;
pPlaintext points to the plaintext data; ulPlaintextLen is the length in bytes of the plaintext data;
pCiphertext points to the location that receives the encrypted data; pulCiphertextLen points to the location

that holds the length in bytes of the encrypted data.

Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter
passed to C_MessageEncryptinit, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV

generator will be output to the pParameter buffer.

If the encryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and

should be set to (NULL, 0).
C_EncryptMessage uses the convention described in Section 5.2 on producing output.

The message-based encryption process MUST have been initialized with C_MessageEncryptinit. A call

to C_EncryptMessage begins and terminates a message encryption operation.

C_EncryptMessage cannot be called in the middle of a multi-part message encryption operation.

For some encryption mechanisms, the input plaintext data has certain length constraints (either because
the mechanism can only encrypt relatively short pieces of plaintext, or because the mechanism’s input
data MUST consist of an integral number of blocks). If these constraints are not satisfied, then
C_EncryptMessage will fail with return code CKR_DATA_LEN_RANGE. The plaintext and ciphertext can

be in the same place, i.e., it is OK if pPlaintext and pCiphertext point to the same location.

For most mechanisms, C_EncryptMessage is equivalent to C_EncryptMessageBegin followed by a

sequence of C_EncryptMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5.9.3 C_EncryptMessageBegin

CK_DECLARE FUNCTION (CK RV, C EncryptMessageBegin) (

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 125 of 424

4105
4106
4107
4108
4109
4110

4111
4112
4113
4114

4115
4116
4117
4118

4119
4120

4121
4122
4123
4124
4125

4126
4127
4128
4129
4130

4131

4132
4133
4134
4135
4136
4137
4138
4139
4140
4141

4142
4143
4144
4145
4146
4147
4148

4149
4150
4151
4152

4153

4154
4155
4156

CK_SESSION HANDLE hSession,

CK _VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,

CK_ULONG ulAssociatedDataLen
);

C_EncryptMessageBegin begins a multiple-part message encryption operation. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message encryption operation; pAssociatedData and ulAssociatedDatal en specify the associated data
for an AEAD mechanism.

Typically, pParameter is an initialization vector (IV) or nonce. Depending on the mechanism parameter
passed to C_MessageEncryptlnit, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV
generator will be output to the pParameter buffer.

If the mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and should be
set to (NULL, 0).

After calling C_EncryptMessageBegin, the application should call C_EncryptMessageNext one or
more times to encrypt the message in multiple parts. The message encryption operation is active until the
application uses a call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE to actually
obtain the final piece of ciphertext. To process additional messages (in single or multiple parts), the
application MUST call C_EncryptMessage or C_EncryptMessageBegin again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

5.9.4 C_EncryptMessageNext

CK_DECLARE_FUNCTION(CK_RV, C_EncryptMessageNext)(
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK BYTE PTR pPlaintextPart,
CK _ULONG ulPlaintextPartLen,
CK BYTE PTR pCiphertextPart,
CK _ULONG_PTR pulCiphertextPartLen,
CK FLAGS flags
) ;

C_EncryptMessageNext continues a multiple-part message encryption operation, processing another
message part. hSession is the session’s handle; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message encryption operation; pPlaintextPart points to the
plaintext message part; ulPlaintextPartLen is the length of the plaintext message part; pCiphertextPart
points to the location that receives the encrypted message part; pulCiphertextPartLen points to the
location that holds the length in bytes of the encrypted message part; flags is set to 0 if there is more
plaintext data to follow, or set to CKF_END_OF MESSAGE fif this is the last plaintext part.

Typically, pParameter is an initialization vector (V) or nonce. Depending on the mechanism parameter
passed to C_EncryptMessageNext, pParameter may be either an input or an output parameter. For
example, if the mechanism parameter specifies an IV generator mechanism, the IV generated by the IV
generator will be output to the pParameter buffer.

C_EncryptMessageNext uses the convention described in Section 5.2 on producing output.

The message encryption operation MUST have been started with C_EncryptMessageBegin. This
function may be called any number of times in succession. A call to C_EncryptMessageNext with flags=0
which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 126 of 424

4157
4158
4159
4160

4161
4162
4163

4164
4165

4166
4167
4168
4169

4170
4171
4172
4173
4174

4175

4176
4177
4178

4179
4180
4181

4182
4183
4184

4185
4186

4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202

encryption operation. A call to C_EncryptMessageNext with flags=CKF_END_OF_MESSAGE always
terminates the active message encryption operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
ciphertext.

Although the last C_EncryptMessageNext call ends the encryption of a message, it does not finish the
message-based encryption process. Additional C_EncryptMessage or C_EncryptMessageBegin and
C_EncryptMessageNext calls may be made on the session.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPlaintextPart and pCiphertextPart
point to the same location.

For some multi-part encryption mechanisms, the input plaintext data has certain length constraints,
because the mechanism’s input data MUST consist of an integral number of blocks. If these constraints
are not satisfied when the final message part is supplied (i.e., with flags=CKF_END_OF_MESSAGE),
then C_EncryptMessageNext will fail with return code CKR_DATA_LEN_RANGE.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5.9.5 C_MessageEncryptFinal

CK_DECLARE FUNCTION (CK RV, C MessageEncryptFinal) (
CK_SESSION HANDLE hSession
);

C_MessageEncryptFinal finishes a message-based encryption process. hSession is the session’s
handle.

The message-based encryption process MUST have been initialized with C_MessageEncryptlinit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT BUF_Sz 200
#define AUTH BUF SZ 100
#define CIPHERTEXT BUF_SZ 256

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hKey;
CK BYTE iv[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
CK_BYTE tag[l6];
CK _GCM MESSAGE PARAMS gcmParams = {
iv,
sizeof (iv) * 8,
0,
CKG_NO_GENERATE,
tag,
sizeof (tag) * 8

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 127 of 424

4203 }i

4204 CK_MECHANISM mechanism = {

4205 CKM AES GCM, &gcmParams, sizeof (gcmParams)

4206 }s

4207 CK_BYTE datal2] [PLAINTEXT BUF SZ];

4208 | CK _BYTE auth([2] [AUTH BUF SZ];

4209 CK_BYTE encryptedData[2] [CIPHERTEXT BUF SZ];

4210 CK_ULONG ulEncryptedDatalLen, ulFirstEncryptedDatalen;
4211 CK_ULONG firstPiecelen = PLAINTEXT BUF SZ / 2;

4212
4213 /* error handling is omitted for better readability */
4214
4215
4216 C MessageEncryptInit (hSession, &mechanism, hKey);
4217 /* encrypt message en bloc with given IV */

4218 ulEncryptedDatalen = sizeof (encryptedDatal[0]);
4219 C_EncryptMessage (hSession,

4220 &gcmParams, sizeof (gcmParams),

4221 &auth[0]1[0], sizeof (auth[0]),

4222 &data[0]1[0], sizeof(datal0]),

4223 sencryptedData[0] [0], &ulEncryptedDatalen) ;
4224 /* iv and tag are set now for message */

4225

4226 /* encrypt message in two steps with generated IV */
4227 gcmParams.ivGenerator = CKG_GENERATE;
4228 C EncryptMessageBegin (hSession,

4229 &gcmParams, sizeof (gcmParams),
4230 &auth[1][0], sizeof (auth[1l])
4231) ;

4232 /* encrypt first piece */
4233 ulFirstEncryptedDatalen = sizeof (encryptedDatall]);
4234 C_EncryptMessageNext (hSession,

4235 &gcmParams, sizeof (gcmParams),

4236 &data[l][0], firstPiecelen,

4237 &encryptedData[l] [0], &ulFirstEncryptedDatalen,

4238 0

4239) ;

4240 /* encrypt second piece */

4241 ulEncryptedDatalen = sizeof (encryptedData[l]) - ulFirstEncryptedDatalen;

4242 C_EncryptMessageNext (hSession,

4243 &gcmParams, sizeof (gcmParams),

4244 &data[l] [firstPiecelen], sizeof(data[l])-firstPiecelen,

4245 &encryptedData[l] [ulFirstEncryptedDatalen], &ulEncryptedDatalen,
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 128 of 424

4246
4247
4248
4249
4250
4251

4252
4253

4254

4255
4256
4257
4258
4259

4260
4261

4262
4263

4264
4265
4266
4267
4268

4269
4270
4271

4272
4273
4274
4275
4276
4277
4278
4279

4280

4281

4282
4283
4284
4285
4286
4287
4288

4289
4290

CKF_END OF MESSAGE
)7

/* tag is set now for message */

/* finalize */

C MessageEncryptFinal (hSession) ;

5.10 Decryption functions

Cryptoki provides the following functions for decrypting data:

5.10.1 C_Decryptinit

CK_DECLARE FUNCTION (CK RV, C DecryptInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) i

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle; pMechanism points to
the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, MUST be CK_TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt data in a single part; or
call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data in multiple parts.
The decryption operation is active until the application uses a call to C_Decrypt or C_DecryptFinal to
actually obtain the final piece of plaintext. To process additional data (in single or multiple parts), the
application MUST call C_Decryptlnit again.

C_Decryptlnit can be called with pMechanism set to NULL_PTR to terminate an active decryption
operation. If an active operation cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be
returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED

Example: see C_DecryptFinal.

5.10.2 C_Decrypt

CK _DECLARE FUNCTION (CK RV, C Decrypt) (
CK _SESSION HANDLE hSession,
CK BYTE PTR pEncryptedData,
CK _ULONG ulEncryptedDatalen,
CK_BYTE PTR pData,
CK _ULONG_PTR pulDatalLen
) ;

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle; pEncryptedData
points to the encrypted data; ulEncryptedDatalen is the length of the encrypted data; pData points to the

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 129 of 424

4291
4292

4293

4294
4295
4296
4297

4298
4299

4300
4301

4302
4303

4304
4305

4306
4307
4308
4309
4310
4311

4312

4313

4314
4315
4316
4317
4318
4319
4320

4321
4322
4323
4324

4325

4326
4327
4328

4329
4330

4331
4332
4333
4334
4335
4336

4337

location that receives the recovered data; pulDatalen points to the location that holds the length of the
recovered data.

C_Decrypt uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptlnit. A call to C_Decrypt always
terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

C_Decrypt cannot be used to terminate a multi-part operation, and MUST be called after C_Decryptinit
without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData point to
the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate operations followed
by C_DecryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_|IN.

Example: see C_DecryptFinal for an example of similar functions.

5.10.3 C_DecryptUpdate

CK _DECLARE FUNCTION (CK RV, C DecryptUpdate) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK BYTE PTR pPart,
CK _ULONG_PTR pulPartLen
)

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data
part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part;
ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that receives the
recovered data part; pulPartLen points to the location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptlnit. This function may be called
any number of times in succession. A call to C_DecryptUpdate which results in an error other than
CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart point to
the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_|IN.

Example: See C_DecryptFinal.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 130 of 424

4338

4339
4340
4341
4342
4343

4344
4345
4346

4347

4348
4349
4350
4351

4352
4353

4354
4355
4356
4357
4358
4359

4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383

5.10.4 C_DecryptFinal

CK _DECLARE FUNCTION(CK RV, C DecryptFinal) (
CK_SESSION HANDLE hSession,

CK_BYTE PTR pLastPart,

CK _ULONG_ PTR pulLastPartLen

)

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen points to
the location that holds the length of the last recovered data part.

C_DecryptFinal uses the convention described in Section 5.2 on producing output.

The decryption operation MUST have been initialized with C_Decryptinit. A call to C_DecryptFinal
always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

Example:

#define CIPHERTEXT BUF SZ 256
#define PLAINTEXT BUF SZ 256

CK _ULONG firstEncryptedPiecelen, secondEncryptedPiecelen;
CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM DES CBC PAD, iv, sizeof (iv)
}i
CK BYTE data[PLAINTEXT BUF SZ];
CK BYTE encryptedData [CIPHERTEXT BUF SZz];
CK ULONG ulDatalLen, ulDataZLen, ulData3Len;
CK RV rv;

firstEncryptedPiecelen = 90;
secondEncryptedPiecelLen = CIPHERTEXT BUF SZ-firstEncryptedPiecelLen;
rv = C DecryptInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {
/* Decrypt first piece */
ulDatallen = sizeof (data);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 131 of 424

4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414

4415

4416
4417
4418

4419

4420

4421
4422
4423
4424
4425

rv = C DecryptUpdate (
hSession,
&encryptedData[0], firstEncryptedPiecelen,
&data[0], &ulDatalLen);

if (rv != CKR_OK) {

/* Decrypt second piece */

ulData?2len = sizeof (data)-ulDatallen;

rv = C DecryptUpdate (
hSession,
&encryptedData[firstEncryptedPiecelen],
secondEncryptedPiecelen,
&data[ulDatallLen], &ulData2Len);

if (rv != CKR _OK) {

/* Get last little decrypted bit */
ulData3lLen = sizeof (data)-ulDatallen-ulData2Len;
rv = C DecryptFinal (

hSession,
&data[ulDatallLen+ulData2Len], &ulData3Len):;
if (rv != CKR_OK) {

5.11 Message-based decryption functions

Message-based decryption refers to the process of decrypting multiple encrypted messages using the
same decryption mechanism and decryption key. The decryption mechanism can be either an
authenticated encryption with associated data (AEAD) algorithm or a pure encryption algorithm.

Cryptoki provides the following functions for message-based decryption.

5.11.1 C_MessageDecryptinit

CK_DECLARE FUNCTION (CK RV, C MessageDecryptInit) (
CK_SESSION HANDLE hSession,

CK _MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) 7

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 132 of 424

4426
4427
4428
4429

4430
4431

4432
4433
4434
4435
4436

4437
4438
4439
4440
4441
4442
4443
4444

4445

4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456

4457
4458
4459
4460
4461
4462

4463
4464

4465
4466

4467

4468
4469

4470

4471
4472

4473
4474

4475
4476

C_MessageDecryptlnit initializes a message-based decryption process, preparing a session for one or
more decryption operations that use the same decryption mechanism and decryption key. hSession is
the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the
decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption,
MUST be CK_TRUE.

After calling C_MessageDecryptinit, the application can either call C_DecryptMessage to decrypt an
encrypted message in a single part; or call C_DecryptMessageBegin, followed by
C_DecryptMessageNext one or more times, to decrypt an encrypted message in multiple parts. This
may be repeated several times. The message-based decryption process is active until the application
uses a call to C_MessageDecryptFinal to finish the message-based decryption process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.11.2 C_DecryptMessage

CK _DECLARE FUNCTION (CK RV, C DecryptMessage) (
CK_SESSION HANDLE hSession,
CK VOID PTR pParameter,

CK ULONG ulParameterLen,

CK BYTE PTR pAssociatedData,
CK_ULONG ulAssociatedDatalen,
CK _BYTE PTR pCiphertext,

CK _ULONG ulCiphertextLen,

CK BYTE PTR pPlaintext,

CK _ULONG_PTR pulPlaintextLen

) ;

C_DecryptMessage decrypts an encrypted message in a single part. hSession is the session’s handle;
pParameter and ulParameterLen specify any mechanism-specific parameters for the message decryption
operation; pAssociatedData and ulAssociatedDatal en specify the associated data for an AEAD
mechanism; pCiphertext points to the encrypted message; ulCiphertextLen is the length of the encrypted
message; pPlaintext points to the location that receives the recovered message; pulPlaintextLen points to
the location that holds the length of the recovered message.

Typically, pParameter is an initialization vector (1V) or nonce. Unlike the pParameter parameter of
C_EncryptMessage, pParameter is always an input parameter.

If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and
should be set to (NULL, 0).

C_DecryptMessage uses the convention described in Section 5.2 on producing output.

The message-based decryption process MUST have been initialized with C_MessageDecryptlnit. A call
to C_DecryptMessage begins and terminates a message decryption operation.

C_DecryptMessage cannot be called in the middle of a multi-part message decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertext and pPlaintext point to
the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or
ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 133 of 424

4477
4478

4479
4480
4481
4482
4483
4484
4485
4486

4487

4488
4489
4490
4491
4492
4493
4494

4495
4496
4497
4498

4499
4500

4501
4502

4503
4504
4505
4506
4507

4508
4509
4510
4511
4512

4513

4514
4515
4516
4517
4518
4519
4520
4521
4522
4523

4524
4525
4526

For most mechanisms, C_DecryptMessage is equivalent to C_DecryptMessageBegin followed by a
sequence of C_DecryptMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

5.11.3 C_DecryptMessageBegin

CK _DECLARE FUNCTION (CK RV, C DecryptMessageBegin) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK _BYTE PTR pAssociatedData,
CK_ULONG ulAssociatedDataLen
) i

C_DecryptMessageBegin begins a multiple-part message decryption operation. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message decryption operation; pAssociatedData and ulAssociatedDatalen specify the associated data
for an AEAD mechanism.

Typically, pParameter is an initialization vector (IV) or nonce. Unlike the pParameter parameter of
C_EncryptMessageBegin, pParameter is always an input parameter.

If the decryption mechanism is not AEAD, pAssociatedData and ulAssociatedDatalen are not used and
should be set to (NULL, 0).

After calling C_DecryptMessageBegin, the application should call C_DecryptMessageNext one or
more times to decrypt the encrypted message in multiple parts. The message decryption operation is
active until the application uses a call to C_DecryptMessageNext with flags=CKF_END_OF_ MESSAGE
to actually obtain the final piece of plaintext. To process additional encrypted messages (in single or
multiple parts), the application MUST call C_DecryptMessage or C_DecryptMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

5.11.4 C_DecryptMessageNext

CK DECLARE FUNCTION (CK RV, C DecryptMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK BYTE PTR pCiphertextPart,
CK _ULONG ulCiphertextPartLen,
CK BYTE PTR pPlaintextPart,
CK _ULONG_PTR pulPlaintextPartlen,
CK FLAGS flags
) i

C_DecryptMessageNext continues a multiple-part message decryption operation, processing another
encrypted message part. hSession is the session’s handle; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message decryption operation; pCiphertextPart points to the

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 134 of 424

4527
4528
4529
4530

4531
4532

4533

4534
4535
4536
4537
4538
4539
4540

4541
4542

4543
4544
4545

4546
4547
4548

4549
4550
4551

4552
4553
4554
4555
4556
4557
4558

4559

4560
4561
4562

4563
4564

4565

4566
4567
4568
4569
4570

4571
4572

encrypted message part; ulCiphertextPartLen is the length of the encrypted message part; pPlaintextPart
points to the location that receives the recovered message part; pulPlaintextPartLen points to the location
that holds the length of the recovered message part; flags is set to 0 if there is more ciphertext data to
follow, or setto CKF_END_OF MESSAGE if this is the last ciphertext part.

Typically, pParameter is an initialization vector (1V) or nonce. Unlike the pParameter parameter of
C_EncryptMessageNext, pParameter is always an input parameter.

C_DecryptMessageNext uses the convention described in Section 5.2 on producing output.

The message decryption operation MUST have been started with C_DecryptMessageBegin. This
function may be called any number of times in succession. A call to C_DecryptMessageNext with
flags=0 which results in an error other than CKR_BUFFER_TOO_SMALL terminates the current message
decryption operation. A call to C_DecryptMessageNext with flags=CKF_END_OF_MESSAGE always
terminates the active message decryption operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
plaintext.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pCiphertextPart and pPlaintextPart
point to the same location.

Although the last C_DecryptMessageNext call ends the decryption of a message, it does not finish the
message-based decryption process. Additional C_DecryptMessage or C_DecryptMessageBegin and
C_DecryptMessageNext calls may be made on the session.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then either
CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may be returned by
the last C_DecryptMessageNext call.

If the decryption mechanism is an AEAD algorithm and the authenticity of the associated data or
ciphertext cannot be verified, then CKR_AEAD_DECRYPT_FAILED is returned by the last
C_DecryptMessageNext call.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_AEAD_DECRYPT_FAILED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|N.

5.11.5 C_MessageDecryptFinal

CK_DECLARE FUNCTION (CK RV, C MessageDecryptFinal) (
CK_SESSION HANDLE hSession
)i

C_MessageDecryptFinal finishes a message-based decryption process. hSession is the session’s
handle.

The message-based decryption process MUST have been initialized with C_MessageDecryptlnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.12 Message digesting functions

Cryptoki provides the following functions for digesting data:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 135 of 424

4573

4574
4575
4576
4577

4578
4579

4580
4581
4582
4583
4584

4585
4586
4587

4588
4589
4590
4591
4592
4593
4594

4595

4596

4597
4598
4599
4600
4601
4602
4603

4604
4605
4606

4607

4608
4609
4610
4611

4612
4613

4614
4615

4616

4617
4618
4619
4620
4621

5.12.1 C_Digestinit

CK _DECLARE FUNCTION (CK RV, C DigestInit) (
CK_SESSION HANDLE hSession,
CK _MECHANISM PTR pMechanism

);

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle; pMechanism
points to the digesting mechanism.

After calling C_Digestlnit, the application can either call C_Digest to digest data in a single part; or call
C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in multiple parts. The
message-digesting operation is active until the application uses a call to C_Digest or C_DigestFinal to
actually obtain the message digest. To process additional data (in single or multiple parts), the
application MUST call C_Digestlnit again.

C_Digestlinit can be called with pMechanism set to NULL_PTR to terminate an active message-digesting
operation. If an operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_DigestFinal.

5.12.2 C_Digest

CK_DECLARE FUNCTION (CK RV, C Digest) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK _ULONG ulbatalen,
CK_BYTE PTR pDigest,
CK _ULONG_PTR pulDigestLen
) ;

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
ulDatal en is the length of the data; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_Digest uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_Digestlnit. A call to C_Digest always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message
digest.

C_Digest cannot be used to terminate a multi-part operation, and MUST be called after C_DigestlInit
without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point to the
same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by C_DigestFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 136 of 424

4622

4623

4624
4625
4626
4627
4628

4629
4630

4631
4632
4633

4634
4635
4636
4637
4638

4639

4640

4641
4642
4643
4644

4645
4646

4647
4648

4649
4650

4651
4652
4653
4654
4655

4656

4657

4658
4659
4660
4661
4662

4663
4664
4665

4666

4667
4668

Example: see C_DigestFinal for an example of similar functions.

5.12.3 C_DigestUpdate

CK_DECLARE FUNCTION (CK RV, C DigestUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK _ULONG ulPartLen

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The message-digesting operation MUST have been initialized with C_Digestlnit. Calls to this function
and C_DigestKey may be interspersed any number of times in any order. A call to C_DigestUpdate
which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

5.12.4 C_DigestKey

CK_DECLARE FUNCTION (CK RV, C_DigestKey) (
CK_SESSION HANDLE hSession,
CK_OBJECT HANDLE hKey

) ;

C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a secret
key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.

The message-digesting operation MUST have been initialized with C_Digestlnit. Calls to this function
and C_DigestUpdate may be interspersed any number of times in any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

5.12.5 C_DigestFinal

CK_DECLARE FUNCTION (CK RV, C DigestFinal) (
CK _SESSION HANDLE hSession,
CK_BYTE PTR pDigest,
CK_ULONG_PTR pulDigestLen

) ;

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest.
hSession is the session’s handle; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 5.2 on producing output.

The digest operation MUST have been initialized with C_Digestlnit. A call to C_DigestFinal always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 137 of 424

4669
4670

4671
4672
4673
4674
4675

4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710

call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the message

digest.
Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example:

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_MECHANISM mechanism = {
CKM _MD5, NULL PTR, O

}i

CK BYTE datal] = {...};

CK _BYTE digest[16];

CK _ULONG ulDigestLen;

CK RV rv;

rv = C _DigestInit (hSession, &mechanism);
if (rv != CKR _OK) {

rv = C_DigestUpdate (hSession, data, sizeof (data)):;
if (rv != CKR _OK) {

rv = C_DigestKey (hSession, hKey):;

if (rv != CKR _OK) {
}
ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 138 of 424

4711

4712
4713

4714

4715
4716
4717
4718
4719

4720
4721
4722

4723
4724

4725
4726
4727
4728
4729

4730
4731
4732

4733
4734
4735
4736
4737
4738
4739
4740

4741

4742

4743
4744
4745
4746
4747
4748
4749

4750
4751
4752
4753

4754

4755
4756
4757

5.13 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these operations
also encompass message authentication codes).

5.13.1 C_Signinit

CK_DECLARE FUNCTION (CK RV, C_SignInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

);

C_Signinit initializes a signature operation, where the signature is an appendix to the data. hSession is
the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature
key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with
appendix, MUST be CK_TRUE.

After calling C_Signlnit, the application can either call C_Sign to sign in a single part; or call
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The signature
operation is active until the application uses a call to C_Sign or C_SignFinal to actually obtain the
signature. To process additional data (in single or multiple parts), the application MUST call C_Signinit
again.

C_Signlnit can be called with pMechanism set to NULL_PTR to terminate an active signature operation.
If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED
must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_SignFinal.

5.13.2 C_Sign

CK_DECLARE FUNCTION(CK RV, C_Sign) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK _BYTE PTR pSignature,
CK_ULONG_PTR pulSignatureLen

) ;

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; ulDatalLen is the length of the data; pSignature points to the
location that receives the signature; pulSignatureLen points to the location that holds the length of the
signature.

C_Sign uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_Signlnit. A call to C_Sign always terminates
the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e.,
one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 139 of 424

4758
4759

4760
4761

4762
4763
4764
4765
4766
4767
4768

4769

4770

4771
4772
4773
4774
4775

4776
4777

4778
4779
4780

4781
4782
4783
4784
4785
4786

4787

4788

4789
4790
4791
4792
4793

4794
4795
4796

4797

4798
4799
4800

4801
4802
4803
4804
4805

C_Sign cannot be used to terminate a multi-part operation, and MUST be called after C_SignlInit without
intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations followed by
C_SignFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_SignFinal for an example of similar functions.

5.13.3 C_SignUpdate

CK_DECLARE_FUNCTION(CK_RV, C_SignUpdate) (
CK_SESSION HANDLE hSession,

CK_BYTE PTR pPart,

CK _ULONG ulPartLen

);

C_SignUpdate continues a multiple-part signature operation, processing another data part. hSession is
the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The signature operation MUST have been initialized with C_SignlInit. This function may be called any
number of times in succession. A call to C_SignUpdate which results in an error terminates the current
signature operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_SignFinal.

5.13.4 C_SignFinal

CK_DECLARE FUNCTION (CK RV, C_SignFinal) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pSignature,
CK _ULONG_PTR pulSignatureLen

) i

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; pulSignatureLen points to
the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_Signlnit. A call to C_SignFinal always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a successful
call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 140 of 424

4806
4807

4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830

4831

4832
4833
4834
4835
4836

4837
4838
4839

4840
4841

4842
4843
4844
4845

4846
4847
4848

4849
4850

CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;

CK OBJECT_ HANDLE hKey;

CK _MECHANISM mechanism = {
CKM DES MAC, NULL PTR, O

}i

CK_BYTE datal] = {...};

CK BYTE mac[4];

CK_ULONG ulMacLen;

CK RV rv;

rv = C_SignInit (hSession, &mechanism, hKey):;
if (rv == CKR_OK) {
rv = C_SignUpdate (hSession, data, sizeof(data)):

ulMacLen = sizeof (mac);

rv = C_SignFinal (hSession, mac, &ulMacLen);

5.13.5 C_SignRecoverlnit

CK DECLARE FUNCTION (CK RV, C SignRecoverInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) ;

C_SignRecoverlnit initializes a signature operation, where the data can be recovered from the signature.
hSession is the session’s handle; pMechanism points to the structure that specifies the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports
signatures where the data can be recovered from the signature, MUST be CK_TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a single part. The
signature operation is active until the application uses a call to C_SignRecover to actually obtain the
signature. To process additional data in a single part, the application MUST call C_SignRecoverlnit
again.

C_SignRecoverlnit can be called with pMechanism set to NULL_PTR to terminate an active signature
with data recovery operation. If an active operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 141 of 424

4851
4852
4853
4854
4855
4856

4857

4858

4859
4860
4861
4862
4863
4864
4865

4866
4867
4868
4869

4870

4871
4872
4873
4874

4875
4876
4877
4878
4879
4880
4881

4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897

CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_SignRecover.

5.13.6 C_SignRecover

CK_DECLARE FUNCTION (CK_RV, C_SignRecover) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pData,
CK_ULONG ulbDatalLen,
CK BYTE PTR pSignature,
CK _ULONG_PTR pulSignatureLen
) i

C_SignRecover signs data in a single operation, where the data can be recovered from the signature.
hSession is the session’s handle; pData points to the data; uLDatalLen is the length of the data;
pSignature points to the location that receives the signature; pulSignatureLen points to the location that
holds the length of the signature.

C_SignRecover uses the convention described in Section 5.2 on producing output.

The signing operation MUST have been initialized with C_SignRecoverlnit. A call to C_SignRecover
always terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL oris a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to hold the
signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_MECHANISM mechanism = {
CKM RSA 9796, NULL _PTR, 0

}i

CK BYTE datal] = {...};

CK BYTE signature[128];

CK _ULONG ulSignatureLen;

CK_RV rv;

rv = C_SignRecoverInit (hSession, &mechanism, hKey);
if (rv == CKR OK) {

ulSignaturelLen = sizeof (signature);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 142 of 424

4898
4899
4900
4901
4902
4903
4904
4905

4906
4907
4908

4909
4910

4911

4912
4913
4914
4915
4916
4917
4918

4919
4920

4921
4922

4923
4924
4925
4926

4927
4928
4929
4930
4931
4932
4933

4934

4935
4936
4937
4938
4939
4940

rv = C_SignRecover (
hSession, data, sizeof(data), signature, &ulSignaturelen);
if (rv == CKR_OK) {

5.14 Message-based signing and MACing functions

Message-based signature refers to the process of signing multiple messages using the same signature
mechanism and signature key.

Cryptoki provides the following functions for for signing messages (for the purposes of Cryptoki, these
operations also encompass message authentication codes).

5.14.1 C_MessageSignlinit

CK _DECLARE FUNCTION (CK RV, C MessageSignInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT HANDLE hKey

) i

C_MessageSignlnit initializes a message-based sighature process, preparing a session for one or more
signature operations (where the signature is an appendix to the data) that use the same signature
mechanism and signature key. hSession is the session’s handle; pMechanism points to the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with
appendix, MUST be CK_TRUE.

After calling C_MessageSignlinit, the application can either call C_SignMessage to sign a message in a
single part; or call C_SignMessageBegin, followed by C_SignMessageNext one or more times, to sign
a message in multiple parts. This may be repeated several times. The message-based signature process
is active until the application calls C_MessageSignFinal to finish the message-based signature process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.14.2 C_SignMessage

CK _DECLARE FUNCTION (CK RV, C_SignMessage) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK_BYTE PTR pData,
CK _ULONG ulbDatalLen,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 143 of 424

4941
4942
4943

4944
4945
4946
4947
4948

4949
4950

4951

4952
4953
4954
4955

4956

4957
4958

4959
4960

4961
4962
4963
4964
4965
4966
4967

4968

4969
4970
4971
4972
4973

4974
4975
4976
4977

4978
4979

4980
4981
4982
4983
4984

4985
4986
4987
4988

CK BYTE PTR pSignature,
CK _ULONG PTR pulSignatureLen
) i

C_SignMessage signs a message in a single part, where the signature is an appendix to the message.
C_MessageSignlnit must previously been called on the session. hSession is the session’s handle;
pParameter and ulParameterLen specify any mechanism-specific parameters for the message signature
operation; pData points to the data; ulDatalen is the length of the data; pSignature points to the location
that receives the signature; pulSignatureLen points to the location that holds the length of the signature.

Depending on the mechanism parameter passed to C_MessageSignlnit, pParameter may be either an
input or an output parameter.

C_SignMessage uses the convention described in Section 5.2 on producing output.

The message-based signing process MUST have been initialized with C_MessageSignlnit. A call to
C_SignMessage begins and terminates a message signing operation unless it returns
CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to hold the signature, oris a
successful call (i.e., one which returns CKR_OK).

C_SignMessage cannot be called in the middle of a multi-part message signing operation.

C_SignMessage does not finish the message-based signing process. Additional C_SignMessage or
C_SignMessageBegin and C_SignMessageNext calls may be made on the session.

For most mechanisms, C_SignMessage is equivalent to C_SignMessageBegin followed by a sequence
of C_SignMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.3 C_SignMessageBegin

CK_DECLARE FUNCTION (CK RV, C_SignMessageBegin) (
CK_SESSION HANDLE hSession,
CK VOID PTR pParameter,
CK _ULONG ulParameterLen

) i

C_SignMessageBegin begins a multiple-part message signature operation, where the signature is an
appendix to the message. C_MessageSignlnit must previously been called on the session. hSession is
the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for
the message signature operation.

Depending on the mechanism parameter passed to C_MessageSignlnit, pParameter may be either an
input or an output parameter.

After calling C_SignMessageBegin, the application should call C_SignMessageNext one or more times
to sign the message in multiple parts. The message signature operation is active until the application
uses a call to C_SignMessageNext with a non-NULL pulSignatureLen to actually obtain the signature.
To process additional messages (in single or multiple parts), the application MUST call C_SignMessage
or C_SignMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 144 of 424

4989
4990

4991

4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004

5005
5006

5007
5008

5009

5010
5011
5012
5013
5014
5015

5016
5017
5018

5019
5020
5021
5022
5023
5024
5025

5026

5027
5028
5029

5030
5031

5032
5033
5034

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.4 C_SignMessageNext

CK DECLARE FUNCTION (CK RV, C SignMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen,
CK BYTE PTR pDataPart,
CK _ULONG ulbDataPartLen,
CK BYTE PTR pSignature,
CK_ULONG_PTR pulSignatureLen
) i

C_SignMessageNext continues a multiple-part message signature operation, processing another data
part, or finishes a multiple-part message signature operation, returning the signature. hSession is the
session’s handle, pDataPart points to the data part; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message signature operation; ulDataPartLen is the length of the
data part; pSignature points to the location that receives the signature; pulSignatureLen points to the
location that holds the length of the signature.

The pulSignatureLen argument is set to NULL if there is more data part to follow, or set to a non-NULL
value (to receive the signature length) if this is the last data part.

C_SignMessageNext uses the convention described in Section 5.2 on producing output.

The message signing operation MUST have been started with C_SignMessageBegin. This function may
be called any number of times in succession. A call to C_SignMessageNext with a NULL
pulSignatureLen which results in an error terminates the current message signature operation. A call to
C_SignMessageNext with a non-NULL pulSignatureLen always terminates the active message signing
operation unless it returns CKR_BUFFER_TOO_SMALL to determine the length of the buffer needed to
hold the signature, or is a successful call (i.e., one which returns CKR_OK).

Although the last C_SignMessageNext call ends the signing of a message, it does not finish the
message-based signing process. Additional C_SignMessage or C_SignMessageBegin and
C_SignMessageNext calls may be made on the session.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.14.5 C_MessageSignFinal

CK_DECLARE FUNCTION (CK RV, C MessageSignFinal) (
CK_SESSION HANDLE hSession
) i

C_MessageSignFinal finishes a message-based signing process. hSession is the session’s handle.
The message-based signing process MUST have been initialized with C_MessageSignlnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 145 of 424

5035
5036
5037

5038

5039
5040

5041

5042
5043
5044
5045
5046

5047
5048
5049

5050
5051

5052
5053
5054
5055

5056
5057
5058

5059
5060
5061
5062
5063
5064
5065
5066

5067

5068

5069
5070
5071
5072
5073
5074
5075

5076
5077
5078

5079
5080

5081
5082

CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_FUNCTION_REJECTED,
CKR_TOKEN_RESOURCE_EXCEEDED.

5.15 Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

5.15.1 C_Verifylnit

CK _DECLARE FUNCTION (CK RV, C VerifyInit) (
CK_SESSION HANDLE hSession,

CK _MECHANISM PTR pMechanism,

CK_OBJECT_ HANDLE hKey

) i

C_Verifylnit initializes a verification operation, where the signature is an appendix to the data. hSession
is the session’s handle; pMechanism points to the structure that specifies the verification mechanism;
hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification
where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_Verifylnit, the application can either call C_Verify to verify a signature on data in a single
part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify a signature on data
in multiple parts. The verification operation is active until the application calls C_Verify or C_VerifyFinal.
To process additional data (in single or multiple parts), the application MUST call C_Verifylnit again.

C_Verifylnit can be called with pMechanism set to NULL_PTR to terminate an active verification
operation. If an active operation has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_OPERATION_CANCEL_FAILED.

Example: see C_VerifyFinal.

5.15.2 C_Verify

CK_DECLARE FUNCTION (CK RV, C Verify) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pData,
CK_ULONG ulbDatalen,
CK BYTE PTR pSignature,
CK _ULONG ulSignatureLen
)7

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDatalLen is the length of the data;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_Verifylnit. A call to C_Verify always
terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 146 of 424

5083
5084
5085

5086
5087

5088
5089

5090
5091
5092
5093
5094
5095

5096

5097

5098
5099
5100
5101
5102

5103
5104

5105
5106
5107

5108
5109
5110
5111
5112
5113

5114

5115

5116
5117
5118
5119
5120

5121
5122

5123
5124

5125
5126
5127
5128
5129

5130
5131

signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active signing operation
is terminated.

C_Verify cannot be used to terminate a multi-part operation, and MUST be called after C_Verifylnit
without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations followed by
C_VerifyFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_VerifyFinal for an example of similar functions.

5.15.3 C_VerifyUpdate

CK_DECLARE FUNCTION (CK RV, C VerifyUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK _ULONG ulPartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part. hSession
is the session’s handle, pPart points to the data part; ulPartLen is the length of the data part.

The verification operation MUST have been initialized with C_Verifylnit. This function may be called any
number of times in succession. A call to C_VerifyUpdate which results in an error terminates the current
verification operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_TOKEN_RESOURCE_EXCEEDED.

Example: see C_VerifyFinal.

5.15.4 C_VerifyFinal

CK_DECLARE FUNCTION (CK RV, C VerifyFinal) (
CK_SESSION HANDLE hSession,

CK _BYTE PTR pSignature,

CK _ULONG ulSignaturelLen

) ;

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is the
session’s handle; pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation MUST have been initialized with C_Verifylnit. A call to C_VerifyFinal always
terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the supplied
signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is invalid). If the
signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active verifying
operation is terminated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 147 of 424

5132
5133
5134
5135

5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156

5157

5158
5159
5160
5161
5162

5163
5164
5165

5166
5167

5168
5169
5170

5171
5172
5173

5174
5175
5176
5177

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

Example:

CK_SESSION HANDLE hSession;
CK OBJECT_ HANDLE hKey;
CK_MECHANISM mechanism = {

CKM DES MAC, NULL PTR, 0
b

CK_BYTE datall = {...};

CK BYTE mac[4];

CK RV rv;

rv = C VerifyInit (hSession, &mechanism, hKey);
if (rv == CKR_OK) {

rv = C_VerifyUpdate (hSession, data, sizeof(data)):

rv = C VerifyFinal (hSession, mac, sizeof (mac));

5.15.5 C_VerifyRecoverlnit

CK_DECLARE FUNCTION (CK RV, C VerifyRecoverInit) (
CK_SESSION HANDLE hSession,

CK_MECHANISM PTR pMechanism,

CK_OBJECT HANDLE hKey

) ;

C_VerifyRecoverlnit initializes a signature verification operation, where the data is recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports
verification where the data is recovered from the signature, MUST be CK_TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify a sighature on
data in a single part. The verification operation is active until the application uses a call to
C_VerifyRecover to actually obtain the recovered message.

C_VerifyRecoverlnit can be called with pMechanism set to NULL_PTR to terminate an active verification
with data recovery operation. If an active operations has been initialized and it cannot be cancelled,
CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 148 of 424

5178 CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,

5179 CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
5180 CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
5181 CKR_OPERATION_CANCEL_FAILED.

5182 Example: see C_VerifyRecover.

5183 5.15.6 C_VerifyRecover

5184 | CK DECLARE FUNCTION (CK RV, C VerifyRecover) (
5185 CK_SESSION_ HANDLE hSession,

5186 CK_BYTE PTR pSignature,

5187 CK_ULONG ulSignaturelen,

5188 CK_BYTE PTR pData,

5189 CK_ULONG_PTR pulDatalLen

5190 |);

5191 C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the
5192 signature. hSession is the session’s handle; pSignature points to the signature; ulSignaturelLen is the
5193 length of the signature; pData points to the location that receives the recovered data; and pulDatalLen
5194 points to the location that holds the length of the recovered data.

5195 C_VerifyRecover uses the convention described in Section 5.2 on producing output.

5196 The verification operation MUST have been initialized with C_VerifyRecoverlnit. A call to

5197 C_VerifyRecover always terminates the active verification operation unless it returns

5198 CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to determine the
5199 length of the buffer needed to hold the recovered data.

5200 A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the

5201 supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is
5202 invalid). If the signature can be seen to be invalid purely on the basis of its length, then

5203 CKR_SIGNATURE_LEN_RANGE should be returned. The return codes CKR_SIGNATURE_INVALID
5204 and CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code

5205 CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid signature, it will never
5206 return CKR_BUFFER_TOO_SMALL.

5207 Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

5208 CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,

5209 CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

5210 CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

5211 CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
5212 CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID,
5213 CKR_TOKEN_RESOURCE_EXCEEDED.

5214 Example:

5215 | CK_SESSION HANDLE hSession;
5216 | CK OBJECT HANDLE hKey;
5217 | CK_MECHANISM mechanism = {

5218 CKM RSA 9796, NULL PTR, 0
5219 | };
5220 | CK _BYTE datal]l = {...};

5221 | CK_ULONG ulDatalLen;
5222 CK _BYTE signature[128];
5223 | CK_RV rv;

5224
5225

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 149 of 424

5226
5227
5228
5229
5230
5231
5232
5233
5234

5235
5236
5237

5238
5239

5240

5241
5242
5243
5244
5245

5246
5247
5248
5249

5250
5251

5252
5253
5254
5255
5256

5257
5258
5259
5260
5261
5262
5263

5264

5265
5266
5267
5268
5269

rv = C VerifyRecoverInit (hSession, &mechanism, hKey);
if (rv == CKR_OK) {

ulDatalen = sizeof (data);

rv = C_VerifyRecover (

hSession, signature, sizeof (signature), data, &ulDatalen);

5.16 Message-based functions for verifying signatures and MACs

Message-based verification refers to the process of verifying signatures on multiple messages using the
same verification mechanism and verification key.

Cryptoki provides the following functions for verifying signatures on messages (for the purposes of
Cryptoki, these operations also encompass message authentication codes).

5.16.1 C_MessageVerifylnit

CK_DECLARE FUNCTION (CK RV, C MessageVerifyInit) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hKey

) i

C_MessageVerifylnit initializes a message-based verification process, preparing a session for one or
more verification operations (where the signature is an appendix to the data) that use the same
verification mechanism and verification key. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification
where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_MessageVerifylnit, the application can either call C_VerifyMessage to verify a signature
on a message in a single part; or call C_VerifyMessageBegin, followed by C_VerifyMessageNext one
or more times, to verify a signature on a message in multiple parts. This may be repeated several times.
The message-based verification process is active until the application calls C_MessageVerifyFinal to
finish the message-based verification process.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

5.16.2 C_VerifyMessage

CK_DECLARE FUNCTION (CK RV, C VerifyMessage) (
CK _SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK _ULONG ulParameterLen,
CK_BYTE PTR pData,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 150 of 424

5270
5271
5272
5273

5274
5275
5276
5277
5278

5279

5280
5281

5282
5283
5284
5285

5286
5287

5288
5289

5290
5291
5292
5293
5294
5295

5296

5297
5298
5299
5300
5301

5302
5303
5304
5305

5306

5307
5308
5309
5310
5311

5312
5313
5314
5315
5316

CK _ULONG ulbatalen,

CK BYTE PTR pSignature,

CK_ULONG ulSignatureLen
) ;

C_VerifyMessage verifies a signature on a message in a single part operation, where the signature is an
appendix to the data. C_MessageVerifylnit must previously been called on the session. hSession is the
session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for the
message verification operation; pData points to the data; ulDataLen is the length of the data; pSignature
points to the signature; ulSignatureLen is the length of the signature.

Unlike the pParameter parameter of C_SignMessage, pParameter is always an input parameter.

The message-based verification process MUST have been initialized with C_MessageVerifylnit. A call to
C_VerifyMessage starts and terminates a message verification operation.

A successful call to C_VerifyMessage should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied signature is
invalid). If the signature can be seen to be invalid purely on the basis of its length, then
CKR_SIGNATURE_LEN_RANGE should be returned.

C_VerifyMessage does not finish the message-based verification process. Additional C_VerifyMessage
or C_VerifyMessageBegin and C_VerifyMessageNext calls may be made on the session.

For most mechanisms, C_VerifyMessage is equivalent to C_VerifyMessageBegin followed by a
sequence of C_VerifyMessageNext operations.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

5.16.3 C_VerifyMessageBegin

CK_DECLARE FUNCTION (CK RV, C VerifyMessageBegin) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen

) ;

C_VerifyMessageBegin begins a multiple-part message verification operation, where the signature is an
appendix to the message. C_MessageVerifylnit must previously been called on the session. hSession is
the session’s handle; pParameter and ulParameterLen specify any mechanism-specific parameters for
the message verification operation.

Unlike the pParameter parameter of C_SignMessageBegin, pParameter is always an input parameter.

After calling C_VerifyMessageBegin, the application should call C_VerifyMessageNext one or more
times to verify a signature on a message in multiple parts. The message verification operation is active
until the application calls C_VerifyMessageNext with a non-NULL pSignature. To process additional
messages (in single or multiple parts), the application MUST call C_VerifyMessage or
C_VerifyMessageBegin again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 151 of 424

5317

5318
5319
5320
5321
5322
5323
5324
5325
5326

5327
5328
5329
5330
5331

5332
5333

5334
5335
5336
5337
5338

5339
5340
5341
5342
5343

5344
5345
5346

5347
5348
5349
5350
5351
5352

5353

5354
5355
5356

5357
5358

5359
5360
5361
5362

5.16.4 C_VerifyMessageNext

CK_DECLARE FUNCTION (CK RV, C VerifyMessageNext) (
CK_SESSION HANDLE hSession,
CK _VOID PTR pParameter,
CK ULONG ulParameterLen,
CK_BYTE PTR pDataPart,
CK ULONG ulbDataPartLen,
CK BYTE PTR pSignature,
CK_ULONG ulSignatureLen
)

C_VerifyMessageNext continues a multiple-part message verification operation, processing another data
part, or finishes a multiple-part message verification operation, checking the signature. hSession is the
session’s handle, pParameter and ulParameterLen specify any mechanism-specific parameters for the
message verification operation, pPart points to the data part; ulPartLen is the length of the data part;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The pSignature argument is set to NULL if there is more data part to follow, or set to a non-NULL value
(pointing to the signature to verify) if this is the last data part.

The message verification operation MUST have been started with C_VerifyMessageBegin. This function
may be called any number of times in succession. A call to C_VerifyMessageNext with a NULL
pSignature which results in an error terminates the current message verification operation. A call to
C_VerifyMessageNext with a non-NULL pSignature always terminates the active message verification
operation.

A successful call to C_VerifyMessageNext with a non-NULL pSignature should return either the value
CKR_OK (indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that
the supplied signature is invalid). If the signature can be seen to be invalid purely on the basis of its
length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
message verifying operation is terminated.

Although the last C_VerifyMessageNext call ends the verification of a message, it does not finish the
message-based verification process. Additional C_VerifyMessage or C_VerifyMessageBegin and
C_VerifyMessageNext calls may be made on the session.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_TOKEN_RESOURCE_EXCEEDED.

5.16.5 C_MessageVerifyFinal

CK_DECLARE_ FUNCTION (CK RV,C MessageVerifyFinal) (
CK_SESSION HANDLE hSession
) ;

C_MessageVerifyFinal finishes a message-based verification process. hSession is the session’s handle.
The message-based verification process MUST have been initialized with C_MessageVerifylnit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 152 of 424

5363
5364

5365

5366
5367
5368

5369

5370
5371
5372
5373
5374
5375
5376

5377
5378
5379
5380

5381
5382
5383
5384

5385
5386
5387
5388
5389

5390
5391
5392
5393
5394

5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_TOKEN_RESOURCE_EXCEEDED.
5.17 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations “simultaneously” within
a session. These functions are provided so as to avoid unnecessarily passing data back and forth to and
from a token.

5.17.1 C_DigestEncryptUpdate

CK _DECLARE FUNCTION (CK RV, C DigestEncryptUpdate) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pPart,
CK_ULONG ulPartLen,
CK BYTE PTR pEncryptedPart,
CK ULONG_ PTR pulEncryptedPartLen
) i

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the
data part; pEncryptedPart points to the location that receives the digested and encrypted data part;
pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_DigestEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active digest operation.

Digest and encryption operations MUST both be active (they MUST have been initialized with
C_Digestlnit and C_Encryptlinit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and C_EncryptUpdate calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK BYTE iv[8];

CK_MECHANISM digestMechanism = {
CKM MD5, NULL PTR, 0

}i

CK MECHANISM encryptionMechanism = ({
CKM_DES ECB, iv, sizeof (iv)

}i

CK _BYTE encryptedData[BUF_SZ7];

CK _ULONG ulEncryptedDatalen;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 153 of 424

5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451

CK BYTE digest[16];

CK _ULONG ulDigestLen;
CK_BYTE datal[(2*BUF_SZ)+8];
CK RV rv;

int 1i;

memset (iv, 0, sizeof(iv));

memset (data, ‘A’, ((2*BUF_SZ)+5));

rv = C_EncryptInit (hSession, &encryptionMechanism, hKey);
if (rv != CKR_OK) {

}

rv = C DigestInit (hSession, &digestMechanism);
if (rv != CKR OK) {

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_DigestEncryptUpdate (

hSession,

&datal[0], BUF Sz,

encryptedData, &ulEncryptedDatalen);

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_DigestEncryptUpdate (

hSession,

&data[BUF Sz], BUF SZ,

encryptedData, &ulEncryptedDatalen);

/*

* The last portion of the buffer needs to be
* handled with separate calls to deal with

* padding issues in ECB mode

*/

/* First, complete the digest on the buffer */

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 154 of 424

5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477

5478

5479
5480
5481
5482
5483
5484
5485

5486
5487
5488
5489
5490

5491
5492
5493
5494

5495
5496

rv = C_DigestUpdate (hSession, &datal[BUF Sz*2], 5);

ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);

/* Then, pad last part with 3 0x00 bytes, and complete encryption */
for (1=0;1<3;1i++)
datal[((BUF_Sz*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptUpdate (

hSession,

&data[BUF _Sz*2], 8,

encryptedData, &ulEncryptedDatalen) ;

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptFinal (hSession, encryptedData, &ulEncryptedDatalen);

5.17.2 C_DecryptDigestUpdate

CK_DECLARE FUNCTION (CK RV, C DecryptDigestUpdate) (
CK_SESSION HANDLE hSession,
CK BYTE PTR pEncryptedPart,
CK _ULONG ulEncryptedPartLen,
CK _BYTE PTR pPart,
CK ULONG_PTR pulPartLen
) 7

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation,
processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that
receives the recovered data part; pulPartLen points to the location that holds the length of the recovered
data part.

C_DecryptDigestUpdate uses the convention described in Section 5.2 on producing output. If a
C_DecryptDigestUpdate call does not produce decrypted output (because an error occurs, or because
pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire decrypted part
output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations MUST both be active (they MUST have been initialized with
C_Decryptlnit and C_Digestlnit, respectively). This function may be called any number of times in

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 155 of 424

5497
5498
5499

5500
5501
5502
5503
5504
5505

5506
5507
5508

5509
5510
5511
5512

5513
5514
5515
5516

5517
5518
5519

5520
5521
5522
5523

5524
5525
5526
5527
5528
5529

5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545

succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and C_DigestKey calls
(it would be somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because when
C_DigestEncryptUpdate is called, precisely the same input is passed to both the active digesting
operation and the active encryption operation; however, when C_DecryptDigestUpdate is called, the
input passed to the active digesting operation is the output of the active decryption operation. This issue
comes up only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
ciphertext and digest the original plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-byte ciphertext (3 DES
blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns exactly 16 bytes of plaintext,
since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
decryption and digesting operations are linked only through the C_DecryptDigestUpdate call, these 2
bytes of plaintext are not passed on to be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the
plaintext, not the message digest of the entire plaintext. Itis crucial that, before C_DigestFinal is called,
the last 2 bytes of plaintext get passed into the active digesting operation via a C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active digesting
operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hKey;

CK_BYTE iv[8];

CK _MECHANISM decryptionMechanism = {
CKM DES ECB, iv, sizeof (iv)

}i

CK _MECHANISM digestMechanism = {
CKM MD5, NULL PTR, O

}i

CK _BYTE encryptedDatal (2*BUF_SZ)+8];

CK BYTE digest[16];

CK _ULONG ulDigestLen;

CK_BYTE data[BUF SZ];

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 156 of 424

5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588

CK _ULONG ulDatalen, ullastUpdateSize;
CK RV rv;

memset (iv, 0, sizeof (iv));

memset (encryptedbData, ‘A’, ((2*BUF _SZz)+8));

rv = C DecryptInit (hSession, &decryptionMechanism, hKey);
if (rv != CKR _OK) {

}

rv = C_DigestInit (hSession, &digestMechanism);
if (rv != CKR_OK) {

}

ulDatalen = sizeof (data);

rv = C_DecryptDigestUpdate (
hSession,
&encryptedData[0], BUF_SZ,
data, &ulDatalLen);

ulDatalen = sizeof (data);

rv = C_DecryptDigestUpdate (
hSession,
&encryptedbData [BUF SZ], BUF_SZ,
data, &ulDatalLen);

/*
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB mode

*/

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof (data);
rv = C DecryptUpdate (

hSession,

&encryptedbData [BUF Sz*2], 8,

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 157 of 424

5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611

5612

5613
5614
5615
5616
5617
5618
5619

5620
5621
5622
5623

5624
5625
5626
5627

5628
5629
5630

5631
5632
5633
5634

data, &ulLastUpdateSize);

/* Get last piece of plaintext (should have length 0, here) */
ulDatalen = sizeof (data)-ullLastUpdateSize;

rv = C_DecryptFinal (hSession, &datal[ullLastUpdateSize], &ulDatalen):;
if (rv != CKR _OK) {

/* Digest last bit of plaintext */
rv = C_DigestUpdate (hSession, data, 5);
if (rv != CKR_OK) {

}

ulDigestLen = sizeof (digest);

rv = C_DigestFinal (hSession, digest, &ulDigestLen);
if (rv != CKR_OK) {

5.17.3 C_SignEncryptUpdate

CK_DECLARE FUNCTION (CK RV, C SignEncryptUpdate) (
CK_SESSION HANDLE hSession,
CK _BYTE PTR pPart,
CK _ULONG ulPartlLen,
CK BYTE PTR pEncryptedPart,
CK ULONG_ PTR pulEncryptedPartLen
) i

C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation,

processing another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is
the length of the data part; pEncryptedPart points to the location that receives the digested and encrypted
data part; and pulEncryptedPartLen points to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 5.2 on producing output. If a
C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or because
pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active signing operation.

Signature and encryption operations MUST both be active (they MUST have been initialized with
C_Signlinit and C_Encryptlnit, respectively). This function may be called any number of times in
succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 158 of 424

5635
5636

5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER_NOT_LOGGED_IN.
Example:

#define BUF SZ 512

CK_SESSION HANDLE hSession;

CK_OBJECT HANDLE hEncryptionKey, hMacKey;

CK_BYTE iv[8];

CK_MECHANISM signMechanism = ({
CKM DES MAC, NULL PTR, O

bi

CK_MECHANISM encryptionMechanism = ({
CKM DES ECB, iv, sizeof (iv)

bi

CK BYTE encryptedData[BUF_SZ];

CK _ULONG ulEncryptedDatalLen;

CK BYTE MAC[4];

CK_ULONG ulMacLen;

CK_BYTE datal (2*BUF_SZz)+8];

CK RV rv;

int 1i;

memset (iv, 0, sizeof (iv));

memset (data, ‘A’, ((2*BUF _SZ)+5));

rv = C_EncryptInit (hSession, &encryptionMechanism, hEncryptionKey) ;

if (rv != CKR_OK) {

}

rv = C_SignInit (hSession, &signMechanism, hMacKey);
if (rv != CKR_OK) {

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_SignEncryptUpdate (

hSession,

&datal[0], BUF _SZ,

encryptedData, &ulEncryptedDatalen);

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 159 of 424

5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718

ulEncryptedDatalen = sizeof (encryptedData);
rv = C_SignEncryptUpdate (

hSession,

&data[BUF Sz], BUF Sz,

encryptedData, &ulEncryptedDatalen);

/*
* The last portion of the buffer needs to be handled with
* gseparate calls to deal with padding issues in ECB mode

*/

/* First, complete the signature on the buffer */
rv = C_SignUpdate (hSession, &datal[BUF Sz*2], 5);

ulMaclLen = sizeof (MAC) ;
rv = C_SignFinal (hSession, MAC, &ulMacLen);

/* Then pad last part with 3 0x00 bytes, and complete encryption */
for (1i=0;1<3;1i++)
data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptUpdate (

hSession,

&data [BUF Sz*2], 8,

encryptedData, &ulEncryptedDatalen);

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDatalen = sizeof (encryptedData);
rv = C_EncryptFinal (hSession, encryptedData, &ulEncryptedDatalen);

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 160 of 424

5719 5.17.4 C_DecryptVerifyUpdate

5720 CK_DECLARE_FUNCTION (CK RV, C DecryptVerifyUpdate) (
5721 CK_SESSION HANDLE hSession,

5722 CK_BYTE PTR pEncryptedPart,

5723 CK_ULONG ulEncryptedPartLen,

5724 CK_BYTE PTR pPart,

5725 CK_ULONG_PTR pulPartLen

5726) ;

5727 C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification operation,

5728 processing another data part. hSession is the session’s handle; pEncryptedPart points to the encrypted
5729 data; ulEncryptedPartLen is the length of the encrypted data; pPart points to the location that receives the
5730 recovered data; and pulPartLen points to the location that holds the length of the recovered data.

5731 C_DecryptVerifyUpdate uses the convention described in Section 5.2 on producing output. If a

5732 C_DecryptVerifyUpdate call does not produce decrypted output (because an error occurs, or because
5733 pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire encrypted part
5734 output), then no plaintext is passed to the active verification operation.

5735 Decryption and signature operations MUST both be active (they MUST have been initialized with
5736 C_Decryptlnit and C_Verifylnit, respectively). This function may be called any number of times in
5737 succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.

5738 Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using

5739 C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when

5740 C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing operation
5741 and the active encryption operation; however, when C_DecryptVerifyUpdate is called, the input passed
5742 to the active verifying operation is the output of the active decryption operation. This issue comes up only
5743 when the mechanism used for decryption performs padding.

5744 In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext with
5745 DES in CBC mode with PKCS padding. Consider an application which will simultaneously decrypt this
5746 ciphertext and verify a sighature on the original plaintext thereby obtained.

5747 After initializing decryption and verification operations, the application passes the 24-byte ciphertext (3
5748 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly 16 bytes of

5749 plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
5750 ciphertext held any padding. These 16 bytes of plaintext are passed into the active verification operation.

5751 Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that there’s
5752 no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However, since the active
5753 decryption and verification operations are linked only through the C_DecryptVerifyUpdate call, these 2
5754 bytes of plaintext are not passed on to the verification mechanism.

5755 A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid signature
5756 on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before C_VerifyFinal is
5757 called, the last 2 bytes of plaintext get passed into the active verification operation via a C_VerifyUpdate
5758 call.

5759 Because of this, it is critical that when an application uses a padded decryption mechanism with

5760 C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active

5761 verification operation. Extreme caution is warranted when using a padded decryption mechanism with
5762 C_DecryptVerifyUpdate.

5763 Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,

5764 CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,

5765 CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,

5766 CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
5767 CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
5768 CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

5769 Example:

5770 #define BUF _SZ 512

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 161 of 424

5771
5772
5773
5774
5775
5776
S777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813

CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hDecryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = ({
CKM_DES ECB, iv, sizeof (iv)
}i
CK _MECHANISM verifyMechanism = ({
CKM DES MAC, NULL PTR, O
}i
CK BYTE encryptedDatal[(2*BUF_SZ)+8];
CK BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[BUF SZz];
CK _ULONG ulDatalLen, ulLastUpdateSize;
CK RV rv;

memset (iv, 0, sizeof(iv));

memset (encryptedbData, ‘A’, ((2*BUF _SZ)+8));

rv = C DecryptInit (hSession, &decryptionMechanism, hDecryptionKey) ;
if (rv != CKR _OK) {

}

rv = C VerifyInit (hSession, &verifyMechanism, hMacKey);
if (rv != CKR_OK) {

ulDatalen = sizeof (data);

rv = C DecryptVerifyUpdate (
hSession,
&encryptedbata[0], BUF SZ,
data, &ulDatalLen);

ulDatalen = sizeof (data);

rv = C DecryptVerifyUpdate (
hSession,
&encryptedbData [BUF SZ], BUF_SZ,

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 162 of 424

5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849

5850
5851

5852

5853
5854

data, &ulDatalen);

/*
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB mode

*/

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof (data);
rv = C DecryptUpdate (

hSession,

&encryptedbData [BUF Sz*2], 8,

data, &ulLastUpdateSize);

/* Get last little piece of plaintext. Should have length 0 */
ulDatalen = sizeof (data)-ullastUpdateSize;

rv = C_DecryptFinal (hSession, &datal[ullastUpdateSize], &ulDatalen);

if (rv != CKR_OK) {

/* Send last bit of plaintext to verification operation */
rv = C VerifyUpdate (hSession, data, 5);
if (rv != CKR_OK) {

}
rv = C VerifyFinal (hSession, MAC, ulMacLen);
if (rv == CKR_SIGNATURE_INVALID) {

5.18 Key management functions

Cryptoki provides the following functions for key management:

5.18.1 C_GenerateKey

CK_DECLARE FUNCTION (CK_RV, C_ GenerateKey) (
CK_SESSION HANDLE hSession

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 163 of 424

5855
5856
5857
5858
5859

5860
5861
5862
5863

5864
5865

5866
5867
5868
5869

5870
5871

5872
5873
5874

5875
5876
5877
5878
5879
5880
5881
5882
5883
5884

5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899

CK_MECHANISM PTR pMechanism,

CK_ATTRIBUTE PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_ HANDLE PTR phKey
);

C_GenerateKey generates a secret key or set of domain parameters, creating a new object. hSession is
the session’s handle; pMechanism points to the generation mechanism; pTemplate points to the template
for the new key or set of domain parameters; ulCount is the number of attributes in the template; phKey
points to the location that receives the handle of the new key or set of domain parameters.

If the generation mechanism is for domain parameter generation, the CKA_CLASS attribute will have the
value CKO_DOMAIN_PARAMETERS; otherwise, it will have the value CKO_SECRET_KEY.

Since the type of key or domain parameters to be generated is implicit in the generation mechanism, the
template does not need to supply a key type. If it does supply a key type which is inconsistent with the
generation mechanism, C_GenerateKey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail and return without
creating an object.

The object created by a successful call to C_GenerateKey will have its CKA_LOCAL attribute set to
CK_TRUE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_|IN.

Example:

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hKey;
CK_MECHANISM mechanism = {

CKM DES KEY GEN, NULL PTR, 0
}i
CK RV rv;

rv = C_GenerateKey (hSession, &mechanism, NULL PTR, 0, &hKey);
if (rv == CKR OK) ({

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 164 of 424

5900

5901
5902
5903
5904
5905
5906
5907
5908
5909
5910

5911
5912
5913
5914
5915
5916
5917

5918
5919
5920
5921

5922
5923

5924
5925

5926
5927
5928

5929
5930
5931

5932
5933
5934
5935
5936
5937
5938
5939
5940
5941

5942
5943
5944
5945
5946
5947
5948
5949

5.18.2 C_GenerateKeyPair

CK DECLARE FUNCTION (CK RV, C GenerateKeyPair) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK _ATTRIBUTE PTR pPublicKeyTemplate,
CK _ULONG ulPublicKeyAttributeCount,
CK_ATTRIBUTE PTR pPrivateKeyTemplate,
CK _ULONG ulPrivateKeyAttributeCount,
CK_OBJECT HANDLE PTR phPublicKey,
CK_OBJECT HANDLE PTR phPrivateKey

);

C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points to
the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the public-key
template; pPrivateKeyTemplate points to the template for the private key; ulPrivateKeyAttributeCount is
the number of attributes in the private-key template; phPublicKey points to the location that receives the
handle of the new public key; phPrivateKey points to the location that receives the handle of the new
private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism, the templates
do not need to supply key types. If one of the templates does supply a key type which is inconsistent with
the key generation mechanism, C_GenerateKeyPair fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fail and return
without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail, and create no
keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL
attributes set to CK_TRUE. In addition, the key objects created will both have values for
CKA_UNIQUE_ID generated and assigned (See Section 4.4.1).

Note carefully the order of the arguments to C_GenerateKeyPair. The last two arguments do not have
the same order as they did in the original Cryptoki Version 1.0 document. The order of these two
arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {

CKM RSA PKCS KEY PAIR GEN, NULL PTR, O
bi
CK _ULONG modulusBits = 3072;
CK_BYTE publicExponent[] = { 3 };

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 165 of 424

5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980

5981

5982
5983
5984
5985
5986
5987
5988
5989

5990
5991
5992
5993

CK BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA VERIFY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof (true)},
{CKA MODULUS BITS, é&modulusBits, sizeof (modulusBits)},
{CKA PUBLIC EXPONENT, publicExponent, sizeof (publicExponent) }
}i
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA TOKEN, &true, sizeof (true)},
{CKA PRIVATE, &true, sizeof (true)},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DECRYPT, &true, sizeof (true)},
{CKA SIGN, &true, sizeof (true)},
{CKA UNWRAP, &true, sizeof(true)}
}i
CK RV rv;

rv = C_GenerateKeyPair (
hSession, &mechanism,
publicKeyTemplate, 5,
privateKeyTemplate, 8,
&hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {

5.18.3 C_WrapKey

CK _DECLARE FUNCTION (CK RV, C WrapKey) (
CK _SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hWrappingKey,
CK_OBJECT_ HANDLE hKey,

CK BYTE PTR pWrappedKey,
CK _ULONG_ PTR pulWrappedKeyLen

) i

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle; pMechanism
points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle
of the key to be wrapped; pWrappedKey points to the location that receives the wrapped key; and
pulWrappedKeyLen points to the location that receives the length of the wrapped key.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 166 of 424

5994

5995
5996
5997

5998
5999
6000
6001

6002
6003

6004
6005

6006
6007

6008
6009
6010
6011
6012
6013
6014
6015

6016
6017
6018
6019
6020
6021
6022
6023
6024
6025

6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041

C_WrapKey uses the convention described in Section 5.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be
CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism
solely because of its length, then C_WrapKey fails with error code CKR_KEY_SIZE RANGE.

C_WrapKey can be used in the following situations:
e To wrap any secret key with a public key that supports encryption and decryption.

e To wrap any secret key with any other secret key. Consideration MUST be given to key size and
mechanism strength or the token may not allow the operation.

e To wrap a private key with any secret key.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute
CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be
compared against the attributes of the key to be wrapped. If all attributes match according to the
C_FindObiject rules of attribute matching then the wrap will proceed. The value of this attribute is an
attribute template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If
this attribute is not supplied then any template is acceptable. If an attribute is not present, it will not be
checked. If any attribute mismatch occurs on an attempt to wrap a key then the function SHALL return
CKR_KEY_HANDLE_INVALID.

Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM DES3 ECB, NULL PTR, O
}i
CK BYTE wrappedKey([8];
CK _ULONG ulWrappedKeyLen;
CK_RV rv;

ulWrappedKeyLen = sizeof (wrappedKey) ;
rv = C _WrapKey (

hSession, &mechanism,

hWrappingKey, hKey,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 167 of 424

6042
6043
6044
6045
6046

6047

6048
6049
6050
6051
6052
6053
6054
6055
6056
6057

6058
6059
6060
6061
6062
6063

6064
6065

6066
6067
6068

6069
6070

6071
6072

6073
6074
6075

6076
6077
6078
6079
6080
6081
6082
6083

6084
6085
6086
6087
6088
6089
6090
6091
6092

wrappedKey, &ulWrappedKeylen) ;
if (rv == CKR_OK) {

5.18.4 C_UnwrapKey

CK _DECLARE FUNCTION (CK_ RV, C UnwrapKey) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_ HANDLE hUnwrappingKey,

CK BYTE PTR pWrappedKey,

CK ULONG ulWrappedKeyLen,

CK ATTRIBUTE PTR pTemplate,

CK_ULONG ulAttributeCount,

CK_OBJECT HANDLE PTR phKey
) i

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key object.
hSession is the session’s handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is
the handle of the unwrapping key; pWrappedKey points to the wrapped key; ulWrappedKeyLen is the
length of the wrapped key; pTemplate points to the template for the new key; ulAttributeCount is the
number of attributes in the template; phKey points to the location that receives the handle of the
recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, MUST be CK_TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the
CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by
default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the
same time that the key is unwrapped.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail and return without
creating any key object.

The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute set to
CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be
added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied
attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 168 of 424

6093
6094
6095
6096

6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123

6124

6125
6126
6127
6128
6129
6130
6131
6132

6133
6134
6135
6136

CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSION HANDLE hSession;
CK _OBJECT HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM DES3 ECB, NULL PTR, 0
b
CK BYTE wrappedKey[8] = {...};
CK_OBJECT CLASS keyClass = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK DES;
CK _BBOOL true = CK_ TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, é&keyClass, sizeof (keyClass)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA DECRYPT, &true, sizeof (true)}
}i
CK RV rv;

rv = C _UnwrapKey (

hSession, &mechanism, hUnwrappingKey,

wrappedKey, sizeof (wrappedKey), template, 4, &hKey);
if (rv == CKR OK) {

5.18.5 C_DeriveKey

CK_DECLARE FUNCTION (CK_RV, C_DeriveKey) (
CK_SESSION HANDLE hSession,
CK_MECHANISM PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,

CK _ULONG ulAttributeCount,
CK_OBJECT HANDLE PTR phKey
) ;

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is the
handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is the number
of attributes in the template; and phKey points to the location that receives the handle of the derived key.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 169 of 424

6137
6138
6139
6140

6141
6142

6143
6144
6145

6146
6147
6148
6149
6150
6151
6152
6153

6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164

6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184

The values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes can hold
for the newly-derived key. See the description of each particular key-derivation mechanism in Section
5.21.2 for any constraints of this type.

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail and return without
creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute set to
CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID generated and
assigned (See Section 4.4.1).

To partition the derivation keys so they can only derive a subset of keys the attribute
CKA_DERIVE_TEMPLATE can be used on the derivation keys to specify an attribute set that will be
added to attributes of the key to be derived. If the attributes do not conflict with the user supplied attribute
template, in ‘pTemplate’, then the derivation will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the base derivation keys then no additional attributes will be added. If any
attribute conflict occurs on an attempt to derive a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_|IN.

Example:

CK_SESSION HANDLE hSession;
CK_OBJECT_ HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {
CKM DH PKCS KEY PAIR GEN, NULL PTR, O
}i
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE publicValue[128];
CK _BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
CKM DH PKCS DERIVE, otherPublicValue, sizeof (otherPublicValue)
}i
CK_ATTRIBUTE template[] = {
{CKA VALUE, é&publicValue, sizeof (publicValue)}
}i
CK _OBJECT CLASS keyClass = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK DES;
CK _BBOOL true = CK TRUE;
CK ATTRIBUTE publicKeyTemplate[] = {

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 170 of 424

6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220

6221
6222

6223

6224
6225

{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)}
}i
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA DERIVE, &true, sizeof(true)}
}i
CK ATTRIBUTE derivedKeyTemplate[] = {
{CKA CLASS, &keyClass, sizeof (keyClass)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA ENCRYPT, é&true, sizeof (true)},
{CKA DECRYPT, é&true, sizeof (true)}
}i
CK RV rv;

rv = C_GenerateKeyPair (
hSession, &keyPairMechanism,
publicKeyTemplate, 2,
privateKeyTemplate, 1,
&hPublicKey, &hPrivateKey);
if (rv == CKR _OK) {

rv = C_GetAttributeValue (hSession, hPublicKey, template, 1);

if (rv == CKR_OK) ({
/* Put other guy’s public value in otherPublicValue */

rv = C_DeriveKey(

hSession, &mechanism,

hPrivateKey, derivedKeyTemplate, 4, &hKey);
if (rv == CKR OK) {

5.19 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

5.19.1 C_SeedRandom

CK_DECLARE FUNCTION (CK_RV, C_SeedRandom) (
CK_SESSION HANDLE hSession,

pkcsll-spec-v3.1-csd01
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 171 of 424

6226
6227
6228

6229
6230
6231

6232
6233
6234
6235
6236
6237

6238

6239

6240
6241
6242
6243
6244
6245

6246
6247

6248
6249
6250
6251
6252

6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270

CK_BYTE PTR pSeed,
CK _ULONG ulSeedLen
)

C_SeedRandom mixes additional seed material into the token’s random number generator. hSession is
the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in bytes of the seed
material.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_GenerateRandom.

5.19.2 C_GenerateRandom

CK _DECLARE FUNCTION (CK_RV, C_ GenerateRandom) (
CK_SESSION HANDLE hSession,
CK_BYTE PTR pRandomData,
CK_ULONG ulRandomLen

) ;

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s handle;
pRandomData points to the location that receives the random data; and u/lRandomLen is the length in
bytes of the random or pseudo-random data to be generated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN.

Example:

CK_SESSION HANDLE hSession;
CK BYTE seed[] = {...};

CK BYTE randomDatal[] = {...};
CK RV rv;

rv = C_SeedRandom(hSession, seed, sizeof (seed));
if (rv != CKR OK) {

rv = C_GenerateRandom(hSession, randomData, sizeof (randomData));
if (rv == CKR_OK) {

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 172 of 424

6271

6272
6273

6274

6275
6276
6277

6278
6279
6280

6281
6282
6283

6284

6285
6286
6287

6288
6289
6290

6291
6292
6293

6294

6295
6296

6297

6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308

6309
6310
6311
6312

6313

5.20 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of cryptographic functions.
These functions exist only for backwards compatibility.

5.20.1 C_GetFunctionStatus

CK_DECLARE FUNCTION (CK RV, C GetFunctionStatus) (
CK_SESSION HANDLE hSession
);

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function running in
parallel with an application. Now, however, C_GetFunctionStatus is a legacy function which should
simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

5.20.2 C_CancelFunction

CK _DECLARE FUNCTION (CK RV, C CancelFunction) (
CK_SESSION HANDLE hSession
);

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in parallel with an
application. Now, however, C_CancelFunction is a legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED.

5.21 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the application of certain
events.

5.21.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories: encryption functions;
decryption functions; message digesting functions; signing and MACing functions; functions for verifying
signatures and MACSs; dual-purpose cryptographic functions; key management functions; random number
generation functions) executing in Cryptoki sessions can periodically surrender control to the application
who called them if the session they are executing in had a notification callback function associated with it
when it was opened. They do this by calling the session’s callback with the arguments (hSession,
CKN_SURRENDER, pApplication), where hSession is the session’s handle and pApplication was
supplied to C_OpenSession when the session was opened. Surrender callbacks should return either the
value CKR_OK (to indicate that Cryptoki should continue executing the function) or the value
CKR_CANCEL (to indicate that Cryptoki should abort execution of the function). Of course, before
returning one of these values, the callback function can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback during a lengthy key
pair generation operation. Each time the application receives a callback, it could display an additional “.”
to the user. It might also examine the keyboard’s activity since the last surrender callback, and abort the

key pair generation operation (probably by returning the value CKR_CANCEL) if the user hit <ESCAPE>.
A Cryptoki library is not required to make any surrender callbacks.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 173 of 424

6314

6315
6316
6317
6318

5.21.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension capability,
application-supplied notification callback routines should examine each callback they receive, and if they
are unfamiliar with the type of that callback, they should immediately give control back to the library by
returning with the value CKR_OK.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 174 of 424

6319

6320
6321

6322

6323
6324

6325
6326
6327
6328

6 Mechanisms

6.1 RSA

Table 32, Mechanisms vs. Functions

Mechanism

Functions

Encrypt

Decrypt

Sign

Verify

SR

VR

Digest

Gen.

Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_X9_31_KEY_PAIR_GEN

CKM_RSA_PKCS

CKM_RSA_PKCS_OAEP

CKM_RSA_PKCS_PSS

CKM_RSA 9796

CKM_RSA_X_509

CKM_RSA X9 _31

CKM_SHA1_RSA_PKCS

CKM_SHA224_RSA_PKCS

CKM_SHA256_RSA_PKCS

CKM_SHA384_RSA_PKCS

CKM_SHA512_RSA_PKCS

CKM_SHA1_RSA_PKCS_PSS

CKM_SHA224_RSA_PKCS_PSS

CKM_SHA256_RSA_PKCS_PSS

CKM_SHA384_RSA_PKCS_PSS

CKM_SHA512_RSA_PKCS_PSS

CKM_SHA1_RSA X9 _31

N R R R ARRERA

CKM_RSA_PKCS_TPM_1_1

V2

CKM_RSA_PKCS_OAEP_TPM_1_1

v'2

CKM_SHA3_224 RSA_PKCS

CKM_SHA3_256_RSA_PKCS

CKM_SHA3_384_RSA_PKCS

CKM_SHA3_512_RSA_PKCS

CKM_SHA3_224 RSA_PKCS_PSS

CKM_SHA3_256_RSA_PKCS_PSS

CKM_SHA3_384_RSA_PKCS_PSS

ANIRNIRNERNERN RN RN RN

CKM_SHA3_512_RSA_PKCS_PSS

6.1.1 Definitions

This section defines the RSA key type “CKK_RSA" for type CK_KEY_TYPE as used in the

CKA_KEY_TYPE attribute of RSA key objects.

Mechanisms:

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_PKCS
CKM_RSA_9796

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 175 of 424

6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359

6360

6361

6362
6363
6364

6365

6366

CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA224 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMD128_RSA_PKCS
CKM_RIPEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP

CKM_RSA_X9 31 _KEY_PAIR_GEN

CKM_RSA X9 31
CKM_SHA1_RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHA1_RSA_PKCS_PSS
CKM_SHA224 RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384 RSA_PKCS_PSS
CKM_RSA_PKCS_TPM_1_1

CKM_RSA_PKCS_OAEP_TPM_1 1

CKM_RSA_AES_KEY_WRAP
CKM_SHA3_224 RSA_PKCS
CKM_SHA3_256_RSA_PKCS
CKM_SHA3_384 RSA_PKCS
CKM_SHA3_512_RSA_PKCS

CKM_SHA3_224 RSA_PKCS_PSS
CKM_SHA3_256_RSA_PKCS_PSS
CKM_SHA3_384 RSA_PKCS_PSS
CKM_SHA3_512_RSA_PKCS_PSS

6.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
The following table defines the RSA public key object attributes, in addition to the common attributes

defined for this object class:

Table 33, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS"#4 Big integer Modulus n
CKA_MODULUS BITS?23 CK_ULONG Length in bits of modulus n
CKA_PUBLIC_EXPONENT Big integer Public exponent e

-Refer to Table 11 for footnotes

pkcsll-spec-v3.1-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 176 of 424

6367
6368

6369

6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385

6386

6387
6388
6389

6390

6391

6392
6393

6394
6395
6396
6397
6398

6399
6400
6401
6402
6403
6404

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK RSA;
CK UTF8CHAR labell[] “An RSA public key object”;
CK _BYTE modulus([] = {...};
CK BYTE exponent[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA WRAP, &true, sizeof (true)},
{CKA ENCRYPT, &true, sizeof (true)},
{CKA MODULUS, modulus, sizeof (modulus) },
{CKA PUBLIC EXPONENT, exponent, sizeof (exponent) }
}i

—~

6.1.3 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 34, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS"46 Big integer Modulus n

CKA PUBLIC_EXPONENT"46 Big integer Public exponent e
CKA_PRIVATE_EXPONENT"467 Big integer Private exponent d
CKA_PRIME_1487 Big integer Prime p

CKA_PRIME_2467 Big integer Prime q
CKA_EXPONENT_1467 Big integer Private exponent d modulo p-1
CKA_EXPONENT_2467 Big integer Private exponent d modulo g-1
CKA_COEFFICIENT#487 Big integer CRT coefficient g' mod p

“Refer to Table 11 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST
also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 34 it keeps track of. Later, if an application
asks for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose
values it can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request
fails). Note that a Cryptoki implementation may or may not be able and/or willing to supply various
attributes of RSA private keys which are not actually stored on the token. E.g., if a particular token stores

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 177 of 424

6405
6406
6407
6408
6409
6410
6411

6412
6413
6414
6415

6416
6417
6418

6419

6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453

values only for the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then
Cryptoki is certainly able to report values for all the attributes above (since they can all be computed
efficiently from these three values). However, a Cryptoki implementation may or may not actually do this
extra computation. The only attributes from Table 34 for which a Cryptoki implementation is required to
be able to return values are CKA_MODULUS, CKA_PUBLIC_EXPONENT and
CKA_PRIVATE_EXPONENT. A token SHOULD also be able to return CKA_PUBLIC_KEY_INFO for an
RSA private key.

If an RSA private key object is created on a token, and more attributes from Table 34 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK RSA;

CK UTF8CHAR label[] = “An RSA private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK _BYTE modulus([] = {...};

CK BYTE publicExponent[] = {...};

CK BYTE privateExponent[] = {...};

CK BYTE primel[] = {...};

CK BYTE prime2[] = {...
CK BYTE exponentl[] = {...};
CK BYTE exponent2[] = {...};
CK BYTE coefficient[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA SUBJECT, subject, sizeof (subject)},

{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, ¢&true, sizeof (true)},

{CKA DECRYPT, &true, sizeof (true)},

{CKA SIGN, &true, sizeof(true)},

{CKA MODULUS, modulus, sizeof (modulus)},

{CKA PUBLIC EXPONENT, publicExponent,

sizeof (publicExponent) },
{CKA PRIVATE EXPONENT, privateExponent,
sizeof (privateExponent) },

{CKA PRIME 1, primel, sizeof(primel)},

{CKA_PRIME 2, prime2, sizeof (prime2)},

{CKA EXPONENT 1, exponentl, sizeof (exponentl)},

{CKA EXPONENT 2, exponent2, sizeof (exponent2)},

{CKA COEFFICIENT, coefficient, sizeof (coefficient)}

}s

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 178 of 424

6454

6455

6456
6457

6458

6459
6460
6461
6462
6463
6464

6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477

6478
6479

6480

6481
6482

6483

6484
6485
6486

6487
6488
6489
6490
6491
6492
6493
6494
6495
6496

6497
6498
6499

6500
6501

}s

6.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it
may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which
functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and g values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.
6.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 179 of 424

6502
6503
6504
6505

6506

6507
6508
6509
6510
6511
6512
6513

6514
6515
6516

6517

6518
6519

6520
6521

6522

6523

6524
6525
6526

6527
6528
6529
6530

single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA; it does not compute a message digest or a Digestinfo encoding as specified for
the md2withRSAEncryption and md5withRSAEnNcryption algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 35, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length
C_Encrypt' RSA public key < k-11 k block type 02
C_Decrypt! RSA private key k < k-11 block type 02
C_Sign’ RSA private key < k-11 k block type 01
C_SignRecover RSA private key < k-11 k block type 01
C_Verify! RSA public key <k-11, k2 N/A block type 01
C_VerifyRecover RSA public key k < k-1 block type 01
C_WrapKey RSA public key < k-11 k block type 02
C_UnwrapKey RSA private key k < k-11 block type 02

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.7 PKCS #1 RSA OAEP mechanism parameters

¢ CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Mask Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS MGF TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined functions.
Table 36, PKCS #1 Mask Generation Functions

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 180 of 424

6531

6532
6533

6534
6535

6536
6537

6538
6539
6540

6541

6542
6543

6544

6545
6546
6547
6548
6549
6550
6551
6552
6553

6554
6555

6556
6557

6558

Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL
CKG_MGF1_SHA224 0x00000005UL
CKG_MGF1_SHA256 0x00000002UL
CKG_MGF1_SHA384 0x00000003UL
CKG_MGF1_SHA512 0x00000004UL
CKG_MGF1_SHA3 224 0x00000006UL
CKG_MGF1_SHA3 256 0x00000007UL
CKG_MGF1_SHA3 384 0x00000008UL
CKG_MGF1_SHA3 512 0x00000009UL

CK_RSA_PKCS_MGF _TYPE_PTR is a pointer to a CK_RSA_PKCS_MGF_TYPE.

¢ CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS OAEP SOURCE TYPE;

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 37, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL | Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatal en must be zero.

CK_RSA_PKCS_OAEP_SOURCE _TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

¢ CK_RSA_PKCS_OAEP_PARAMS; CK_RSA_PKCS_OAEP_PARAMS_PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS OAEP PARAMS ({

CK MECHANISM TYPE hashAlg;

CK _RSA PKCS MGF TYPE mgf;

CK _RSA PKCS OAEP SOURCE TYPE source;

CK VOID PTR pSourceData;
CK_ULONG ulSourceDatalen;

} CK_RSA PKCS OAEP PARAMS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

mgf mask generation function to use on the encoded block

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 181 of 424

6559
6560
6561

6562
6563

6564

6565
6566
6567

6568

6569
6570
6571
6572
6573
6574
6575

6576
6577
6578
6579

6580

6581

6582
6583

6584

6585

6586
6587
6588
6589
6590
6591
6592

6593
6594

source source of the encoding parameter

pSourceData data used as the input for the encoding parameter source

ulSourceDatalLen length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

6.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.

Table 38, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt' RSA public key < k-2-2hLen k
C_Decrypt! RSA private key k < k-2-2hLen
C_WrapKey RSA public key < k-2-2hLen k
C_UnwrapKey RSA private key k < k-2-2hLen

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.9 PKCS #1 RSA PSS mechanism parameters

¢ CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:
typedef struct CK RSA PKCS PSS PARAMS {
CK MECHANISM TYPE hashAlg;
CK_RSA PKCS MGF TYPE mgf;
CK_ULONG sLen;
} CK _RSA PKCS PSS PARAMS;

The fields of the structure have the following meanings:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 182 of 424

6595
6596
6597
6598
6599
6600

6601

6602
6603

6604

6605

6606
6607
6608
6609
6610

6611
6612
6613
6614

6615
6616

6617

6618
6619

6620
6621

6622

6623
6624
6625

6626
6627

6628
6629
6630
6631

6632
6633
6634
6635

6636

hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value must
be the mechanism used by the application to generate the message
hash; if the signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the signature
mechanism

mgf mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

6.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the
part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA.

Table 39, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input length Output
length

C_Sign’ RSA private key hLen k

C_Verify! RSA public key hlLen, k N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.11 ISOI/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left with O to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 183 of 424

6637
6638

6639

6640
6641

6642
6643

6644

6645
6646
6647
6648

6649
6650
6651
6652

6653

6654
6655
6656
6657
6658
6659

6660
6661
6662
6663
6664
6665
6666
6667
6668

6669
6670

6671
6672
6673
6674
6675

6676
6677

6678

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 40, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length
C_Sign' RSA private key <|ki2] k
C_SignRecover RSA private key <l k2] k
C_Verify! RSA public key <|ki2], k2 N/A
C_VerifyRecover RSA public key k <|k2]

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these
operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first,
applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first.
The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply them when
unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with O-valued bytes. In effect, to encrypt the
sequence of plaintext bytes b1 b2 ... bn (n < k), Cryptoki forms P=2"1b1+2"2b2+...+bn. This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 41, X.509 (Raw) RSA: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 184 of 424

6679
6680

6681
6682

6683
6684

6685

6686
6687
6688

6689
6690

6691
6692

6693
6694
6695
6696

6697
6698
6699
6700

6701

6702
6703
6704

6705

6706
6707

6708
6709

Function Key type Input Output length
length

C_Encrypt' RSA public key <k k

C_Decrypt! RSA private key k k

C_Sign’ RSA private key <k k

C_SignRecover RSA private key <k k

C_Verify! RSA public key <k, k? N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC
9796 block formats.

6.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,
the following transformations are performed:

o Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least
128 and a multiple of 32 as specified in ANSI X9.31.

Table 42, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign’ RSA private key <k-2 k

C_Verify! RSA public key < k-2, k? N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 185 of 424

6710
6711

6712
6713
6714
6715
6716

6717
6718
6719
6720
6721

6722
6723
6724
6725
6726

6727
6728
6729

6730

6731
6732
6733
6734
6735

6736

6737

6738
6739

6740

6741
6742
6743

6744

6745
6746
6747

6748
6749

6750
6751

6.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEncryption, and as in the scheme RSASSA-PKCS1-v1 5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEnNcryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
shalWithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object
identifiers sha256WithRSAEnNcryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128_ RSA_PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same
operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other
underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

Table 43, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, k2 N/A block type 01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

6.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signhature with SHA-224 mechanism, denoted CKM_SHA224_ RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash
function.

6.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS_PSS,
performs similarly as the other CKM_SHAX_RSA_ PKCS_PSS mechanisms but uses the SHA-224 hash
function.

6.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS_PSS,

performs single- and multiple-part digital signatures and verification operations without message

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 186 of 424

6752
6753

6754
6755
6756
6757

6758
6759
6760
6761

6762
6763

6764

6765

6766
6767

6768

6769
6770
6771
6772

6773

6774
6775
6776
6777
6778

6779

6780
6781
6782

6783

6784
6785
6786

6787

6788

recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS_PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the SHA-256, SHA-
384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k* is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

Table 44, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k2 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.18 PKCS #1 v1.5 RSA signature with SHA3

The PKCS #1 v1.5 RSA signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS, CKM_SHA3_256_RSA_PKCS, CKM_SHA3_384_RSA_PKCS,
and CKM_SHA3_512 RSA_PKCS respectively, performs similarly as the other
CKM_SHAX_RSA_PKCS mechanisms but uses the corresponding SHAS3 hash functions.

6.1.19 PKCS #1 RSA PSS signature with SHA3

The PKCS #1 RSA PSS signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS_PSS, CKM_SHA3_256_RSA_PKCS_PSS,
CKM_SHA3_384_RSA_PKCS_PSS, and CKM_SHA3_512 RSA_PKCS_PSS respectively, performs
similarly as the other CKM_SHAX_RSA_PKCS_PSS mechanisms but uses the corresponding SHA-3
hash functions.

6.1.20 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 45, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k? N/A

2 Data length, signature length.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 187 of 424

6789
6790

6791

6792
6793
6794
6795
6796

6797
6798
6799
6800
6801

6802
6803
6804
6805
6806
6807
6808

6809
6810
6811

6812

6813
6814

6815
6816

6817

6818
6819
6820
6821
6822
6823

6824
6825
6826
6827
6828
6829
6830

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

6.1.21 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS TPM_1 1,isa
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 46, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt! RSA public key <k-11-5 k
C_Decrypt! RSA private key k <k-11-5
C_WrapKey RSA public key < k-11-5 k
C_UnwrapKey RSA private key k < k-11-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.22 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA
TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be
accepted.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 188 of 424

6831
6832
6833
6834
6835
6836
6837

6838
6839
6840

6841

6842

6843
6844

6845

6846
6847
6848

6849

6850
6851
6852
6853
6854
6855
6856
6857

6858
6859

6860
6861

6862
6863

6864
6865
6866
6867
6868
6869
6870
6871

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 47, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt! RSA public key < k-2-40-5 k
C_Decrypt! RSA private key k < k-2-40-5
C_WrapKey RSA public key < k-2-40-5 k
C_UnwrapKey RSA private key k < k-2-40-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

6.1.23 RSA AES KEY WRAP

The RSA AES key wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP, is a mechanism based on
the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA
key.
- Atemporary AES key is used for wrapping the target key using
CKM_AES_KEY_WRAP_KWP mechanism.
- The temporary AES key is wrapped with the wrapping RSA key using
CKM_RSA _PKCS_OAEP mechanism.

For wrapping, the mechanism -

e Generates a temporary random AES key of ul/AESKeyBits length. This key is not accessible to the
user - no handle is returned.

e Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

e Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
e Zeroizes the temporary AES key

e Concatenates two wrapped keys and outputs the concatenated blob. The first is the wrapped AES
key, and the second is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeylnfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 189 of 424

6872

6873
6874

6875
6876

6877
6878

6879

6880
6881

6882

6883
6884

6885

6886
6887
6888
6889

6890

6891

6892
6893

6894
6895
6896

6897

6898

6899
6900

6901
6902

For unwrapping, the mechanism -

e Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

e Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP.

e Zeroizes the temporary AES key.

e Returns the handle to the newly unwrapped target key.
Table 48, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & |Digest | Key/ & Derive
Decrypt | Verify | /g1 Key | Unwrap
Pair
CKM_RSA AES_KEY_WRAP v
1SR = SignRecover, VR = VerifyRecover

6.1.24 RSA AES KEY WRAP mechanism parameters
¢ CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK RSA AES KEY WRAP PARAMS ({
CK_ULONG ulAESKeyBits;
CK_RSA PKCS OAEP PARAMS PTR pOAEPParams;
} CK_RSA AES KEY WRAP PARAMS;

The fields of the structure have the following meanings:

ulAESKeyBits length of the temporary AES key in bits. Can be only 128, 192 or
256.

pOAEPParams pointer to the parameters of the temporary AES key wrapping. See
also the description of PKCS #1 RSA OAEP mechanism
parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

6.1.25 FIPS 186-4

When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,
2048, or 3072 bits.

6.2 DSA

Table 49, DSA Mechanisms vs. Functions

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 190 of 424

6903

6904
6905

6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922

Functions

CKM_DSA_SHA3 512

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verif | VR Key | Unwrap

y Pair
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA PARAMETER_GEN v
CKM_DSA_PROBABILISTIC_P v
ARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR _ v
PARAMETER_GEN
CKM_DSA FIPS_G_GEN v
CKM_DSA %
CKM_DSA_SHA1 v
CKM_DSA SHA224 v
CKM_DSA_SHA256 v
CKM_DSA SHA384 v
CKM_DSA SHA512 v
CKM_DSA_SHA3_224 v
CKM_DSA_SHA3_256 v
CKM_DSA_SHA3_384 v

v

6.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of DSA key objects.

Mechanisms:
CKM_DSA_KEY_PAIR_GEN
CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512
CKM_DSA_SHA3_ 224
CKM_DSA SHA3_256
CKM_DSA SHA3 384
CKM_DSA SHA3 512
CKM_DSA_PARAMETER_GEN

CKM_DSA_PROBABILISTIC_PARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN

CKM_DSA _FIPS_G_GEN

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 191 of 424

6923

6924
6925

6926
6927

6928
6929
6930
6931
6932
6933

6934
6935

6936
6937
6938

6939
6940
6941
6942

6943

6944
6945
6946

6947

6948
6949
6950

6951

6952

6953
6954

6955

6956
6957
6958
6959
6960
6961

¢ CK_DSA_PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure which provides and returns parameters for the
NIST FIPS 186-4 parameter generating algorithms.

CK_DSA_PARAMETER_GEN_PARAM_PTR is a pointer to a CK_DSA_PARAMETER_GEN_PARAM.

typedef struct CK DSA PARAMETER GEN PARAM {
CK_MECHANISM TYPE hash;

CK _BYTE PTR pSeed;
CK_ULONG ulSeedLen;
CK_ULONG ulIndex;

} CK _DSA PARAMETER GEN PARAM;

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA 1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA PROBABILISTIC_PARAMETER_GEN,
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, and passed
into CKM_DSA_FIPS_G_GEN.

ulSeedLen Length of seed value.

ullndex Index value for generating G. Input for CKM_DSA FIPS_G_GEN.
Ignored by CKM_DSA_PROBABILISTIC_PARAMETER_GEN and
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN.

6.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 50, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"3 Big integer Prime p (512 to 3072 bits, in steps of 64 bits)
CKA_SUBPRIME"3 Big integer Subprime q (160, 224 bits, or 256 bits)
CKA_BASE"? Big integer Base g

CKA_VALUE"#4 Big integer Public value y

-Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT CLASS class = CKO_PUBLIC KEY;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = “A DSA public key object”;
CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 192 of 424

6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974

6975

6976
6977
6978
6979
6980

6981
6982
6983

6984

6985
6986
6987

6988

6989

6990
6991

6992
6993
6994

6995

6996
6997
6998
6999
7000

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

i

6.2.3 DSA Key Restrictions

FIPS PUB 186-4 specifies permitted combinations of prime and sub-prime lengths. They are:
e Prime: 1024 bits, Subprime: 160
o Prime: 2048 bits, Subprime: 224
e Prime: 2048 bits, Subprime: 256
e Prime: 3072 bits, Subprime: 256

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementation that is compliant to FIPS 186-4 does not permit the use of primes of
any length less than 1024 bits.

6.2.4 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 51, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"46 Big integer Subprime g (160 bits, 224 bits, or 256 bits)
CKA _BASE'46 Big integer Base g

CKA_VALUE"487 Big integer Private value x

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA
domain parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:
CK_OBJECT CLASS class = CKO_ PRIVATE KEY;
CK_KEY TYPE keyType = CKK DSA;
CK UTF8CHAR label[] = ™A DSA private key object”;
CK BYTE subject[] = {...};
CK BYTE id[] = {123};

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 193 of 424

7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019

7020

7021
7022
7023

7024

7025

7026
7027

7028
7029

7030
7031
7032
7033
7034

7035
7036
7037
7038
7039
7040

CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};

CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA SIGN, &true, sizeof(true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

}i

6.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 52, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME"4 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"# Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA_BASE'* Big integer Base g

CKA_PRIME_BITS?3 CK_ULONG Length of the prime value.

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA domain parameters.

To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to
C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows:

o |f CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits
¢ If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
¢ If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = “A DSA domain parameter object”;
CK BYTE prime[] = {...};
CK BYTE subprime([] = {...};
CK BYTE base[] = {...};
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 194 of 424

7041
7042
7043
7044
7045
7046
7047
7048
7049
7050

7051

7052
7053

7054

7055
7056
7057

7058
7059
7060
7061
7062

7063
7064

7065

7066
7067
7068

7069

7070
7071

7072
7073
7074

7075
7076

7077

7078
7079
7080
7081

7082
7083

7084
7085
7086

CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
i

6.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation
mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private
key types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA
domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABILISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 195 of 424

7087
7088
7089
7090

7091
7092

7093

7094
7095
7096
7097

7098
7099

7100
7101
7102

7103
7104
7105
7106

7107
7108

7109

7110
7111
7112

7113
7114

7115
7116

7117
7118
7119

7120
7121

7122

7123
7124
7125
7126

7127
7128

7129
7130
7131

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism
based on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.2
Construction and Validation of Provable Primes p and g.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-4,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 53, DSA: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 196 of 424

7132
7133

7134
7135

7136

7137
7138
7139

7140
7141

7142
7143
7144

7145

7146
7147

7148

7149
7150

7151
7152
7153
7154
7155

7156

7157
7158
7159

Function Key type Input length | Output length
C_Sign’ DSA private key 20, 28, 32, 2*length of
48, or 64 subprime
bytes
C_Verify! DSA public key (20, 28, 32, N/A
48, or 64
bytes),
(2*length of
subprime)?

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 54, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and g, represented by L
and N, SHALL be used:

L =1024,N =160
L =2048, N = 224
L =2048, N = 256
L =3072, N = 256

6.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 197 of 424

7160
7161

7162
7163
7164

7165

7166
7167

7168

7169
7170
7171

7172
7173

7174
7175
7176

7177

7178

7179
7180
7181

7182
7183

7184
7185
7186

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 55, DSA with SHA-244: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

6.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 56, DSA with SHA-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

6.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 57, DSA with SHA-384: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 198 of 424

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7187 2 Data length, signature length.

7188 6.2.17 DSA with SHA-512

7189 The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
7190 part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
7191 This mechanism computes the entire DSA specification, including the hashing with SHA-512.

7192 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7193 the concatenation of the DSA values r and s, each represented most-significant byte first.

7194 This mechanism does not have a parameter.
7195 Constraints on key types and the length of data are summarized in the following table:
7196 Table 58, DSA with SHA-512: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7197 2 Data length, signature length.

7198 6.2.18 DSA with SHA3-224

7199 The DSA with SHA3-224 mechanism, denoted CKM_DSA_SHA3_224, is a mechanism for single- and
7200 multiple-part signatures and verification based on the Digital Sighature Algorithm defined in FIPS PUB
7201 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-224.

7202 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7203 the concatenation of the DSA values r and s, each represented most-significant byte first.

7204 This mechanism does not have a parameter.
7205 Constraints on key types and the length of data are summarized in the following table:
7206 Table 59, DSA with SHA3-224: Key And Data Length

Function Key type Input length Output length
C_Sign DSA private key any 2*subprime length
C_Verify DSA public key any, N/A
2*subprime
length?

7207 2 Data length, signature length.

7208 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
7209 specify the supported range of DSA prime sizes, in bits.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 199 of 424

7210 6.2.19 DSA with SHA3-256

7211 The DSA with SHA3-256 mechanism, denoted CKM_DSA_SHA3_256, is a mechanism for single- and
7212 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7213 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-256.

7214 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7215 the concatenation of the DSA values r and s, each represented most-significant byte first.

7216 This mechanism does not have a parameter.
7217 Constraints on key types and the length of data are summarized in the following table:
7218 Table 60, DSA with SHA3-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7219 2 Data length, signature length.

7220 6.2.20 DSA with SHA3-384

7221 The DSA with SHA3-384 mechanism, denoted CKM_DSA_SHA3_384, is a mechanism for single- and
7222 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7223 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-384.

7224 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7225 the concatenation of the DSA values r and s, each represented most-significant byte first.

7226 This mechanism does not have a parameter.
7227 Constraints on key types and the length of data are summarized in the following table:
7228 Table 61, DSA with SHA3-384: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

7229 2 Data length, signature length.

7230 6.2.21 DSA with SHA3-512

7231 The DSA with SHA3-512 mechanism, denoted CKM_DSA_SHA3_512, is a mechanism for single- and
7232 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
7233 186-4. This mechanism computes the entire DSA specification, including the hashing with SH3A-512.

7234 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
7235 the concatenation of the DSA values r and s, each represented most-significant byte first.

7236 This mechanism does not have a parameter.
7237 Constraints on key types and the length of data are summarized in the following table:
7238 Table 62, DSA with SHA3-512: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 200 of 424

7239
7240

7241

7242
7243

7244
7245
7246
7247
7248

7249
7250

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

6.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem in this document was originally based on the one described in the

ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

The EC cryptosystem developed by the ANSI X9F1 working group was created at a time when EC curves
were always represented in their Weierstrass form. Since that time, new curves represented in Edwards

form (RFC 8032) and Montgomery form (RFC 7748) have become more common. To support these new
curves, the EC cryptosystem in this document has been extended from the original.
generation mechanisms have been added as well as an additional signature generation mechanism.

Table 63, Elliptic Curve Mechanisms vs. Functions

Additional key

Mechanism

Functions

Encrypt Sign SR
& & &
Decrypt | Verify | VR’

Digest

Gen.
Key/
Key
Pair

Wrap

Unwrap

& Derive

CKM_EC_KEY_PAIR_GEN

CKM_EC_KEY_PAIR_GEN_W_
EXTRA_BITS

CKM_EC_EDWARDS_KEY_PAl
R_GEN

_PAIR_GEN

CKM_EC_MONTGOMERY_KEY

CKM_ECDSA

A
N

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224

CKM_ECDSA_SHA256

CKM_ECDSA_SHA384

CKM_ECDSA_SHA512

CKM_ECDSA_SHA3_224

CKM_ECDSA_SHA3_256

CKM_ECDSA_SHA3_384

CKM_ECDSA_SHA3_512

CKM_EDDSA

CKM_XEDDSA

ANERNIRNERNIENIRNERNERN I NERNERN

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DE
RIVE

v

CKM_ECMQV_DERIVE

v

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 201 of 424

7251
7252
7253

7254
7255
7256

7257

7258
7259
7260
7261

7262
7263

7264
7265
7266
7267
7268
7269
7270

7271
7272
7273
7274

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR’ Key Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP v
Table 64, Mechanism Information Flags
CKF_EC F P 0x00100000UL | True if the mechanism can be used
with EC domain parameters over F,
CKF_EC_F_2M 0x00200000UL | True if the mechanism can be used
with EC domain parameters over Fam
CKF_EC_ECPARAMETERS 0x00400000UL | True if the mechanism can be used

with EC domain parameters of the
choice ecParameters
CKF_EC_OID 0x00800000UL | True if the mechanism can be used
with EC domain parameters of the
choice old
CKF_EC_UNCOMPRESS 0x01000000UL | True if the mechanism can be used
with Elliptic Curve point
uncompressed
CKF_EC_COMPRESS 0x02000000UL | True if the mechanism can be used
with Elliptic Curve point compressed
CKF_EC_CURVENAME 0x04000000UL | True of the mechanism can be used
with EC domain parameters of the
choice curveName

Note: CKF_EC_NAMEDCURVE is deprecated with PKCS#11 3.00. It is replaced by CKF_EC_OID.
In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using afield of characteristic two (i.e. the finite field Fom).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a
Cryptoki library supporting EC keys over Fom. A Cryptoki library that can perform EC mechanisms must
set either or both of these flags for each EC mechanism.

In these specifications there are also four representation methods to define the domain parameters for an
EC key. Only the ecParameters, the old and the curveName choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_OID flag identifies a Cryptoki library
supporting the old choice, and the CKF_EC_CURVENAME flag identifies a Cryptoki library supporting
the curveName choice. A Cryptoki library that can perform EC mechanisms must set the appropriate
flag(s) for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 202 of 424

7275
7276

7277
7278
7279

7280
7281
7282
7283
7284
7285

7286

7287
7288
7289
7290
7291
7292
7293
7294

7295
7296

7297
7298
7299
7300
7301
7302
7303

7304
7305
7306
7307

7308

7309
7310

7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321

supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

6.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,
the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

An EdDSA signature is an octet string of even length which is two times nLen octets, where nLen is
calculated as EdDSA parameter b divided by 8. The signature octets correspond to the concatenation of
the EDDSA values R and S as defined in [RFC 8032], both represented as an octet string of equal length
of nLen bytes in little endian order.

6.3.2 Definitions

This section defines the key types “CKK_EC”, “CKK_EC_EDWARDS” and “CKK_EC_MONTGOMERY”
for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.

Note: CKK_ECDSA is deprecated. It is replaced by CKK_EC.
Mechanisms:

CKM_EC_KEY_PAIR_GEN
CKM_EC_EDWARDS_KEY_PAIR_GEN
CKM_EC_MONTGOMERY_KEY_PAIR_GEN
CKM_ECDSA

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224
CKM_ECDSA_SHA256
CKM_ECDSA_SHA384

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 203 of 424

7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356

7357

7358
7359
7360

7361

CKM_ECDSA_SHA512
CKM_ECDSA_SHA3_224
CKM_ECDSA_SHA3_256
CKM_ECDSA_SHA3_384
CKM_ECDSA_SHA3_512
CKM_EDDSA

CKM_XEDDSA
CKM_ECDH1_DERIVE
CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHA512_KDF
CKD_SHA3_224 KDF
CKD_SHA3_256_KDF
CKD_SHA3_384_KDF
CKD_SHA3_512_KDF
CKD_SHA1_KDF_SP800
CKD_SHA224 KDF_SP800
CKD_SHA256_KDF_SP800
CKD_SHA384_KDF_SP800
CKD_SHA512_KDF_SP800
CKD_SHA3_224_KDF_SP800
CKD_SHA3_256_KDF_SP800
CKD_SHA3_384_KDF_SP800
CKD_SHA3_512_KDF_SP800
CKD_BLAKE2B_160_KDF
CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF

6.3.3 Short Weierstrass Elliptic Curve public key objects

Short Weierstrass EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC) hold EC
public keys. The following table defines the EC public key object attributes, in addition to the common
attributes defined for this object class:

Table 65, Elliptic Curve Public Key Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 204 of 424

7362
7363

7364
7365
7366
7367
7368
7369
7370
7371

7372

7373
7374
7375
7376
7377
7378

7379

7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393

7394

7395
7396
7397

7398

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of an ANSI X9.62 Parameters
value

CKA_EC_POINT"# Byte array | DER-encoding of ANSI X9.62 ECPoint value
Q

“Refer to Table 11 for footnotes
Note: CKA_ECDSA_PARAMS is deprecated. It is replaced by CKA_EC_PARAMS.

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.

The following is a sample template for creating an short Weierstrass EC public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC;

CK_UTF8CHAR label[]

“An EC public key object”;

CK BYTE ecParams[] = {...};
CK BYTE ecPoint[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

}s

{CKA CLASS, &class, sizeof (class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}

6.3.4 Short Weierstrass Elliptic Curve private key objects

Short Weierstrass EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC) hold
EC private keys. See Section 6.3 for more information about EC. The following table defines the EC
private key object attributes, in addition to the common attributes defined for this object class:

Table 66, Elliptic Curve Private Key Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 205 of 424

7399

7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414

7415
7416

7417

7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437

7438

7439
7440
7441

Attribute Data type Meaning

CKA_EC_PARAMS"46 Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_VALUE"#467 Big integer | ANSI X9.62 private value d

“Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of Elliptic Curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.Note that when generating an EC private key, the EC domain parameters are not specified in
the key’s template. This is because EC private keys are only generated as part of an EC key pair, and
the EC domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an short Weierstrass EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC;

CK UTF8CHAR label[] = “An EC private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA _EC PARAMS, ecParams, sizeof (ecParams)},
{CKA VALUE, value, sizeof (value)}

i

6.3.5 Edwards Elliptic Curve public key objects

Edwards EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_EDWARDS) hold
Edwards EC public keys. The following table defines the Edwards EC public key object attributes, in
addition to the common attributes defined for this object class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 206 of 424

7442

7443

7444
7445
7446
7447
7448
7449
7450
7451
7452
7453

7454
7455

7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472

7473

7474
7475
7476
1477

7478

Table 67, Edwards Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"4 Byte array | Public key bytes in little endian order as
defined in RFC 8032

~Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Edwards EC public keys only support the use of the curveName selection to specify a curve name as
defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

The following is a sample template for creating an Edwards EC public key object with Edwards25519
being specified as curveName:

CK OBJECT CLASS class = CKO PUBLIC KEY;

CK_KEY TYPE keyType = CKK EC EDWARDS;

CK UTF8CHAR label[] = “An Edwards EC public key object”;

CK BYTE ecParams[] = {0x13, OxOc, Ox65, 0Ox64, 0x77, Ox6l,
0x72, 0x64, 0x73, 0x32, 0x35, 0x35, 0x31, 0x39};

CK BYTE ecPoint[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}

}i

6.3.6 Edwards Elliptic Curve private key objects

Edwards EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_EDWARDS)
hold Edwards EC private keys. See Section 6.3 for more information about EC. The following table
defines the Edwards EC private key object attributes, in addition to the common attributes defined for this
object class:

Table 68, Edwards Elliptic Curve Private Key Object Attributes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 207 of 424

7479

7480
7481
7482
7483
7484
7485
7486
7487
7488
7489

7490
7491

7492
7493
7494
7495

7496

7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515

7516

7517
7518
7519
7520

Attribute Data type Meaning

CKA_EC_PARAMS"46 Byte array DER-encoding of a Parameters value as
defined above
CKA_VALUE'487 Big integer Private key bytes in little endian order as

defined in RFC 8032

“Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Edwards EC private keys only support the use of the curveName selection to specify a curve name as
defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdJDSA algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

Note that when generating an Edwards EC private key, the EC domain parameters are not specified in
the key’s template. This is because Edwards EC private keys are only generated as part of an Edwards
EC key pair, and the EC domain parameters for the pair are specified in the template for the Edwards EC
public key.

The following is a sample template for creating an Edwards EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC EDWARDS;

CK UTF8CHAR label[] = “An Edwards EC private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}

}i

6.3.7 Montgomery Elliptic Curve public key objects

Montgomery EC public key objects (object class CKO_PUBLIC_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC public keys. The following table defines the
Montgomery EC public key object attributes, in addition to the common attributes defined for this object
class:

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 208 of 424

7521

7522

7523
7524
7525
7526
7527
7528
7529
7530
7531
7532

7533
7534

7535

7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549

7550

7551
7552
7553
7554

7555

7556

Table 69, Montgomery Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'3 Byte array | DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"4 Byte array | Public key bytes in little endian order as
defined in RFC 7748

~Refer to Table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Montgomery EC public keys only support the use of the curveName selection to specify a curve name as
defined in [RFC7748] and the use of the olID selection to specify a curve through an ECDH algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

The following is a sample template for creating a Montgomery EC public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC MONTGOMERY;
CK UTF8CHAR label[] = “A Montgomery EC public key object”;
CK BYTE ecParams[] = {...};
CK BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}
i

6.3.8 Montgomery Elliptic Curve private key objects

Montgomery EC private key objects (object class CKO_PRIVATE_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC private keys. See Section 6.3 for more information
about EC. The following table defines the Montgomery EC private key object attributes, in addition to the
common attributes defined for this object class:

Table 70, Montgomery Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS"#46 Byte array DER-encoding of a Parameters value as
defined above

CKA_VALUE"487 Big integer Private key bytes in little endian order as
defined in RFC 7748

“Refer to Table 11 for footnotes

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 209 of 424

7557
7558
7559
7560
7561
7562
7563
7564
7565
7566

7567
7568

7569
7570
7571
7572

7573

7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592

7593

7594
7595

7596
7597
7598

7599

7600
7601
7602

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4" choice is added to support Edwards
and Montgomery Elliptic Curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Montgomery EC private keys only support the use of the curveName selection to specify a curve name
as defined in [RFC7748] and the use of the olD selection to specify a curve through an ECDH algorithm
as defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

Note that when generating a Montgomery EC private key, the EC domain parameters are not specified in
the key's template. This is because Montgomery EC private keys are only generated as part of a
Montgomery EC key pair, and the EC domain parameters for the pair are specified in the template for the
Montgomery EC public key.

The following is a sample template for creating a Montgomery EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC MONTGOMERY;
CK UTF8CHAR label[] = “A Montgomery EC private key object”;
CK BYTE subject[] = {...};
CK BYTE id[] = {123};
CK BYTE ecParams|[] = {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DERIVE, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
}i

6.3.9 Elliptic Curve key pair generation

The short Weierstrass ECkey pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN, is a key
pair generation mechanism that uses the method defined by the ANSI X9.62 and X9.63 standards.

The short Weierstrass EC key pair generation mechanism, denoted
CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS, is a key pair generation mechanism that uses the method
defined by FIPS 186-4 Appendix B.4.1.

These mechanisms do not have a parameter.

These mechanisms generate EC public/private key pairs with particular EC domain parameters, as
specified in the CKA_EC_PARAMS attribute of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these EC domain parameters.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 210 of 424

7603
7604
7605
7606
7607

7608
7609
7610
7611
7612
7613

7614

7615
7616

7617

7618
7619
7620
7621
7622

7623
7624
7625
7626
7627

7628
7629
7630
7631
7632

7633

7634
7635
7636

7637

7638
7639
7640
7641
7642

7643
7644
7645
7646
7647

7648
7649
7650
7651
7652

These mechanism contribute the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2200 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

6.3.10 Edwards Elliptic Curve key pair generation

The Edwards EC key pair generation mechanism, denoted CKM_EC_EDWARDS_KEY_PAIR_GEN, is a
key pair generation mechanism for EC keys over curves represented in Edwards form.

This mechanism does not have a parameter.

The mechanism can only generate EC public/private key pairs over the curves edwards25519 and
edwards448 as defined in RFC 8032 or the curves id-Ed25519 and id-Ed448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or the olD methods. Attempts to generate keys over these curves using any other
EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the Edwards EC public and private key
types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.11 Montgomery Elliptic Curve key pair generation

The Montgomery EC key pair generation mechanism, denoted
CKM_EC_MONTGOMERY_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over
curves represented in Montgomery form.

This mechanism does not have a parameter.

The mechanism can only generate Montgomery EC public/private key pairs over the curves curve25519
and curve448 as defined in RFC 7748 or the curves id-X25519 and id-X448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or old methods. Attempts to generate keys over these curves using any other EC
key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 7748 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 211 of 424

7653

7654

7655
7656
7657
7658

7659
7660
7661

7662
7663
7664

7665
7666
7667
7668
7669
7670

7671

7672

7673
7674
7675
7676
7677
7678

7679
7680
7681

7682

7683
7684
7685
7686
7687
7688

6.3.12 ECDSA without hashing

Refer section 6.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 71, ECDSA without hashing: Key and Data Length

Function Key type Input length Output length
C_Sign' CKK_EC private key any?® 2nLen
C_Verify! CKK_EC public key any?, <2nlLen 2 N/A

1 Single-part operations only.
2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in
binary notation, the number 22% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

6.3.13 ECDSA with hashing

Refer to section 6.3.1 for signature encoding.

The ECDSA with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512 mechanism, denoted
CKM_ECDSA_[SHA1|SHA224|SHA256|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_51
2] respectively, is a mechanism for single- and multiple-part signatures and verification for ECDSA. This
mechanism computes the entire ECDSA specification, including the hashing with SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512 respectively.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 72, ECDSA with hashing: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_EC private key any 2nLen
C_Verify CKK_EC public key any, <2nlLen? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 212 of 424

7689

7690
7691
7692

7693
7694
7695
7696

7697

7698
7699

7700
7701

7702

7703
7704
7705

7706
7707
7708
7709
7710

7711

7712
7713
7714
7715
7716
7717

7718
7719

6.3.14 EdDSA

The EdADSA mechanism, denoted CKM_EDDSA, is a mechanism for single-part and multipart signatures
and verification for EODSA. This mechanism implements the five EADSA signature schemes defined in
RFC 8032 and RFC 8410.

For curves according to RFC 8032, this mechanism has an optional parameter, a CK_EDDSA_PARAMS
structure. The absence or presence of the parameter as well as its content is used to identify which
signature scheme is to be used. The following table enumerates the five signature schemes defined in
RFC 8032 and all supported permutations of the mechanism parameter and its content.

Table 73, Mapping to RFC 8032 Signature Schemes

Signature Scheme | Mechanism Param phFlag Context Data
Ed25519 Not Required N/A N/A
Ed25519ctx Required False Optional
Ed25519ph Required True Optional
Ed448 Required False Optional
Ed448ph Required True Optional

For curves according to RFC 8410, the mechanism is implicitly given by the curve, which is EADSA in
pure mode.

Constraints on key types and the length of data are summarized in the following table:
Table 74, EADSA: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_EC_EDWARDS private key any 2blen
C_Verify CKK_EC_EDWARDS public key any, <2blen ? N/A

2 Data length, signature length.

Note that for EADSA in pure mode, Ed25519 and Ed448 the data must be processed twice. Therefore, a
token might need to cache all the data, especially when used with C_SignUpdate/C_VerifyUpdate. If
tokens are unable to do so they can return CKR_TOKEN_RESOURCE_EXCEEDED.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032and RFC 8410 only define curves of
these two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.15 XEdDSA

The XEdDSA mechanism, denoted CKM_XEDDSA, is a mechanism for single-part signatures and
verification for XEADSA. This mechanism implements the XEADSA signature scheme defined in
[XEDDSA]. CKM_XEDDSA operates on CKK_EC_MONTGOMERY type EC keys, which allows these
keys to be used both for signing/verification and for Diffie-Hellman style key-exchanges. This double use
is necessary for the Extended Triple Diffie-Hellman where the long-term identity key is used to sign short-
term keys and also contributes to the DH key-exchange.

This mechanism has a parameter, a CK_XEDDSA_PARAMS structure.
Table 75, XEADSA: Key and Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 213 of 424

7720

7721
7722
7723
7724
7725

7726
7727

7728
7729

7730
7731
7732
7733
7734
7735
7736
7737

7738
7739
7740
7741
7742

7743
7744

7745
7746
7747
7748
7749
7750
7751
7752
7753

7754
7755

7756
7757

[Function Key type Input length | Output length
C_Sign’ CKK_EC_MONTGOMERY private key any?® 2b

C_Verify' CKK_EC_MONTGOMERY public key any3, <2b ? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as [XEDDSA] only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

6.3.16 EC mechanism parameters
¢+ CK_EDDSA PARAMS, CK_EDDSA PARAMS_PTR

CK_EDDSA_PARAMS is a structure that provides the parameters for the CKM_EDDSA signature
mechanism. The structure is defined as follows:

typedef struct CK EDDSA PARAMS ({
CK BBOOL phFlag;
CK_ULONG ulContextDatalen;
CK BYTE PTR pContextData;

} CK_EDDSA PARAMS;

The fields of the structure have the following meanings:
phFlaga Boolean value which indicates if Prehashed variant of EdDSA should used
ulContextDataLenthe length in bytes of the context data where 0 <= ulContextDataLen <= 255.
pContextDatacontext data shared between the signer and verifier
CK_EDDSA_PARAMS_PTR is a pointer to a CK_EDDSA_PARAMS.

¢ CK XEDDSA_ PARAMS, CK_XEDDSA_ PARAMS_PTR

CK_XEDDSA_PARAMS is a structure that provides the parameters for the CKM_XEDDSA signature
mechanism. The structure is defined as follows:

typedef struct CK XEDDSA PARAMS ({
CK _XEDDSA HASH TYPE hash;
} CK_XEDDSA PARAMS;

The fields of the structure have the following meanings:
hash a Hash mechanism to be used by the mechanism.

CK_XEDDSA_PARAMS_PTR is a pointer to a CK_XEDDSA_PARAMS.

¢ CK _XEDDSA HASH_TYPE, CK_XEDDSA_HASH_TYPE_PTR

CK_XEDDSA_HASH_TYPE is used to indicate the hash function used in XEDDSA. It is defined as
follows:

typedef CK ULONG CK XEDDSA HASH TYPE;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 214 of 424

7758
7759

7760
7761
7762
7763

7764
7765
7766

7767
7768
7769
7770

The following table lists the defined functions.

Table 76, EC: Key Derivation Functions

Source Identifier

CKM_BLAKE2B_256

CKM_BLAKE2B_512

CKM_SHA3_256

CKM_SHA3 512

CKM_SHA256

CKM_SHA512

CK_XEDDSA_HASH_TYPE_PTR is a pointer to a CK_XEDDSA HASH_TYPE.

¢ CK_EC _KDF_TYPE, CK_EC_KDF TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is

defined as follows:

typedef CK ULONG CK _EC_KDF TYPE;

The following table lists the defined functions.

Table 77, EC: Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1_KDF

CKD_SHA224_KDF

CKD_SHA256_KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

CKD_SHA3_224 KDF

CKD_SHA3_256_KDF

CKD_SHA3_384_KDF

CKD_SHA3 512_KDF

CKD_SHA1_KDF_SP800

CKD_SHA224_KDF_SP800

CKD_SHA256_KDF_SP800

CKD_SHA384_KDF_SP800

CKD_SHA512_KDF_SP800

CKD_SHA3_224_KDF_SP800

CKD_SHA3_256_KDF_SP800

CKD_SHA3_384_KDF_SP800

CKD_SHA3_512_KDF_SP800

CKD_BLAKE2B_160_KDF

pkcsll-spec-v3.1-csd01

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 215 of 424

7771
7772

7773
7774
7775
7776

77T
7778
7779
7780
7781

7782
7783
7784

7785
7786

7787
7788
7789

7790
7791
7792
7793
7794
7795
7796
7797
7798

7799
7800
7801
7802

CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function.

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF, which are
based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [ANSI X9.63].

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800,
which are based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1.

The key derivation functions CKD_BLAKE2B_[160]|256|384|512]_KDF, which are based on the Blake2b
family of hashes, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1. CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

¢ CK_ECDH1 DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where
each party contributes one key pair. The structure is defined as follows:
typedef struct CK ECDH1 DERIVE PARAMS ({
CK _EC KDF TYPE kdf;

CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK_ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;

} CK ECDH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s EC public key

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 216 of 424

7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813

7814
7815
7816
7817
7818
7819

7820
7821

7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835

7836
7837
7838

7839
7840
7841

7842
7843

7844

pPublicData’ pointer to other party’s EC public key value. For short Weierstrass
EC keys: a token MUST be able to accept this value encoded as a
raw octet string (as per section A.5.2 of [ANSI X9.62]). A token
MAY, in addition, support accepting this value as a DER-encoded
ECPoint (as per section E.6 of [ANSI X9.62]) i.e. the same as a
CKA_EC_POINT encoding. The calling application is responsible
for converting the offered public key to the compressed or
uncompressed forms of these encodings if the token does not
support the offered form.
For Montgomery keys: the public key is provided as bytes in little
endian order as defined in RFC 7748.

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an
optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalLen must be zero.

CK_ECDH1 DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.
¢ CK_ECDH2_DERIVE_PARAMS, CK_ECDH2 DERIVE_PARAMS_PTR

CK_ECDH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK ECDH2Z DERIVE PARAMS ({
CK_EC_KDF_TYPE kdf;
CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK _ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
CK _ULONG ulPrivateDatalen;
CK _OBJECT HANDLE hPrivateData;
CK _ULONG ulPublicDatalLenZ2;
CK BYTE PTR pPublicDataZ2;
} CK_ECDH2 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first EC public key

pPublicData pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

ulPrivateDatalLen the length in bytes of the second EC private key

1 The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding

(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 217 of 424

7845
7846

7847
7848

7849
7850
7851
7852

7853
7854
7855

7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870

7871
7872
7873

7874
7875
7876

7877
7878

7879
7880
7881

7882
7883

7884

7885
7886
7887
7888

hPrivateData key handle for second EC private key value
ulPublicDatalLen2 the length in bytes of the other party’s second EC public key

pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDatal.en must be zero.

CK_ECDH2_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH2_DERIVE_PARAMS.

¢ CK_ECMQV_DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK_ECMQV DERIVE PARAMS ({
CK_EC KDF TYPE kdf;

CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;

CK_ ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;

CK_ ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK _ULONG ulPublicDatalen2;
CK_BYTE PTR pPublicData?2;

CK_OBJECT HANDLE publicKey;
} CK _ECMQV DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalLen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first EC public key

pPublicData pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

ulPrivateDatalLen the length in bytes of the second EC private key
hPrivateData key handle for second EC private key value
ulPublicDatalL.en2 the length in bytes of the other party’s second EC public key

pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatal en must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 218 of 424

7889
7890

7891

7892

7893
7894
7895
7896

7897

7898
7899
7900
7901
7902

7903

7904
7905
7906

7907
7908
7909
7910

7911
7912
7913
7914

7915
7916
7917
7918
7919
7920

7921
7922

7923

7924
7925
7926
7927
7928

7929

7930
7931
7932
7933
7934

optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalL.en must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

6.3.17 Elliptic Curve Diffie-Hellman key derivation

The Elliptic Curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is
a mechanism for key derivation based on the Diffie-Hellman version of the Elliptic Curve key agreement
scheme, as defined in ANSI X9.63 for short Weierstrass EC keys and RFC 7748 for Montgomery keys,
where each party contributes one key pair all using the same EC domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 22%°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%°
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 78: ECDH: Allowed Key Types

Function Key type
C_Derive CKK_EC or CKK_EC_MONTGOMERY

6.3.18 Elliptic Curve Diffie-Hellman with cofactor key derivation

The Elliptic Curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the Elliptic Curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 219 of 424

7935

7936
7937
7938

7939
7940
7941
7942

7943
7944
7945
7946

7947
7948
7949
7950
7951
7952

7953
7954

7955

7956
7957
7958
7959

7960

7961
7962
7963
7964
7965

7966

7967
7968
7969

7970
7971
7972
7973

7974
7975
7976
7977

7978
7979
7980
7981

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 220°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%°
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 79: ECDH with cofactor: Allowed Key Types

Function Key type
C_Derive CKK_EC

6.3.19 Elliptic Curve Menezes-Qu-Vanstone key derivation

The Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the Elliptic Curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 229
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 220 of 424

7982
7983

7984
7985

7986

7987
7988
7989

7990

7991
7992
7993
7994
7995
7996
7997
7998
7999

8000
8001

8002
8003
8004

8005
8006

8007
8008
8009
8010
8011
8012
8013
8014
8015

8016
8017
8018

8019
8020
8021

8022
8023
8024

the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 80: ECDH MQV: Allowed Key Types

Function Key type

C_Derive CKK_EC

6.3.20 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on Elliptic Curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap an asymmetric target key of any length and type using an EC

key.

- Atemporary AES key is derived from a temporary EC key and the wrapping EC key
using the CKM_ECDH1_DERIVE mechanism.

- The derived AES key is used for wrapping the target key using the
CKM_AES_KEY_WRAP_KWP mechanism.

For wrapping, the mechanism -

Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDatalLen
and pSharedData using the private key of the transport EC key and the public key of wrapping EC
key and gets the first uAESKeyBits bits of the derived key to be the temporary AES key.

Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP.
Zeroizes the temporary AES key and EC transport private key.

Concatenates public key material of the transport key and output the concatenated blob. The first
part is the public key material of the transport key and the second part is the wrapped target key.

The private target key will be encoded as defined in section 6.7.

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown.

For unwrapping, the mechanism -

Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the public
key material of the unwrapping EC key.

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDatalLen
and pSharedData using the private part of unwrapping EC key and the public part of the transport
EC key and gets first uAESKeyBits bits of the derived key to be the temporary AES key.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 221 of 424

8025
8026

8027

8028
8029

8030
8031
8032

8033

8034

8035
8036

8037
8038
8039
8040
8041
8042
8043

8044
8045
8046
8047
8048

8049
8050

8051
8052
8053

8054
8055

8056

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP.

e Zeroizes the temporary AES key.

Table 81, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt| Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify vR! Key Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP v

TSR = SignRecover, VR = VerifyRecover

Constraints on key types are summarized in the following table:
Table 82: ECDH AES Key Wrap: Allowed Key Types

Function Key type
C_Wrap/ CKK_EC or CKK_EC_MONTGOMERY
C_Unwrap

6.3.21 ECDH AES KEY WRAP mechanism parameters

¢+ CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK ECDH AES KEY WRAP PARAMS {
CK_ULONG
CK_EC_KDF TYPE
CK_ULONG
CK_BYTE_PTR

} CK _ECDH AES KEY WRAP PARAMS;

ulAESKeyBits;
kdf;
ulSharedDatalen;
pSharedData;

The fields of the structure have the following meanings:

ulAESKeyBits

kdf

ulSharedDatalen
pSharedData

length of the temporary AES key in bits. Can be only 128, 192 or
256.

key derivation function used on the shared secret value to generate
AES key.

the length in bytes of the shared info

Some data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_ECDH_AES_KEY_WRAP_PARAMS.

pkcsll-spec-v3.1-csd01

Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 222 of 424

8057

8058
8059
8060

8061
8062
8063
8064
8065

8066
8067

8068

8069
8070

8071
8072
8073
8074
8075
8076
8077
8078
8079
8080

6.3.22 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by
ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521
K-163, B-163, K-233, B-233
K-283, B-283, K-409, B-409
K-571, B-571

6.4 Diffie-Hellman

Table 83, Diffie-Hellman Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR’ Key | Unwrap

Pair

CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS_DERIVE v
CKM_X9 42 DH_KEY_PAIR_GEN v
CKM_X9 42 DH_PARAMETER_GEN v
CKM_X9 42 DH _DERIVE v
CKM_X9_42 DH_HYBRID_DERIVE 4
CKM_X9_42_MQV_DERIVE v

6.4.1 Definitions

This section defines the key type “CKK_DH?” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of [DH] key objects.
Mechanisms:

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_PARAMETER_GEN

CKM_DH_PKCS_DERIVE

CKM_X9_42 DH_KEY_PAIR_GEN

CKM_X9_42_DH_PARAMETER_GEN

CKM_X9_42_DH_DERIVE

CKM_X9_42_DH_HYBRID_DERIVE

CKM_X9_42_MQV_DERIVE

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 223 of 424

8081

8082
8083
8084

8085

8086

8087
8088
8089

8090

8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106

8107

8108
8109
8110

8111

8112

8113
8114
8115

6.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

Table 84, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME"3 Big integer Prime p
CKA_BASE"3 Big integer Base g
CKA_VALUE"4 Big integer Public value y

“Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR labell[] “A Diffie-Hellman public key object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

6.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

Table 85, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA PRIME'3 Big integer Prime p (> 1024 bits, in steps of 256 bits)
CKA_BASE"3 Big integer Base g

CKA_SUBPRIME"? Big integer Subprime g (= 160 bits)

CKA_VALUE'4 Big integer Public value y

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. See the ANSI X9.42 standard for more information on X9.42 Diffie-
Hellman keys.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 224 of 424

8116

8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135

8136

8137
8138
8139

8140

8141

8142
8143
8144

8145
8146
8147
8148

8149

8150
8151
8152
8153
8154
8155
8156

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK OBJECT CLASS class = CKO PUBLIC KEY;
CK KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] “A X9.42 Diffie-Hellman public key
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE subprime[] {...
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

}s

6.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

Table 86, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p

CKA _BASE'46 Big integer Base g

CKA_VALUE"487 Big integer Private value x

CKA VALUE_BITS2¢ CK_ULONG Length in bits of private value x

“Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in
the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-
Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the
Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK_DH;

CK UTF8CHAR label[] = “A Diffie-Hellman private key object”;
CK BYTE subject[] = {...};
CK_BYTE id[] {123};

CK BYTE prime[] = {...};
CK BYTE base[] = {...};

pkcsll-spec-v3.1-csd01
Standards Track Work Product

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 225 of 424

8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171

8172

8173
8174
8175

8176

8177

8178
8179
8180

8181
8182
8183
8184

8185

8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

i

6.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

Table 87, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA _BASE'46 Big integer Base g

CKA_SUBPRIME"48 Big integer Subprime g (> 160 bits)
CKA_VALUE"467 Big integer Private value x

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain
parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain
parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK X9 42 DH;

CK UTF8CHAR label[] = ™A X9.42 Diffie-Hellman private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

CK BYTE prime[] = {...};

CK BYTE base[] = {...};

CK BYTE subprime[] = {...};

CK BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 226 of 424

8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209

8210

8211
8212
8213

8214

8215

8216
8217
8218

8219

8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234

8235

8236
8237

{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, &true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

6.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain
parameter object attributes, in addition to the common attributes defined for this object class:

Table 88, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_ PRIME"4 Big integer Prime p

CKA _BASE"' Big integer Base g
CKA_PRIME_BITS?23 CK_ULONG Length of the prime value.

~Refer to Table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman domain parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR labell[] “A Diffie-Hellman domain parameters
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
i

6.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 227 of 424

8238
8239

8240

8241

8242
8243
8244
8245

8246

8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263

8264

8265
8266
8267

8268
8269
8270
8271

8272
8273
8274
8275
8276

8277
8278

Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 89, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_ PRIME"4 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE' Big integer Base g

CKA_SUBPRIME"4 Big integer Subprime g (= 160 bits)
CKA_PRIME_BITS?23 CK_ULONG Length of the prime value.
CKA_SUBPRIME_BITS?3 CK_ULONG Length of the subprime value.

“Refer to Table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain
parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman
domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain
parameters object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE subprime[] = {...};
CK BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
i

6.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I". It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 228 of 424

8279

8280
8281
8282

8283

8284
8285

8286
8287
8288

8289
8290

8291

8292
8293
8294

8295
8296

8297
8298
8299
8300
8301
8302
8303

8304

8305
8306
8307

8308
8309
8310
8311

8312
8313
8314
8315

8316
8317

6.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain
parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

6.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls “phase II”.

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

This mechanism has the following rules about key sensitivity and extractability?:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 229 of 424

8318 6.4.11 X9.42 Diffie-Hellman mechanism parameters
8319 ¢ CK X9 42 DH_KDF_TYPE, CK_X9 42 DH_KDF_TYPE PTR

8320 CK _X9_42 DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
8321 keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
8322 key agreement schemes. It is defined as follows:

8323 typedef CK ULONG CK X9 42 DH KDF TYPE;
8324 a I

8325 The following table lists the defined functions.

8326 Table 90, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL
CKD_SHA1_KDF_ASN1
CKD_SHA1_KDF_CONCATENATE

8327 The key derivation function CKD_NULL produces a raw shared secret value without applying any key
8328 derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and

8329 CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the
8330 shared secret value as defined in the ANSI X9.42 standard.

8331 CK_X9_42 DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

8332 ¢ CK_X9_42_DH1_DERIVE_PARAMS, CK_X9 42 _DH1_DERIVE_PARAMS_PTR

8333 CK_X9_42 DH1 DERIVE_PARAMS is a structure that provides the parameters to the
8334 CKM_X9_42 DH_DERIVE key derivation mechanism, where each party contributes one key pair. The
8335 structure is defined as follows:

8336 typedef struct CK X9 42 DH1 DERIVE PARAMS ({

8337 CK X9 42 DH KDF TYPE kdf;

8338 CK _ULONG ulOtherInfolen;

8339 CK BYTE PTR pOtherInfo;

8340 CK_ULONG ulPublicDatalen;

8341 CK_BYTE PTR pPublicData;

8342 } CK X9 42 DH1 DERIVE PARAMS;

8343

8344 The fields of the structure have the following meanings:

8345 kdf key derivation function used on the shared secret value
8346 ulOtherinfoLen the length in bytes of the other info

8347 pOtherinfo some data shared between the two parties

8348 ulPublicDatalen the length in bytes of the other party’s X9.42 Diffie-Hellman public
8349 key

8350 pPublicData pointer to other party’s X9.42 Diffie-Hellman public key value

8351 With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherInfoLen must be zero.
8352 With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
8353 an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
8354 the two parties intending to share the shared secret. With the key derivation function

8355 CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 230 of 424

8356
8357

8358

8359

8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373

8374
8375
8376
8377
8378

8379
8380

8381
8382
8383

8384
8385

8386
8387

8388
8389
8390
8391
8392
8393
8394

8395

data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9 42 DH1 DERIVE_PARAMS_PTR is a pointer to a CK_X9 42 DH1 DERIVE_PARAMS.

o CK_X9 42_DH2_DERIVE_PARAMS, CK_X9 42 _DH2_DERIVE_PARAMS_PTR

CK_X9_42 DH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:

typedef struct CK X9 42 DH2 DERIVE PARAMS {

CK_X9 42 DH KDF TYPE kdf;
CK_ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;

CK_ ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;
CK_ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK ULONG ulPublicDatalLen2;
CK BYTE PTR pPublicDataz;

} CK X9 42 DH2 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatal.en the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalLen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 231 of 424

8396

8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411

8412
8413
8414
8415
8416

8417
8418

8419
8420
8421

8422
8423

8424
8425

8426

8427
8428
8429
8430
8431
8432
8433

8434

8435

8436
8437
8438

8439

e CK_X9_42_MQV_DERIVE_PARAMS, CK_X9 42 MQV_DERIVE_PARAMS_PTR

CK_X9_42_ MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK X9 42 MQV DERIVE PARAMS ({
CK X9 42 DH KDF TYPE kdf;

CK_ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;
CK_ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
CK_ULONG ulPrivateDatalen;
CK OBJECT HANDLE hPrivateData;

CK _ULONG ulPublicDatalen2;
CK_BYTE PTR pPublicData?2;
CK_OBJECT HANDLE publicKey;

} CK X9 42 MQV DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info

pOtherinfo some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalLen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_ MQV_DERIVE_PARAMS.

6.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42 DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 232 of 424

8440
8441
8442

8443
8444
8445
8446

8447
8448

8449

8450
8451
8452

8453

8454
8455
8456

8457
8458
8459
8460

8461
8462

8463

8464
8465
8466
8467

8468

8469
8470
8471
8472
8473
8474
8475

8476

8477
8478
8479

8480
8481
8482
8483

8484
8485
8486
8487

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template
for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9_42_DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the
template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

6.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.

CKM_SHA_1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 233 of 424

8488
8489

8490

8491
8492
8493
8494

8495

8496
8497
8498
8499
8500
8501
8502

8503

8504
8505
8506

8507
8508
8509
8510

8511
8512
8513
8514

8515
8516

8517

8518
8519
8520
8521

8522

8523
8524
8525
8526
8527
8528
8529

8530

8531
8532
8533

8534
8535

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted

CKM_X9_42 DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9_42_MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.

CKM_SHA_1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 234 of 424

8536
8537

8538
8539
8540
8541

8542
8543

8544

8545
8546

8547
8548

8549

8550
8551
8552

8553

8554
8555

8556
8557
8558

8559
8560

8561
8562
8563

8564

8565
8566
8567

8568
8569

8570

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.5 Extended Triple Diffie-Hellman (x3dh)

The Extended Triple Diffie-Hellman mechanism described here is the one described in

[SIGNAL].

Table 91, Extended Triple Diffie-Hellman Mechanisms vs. Functions

Functions
Encrypt | Sign SR Gen. Wrap | Derive
Mechanism & & & | Digest | Key/ &
Decrypt | Verify | VR' Key | Unwr
Pair ap
CKM_X3DH_INITIALIZE v
CKM_X3DH_RESPOND v

6.5.1 Definitions

Mechanisms:
CKM_X3DH_INITIALIZE
CKM_X3DH_RESPOND

6.5.2 Extended Triple Diffie-Hellman key objects

Extended Triple Diffie-Hellman uses Elliptic Curve keys in Montgomery representation
(CKK_EC_MONTGOMERY). Three different kinds of keys are used, they differ in their lifespan:

e identity keys are long-term keys, which identify the peer,

e prekeys are short-term keys, which should be rotated often (weekly to hourly)
e onetime prekeys are keys, which should be used only once.

Any peer intending to be contacted using X3DH must publish their so-called prekey-bundle, consisting of

their:

e public Identity key,

e current prekey, signed using XEDDSA with their identity key
e optionally a batch of One-time public keys.

6.5.3 Initiating an Extended Triple Diffie-Hellman key exchange

Initiating an Extended Triple Diffie-Hellman key exchange starts by retrieving the following required public

keys (the so-called prekey-bundle) of the other peer: the Identity key, the signed public Prekey, and

optionally one One-time public key.

When the necessary key material is available, the initiating party calls CKM_X3DH_INITIALIZE, also

providing the following additional parameters:

e the initiators identity key

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022

Page 235 of 424

8571
8572

8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583

8584

8585

8586

8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598

8599
8600

e the initiators ephemeral key (a fresh, one-time CKK_EC_MONTGOMERY type key)

CK_X3DH_INITIATE_PARAMS is a structure that provides the parameters to the
CKM_X3DH_INITIALIZE key exchange mechanism. The structure is defined as follows:

typedef struct CK X3DH INITIATE PARAMS ({

CK_X3DH KDF TYPE
CK_OBJECT_ HANDLE
CK_OBJECT_ HANDLE
CK_BYTE PTR

CK_BYTE_PTR

CK_OBJECT_ HANDLE
CK_OBJECT HANDLE

kdf;

pPeer identity;
pPeer prekey;
pPrekey signature;
pOnetime key;
pOwn_ identity;
pOwn ephemeral;

} CK X3DH INITIATE PARAMS;

Table 92, Extended Triple Diffie-Hellman Initiate Message parameters:

Parameter Data type Meaning

kdf CK_X3DH_KDF_TYPE Key derivation function

pPeer_identity Key handle Peers public Identity key (from the prekey-
bundle)

pPeer_prekey Key Handle Peers public prekey (from the prekey-bundle)

pPrekey_signature Byte array XEDDSA signature of PEER_PREKEY (from
prekey-bundle)

pOnetime_key Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

pOwn_identity Key Handle Initiators Identity key

pOwn_ephemeral Key Handle Initiators ephemeral key

6.5.4 Responding to an Extended Triple Diffie-Hellman key exchange

Responding an Extended Triple Diffie-Hellman key exchange is done by executing a
CKM_X3DH_RESPOND mechanism. CK_X3DH_RESPOND_PARAMS is a structure that provides the
parameters to the CKM_X3DH_RESPOND key exchange mechanism. All these parameter should be
supplied by the Initiator in a message to the responder. The structure is defined as follows:

typedef struct CK X3DH RESPOND PARAMS ({

CK_X3DH KDF_TYPE

CK_BYTE_PTR
CK_BYTE_PTR
CK_BYTE_PTR

CK _OBJECT HANDLE

CK_BYTE_ PTR

kdf;
pldentity id;
pPrekey id;
pOnetime id;

pInitiator identity;

pInitiator ephemeral;
} CK _X3DH RESPOND PARAMS;

Table 93, Extended Triple Diffie-Hellman 1st Message parameters:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 236 of 424

8601

8602
8603

8604
8605

8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616

8617

8618

8619
8620
8621

8622
8623
8624
8625

Parameter Data type Meaning
kdf CK_X3DH_KDF__ | Key derivation function
TYPE

pldentity id Byte array Peers public Identity key identifier (from the
prekey-bundle)

pPrekey id Byte array Peers public prekey identifier (from the
prekey-bundle)

pOnetime_id Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

plnitiator_identity Key handle Initiators Identity key

plnitiator_ephemeral Byte array Initiators ephemeral key

Where the *_id fields are identifiers marking which key has been used from the prekey-bundle, these
identifiers could be the keys themselves.

This mechanism has the following rules about key sensitivity and extractability®:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

2 If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

3 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

6.5.5 Extended Triple Diffie-Hellman parameters

o CK_X3DH_KDF_TYPE, CK_X3DH_KDF_TYPE_PTR

CK_X3DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying
data from a shared secret. The key derivation function will be used by the X3DH key agreement
schemes. It is defined as follows:

typedef CK ULONG CK X3DH KDF TYPE;

The following table lists the defined functions.
Table 94, X3DH: Key Derivation Functions

Source Identifier
CKD_NULL

CKD_BLAKE2B 256 KDF
CKD_BLAKE2B 512 KDF
CKD_SHA3 256 KDF

3 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 237 of 424

8626

8627
8628
8629
8630

8631

8632

8633
8634
8635
8636
8637
8638
8639
8640

8641

8642
8643
8644
8645
8646
8647

8648

CKD_SHA256_KDF
CKD_SHA3_512_KDF
CKD_SHA512_KDF

6.6 Double Ratchet

The Double Ratchet is a key management algorithm managing the ongoing renewal and maintenance of
short-lived session keys providing forward secrecy and break-in recovery for encrypt/decrypt operations.
The algorithm is described in [DoubleRatchet]. The Signal protocol uses X3DH to exchange a shared
secret in the first step, which is then used to derive a Double Ratchet secret key.

Table 95, Double Ratchet Mechanisms vs. Functions

Functions

Encrypt| Sign | SR | Digest | Gen. Wrap Derive
Mechanism & & & Key/ &

Decrypt| Verify 1 Key Unwrap

VR Pair

CKM_X2RATCHET _INITIALIZE V4
CKM_X2RATCHET_RESPOND v
CKM_X2RATCHET_ENCRYPT V4 V4
CKM_X2RATCHET_DECRYPT V4 V4

6.6.1 Definitions
This section defines the key type “CKK_X2RATCHET" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_X2RATCHET_INITIALIZE
CKM_X2RATCHET_RESPOND
CKM_X2RATCHET_ENCRYPT
CKM_X2RATCHET_DECRYPT

6.6.2 Double Ratchet secret key objects

Double Ratchet secret key objects (object class CKO_SECRET_KEY, key type CKK_X2RATCHET) hold
Double Ratchet keys. Double Ratchet secret keys can only be derived from shared secret keys using the
mechanism CKM_X2RATCHET _INITIALIZE or CKM_X2RATCHET_RESPOND. In the Signal protocol
these are seeded with the shared secret derived from an Extended Triple Diffie-Hellman [X3DH] key-
exchange. The following table defines the Double Ratchet secret key object attributes, in addition to the
common attributes defined for this object class:

Table 96, Double Ratchet Secret Key Object Attributes

Attribute Data type Meaning
CKA_X2RATCHET_RK Byte array Root key
CKA_X2RATCHET_HKS Byte array Sender Header key
CKA_X2RATCHET_HKR Byte array Receiver Header key
CKA_X2RATCHET_NHKS Byte array Next Sender Header Key
CKA_X2RATCHET_NHKR Byte array Next Receiver Header Key
CKA_X2RATCHET_CKS Byte array Sender Chain key

pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 238 of 424

8649

8650
8651
8652
8653

8654
8655
8656

8657
8658
8659

8660
8661

8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673

8674
8675

8676

8677

8678

Attribute Data type Meaning

CKA_X2RATCHET_CKR Byte array Receiver Chain key
CKA_X2RATCHET_DHS Byte array Sender DH secret key
CKA_X2RATCHET_DHP Byte array Sender DH public key
CKA_X2RATCHET_DHR Byte array Receiver DH public key
CKA_X2RATCHET_NS ULONG Message number send
CKA_X2RATCHET_NR ULONG Message number receive

CKA X2RATCHET_PNS ULONG Previous message number send
CKA_X2RATCHET_BOBS1STMSG BOOL Is this bob and has he ever sent a message?
CKA_X2RATCHET_ISALICE BOOL Is this Alice?
CKA_X2RATCHET_BAGSIZE ULONG How many out-of-order keys do we store
CKA_X2RATCHET_BAG Byte array Out-of-order keys

6.6.3 Double Ratchet key derivation

The Double Ratchet key derivation mechanisms depend on who is the initiating party, and who the
receiving, denoted CKM_X2RATCHET_INITIALIZE and CKM_X2RATCHET_RESPOND, are the key
derivation mechanisms for the Double Ratchet. Usually the keys are derived from a shared secret by
executing a X3DH key exchange.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Additionally the attribute flags indicating which functions the key supports are also contributed by the

mechanism.

For this mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these
two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

e CK_X2RATCHET_INITIALIZE_PARAMS;

CK_X2RATCHET_INITIALIZE_PARAMS_PTR

CK_X2RATCHET_INITIALIZE_PARAMS provides the parameters to the
CKM_X2RATCHET_INITIALIZE mechanism. It is defined as follows:

typedef struct CK X2RATCHET INITIALIZE PARAMS ({

CK_BYTE_ PTR

CK _OBJECT HANDLE
CK _OBJECT HANDLE
CK_OBJECT HANDLE

CK_BBOOL
CK_ULONG

CK_MECHANISM TYPE
CK_X2RATCHET KDF TYPE

sk;

peer public prekey;
peer public identity;
own public identity;

bEncryptedHeader;
eCurve;

aeadMechanism;
kdfMechanism;

} CK XZ2RATCHET INITIALIZE PARAMS;

The fields of the structure have the following meanings:

peers_public_prekey

peers_public_identity

pkcsll-spec-v3.1-csd01
Standards Track Work Product

sk the shared secret with peer (derived using X3DH)

Peers public prekey which the Initiator used in the X3DH

Peers public identity which the Initiator used in the X3DH

16 February 2022

Copyright © OASIS Open 2022. All Rights Reserved. Page 239 of 424

8679

8680

8681

8682

8683
8684

8685
8686

8687
8688

8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699

8700
8701

8702

8703

8704

8705

8706

8707

8708
8709

8710

8711
8712
8713

own_public_identity
bEncryptedHeader
eCurve
aeadMechanism

kdfMechanism

Initiators public identity as used in the X3DH
whether the headers are encrypted

255 for curve 25519 or 448 for curve 448

a mechanism supporting AEAD encryption

a Key Derivation Mechanism, such as
CKD_BLAKE2B 512 _KDF

e CK_X2RATCHET_RESPOND_PARAMS;
CK_X2RATCHET_RESPOND_PARAMS_PTR

CK_X2RATCHET_RESPOND_PARAMS provides the parameters to the
CKM_X2RATCHET_RESPOND mechanism. It is defined as follows:

typedef struct CK X2RATCHET RESPOND PARAMS {

CK_BYTE PTR

CK OBJECT HANDLE
CK _OBJECT HANDLE
CK _OBJECT HANDLE

CK_BBOOL
CK_ULONG

CK_MECHANISM TYPE
CK_X2RATCHET KDF TYPE

sk;

own prekey;
initiator identity;
own public identity;
bEncryptedHeader;
eCurve;
aeadMechanism;
kdfMechanism;

} CK_X2RATCHET RESPOND PARAMS;

The fields of the structure have the following meanings:

sk

own_prekey
initiator_identity
own_public_identity
bEncryptedHeader
eCurve
aeadMechanism

kdfMechanism

shared secret with the Initiator

Own Prekey pair that the Initiator used

Initiators public identity key used

as used in the prekey bundle by the initiator in the X3DH
whether the headers are encrypted

255 for curve 25519 or 448 for curve 448

a mechanism supporting AEAD encryption

a Key Derivation Mechanism, such as
CKD_BLAKE2B 512 KDF

6.6.4 Double Ratchet Encryption mechanism

The Double Ratchet encryption mechanism, denoted CKM_X2RATCHET_ENCRYPT and
CKM_X2RATCHET_DECRYPT, are a mechanisms for single part encryption and decryption based on
the Double Ratchet and its underlying AEAD cipher.

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 240 of 424

8714

8715

8716
8717
8718
8719
8720
8721
8722

8723

8724

8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749

6.6.5 Double Ratchet parameters

o CK_X2RATCHET_KDF_TYPE, CK_X2RATCHET_KDF_TYPE_PTR

CK_X2RATCHET_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the X key derivation
scheme. Itis defined as follows:

typedef CK ULONG CK X2RATCHET KDF TYPE;

The following table lists the defined functions.
Table 97, X2RATCHET: Key Derivation Functions

Source Identifier
CKD_NULL
CKD_BLAKE2B 256 KDF
CKD_BLAKE2B 512 KDF
CKD_SHA3 256 KDF
CKD_SHA256_KDF
CKD_SHA3 512 KDF

CKD_SHA512_KDF

6.7 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, short Weierstrass EC private keys
and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS #8'’s
PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The
object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER

{ pkecs-3 1 1}

dhpublicnumber OBJECT IDENTIFIER ::= { 1iso(l) member-body(2)
us (840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(l) member-body(2)
us (840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {
iso (1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

where
pkcs-1 OBJECT IDENTIFIER ::= {
iso(l) member-body(2) US(840) rsadsi(113549) pkcs(l) 1 }

pkcs-3 OBJECT IDENTIFIER ::= {
iso(l) member-body(2) US(840) rsadsi(113549) pkcs(l) 3 }

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 241 of 424

8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784

8785
8786
8787

8788
8789

8790

8791
8792
8793
8794
8795
8796

8797

These parameters for the algorithm identifiers have the
following types, respectively:

NULL

DHParameter ::= SEQUENCE {
prime INTEGER, --p
base INTEGER, -- g

privateValuelength INTEGER OPTIONAL
}

DomainParameters ::= SEQUENCE {
prime INTEGER, -- p
base INTEGER, -- g
subprime INTEGER, -- g
cofactor INTEGER OPTIONAL, --]
validationParms ValidationParms OPTIONAL
}
ValidationParms ::= SEQUENCE {
Seed BIT STRING, —-- seed
PGenCounter INTEGER -- parameter verification
}
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

Dss—-Parms ::= SEQUENCE ({
p INTEGER,
g INTEGER,
g INTEGER

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeylInfo type:

e RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1 type. This type
requires values to be present for all the attributes specific to Cryptoki’'s RSA private key objects. In
other words, if a Cryptoki library does not have values for an RSA private key’s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT values, it must not create an
RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.

o Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 242 of 424

8798

8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810

8811
8812

8813

8814
8815
8816

8817
8818
8819
8820
8821
8822
8823

8824

8825
8826
8827
8828
8829

8830

8831
8832
8833
8834
8835
8836
8837

8838
8839

8840
8841

o X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

e Short Weierstrass EC private keys are BER-encoded according to SECG SEC 1 ECPrivateKey
ASN.1 type:

ECPrivateKey ::= SEQUENCE {
Version INTEGER { ecPrivkeyVerl (1) }
(ecPrivkeyVerl),
privateKey OCTET STRING,
parameters [0] Parameters OPTIONAL,
publicKey [1] BIT STRING OPTIONAL

Since the EC domain parameters are placed in the PKCS #8's privateKeyAlgorithm field, the optional
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to
unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

o DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption is defined in the section for the respective key wrapping
mechanism.

Unwrapping a wrapped private key undoes the above procedure. The ciphertext is decrypted as defined
for the respective key unwrapping mechanism. The data thereby obtained are parsed as a
PrivateKeylInfo type. An error will result if the original wrapped key does not decrypt properly, or if the
decrypted data does not parse properly, or its type does not match the key type specified in the template
for the new key. The unwrapping mechanism contributes only those attributes specified in the
PrivateKeylInfo type to the newly-unwrapped key; other attributes must be specified in the template, or will
take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier
DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
iso(l) identifier-organization(3) oiw(1l4) secsig(3)
algorithm(2) }

with associated parameters

DSAParameters ::= SEQUENCE {
primel INTEGER, -- modulus p
prime2 INTEGER, -- modulus g
base INTEGER -- base g

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

6.8 Generic secret key

Table 98, Generic Secret Key Mechanisms vs. Functions

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 243 of 424

8842

8843
8844

8845
8846

8847

8848
8849
8850
8851

8852
8853

8854
8855

8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868

8869

8870
8871

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt Verify VR’ Key Unwrap
Pair
CKM_GENERIC v
_SECRET_KEY
_GEN

6.8.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN

6.8.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.
Table 99, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"'467 Byte array Key value (arbitrary
length)

CKA_VALUE_LENZ23 CK_ULONG Length in bytes of key
value

“Refer to Table 11 for footnotes
The following is a sample template for creating a generic secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK GENERIC SECRET;

CK UTF8CHAR label[] = “A generic secret key object”;
CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA DERIVE, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the SHA-1 hash of the generic secret key object's CKA_VALUE attribute.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 244 of 424

8872

8873
8874
8875
8876

8877

8878
8879

8880
8881

8882
8883

8884

8885
8886
8887

8888
8889

8890

8891

8892
8893
8894
8895
8896

8897
8898
8899

8900

8901
8902

6.8.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key
to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies
an object type and a class, they must have the following values:

CK OBJECT CLASS = CKO SECRET KEY;
CK _KEY TYPE = CKK GENERIC SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

6.9 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description. The HMAC secret key shall correspond
to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism definition).
Such keys, for use with HMAC operations can be created using C_CreateObject or C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

6.9.1 General block cipher mechanism parameters

e CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of
the DES, DESS3 (triple-DES), AES, Camellia, SEED, and ARIA ciphers. It also provides the parameters to
the general-length HMACing mechanisms (i.e.,.SHA-1, SHA-256, SHA-384, SHA-512, and SHA-512/T
family) and the two SSL 3.0 MACing mechanisms, (i.e., MD5 and SHA-1). It holds the length of the MAC
that these mechanisms produce. It is defined as follows:

typedef CK ULONG CK MAC GENERAL PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.

6.10 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
Table 100, AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_AES_KEY_GEN v
CKM_AES_ECB v v
CKM_AES_CBC v v
CKM_AES_CBC_PAD v v
CKM_AES_MAC_GENERAL v
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 245 of 424

8903

8904
8905

8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919

8920

8921
8922
8923

8924

8925
8926

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_MAC v
CKM_AES_OFB v v
CKM_AES_CFB64 v v
CKM_AES_CFB8 v v
CKM_AES_CFB128 v v
CKM_AES_CFB1 v v
CKM_AES_XCBC_MAC v
CKM_AES_XCBC_MAC_96 v

6.10.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.
Mechanisms:

CKM_AES_KEY_GEN

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC

CKM_AES_MAC_GENERAL

CKM_AES_CBC_PAD

CKM_AES_OFB

CKM_AES_CFB64

CKM_AES_CFBS

CKM_AES_CFB128

CKM_AES_CFB1

CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96

6.10.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined

for this object class:

Table 101, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"487 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LENZ236 CK_ULONG Length in bytes of key

value

“Refer to Table 11 for footnotes

The following is a sample template for creating an AES secret key object:

pkcsll-spec-v3.1-csd01
Standards Track Work Product

Copyright © OASIS Open 2022. All Rights Reserved.

16 February 2022
Page 246 of 424

8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939

8940

8941
8942
8943

8944

8945
8946

8947

8948
8949

8950
8951
8952

8953
8954

8955

8956
8957
8958

8959

8960
8961
8962
8963
8964
8965

8966
8967
8968
8969

8970
8971

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK AES;
CK UTF8CHAR labell[] “An AES secret key object”;
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.10.3 AES key generation

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for
NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.4 AES-ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 102, AES-ECB: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 247 of 424

8972
8973

8974

8975
8976
8977

8978

8979
8980
8981
8982
8983
8984

8985
8986
8987
8988

8989
8990

8991
8992

8993

8994
8995

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.5 AES-CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 103, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.
6.10.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-
part encryption and decryption; key wrapping; and key unwrapping, based on NIST's Advanced

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 248 of 424

8996
8997

8998

8999
9000
9001

9002
9003
9004
9005

9006
9007

9008
9009

9010

9011
9012

9013
9014
9015
9016
9017

9018

9019

9020

9021
9022
9023

9024
9025
9026

Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS
#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, short Weierstrass EC and DSA private keys (see Section 6.7 for
details). The entries in the table below for data length constraints when wrapping and unwrapping keys
do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 104, AES-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size bytes
block size shorter than input length
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 105, AES-OFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

6.10.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES CFB8, CKM_AES CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 249 of 424

9027
9028

9029

9030

9031

9032
9033
9034

9035
9036

9037
9038

9039
9040

9041
9042

9043

9044
9045

9046
9047
9048

9049
9050

9051

9052
9053

9054
9055
9056

Constraints on key types and the length of data are summarized in the following table:

Table 106, AES-CFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

6.10.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 107, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES any 1-block size, as specified in parameters
C_Verify AES any 1-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.10 AES-MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 108, AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 2 block size (8 bytes)
C_Verify AES Any Y2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.11 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 109, AES-XCBC-MAC: Key And Data Length

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 250 of 424

9057
9058

9059

9060
9061

9062
9063
9064

9065
9066

9067
9068

9069

9070
9071

9072

9073

9074
9075
9076
9077
9078
9079
9080
9081

9082
9083

Function Key type Data length Signature length
C_Sign AES Any 16 bytes
C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.10.12 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC_96, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 110, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 12 bytes
C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.11 AES with Counter

Table 111, AES with Counter Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_CTR v v

6.11.1 Definitions

Mechanisms:
CKM_AES_CTR

6.11.2 AES with Counter mechanism parameters

¢ CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.
It is defined as follows:
typedef struct CK AES CTR PARAMS {
CK ULONG ulCounterBits;
CK BYTE cb[l6];
} CK_AES CTR PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that O < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 251 of 424

9084
9085
9086

9087

9088
9089
9090
9091
9092
9093
9094
9095
9096
9097

9098

9099
9100

9101

9102

9103
9104
9105
9106

9107
9108

9109
9110
9111
9112
9113

9114

9115

9116

9117
9118

9119

9120

9121
9122

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:
0 1 2 3
0123456789 01234567890123456789¢01
R e e e e e e i R e e e e al it
\ Nonce |
Fot—t—F—t -ttt -ttt —F—F -t —F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+—+
\ Initialization Vector (IV)

\ \
+—F—t—F—F—t—F—F—t—F—F—t—F—F—F—F—F—F—F—F—F—F—F—F -t —F -+ —F -+ —+—+
\ Block Counter \
+—F—t—F—F—t—F—F—t—F—F—t—F—t—F—F—F—F—F—F—F—F—F—F -t —F -+ —F—+—+—+

This construction permits each packet to consist of up to 2%2-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR_PARAMS.

6.11.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits,
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the
final post increment of the counter to overflow (if it implements it this way) but not allow any further
processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of
data can be processed.

6.12 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS]

This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to
the same length of cipher text.

Table 112, AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_CTS v v
6.12.1 Definitions
Mechanisms:
CKM_AES_CTS
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 252 of 424

9123

9124
9125

9126

9127
9128

9129

9130

9131
9132
9133
9134
9135
9136
9137
9138
9139
9140

9141

9142
9143
9144
9145

9146
9147
9148

6.12.2 AES CTS mechanism parameters

It has a parameter, a 16-byte initialization vector.
Table 113, AES-CTS: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES Any, = block same as input length no final part
size (16 bytes)
C_Decrypt AES any, = block same as input length no final part
size (16 bytes)

6.13 Additional AES Mechanisms

Table 114, Additional AES Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR' Key | Unwrap

Pair

CKM_AES_GCM v v
CKM_AES_CCM v v
CKM_AES_GMAC v

6.13.1 Definitions

Mechanisms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC

Generator Functions:
CKG_NO_GENERATE
CKG_GENERATE
CKG_GENERATE_COUNTER
CKG_GENERATE_RANDOM
CKG_GENERATE_COUNTER_XOR

6.13.2 AES-GCM Authenticated Encryption | Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses
CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and
MessageDecrypt.

Encrypt:
e Setthe IV length ullvLen in the parameter block.

e Setthe IV data plv in the parameter block.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 253 of 424

9149
9150

9151
9152

9153
9154

9155
9156
9157

9158
9159

9160
9161

9162
9163
9164

9165
9166

9167
9168
9169

9170
9171

9172
9173

9174

9175
9176

9177
9178
9179
9180
9181
9182

9183
9184

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Encrypt(), or C_EncryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Decryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()*! C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data
should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the IV length ullvLen in the parameter block.

Set plv to hold the IV data returned from C_EncryptMessage() and C_EncryptMessageBegin(). If
ullvFixedBits is not zero, then the most significant bits of p/V contain the fixed IV. If ivGenerator is
set to CKG_NO_GENERATE, plv is an input parameter with the full IV.

Set the ullvFixedBits and ivGenerator fields in the parameter block.
Set the tag length ulTagBits in the parameter block.

Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_GCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*>.
The mechanism parameter is passed to all three of these functions.

Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

Set the IV length ullvLen in the parameter block.

Set the IV data plv in the parameter block.

The ullvFixedBits and ivGenerator fields are ignored.
Set the tag length ulTagBits in the parameter block.

Set the tag data pTag in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

4 “*" indicates 0 or more calls may be made as required

5 “*" indicates 0 or more calls may be made as required

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 254 of 424

9185

9186
9187
9188

9189
9190

9191
9192
9193

9194
9195

9196
9197
9198

9199
9200

9201
9202

9203
9204
9205
9206

9207
9208
9209

9210

9211
9212

9213
9214
9215

9216
9217
9218

9219
9220

9221
9222

9223
9224
9225

9226

e Call C_MessageDecryptlnit() for CKM_AES_GCM mechanism key K.

e Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*.
The mechanism parameter is passed to all three of these functions.
e Call C_MessageDecryptFinal() to close the message decryption.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is
passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the 1V is generated by the module
internally using a PRNG. In any case the entire 1V, including the fixed portion, is returned in p/V.

Modules must implement CKG_GENERATE. Modules may also reject ullvFixedBits values which are too
large. Zero is always an acceptable value for ullvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in
the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag
field of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_EncryptInit()/C_Decryptinit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

6.13.3 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and
CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.

Encrypt:
e Set the message/data length ulDatalLen in the parameter block.
e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
UlAADLen is O.

e Setthe MAC length ulMACLen in the parameter block.
e Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Encrypt(), C_EncryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining the final
ciphertext output and the MAC. The total length of data processed must be ulDatalLen. The output
length will be ulDatalLen + ulMACLen.

Decrypt:

6 “*" indicates 0 or more calls may be made as required

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 255 of 424

9227
9228

9229

9230
9231

9232
9233

9234
9235
9236
9237

9238
9239
9240

9241
9242
9243
9244

9245
9246

9247
9248

9249

9250
9251

9252
9253
9254
9255
9256
9257
9258

9259
9260

9261

9262
9263

Set the message/data length ulDatalLen in the parameter block. This length must not include the
length of the MAC that is appended to the cipher text.

Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the MAC length uIMACLen in the parameter block.
Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalen
+ UIMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the message/data length ulDatalen in the parameter block.
Set the nonce length u/NonceLen.

Set pNonce to hold the nonce data returned from C_EncryptMessage() and
C_EncryptMessageBegin(). If ulNonceFixedBits is not zero, then the most significant bits of pNonce
contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input
parameter with the full nonce.

Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.
Set the MAC length uIMACLen in the parameter block.

Set pMAC to hold the MAC data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_CCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*"-.
The mechanism parameter is passed to all three functions.

Call C_MessageEncryptFinal() to close the message encryption.
The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.

MessageDecrypt:

Set the message/data length ulDatalLen in the parameter block.

Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block
The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
Set the MAC length uIMACLen in the parameter block.

Set the MAC data pMAC in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

Call C_MessageDecryptinit() for CKM_AES_CCM mechanism key K.

Call C_DecryptMessage(), or C_DecryptMessageBegin() followed by C_DecryptMessageNext()*8.
The mechanism parameter is passed to all three functions.

7 “*" indicates 0 or more calls may be made as required

8 “*" indicates 0 or more calls may be made as required

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 256 of 424

9264

9265
9266

9267
9268
9269
9270

9271
9272

9273
9274
9275

9276
9277

9278
9279

9280
9281
9282
9283

9284
9285
9286

9287

9288
9289
9290
9291
9292

9293
9294

9295
9296
9297

9298
9299

9300

9301

9302

e Call C_MessageDecryptFinal() to close the message decryption.

In pNonce the least significant bit of the nonce is the rightmost bit. u/lNonceLen is the length of the nonce
in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE

means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject uINonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost uIMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptlnit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

6.13.4 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When GMAC is used with C_Sign or C_Verify, pData points to the AAD. GMAC does not
use plaintext or ciphertext.

The signature produced by GMAC, also referred to as a Tag, the tag’s length is determined by the
CK_GCM_PARAMS field ulTagBits.

The IV length is determined by the CK_GCM_PARAMS field ullvLen.
Constraints on key types and the length of data are summarized in the following table:
Table 115, AES-GMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES < 2’64 Depends on param’s ulTagBits
C_Verify CKK_AES < 264 Depends on param’s ulTagBits

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.13.5 AES GCM and CCM Mechanism parameters

¢ CK_GENERATOR_FUNCTION

Functions to generate unique IVs and nonces.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 257 of 424

9303

9304

9305
9306
9307
9308
9309
9310
9311
9312
9313
9314

9315
9316
9317

9318
9319
9320
9321

9322
9323

9324
9325

9326
9327

9328
9329

9330

9331

9332
9333
9334
9335
9336
9337
9338
9339
9340
9341

9342
9343
9344

typedef CK ULONG CK GENERATOR FUNCTION;

¢+ CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK GCM PARAMS ({
CK BYTE PTR plv;

CK_ULONG ulIvlen;
CK_ULONG ulIvBits;
CK_BYTE PTR pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

The fields of the structure have the following meanings:

plv
ullvLen

ullvBits

pAAD

ulAADLen

ulTagBits

pointer to initialization vector

length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2432) - 1. 96-bit (12
byte) IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

length of initialization vector in bits. Do no use ullvBits to specify the
length of the initialization vector, but ullvLen instead.

pointer to additional authentication data. This data is authenticated
but not encrypted.

length of pAAD in bytes. The length of the AAD can be any number
between 0 and (2732) — 1.

length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

¢ CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK GCM MESSAGE PARAMS ({
CK _BYTE PTR plv;
CK ULONG ulIvLen;
CK_ULONG ullIvFixedBits;
CK_GENERATOR FUNCTION ivGenerator;
CK _BYTE PTR pTag;
CK_ULONG ulTagBits;
} CK_GCM MESSAGE PARAMS;

The fields of the structure have the following meanings:

plv

pkcsll-spec-v3.1-csd01

pointer to initialization vector

16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 258 of 424

9345
9346
9347
9348

9349
9350
9351

9352
9353

9354
9355

9356
9357

9358
9359

9360

9361
9362
9363
9364
9365
9366
9367
9368
9369
9370

9371
9372

9373
9374
9375

9376
9377

9378

9379
9380

9381

9382

9383
9384
9385
9386
9387

ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2*32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

ullvFixedBits number of bits of the original IV to preserve when generating an
new |V. These bits are counted from the Most significant bits (to the
right).

ivGenerator Function used to generate a new IV. Each IV must be unique for a
given session.

pTag location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

ulTagBits length of authentication tag in bits. Can be any value between 0 and
128.

CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.

¢ CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for Encrypt or Decrypt. Itis defined as follows:

typedef struct CK CCM PARAMS ({

CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK_BYTE PTR pNonce;

CK_ULONG ulNoncelen;

CK_BYTE PTR pAAD;

CK_ULONG ulAADLen;

CK ULONG ulMACLen;

} CK_CCM PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDataLen length of the data where 0 <= ulDataLen < 2*(8L).

pNonce the nonce.

ulNonceLen length of pNonce in bytes where 7 <= ulNonceLen <= 13.
pAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAAD in bytes where 0 <= ulAADLen <= (2/32) - 1.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

¢ CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR

CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK CCM MESSAGE PARAMS {
CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK _BYTE PTR pNonce;

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 259 of 424

9388
9389
9390
9391
9392
9393
9394

9395
9396

9397
9398
9399

9400
9401
9402

9403
9404

9405
9406

9407
9408

9409
9410

9411
9412

9413

9414

9415
9416
9417

9418

9419
9420

CK_ULONG ulNonceLen;
CK_ULONG ulNonceFixedBits;
CK_GENERATOR FUNCTION nonceGenerator;
CK_BYTE PTR pMAC;
CK_ULONG ulMACLen;

} CK CCM MESSAGE PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDatalLen length of the data where 0 <= ulDatalLen < 2*(8L).
pNonce the nonce.
ulNonceLen length of pNonce in bytes where 7 <= ulNoncelLen <= 13.

ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).

nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.

pMAC location of the CCM MAC returned on MessageEncrypt, provided on
MessageDecrypt

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.

6.14 AES CMAC

Table 116, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_AES_CMAC_GENERAL v
CKM_AES_CMAC v

1 SR = SignRecover, VR = VerifyRecover

6.14.1 Definitions

Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

6.14.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 260 of 424

9421

9422
9423

9424
9425

9426
9427

9428
9429

9430
9431
9432

9433
9434

9435

9436
9437
9438

9439
9440

9441
9442
9443

9444
9445

9446
9447

6.14.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST SP800-38B] and [RFC 4493].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 117, General-length AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any 1-block size, as specified in parameters
C_Verify CKK_AES any 1-block size, as specified in parameters

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.14.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAUC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:
Table 118, AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any Block size (16 bytes)
C_Verify CKK_AES any Block size (16 bytes)

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’'s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

6.15 AES XTS
Table 119, Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_AES_XTS v v
CKM_AES_XTS KEY_GEN v
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 261 of 424

9448

9449
9450

9451
9452
9453

9454
9455

9456

9457

9458
9459

9460
9461

9462
9463
9464
9465

9466
9467

9468

9469
9470

9471
9472
9473

9474

9475

9476

9477
9478

6.15.1 Definitions

This section defines the key type “CKK_AES_XTS” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_AES_XTS
CKM_AES XTS KEY_GEN

6.15.2 AES-XTS secret key objects
Table 120, AES-XTS Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'487 Byte array Key value (32 or 64 bytes)
CKA_VALUE_LENZ238 | CK_ULONG | Length in bytes of key value

~Refer to Table 11 for footnotes

6.15.3 AES-XTS key generation

The double-length AES-XTS key generation mechanism, denoted CKM_AES_XTS_KEY_GEN, is a key
generation mechanism for double-length AES-XTS keys.

The mechanism generates AES-XTS keys with a particular length in bytes as specified in the
CKA_VALUE_LEN attributes of the template for the key.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length AES-XTS key type (specifically, the flags indicating

which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES-XTS key sizes, in bytes.

6.15.4 AES-XTS

AES-XTS (XEX-based Tweaked CodeBook mode with CipherText Stealing), denoted CKM_AES_XTS,
isa mechanism for single- and multiple-part encryption and decryption. It is specified in NIST SP800-38E.

Its single parameter is a Data Unit Sequence Number 16 bytes long. Supported key lengths are 32 and
64 bytes. Keys are internally split into half-length sub-keys of 16 and 32 bytes respectively. Constraintson
key types and the length of data are summarized in the following table:

Table 121, AES-XTS: Key And Data Length

Function Key type Input length Output length Comments

C_Encrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

C_Decrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

6.16 AES Key Wrap

Table 122, AES Key Wrap Mechanisms vs. Functions

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 262 of 424

9479

9480
9481
9482
9483
9484

9485

9486
9487
9488
9489

9490
9491
9492

9493

9494
9495

9496

9497
9498
9499
9500

9501

9502
9503

9504

9505
9506
9507
9508
9509

Functions

Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & |[Digest| Key/ & Derive

Decrypt| Verify | R Key | Unwrap

Pair

CKM_AES_KEY_WRAP v v
CKM_AES_KEY_WRAP_PAD v 4
CKM_AES_KEY_WRAP_KWP v v
CKM_AES_KEY_WRAP_PKCS7 v v
TSR = SignRecover, VR = VerifyRecover

6.16.1 Definitions

Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD
CKM_AES_KEY_WRAP_KWP
CKM_AES_KEY_WRAP_PKCS7

6.16.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes for CKM_AES_KEY_WRAP and
CKM_AES_KEY_WRAP_PKCS7, resp. 4 bytes for CKM_AES_KEY_WRAP_KWP; and, if NULL, will use
the default initial value defined in Section 4.3 resp. 6.2 / 6.3 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL; or 8 for CKM_AES_KEY_WRAP and
CKM_AES_KEY_WRAP_PKCS7, resp. 4 for CKM_AES_KEY_WRAP_KWP, and the pointer non-NULL.

6.16.3 AES Key Wrap

The mechanisms support only single-part operations, i.e. single part wrapping and unwrapping, and
single-part encryption and decryption.

¢ CKM_AES_KEY_WRAP

The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A secret key whose length is not
a multiple of the AES Key Wrap semiblock size (8 bytes) will be zero padded to fit. Semiblock size is
defined in Section 5.2 of [AES KEYWRAP]. A private key will be encoded as defined in section 6.7; the
encoded private key will be zero padded to fit if necessary.

The CKM_AES_KEY_WRAP mechanism can only encrypt a block of data whose size is an exact multiple
of the AES Key Wrap algorithm semiblock size.

For unwrapping, the mechanism decrypts the wrapped key. In case of a secret key, it truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it,
the CKA_VALUE_LEN attribute of the template. The length specified in the template must not be less
than n-7 bytes, where n is the length of the wrapped key. In case of a private key, the mechanism parses
the encoding as defined in section 6.7 and ignores trailing zero bytes.

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 263 of 424

9510 ¢ CKM_AES_KEY_WRAP_PAD

9511 The CKM_AES_KEY_WRAP_PAD mechanism is deprecated. CKM_AES_KEY_WRAP_KWP resp.
9512 CKM_AES_KEY_WRAP_PKCS7 shall be used instead.

9513 ¢ CKM_AES_KEY_WRAP_KWP

9514 The CKM_AES_KEY_WRAP_KWP mechanism can wrap a key or encrypt block of data of any length.
9515 The input is zero-padded and wrapped / encrypted as defined in Section 6.3 of [AES KEYWRAP], which
9516 produces same results as RFC 5649.

9517 ¢ CKM_AES_KEY_WRAP_PKCS7

9518 The CKM_AES_KEY_WRAP_PKCS7 mechanism can wrap a key or encrypt a block of data of any
9519 length. It does the padding detailed in PKCS #7 of inputs (keys or data blocks) up to a semiblock size to
9520 make it an exact multiple of AES Key Wrap algorithum semiblock size (8bytes), always producing

9521 wrapped output that is larger than the input key/data to be wrapped. This padding is done by the token
9522 before being passed to the AES key wrap algorithm, which then wraps / encrypts the padded block of
9523 data as defined in Section 6.2 of [AES KEYWRAP].

9524 6.17 Key derivation by data encryption - DES & AES

9525 These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
9526 They are for use with the C_DeriveKey function.

9527 Table 123, Key derivation by data encryption Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_DES _ECB_ENCRYPT_DATA v
CKM_DES CBC_ENCRYPT_DATA v
CKM_DES3_ECB_ENCRYPT_DATA v
CKM_DES3_CBC_ENCRYPT_DATA v
CKM_AES_ECB_ENCRYPT_DATA v
CKM_AES_CBC_ENCRYPT_DATA v
9528 6.17.1 Definitions
9529 Mechanisms:
9530 CKM_DES_ECB_ENCRYPT_DATA
9531 CKM_DES _CBC_ENCRYPT_DATA
9532 CKM_DES3_ECB_ENCRYPT_DATA
9533 CKM_DES3 CBC_ENCRYPT_DATA
9534 CKM_AES_ECB_ENCRYPT_DATA
9535 CKM_AES_CBC_ENCRYPT_DATA
9536
9537 typedef struct CK DES CBC ENCRYPT DATA PARAMS {
9538 CK_BYTE ivisl; -
pkcsll-spec-v3.1-csd01 16 February 2022

Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 264 of 424

9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553

9554

9555
9556

9557

9558
9559
9560
9561
9562

9563
9564

9565
9566

9567
9568

CK BYTE PTR pData;
CK_ULONG length;
} CK DES CBC ENCRYPT DATA PARAMS;

typedef CK DES CBC ENCRYPT DATA PARAMS CK PTR
CK_DES_CBC_ENCRYPT DATA PARAMS PTR;

typedef struct CK AES CBC ENCRYPT DATA PARAMS {

CK BYTE ivi[lo];
CK BYTE PTR pData;
CK_ULONG length;

} CK AES CBC ENCRYPT DATA PARAMS;

typedef CK AES CBC ENCRYPT DATA PARAMS CK PTR
CK_AES CBC_ENCRYPT DATA PARAMS PTR;

6.17.2 Mechanism Parameters
Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 6.43.2

Table 124, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
CKM_DES3_ECB_ENCRYPT_DATA structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.
CKM_AES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.
CKM_DES_CBC_ENCRYPT_DATA Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.
CKM DES3 CBC ENCRYPT DATA Parameter is an 8 byte IV value followed by the data.
- - B The data value part must be a multiple of 8 bytes long.
CKM_AES_CBC_ENCRYPT_DATA Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 bytes long.

6.17.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using the base key.
The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text
is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 6.20.5.

If the data is too short to make the requested key then the mechanism returns
CKR_DATA_LEN_RANGE.

6.18 Double and Triple-length DES

Table 125, Double and Triple-Length DES Mechanisms vs. Functions

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 265 of 424

9569

9570
9571

9572
9573
9574
9575
9576
9577
9578
9579

9580

9581
9582
9583

9584

9585

9586
9587
9588

9589

9590
9591
9592
9593
9594
9595
9596
9597

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR Key | Unwrap

Pair

CKM_DES2_KEY_GEN v
CKM_DES3_KEY_GEN v
CKM_DES3_ECB v v
CKM_DES3_CBC v v
CKM_DES3_CBC_PAD v v
CKM_DES3_MAC_GENERAL v
CKM_DES3_MAC v

6.18.1 Definitions

This section defines the key type “CKK_DES2” and “CKK_DES3” for type CK_KEY_TYPE as used in the

CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

6.18.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 126, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'467 Byte array Key value (always 16 bytes long)

~Refer to Table 11 for footnotes

DESZ2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;

CK_KEY TYPE keyType = CKK DES2;

CK UTF8CHAR label[] = “A DES2Z secret key object”;

CK BYTE value[l6] = {...};

CK BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},

pkcsll-spec-v3.1-csd01 16 February 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 266 of 424

9598
9599
9600
9601
9602

9603

9604
9605
9606

9607

9608
9609
9610

9611

9612

9613
9614
9615

9616

9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629

9630

9631
9632
9633

9634

9635
9636
9637

9638

9639
9640

{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}

}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.18.3 DES3 secret key objects

DESS secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 127, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE'467 Byte array Key value (always 24 bytes long)

“Refer to Table 11 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DESS3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK DES3;
CK UTF8CHAR label[] = “A DES3 secret key object”;
CK BYTE value[24] = {...};
CK_BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

6.18.4 Double-length DES key generation

The double-length DES ke