JOASIS

PKCS #11 Cryptographic Token Interface
Current Mechanisms Specification
Version 3.0

Candidate OASIS Standard 01
27 March 2020

This stage:

https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cos01/pkes11-curr-v3.0-cos0l.docx (Authoritative)
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cos01/pkes1l-curr-v3.0-cos01.htmi
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cos01/pkecs11-curr-v3.0-cosOl1.pdf

Previous stage:
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cs01/pkecs11-curr-v3.0-cs01.docx (Authoritative)
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cs01/pkesll-curr-v3.0-cs01.html
https://docs.oasis-open.org/pkcs11/pkecs11-curr/v3.0/cs01/pkesll-curr-v3.0-cs01.pdf

Latest stage:

https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/pkesll-curr-v3.0.docx (Authoritative)
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/pkesl1l-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/pkes11-curr-v3.0.pdf

Technical Committee:
OASIS PKCS 11 TC

Chairs:
Tony Cox (tony.cox@cryptsoft.com), Cryptsoft Pty Ltd
Robert Relyea (rrelyea@redhat.com), Red Hat

Editors:
Chris Zimman (chris@wmpp.com), Individual

Dieter Bong (dieter.bong@utimaco.com), Utimaco IS GmbH

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

e PKCS #11 header files:
https://docs.oasis-open.org/pkcs11/pkes11-curr/v3.0/cos01/include/pkecs11-v3.0/

Related work:

This specification replaces or supersedes:

e PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40. Edited by
Susan Gleeson, Chris Zimman, Robert Griffin, and Tim Hudson. Latest stage. http://docs.oasis-
open.org/pkcs11/pkesll-curr/v2.40/pkecs11-curr-v2.40.html.

This specification is related to:

e PKCS #11 Cryptographic Token Interface Profiles Version 3.0. Edited by Tim Hudson. Latest stage.
https://docs.oasis-open.org/pkcs11/pkes11-profiles/v3.0/pkes11-profiles-v3.0.html.

e PKCS #11 Cryptographic Token Interface Base Specification Version 3.0. Edited by Chris Zimman
and Dieter Bong. Latest stage. https://docs.oasis-open.org/pkcs11/pkcsll-base/v3.0/pkcsll-base-
v3.0.html.

pkes11-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 1 of 261

https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/pkcs11-curr-v3.0-cos01.docx
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/pkcs11-curr-v3.0-cos01.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/pkcs11-curr-v3.0-cos01.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cs01/pkcs11-curr-v3.0-cs01.docx
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cs01/pkcs11-curr-v3.0-cs01.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cs01/pkcs11-curr-v3.0-cs01.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.docx
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.pdf
https://www.oasis-open.org/committees/pkcs11/
mailto:tony.cox@cryptsoft.com
https://cryptsoft.com/
mailto:rrelyea@redhat.com
http://www.redhat.com/
mailto:chris@wmpp.com
mailto:dieter.bong@utimaco.com
https://hsm.utimaco.com/
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/include/pkcs11-v3.0/
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

e PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 3.0. Edited by
Chris Zimman and Dieter Bong. Latest stage. https://docs.oasis-open.org/pkcs11/pkcs11-
hist/v3.0/pkcs11-hist-v3.0.html.

Abstract:
This document defines data types, functions and other basic components of the PKCS #11 Cryptoki
interface.

Status:

This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of
this document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical.

TC members should send comments on this document to the TC's email list. Others should send
comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send
A Comment" button on the TC's web page at https://www.oasis-open.org/committees/pkcs11/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/pkcs11/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[PKCS11-Current-v3.0]

PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 3.0. Edited by Chris
Zimman and Dieter Bong. 27 March 2020. Candidate OASIS Standard 01. https://docs.oasis-
open.org/pkcsll/pkesll-curr/v3.0/cos01/pkecs11-curr-v3.0-cos01.html. Latest stage: https://docs.oasis-
open.org/pkcs1l/pkesll-curr/v3.0/pkcs11-curr-v3.0.html.

pkes11-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 2 of 261

https://docs.oasis-open.org/pkcs11/pkcs11-hist/v3.0/pkcs11-hist-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-hist/v3.0/pkcs11-hist-v3.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/pkcs11-curr-v3.0-cos01.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/cos01/pkcs11-curr-v3.0-cos01.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html

Notices

Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS I1S" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

pkes11-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 3 of 261

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 1o o (U111 o] o H T TP O PP OPPPPRUPP 15
IO | = o 1o OO P PRSP 15
N =11 01 0 To] (oo Y PP PO PP O PP PP PPPPRTRPPPPRPN 15
IR B L= (1011 (o] o F OO TR PPRPRR 15
1.4 NOIMALIVE REFEIENCESeeiiiiieiie ettt e e st e e e st b e e e st e e e e s abbe e e e sbreeeeaa 17
1.5 NON-NOIMALIVE RETEIENCES ... eeiiiiiiiiie ittt e et e e e st e e e e abr e e e e sbneeaeaa 18

2 Y =Tot g T] PSP OT SRR 21
2 L R S A e et b b et b et e o R b et e e o R b et e e s R b et e e e R ne et e e nbr et e e annne s 21

P2 R T 0 1T o PP PRSP PPRP 22
2.1.2 RSA PUDIC KEY ODJECES....eeeiiiiiiieeeitee ettt et e e et e e e 23
2. 1.3 RSA PrIVAte KEY ODJECLS ... 24
2.1.4 PKCS #1 RSA KeY Pair gENEIALIONccceeieieie et n e e e e n e e e e 25
2.1.5 X9.31 RSA KeY PAII GENEIALIONveiiiiiiiiiee ettt ettt e b e e e et e e e 26
2. 1.6 PKCS H#L VLD RSA oottt ettt et e et e e et e e et e e s nn e e e e nnes 26
2.1.7 PKCS #1 RSA OAEP mMechaniSm Parametersccoovueieeiiiieee it esiiee et e e 27
2. 1.8 PKCS #HL RSA OAEP ...ttt ettt e e e 28
2.1.9 PKCS #1 RSA PSS mMechaniSm Parametersceeiiuieeeiiiieee it e et esiee et e e e e 29
2. 110 PKCS HL RSA PSS ..ttt ettt e e et e e et e e e e anbr e e e e neee 29
2. L11 ISOMEC 9796 RSA ... ettt ettt e et e e et e e et e e s ar e e e e nnes 30
2.1.22 X509 (FAW) RSA oottt ettt e b e e e e e nnee 31
2. 113 ANSI XO.31 RSA .ottt ettt 32
2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPE-
MD 128 OF RIPE-MD 1680oetiiiiiiiieiiiiiie ittt ettt s e e s et e e e e e e e 32
2.1.15 PKCS #1 v1.5 RSA signature With SHA-224cooiiiiiiii e 33
2.1.16 PKCS #1 RSA PSS signature With SHA-224coccoiiiiii e 33
2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512...........cceeeennen. 33
2.1.18 PKCS #1 v1.5 RSA signature With SHAS.........cooiii e 34
2.1.19 PKCS #1 RSA PSS signature With SHA3 ... 34
2.1.20 ANSI X9.31 RSA signature With SHA-Looiiiiiiiiie e 34
2.1.21TPM 1.1b and TPM 1.2 PKCS #1 V1.5 RSA ...t 34
2.1.22 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEPcoiiiiii ettt 35
2.1.23 RSA AES KEY WRAP ...ttt ettt et e e 36
2.1.24 RSA AES KEY WRAP mMechaniSm Parameterscueeeiiiieeeiiiiiee it e e 37
2125 FIPS L8B4 ..ottt ettt ettt e e e 37
A B Y PP PP PP PP PP PPPI 37
P R 1= 11 1 1T L RSP RRPPRR 38
2.2.2 DSA PUDIIC KEY OBJECLS.....eeeiiiieeeiitetee ettt ettt e e e e et e e e e e e e e e snnbreeeaaaeas 39
2.2.3 DSA KEY RESIICHONSeeiieiiiiiiee ettt ettt e e et e e e sib e e e e snb e e e e snbeeeeeneee 40
2.2.4 DSA Private KEY ODJECLSoiiiiiiiiiei et 40
2.2.5 DSA domain parameter ODJECESccoiiiiiiiiiiiie ettt 41
2.2.6 DSA KEY PAIF GENEIALION ...oeiiiiiiieiiiiie ettt ettt ettt e e e st e e e sabe e e e e snb e e e e snbeee e e anbeeeeenneee 42
2.2.7 DSA domain parameter gENEIATION.........cou ittt ettt e e e e s e e e e e e e e s snnbreeeaaeeas 42
2.2.8 DSA probabilistic domain parameter geNeration...........cccveeiiiieeeiiiiee et 42
2.2.9 DSA Shawe-Taylor domain parameter genNerationccccoouiiiuieeeieeeiniiiiiieee e e eireeeeeaee s 43
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 4 of 261

2.2.10 DSA base domain parameter gENEIatiONocuuieeiiiiieeiiiiee ettt 43

2.2.11 DSA WIthOUt NASNING ...eviieiiiie e e e e e e e e e s s s snrrreeeeees 43
2.2.02 DSA WILN SHA-L ...t e et e e et e e e e b e e e b e e neee 44
22 A FIPS L8B4 ..ottt ettt ettt r e et e e e e e e e b e e nees 44
2.2 14 DSA WIth SHA224 ...ttt 44
2.2.15 DSA WIth SHA-256 ...ttt ettt e e b e e e b e e 45
2.2.16 DSA WIth SHA-384 ...ttt ettt n e r e 45
2.2.07 DSA WIth SHA-D5L2 ...ttt e e e e st e e e 46
2.2 18 DSA WIth SHAS-224 ...ttt ettt r e 46
2.2.19 DSA WIth SHAS-256oeiiiiiiiiii ettt ettt s e e e e s nn e sr e e nnn e e 47
2.2.20 DSA WIth SHAS-384 ...ttt e e e e e b e e 47
2.2.21 DSA WIth SHAS-512ottt ettt e et re e nre e e e e 47
RS B = | 1o [O U oY PO PT PRSP PPRPPP 48
A Tt R L O S T = L (1] = 50
B B2 < 11 1 (o o USSP 50
2.3.3 ECDSA PUDIIC KEY ODJECTS.eeiieiiiiie et e 51
2.3.4 Elliptic curve private Key ODJECES ... 52
2.3.5 Edwards Elliptic curve public KeY ODJECTS.........coiiiiiiiiiie e 54
2.3.6 Edwards Elliptic curve private Key ODJeCtSccoooeiiiiii e, 54
2.3.7 Montgomery Elliptic curve public KeY ODJECES..........eviiiiiiiiiiiie e 55
2.3.8 Montgomery Elliptic curve private Key ObJECEScccooiiiii i, 56
2.3.9 Elliptic curve Key pair gENEIAtION.........cccii i 57
2.3.10 Edwards Elliptic curve Key pair gENEIationccooiuiiieiiiiie et 58
2.3.11 Montgomery Elliptic curve key pair generation ..o 58
2.3.12 ECDSA WIthOUL NASNING ...ttt 59
2.3.13 ECDSA WIth NASHINGceeiiiiiieii e 59
2.3 L4 EADSA .ottt ettt e e e e 60
2.3.A5 XEADSA ...ttt b e et e e e b e e e e e b e e e e neee 60
2.3.16 EC MeChaniSm ParameterS.......cccoc oo ittt 61
2.3.17 Elliptic curve Diffie-Hellman Key deriVation ..o 66
2.3.18 Elliptic curve Diffie-Hellman with cofactor key derivation...............ccccoe oo, 67
2.3.19 Elliptic curve Menezes-Qu-Vanstone Key derivation............cccccovueeeeiniiee e 67
2.3.20 ECDH AES KEY WRAP ...ttt ettt ettt e e 68
2.3.21 ECDH AES KEY WRAP mechanism parameters ... 69
2,322 FIPS L8B4 ..ottt et b et e e b et e e b e e e e 70
2.4 DIffi@-HEIIMEAN ...ttt e et e e e s e b b ettt e e e e e e e ababe e et e e e e e aannbbbneeeaaeaeann 70
B2 I < 1 01 (o SO R 71
2.4.2 Diffie-Hellman public KEY ODJECLScoiiiiiiiiiieiii e 71
2.4.3 X9.42 Diffie-Hellman public KeY ObJECTSuuiiiiiiii e 72
2.4.4 Diffie-Hellman private KeY ODJECEScoiuiiiiiiiee e 72
2.4.5 X9.42 Diffie-Hellman private KeY ODJECESueiiiiiiiiiiiiiiie e 73
2.4.6 Diffie-Hellman domain parameter ODJECESccoiiiiiiiiiiiie e 74
2.4.7 X9.42 Diffie-Hellman domain parameters ODJECTS............ueeiiiiiiiiiiiiiieie e 75
2.4.8 PKCS #3 Diffie-Hellman key pair geNerationoccuuiiiiiieiiiiiiiieiee e 76
2.4.9 PKCS #3 Diffie-Hellman domain parameter generationcccoocvveevriieeeiniieee i 76
2.4.10 PKCS #3 Diffie-Hellman Key derivation..............ooiiiiiia e 76
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 5 of 261

2.4.11 X9.42 Diffie-Hellman mechanism parameters. ... 77

2.4.12 X9.42 Diffie-Hellman Key pair geNeration..........ccccceeiiciiiiiieeeeisiiiireeee e e e s s ssineeeeee e e s e nnnrneeeeees 80
2.4.13 X9.42 Diffie-Hellman domain parameter generationccceeovueeeeniiieeenniiee e 81
2.4.14 X9.42 Diffie-Hellman Key deriVationcueeiiiiiiioiiiiiee et 81
2.4.15 X9.42 Diffie-Hellman hybrid K&y derivationccccuiiiiiie i sivnee e 81
2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation...........c..cccceevrieeenniieeesniiee e 82
2.5 Extended Triple Diffie-Hellman (X3dh).........oooiiiiiiiee e e et re e e e e e 83
A I B < 11011 1o o < SRRSO PPI 83
2.5.2 Extended Triple Diffie-Hellman Key ODJECEScuvvieiiiiiiic e 83
2.5.3 Initiating an Extended Triple Diffie-Hellman key exchange..........ccccoccveeeiiiiciiieeee e, 83
2.5.4 Responding to an Extended Triple Diffie-Hellman key exchange..........cccccvviiiniieiiiiiee e, 84
2.5.5 Extended Triple Diffie-Hellman parameterscccccovcciiiiiieee e e e siveee e 85
AL 1o 18] o] (SN = -1 o] = SRR USEPRR 85
G T R D= 11 11T 1 P PP PP RRPPPRR 86
2.6.2 Double Ratchet secret Key ODJECTS.........uviiiiiiiii e 86
2.6.3 Double Ratchet KeY deriVationcoouiiiiiiiiiieiiiiie et 87
2.6.4 Double Ratchet Encryption MeChaniSmccooiiiiiiii e 88
2.6.5 Double RAtChet PAraMELEISccoiiiiiieiiiiie ettt et e e b e e aeee 88
2.7 Wrapping/unwrapping Private KEYScccieieieie oottt 89
2.8 GENEIIC SECIEL KBY ...ttt ekt e s bbbt e e s bbbt e e aab bt e e s anbb e e e s annneeas 91
R S BN R 1= 11 11T] 1 PP PU SRR PPPRP 91
2.8.2 Generic SeCret KEY ODJECISccoo i 92
2.8.3 Generic SeCret KEY gENEIALIONiiiiiiiie ettt e et e e 92
2.9 HMAC MECNANISIMISeiiiitiiie ettt ettt ettt s ket e s bttt e skt e e s st e e e e asnn e e e s nnnn e e e s nnnnee s 93
2.9.1 General block cipher mechaniSm ParamMeters..........ccooiuiiieiiiiiee e 93
2.0 A S et b R b b et ekt e eA b et e R b e e eh bt e o b et e nR bt e e R et e abre e abe e e nnneenaes 93
2.00.2 DEIINITIONS ...ttt ettt s e e et e e e e et e e e e et e e e st e e e e e e e e nnre e e e e nnes 93
2.10.2 AES SECIEt KEY ODJECES .ottt ettt et e e 94
2.10.3 AES KEY GENEIALION ... i ————— 95
200,84 AES-E ... 95
2.00.5 AES-CBC.... itttk E bRt bt b et e b et R bt e nare e bn e e b e e bneennne 95
2.10.6 AES-CBC With PKCS PAAAINGeeeiiiiiiieiiiiiee ettt e 96
2.00.7 AES-OF ... 97
2.00.8 AES-CB ...ttt bbbt b e b et R bttt r e e breenans 97
2.10.9 General-length AES-MACooo ittt e e 98
2.00.10 AES-MAC ..ottt ettt b bR b bt e b et e b et Rb e e e ae e be e anbe e e beeenns 98
2.00.10 AES-XCBC-MAC ... oo 98
2.10.12 AES-XCBC-MAC-96......cctiieiitiiaiie ettt e et et e st s bt e sbb e e st e e abee e sabe e e sbbeesabeeaabeeesnbeeenaneenene 98

2. 11 AES WIth COUNET ..ottt e e oottt e e e e e e e e abb b et e e e e e e e e anbbbaeeeeaeeeaanns 99
220 I = 1 T1 o SO PR 99
2.11.2 AES with Counter mechanisSm PAramMeLErScoouiiiiiiiiiiee e ee e 99
2.11.3 AES with Counter ENcryption / DECIYPLION......ccciuiieiiiiiiie ittt ieeee e 100
2.12 AES CBC with Cipher Text Stealing CTS... ..o i eeeee s 100
P I R B = 11 11 (o] o PP PP 100
2.12.2 AES CTS MecChaniSm PAramMeLErSueiiiiiiieeiiiiiee et et e e st e et e e st e e e snbaeeesananeeeeans 100
2.13 Additional AES MECHANISIMScoiiiiiiiieiie ettt e e e e e e s e e e e e e e e e s e annbeeeeeaaens 101
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 6 of 261

B R T T B 1< 11140 = 101

2.13.2 AES-GCM Authenticated Encryption / DECIYPLIONvvviveeeeiiiciiiieiee e e criviee e e e s srrane e e 101
2.13.3 AES-CCM authenticated ENCryption / DECIYPLION.......uuveiiiiiieeeiiiiee ettt 103
2.03.4 AES-GMAC ..ottt ettt bttt e bt e bR b e a b e e be e R bt e e bt e e ahbeeabe e e anbeeareaaa 105
2.13.5 AES GCM and CCM MecChanism ParameterS.........ccccuurrrreeeesiiiiiireeeeeesssseinsneeeeeesssnsssnnneesees 105
2,04 AES CIMAC ...ttt ettt b ettt h et ekt e o bt e e R b e e bt e e R e e e oAbt e e eR b e e enbe e e aba e e ebe e e nraeenaneas 108
P2 R = {1 11 o OO P PP PURRURRPPRN 108
2.14.2 MeChANISIM PATBMETEIS ...cciiutiiieeitiiee ettt e ettt et e e et e e e et e e e e st e e e e e st e e e e e aabeeeeesbrreeeabneeeean 108
2.14.3 General-1ength AES-CIMAC...... ...ttt e e e e e e e e s s st r e e e e e s e annnraaneeeees 108
2.14.4 AES-CIMAC. ..ottt ettt ekttt E e st R e a e E e et R e Rt ne e 109

P R Y ST g S T SRR RUP 109
P2 R R = 11 1110 OO PP PURRURRPPRN 109
2.15.2 AES-XTS SECIEt KEY ODJECES ...coiiuiiiiiiiiiiee ettt ettt e et e e sbneeeean 110
2.15.3 AES-XTS KEY QENEIALIONceie ettt 110
2,054 AES-XTS ittt ettt ettt ettt ettt et e e h bt ettt e ket e e bt e e eRte e eR e et e bee e anbe e e eheeeanteeabeeeanteeeneeans 110
2.16 AES KBY WA ...titeiiieeiiiiittee et ettt ettt ettt e e e s ettt e e e 4 e e e et et e e e s e s s e e et e e e s e re e e e e s 110
2.16.0 DEIINITIONSeeee ettt e e e st e e st e e s n e e s s r e e e e s n e e e e arne e e e anreeeeaa 111
2.16.2 AES Key Wrap Mechanism parameters.t 111
2.16.3 AES KEY WP ...teiiitieiiiie it siiee ettt ettt et sttt e ekt s st e s sb e e e a b e e e be e e smbe e e be e e anb e e s bneesnneeeneeen 111
2.17 Key derivation by data encryption — DES & AESccoiiiiiiiiiiiiee e 111
A N R B = {1 1T o = PP PP PUPURTPPPPRI 112
2.17.2 MeChaniSM Par@MELEIScciiiiiiiiirrieeeeirieee et ee et e et e s s e e s s e e s sn e e e s snneeessnneeeean 112
2.17.3 MeChaniSImM DESCHIPLIONveiiiiiiiiee ettt ettt et et e e e st e e e st e e e s sbeee e e sbneeeean 112
2.18 Double and Triple-1ength DES ... 113
2 S T = 1 T1 (o] o SO 113
2.18.2 DES2 SECIEet KEY ODJECLS ... 113
2.18.3 DESS SECIEet KEY ODJECLS ... 114
2.18.4 Double-length DES KeY gENEIAtIONcciiiiiiiiiiiiieee ittt 115
2.18.5 Triple-length DES Order of Operationsccooieieieie e 115
2.18.6 Triple-length DES iN CBC MOUEcccoiiiiiiiiiiiee ittt e e sbneee e 115
2.18.7 DES and Triple length DES in OFB MOdEccooooiiiiiiie e, 115
2.18.8 DES and Triple length DES in CFB MOGE.......ccoocuiiiiiiiiieeiieee et 116
2.19 Double and Triple-1ength DES CMACooiiiiiiiit ettt 116
2.19. 0 DEIINITIONS ...ttt e et e ettt e e st et e e st et e e s n e e e e s n e e e e s anr e e e e nnneeeeaa 117
2.19.2 MEChANISIM PAFAMELEIS ...cciiitiiiei ittt ettt et e e et et e e st et e e e st et e e e aabae e e e anbeeeeeabneeeeans 117
2.19.3 General-1ength DES3-IMACttt e e e et e e e e e e e e snebreeeeaae s 117
2.19.4 DES3B-CMAC ... eiiiiiieeeiee ettt tee sttt e e e s et e et e et e e amte e e smteeemteeeteeeanteeeaneeeanteeenneeeanneeenneeens 117
2.20 SHA-L ..t h b e E et R bt e bt e E et e e b et e eR b e e e bt e e ba e e sbe e e nabeennneas 118
A O I B = 11 11 1 o] o PP TR PO 118
2.20.2 SHA-L QIgEST ..eieiiiiii ettt ettt e e e sttt e et e e e e e bt e e e e b e e e e bb e e e e aareeeean 118
2.20.3 General-1ength SHA-L-HMAC ..ottt e e e e e e e annbraeeeae s 119
2.20.4 SHA-L-HMAC ...ttt ettt et e e et e e sne e e emte e e teeesmteeeaneeeanteeenneeesnneeennenens 119
2.20.5 SHA-1 KEY UEIIVALION......ueiiiiiiieiitiiii ettt ettt e e e e et e e e e e e st e b e e e e e e e e s annbreneeaaens 119
2.20.6 SHA-1 HMAC KEY GENEIALION.uuiiiiiieiiiiiiieiie et ettt e ettt e e e e et e e e e e e e e annbeeeeeeae s 120
WA S U SR 120
A I B = 11 11 (o] o 1T POPTPPPI 120
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 7 of 261

2.21.2 SHA-224 TIgESTEeeeeeiitiiee ettt ettt e e e b e e bt e e e nreeeeaa 121

2.21.3 General-length SHA-224-HMACcoooi ittt e e e e e aee e e e e e s annraaeeeeee s 121
2.21.4 SHA-224-HMAGC ...ttt ettt b ekt e e a e e ket e s e bt e e nbe e e esbe e e abbe e snbeeeneaan 121
2.21.5 SHA-224 KEY TEINVALION......utiiiei ittt ettt et et e e e st e e e sbe e e e e sbneeeean 121
2.21.6 SHA-224 HMAC KEY gENEIALION.eiiiieiiiiiiiiiieeee e e iisiite e e e e e e s st e e e e e e s s ssntaaae e e e e e s s annnranneeeees 121
2.22 SHA-25B ...ttt bt h bt bt e R b e e b et ek ae e e be e e ehbeeenbe e e abae e ebe e e nnaeennneas 122
P R B = 11 11 o] PO P R PURR PRSPPI 122
2.22.2 SHA-256 QIGEST ..eeiieiieiiiie ittt ettt ettt et e bttt e hb e e e it e et et sa bt e e bt e e anb e e e nbbe e snbeeereaea 122
2.22.3 General-length SHA-256-HMACcocoi it e rae e e e s saraaneeeee s 122
2.22.4 SHA-256-HMAC ...ttt ettt ettt s e b e e n st e s nn e e nnre e ne e 123
2.22.5 SHA-256 KEY EINVALION........viiiiiiiiiee ittt ettt et e et e e sb e e e e snneeeean 123
2.22.6 SHA-256 HMAC KEY gENEIALION.ciiiieiiiiiiiiiieeee e e cieiiie e e e e e s s st e e e e e e s s st e e e e e e e s s annraaneeeees 123
WA S VA USSR 123
e T R B = {1 111] o = PO P PP PUPPRRPPPPRI 124
2.23.2 SHA-3B84 QIgEST ..eeeiieeiiiee ittt ettt ettt e ettt sttt s et e en e e be e e be e e nae e e ante e e areeeanteeenneeens 124
2.23.3 General-length SHA-384-HMACcocuiiiiiiiiiie ettt sbnee e 124
2.23.4 SHA-BBA-HMAC ...ttt ettt sh bttt e e bt s i be e e be e e s b e e s nbn e e snreeenee e 125
2.23.5 SHA-384 KEY TEINVALION......uteiieiiiiiee ittt e et e e e sbr e e e e sbbeeeean 125
2.23.6 SHA-384 HMAC KEY gENEIALION.ccciiii i ie ettt 125
2,24 SHA-BL2 .ttt h e b et eR b e e b et e R et e e bt e enbe e e beeeabeeeanbeeenneeeanneas 125
A R B = {1 11T] = PP PP PUUPRTPPPPRI 126
2.24.2 SHA-512 QIgESE ..eeiiieieiitie ittt ettt ettt sa b e b e nr e nn e sre e e nee e 126
2.24.3 General-length SHA-512-HMACooiuiiiiiiiiiie ettt e e e e 126
2.24.4 SHA-5L12-HMAC ..ottt ettt ettt e bt esa et e be e e sbb e e st e e snbeeenee e 126
2.24.5 SHA-512 KEY EINVALION........tiiieiiiiiee ittt ettt e et e et e e e sba e e e e abneeeean 127
2.24.6 SHA-512 HMAC KEY gENEIALION.ccciiii i it 127
2.25 SHA-BL2/224 ...ttt bttt ettt nane s 127
5 T I = {1 T1 o] o 1SS 127
2.25.2 SHA-512/224 QIgEST ..c.ueveeitiee ittt ettt sttt et sttt e nee e 127
2.25.3 General-length SHA-512/224-HMACcoitiiii ittt 128
2.25.4 SHA-512/224-HMACooiitiee ittt ettt ettt st ebe e e s bb e e st e e snbeeeneeens 128
2.25.5 SHA-512/224 KEY UEIVALION.ceiutiiieiiiiiee ittt ettt sttt e et e e s sbb e e e e sbneeeean 128
2.25.6 SHA-512/224 HMAC KEY gENEIALIONeiiiiiiiiiiiiiiiee ettt ineee e 128
2.26 SHA-BL2/256 ..ottt bbbtk b et ah b b et e b nnn e naneas 129
B T I = {1 T1 (o] o 1SS 129
2.26.2 SHA-512/256 QIgESTuveeiutiieiitie ettt ettt ettt ettt ettt e bt sabe e sbe e e sab e e sbe e e snbeeeneeen 129
2.26.3 General-length SHA-512/256-HMACcouiiiiiiiiiee et 130
2.26.4 SHA-512/256-HMACooitiie ittt ettt ettt st e ebe e e nbb e e s be e e snbeeebeaen 130
2.26.5 SHA-512/256 KeY eIVALION.utiiiiiieeiiiiiiee ittt e e et e e e e e e e e aeebraeeeea s 130
2.26.6 SHA-512/256 HMAC KEY GENEIALIONeiiiiiiiiiiiiiiiee ettt et e e e ee e 130
2.27 SHA-BL2/E ..ttt bbbt R bt b et eh bt e e bb e nnbe e e nnb e e nnneas 131
A 5 R T {111 o] o 1SS 131
2.27.2 SHA-BL2/E QIgEST ..ttt ettt ettt b e st e b e nab e e bb e sbe e e rea e 131
2.27.3 General-length SHA-512/t-HMACcoooiiiiie e 131
2.27.4 SHA-SL2/T-HMAC ...ttt sttt et et e e st e e e e e e tee e snte e e sneeesneeeanneeesnneeenneeens 132
2.27.5 SHA-512/t KEY EINVALION.....ciiiiiiitiiiiiie ettt ettt e ettt e e e e et e e e e e e e e annbreeeeeae s 132
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 8 of 261

2.27.6 SHA-512/t HMAC KEY gENETALIONcoiuviiieiiiiiiieeiitiiee ettt e sttt e st e e s st e e st e e e sbbeeeesnbneeeeans 132

2,28 SHAB-224 ...t et e et e b bt e e nbee e e e naee e e e e 132
A S T B = {111 (o] o 1 EUP TR PRPPPI 132
2.28.2 SHASB-224 dIgEST ..uueiiiiiiiee e it e ittt stt et e st e e e st e e e st e e e st e e e e s ta e e e e s ta e e e e atae e e e anrbeeaeanraeeeeans 133
2.28.3 General-length SHAS-224-HMACcoii it eeeee e e e e e e ae e e e e e e s s snrraaeeeee s 133
2.28.4 SHASB-224-HMAC ..o itiiee ettt e ettt e e st e e e et e e e st e e e e stae e e e staeeeestaeeeesnbbaeaeansbeeeeans 133
2.28.5 SHA3-224 KEY EIVALION......ccciiiiiiiiiii e e ettt e s s r e e e e e s st e e e e e s s st e aa e e e e e e s s snnraaneeeees 133
2.28.6 SHA3-224 HMAC KEY gENETALION ...cceuviieeeiiiiiee et e ettt ettt et e et e e stne e e e sbneeeesnnneeeeans 133

2.29 SHATB-256 ...coieiiieeiteeee ettt e e bt et e e e b bt e e e R be e e e e R be e e e et bee e e e naeeeennneee 134
A T R B = {1 T 1o o PR TPURPPPPRR 134
2.29.2 SHASB-256 QIgEST ..vveiiiiiiiieeiiiiie ittt e sttt e e e st e e e st e e e e st e e e e stteeeestaeeeesbaeaeeataeaeesntbaeaeanrreeaeans 134
2.29.3 General-length SHAS3-256-HMACccoii it r e e e e aae e e e e e e s nnrrnaeeeee s 135
2.29.4 SHASB-256-HMAC ... itiie ettt ettt s e e st e e e et e e e st e e e e s ta e e e e sbaeeeestaeeeesntbaeeesnsbeeaeans 135
2.29.5 SHAS-256 KEY UEIVALION......ccciiie i i 135
2.29.6 SHA3-256 HMAC KEY gENETALIONouviieeiiiiiiee ettt e ettt et e et e e s bb e e e s nnneeeeans 135

2.30 SHAB-384 ...ttt e e e e e e ——— e e ——— e e e —— e e e e nta e e e aaraeeeanaraeeeaannes 136
P10 A B = 1111 1 o] o TSP PP UTT PR POPPPPPPN 136
2.30.2 SHASB-384 dIgEST ..uueieiiiiiee it ettt ste e st e e e st e e e et e e e e st e e e e s ta e e e e s tae e e e ataeaeeanrbaeaeanrreaaeans 136
2.30.3 General-length SHAS-384-HMACcoooiiiii i 136
2.30.4 SHASB-384-HMACcoitiiee ettt ettt e e et e e e et e e e st e e e e sta e e e e staeeeestaeeeesatbaeeeassaeeaeans 137
2.30.5 SHAS-384 KEY UeIIVALION.....cccii i e 137
2.30.6 SHAS3-384 HMAC KEY gENETALIONcccii i i ittt a e 137

G 3 Y 1 T PRSP 137
PR3 I B = 11 11 (o] o TSP UUP TR POPPPPPPN 138
2.31.2 SHASB-512 AIgEST ..uveeiiiriieee it e ettt s e st e e e st e e e st e e e e st e e e e sta e e e e abaeeeestaeeeeantbeeaeanareeaeans 138
2.31.3 General-length SHAS-512-HMAC ..o 138
2.31.4 SHASB-512-HMACooiitiieee ittt ettt s e e sttt e e e st e e e st e e e e anbaeeeeanbaeaeeanbaeeeeabbeeeeansneeaeans 138
2.31.5 SHA3-512 KEY AEIIVALION........eiiiiiiiii ittt ettt e et e e e e sbneeeean 139
2.31.6 SHA3-512 HMAC KEY gENEIALIONcceiiii ittt 139

G A Y o 1 Y S OSSPSR 139
PR I B = 1111 1 o] o 1O T TR PO 139
2.32.2 SHAKE KEY DEIIVALIONcciiutiiieiiitiiee ittt ettt ettt e et e e e st bt e e e st e e e abb e e e e anbneeeean 139

2.33 BIAKE2I-160.......ceeiiiiiiee ittt ettt e et e e e e e et — e e et —— e e e aara e e e e nraeeeannraeaeaanres 140
PR3 I B = 1111 1 o] o TSP TT P PP 140
2.33.2 BLAKEZ2B-160 GIgEST....uuuieiieeeieiiiiiiiieiee e s e eitieeeeeae e e s sttt eeeaeessssntateeeeaeessannntnaaeeeeeeesannnsseneeeeens 140
2.33.3 General-length BLAKE2B-160-HMACccuutiiiiiiiee it ciiee e sitee e s sieee e staeeessssaeeessnnneeaeans 141
2.33.4 BLAKEZ2B-160-HMAC ..ottt ettt e et e e s e e e e e et s e e e e e e e as e e e e e e e eeatnnneeeas 141
2.33.5 BLAKE2B-160 KeY AEIIVALIONuuuiiiiieiiiiiiiiiie ettt e e e e e aanbreeeeee s 141
2.33.6 BLAKE2B-160 HMAC KeY gENETALIONueiiiiieieeiiiiiieiee e e ettt e e e e e nibaeeeeeeees 141

G T S I N = Y SRR 141
PR 7 I B = {111 (o] o PP PO 142
2.34.2 BLAKEZ2B-256 IgESt.....uuiiiiieeiiiiiiiiiiiieeeisiitieeeeee e e s sssttiaeeeeaesssnsntateeeeaeesssnnntasaeeeeeessannnssenneeees 142
2.34.3 General-length BLAKEZ2B-256-HMACccuuitiiiiiiieeiiiiee it e e sitee e siaee e siaee e s sssaeeaesnnneeaeans 142
2.34.4 BLAKEZB-256-HMACociitiiieeiiiie ettt e stete e st ee e sttt e e e st e e e sntaee e e anbaeaeeantaeeeeantaeeeesnnneeeeans 143
2.34.5 BLAKE2B-256 KEY ENVALIONveiiiiiiiiie ittt ettt sttt ee e sbneeeean 143
2.34.6 BLAKE2B-256 HMAC KeY gENETALIONuuiiiiiiieeiiiiiiieie ettt e et e e e e e e nbneeeeaae s 143

pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 9 of 261

2.35 BLAKEZB-384......cooiiiiiiiitt ettt e e s 143

PR L R B = 11 11 o OO PURPURRPPRN 144
2.35.2 BLAKEZB-384 dIigEST......eeiiitiiieiiiiiee ittt ettt ettt e et e e st e e e st e e e e sabe e e e e sbe e e e e annreeeean 144
2.35.3 General-length BLAKE2B-384-HMACccuutiiiiiiiiei ettt 144
2.35.4 BLAKEZ2B-384-HMAC ...ttt sttt e e nnn e e sne e snneeenee e 144
2.35.5 BLAKE2B-384 KeY eIVALIONuveiiiiiiiee ettt ettt e s sbn e e e snneeeean 145
2.35.6 BLAKE2B-384 HMAC KEY gENETAtIONuuiiiieeieeeiiiiiiiieeeee e s seiintee e e e e e s ssntnnaeeeeeeessnnnsrnneeeees 145
2.36 BLAKEZB-512......utiiitiieiiiee ettt ettt ettt ettt bt e skt e e a bt e bt e ek e e e b e e e eab e e ea b e e e bae e enbe e e nnaeennneas 145
2.36.1 DEFINILIONS ...ttt ettt s e e sh e e s e st e sn e e e s e e nn e n e e e nne e 145
2.36.2 BLAKEZ2B-512 QIgESt......cciiteiiiiiiiiieesiiee ettt sttt e s eenee e 145
2.36.3 General-length BLAKEZ2B-512-HMACcuitiiiiiiiieiiiiiee ettt 146
2.36.4 BLAKEZ2B-512-HMAC ...ttt ettt e e nnne e sne e nnneeenee e 146
2.36.5 BLAKE2B-512 KEY EHVALIONveiiiiiiiiie ettt ettt e st e e snneeeean 146
2.36.6 BLAKE2B-512 HMAC KEY gENEIAtIONccceiiie i i ee et 146
2.37 PKCS #5 and PKCS #5-style password-based encryption (PBE)..........cccocciiiiiiniiiiiiie 147
A A I = {1111 (o] o 1 PSSRSO 147
2.37.2 Password-based encryption/authentication mechanism parameters..............ccccceeeeeeeeeeeennn. 147
2.37.3 PKCS #5 PBKDF2 key generation mechanism parameterscccoocvveeiiiieeeeiiiieeeinieeeens 148
2.37.4 PKCS #5 PBKD2 KEY gENEIALIONcciiii i ittt e e e e n e e 150
2.38 PKCS #12 password-based encryption/authentication mechanisms............cccccccvveeiiiiiiiinennnn. 150
2.38.1 SHA-1-PBE for 3-key triple-DES-CBCcocoiiiiiiiiie ittt 151
2.38.2 SHA-1-PBE for 2-key triple-DES-CBCccciiiiii ettt 151
2.38.3 SHA-1-PBA fOr SHA-L-HMACootiiiiiiie ittt et e e e sbneeeean 151
PGS S 1 R O U ST P PP TP PU PP PPRP 152
B2 1 I = {1 T1 (o] o 1SS 152
2.39.2 SSL MEChaNISM PAr@MELEISo 152
2.39.3 Pre-master KEY gENEIAtIONcccoeii i 154
2.39.4 MASter KEY AEIIVALIONceiiiiiiieiiiiie ettt e et e e et e e e saba e e s sbbeeeeabneeeean 155
2.39.5 Master key derivation for Diffie-Hellman ..., 155
2.39.6 Key and MAC dEIVALION.........ciiiiiiiii ittt ettt ettt e e s abb e e e e abbeeeean 156
2.39.7 MD5 MACING IN SSL 3.0 ...eeiieiitie ittt ettt ettt ettt s e b e e abb e e st e e e snneesnee e 157
2.39.8 SHA-L MACING IN SSL 3.0 ...tiiiiiitiiie ittt ettt e et e e st e e e aba e e s sbbee e e abneeeean 157
2.40 TLS 1.2 MECRHANISIMSeiieiieiie e ettt e e e s et e e e e e e s s st e e e e e e s s e nsteaeeeeeeesaansnbannneeaeesaannnnnnnneeeens 158
2.40.0 DEIINITIONS ... ettt e et e et e e e a e e e e s n et e e s n e e e e e ann e e e s anrr e e e e arreeeeaa 158
2.40.2 TLS 1.2 MeChaniSm PAraMELEIScocuuiiiiiiiiie ettt e et e et e e e sbe e e e sbneeeeans 158
2.40.3 TLS MAC ettt ettt h bttt e bt ettt e s R bt a bt e b et eR b et ehe e e ehbe e e be e e nabeeereeen 161
2.40.4 MAStEr KEY AEIIVALIONceiiiiiiiiiiiiie ettt st e et e e st e e e sba e e e e snbeeeeeanneeeean 162
2.40.5 Master key derivation for Diffie-Hellman ... 162
2.40.6 Key and MAC GEIMVALION.......coii ittt ettt e e e e et e e e e e s e st b be e e e e e e e e annbeeaeeeaens 163
2.40.7 CKM_TLS12_KEY_SAFE_DERIVE.......ccit ittt ettt e e siee e e s neae e sneeeenneeen 164
2.40.8 Generic Key Derivation using the TLS PRcooiiiii e 164
2.40.9 Generic Key Derivation using the TLS12 PRFccoiiiiiiiiiiiieiiiee et 165

P YV I S SO TPUPTP U PP PPRPPP 166
P I B = 11 11 (o] o TP PO 166
2.41.2 WTLS MeChaniSM PAraQmMELEIScciiiiiieeeiiiiee ittt e ettt e e e sttt e e e sttt e e s sbae e e e sbeeeessbeeeeesbeeeeean 166
2.41.3 Pre master secret key generation for RSA key exchange SUite..........ccoccuvieeeiieiiiiiiiiieenenn, 169
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 10 of 261

2.41.4 Master secret KeY deriVAatiONcooiiiiiiiiiiiie ettt e e snre e e 170

2.41.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography 170
2.41.6 WTLS PRF (pseudorandom fUNCLION)icuueeeiiiiieeeiiiiee et e st e st e e snre e e snineeeean 171
2.41.7 Server Key and MAC derVALIONoiuiiiiiiiiiee ittt e et e st e e sbere e e sbneeeeaa 171
2.41.8 Client key and MAC AeIIVALIONciiiieiiiiiiiiiie e s e e e e s r e e e e s st aar e e e e e s e sanraaneeeees 172
2.42 SP 800-108 KEY DEIVALIONevveieiiiiiieiitiee e ittt e sttt sttt e sttt e et e s asb e e s asbe e e e anbreeeeanene 173
P R B 1= {1 T 1o o =P PURRPPPRR 173
2.42.2 MeCh@NISM PAIAMELEISciiiiiiiiiiiiiiie ettt ettt e e e e e e s st e e e e e s e s nbeae e e e e e e e s annbeeeeeeeens 174
2.42.3 COoUNLEr MOUE KDF ...ttt ettt e et e e st e e e st e e s snbbe e e s anbbeeeeabbeeeeans 179
2.42.4 Feedback MOOE KDF ...ttt ettt e e e st e e e st e e e st e e s anbeeeaeannbeeeean 180
2.42.5 Double PIipeling MOde KDFuuiiiiiiiie ittt e s sb e e snnee e 180
2.42.6 Deriving AdItIONal KEYScccciiiiiiiiiiie ettt s st r e e s s e e e e s s st aa e e e e e e s e annraaneeeee s 181
2.42.7 Key Derivation AtrDULE RUIESoooiiiiiiiii e 182
2.42.8 Constructing PRF INPUE DAtaccoooe it 182
2.42.8.1 Sample CouNter MOAE KDFcoiiiiiiiiiiiieeaiie ettt e e e et 183
2.42.8.2 Sample SCPO03 Counter MOAE KDF...........uiiiiiiiieiiiiie ettt et e e ettt e e s ee e snee e e sneeeesnnaeas 184
2.42.8.3 Sample Feedback Mode KDFooiiiiiiiieee et e e e trre e e e e e e nneeeeeeas 185
2.42.8.4 Sample Double-Pipeling MOde KDFooiiiiiiiiiiie ettt e e s e s 186

2.43 Miscellaneous simple key derivation mechanisms...........ccccoe oo, 187
P o A B = 1111 1 o] o PSP T TP POPPPPPIN 187
2.43.2 Parameters for miscellaneous simple key derivation mechanisSms...........c.cccceevviiieeeiiieenens 187
2.43.3 Concatenation of a base key and another Key..........cccoeiiie i, 188
2.43.4 Concatenation of @ base Key and datal...........coooiuiiiiiiiiiiiiiiie e 189
2.43.5 Concatenation of data and a base Key.........ccoooeieiiiiii e, 189
2.43.6 XORINg of @ key and datalcoooeieieiiie e 190
2.43.7 Extraction of one key from another Key...........cooiiiiiiii e 191
L 1 Y PSSP 191
A 0 = {1 T1 (o] o 1SS 192
2.44.2 CMS Signature Mechanism ODJECESccooiiiiie i 192
2.44.3 CMS MEChANISIM PAFAMELEIStiiiiiiiiiee ettt ettt et e e et et e e e st b e e e e abae e e e sbbeeeeabneeeeans 192
2444 CIMS SIGNATUMESeeeeeiiteie ettt ettt ettt e e sttt e e et e e e e ea b bt e e e et bt e e e aabb e e e e aabbe e e e aabaeeeesbbeeeesnbbeeeeans 193
P = (o = o P PSRRI 194
BT I = {1 T1 (o] o 1SS 195
2.45.2 BLOWEFISH SeCret K&Y ODJECISccoc i 195
2.45.3 BIOWTISh KEY GENEIALIONc.eveiiiiiiiiee ittt et et e e e sbneeeeans 196
2.45.4 BIOWFISN-CBCciiiii ittt ettt e st e e et e e e st e e e st e e e e anbaeeeeantbeeeeanbbeeeeannneeeeans 196
2.45.5 Blowfish-CBC With PKCS PaddiNgooiiuuiiiiiiiiiiiiiiieie et ee s 196
BTN 1LY o SO 197
P LG I B = 11 11 (o] o 1P UUTTR PP 197
2.46.2 TWOTISh SECIet KEY ODJECESoiiiiiiiii et 197
2.46.3 TWOTIS KEY GENEIALIONceiiiiiiiiiiiiiiei ettt e e e e et e e e e e e e e annbreaeeeae s 198

B T MY 1 o = SO 198
2.46.5 Twofish-CBC wWith PKCS PAAUINGoivviiiiiiiiie ittt e eneee e 198
L A 7 N 1Y I I 1 PSSP 198
A I = {11 o] o T SSR 199
2.47.2 Camellia SECret KEY ODJECIS.t e e e s 199
pkcs11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 11 of 261

2.47.3 Camellia KEY gENETATIONueiiiiiiiee ittt ettt e e st e e st e e e e st e e e e sbr e e e e sbreeeeans 200

2.47.4 CAMEINA-ECBoeiiiiiiiiee ettt e a bt e e st e e e et e e e abb e e e e bb e e e e nrreeeeans 200
2.47.5 CAMEIlIA-CBC....ciii ittt ettt e e e e e e ettt e e e e e s e nbbbeeeeaee e e s nnbeaaeeeaeeesaannbreaeeeaens 201
2.47.6 Camellia-CBC With PKCS PAAINGeeeiiiiiiieiiiiiee ittt sine e 201
2.47.7 CAMELLIA with Counter mechanism parameters..........ccccceevviiciiieeeee e 202
2.47.8 General-length Camellia-MACoooiiiiiiiie et e e sbre e e 203
2.47.9 CAMEINA-MACottt ettt e e sttt e e e et e e e st bt e e e anbbe e e e snbaeeeesbbeeeeanbbeeeeans 203
2.48 Key derivation by data encryption - Camellia...........c..eeeiiiiieiiiiic e 203
2.48.1 DEFINILIONS ...ttt e et s et e s st e ss e e e R e e sn e e e s e e nn e e nn e e e e nne e 203
2.48.2 MeChaNiSM Par@mMELETSciiueiiiieeriiee ittt s e sne e e snn e e sne e e snneeenee e 204

B L Y] TP TSPPPI 204
P e R B = 11 11 1o OO PR PURRURRPPRN 204
2.49.2 Aria SECTEL KEY ODJECES ...eiiiiiiiie ittt et e e e s areeeean 205
2.49.3 ARIA KEY GENEIALION ...t 205

B L N o 1 2 TSR 205
2.49.5 ARIA-CBC ..ottt ettt e e e e e e e ettt e e e e e e e et e e e e e e e e e braae e e e e e e e annrraaeaaees 206
2.49.6 ARIA-CBC With PKCS PAAAINGtvtiiiiieiiiiiiiiie ettt e e e e e s 207
2.49.7 General-length ARIA-MAC ...ttt e st b e e e sbreeeean 207
2.49.8 ARIA-MAC ...ttt oo oo e ettt e e e e e e e b a e e e e e e e e e e bbb e e et e e e e e aan b areaaee s 208
2.50 Key derivation by data encryption - ARIAuiiiiiiii e 208
2.50.1 DEIINITIONSeeee ettt ettt e et e e r e e e st e e s n et e e s r e e e e anr e e e e nrn e e e e nnreeeeaa 208
2.50.2 MeChaniSmM Par@mMELEISoeiiiiiiiiiiriiee it e e sree e et e e s e e s s e e s snne e s snnee e s snneeeeaa 208
S 3 TS T USRI 209
2.50. 0 DEIINITIONSeeee ettt e et e et e e aa et e e s r e e e e s b e e e e ann e e e e arr e e e e anreeeea 210
2.51.2 SEED SECIet KEY ODJECESutiiieiiiiiee ittt ettt et e e sbneeeean 210
2.51.3 SEED KEY QENEIAtiONo —————— 211
2.51.4 SEED-ECB ...ttt e e e e e e e e bbb et e e e e e e e aeeaaae s 211
S ST I T 1 2 TSSO 211
2.51.6 SEED-CBC With PKCS PAOAING ...+ teteieeiiiiiiiiieee ettt e e e seibneeeeee s 211
2.51.7 General-length SEED-MACuuiiiiiiiie ettt e e abnee e 211
2.51.8 SEED-MAC....ce ettt ettt e e e e e bbb e e e e e e e s b raeaaaee s 211
2.52 Key derivation by data encryption - SEEDccooiiiiiiiiiiiiie e 212
S22 I = {1 T1 (o] o 1SS 212
2.52.2 MeChaniSIM Par@MELEIScciiiiiiiiiiiiiee it ee ettt et e e st e s s e e s sn e e e s srn e e e s snneeeeaa 212
2053 T 1 N S 212
2.53.1 USBQE OVEIVIEW ...ttt e e e ettt e e oottt e e e a4 e bbb et et e e e e e s e abbbeeeeaae e e s nnbebaeeeaaeesaannbbeneaeaeas 212
2.53.2 Case 1: Generation Of OTP VAIUEScooccuuviiiieie e iiciiie e e e s ee e e e s s sniaaee e e e e e e s s nnnsnenneeee s 213
2.53.3 Case 2: Verification of provided OTP VAIUESoooiuuiiiiiiiiiiiieeee e 214
2.53.4 Case 3: Generation Of OTP KEBYSccui ittt e e e e e nebreaeee e s 214
2.53.5 OTP ODJECLSciiiitiiie ittt ettt e e st e e e st e e e anbb e e e abb e e e e abreeeean 215
A1 BT R (=) VA o] o 1= £ PP UPT O 215
2.53.6 OTP-related NOtfICAtIONScoi i e e s s e e e e e s e s raneeeeees 218
2.53.7 OTP MECNANISINIS ...ttt ettt e e ettt e e e e e s et bbbt et e e e e e s nnbebeeeeaeeeeaannbaeneeeaens 218
2.53.7.1 OTP MECNANISIM PATAIMELEISviiiiiiiie ittt et e e et e e s e e e e st e e et e e s nnnes 218
2.53.8 RSA SECUIID ...eiiiiiiiiiteti ettt et oo e oottt e e e e e s et bbb e et e e e e e s nnbebaeeeeaeeeaannbbeneeaaens 222
2.53.8.1 RSA SeCUrID SECIet KEY ODJECEScouuiiiiiiiiie ettt 222
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 12 of 261

2.53.8.2 RSA SECUID KEY JENEIALIONvveiiitiieiiiteie ettt e et et e e et e st e e e s e e s e e e e ann e e e snne e e e nnnes 223

2.53.8.3 SecurlD OTP generation and validation...............ccooiiiiiiiiee e e e e 224
2.53.8.4 RELUIN VAIUBS ...ttt ettt oottt e e e e ettt e e e e e e e ekt b et e e e e e e e e nsaeeeeaeeesaannsaaeeeaeeeaannnneeeeas 224
2.53.9 OATH HOTP..ceeiiiiee ettt et e e e e e ettt et e e e e e s e abbbeeeeaee e e s nnbabaeeeaeeesaannsneaeeeaens 224
2.53.9.1 OATH HOTP SECIet KEY ODJECLSuviiiiiieiiiiiiiiee et e e e e s e e e e e e e e enaraeeeas 224
2.53.9.2 HOTP KEY GENEIALIONeeiiitiieeiiiieeiiteee et ee e et e et et e e sttt e s e sab e e e e b e e e s nsnn e e e nnr e e e nnne e e e nnnes 225
2.53.9.3 HOTP OTP generation and vValidation...............eeiiiiiiiiiiiiiee et 225
2.53.10 ACHVIAENTIEY ACT ... iiiiiiie ettt e e e e e e s et e e e e e e e e e s anbaaeeeeaeeseaannbreeeeeeens 225
2.53.10.1 ACTI SECTEL KEY ODJECLSvveiiiieiiiiiiiei et e e e e e e e e e e e e s e e e e e e e e eennrraeeas 225
2.53.10.2 ACTI KEY GENEIALIONeiiieiie e e ettt ettt e e e e ettt e e e e e e s tb et e e e e e e s e naeeeeeaeeesaannesseeaeaeeaannseneens 226
2.53.10.3 ACTI OTP generation and Validationeoeieeeiiiiiiiieee et e e e e e e 226

Y O I | PP PP PT PR POTPPPPPI 227
2.54.1 PrinCiples Of OPEIALIONoveiiiiiiiiee ittt e et e et e e et e e e b e e e e e snbneeeeans 227
Y S Y = Tod = U £ 0 RSP 227
2.54.3 DEIINITIONS ...ttt et e e e et et e e e e e s et bbb e et e e e e e s anbb b e e e e e e e e s annbnreeeeeeas 228
2.54.4 CT-KIP MeChaniSIM PAramELEIScicuueeeeiiiieeeitiieeeatiee e st e e e st e e e sbae e e e sbreeessbseeessbneeeeans 228
A N O I e =)Ao =] 17 11 o] o 228
2.54.6 CT-KIP key Wrap and KEY UNWIEPcuueiiiiiiiiee ittt e sttt e st e e et e e e snnneeeeans 229
2.54.7 CT-KIP SIgNature geNerationccoeieieieie ettt 229
2.55 GOST 28LAT-89 ..eeiieeiiiiiiieiee ettt ettt e e e e e bt ettt e e e e s e s s b bbb et e e e e e e e e bbbe e e e et e e e e e annbnareeaeeas 229
B T I = {1 T1 (o] o T PSSRSO 230
2.55.2 GOST 28147-89 SeCret KEY ODJECIScccie i 230
2.55.3 GOST 28147-89 domain parameter ODJECEScuueiiiiiiieiiiiiiee et 231
2.55.4 GOST 28147-89 KEY QENEIALIONcieieie ittt 231
2.55.5 GOST 28147-89-ECBootiiiiiiiiitiiiieie e e ettt e e e e e e ettt e e e e s s st e eeaaessannteaaeeeeeeesannnsenaeeeeens 232
2.55.6 GOST 28147-89 encryption mode eXCept ECBocuiiiiiiiiiiiiiiiee et 232
2.55.7 GOST 28147-8-IMACeeiiiieieiteei ettt ettt e e e ettt e e e e e e s bbb e e e e e e e e asnbbeaeeeaeas 233
2.55.8 GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89.......cccccccvveeeiiiiiriiennnnn. 233
2.56 GOST R BA.10-94 ..ottt ettt e e o4 e e bbbt e e e e e e e e bbb e b e e e e e e e s e annbbereeeaeas 234
B2 C T8 = {1 T1 (o] o T SSPRPR 234
2.56.2 GOST R 34.11-94 domain parameter ObJECES.......cccoeieieii e 234
2.56.3 GOST R 34.11-94 dIgEST..ceiiieiiiiitiiiieie ettt ettt e e e e et e e e e e e s bbb e e e e e e e s asnbreeeeeeens 235
2.56.4 GOST R 34.11-94 HMAGC ... i oottt ettt e ettt e e e e e e s st a e e e e s et ane e e e e e e s annsnaneeeees 236
2.57 GOST R B4.10-2001 eteeieeeee ettt ettt e e e e st e e e e e e s s e bbb et et e e e e e e e anbbe e e e e eeeesaaannbnnreeaaens 236
S A I = {1 T1 (o] o 1SS 237
2.57.2 GOST R 34.10-2001 public KeY ODJECESuviiiieieiiieiee e 237
2.57.3 GOST R 34.10-2001 private KEY ODJECESeuiiiiiiiiiiiiiiiiee et 238
2.57.4 GOST R 34.10-2001 domain parameter ODJECES........ocuuiiiiiiiiee ittt 240
2.57.5 GOST R 34.10-2001 mechaniSm ParameEtersS.........occuuuieeieeeaaiiiiieeee e e eiieiee e e e e e anibeeeeeeee s 241
2.57.6 GOST R 34.10-2001 Key Pair gENEIratioN........ccoiiuureeriiiieeeiiieeeesieeeessiieeesstneeessbneeessneneeeeans 242
2.57.7 GOST R 34.10-2001 without hashingeeiiiiiiiiii e 242
2.57.8 GOST R 34.10-2001 With GOST R 34.11-94ccceiiiiiiiiiee ettt e e asrraaee e 243
2.57.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001cccevevvvveenrenn. 243
2.57.10 Common key derivation with assistance of GOST R 34.10-2001 KeYScccceeviriurrieeeennn. 244
25 S X = 14 4 - 12 0 SO 244
At I B = 11 11 (o] o TP TR PO 244
2.58.2 ChaCha20 secret KeY ODJECEScooiiiiiiiiiiiiee et 244
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 13 of 261

2.58.3 ChaCha20 mechaniSm PAraMELETScoicuiiiiiiiiieeeiiieee et et e et e et e e sbb e e e s sbneeeeans 245

2.58.4 ChaCha20 KEY QENEIAtION.........c.uviiiiiieeeiecciiitie e e e e e s s et e e e e e e s s st e e e e e e s s ssntaaaeeeeeessannsrrnneeeees 245
2.58.5 ChaCha20 MECNANISIMcciii ittt e e e et e e e e e s bt e e e e e e e s annbreaeeeeens 246

R ST 1LY V2 O PRSPPI 247
P TR R B = {1 1 T o PP TPURRPPPRR 247
2.59.2 Salsa20 SECIet KEY ODJECES.ciiiiiiiiiiiiiee ettt ettt e s sb e e e sbreee e 247
2.59.3 Salsa20 MeChaNiSM PAramMELEIS......cciieiiiiciieie e e e e e et e e e e e e s s e e e e e e st rrr e e e e e s e snanrerneeeees 248
2.59.4 SalSa20 KEY GENETALIONveiieiiiiiee it e sttt ettt et e e e st e e e sbe e e e sbe e e e e sba e e e e sbeeeeeabreeeeaa 248
2.59.5 SalSa20 MECNANISIMuiiiiiiiiiie ettt et e e e st e e s sbb e e e anbeeeeeanbneeeeans 248

2,80 POIYL305ceiiiiieiie ettt sttt e et e e bt e et e e e b b et e e e b bt e e e e b be e e e e nbe e e e enneeeeennees 249
LS 10 B = {1 11 (o] o 1 PRSP TR R PRPTPPPI 249
2.60.2 P0oly1305 SECret KEY ODJECES........uiiiiiiie e e e e e s rrr e e e e e s s st aneeeee s 250
2.60.3 POIYL1305 MECHANISIeiiiiiiiiiee ittt sb e e s sbr e e e abneeeean 250

2.61 Chacha20/Poly1305 and Salsa20/Poly1305 Authenticated Encryption / Decryption................... 250
B3 I = {1 T1 (o] 1SRRI 251
2.81.2 USAGE ettt ettt et e e e e e e e et e e e e e e et e e e e a e e e e s 251
2.61.3 ChaCha20/Poly1305 and Salsa20/Poly1305 Mechanism parametersccccceeeeeeeeeeeennn, 252

2.62 HKDF MECRANISIMS ...ttt ettt ettt e e e s e ettt e e e e e e s e et e e e e e e e s e ansnbeaeeeeeeeseannnrnnneeeeens 253
G2 R B = 1111 1 o] o TSP P TR POPPPPPIN 254
2.62.2 HKDF MeChaniSm ParameEterScooiuiiiiiiiiiee ittt ettt e e sbe e e e snneeeean 254
2.62.3 HKDF GEIVE ...ttt ettt ettt ettt st e e st e e e sttt e e e st e e e e snbb e e e snbae e e e sbbeeeesbbeeeeabbeeeeans 255
2.62.4 HIKDF DALA .. veeeeiiiiiieeiiiiiie e sttt e st e e sttt e e e st e e e ssbe e e e e st e e e e anbb e e e e snba e e e e anbaeeeeantaeeeesnbeeeeeanneeeenans 256
2.62.5 HKDF KEY QBN ..oiiiiiiiittie ittt ettt e e e e e s e s e e e e e e e e st e et e e e e s s nneeeee s 256

2.63 NULL MECRANISIM ..ottt ettt e e e e e ettt e e e e e e e aab bt e b e e e e e e e e e annbbnreeeeeas 256
23 T I = {1 T1 o o 1SS 256
2.63.2 CKM_NULL mechanism parameterscccoeieiiioieie ettt ettt 256

3 PKCS #11 Implementation CONfOIMANCEuuuuiuiuiiiiiriiieieieieieieieieieierareereeeree—————————————. 257
Appendix A. ACKNOWIEAGMENTS ...ttt s e b e e e et ae e e e neee 258
Appendix B. oY1) (=S A O 0] 1 = | £ 260
Appendix C. REVISION HISTOIYeiiiiiiiiie et 261
pkes11-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 14 of 261

=

w

Ooo~NOOT b~

10

11
12
13

14

15
16

17

18

19
20

21
22
23
24

25
26

27

28
29

30

31

32

33

34

1 Introduction

This document defines mechanisms that are anticipated to be used with the current version of PKCS #11.

All text is normative unless otherwise labeled.

1.1 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/pkcs11/ipr.php).

1.2 Terminology

The key words “MUST”, “MUST NOT", “REQUIRED”, “SHALL”", “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL" in this document are to be interpreted as described

in [RFC2119]

1.3 Definitions
For the purposes of this standard, the following definitions apply. Please refer to the [PKCS#11-Base] for

further definitions:

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

AES

CAMELLIA

BLOWFISH

CBC

CDMF

CMAC

CMS

CT-KIP

DES

DSA

EC

ECB

ECDH

Copyright © OASIS Open 2020. All Rights Reserved.

Advanced Encryption Standard, as defined in FIPS PUB 197.
The Camellia encryption algorithm, as defined in RFC 3713.

The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

Cipher-Block Chaining mode, as defined in FIPS PUB 81.
Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and

based on DES.

Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

Cryptographic Message Syntax (see RFC 2630)

Cryptographic Token Key Initialization Protocol (as defined in [CT-
KIP])

Data Encryption Standard, as defined in FIPS PUB 46-3.
Digital Signature Algorithm, as defined in FIPS PUB 186-2.
Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB 81.

Elliptic Curve Diffie-Hellman.

27 March 2020
Page 15 of 261

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/pkcs11/ipr.php
https://www.oasis-open.org/committees/pkcs11/ipr.php
http://www.schneier.com/

35

36

37
38

39
40

41
42

43

44

45

46

47

48

49

50

51
52

53
54
55

56
57

58
59

60
61

62

63

64

65

66

67

ECDSA
ECMQV

GOST 28147-89

GOSTR 34.11-94

GOST R 34.10-2001

v
MAC
MQv

OAEP
PKCS
PRF
PTD
RSA

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SSL

SO
TLS
wim

WTLS

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

Elliptic Curve DSA, as in ANSI X9.62.
Elliptic Curve Menezes-Qu-Vanstone

The encryption algorithm, as defined in Part 2 [GOST 28147-89]
and [RFC 4357] [RFC 4490], and RFC [4491].

Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

Initialization Vector.

Message Authentication Code.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.
Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.

The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Sockets Layer 3.0 protocol.
A Security Officer user.

Transport Layer Security.

Wireless Identification Module.

Wireless Transport Layer Security.

27 March 2020
Page 16 of 261

68

69
70
71
72
73
74
75
76
77
78
79
80
81

82
83

84
85
86
87
88
89

90
91
92

93
94
95
96

97
98

99
100

101
102
103
104
105

106
107
108

109
110
111
112
113
114
115
116

117
118
119

1.4 Normative References

[ARIA]

[BLOWFISH]

[CAMELLIA]

[CDMF]

[CHACHA]
[DH]
[FIPS PUB 81]

[FIPS PUB 186-4]
[FIPS PUB 197]

[FIPS SP 800-56A]

[FIPS SP 800-108]

[GOST]
[MD2]
[MD5]

[OAEP]

[PKCS11-Base]

[PKCS11-Hist]

[PKCS11-Prof]

[POLY1305]

[RFC2119]

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 17 of 261

National Security Research Institute, Korea, “Block Cipher Algorithm ARIA”,
URL: http://tools.ietf.org/html/rfc5794

B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), December 1993.

URL: https://www.schneier.com/paper-blowfish-fse.html

M. Matsui, J. Nakajima, S. Moriai. A Description of the Camellia Encryption
Algorithm, April 2004.

URL: http://www.ietf.org/rfc/rfc3713.txt

Johnson, D.B The Commercial Data Masking Facility (CDMF) data privacy
algorithm, March 1994.
URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

D. Bernstein, ChaCha, a variant of Salsa20, Jan 2008.
URL: http://cr.yp.to/chacha/chacha-20080128.pdf

W. Diffie, M. Hellman. New Directions in Cryptography. Nov, 1976.
URL: http://www-ee.stanford.edu/~hellman/publications/24.pdf

NIST. FIPS 81: DES Modes of Operation. December 1980.
URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm

NIST. FIPS 186-4: Digital Signature Standard. July 2013.
URL: http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

NIST. FIPS 197: Advanced Encryption Standard. November 26, 2001.
URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

NIST. Special Publication 800-56A Revision 2: Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography, May 2013.
URL.: http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

NIST. Special Publication 800-108 (Revised): Recommendation for Key
Derivation Using Pseudorandom Functions, October 2009.

URL.: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
108.pdf

V. Dolmatov, A. Degtyarev. GOST R. 34.11-2012: Hash Function. August 2013.
URL: http://tools.ietf.org/html/rfc6986

B. Kaliski. RSA Laboratories. The MD2 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

RSA Data Security. R. Rivest. The MD5 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

M. Bellare, P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt with
RSA. Nov 19, 1995.

URL: http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf

PKCS #11 Cryptographic Token Interface Base Specification Version 3.0. Edited
by Chris Zimman and Dieter Bong. Latest version. https://docs.oasis-
open.org/pkcs11/pkecsll-base/v3.0/pkcsll-base-v3.0.html.

PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification
Version 3.0. Edited by Chris Zimman and Dieter Bong. Latest version.
https://docs.oasis-open.org/pkcs11/pkes11-hist/v3.0/pkcs11-hist-v3.0.html.
PKCS #11 Cryptographic Token Interface Profiles Version 3.0. Edited by Tim
Hudson. Latest version. https://docs.oasis-open.org/pkcs11/pkes11-
profiles/v3.0/pkcs11-profiles-v3.0.html.

D.J. Bernstein. The Poly1305-AES message-authentication code. Jan 2005.
URL: https://cr.yp.to/mac/poly1305-20050329.pdf

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997.
URL: http://www.ietf.org/rfc/rfc2119.txt.

27 March 2020

http://tools.ietf.org/html/rfc5794
https://www.schneier.com/paper-blowfish-fse.html
http://www.ietf.org/rfc/rfc3713.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557
http://cr.yp.to/chacha/chacha-20080128.pdf
http://www-ee.stanford.edu/~hellman/publications/24.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://tools.ietf.org/html/rfc6986
http://tools.ietf.org/html/rfc1319
http://tools.ietf.org/html/rfc1319
http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-hist/v3.0/pkcs11-hist-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html
https://cr.yp.to/mac/poly1305-20050329.pdf
http://www.ietf.org/rfc/rfc2119.txt

120
121
122

123
124

125
126
127

128
129

130
131

132
133
134

135

136
137

138
139
140
141

142

143
144

145
146
147

148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

[RIPEMD]

[SALSA]

[SEED]

[SHA-1]
[SHA-2]

[TWOFISH]

H. Dobbertin, A. Bosselaers, B. Preneel. The hash function RIPEMD-160,
Feb 13, 2012.

URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

D. Bernstein, ChaCha, a variant of Salsa20, Jan 2008.

URL: http://cr.yp.to/chacha/chacha-20080128.pdf

KISA. SEED 128 Algorithm Specification. Sep 2003.

URL: http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+
128 Specification_english_M.pdf

NIST. FIPS 180-4: Secure Hash Standard. March 2012.

URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

NIST. FIPS 180-4: Secure Hash Standard. March 2012.

URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

B. Schneier, J. Kelsey, D. Whiting, C. Hall, N. Ferguson. Twofish: A 128-Bit
Block Cipher. June 15, 1998.

URL: https://www.schneier.com/paper-twofish-paper.pdf

1.5 Non-Normative References

[CAP-1.2]

[AES KEYWRAP]

[ANSI C]
[ANSI X9.31]

[ANSI X9.42]

[ANSI X9.62]

[ANSI X9.63]

[BRAINPOOL]

[CT-KIP]

[CCIPP]

[LEGIFRANCE]

[NIST AES CTS]

pkcs1l-curr-v3.0-cos01

Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.
URL.: http://docs.oasis-open.org/emergency/cap/vl.2/CAP-v1.2-0s.html

National Institute of Standards and Technology, NIST Special Publication 800-
38F, Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, December 2012,
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

ANSI/ISO. American National Standard for Programming Languages — C. 1990.

Accredited Standards Committee X9. Digital Signatures Using Reversible Public
Key Cryptography for the Financial Services Industry (rDSA). 1998.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography. 2003.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998.
Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography. 2001.

URL: http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011

ECC Brainpool Standard Curves and Curve Generation, v1.0, 19.10.2005

URL: http://www.ecc-brainpool.org

RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,
December 2005.

URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.
CCPP-STRUCT-VOCAB, G. Klyne, F. Reynolds, C. , H. Ohto, J. Hjelm, M. H.
Butler, L. Tran, Editors, W3C Recommendation, 15 January 2004,

URL: http://www.w3.0rg/TR/2004/REC-CCPP-struct-vocab-20040115/

Latest version available at http://www.w3.0rg/TR/CCPP-struct-vocab/

Avis relatif aux parameétres de courbes elliptiques définis par I'Etat francais
(Publication of elliptic curve parameters by the French state)

URL:
https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT00002466881
6

National Institute of Standards and Technology, Addendum to NIST Special
Publication 800-38A, “Recommendation for Block Cipher Modes of Operation:
Three Variants of Ciphertext Stealing for CBC Mode”

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 18 of 261

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://cr.yp.to/chacha/chacha-20080128.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.schneier.com/paper-twofish-paper.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011
ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/CCPP-struct-vocab/

171
172

173
174
175

176
177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196

197
198
199

200
201
202
203

204
205
206
207

208
209
210
211

212
213

214
215
216

217
218
219
220
221
222

[PKCS11-UG]

[RFC 2865]

[RFC 3686]

[RFC 3717]

[RFC 3610]

[RFC 3874]

[RFC 3748]

[RFC 4269]

[RFC 4309]

[RFC 4357]

[RFC 4490]

[RFC 4491]

[RFC 4493]

[RFC 5705]

[RFC 5869]

[RFC 7539]

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

URL: http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-
38A.pdf

PKCS #11 Cryptographic Token Interface Usage Guide Version 2.41. Edited by
John Leiseboer and Robert Griffin. version: http://docs.oasis-
open.org/pkcsll/pkes11-ug/v2.40/pkesll-ug-v2.40.html.

Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF
RFC2865, June 2000.
URL.: http://www.ietf.org/rfc/rfc2865.txt.

Housley, “Using Advanced Encryption Standard (AES) Counter Mode With IPsec
Encapsulating Security Payload (ESP),” IETF RFC 3686, January 2004.
URL: http://www.ietf.org/rfc/rfc3686.txt.

Matsui, et al, "A Description of the Camellia Encryption Algorithm,” IETF RFC
3717, April 2004.

URL: http://www.ietf.org/rfc/rfc3713.txt.

Whiting, D., Housley, R., and N. Ferguson, “Counter with CBC-MAC (CCM)",
IETF RFC 3610, September 2003.

URL: http://www.ietf.org/rfc/rfc3610.txt

Smit et al, “A 224-bit One-way Hash Function: SHA-224," IETF RFC 3874, June
2004.
URL: http://www.ietf.org/rfc/rfc3874.txt.

Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June
2004.
URL: http://www.ietf.org/rfc/rfc3748.txt.

South Korean Information Security Agency (KISA) “The SEED Encryption
Algorithm”, December 2005.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt

Housley, R., “Using Advanced Encryption Standard (AES) CCM Mode with IPsec
Encapsulating Security Payload (ESP),” IETF RFC 4309, December 2005.
URL: http://www.ietf.org/rfc/rfc4309.txt

V. Popov, |. Kurepkin, S. Leontiev “Additional Cryptographic Algorithms for Use
with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R
34.11-94 Algorithms”, January 2006.

URL: http://www.ietf.org/rfc/rfc4357.txt

S. Leontiev, Ed. G. Chudov, Ed. “Using the GOST 28147-89, GOST R 34.11-
94,GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic
Message Syntax (CMS)”, May 2006.

URL.: http://www.ietf.org/rfc/rfc4490.txt

S. Leontiev, Ed., D. Shefanovski, Ed., “Using the GOST R 34.10-94, GOST R
34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key
Infrastructure Certificate and CRL Profile”, May 2006.

URL: http://www.ietf.org/rfc/rfc4491.txt

J. Song et al. RFC 4493: The AES-CMAC Algorithm. June 2006.
URL.: http://www.ietf.org/rfc/rfc4493.txt

Rescorla, E., “The Keying Material Exporters for Transport Layer Security (TLS)",
RFC 5705, March 2010.

URL: http://www.ietf.org/rfc/rfc5705.txt

H. Krawczyk, P. Eronen, “HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)“, May 2010

URL.: http://www.ietf.org/rfc/rfc5869.txt

Y Nir, A. Langley. RFC 7539: ChaCha20 and Poly1305 for IETF Protocols, May
2015

URL: https://tools.ietf.org/rfc/rfc7539.txt

27 March 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 19 of 261

http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://ietf.org/rfc/rfc2865.txt
http://ietf.org/rfc/rfc3686.txt
http://ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3610.txt
http://ietf.org/rfc/rfc3874.txt
http://ietf.org/rfc/rfc3748.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt
http://ietf.org/rfc/rfc4309.txt
http://www.ietf.org/rfc/rfc4357.txt
http://www.ietf.org/rfc/rfc4490.txt
http://www.ietf.org/rfc/rfc4491.txt
http://www.ietf.org/rfc/rfc4493.txt
http://www.ietf.org/rfc/rfc5869.txt
https://tools.ietf.org/rfc/rfc7539.txt

223
224

225
226
227

228
229
230
231
232
233
234
235
236

237
238
239
240
241
242
243

244
245
246
247
248
249

250
251
252
253
254
255
256

257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274

275

[RFC 7748]

[RFC 8032]

[SEC 1]

[SEC 2]

[SIGNAL]

[TLS]

[TLS12]

[TLS13]

[WIM]

[WPKI]

[WTLS]

[XEDDSA]

[X.500]

[X.509]

[X.680]

[X.690]

pkcs1l-curr-v3.0-cos01

Aboba et al, “Elliptic Curves for Security”, IETF RFC 7748, January 2016

URL: https://tools.ietf.org/html/rfc7748

Aboba et al, “Edwards-Curve Digital Signature Algorithm (EdDSA)”, IETF RFC
8032, January 2017

URL: https://tools.ietf.org/html/rfc8032

Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20,
2000.

Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters.
Version 1.0, September 20, 2000.

The X3DH Key Agreement Protocol, Revision 1, 2016-11-04, Moxie Marlinspike,
Trevor Perrin (editor)

URL: https://signal.org/docs/specifications/x3dh/

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246,
January 1999. http://www.ietf.org/rfc/rfc2246.txt, superseded by [RFC4346]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.1", RFC 4346, April 2006. http://www.ietf.org/rfc/rfc4346.txt, which was
superseded by [5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

URL: http://www.ietf.org/rfc/rfc5246.txt

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.2", RFC 5246, August 2008.

URL: http://www.ietf.org/rfc/rfc5246.txt

[RFC8446] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.3", RFC 8446, August 2018.

URL: http://www.ietf.org/rfc/rfc8446.txt

WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July 2001.

URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-260-wim-20010712-a.pdf

Wireless Application Protocol: Public Key Infrastructure Definition. — WAP-217-
WPKI-20010424-a. April 2001.

URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-217-wpki-20010424-a.pdf

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-20010406-
a. April 2001.

URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.as
p?DocName=/wap/wap-261-wtls-20010406-a.pdf

The XEdADSA and VXEdDSA Signature Schemes - Revision 1, 2016-10-20,
Trevor Perrin (editor)

URL: https://signal.org/docs/specifications/xeddsa/

ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. February 2001. Identical
to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. March 2000.
Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. July 2002. Identical to ISO/IEC 8824-1

ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 2002. Identical to ISO/IEC 8825-1

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 20 of 261

https://tools.ietf.org/html/rfc7748
https://signal.org/docs/specifications/x3dh/
http://www.ietf.org/rfc/rfc5246.txt
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-260-wim-20010712-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-217-wpki-20010424-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?DocName=/wap/wap-261-wtls-20010406-a.pdf
https://signal.org/docs/specifications/xeddsa/

276
277
278

279
280
281
282
283
284
285

286
287

288

289
290
291
292

293
294

295
296

2 Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11
implementations MAY use one of more mechanisms defined in this document.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a subset of
the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some
operations supports any other mechanism for any other operation (or even supports that same
mechanism for any other operation). For example, even if a token is able to create RSA digital signatures
with the CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can also
perform RSA encryption with CKM_RSA_PKCS.

Each mechanism description is be preceded by a table, of the following format, mapping mechanisms to
API functions.

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair

1 SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the CK_MECHANISM_INFO structure, then those fields have no

meaning for that particular mechanism.

2.1 RSA
Table 1, Mechanisms vs. Functions
Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
L Key
Pair
CKM_RSA_PKCS_KEY_PAIR_GEN v
CKM_RSA_X9_31_KEY_PAIR_GEN v
CKM_RSA_PKCS v? v?2 v v
CKM_RSA_PKCS_OAEP V2 v
CKM_RSA_PKCS PSS v?2
CKM_RSA_9796 v2 v
CKM_RSA_X_509 % v?2 v v
CKM_RSA_X9 31 v2
CKM_SHA1_RSA_PKCS v
CKM_SHA256_RSA_PKCS v
CKM_SHA384_RSA_PKCS v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 261

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
1 Key
Pair

CKM_SHA512_RSA_PKCS
CKM_SHAT_RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHAT_RSA X9 31
CKM_RSA_PKCS_TPM_1_1 V2 v
CKM_RSA_PKCS_OAEP_TPM_1_1 V2 v
CKM_SHA3_224 RSA_PKCS
CKM_SHA3_256_RSA_PKCS
CKM_SHA3_384_RSA_PKCS
CKM_SHA3_512_RSA_PKCS
CKM_SHA3_224_RSA_PKCS_PSS
CKM_SHA3_256_RSA_PKCS_PSS
CKM_SHA3_384_RSA_PKCS_PSS
CKM_SHA3_512_RSA_PKCS_PSS

NIENENENENEN

NEYASEYEVANENAN

297 2.1.1 Definitions

298 This section defines the RSA key type “CKK_RSA” for type CK_KEY_TYPE as used in the
299 CKA_KEY_TYPE attribute of RSA key objects.

300 Mechanisms:

301 CKM_RSA _PKCS_KEY_PAIR_GEN

302 CKM_RSA_PKCS

303 CKM_RSA 9796

304 CKM_RSA_X_ 509

305 CKM_MD2_RSA_PKCS

306 CKM_MD5_RSA_PKCS

307 CKM_SHA1_RSA_PKCS

308 CKM_SHA224_RSA_PKCS

309 CKM_SHA256_RSA_ PKCS

310 CKM_SHA384_RSA_PKCS

311 CKM_SHA512 RSA PKCS

312 CKM_RIPEMD128 RSA_PKCS

313 CKM_RIPEMD160_RSA_PKCS

314 CKM_RSA_PKCS_OAEP

315 CKM_RSA_X9 31 _KEY_PAIR_GEN

316 CKM_RSA X9 31

317 CKM_SHA1 RSA X9 31

318 CKM_RSA_PKCS_PSS

319 CKM_SHA1 RSA PKCS_PSS
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 22 of 261

320 CKM_SHA224 RSA_PKCS_PSS

321 CKM_SHA256_RSA_PKCS_PSS
322 CKM_SHA512_RSA_PKCS_PSS
323 CKM_SHA384_RSA_PKCS_PSS
324 CKM_RSA_PKCS_TPM_1_1

325 CKM_RSA_PKCS_OAEP_TPM_1_1
326 CKM_RSA_AES_KEY_WRAP

327 CKM_SHA3_224 RSA_PKCS

328 CKM_SHA3_256_RSA_PKCS

329 CKM_SHA3_384 RSA_PKCS

330 CKM_SHA3_512_RSA_PKCS

331 CKM_SHA3_224 RSA_PKCS_PSS
332 CKM_SHA3_256_RSA_PKCS_PSS
333 CKM_SHA3_384 RSA_PKCS_PSS
334 CKM_SHA3_512_RSA_PKCS_PSS
335

336 2.1.2 RSA public key objects

337 RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
338 The following table defines the RSA public key object attributes, in addition to the common attributes
339 defined for this object class:

340 Table 2, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS™* Big integer Modulus n
CKA_MODULUS BITS?3 CK_ULONG Length in bits of modulus n
CKA_ PUBLIC_EXPONENT' Big integer Public exponent e

341 - Refer to [PKCS11-Base] table 11 for footnotes

342 Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
343 information on RSA keys.

344 The following is a sample template for creating an RSA public key object:

345 CK_OBJECT CLASS class = CKO PUBLIC KEY;

346 CK_KEY TYPE keyType = CKK_RSA;

347 CK UTF8CHAR label[] = “An RSA public key object”;

348 CK_BYTE modulus[] = {...};

349 CK BYTE exponent[] = {...};

350 CK BBOOL true = CK TRUE;

351 CK_ATTRIBUTE template[] = {

352 {CKA CLASS, &class, sizeof (class)},

353 {CKA_KEY TYPE, &keyType, sizeof (keyType)},

354 {CKA TOKEN, é&true, sizeof (true)},

355 {CKA LABEL, label, sizeof (label)-1},

356 {CKA _WRAP, &true, sizeof (true)},

357 {CKA ENCRYPT, &true, sizeof(true)},

358 {CKA MODULUS, modulus, sizeof (modulus)},
pkcs11-curr-v3.0-cosO1 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 23 of 261

359
360

361

362
363
364

365

366

367
368

369
370
371
372
373

374
375
376
377
378
379
380
381
382
383
384

385
386
387
388

389
390
391

392

393
394
395
396
397

{CKA PUBLIC EXPONENT, exponent, sizeof (exponent) }
b

2.1.3 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 3, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS"#46 Big integer Modulus n

CKA_ PUBLIC_EXPONENT#$¢ Big integer Public exponent e
CKA_PRIVATE_EXPONENT"487 Big integer Private exponent d
CKA_PRIME_14867 Big integer Prime p

CKA_PRIME_2467 Big integer Prime q

CKA_EXPONENT_ 1467 Big integer Private exponent d modulo p-1
CKA_EXPONENT 2467 Big integer Private exponent d modulo g-1
CKA_COEFFICIENT#87 Big integer CRT coefficient g' mod p

- Refer to [PKCS11-Base] table 11 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for
more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store only the
CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST
also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 3 it keeps track of. Later, if an application asks
for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose values it
can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails). Note
that a Cryptoki implementation may or may not be able and/or willing to supply various attributes of RSA
private keys which are not actually stored on the token. E.g., if a particular token stores values only for
the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is
certainly able to report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this extra
computation. The only attributes from Table 3 for which a Cryptoki implementation is required to be able
to return values are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 3 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT _CLASS class = CKO_ PRIVATE KEY;

CK_KEY TYPE keyType = CKK RSA;

CK UTF8CHAR label[] = “An RSA private key object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 24 of 261

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428

429
430

431

432
433
434
435
436
437

438
439
440
441
442
443
444
445

CK BYTE modulus[] = {...};

CK BYTE publicExponent[] = {...};
CK BYTE privateExponent[] = {...};
CK BYTE primel[] = {...};

CK BYTE prime2[] =
CK _BYTE exponentl|[] {.
CK BYTE exponent2[] = {.
CK BYTE coefficient[] =
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA _KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA SUBJECT, subject, sizeof (subject)},

{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, &true, sizeof (true)},

{CKA DECRYPT, &true, sizeof (true)},

{CKA SIGN, &true, sizeof(true)},

{CKA MODULUS, modulus, sizeof (modulus)},

{CKA PUBLIC EXPONENT, publicExponent,

sizeof (publicExponent) },
{CKA PRIVATE EXPONENT, privateExponent,
sizeof (privateExponent) },

{CKA PRIME 1, primel, sizeof(primel)},

{CKA PRIME 2, prime2, sizeof (primeZ2)},

{CKA EXPONENT 1, exponentl, sizeof (exponentl)},

{CKA EXPONENT 2, exponent2, sizeof (exponent2)},

{CKA COEFFICIENT, coefficient, sizeof (coefficient)}

}s

{...)

.1
.1
(...}

2.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 25 of 261

446
447
448
449
450

451
452

453

454
455

456

457
458
459

460
461
462
463
464
465
466
467
468
469

470
471

472

473
474
475
476
477
478

479

480
481
482
483
484
485
486

487
488
489

may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which
functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and g values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports
single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA,; it does not compute a message digest or a Digestinfo encoding as specified for
the md2withRSAEnNcryption and md5withRSAEnNcryption algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 26 of 261

490

491
492

493
494

495

496

497
498
499

500
501
502
503

504

505
506

507
508

509

Table 4, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length
C_Encrypt! RSA public key < k-1 k block type 02
C_Decrypt! RSA private key k < k-11 block type 02
C_Sign' RSA private key < k-11 k block type 01
C_SignRecover RSA private key < k-1 k block type 01
C_Verify! RSA public key <k-11, k2 N/A block type 01
C_VerifyRecover RSA public key k < k-11 block type 01
C_WrapKey RSA public key < k-1 k block type 02
C_UnwrapKey RSA private key k < k-11 block type 02

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.7 PKCS #1 RSA OAEP mechanism parameters

¢ CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Message Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS MGF TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined functions.
Table 5, PKCS #1 Mask Generation Functions

Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL
CKG_MGF1_SHA224 0x00000005UL
CKG_MGF1_SHA256 0x00000002UL
CKG_MGF1_SHA384 0x00000003UL
CKG_MGF1_SHA512 0x00000004UL
CKG_MGF1_SHA3 224 0x00000006UL
CKG_MGF1_SHA3 256 0x00000007UL
CKG_MGF1_SHA3 384 0x00000008UL
CKG_MGF1_SHA3 512 0x00000009UL

CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_ MGF_TYPE.

¢ CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS OAEP SOURCE TYPE;

27 March 2020
Page 27 of 261

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

510

511
512
513

514

515
516

517

518
519

520
521
522
523
524
525
526
527
528

529
530

531

532

533

534

535
536

537

538
539
540

541

542
543
544
545

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 6, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL | Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatal en must be zero.

CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

¢ CK_RSA_PKCS_OAEP_PARAMS; CK_RSA PKCS_OAEP_PARAMS_PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS OAEP PARAMS ({

CK MECHANISM TYPE hashAlg;

CK_RSA PKCS MGF TYPE mgf;

CK RSA PKCS OAEP SOURCE TYPE source;

CK VOID PTR pSourceData;
CK_ULONG ulSourceDatalen;

} CK RSA PKCS OAEP PARAMS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

mgf mask generation function to use on the encoded block
source source of the encoding parameter
pSourceData data used as the input for the encoding parameter source
ulSourceDatal en length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

2.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 28 of 261

546
547
548

549
550
551
552

553

554

555
556

557

558

559
560
561
562
563
564
565

566
567

568
569
570
571
572
573

574

575
576

577

578

579
580
581

key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.

Table 7, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt! RSA public key < k-2-2hLen k
C_Decrypt! RSA private key k < k-2-2hLen
C_WrapKey RSA public key < k-2-2hLen k
C_UnwrapKey RSA private key k < k-2-2hLen

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.9 PKCS #1 RSA PSS mechanism parameters

¢ CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS PSS PARAMS {

CK _MECHANISM TYPE hashAlg;
CK _RSA PKCS MGF TYPE mgf;
CK_ULONG sLen;

} CK _RSA PKCS PSS _PARAMS;

The fields of the structure have the following meanings:

hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value must
be the mechanism used by the application to generate the message
hash; if the signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the signature
mechanism

mgf mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS_PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

2.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 29 of 261

582
583

584
585
586
587

588
589

590

591
592

593
594

595

596
597
598

599
600

601
602
603
604

605
606
607
608

609

610
611

612

613
614

615
616

part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*-2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA.

Table 8, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input length Output
length

C_Sign' RSA private key hLen k

C_Verify! RSA public key hLen, k N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.11 ISOIIEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

o Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e Asignature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 9, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length
C_Sign' RSA private key <l k2] k
C_SignRecover RSA private key <|ki2] k
C_Verify' RSA public key <lki2], k2 N/A
C_VerifyRecover RSA public key k <l k2]

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 30 of 261

617

618
619
620
621

622
623
624
625

626

627
628
629
630
631
632

633
634
635
636
637
638
639
640
641

642
643

644
645
646
647
648

649
650

651

652
653

654
655

2.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X 509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these
operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first,
applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first.
The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped,;
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply them when
unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with O-valued bytes. In effect, to encrypt the
sequence of plaintext bytes b1 b2 ... bn (n < k), Cryptoki forms P=2"1b1+2"2hy+...+bn. This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 10, X.509 (Raw) RSA: Key And Data Length

Function Key type Input Output length
length

C_Encrypt! RSA public key <k k

C_Decrypt! RSA private key k k

C_Sign' RSA private key <k k

C_SignRecover RSA private key <k k

C_Verify! RSA public key <k, k? N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 31 of 261

656
657

658

659
660
661

662
663

664
665

666
667
668
669

670
671
672
673

674

675
676
677

678

679
680

681
682

683
684

685
686
687
688
689

690
691
692
693
694

695
696
697

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC
9796 block formats.

2.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,
the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left with O to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least
128 and a multiple of 32 as specified in ANSI X9.31.

Table 11, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign' RSA private key < k-2 k

C_Verify' RSA public key < k-2, k? N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEncryption, and as in the scheme RSASSA-PKCS1-v1_5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEncryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
shalWithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 32 of 261

698
699

700
701
702

703

704
705
706
707
708

709

710

711
712

713

714
715
716

717

718
719
720

721
722

723
724
725
726

727
728
729
730

731
732
733
734

735
736

identifiers sha256WithRSAEnNcryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128_RSA_PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same
operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other
underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

Table 12, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, k2 N/A block type 01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

2.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash
function.

2.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted CKM_SHA224_RSA_PKCS_PSS,
performs similarly as the other CKM_SHAX_RSA_ PKCS_PSS mechanisms but uses the SHA-224 hash
function.

2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS_PSS,
performs single- and multiple-part digital signatures and verification operations without message
recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384 RSA_PKCS_PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the SHA-256, SHA-
384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k* is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 33 of 261

737

738

739
740

741

742
743
744
745

746

747
748
749
750
751

752

753
754
755

756

757
758
759

760

761

762
763

764

765
766
767
768
769

770
771
772
773
774

Table 13, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.18 PKCS #1 v1.5 RSA signature with SHA3

The PKCS #1 v1.5 RSA signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS, CKM_SHA3_256_RSA_PKCS, CKM_SHA3_384 RSA_PKCS,
and CKM_SHA3_512_RSA_PKCS respectively, performs similarly as the other
CKM_SHAX_RSA_PKCS mechanisms but uses the corresponding SHA3 hash functions.

2.1.19 PKCS #1 RSA PSS signature with SHA3

The PKCS #1 RSA PSS signature with SHA3-224, SHA3-256, SHA3-384, SHA3-512 mechanisms,
denoted CKM_SHA3_224 RSA_PKCS_PSS, CKM_SHA3_256_RSA_PKCS_PSS,
CKM_SHA3_384_RSA_PKCS_PSS, and CKM_SHA3 512 RSA_PKCS_PSS respectively, performs
similarly as the other CKM_SHAX_RSA_PKCS_PSS mechanisms but uses the corresponding SHA-3
hash functions.

2.1.20 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 14, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k? N/A

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

2.1.21 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS_TPM_1 _1,is a
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be accepted.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 34 of 261

775
776
77
778
779
780
781

782
783
784

785

786
787

788
789

790

791
792
793
794
795
796

797
798
799
800
801
802
803

804
805
806
807
808
809
810

811
812
813

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 15, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt! RSA public key <k-11-5 k
C_Decrypt! RSA private key k < k-11-5
C_WrapKey RSA public key < k-11-5 k
C_UnwrapKey RSA private key k < k-11-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.22 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA
TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA_PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OXYY may be
accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 35 of 261

814

815

816
817

818

819
820
821

822

823
824
825
826
827
828
829
830

831
832

833
834

835
836

837

838
839
840
841
842
843
844
845
846
847

848
849

850
851

852
853

Table 16, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt! RSA public key < k-2-40-5 k
C_Decrypt! RSA private key k < k-2-40-5
C_WrapKey RSA public key < k-2-40-5 k
C_UnwrapKey RSA private key k < k-2-40-5

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.23 RSA AES KEY WRAP

The RSA AES key wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP, is a mechanism based on
the RSA public-key cryptosystem and the AES key wrap mechanism. It supports single-part key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA
key.
- Atemporary AES key is used for wrapping the target key using
CKM_AES_KEY_WRAP_KWP mechanism.
- The temporary AES key is wrapped with the wrapping RSA key using
CKM_RSA_PKCS_OAEP mechanism.

For wrapping, the mechanism -

e Generates a temporary random AES key of ulAESKeyBits length. This key is not accessible to
the user - no handle is returned.

e Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

o Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP ([AES
KEYWRAP] section 6.3).

e Zeroizes the temporary AES key
e Concatenates two wrapped keys and outputs the concatenated blob. The first is the wrapped
AES key, and the second is the wrapped target key.

The recommended format for an asymmetric target key being wrapped is as a PKCS8
PrivateKeylInfo

The use of Attributes in the PrivateKeylnfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown
For unwrapping, the mechanism -

e Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

e Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP (JAES KEYWRAP] section 6.3).

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 36 of 261

854

855
856

857

858

859
860

861
862
863
864

865

866

867
868

869
870
871

872

873

874
875

876
877

e Zeroizes the temporary AES key.

e Returns the handle to the newly unwrapped target key.
Table 17, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & |[Digest | Key/ & Derive
Decrypt | Verify | /g1 Key | Unwrap
Pair
CKM_RSA AES_KEY_WRAP v

TSR = SignRecover, VR = VerifyRecover

2.1.24 RSA AES KEY WRAP mechanism parameters

¢ CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. It is defined as follows:
typedef struct CK RSA AES KEY WRAP PARAMS ({
CK_ULONG ulAESKeyBits;
CK RSA PKCS OAEP PARAMS PTR pOAEPParams;
} CK_RSA AES KEY WRAP PARAMS;

The fields of the structure have the following meanings:

UlAESKeyBits length of the temporary AES key in bits. Can be only 128, 192 or

256.

pOAEPParams pointer to the parameters of the temporary AES key wrapping. See
also the description of PKCS #1 RSA OAEP mechanism

parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

2.1.25 FIPS 186-4

When CKM_RSA _PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,

2048, or 3072 hits.

2.2 DSA
Table 18, DSA Mechanisms vs. Functions
Functions
Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verif | VR' Key | Unwrap
y Pair
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA_PARAMETER_GEN v

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 37 of 261

878

879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verif

SR

VR!

Gen.
Digest Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_DSA_PROBABILISTIC_P
ARAMETER_GEN

v

CKM_DSA_SHAWE_TAYLOR_
PARAMETER_GEN

v

CKM_DSA_FIPS_G_GEN

CKM_DSA

N

CKM_DSA_SHA1

CKM_DSA_SHA224

CKM_DSA_SHA256

CKM_DSA_SHA384

CKM_DSA_SHA512

CKM_DSA_SHA3_224

CKM_DSA_SHA3_256

CKM_DSA_SHA3_384

CKM_DSA_SHA3 512

NNENENENENENENENEN

2.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of DSA key objects.
Mechanisms:

CKM_DSA_KEY_PAIR_GEN

CKM_DSA
CKM_DSA_SHA1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512
CKM_DSA_SHA3_224
CKM_DSA_SHA3_256
CKM_DSA_SHA3_384
CKM_DSA_SHA3 512

CKM_DSA_PARAMETER_GEN

CKM_DSA_PROBABILISTIC_PARAMETER_GEN

CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN

CKM_DSA _FIPS_G_GEN

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 38 of 261

898

899
900

901
902

903
904
905
906
907
908

909
910

911
912
913

914
915
916
917

918

919
920
921

922

923
924
925

926

927
928
929
930

931
932
933
934
935

¢ CK_DSA_PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure which provides and returns parameters for the
NIST FIPS 186-4 parameter generating algorithms.

CK_DSA_PARAMETER_GEN_PARAM_PTR is a pointer to a CK_DSA_PARAMETER_GEN_PARAM.

typedef struct CK DSA PARAMETER GEN PARAM {
CK_MECHANISM TYPE hash;

CK _BYTE PTR pSeed;
CK_ULONG ulSeedLen;
CK_ULONG ulIndex;

} CK _DSA PARAMETER GEN PARAM;

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA 1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA PROBABILISTIC_PARAMETER_GEN,
CKM_DSA _SHAWE_TAYLOR_PARAMETER_GEN, and passed
into CKM_DSA_FIPS_G_GEN.

ulSeedLen Length of seed value.

ullndex Index value for generating G. Input for CKM_DSA FIPS G_GEN.
Ignored by CKM_DSA_PROBABILISTIC_PARAMETER_GEN and
CKM_DSA _SHAWE_TAYLOR_PARAMETER_GEN.

2.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 19, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"3 Big integer Prime p (512 to 3072 bits, in steps of 64 bits)
CKA_SUBPRIME"? Big integer Subprime q (160, 224 bits, or 256 bits)
CKA_BASE"3 Big integer Base g

CKA_VALUE"* Big integer Public value y

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT CLASS class = CKO_PUBLIC KEY;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = “A DSA public key object”;
CK BYTE prime[] = {...};
CK BYTE subprime([] = {...};
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 39 of 261

936
937
938
939
940
941
942
943
944
945
946
947
948
949

950

951
952
953
954
955

956
957
958

959

960
961
962

963

964

965
966

967
968
969

970
971
972
973
974

CK BYTE base[] = {...};
CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
}i

2.2.3 DSA Key Restrictions

FIPS PUB 186-4 specifies permitted combinations of prime and sub-prime lengths. They are:
e Prime: 1024 bits, Subprime: 160
e Prime: 2048 bits, Subprime: 224
e Prime: 2048 bits, Subprime: 256
e Prime: 3072 bits, Subprime: 256

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementation that is compliant to FIPS 186-4 does not permit the use of primes of
any length less than 1024 bits.

2.2.4 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
defined for this object class:

Table 20, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"46 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME'4#6 Big integer Subprime g (160 bits, 224 bits, or 256 bits)
CKA_BASE"46 Big integer Base g

CKA_VALUE"467 Big integer Private value x

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA
domain parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:
CK OBJECT CLASS class = CKO_PRIVATE KEY;
CK _KEY TYPE keyType = CKK DSA;
CK UTF8CHAR label[] “A DSA private key object”;
CK BYTE subject[] = {...};

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 40 of 261

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
901
992
993
994

995

996
997
998

999

1000

1001
1002

1003
1004

1005
1006
1007
1008
1009

1010
1011
1012
1013
1014

CK_BYTE id[] =
CK BYTE prime[]
CK BYTE subprime
CK_BYTE base[] =

I = {...};
(...}

CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, é&true, sizeof (true)},
{CKA SIGN, &true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

2.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in

addition to the common attributes defined for this object class:
Table 21, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME"# Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME'# Big integer Subprime g (160 bits, 224 bits, or 256 bits)
CKA_BASE"* Big integer Base g

CKA_ PRIME_BITS?23 CK_ULONG Length of the prime value.

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain

parameters”. See FIPS PUB 186-4 for more information on DSA domain parameters.

To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to
C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows:

o |f CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits

¢ If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
¢ If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;

CK_KEY TYPE keyType = CKK_DSA;

CK _UTF8CHAR labell[] “A DSA domain parameter object”;
CK BYTE prime[] = {...};

CK BYTE subprime([] = {...};

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 41 of 261

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

1027
1028

1029

1030
1031
1032

1033
1034
1035
1036
1037

1038
1039

1040

1041
1042
1043

1044

1045
1046

1047
1048
1049

1050
1051

1052

1053
1054
1055
1056

1057
1058

CK BYTE base[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},

}i

2.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair generation
mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private

key types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,

CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA
domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABILISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 42 of 261

1059
1060
1061

1062
1063
1064
1065

1066
1067

1068

1069
1070
1071
1072

1073
1074

1075
1076
1077

1078
1079
1080
1081

1082
1083

1084

1085
1086
1087

1088
1089

1090
1091

1092
1093
1094

1095
1096

1097

1098
1099
1100
1101

1102
1103

1104
1105

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism
based on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.2
Construction and Validation of Provable Primes p and q.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-4,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 43 of 261

1106

1107
1108

1109
1110

1111

1112
1113
1114

1115
1116

1117
1118
1119

1120

1121
1122

1123

1124
1125

1126
1127
1128
1129
1130

1131

1132
1133
1134

Table 22, DSA: Key And Data Length

Function Key type Input length | Output length
C_Sign' DSA private key 20, 28, 32, 2*length of

48, or 64 bits subprime
C_Verify! DSA public key (20, 28, 32, N/A

48, or 64
bits),
(2*length of
subprime)?

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 23, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and q, represented by L
and N, SHALL be used:

L =1024,N =160
L =2048, N = 224
L =2048, N = 256
L =3072, N = 256

2.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 44 of 261

1135
1136

1137
1138
1139

1140

1141
1142

1143

1144
1145
1146

1147
1148

1149
1150
1151

1152

1153

1154
1155
1156

1157
1158

1159
1160

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 24, DSA with SHA-244: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 25, DSA with SHA-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

2.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 45 of 261

1161 Table 26, DSA with SHA-384: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

1162 2 Data length, signature length.

1163 2.2.17 DSA with SHA-512

1164 The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
1165 part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
1166 This mechanism computes the entire DSA specification, including the hashing with SHA-512.

1167 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
1168 the concatenation of the DSA values r and s, each represented most-significant byte first.

1169 This mechanism does not have a parameter.
1170 Constraints on key types and the length of data are summarized in the following table:
1171 Table 27, DSA with SHA-512: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

1172 2 Data length, signature length.

1173 2.2.18 DSA with SHA3-224

1174 The DSA with SHA3-224 mechanism, denoted CKM_DSA_SHA3_224, is a mechanism for single- and
1175 multiple-part signatures and verification based on the Digital Sighature Algorithm defined in FIPS PUB
1176 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-224.

1177 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
1178 the concatenation of the DSA values r and s, each represented most-significant byte first.

1179 This mechanism does not have a parameter.
1180 Constraints on key types and the length of data are summarized in the following table:
1181 Table 28, DSA with SHA3-224: Key And Data Length

Function Key type Input length Output length
C_Sign DSA private key any 2*subprime length
C_Verify DSA public key any, N/A
2*subprime
length?

1182 2 Data length, signature length.

1183 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
1184 specify the supported range of DSA prime sizes, in bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 46 of 261

1185 2.2.19 DSA with SHA3-256

1186 The DSA with SHA3-256 mechanism, denoted CKM_DSA_SHA3_256, is a mechanism for single- and
1187 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
1188 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-256.

1189 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
1190 the concatenation of the DSA values r and s, each represented most-significant byte first.

1191 This mechanism does not have a parameter.
1192 Constraints on key types and the length of data are summarized in the following table:
1193 Table 29, DSA with SHA3-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

1194 2 Data length, signature length.

1195 2.2.20 DSA with SHA3-384

1196 The DSA with SHA3-384 mechanism, denoted CKM_DSA_SHA3_384, is a mechanism for single- and
1197 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
1198 186-4. This mechanism computes the entire DSA specification, including the hashing with SHA3-384.

1199 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
1200 the concatenation of the DSA values r and s, each represented most-significant byte first.

1201 This mechanism does not have a parameter.
1202 Constraints on key types and the length of data are summarized in the following table:
1203 Table 30, DSA with SHA3-384: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

1204 2 Data length, signature length.

1205 2.2.21 DSA with SHA3-512

1206 The DSA with SHA3-512 mechanism, denoted CKM_DSA_SHA3_512, is a mechanism for single- and
1207 multiple-part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB
1208 186-4. This mechanism computes the entire DSA specification, including the hashing with SH3A-512.

1209 For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
1210 the concatenation of the DSA values r and s, each represented most-significant byte first.

1211 This mechanism does not have a parameter.
1212 Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 47 of 261

1213

1214
1215

1216

1217
1218

1219
1220
1221
1222
1223

1224
1225

Table 31, DSA with SHA3-512: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
length?

2 Data length, signature length.

2.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document was originally based on
the one described in the ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

The EC cryptosystem developed by the ANSI X9F1 working group was created at a time when EC curves
were always represented in their Weierstrass form. Since that time, new curves represented in Edwards

form (RFC 8032) and Montgomery form (RFC 7748) have become more common. To support these new
curves, the EC cryptosystem in this document has been extended from the original.
generation mechanisms have been added as well as an additional signature generation mechanism.

Table 32, Elliptic Curve Mechanisms vs. Functions

Additional key

PAIR_GEN

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR Key Unwrap

Pair

CKM_EC_KEY_PAIR_GEN 4
CKM_EC KEY_PAIR_ GEN_W_ v
EXTRA_BITS
CKM_EC _EDWARDS KEY_PAI v
R_GEN
CKM_EC_MONTGOMERY_KEY 4

CKM_ECDSA

3

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224

CKM_ECDSA_SHA256

CKM_ECDSA_SHA384

CKM_ECDSA_SHA512

CKM_ECDSA_SHA3_224

CKM_ECDSA_SHA3_256

CKM_ECDSA_SHA3_384

CKM_ECDSA_SHA3_512

CKM_EDDSA

CKM_XEDDSA

ANEANIRNERNIENIR NN RN NI

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DE
RIVE

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 48 of 261

1226
1227

1228
1229
1230

1231

1232
1233
1234
1235

1236
1237

1238
1239
1240
1241
1242
1243
1244

1245
1246
1247
1248
1249
1250

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR Key Unwrap
Pair
CKM_ECMQV_DERIVE v
CKM_ECDH_AES _KEY_WRAP v
Table 33, Mechanism Information Flags
CKF_EC F P 0x00100000UL | True if the mechanism can be used
with EC domain parameters over F,
CKF_EC F _2M 0x00200000UL | True if the mechanism can be used
with EC domain parameters over Fam
CKF_EC_ECPARAMETERS 0x00400000UL | True if the mechanism can be used

with EC domain parameters of the
choice ecParameters

CKF_EC_OID 0x00800000UL | True if the mechanism can be used
with EC domain parameters of the
choice old

CKF_EC_UNCOMPRESS 0x01000000UL | True if the mechanism can be used
with elliptic curve point uncompressed

CKF_EC_COMPRESS 0x02000000UL | True if the mechanism can be used
with elliptic curve point compressed

CKF_EC_CURVENAME 0x04000000UL | True of the mechanism can be used

with EC domain parameters of the
choice curveName

Note: CKF_EC_NAMEDCURVE is deprecated with PKCS#11 3.00. It is replaced by CKF_EC_OID.
In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).

2. EC using a field of characteristic two (i.e. the finite field F2m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a
Cryptoki library supporting EC keys over Fzm. A Cryptoki library that can perform EC mechanisms must
set either or both of these flags for each EC mechanism.

In these specifications there are also four representation methods to define the domain parameters for an
EC key. Only the ecParameters, the old and the curveName choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_OID flag identifies a Cryptoki library
supporting the old choice, and the CKF_EC_CURVENAME flag identifies a Cryptoki library supporting
the curveName choice. A Cryptoki library that can perform EC mechanisms must set the appropriate
flag(s) for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library
supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 49 of 261

1251
1252
1253

1254
1255
1256
1257
1258
1259

1260

1261
1262
1263
1264
1265
1266
1267
1268

1269
1270

1271
1272
1273
1274
1275
1276
1277

1278
1279
1280
1281

1282

1283
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

2.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,
the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

An EdDSA signature is an octet string of even length which is two times nLen octets, where nLen is
calculated as EADSA parameter b divided by 8. The signature octets correspond to the concatenation of
the EADSA values R and S as defined in [RFC 8032], both represented as an octet string of equal length
of nLen bytes in little endian order.

2.3.2 Definitions

This section defines the key type “CKK_EC” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

Note: CKK_ECDSA is deprecated. It is replaced by CKK_EC.

Mechanisms:

CKM_EC_KEY_PAIR_GEN
CKM_EC_EDWARDS_KEY_PAIR_GEN
CKM_EC_MONTGOMERY_KEY_PAIR_GEN
CKM_ECDSA

CKM_ECDSA_SHA1

CKM_ECDSA_SHA224
CKM_ECDSA_SHA?256
CKM_ECDSA_SHA384
CKM_ECDSA_SHA512
CKM_ECDSA_SHA3 224

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 50 of 261

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

1331

1332
1333
1334

CKM_ECDSA_SHA3_256
CKM_ECDSA_SHA3_384
CKM_ECDSA_SHA3 512
CKM_EDDSA

CKM_XEDDSA
CKM_ECDH1_DERIVE
CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHA512_KDF
CKD_SHA3_224 KDF
CKD_SHA3_256_KDF
CKD_SHA3_384_KDF
CKD_SHA3_512_KDF
CKD_SHA1_KDF_SP800
CKD_SHA224_KDF_SP800
CKD_SHA256_KDF_SP800
CKD_SHA384_KDF_SP800
CKD_SHA512_KDF_SP800
CKD_SHA3_224_KDF_SP800
CKD_SHA3_256_KDF_SP800
CKD_SHA3_384_KDF_SP800
CKD_SHA3_512_KDF_SP800
CKD_BLAKE2B_160_KDF
CKD_BLAKE2B_256_KDF
CKD_BLAKE2B_384_KDF
CKD_BLAKE2B_512_KDF

2.3.3 ECDSA public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC)
hold EC public keys. The following table defines the EC public key object attributes, in addition to the

common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 51 of 261

1335

1336
1337

1338
1339
1340
1341
1342
1343
1344
1345

1346

1347
1348
1349
1350
1351
1352

1353

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1368

1369
1370
1371

Table 34, Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS!"3 Byte array | DER-encoding of an ANSI X9.62 Parameters
value

CKA_EC_POINT"# Byte array DER-encoding of ANSI X9.62 ECPoint value
Q

- Refer to [PKCS11-Base] table 11 for footnotes

Note: CKA_ECDSA_PARAMS is deprecated. It is replaced by CKA_EC_PARAMS.

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
old CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC;
CK UTF8CHAR label[] = “An EC public key object”;
CK BYTE ecParams[] = {...};
CK BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA_EC POINT, ecPoint, sizeof (ecPoint)}
i

2.3.4 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC)
hold EC private keys. See Section 2.3 for more information about EC. The following table defines the EC
private key object attributes, in addition to the common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 52 of 261

1372

1373

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

1389
1390

1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

Table 35, Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'46 Byte array DER-encoding of an ANSI X9.62
Parameters value

CKA_VALUE"467 Big integer | ANSI X9.62 private value d

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods with the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

This allows detailed specification of all required values using choice ecParameters, the use of old as an
object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to
indicate that the domain parameters are explicitly defined elsewhere, or curveName to specify a curve
name as e.g. define in [ANSI X9.62], [BRAINPOOL], [SEC 2], [LEGIFRANCE]. The use of old or
curveName is recommended over the choice ecParameters. The choice implicitlyCA must not be used
in Cryptoki.Note that when generating an EC private key, the EC domain parameters are not specified in
the key’'s template. This is because EC private keys are only generated as part of an EC key pair, and
the EC domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC;

CK UTF8CHAR label[] = “An EC private key object”;
CK BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof (class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, &true, sizeof (true)},

{CKA DERIVE, ¢&true, sizeof (true)},
{CKA EC _PARAMS, ecParams, sizeof (ecParams)},
{CKA VALUE, value, sizeof (value)}

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 53 of 261

1412 2.3.5 Edwards Elliptic curve public key objects

1413 Edwards EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_EDWARDS) hold
1414 Edwards EC public keys. The following table defines the Edwards EC public key object attributes, in
1415 addition to the common attributes defined for this object class:

1416 Table 36, Edwards Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS!'3 Byte array DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"# Byte array DER-encoding of the b-bit public key value in
little endian order as defined in RFC 8032

1417 - Refer to [PKCS #11-Base] table 11 for footnotes

1418 The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
1419 X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
1420 and Montgomery Elliptic curves. The CKA_EC_PARAMS attribute has the following syntax:

1421 Parameters ::= CHOICE {

1422 ecParameters ECParameters,

1423 oId CURVES. &id ({CurveNames}),
1424 implicitlyCA NULL,

1425 curveName PrintableString

1426 }

1427 Edwards EC public keys only support the use of the curveName selection to specify a curve name as
1428 defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as
1429 defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

1430 The following is a sample template for creating an Edwards EC public key object with Edwards25519
1431 being specified as curveName:

1432 CK _OBJECT CLASS class = CKO PUBLIC KEY;

1433 CK_KEY TYPE keyType = CKK_EC;

1434 CK UTF8CHAR label[] = “An Edwards EC public key object”;
1435 CK BYTE ecParams[] = {0x13, Ox0Oc, Ox65, 0x64, 0x77, 0Oxe6l,
1436 0x72, 0x64, 0x73, 0x32, 0x35, 0x35, 0x31, 0x39};
1437 CK BYTE ecPoint[] = {...};

1438 CK BBOOL true = CK TRUE;

1439 CK_ATTRIBUTE template[] = {

1440 {CKA CLASS, é&class, sizeof(class)},

1441 {CKA_KEY TYPE, &keyType, sizeof (keyType)},

1442 {CKA TOKEN, &true, sizeof (true)},

1443 {CKA LABEL, label, sizeof(label)-1},

1444 {CKA EC_PARAMS, ecParams, sizeof (ecParams)},

1445 {CKA_EC_POINT, ecPoint, sizeof (ecPoint)}

1446 }s

1447 2.3.6 Edwards Elliptic curve private key objects

1448 Edwards EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_EDWARDS)
1449 hold Edwards EC private keys. See Section 2.3 for more information about EC. The following table
1450 defines the Edwards EC private key object attributes, in addition to the common attributes defined for this
1451 object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 54 of 261

1452

1453

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1464
1465

1466
1467
1468
1469

1470

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

1490

1491
1492

Table 37, Edwards Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'46 Byte array DER-encoding of a Parameters value as
defined above

CKA_VALUE"467 Big integer b-bit private key value in little endian order
as defined in RFC 8032

- Refer to [PKCS #11-Base] table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Edwards EC private keys only support the use of the curveName selection to specify a curve name as
defined in [RFC 8032] and the use of the oID selection to specify a curve through an EdDSA algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 8032 and RFC 8410 are incompatible.

Note that when generating an Edwards EC private key, the EC domain parameters are not specified in
the key’'s template. This is because Edwards EC private keys are only generated as part of an Edwards
EC key pair, and the EC domain parameters for the pair are specified in the template for the Edwards EC
public key.

The following is a sample template for creating an Edwards EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK_EC;

CK UTF8CHAR label[] = “An Edwards EC private key object”;
CK BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}

}i

2.3.7 Montgomery Elliptic curve public key objects

Montgomery EC public key objects (object class CKO_PUBLIC_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC public keys. The following table defines the

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 55 of 261

1493
1494

1495

1496

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

1507
1508

1509

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

1524

1525
1526
1527
1528

Montgomery EC public key object attributes, in addition to the common attributes defined for this object
class:

Table 38, Montgomery Elliptic Curve Public Key Object Attributes

Attribute Data type | Meaning

CKA_EC_PARAMS!"3 Byte array | DER-encoding of a Parameters value as
defined above

CKA_EC_POINT"# Byte array DER-encoding of the public key value in little
endian order as defined in RFC 7748

- Refer to [PKCS #11-Base] table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
old CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Montgomery EC public keys only support the use of the curveName selection to specify a curve name as
defined in [RFC7748] and the use of the olD selection to specify a curve through an ECDH algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

The following is a sample template for creating a Montgomery EC public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK EC;
CK UTF8CHAR label[] = “A Montgomery EC public key object”;
CK BYTE ecParams|[] = {...};
CK BYTE ecPoint[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}
}i

2.3.8 Montgomery Elliptic curve private key objects

Montgomery EC private key objects (object class CKO_PRIVATE_KEY, key type
CKK_EC_MONTGOMERY) hold Montgomery EC private keys. See Section 2.3 for more information
about EC. The following table defines the Montgomery EC private key object attributes, in addition to the
common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 56 of 261

1529

1530

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

1541
1542

1543
1544
1545
1546

1547

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1567

1568
1569

Table 39, Montgomery Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'46 Byte array DER-encoding of a Parameters value as
defined above

CKA_VALUE"467 Big integer Private key value in little endian order as
defined in RFC 7748

- Refer to [PKCS #11-Base] table 11 for footnotes

The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI
X9.62 as a choice of three parameter representation methods. A 4™ choice is added to support Edwards
and Montgomery Elliptic curves. The CKA_EC_PARAMS attribute has the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
oId CURVES. &id ({CurveNames}),
implicitlyCA NULL,
curveName PrintableString

}

Edwards EC private keys only support the use of the curveName selection to specify a curve name as
defined in [RFC7748] and the use of the olID selection to specify a curve through an ECDH algorithm as
defined in [RFC 8410]. Note that keys defined by RFC 7748 and RFC 8410 are incompatible.

Note that when generating a Montgomery EC private key, the EC domain parameters are not specified in
the key’'s template. This is because Montgomery EC private keys are only generated as part of a
Montgomery EC key pair, and the EC domain parameters for the pair are specified in the template for the
Montgomery EC public key.

The following is a sample template for creating a Montgomery EC private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK_EC;

CK UTF8CHAR label[] = “A Montgomery EC private key object”;
CK BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK BYTE ecParams[] = {...};

CK BYTE valuel[] = {...};

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}

}i

2.3.9 Elliptic curve key pair generation

The EC (also related to ECDSA) key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN, is
a key pair generation mechanism that uses the method defined by the ANSI X9.62 and X9.63 standards.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 57 of 261

1570
1571
1572

1573

1574
1575
1576

1577
1578
1579
1580
1581

1582
1583
1584
1585
1586
1587

1588

1589
1590

1591

1592
1593
1594
1595
1596

1597
1598
1599
1600
1601

1602
1603
1604
1605
1606

1607

1608
1609
1610

1611

1612
1613
1614
1615
1616

1617
1618

The EC (also related to ECDSA) key pair generation mechanism, denoted
CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS, is a key pair generation mechanism that uses the method
defined by FIPS 186-4 Appendix B.4.1.

These mechanisms do not have a parameter.

These mechanisms generate EC public/private key pairs with particular EC domain parameters, as
specified in the CKA_EC_PARAMS attribute of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these EC domain parameters.

These mechanism contribute the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

2.3.10 Edwards Elliptic curve key pair generation

The Edwards EC key pair generation mechanism, denoted CKM_EC_EDWARDS_KEY_PAIR_GEN, is a
key pair generation mechanism for EC keys over curves represented in Edwards form.

This mechanism does not have a parameter.

The mechanism can only generate EC public/private key pairs over the curves edwards25519 and
edwards448 as defined in RFC 8032 or the curves id-Ed25519 and id-Ed448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or the olD methods. Attempts to generate keys over these curves using any other
EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE
attributes to the new private key. Other attributes supported by the Edwards EC public and private key
types (specifically, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

2.3.11 Montgomery Elliptic curve key pair generation

The Montgomery EC key pair generation mechanism, denoted
CKM_EC_MONTGOMERY_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over
curves represented in Montgomery form.

This mechanism does not have a parameter.

The mechanism can only generate Montgomery EC public/private key pairs over the curves curve25519
and curve448 as defined in RFC 7748 or the curves id-X25519 and id-X448 as defined in RFC 8410.
These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key
using the curveName or old methods. Attempts to generate keys over these curves using any other EC
key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 58 of 261

1619
1620
1621

1622
1623
1624
1625
1626

1627

1628

1629
1630
1631
1632

1633
1634
1635

1636
1637
1638

1639
1640
1641
1642
1643
1644

1645

1646

1647
1648
1649
1650
1651
1652

1653
1654
1655

1656

attributes to the new private key. Other attributes supported by the EC public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified in the templates
for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 7748 only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

2.3.12 ECDSA without hashing

Refer section 2.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 40, ECDSA without hashing: Key and Data Length

Function Key type Input length Output
length

C_Sign' ECDSA private key any? 2nLen

C_Verify? ECDSA public key any3, <2nlLen 2 N/A

1 Single-part operations only.
2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in
binary notation, the number 22% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

2.3.13 ECDSA with hashing

Refer to section 2.3.1 for signature encoding.

The ECDSA with SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
mechanism, denoted
CKM_ECDSA_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512]
respectively, is a mechanism for single- and multiple-part signatures and verification for ECDSA. This
mechanism computes the entire ECDSA specification, including the hashing with SHA-1, SHA-224, SHA-
384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512 respectively.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 41, ECDSA with hashing: Key and Data Length

Function Key type Input length | Output length
C_Sign ECDSA private key any 2nLen
C_Verify ECDSA public key any, <2nlLen? N/A

2 Data length, signature length.

27 March 2020
Page 59 of 261

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

1657
1658
1659
1660
1661
1662

1663

1664
1665
1666

1667
1668
1669
1670

1671

1672
1673

1674
1675

1676

1677
1678
1679

1680
1681
1682
1683
1684

1685

1686
1687
1688

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2290 and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 23% is a 301-bit number).

2.3.14 EADSA

The EdADSA mechanism, denoted CKM_EDDSA, is a mechanism for single-part and multipart signatures
and verification for EHDSA. This mechanism implements the five EADSA signature schemes defined in
RFC 8032 and RFC 8410.

For curves according to RFC 8032, this mechanism has an optional parameter, a CK_EDDSA_PARAMS
structure. The absence or presence of the parameter as well as its content is used to identify which
signature scheme is to be used. The following table enumerates the five signature schemes defined in
RFC 8032 and all supported permutations of the mechanism parameter and its content.

Table 42, Mapping to RFC 8032 Signature Schemes

Signature Scheme Mechanism Param phFlag Context Data
Ed25519 Not Required N/A N/A
Ed25519ctx Required False Optional
Ed25519ph Required True Optional
Ed448 Required False Optional
Ed448ph Required True Optional

For curves according to RFC 8410, the mechanism is implicitly given by the curve, which is EADSA in
pure mode.

Constraints on key types and the length of data are summarized in the following table:
Table 43, EADSA: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_EC_EDWARDS private key any 2blen
C_Verify CKK_EC_EDWARDS public key any, <2blLen? N/A

2 Data length, signature length.

Note that for EDDSA in pure mode, Ed25519 and Ed448 the data must be processed twice. Therefore, a
token might need to cache all the data, especially when used with C_SignUpdate/C_VerifyUpdate. If
tokens are unable to do so they can return CKR_TOKEN_RESOURCE_EXCEEDED.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as RFC 8032and RFC 8410 only define curves of
these two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

2.3.15 XEdDSA

The XEdDSA mechanism, denoted CKM_XEDDSA, is a mechanism for single-part signatures and
verification for XEADSA. This mechanism implements the XEdDSA signature scheme defined in
[XEDDSA]. CKM_XEDDSA operates on CKK_EC_MONTGOMERY type EC keys, which allows these

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 60 of 261

1689
1690
1691

1692
1693

1694

1695
1696
1697
1698
1699

1700
1701

1702
1703

1704
1705
1706
1707
1708
1709
1710

1711
1712

1713
1714

1715

1716
1717
1718

1719
1720

keys to be used both for signing/verification and for Diffie-Hellman style key-exchanges. This double use
is necessary for the Extended Triple Diffie-Hellman where the long-term identity key is used to sign short-
term keys and also contributes to the DH key-exchange.

This mechanism has a parameter, a CK_XEDDSA_PARAMS structure.
Table 44, XEdADSA: Key and Data Length

[Function Key type Input length Output length
C_Sign' CKK_EC_MONTGOMERY private any? 2b
C_Verify! CKK_EC_MONTGOMERY public anys, <2b 2 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For this
mechanism, the only allowed values are 255 and 448 as [XEDDSA] only defines curves of these two
sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

2.3.16 EC mechanism parameters
¢+ CK_EDDSA_PARAMS, CK_EDDSA_PARAMS_PTR

CK_EDDSA_PARAMS is a structure that provides the parameters for the CKM_EDDSA signature
mechanism. The structure is defined as follows:

typedef struct CK EDDSA PARAMS ({
CK BBOOL phFlag;
CK_ULONG ulContextDatalen;
CK_BYTE PTR pContextData;

} CK _EDDSA PARAMS;

The fields of the structure have the following meanings:

phFlag a Boolean value which indicates if Prehashed variant of EdDSA should
used

ulContextDatalen the length in bytes of the context data where 0 <= ulContextDatalen <=
255.

pContextData context data shared between the signer and verifier

CK_EDDSA_PARAMS_PTR is a pointer to a CK_EDDSA_PARAMS.

¢ CK _XEDDSA_ PARAMS, CK_XEDDSA_PARAMS_PTR

CK_XEDDSA_PARAMS is a structure that provides the parameters for the CKM_XEDDSA signature
mechanism. The structure is defined as follows:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 61 of 261

1721 typedef struct CK XEDDSA PARAMS ({

1722 CK _XEDDSA HASH TYPE hash;
1723 } CK XEDDSA PARAMS;
1724

1725 The fields of the structure have the following meanings:
1726 hash a Hash mechanism to be used by the mechanism.

1727 CK_XEDDSA_PARAMS_PTR is a pointer to a CK_XEDDSA_PARAMS.
1728
1729 ¢ CK_XEDDSA_HASH_TYPE, CK_XEDDSA HASH_TYPE_PTR

1730 CK_XEDDSA_HASH_TYPE is used to indicate the hash function used in XEDDSA. It is defined as
1731 follows:

1732 typedef CK ULONG CK XEDDSA HASH TYPE;
1733

1734 The following table lists the defined functions.
1735 Table 45, EC: Key Derivation Functions

Source Identifier
CKM_BLAKE2B 256
CKM_BLAKE2B 512
CKM_SHA3 256
CKM_SHA3 512
CKM_SHA256
CKM_SHA512

1736

1737 CK_XEDDSA_HASH_TYPE_PTR is a pointer to a CK_XEDDSA_HASH_TYPE.
1738

1739 ¢ CK EC_KDF_TYPE, CK_EC_KDF _TYPE_PTR

1740 CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
1741 from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is
1742 defined as follows:

1743 typedef CK ULONG CK EC KDF TYPE;
1744 a - a

1745 The following table lists the defined functions.

1746 Table 46, EC: Key Derivation Functions

Source Identifier
CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHA512 KDF
CKD_SHA3 224 KDF

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 62 of 261

1747
1748

1749
1750
1751
1752

1753
1754
1755
1756
1757

1758
1759
1760

1761
1762

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

1773
1774
1775

CKD_SHA3_256_KDF

CKD_SHA3_384_KDF

CKD_SHA3 512_KDF

CKD_SHA1_KDF_SP800

CKD_SHA224_KDF_SP800

CKD_SHA256_KDF_SP800

CKD_SHA384_KDF_SP800

CKD_SHA512_KDF_SP800

CKD_SHA3_224_KDF_SP800

CKD_SHA3_256_KDF_SP800

CKD_SHA3_384_KDF_SP800

CKD_SHA3_512_KDF_SP800

CKD_BLAKE2B_160_KDF

CKD_BLAKE2B_256_KDF

CKD_BLAKE2B_384_KDF

CKD_BLAKE2B_512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function.

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF, which are
based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [ANSI X9.63].

The key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800,
which are based on SHA-1, SHA-224, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512
respectively, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1.

The key derivation functions CKD_BLAKE2B_[160]|256|384|512]_KDF, which are based on the Blake2b
family of hashes, derive keying data from the shared secret value as defined in [FIPS SP800-56A] section
5.8.1.1. CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.

¢ CK_ECDH1 DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where
each party contributes one key pair. The structure is defined as follows:
typedef struct CK ECDH1 DERIVE PARAMS ({
CK EC KDF TYPE kdf;

CK_ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK_ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;

} CK ECDH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 63 of 261

1776

1777

1778

1779
1780
1781
1782
1783
1784
1785
1786

1787
1788
1789
1790
1791
1792

1793
1794

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

1809
1810
1811

1812

1813

1814

ulSharedDatalen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’s EC public key

pPublicData’ pointer to other party’s EC public key value. A token MUST be able
to accept this value encoded as a raw octet string (as per section
A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting
this value as a DER-encoded ECPoint (as per section E.6 of [ANS/
X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling
application is responsible for converting the offered public key to the
compressed or uncompressed forms of these encodings if the token
does not support the offered form.

With the key derivation function CKD_NULL, pSharedData must be NULL and u/SharedDatalen must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an
optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalLen must be zero.

CK_ECDH1 _DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.
¢ CK_ECDH2_DERIVE_PARAMS, CK_ECDH2_ DERIVE_PARAMS_PTR

CK_ECDH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK ECDH2 DERIVE PARAMS ({
CK_EC_KDF_TYPE kdf;
CK ULONG ulSharedDatalen;
CK BYTE PTR pSharedData;
CK _ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
CK _ULONG ulPrivateDatalen;
CK _OBJECT HANDLE hPrivateData;
CK _ULONG ulPublicDatalLenZ2;
CK BYTE PTR pPublicDataZ2;
} CK_ECDH2 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulSharedDatalen the length in bytes of the shared info
pSharedData some data shared between the two parties

ulPublicDatalen the length in bytes of the other party’s first EC public key

1 The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding

(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 64 of 261

1815
1816

1817

1818

1819

1820
1821

1822
1823
1824
1825

1826
1827
1828

1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

1844
1845
1846

1847

1848

1849

1850
1851

1852

1853

pPublicData

ulPrivateDatal.en
hPrivateData
ulPublicDatal.en2

pPublicData2

pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE PARAMS

the length in bytes of the second EC private key
key handle for second EC private key value
the length in bytes of the other party’s second EC public key

pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE PARAMS

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and ulSharedDatal.en must be zero.

CK_ECDH2_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH2_DERIVE_PARAMS.

¢ CK_ECMQV_DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The

structure is defined as follows:

typedef struct CK ECMQV DERIVE PARAMS ({

CK_EC _KDF TYPE
CK_ULONG
CK_BYTE_PTR
CK_ULONG
CK_BYTE_PTR
CK_ULONG
CK_OBJECT HANDLE
CK_ULONG
CK_BYTE_PTR
CK_OBJECT HANDLE

kdf;
ulSharedDatalLen;
pSharedData;
ulPublicDatalen;
pPublicData;
ulPrivateDatalen;
hPrivateData;
ulPublicDataLen?2;
pPublicData2;
publicKey;

} CK _ECMQV DERIVE PARAMS;

The fields of the structure have the following meanings:

kdf
ulSharedDatal.en
pSharedData
ulPublicDatalen

pPublicData

ulPrivateDatalen

hPrivateData

pkcs1l-curr-v3.0-cos01

key derivation function used on the shared secret value
the length in bytes of the shared info

some data shared between the two parties

the length in bytes of the other party’s first EC public key

pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

the length in bytes of the second EC private key

key handle for second EC private key value

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 65 of 261

1854

1855
1856

1857

1858
1859
1860
1861
1862
1863

1864

1865

1866
1867
1868
1869

1870

1871
1872
1873
1874
1875

1876

1877
1878
1879

1880
1881
1882
1883

1884
1885
1886
1887

1888
1889
1890
1891
1892
1893

1894

ulPublicDatalLen2 the length in bytes of the other party’s second EC public key

pPublicData2 pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE _PARAMS

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation functions
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF,
CKD_[SHA1|SHA224|SHA384|SHA512|SHA3_224|SHA3_256|SHA3_384|SHA3_512] KDF_SP800, an
optional pSharedData may be supplied, which consists of some data shared by the two parties intending
to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDatalL.en must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

2.3.17 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman version of the elliptic curve key agreement
scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC
domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200
and 23% elements, then uIMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%
is a 301-bit number).

Constraints on key types are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 66 of 261

1895

1896

1897
1898
1899
1900
1901

1902

1903
1904
1905
1906
1907

1908

1909
1910
1911

1912
1913
1914
1915

1916
1917
1918
1919

1920
1921
1922
1923
1924
1925

1926
1927

1928

1929
1930
1931
1932

1933

1934
1935
1936

Table 47: ECDH: Allowed Key Types

Function Key type

C_Derive CKK_EC or CKK_EC_MONTGOMERY

2.3.18 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 220°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 48: ECDH with cofactor: Allowed Key Types

Function Key type

C_Derive CKK_EC

2.3.19 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the elliptic curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 67 of 261

1937
1938

1939

1940
1941
1942

1943
1944
1945
1946

1947
1948
1949
1950

1951
1952
1953
1954
1955
1956

1957
1958

1959

1960
1961
1962

1963

1964
1965
1966
1967
1968
1969
1970
1971
1972

1973
1974

1975
1976
1977
1978

1979
1980

1981

contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 22%°
and 23% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 22%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 23%
is a 301-bit number).

Constraints on key types are summarized in the following table:
Table 49: ECDH MQV: Allowed Key Types

Function Key type

C_Derive CKK_EC

2.3.20 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap an asymmetric target key of any length and type using an EC
key.
- Atemporary AES key is derived from a temporary EC key and the wrapping EC key
using the CKM_ECDH1_DERIVE mechanism.
- The derived AES key is used for wrapping the target key using the
CKM_AES_KEY_WRAP_KWP mechanism.

For wrapping, the mechanism -

e Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

e Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private key of the transport EC key and the public
key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the
temporary AES key.

e Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_KWP ([AES
KEYWRAP] section 6.3).

e Zeroizes the temporary AES key and EC transport private key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 68 of 261

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

1992
1993
1994

1995
1996
1997

1998
1999
2000
2001

2002
2003

2004

2005
2006

2007
2008
2009

2010

2011

2012
2013

2014
2015
2016

e Concatenates public key material of the transport key and output the concatenated blob. The first
part is the public key material of the transport key and the second part is the wrapped target key.

The recommended format for an asymmetric target key being wrapped is as a PKCS8
PrivateKeylnfo

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylnfo structure, an error should be thrown.

For unwrapping, the mechanism -

e Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the
public key material of the unwrapping EC key.

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

e Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private part of unwrapping EC key and the public
part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the
temporary AES key.

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_KWP ([AES KEYWRAP] section 6.3).

e Zeroizes the temporary AES key.

Table 50, CKM_ECDH_AES KEY_ WRAP Mechanisms vs. Functions

Functions
Encrypt| Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify VR1 Key Unwrap
Pair
CKM_ECDH_AES_KEY_WRAP v
TSR = SignRecover, VR = VerifyRecover

Constraints on key types are summarized in the following table:
Table 51: ECDH AES Key Wrap: Allowed Key Types

Function Key type

C_Derive CKK_EC or CKK_EC_MONTGOMERY

2.3.21 ECDH AES KEY WRAP mechanism parameters

+ CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK ECDH AES KEY WRAP PARAMS {
CK_ULONG ulAESKeyBits;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 69 of 261

2017
2018
2019
2020

2021
2022
2023
2024
2025

2026
2027

2028

2029

2030

2031
2032

2033

2034

2035
2036
2037

2038
2039
2040
2041
2042

2043
2044

CK_EC KDF TYPE kdf;
CK_ULONG
CK_BYTE PTR

} CK ECDH AES KEY WRAP PARAMS;

ulSharedDatalen;

pSharedData;

The fields of the structure have the following meanings:

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a

UIAESKeyBits

kdf

ulSharedDatal.en

pSharedData

length of the temporary AES key in bits. Can be only 128, 192 or

256.

key derivation function used on the shared secret value to generate

AES key.

the length in bytes of the shared info

Some data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS.

2.3.22 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by
ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521
K-163, B-163,
K-283, B-283,

K-571, B-571

K-233, B-233
K-409, B-409

2.4 Diffie-Hellman

Table 52, Diffie-Hellman Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR' Key | Unwrap

Pair

CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS_DERIVE v
CKM_X9_42_DH_KEY_PAIR_GEN v
CKM_X9_42 DH_ PARAMETER_GEN v
CKM_X9_42_DH_DERIVE v
CKM_X9_42_DH_HYBRID_DERIVE v

pkcs1l-curr-v3.0-cos01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 70 of 261

2045

2046
2047

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057

2058

2059
2060
2061

2062

2063

2064
2065
2066

2067

2068
2069
2070
2071
2072
2073
2074
2075
2076

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_X9_42_MQV_DERIVE v

2.4.1 Definitions

This section defines the key type “CKK_DH” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of [DH] key objects.

Mechanisms:
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_PARAMETER_GEN
CKM_DH_PKCS_DERIVE
CKM_X9 42 DH_KEY_PAIR_GEN
CKM_X9_42 DH_PARAMETER_GEN
CKM_X9 42 DH_DERIVE
CKM_X9_42 DH_HYBRID_DERIVE
CKM_X9_42 MQV_DERIVE

2.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

Table 53, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME"3 Big integer Prime p
CKA_BASE"?3 Big integer Base g
CKA_VALUE'4 Big integer Public value y

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT CLASS class = CKO_PUBLIC KEY;
CK_KEY TYPE keyType = CKK_DH;

CK UTF8CHAR label[] = “A Diffie-Hellman public key object”;
CK BYTE prime[] = {...};

CK BYTE base[] = {...};

CK BYTE value[] = {...};

CK _BBOOL true = CK TRUE;

CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 71 of 261

2077
2078
2079
2080
2081
2082
2083

2084

2085
2086
2087

2088

2089

2090
2091
2092

2093

2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

2113

2114
2115
2116

{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

2.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

Table 54, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"3 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE"3 Big integer Base g

CKA_SUBPRIME'3 Big integer Subprime g (> 160 bits)

CKA_ VALUE'4 Big integer Public value y

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. See the ANSI X9.42 standard for more information on X9.42 Diffie-
Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK_OBJECT CLASS class = CKO_PUBLIC KEY;
CK_KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman public key
object”;
CK BYTE prime[] = {...
CK BYTE base[] = {...};
CK BYTE subprime[] {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

}s

2.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 72 of 261

2117

2118

2119
2120
2121

2122
2123
2124
2125

2126

2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148

2149

2150
2151
2152

Table 55, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"48 Big integer Prime p

CKA_BASE"46 Big integer Base g

CKA_VALUE'"467 Big integer Private value x
CKA_VALUE_BITS?2¢ CK_ULONG Length in bits of private value x

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in
the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-
Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the
Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK DH;
CK UTF8CHAR label[] = “A Diffie-Hellman private key object”;
CK BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
}i

2.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 73 of 261

2153

2154

2155
2156
2157

2158
2159
2160
2161

2162

2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

2187

2188
2189
2190

Table 56, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME'"48 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE"46 Big integer Base g

CKA_SUBPRIME'46 Big integer Subprime g (= 160 bits)
CKA_VALUE'467 Big integer Private value x

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain
parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain
parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = ™A X9.42 Diffie-Hellman private key object”;
CK BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK BYTE prime[] = {...
CK BYTE base[] = {...};
CK BYTE subprime[] {...};
CK BYTE valuel[] = {...};
CK_BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DERIVE, &true, sizeof (true)},
{CKA_ PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

}s

2.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain
parameter object attributes, in addition to the common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 74 of 261

2191

2192

2193
2194
2195

2196

2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211

2212

2213
2214
2215
2216

2217

2218

2219
2220
2221
2222

2223

2224
2225

Table 57, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_ PRIME"4 Big integer Prime p

CKA_BASE' Big integer Base g
CKA_PRIME_BITS?23 CK_ULONG Length of the prime value.

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman domain parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK DH;
CK UTF8CHAR labell[] “A Diffie-Hellman domain parameters
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
i

2.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42
Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 58, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA PRIME"4 Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE' Big integer Base g

CKA_SUBPRIME"#* Big integer Subprime g (= 160 bits)
CKA_PRIME_BITS?3 CK_ULONG Length of the prime value.
CKA_SUBPRIME_BITS23 CK_ULONG Length of the subprime value.

- Refer to [PKCS11-Base] table 11 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain
parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman
domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:
CK OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK _KEY TYPE keyType = CKK X9 42 DH;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 75 of 261

2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

2241

2242
2243
2244

2245
2246
2247
2248

2249
2250
2251
2252
2253

2254
2255

2256

2257
2258
2259

2260

2261
2262

2263
2264
2265

2266
2267

2268

2269
2270
2271

CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain
parameters object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE subprime[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof(true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
i

2.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I”. It does not have a parameter.
The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and

CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain
parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls “phase II".

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 76 of 261

2272
2273

2274
2275
2276
2277
2278
2279
2280

2281

2282
2283
2284

2285
2286
2287
2288

2289
2290
2291
2292

2293
2294

2295
2296

2297
2298
2299

2300
2301
2302
2303

2304
2305
2306
2307

2308

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

This mechanism has the following rules about key sensitivity and extractability?:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.11 X9.42 Diffie-Hellman mechanism parameters
¢ CK_X9 42 DH_KDF_TYPE,CK_X9 42 DH_KDF TYPE_PTR

CK_X9_42 DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
key agreement schemes. It is defined as follows:

typedef CK ULONG CK X9 42 DH KDF TYPE;

The following table lists the defined functions.
Table 59, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL

CKD_SHA1_KDF_ASN{

CKD_SHA1_KDF_CONCATENATE

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and
CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the
shared secret value as defined in the ANSI X9.42 standard.

CK_X9_42 DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

2 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 77 of 261

2309

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319

2320
2321
2322

2323

2324

2325
2326

2327

2328
2329
2330
2331
2332
2333
2334

2335

2336

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350

¢ CK_X9 42 _DH1_DERIVE_PARAMS, CK_X9_42_DH1_DERIVE_PARAMS_PTR

CK_X9_42 DH1 DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_DERIVE key derivation mechanism, where each party contributes one key pair. The
structure is defined as follows:
typedef struct CK X9 42 DH1 DERIVE PARAMS {
CK X9 42 DH KDF TYPE kdf;

CK_ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;
CK_ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;

} CK X9 42 DH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatal en the length in bytes of the other party’s X9.42 Diffie-Hellman public
key

pPublicData pointer to other party’s X9.42 Diffie-Hellman public key value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 DH1_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH1_DERIVE_PARAMS.

e CK_X9_42_DH2_DERIVE_PARAMS, CK_X9 42 _DH2_DERIVE_PARAMS_PTR

CK_X9_42 DH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42 DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:

typedef struct CK X9 42 DH2 DERIVE PARAMS {

CK_X9 42 DH KDF TYPE kdf;

CK ULONG ulOtherInfolen;
CK _BYTE PTR pOtherInfo;
CK_ULONG ulPublicDataLen;
CK BYTE PTR pPublicData;
CK_ULONG ulPrivateDatalen;
CK_OBJECT HANDLE hPrivateData;
CK_ULONG ulPublicDatalen?2;
CK_BYTE PTR pPublicData?2;

} CK X9 42 DH2 DERIVE PARAMS;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 78 of 261

2351
2352
2353

2354

2355

2356
2357

2358

2359

2360

2361
2362

2363
2364

2365
2366
2367
2368
2369
2370
2371

2372

2373

2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388

The fields of the structure have the following meanings:

kdf
ulOtherinfolLen
pOtherinfo

ulPublicDatal en

pPublicData
ulPrivateDatal.en
hPrivateData

ulPublicDatal.en2

pPublicData2

key derivation function used on the shared secret value
the length in bytes of the other info
some data shared between the two parties

the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pointer to other party’s first X9.42 Diffie-Hellman public key value
the length in bytes of the second X9.42 Diffie-Hellman private key
key handle for second X9.42 Diffie-Hellman private key value

the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pointer to other party’s second X9.42 Diffie-Hellman public key
value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42 DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.

e CK_X9_42_MQV_DERIVE_PARAMS, CK_X9 42 MQV_DERIVE_PARAMS_PTR

CK_X9_42_MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The

structure is defined as follows:

typedef struct CK X9 42 MQV DERIVE PARAMS {
CK_X9 42 DH KDF TYPE kdf;

CK_ULONG
CK_BYTE_PTR
CK_ULONG
CK_BYTE_PTR
CK_ULONG
CK_OBJECT HANDLE
CK_ULONG
CK_BYTE_PTR
CK_OBJECT HANDLE

ulOtherInfolen;
pOtherInfo;
ulPublicDatalen;
pPublicData;
ulPrivateDatalen;
hPrivateData;
ulPublicDatalen?2;
pPublicData2;
publicKey;

} CK X9 42 MQV DERIVE PARAMS;

pkcs1l-curr-v3.0-cos01

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 79 of 261

2389
2390
2391

2392

2393

2394
2395

2396

2397

2398

2399
2400

2401
2402

2403

2404
2405
2406
2407
2408
2409
2410

2411

2412

2413
2414
2415

2416

2417
2418
2419

2420
2421
2422
2423

2424
2425

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value

publicKey Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pOtherinfo must be NULL and ulOtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_MQV_DERIVE_PARAMS.

2.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42 DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template
for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 80 of 261

2426

2427
2428
2429

2430

2431
2432
2433

2434
2435
2436
2437

2438
2439

2440

2441
2442
2443
2444

2445

2446
2447
2448
2449
2450
2451
2452

2453

2454
2455
2456

2457
2458
2459
2460

2461
2462
2463
2464

2465
2466

2467

2468
2469
2470
2471

2472

2.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9_42 DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the
template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

2.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_ DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted
CKM_X9_42_DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 81 of 261

2473
2474
2475
2476
2477
2478
2479

2480

2481
2482
2483

2484
2485
2486
2487

2488
2489
2490
2491

2492
2493

2494

2495
2496
2497
2498

2499

2500
2501
2502
2503
2504
2505
2506

2507

2508
2509
2510

2511
2512
2513
2514

2515
2516
2517
2518

2519
2520

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.

CKM_SHA_1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9_42_MQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 82 of 261

2521

2522
2523

2524
2525

2526

2527
2528
2529

2530

2531
2532

2533
2534
2535

2536
2537

2538
2539
2540

2541

2542
2543
2544

2545
2546

2547
2548
2549

2550
2551
2552
2553
2554

2.5 Extended Triple Diffie-Hellman (x3dh)

The Extended Triple Diffie-Hellman mechanism described here is the one described in
[SIGNAL].

Table 60, Extended Triple Diffie-Hellman Mechanisms vs. Functions

Functions
Encrypt | Sign SR Gen. Wrap | Derive
Mechanism & & & | Digest | Key/ &
Decrypt | Verify | VR! Key | Unwr
Pair ap
CKM_X3DH_INITIALIZE v
CKM_X3DH_RESPOND v

2.5.1 Definitions

Mechanisms:
CKM_X3DH_INITIALIZE
CKM_X3DH_RESPOND

2.5.2 Extended Triple Diffie-Hellman key objects

Extended Triple Diffie-Hellman uses Elliptic Curve keys in Montgomery representation
(CKK_EC_MONTGOMERY). Three different kinds of keys are used, they differ in their lifespan:
¢ identity keys are long-term keys, which identify the peer,
o prekeys are short-term keys, which should be rotated often (weekly to hourly)
e onetime prekeys are keys, which should be used only once.

Any peer intending to be contacted using X3DH must publish their so-called prekey-bundle, consisting of
their:

e public Identity key,
e current prekey, signed using XEDDA with their identity key
e optionally a batch of One-time public keys.

2.5.3 Initiating an Extended Triple Diffie-Hellman key exchange

Initiating an Extended Triple Diffie-Hellman key exchange starts by retrieving the following required public
keys (the so-called prekey-bundle) of the other peer: the Identity key, the signed public Prekey, and
optionally one One-time public key.

When the necessary key material is available, the initiating party calls CKM_X3DH_INITIALIZE, also
providing the following additional parameters:

e the initiators identity key
e the initiators ephemeral key (a fresh, one-time CKK_EC_MONTGOMERY type key)

CK_X3DH_INITIATE_PARANMS is a structure that provides the parameters to the
CKM_X3DH_INITIALIZE key exchange mechanism. The structure is defined as follows:
typedef struct CK X3DH INITIATE PARAMS ({
CK _X3DH KDF TYPE kdf;
CK_OBJECT HANDLE pPeer identity;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 83 of 261

2555
2556
2557
2558
2559
2560

2561

2562

2563

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575

2576
2577

2578

CK_OBJECT HANDLE
CK_BYTE PTR
CK_BYTE PTR
CK_OBJECT HANDLE
CK_OBJECT HANDLE

pPeer prekey;
pPrekey signature;
pOnetime key;

pOwn identity;
pOwn_ ephemeral;

} CK X3DH INITIATE PARAMS;

Table 61, Extended Triple Diffie-Hellman Initiate Message parameters:

Parameter Data type Meaning

kdf CK_X3DH_KDF_TYPE Key derivation function

pPeer_identity Key handle Peers public Identity key (from the prekey-
bundle)

pPeer_prekey Key Handle Peers public prekey (from the prekey-bundle)

pPrekey_signature Byte array XEDDSA signature of PEER_PREKEY (from
prekey-bundle)

pOnetime_key Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

pOwn_identity Key Handle Initiators Identity key

pOwn_ephemeral Key Handle Initiators ephemeral key

2.5.4 Responding to an Extended Triple Diffie-Hellman key exchange

Responding an Extended Triple Diffie-Hellman key exchange is done by executing a
CKM_X3DH_RESPOND mechanism. CK_X3DH_RESPOND_PARAMS is a structure that provides the
parameters to the CKM_X3DH_RESPOND key exchange mechanism. All these parameter should be
supplied by the Initiator in a message to the responder. The structure is defined as follows:

typedef struct CK X3DH RESPOND PARAMS {

CK_X3DH_KDF_TYPE

CK_BYTE_PTR
CK_BYTE_PTR
CK_BYTE_PTR

CK_OBJECT HANDLE

CK BYTE PTR

kdf;

pldentity id;

pPrekey 1id;
pOnetime id;

pInitiator identity;

- _ pInitiator ephemeral;
} CK_X3DH RESPOND PARAMS;

Table 62, Extended Triple Diffie-Hellman 1st Message parameters:

Parameter Data type Meaning
kdf CK_X3DH_KDF_ | Key derivation function
TYPE

pldentity_id Byte array Peers public Identity key identifier (from the
prekey-bundle)

pPrekey id Byte array Peers public prekey identifier (from the
prekey-bundle)

pOnetime_id Byte array Optional one-time public prekey of peer (from
the prekey-bundle)

plnitiator_identity Key handle Initiators Identity key

plnitiator_ephemeral Byte array Initiators ephemeral key

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 84 of 261

2579
2580

2581
2582

2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593

2594

2595

2596
2597
2598

2599
2600
2601
2602

2603

2604
2605
2606
2607

Where the *_id fields are identifiers marking which key has been used from the prekey-bundle, these
identifiers could be the keys themselves.

This mechanism has the following rules about key sensitivity and extractability3:

1 The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

2 Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

3 Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.5.5 Extended Triple Diffie-Hellman parameters

e CK_X3DH_KDF_TYPE, CK_X3DH_KDF_TYPE_PTR

CK_X3DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying
data from a shared secret. The key derivation function will be used by the X3DH key agreement
schemes. It is defined as follows:

typedef CK ULONG CK X3DH KDF TYPE;

The following table lists the defined functions.
Table 63, X3DH: Key Derivation Functions

Source Identifier

CKD_NULL

CKD_BLAKE2B_256_KDF

CKD_BLAKE2B_512_KDF

CKD_SHA3_256_KDF

CKD_SHA256_KDF

CKD_SHA3_512_KDF

CKD_SHA512_KDF

2.6 Double Ratchet

The Double Ratchet is a key management algorithm managing the ongoing renewal and maintenance of
short-lived session keys providing forward secrecy and break-in recovery for encrypt/decrypt operations.
The algorithm is described in [DoubleRatchet]. The Signal protocol uses X3DH to exchange a shared
secret in the first step, which is then used to derive a Double Ratchet secret key.

3 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 85 of 261

2608

2609

2610

2611
2612

2613
2614
2615
2616
2617

2618

2619
2620
2621
2622
2623
2624

2625

Table 64, Double Ratchet Mechanisms vs. Functions

Functions

Encrypt SR | Digest | Gen. Wrap Derive
Mechanism & & Key/ &

Decrypt| Verify 1 Key Unwrap

VR Pair

CKM_X2RATCHET_INITIALIZE v
CKM_X2RATCHET_RESPOND v
CKM_X2RATCHET_ENCRYPT 4 J
CKM_X2RATCHET_DECRYPT N4 J

2.6.1 Definitions

This section defines the key type “CKK_X2RATCHET" for type CK_KEY_TYPE as used in the

CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_X2RATCHET_INITIALIZE
CKM_X2RATCHET_RESPOND
CKM_X2RATCHET_ENCRYPT
CKM_X2RATCHET_DECRYPT

2.6.2 Double Ratchet secret key objects

Double Ratchet secret key objects (object class CKO_SECRET_KEY, key type CKK_X2RATCHET) hold
Double Ratchet keys. Double Ratchet secret keys can only be derived from shared secret keys using the
mechanism CKM_X2RATCHET_INITIALIZE or CKM_X2RATCHET_RESPOND. In the Signal protocol
these are seeded with the shared secret derived from an Extended Triple Diffie-Hellman [X3DH] key-
exchange. The following table defines the Double Ratchet secret key object attributes, in addition to the

common attributes defined for this object class:

Table 65, Double Ratchet Secret Key Object Attributes

Attribute Data type Meaning

CKA_X2RATCHET_RK Byte array Root key

CKA_X2RATCHET_HKS Byte array Sender Header key
CKA_X2RATCHET_HKR Byte array Receiver Header key
CKA_X2RATCHET_NHKS Byte array Next Sender Header Key
CKA_X2RATCHET_NHKR Byte array Next Receiver Header Key
CKA_X2RATCHET_CKS Byte array Sender Chain key
CKA_X2RATCHET_CKR Byte array Receiver Chain key
CKA_X2RATCHET_DHS Byte array Sender DH secret key
CKA_X2RATCHET_DHP Byte array Sender DH public key
CKA_X2RATCHET_DHR Byte array Receiver DH public key
CKA_X2RATCHET_NS ULONG Message number send
CKA_X2RATCHET_NR ULONG Message number receive
CKA_X2RATCHET_PNS ULONG Previous message number send
CKA_X2RATCHET_BOBS1STMSG BOOL Is this bob and has he ever sent a message?
CKA_X2RATCHET_ISALICE BOOL Is this Alice?
CKA_X2RATCHET_BAGSIZE ULONG How many out-of-order keys do we store

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 86 of 261

2626

2627
2628
2629
2630

2631
2632
2633

2634
2635
2636

2637
2638

2639
2640

2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651

2652
2653

2654

2655

2656

2657

2658

2659

2660
2661

Attribute Data type Meaning

CKA_X2RATCHET_BAG Byte array Out-of-order keys

2.6.3 Double Ratchet key derivation

The Double Ratchet key derivation mechanisms depend on who is the initiating party, and who the
receiving, denoted CKM_X2RATCHET _INITIALIZE and CKM_X2RATCHET_RESPOND, are the key
derivation mechanisms for the Double Ratchet. Usually the keys are derived from a shared secret by
executing a X3DH key exchange.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Additionally the attribute flags indicating which functions the key supports are also contributed by the
mechanism.

For this mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these
two sizes. A Cryptoki implementation may support one or both of these curves and should set the
ulMinKeySize and ulMaxKeySize fields accordingly.

o CK_X2RATCHET_INITIALIZE_PARAMS;
CK_X2RATCHET_INITIALIZE_PARAMS_PTR

CK_X2RATCHET_INITIALIZE_PARAMS provides the parameters to the
CKM_X2RATCHET_INITIALIZE mechanism. It is defined as follows:

typedef struct CK X2RATCHET INITIALIZE PARAMS ({

CK_BYTE PTR sk;

CK_OBJECT HANDLE peer public prekey;
CK_OBJECT HANDLE peer public identity;
CK_OBJECT HANDLE own public identity;
CK_ BBOOL bEncryptedHeader;

CK ULONG eCurve;

CK_MECHANISM TYPE aeadMechanism;

CK _XZ2RATCHET KDF TYPE kdfMechanism;
} CK X2RATCHET INITIALIZE PARAMS;

The fields of the structure have the following meanings:
sk the shared secret with peer (derived using X3DH)

peers_public_prekey Peers public prekey which the Initiator used in the X3DH
peers_public_identity Peers public identity which the Initiator used in the X3DH
own_public_identity Initiators public identity as used in the X3DH
bEncryptedHeader whether the headers are encrypted
eCurve 255 for curve 25519 or 448 for curve 448
aeadMechanism a mechanism supporting AEAD encryption

kdfMechanism a Key Derivation Mechanism, such as
CKD_BLAKE2B 512 KDF

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 87 of 261

2662 o CK_X2RATCHET_RESPOND_PARAMS;
2663 CK_X2RATCHET_RESPOND_PARAMS_PTR

2664 CK_X2RATCHET_RESPOND_PARAMS provides the parameters to the
2665 CKM_X2RATCHET_RESPOND mechanism. It is defined as follows:

2666 typedef struct CK X2RATCHET RESPOND PARAMS {

2667 CK BYTE PTR sk;

2668 CK OBJECT HANDLE own prekey;

2669 CK _OBJECT HANDLE initiator identity;

2670 CK OBJECT HANDLE own public identity;

2671 CK_BBOOL bEncryptedHeader;

2672 CK ULONG eCurve;

2673 CK_MECHANISM TYPE aeadMechanism;

2674 CK X2RATCHET KDF TYPE kdfMechanism;

2675 } CK X2RATCHET RESPOND PARAMS;

2676

2677 The fields of the structure have the following meanings:

2678 sk shared secret with the Initiator

2679 own_prekey Own Prekey pair that the Initiator used
2680 initiator_identity Initiators public identity key used

2681 own_public_identity as used in the prekey bundle by the initiator in the X3DH
2682 bEncryptedHeader whether the headers are encrypted

2683 eCurve 255 for curve 25519 or 448 for curve 448
2684 aeadMechanism a mechanism supporting AEAD encryption
2685 kdfMechanism a Key Derivation Mechanism, such as
2686 CKD_BLAKE2B 512 KDF

2687 2.6.4 Double Ratchet Encryption mechanism

2688 The Double Ratchet encryption mechanism, denoted CKM_X2RATCHET_ENCRYPT and
2689 CKM_X2RATCHET_DECRYPT, are a mechanisms for single part encryption and decryption based on
2690 the Double Ratchet and its underlying AEAD cipher.

2691 2.6.5 Double Ratchet parameters

2692 ¢ CK_X2RATCHET_KDF_TYPE, CK_X2RATCHET KDF_TYPE_PTR

2693 CK_X2RATCHET_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
2694 keying data from a shared secret. The key derivation function will be used by the X key derivation
2695 scheme. ltis defined as follows:

2696 typedef CK ULONG CK X2RATCHET KDF TYPE;
2697

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 88 of 261

2698
2699

2700

2701

2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734

The following table lists the defined functions.
Table 66, X2RATCHET: Key Derivation Functions

Source Identifier

CKD_NULL

CKD_BLAKE2B_256_KDF

CKD_BLAKE2B_512_KDF

CKD_SHA3_256_KDF

CKD_SHA256_KDF

CKD_SHA3_512_KDF

CKD_SHA512_KDF

2.7 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC (also related to ECDSA) private
keys and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS #8's
PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The
object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1 }
dhpublicnumber OBJECT IDENTIFIER ::= { iso(l) member-body(2)

us (840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(l) member-body(2)
us (840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {
iso(l) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

where
pkcs-1 OBJECT IDENTIFIER ::= {
iso (1) member-body(2) US(840) rsadsi(113549) pkcs(l) 1 }

pkcs-3 OBJECT IDENTIFIER ::= {
iso (1) member-body(2) US(840) rsadsi(113549) pkcs(l) 3 }

These parameters for the algorithm identifiers have the
following types, respectively:

NULL

DHParameter ::= SEQUENCE {
prime INTEGER, --p
base INTEGER, -- g

privateValuelLength INTEGER OPTIONAL

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 89 of 261

2735 }

2736

2737 DomainParameters ::= SEQUENCE {

2738 prime INTEGER, -- p

2739 base INTEGER, -- g

2740 subprime INTEGER, -- g

2741 cofactor INTEGER OPTIONAL, -]
2742 validationParms ValidationParms OPTIONAL
2743 }

2744

2745 ValidationParms ::= SEQUENCE ({

2746 Seed BIT STRING, —-- seed

2747 PGenCounter INTEGER -—- parameter verification
2748 }

2749

2750 Parameters ::= CHOICE {

2751 ecParameters ECParameters,

2752 namedCurve CURVES. &id ({CurveNames}),
2753 implicitlyCA NULL

2754 }

2755

2756 Dss—-Parms ::= SEQUENCE ({

2757 p INTEGER,

2758 g INTEGER,

2759 g INTEGER

2760 }

2761

2762 For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
2763 should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
2764 are not stored within the token.

2765 For the EC domain parameters, the use of namedCurve is recommended over the choice
2766 ecParameters. The choice implicitlyCA must not be used in Cryptoki.

2767 Within the PrivateKeylnfo type:
2768 e RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1 type. This type

2769 requires values to be present for all the attributes specific to Cryptoki's RSA private key objects. In
2770 other words, if a Cryptoki library does not have values for an RSA private key’s CKA_MODULUS,
2771 CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
2772 CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT values, it must not create an
2773 RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.

2774 e Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
2775 o X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

2776 e EC (also related with ECDSA) private keys are BER-encoded according to SECG SEC 1
2777 ECPrivateKey ASN.1 type:

2778 ECPrivateKey ::= SEQUENCE ({
2779 Version INTEGER { ecPrivkeyVerl (1) }
2780 (ecPrivkeyVerl),
2781 privateKey OCTET STRING,
2782 parameters [0] Parameters OPTIONAL,
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 90 of 261

2783
2784
2785
2786
2787

2788
2789

2790

2791
2792

2793
2794
2795
2796
2797
2798
2799

2800
2801
2802
2803
2804
2805

2806

2807
2808
2809
2810
2811
2812
2813

2814
2815

2816
2817

2818

2819
2820

publicKey [1] BIT STRING OPTIONAL

Since the EC domain parameters are placed in the PKCS #8's privateKeyAlgorithm field, the optional
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to
unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

e DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption must be done in CBC mode with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext is
decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeylInfo type, and the wrapped key is produced. An error will result if the original wrapped key
does not decrypt properly, or if the decrypted unpadded data does not parse properly, or its type does not
match the key type specified in the template for the new key. The unwrapping mechanism contributes
only those attributes specified in the PrivateKeyInfo type to the newly-unwrapped key; other attributes
must be specified in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier
DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
iso(l) identifier-organization(3) oiw(1l4) secsig(3)
algorithm(2) }

with associated parameters

DSAParameters ::= SEQUENCE {
primel INTEGER, -- modulus p
prime2 INTEGER, -- modulus g
base INTEGER -- base g

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

2.8 Generic secret key

Table 67, Generic Secret Key Mechanisms vs. Functions

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive

Decrypt Verify VR’ Key Unwrap

Pair

CKM_GENERIC v
_SECRET_KEY
_GEN

2.8.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 91 of 261

2821
2822

2823

2824
2825
2826
2827

2828
2829

2830
2831

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844

2845

2846
2847

2848

2849
2850
2851
2852

2853

2854
2855

2856
2857

2858
2859

Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN

2.8.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.
Table 68, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE'467 Byte array Key value (arbitrary
length)

CKA_VALUE_LEN?23 CK_ULONG Length in bytes of key
value

- Refer to [PKCS11-Base] table 11 for footnotes

The following is a sample template for creating a generic secret key object:

CK_OBJECT CLASS class = CKO_ SECRET KEY;
CK_KEY TYPE keyType = CKK GENERIC SECRET;
CK UTF8CHAR label[] = ™A generic secret key object”;
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof(true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA DERIVE, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the SHA-1 hash of the generic secret key object's CKA_VALUE attribute.

2.8.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key
to be generated.

It does not have a parameter.
The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies
an object type and a class, they must have the following values:

CK OBJECT CLASS = CKO_SECRET KEY;

CK KEY TYPE = CKK GENERIC SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 92 of 261

2860

2861
2862
2863

2864
2865

2866

2867

2868
2869
2870
2871
2872

2873

2874
2875

2876

2877
2878

2879

2880
2881

2.9 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description. The HMAC secret key shall correspond
to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism definition).
Such keys, for use with HMAC operations can be created using C_CreateObject or C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

2.9.1 General block cipher mechanism parameters

e CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of
the DES, DESS3 (triple-DES), AES, Camellia, SEED, and ARIA ciphers. It also provides the parameters to
the general-length HMACing mechanisms (i.e.,.SHA-1, SHA-256, SHA-384, SHA-512, and SHA-512/T
family) and the two SSL 3.0 MACing mechanisms, (i.e., MD5 and SHA-1). It holds the length of the MAC
that these mechanisms produce. It is defined as follows:

typedef CK ULONG CK MAC GENERAL PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.

2.10 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
Table 69, AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_KEY_GEN v
CKM_AES_ECB v v
CKM_AES_CBC v v
CKM_AES_CBC_PAD v v
CKM_AES_MAC_GENERAL v
CKM_AES_MAC v
CKM_AES_OFB v v
CKM_AES_CFB64 v v
CKM_AES_CFB8 v v
CKM_AES_CFB128 v v
CKM_AES_CFB1 v v
CKM_AES_XCBC_MAC v
CKM_AES_XCBC_MAC_96 v

2.10.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 93 of 261

2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895

2896

2897
2898
2899

2900

2901
2902

2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916

2917
2918
2919

Mechanisms:
CKM_AES_KEY_GEN
CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD
CKM_AES_OFB
CKM_AES_CFB64
CKM_AES_CFB8
CKM_AES_CFB128
CKM_AES_CFB1
CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96

2.10.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined
for this object class:

Table 70, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"'467 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN?236 CK_ULONG Length in bytes of key
value

- Refer to [PKCS11-Base] table 11 for footnotes

The following is a sample template for creating an AES secret key object:
CK OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK AES;
CK UTF8CHAR labell[] “An AES secret key object”;

CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}

}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 94 of 261

2920

2921
2922

2923

2924
2925

2926
2927
2928

2929
2930

2931

2932
2933
2934

2935

2936
2937
2938
2939
2940
2941

2942
2943
2944
2945

2946
2947

2948
2949

2950

2951
2952
2953

2954

2.10.3 AES key generation

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for
NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.4 AES-ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 71, AES-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.5 AES-CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 95 of 261

2955
2956
2957
2958
2959
2960

2961
2962
2963
2964

2965
2966

2967
2968

2969

2970
2971
2972
2973

2974

2975
2976
2977

2978
2979
2980
2981

2982

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 72, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-
part encryption and decryption; key wrapping; and key unwrapping, based on NIST’'s Advanced
Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS
#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 2.7
for details). The entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 96 of 261

2983

2984
2985

2986

2987
2988

2989
2990
2991
2992
2993

2994

2995

2996

2997
2998
2999

3000
3001
3002
3003
3004

3005

3006

Table 73, AES-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size bytes
block size shorter than input length
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 74, AES-OFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.10.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES_ CFB8, CKM_AES CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table 75, AES-CFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 97 of 261

3007

3008
3009
3010

3011
3012

3013
3014

3015
3016

3017
3018

3019

3020
3021

3022
3023
3024

3025
3026

3027

3028
3029

3030
3031
3032

3033
3034

3035

3036
3037

3038

2.10.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 76, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES any 1-block size, as specified in parameters
C_Verify AES any 1-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.10 AES-MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 77, AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 2 block size (8 bytes)
C_Verify AES Any Y2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.11 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 78, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 16 bytes
C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.10.12 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC_96, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 98 of 261

3039
3040

3041
3042

3043
3044

3045

3046
3047

3048

3049

3050
3051

3052
3053
3054
3055
3056

3057
3058
3059

3060
3061
3062

3063

3064
3065
3066
3067
3068
3069
3070
3071

Constraints on key types and the length of data are summarized in the following table:
Table 79, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 12 bytes
C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.11 AES with Counter

Table 80, AES with Counter Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_CTR v v

2.11.1 Definitions

Mechanisms:
CKM_AES_CTR

2.11.2 AES with Counter mechanism parameters

¢ CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.
It is defined as follows:

typedef struct CK AES CTR PARAMS ({
CK ULONG wulCounterBits;
CK BYTE c¢b[l6];

} CK _AES CTR PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that 0 < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:

0 1 2 3

0123456789 0123456789012345678901
Fot—t ettt =ttt =ttt -ttt =ttt =t —F—+—+
\ Nonce |
e St B e et e e s st
\ Initialization Vector (IV) |

\ |
bttt —t—+—+—+—+

27 March 2020
Page 99 of 261

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

3072
3073

3074

3075
3076

3077

3078

3079
3080
3081
3082

3083
3084

3085
3086
3087
3088
3089

3090

3091

3092

3093
3094

3095

3096

3097
3098

3099
3100

| Block Counter |
t—F—t—F—F—tF—F—F—t—F—F—tF—F—t—F—F—F—F—F—F—F—F—F—F -t —F—F—F—F—+—+—+

This construction permits each packet to consist of up to 2%2-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR_PARAMS.

2.11.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits,
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the
final post increment of the counter to overflow (if it implements it this way) but not allow any further
processing after this point. E.qg. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of
data can be processed.

2.12 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS]

This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to
the same length of cipher text.

Table 81, AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_CTS v v
2.12.1 Definitions
Mechanisms:
CKM_AES_CTS
2.12.2 AES CTS mechanism parameters
It has a parameter, a 16-byte initialization vector.
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 100 of 261

3101

3102

3103
3104

3105

3106

3107
3108
3109
3110
3111
3112
3113
3114
3115

3116

3117
3118
3119
3120

3121
3122
3123

3124
3125

3126
3127

Table 82, AES-CTS: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES Any, = block same as input length no final part
size (16 bytes)
C_Decrypt AES any, = block same as input length no final part
size (16 bytes)

2.13 Additional AES Mechanisms

Table 83, Additional AES Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR Key | Unwrap

Pair

CKM_AES_GCM v v
CKM_AES_CCM v v
CKM_AES_GMAC v

2.13.1 Definitions

Mechanisms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC

Generator Functions:
CKG_NO_GENERATE
CKG_GENERATE
CKG_GENERATE_COUNTER
CKG_GENERATE_RANDOM

2.13.2 AES-GCM Authenticated Encryption | Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses
CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and
MessageDecrypt.

Encrypt:
e Setthe IV length ullvLen in the parameter block.
e Setthe IV data plv in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the tag length ulTagBits in the parameter block.
e Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 101 of 261

3128
3129

3130
3131
3132

3133
3134

3135
3136

3137
3138
3139

3140
3141

3142
3143
3144

3145
3146

3147
3148

3149

3150
3151

3152
3153
3154
3155
3156
3157

3158
3159

3160

3161
3162

3163

Call C_Encrypt(), or C_EncryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is O.

Set the tag length ulTagBits in the parameter block.
Call C_Decryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()** C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no
data should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the IV length ullvLen in the parameter block.

Set plv to hold the IV data returned from C_EncryptMessage() and C_EncryptMessageBegin(). If
ullvFixedBits is not zero, then the most significant bits of p/V contain the fixed IV. If ivGenerator is
set to CKG_NO_GENERATE, plv is an input parameter with the full IV.

Set the ullvFixedBits and ivGenerator fields in the parameter block.
Set the tag length ulTagBits in the parameter block.

Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_GCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*>.
The mechanism parameter is passed to all three of these functions.

Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

Set the IV length ullvLen in the parameter block.

Set the IV data plv in the parameter block.

The ullvFixedBits and ivGenerator fields are ignored.
Set the tag length ulTagBits in the parameter block.

Set the tag data pTag in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

Call C_MessageDecryptlinit() for CKM_AES_GCM mechanism key K.

Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*®.
The mechanism parameter is passed to all three of these functions.

Call C_MessageDecryptFinal() to close the message decryption.

4 “*" indicates 0 or more calls may be made as required

5 “*" indicates 0 or more calls may be made as required

6 “*" indicates 0 or more calls may be made as required

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 102 of 261

3164
3165

3166
3167
3168
3169
3170
3171
3172

3173
3174

3175
3176
3177
3178

3179
3180
3181

3182

3183
3184

3185
3186
3187

3188
3189
3190

3191
3192

3193
3194

3195
3196
3197

3198

3199
3200

3201

3202
3203

3204
3205

3206
3207
3208
3209

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is
passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.
CKG_GENERATE_COUNTER means that the non-fixed portion of the 1V is generated by the module
internally by use of an incrementing counter. CKG_GENERATE_RANDOM means that the non-fixed
portion of the IV is generated by the module internally using a PRNG. In any case the entire 1V, including
the fixed portion, is returned in p/V.

Modules must implement CKG_GENERATE. Modules may also reject ullvFixedBits values which are too
large. Zero is always an acceptable value for ullvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost u/TagBits bits. In MessageEncrypt the tag is returned in
the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag
field of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptlnit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

2.13.3 AES-CCM authenticated Encryption | Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and
CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.

Encrypt:
e Set the message/data length ulDatalLen in the parameter block.
e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Setthe MAC length uIMACLen in the parameter block.
e Call C_Encryptinit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Encrypt(), C_EncryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining the final
ciphertext output and the MAC. The total length of data processed must be ulDataLen. The output
length will be ulDatalLen + ulMACLen.

Decrypt:

e Set the message/data length ulDatalLen in the parameter block. This length must not include the
length of the MAC that is appended to the cipher text.

e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Setthe MAC length uIMACLen in the parameter block.
e Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalen
+ UIMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 103 of 261

3210
3211
3212

3213
3214
3215
3216

3217
3218

3219
3220

3221

3222
3223

3224
3225
3226
3227
3228
3229
3230

3231
3232

3233

3234
3235

3236

3237
3238

3239
3240
3241
3242
3243
3244
3245

3246
3247

MessageEncrypt:
e Set the message/data length ulDataLen in the parameter block.
e Set the nonce length ulNonceLen.

e Set pNonce to hold the nonce data returned from C_EncryptMessage() and
C_EncryptMessageBegin(). If ulNonceFixedBits is not zero, then the most significant bits of
pNonce contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is
an input parameter with the full nonce.

e Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.
e Setthe MAC length uIMACLen in the parameter block.

e Set pMAC to hold the MAC data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

e Call C_MessageEncryptinit() for CKM_AES_CCM mechanism key K.

o Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by
C_EncryptMessageNext()*”-. The mechanism parameter is passed to all three functions.

e Call C_MessageEncryptFinal() to close the message encryption.

e The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.
MessageDecrypt:

e Set the message/data length ulDatalLen in the parameter block.

e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block
e The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
e Setthe MAC length uIMACLen in the parameter block.

e Set the MAC data pMAC in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

e Call C_MessageDecryptlnit() for CKM_AES_CCM mechanism key K.

o Call C_DecryptMessage(), or C_DecryptMessageBegin() followed by
C_DecryptMessageNext()*8. The mechanism parameter is passed to all three functions.

e Call C_MessageDecryptFinal() to close the message decryption.

In pNonce the least significant bit of the nonce is the rightmost bit. u/NonceLen is the length of the nonce
in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE
means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined. CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is
generated by the module internally by use of an incrementing counter. CKG_GENERATE_RANDOM
means that the non-fixed portion of the nonce is generated by the module internally using a PRNG. In any
case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject uINonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

7 “*" indicates 0 or more calls may be made as required

8 “*" indicates 0 or more calls may be made as required

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 104 of 261

3248
3249
3250
3251

3252
3253
3254

3255

3256
3257
3258
3259
3260

3261
3262

3263
3264
3265

3266
3267

3268

3269

3270

3271

3272

3273
3274
3275
3276
3277
3278
3279
3280
3281
3282

3283
3284
3285

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost uIMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptlnit()/C_MessageEncryptlnit()/C_MessageDecryptlnit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

2.13.4 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When GMAC is used with C_Sign or C_Verify, pData points to the AAD. GMAC does not
use plaintext or ciphertext.

The signature produced by GMAC, also referred to as a Tag, the tag’s length is determined by the
CK_GCM_PARAMS field ulTagBits.

The IV length is determined by the CK_GCM_PARAMS field ullvLen.
Constraints on key types and the length of data are summarized in the following table:
Table 84, AES-GMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES < 2764 Depends on param’s ulTagBits
C_Verify CKK_AES < 2"64 Depends on param’s ulTagBits

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.13.5 AES GCM and CCM Mechanism parameters

¢ CK_GENERATOR_FUNCTION

Functions to generate unique IVs and nonces.

typedef CK ULONG CK_ GENERATOR FUNCTION;

¢ CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK GCM PARAMS {
CK _BYTE PTR plv;

CK ULONG ulIvLen;
CK_ULONG ulIvBits;
CK _BYTE PTR PAAD;

CK ULONG ulAADLen;
CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

The fields of the structure have the following meanings:
plv pointer to initialization vector

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 105 of 261

3286
3287
3288
3289

3290
3291

3292
3293

3294
3295

3296
3297

3298

3299

3300
3301
3302
3303
3304
3305
3306
3307
3308
3309

3310
3311
3312

3313
3314
3315
3316

3317
3318
3319

3320
3321

3322
3323

3324
3325

ullvLen

ullvBits

PAAD

ulAADLen

ulTagBits

length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2"32) - 1. 96-bit (12
byte) 1V values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

length of initialization vector in bits. Do no use ullvBits to specify the
length of the initialization vector, but ullvLen instead.

pointer to additional authentication data. This data is authenticated
but not encrypted.

length of pAAD in bytes. The length of the AAD can be any number
between 0 and (2*32) — 1.

length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

¢ CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK GCM MESSAGE PARAMS ({
CK BYTE PTR plv;
CK ULONG ulIvlen;
CK_ULONG ulIvFixedBits;
CK_GENERATOR FUNCTION ivGenerator;
CK _BYTE PTR pTag;
CK_ULONG ulTagBits;
} CK_GCM MESSAGE PARAMS;

The fields of the structure have the following meanings:

plv

ullvLen

ullvFixedBits

ivGenerator

pTag

ulTagBits

pkcs1l-curr-v3.0-cos01

pointer to initialization vector

length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2%32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

number of bits of the original IV to preserve when generating an
new IV. These bits are counted from the Most significant bits (to the
right).

Function used to generate a new IV. Each IV must be unique for a
given session.

location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

length of authentication tag in bits. Can be any value between 0 and
128.

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 106 of 261

3326
3327

3328

3329
3330
3331
3332
3333
3334
3335
3336
3337
3338

3339
3340

3341

3342

3343

3344
3345

3346

3347
3348

3349

3350

3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361

3362

3363
3364

3365

CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.

¢ CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:

typedef struct CK CCM PARAMS ({

CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK BYTE PTR pNonce;

CK_ULONG ulNonceLen;

CK BYTE PTR pAAD;

CK_ULONG ulAADLen;

CK _ULONG ulMACLen;

} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDatalLen length of the data where 0 <= ulDatalLen < 2"(8L).
pNonce the nonce.
ulNoncelLen length of pNonce in bytes where 7 <= ulNoncelLen <= 13.

PAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAAD in bytes where 0 <= ulAADLen <= (2"32) - 1.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

¢ CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR

CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:

typedef struct CK CCM MESSAGE PARAMS ({

CK_ULONG ulDatalLen; /*plaintext or ciphertext*/
CK _BYTE PTR pNonce;

CK_ULONG ulNoncelen;

CK_ULONG ulNonceFixedBits;

CK_GENERATOR FUNCTION nonceGenerator;
CK_BYTE PTR pMAC;
CK_ULONG ulMACLen;

} CK _CCM _MESSAGE PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <=L <= 8):

ulDatalen length of the data where 0 <= ulDatalLen < 2"(8L).

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 107 of 261

3366

3367

3368
3369
3370

3371
3372

3373
3374

3375
3376

3377
3378

3379
3380

3381

3382

3383
3384
3385

3386

3387
3388

3389

3390
3391

3392
3393

3394
3395

3396

pNonce the nonce.

ulNoncelLen length of pNonce in bytes where 7 <= ulNoncelLen <= 13.
ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).
nonceGenerator Function used to generate a new nonce. Each nonce must be

unique for a given session.

PMAC location of the CCM MAC returned on MessageEncrypt, provided on
MessageDecrypt

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.

2.14 AES CMAC

Table 85, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_AES_CMAC_GENERAL v
CKM_AES_CMAC v

1 SR = SignRecover, VR = VerifyRecover

2.14.1 Definitions

Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

2.14.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.

2.14.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST SP800-38B] and [RFC 4493].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 108 of 261

3397

3398
3399
3400

3401
3402

3403

3404
3405
3406

3407
3408

3409
3410
3411

3412
3413

3414
3415

3416

3417
3418

3419
3420
3421

Table 86, General-length AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any 1-block size, as specified in parameters
C_Verify CKK_AES any 1-block size, as specified in parameters

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.14.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:
Table 87, AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any Block size (16 bytes)
C_Verify CKK_AES any Block size (16 bytes)

References [NIST SP800-38B] and [RFC 4493] recommend that the output MAC is not truncated to less
than 64 bits. The MAC length must be specified before the communication starts, and must not be
changed during the lifetime of the key. It is the caller’'s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.15 AES XTS

Table 88, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_AES_XTS v v
CKM_AES_XTS_KEY_GEN v

2.15.1 Definitions

This section defines the key type “CKK_AES_XTS” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_AES_XTS
CKM_AES_XTS _KEY_GEN

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 109 of 261

3422
3423

3424

3425
3426
3427

3428
3429

3430
3431
3432
3433

3434
3435

3436

3437
3438

3439
3440
3441

3442

3443

3444

3445
3446

2.15.2 AES-XTS secret key objects
Table 89, AES-XTS Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE'467 Byte array Key value (32 or 64 bytes)

CKA VALUE_LEN2386 | CK_ULONG | Length in bytes of key value

- Refer to [PKCS11-Base] table 11 for footnotes

2.15.3 AES-XTS key generation

The double-length AES-XTS key generation mechanism, denoted CKM_AES_XTS_KEY_GEN, is a key
generation mechanism for double-length AES-XTS keys.

The mechanism generates AES-XTS keys with a particular length in bytes as specified in the
CKA_VALUE_LEN attributes of the template for the key.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length AES-XTS key type (specifically, the flags indicating

which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES-XTS key sizes, in bytes.

2.15.4 AES-XTS
AES-XTS (XEX-based Tweaked CodeBook mode with CipherText Stealing), denoted CKM_AES_XTS,
isa mechanism for single- and multiple-part encryption and decryption. It is specified in NIST SP800-38E.

Its single parameter is a Data Unit Sequence Number 16 bytes long. Supported key lengths are 32 and
64 bytes. Keys are internally split into half-length sub-keys of 16 and 32 bytes respectively. Constraintson
key types and the length of data are summarized in the following table:

Table 90, AES-XTS: Key And Data Length

Function Key type Input length Output length Comments

C_Encrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

C_Decrypt CKK_AES_XTS | Any, = block size (16 | Same as input length No final part
bytes)

2.16 AES Key Wrap

Table 91, AES Key Wrap Mechanisms vs. Functions

Functions

Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & |Digest| Key/ & Derive

Decrypt| Verify | R Key |Unwrap

Pair

CKM_AES_KEY_WRAP v v
CKM_AES_KEY_WRAP_PAD v v
CKM_AES_KEY_WRAP_KWP v v
TsrR= SignRecover, VR = VerifyRecover
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 110 of 261

3447

3448
3449
3450
3451

3452

3453
3454
3455
3456

3457
3458
3459

3460

3461
3462

3463
3464
3465

3466
3467
3468
3469
3470

3471
3472
3473

3474

3475
3476

3477

2.16.1 Definitions

Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD
CKM_AES_KEY_WRAP_KWP

2.16.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes for CKM_AES_KEY_WRAP and
CKM_AES_KEY_WRAP_PAD, resp. 4 bytes for CKM_AES_KEY_WRAP_KWP; and, if NULL, will use
the default initial value defined in Section 4.3 resp. 6.2 / 6.3 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL; or 8 for CKM_AES_KEY_WRAP /
CKM_AES_KEY_WRAP_PAD, resp. 4 for CKM_AES_KEY_WRAP_KWP, and the pointer non-NULL.

2.16.3 AES Key Wrap

The mechanisms support only single-part operations, single part wrapping and unwrapping, and single-
part encryption and decryption.

The CKM_AES_KEY_WRAP mechanism can only wrap a key resp. encrypt a block of data whose size is
an exact multiple of the AES Key Wrap algorithm block size. Wrapping / encryption is done as defined in
Section 6.2 of [AES KEYWRAP].

The CKM_AES_KEY_WRAP_PAD mechanism can wrap a key or encrypt a block of data of any length. It
does the padding detailed in PKCS #7 of inputs (keys or data blocks), always producing wrapped output
that is larger than the input key/data to be wrapped. This padding is done by the token before being
passed to the AES key wrap algorithm, which then wraps / encrypts the padded block of data as defined
in Section 6.2 of [AES KEYWRAP].

The CKM_AES_KEY_WRAP_KWP mechanism can wrap a key or encrypt block of data of any length.
The input is padded and wrapped / encrypted as defined in Section 6.3 of [AES KEYWRAP], which
produces same results as RFC 5649.

2.17 Key derivation by data encryption — DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

Table 92, Key derivation by data encryption Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_DES_ECB_ENCRYPT_DATA v
CKM_DES_CBC_ENCRYPT_DATA v
CKM_DES3_ECB_ENCRYPT_DATA v
CKM_DES3_CBC_ENCRYPT_DATA v
CKM_AES_ECB_ENCRYPT_DATA v
CKM_AES_CBC_ENCRYPT_DATA v
pkcs11-curr-v3.0-cosO1 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 111 of 261

3478 2.17.1 Definitions
3479 Mechanisms:

3480 CKM_DES_ECB_ENCRYPT_DATA
3481 CKM_DES_CBC_ENCRYPT_DATA

3482 CKM_DES3_ECB_ENCRYPT_DATA

3483 CKM_DES3_CBC_ENCRYPT_DATA

3484 CKM_AES_ECB_ENCRYPT_DATA

3485 CKM_AES_CBC_ENCRYPT_DATA

3486

3487 typedef struct CK DES CBC ENCRYPT DATA PARAMS {
3488 CK_BYTE iv[8];

3489 CK_BYTE PTR pData;

3490 CK_ULONG length;

3491 } CK _DES CBC_ENCRYPT DATA PARAMS;

3492

3493 typedef CK DES CBC_ENCRYPT DATA PARAMS CK_PTR
3494 CK_DES CBC ENCRYPT DATA PARAMS PTR;

3495

3496 typedef struct CK_AES CBC ENCRYPT DATA PARAMS {
3497 CK_BYTE iv[16];

3498 CK_BYTE PTR pData;

3499 CK_ULONG length;

3500 } CK _AES CBC_ENCRYPT DATA PARAMS;

3501

3502 typedef CK AES CBC_ENCRYPT DATA PARAMS CK_PTR
3503 CK_AES CBC ENCRYPT DATA PARAMS PTR;

3504 2.17.2 Mechanism Parameters

3505 Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 2.43.2
3506 Table 93, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
CKM_DES3 ECB_ENCRYPT_DATA structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.
CKM_AES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.
CKM_DES_CBC_ENCRYPT_DATA Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.
CKM DES3 CBC ENCRYPT DATA Parameter is an 8 byte IV value followed by the data.
- B B - The data value part must be a multiple of 8 bytes long.
CKM_AES_CBC_ENCRYPT_DATA Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 bytes long.

3507 2.17.3 Mechanism Description

3508 The mechanisms will function by performing the encryption over the data provided using the base key.
3509 The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 112 of 261

3510
3511
3512

3513
3514

3515
3516

3517
3518

3519

3520
3521

3522
3523
3524
3525
3526
3527
3528
3529

3530

3531
3532
3533

3534

3535

is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 2.20.5.

If the data is too short to make the requested key then the mechanism returns
CKR_DATA_LEN_RANGE.

2.18 Double and Triple-length DES

Table 94, Double and Triple-Length DES Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR’ Key | Unwrap

Pair

CKM_DES2_KEY_GEN v
CKM_DES3_KEY_GEN v
CKM_DES3 _ECB v v
CKM_DES3_CBC v v
CKM_DES3 CBC_PAD v v
CKM_DES3 MAC_GENERAL v
CKM_DES3_MAC v

2.18.1 Definitions

This section defines the key type “CKK_DES2" and “CKK_DES3"” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_DES2_KEY_GEN
CKM_DES3 KEY_GEN
CKM_DES3_ECB
CKM_DES3 CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3 CBC_PAD

2.18.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 95, DES2 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"467 Byte array Key value (always 16 bytes long)

- Refer to [PKCS11-Base] table 11 for footnotes

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 113 of 261

3536
3537
3538

3539

3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552

3553

3554
3555
3556

3557

3558
3559
3560

3561

3562

3563
3564
3565

3566

3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579

DES?2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK DES2;
CK UTF8CHAR label[] = “A DES2 secret key object”;
CK BYTE value[l6] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.18.3 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table 96, DES3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"'467 Byte array Key value (always 24 bytes long)

- Refer to [PKCS11-Base] table 11 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK DES3;
CK UTF8CHAR label[] = “A DES3 secret key object”;
CK BYTE value[24] = {...};
CK BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
}i

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 114 of 261

3580

3581
3582
3583

3584

3585
3586
3587

3588

3589
3590
3591
3592

3593
3594
3595
3596

3597
3598

3599

3600
3601
3602

3603
3604

3605

3606
3607
3608

3609
3610

3611
3612

3613
3614

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.18.4 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length DES key
both have their parity bits set properly, as specified in FIPS PUB 46-3.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length DES key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3_ECB, CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES3_MAC_GENERAL, and
CKM_DES3_MAC. Triple-DES encryption with a double-length DES key is equivalent to encryption with
a triple-length DES key with K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is possible for either
of the component DES keys to be “weak” or “semi-weak” keys.

2.18.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt, decrypt, encrypt.
Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt. The mathematical
representations of the encrypt and decrypt operations are as follows:
DES3-E ({K1,K2,K3}, P) E (K3, D(K2, E(K1l, P)))
DES3-D({K1,K2,K3}, C) D(K1l, E(K2, D(K3, P)))

2.18.6 Triple-length DES in CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are performed using outer
CBC as defined in X9.52. X9.52 describes this mode as TCBC. The mathematical representations of the
CBC encrypt and decrypt operations are as follows:

DES3-CBC-E ({K1,K2,K3}, P) = E(K3, D(K2, E(K1, P + I)))
DES3-CBC-D ({K1,K2,K3}, C) = D(K1l, E(K2, D(K3, P))) + I

The value | is either an 8-byte initialization vector or the previous block of cipher text that is added to the
current input block. The addition operation is used is addition modulo-2 (XOR).

2.18.7 DES and Triple length DES in OFB Mode
Table 97, DES and Triple Length DES in OFB Mode Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR’ Key | Unwrap

Pair

CKM_DES_OFB64 v
CKM_DES_OFB8 v
CKM_DES_CFB64 v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 115 of 261

3615

3616
3617

3618
3619

3620
3621

3622

3623

3624
3625

3626
3627

3628
3629

3630

3631
3632

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_DES_CFBS8 v

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES_OFB8 and
CKM_DES_OFB64. Itis a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:
Table 98, OFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.18.8 DES and Triple length DES in CFB Mode

Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and CKM_DES_CFB64.
It is a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:
Table 99, CFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES?2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.19 Double and Triple-length DES CMAC

Table 100, Double and Triple-length DES CMAC Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 116 of 261

3633

3634

3635
3636
3637

3638

3639
3640

3641
3642
3643

3644
3645

3646
3647

3648
3649

3650
3651
3652
3653

3654
3655

3656

3657
3658
3659

3660

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_DES3_CMAC_GENERAL v
CKM_DES3_CMAC v

1 SR = SignRecover, VR = VerifyRecover.

2.19.1 Definitions

Mechanisms:
CKM_DES3 CMAC_GENERAL
CKM_DES3 _CMAC

2.19.2 Mechanism parameters

CKM_DES3_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_DES3_CMAC does not use a mechanism parameter.

2.19.3 General-length DES3-MAC

General-length DES3-CMAC, denoted CKM_DES3_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification with DES3 or DES2 keys, based on [NIST sp800-38b].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final DES3 cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 101, General-length DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any 1-block size, as specified in parameters
CKK_DES2

C_Verify CKK_DES3 any 1-block size, as specified in parameters
CKK_DES2

Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less than 64 bits
(which means using the entire block for DES). The MAC length must be specified before the
communication starts, and must not be changed during the lifetime of the key. It is the caller’s
responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used

2.19.4 DES3-CMAC

DES3-CMAC, denoted CKM_DES3_CMAC, is a special case of the general-length DES3-CMAC
mechanism. DES3-MAC always produces and verifies MACs that are a full block size in length, since the
DES3 block length is the minimum output length recommended by [NIST sp800-38b].

Constraints on key types and the length of data are summarized in the following table:

27 March 2020
Page 117 of 261

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

3661

3662
3663

3664
3665

3666

3667
3668

3669
3670
3671
3672
3673
3674
3675

3676

3677
3678

3679

3680
3681

Table 102, DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any Block size (8 bytes)
CKK_DES2

C_Verify CKK_DES3 any Block size (8 bytes)
CKK_DES2

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

are not used.

2.20 SHA-1
Table 103, SHA-1 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_SHA 1 v
CKM_SHA 1 HMAC_ GENERAL v
CKM_SHA_1_HMAC v
CKM_SHA1_KEY_DERIVATION v
CKM_SHA_1_KEY_GEN v

2.20.1 Definitions

This section defines the key type “CKK_SHA_1 HMAC" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_SHA 1

CKM_SHA 1 _HMAC

CKM_SHA_1_HMAC_GENERAL
CKM_SHA1_KEY_DERIVATION

CKM_SHA_1_KEY_GEN

2.20.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

P

27 March 2020
age 118 of 261

3682

3683

3684
3685
3686

3687
3688
3689

3690

3691

3692
3693

3694

3695
3696
3697

3698
3699

3700
3701

3702
3703

3704
3705
3706

3707
3708

3709
3710

3711
3712

3713
3714
3715

Table 104, SHA-1: Data Length

Function Input length | Digest length

C_Digest any 20

2.20.3 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1 hash
function. The keys it uses are generic secret keys and CKK_SHA 1 HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-20 (the output size of SHA-1 is 20 bytes). Signatures
(MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output.

Table 105, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 1-20, depending on parameters
CKK_SHA_1_
HMAC

C_Verify generic secret any 1-20, depending on parameters
CKK_SHA 1_
HMAC

2.20.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC, is a special case of the general-length
SHA-1-HMAC mechanism in Section 2.20.3.

It has no parameter, and always produces an output of length 20.

2.20.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism which provides the
capability of deriving a secret key by digesting the value of another secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of derived secret

key.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be 20 bytes (the output size of SHA-1).

o If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length was provided in the template, but a key type is, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

o If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 119 of 261

3716
3717
3718
3719

3720
3721
3722
3723

3724

3725
3726

3727

3728
3729

3730
3731
3732
3733

3734
3735

3736
3737

3738

3739
3740

3741
3742
3743
3744
3745
3746

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its

CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.20.6 SHA-1 HMAC key generation

The SHA-1-HMAC key generation mechanism, denoted CKM_SHA_1_KEY_GEN, is a key generation

mechanism for NIST’s SHA-1-HMAC.

It does not have a parameter.

The mechanism generates SHA-1-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA-1-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default

initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA_1_HMAC key sizes, in bytes.

2.21 SHA-224
Table 106, SHA-224 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR’ Key | Unwra
Pair Y
CKM_SHA224 v
CKM_SHA224 HMAC v
CKM_SHA224 HMAC_GENERAL v
CKM_SHA224 RSA_PKCS v
CKM_SHA224 RSA_PKCS_PSS v
CKM_SHA224 KEY_DERIVATION v
CKM_SHA224 KEY_GEN v

2.21.1 Definitions

This section defines the key type “CKK_SHA224 HMAC" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_SHA224
CKM_SHA224 HMAC

CKM_SHA224 HMAC_GENERAL
CKM_SHA224 KEY_DERIVATION

CKM_SHA224 KEY_GEN

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 120 of 261

3747

3748
3749
3750

3751
3752

3753

3754

3755
3756
3757
3758
3759

3760
3761
3762
3763
3764

3765

3766

3767
3768

3769

3770

3771
3772
3773

3774

3775
3776

3777

3778
3779

2.21.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 224-bit message digest defined in 0.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 107, SHA-224: Data Length

Function Input length | Digest length

C_Digest any 28

2.21.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted CKM_SHA224 HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism except that it uses the HMAC construction based
on the SHA-224 hash function and length of the output should be in the range 1-28. The keys it uses are
generic secret keys and CKK_SHA224 HMAC. FIPS-198 compliant tokens may require the key length to
be at least 14 bytes; that is, half the size of the SHA-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-28 (the output size of SHA-224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).
Signatures (MACSs) produced by this mechanism will be taken from the start of the full 28-byte HMAC
output.

Table 108, General-length SHA-224-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret Any 1-28, depending on parameters

CKK_SHA224
HMAC

C_Verify generic secret Any 1-28, depending on parameters

CKK_SHA224
HMAC

2.21.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224 HMAC, is a special case of the general-length
SHA-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.21.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 12.21.5 except that it uses the SHA-224 hash function and the relevant
length is 28 bytes.

2.21.6 SHA-224 HMAC key generation

The SHA-224-HMAC key generation mechanism, denoted CKM_SHA224 KEY_GEN, is a key
generation mechanism for NIST's SHA224-HMAC.

It does not have a parameter.

The mechanism generates SHA224-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 121 of 261

3780
3781
3782
3783

3784
3785

3786
3787

3788

3789
3790

3791
3792
3793
3794
3795
3796

3797

3798
3799

3800

3801
3802

3803

3804

3805
3806
3807
3808
3809

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA224-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA224_HMAC key sizes, in bytes.

2.22 SHA-256

Table 109, SHA-256 Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR' Key | Unwrap

Pair

CKM_SHA256 v
CKM_SHA256_ HMAC_GENERAL v
CKM_SHA256_HMAC v
CKM_SHA256_KEY_DERIVATION v
CKM_SHA256_KEY_GEN v

2.22.1 Definitions

This section defines the key type “CKK_SHA256_HMAC" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.
Mechanisms:

CKM_SHA256

CKM_SHA256_HMAC

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_KEY_DERIVATION

CKM_SHA256_KEY_GEN

2.22.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 256-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 110, SHA-256: Data Length

Function Input length | Digest length

C_Digest any 32

2.22.3 General-length SHA-256-HMAC

The general-length SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the HMAC
construction based on the SHA-256 hash function and length of the output should be in the range 1-32.
The keys it uses are generic secret keys and CKK_SHA256_HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash output.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 122 of 261

3810
3811
3812
3813
3814

3815

3816

3817
3818

3819

3820

3821
3822
3823

3824

3825
3826
3827

3828
3829

3830
3831
3832
3833

3834
3835

3836
3837

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-32 (the output size of SHA-256 is 32 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC
output.

Table 111, General-length SHA-256-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret, Any 1-32, depending on parameters

CKK_SHA256_
HMAC

C_Verify generic secret, Any 1-32, depending on parameters

CKK_SHA256_
HMAC

2.22.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC, is a special case of the general-length
SHA-256-HMAC mechanism in Section 2.22.3.

It has no parameter, and always produces an output of length 32.

2.22.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA-256 hash function and the relevant
length is 32 bytes.

2.22.6 SHA-256 HMAC key generation

The SHA-256-HMAC key generation mechanism, denoted CKM_SHA256_KEY_GEN, is a key
generation mechanism for NIST’s SHA256-HMAC.
It does not have a parameter.

The mechanism generates SHA256-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA256-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA256_HMAC key sizes, in bytes.

2.23 SHA-384

Table 112, SHA-384 Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR Key | Unwrap

Pair
CKM_SHA384 v
CKM_SHA384_HMAC_GENERAL v
CKM_SHA384_HMAC v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 123 of 261

3838

3839
3840

3841
3842
3843
3844
3845

3846

3847
3848

3849

3850
3851

3852

3853

3854
3855
3856

3857
3858

3859
3860
3861
3862
3863

Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_SHA384_KEY_DERIVATION v
CKM_SHA384_KEY_GEN v

2.23.1 Definitions

This section defines the key type “CKK_SHA384 HMAC" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

CKM_SHA384

CKM_SHA384 HMAC

CKM_SHA384_HMAC_GENERAL

CKM_SHA384 KEY_DERIVATION

CKM_SHA384_KEY_GEN

2.23.2 SHA-384 digest

The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 384-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 113, SHA-384: Data Length

Function Input length | Digest length

C_Digest any 48

2.23.3 General-length SHA-384-HMAC

The general-length SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the HMAC
construction based on the SHA-384 hash function and length of the output should be in the range 1-48.

The keys it uses are generic secret keys and CKK_SHA384 HMAC. FIPS-198 compliant tokens may
require the key length to be at least 24 bytes; that is, half the size of the SHA-384 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-48 (the output size of SHA-384 is 48 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 24 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 48-byte HMAC
output.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 124 of 261

3864

3865

3866

3867
3868

3869

3870

3871
3872
3873

3874

3875
3876
3877

3878
3879

3880
3881
3882
3883

3884
3885

3886
3887

Table 114, General-length SHA-384-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret, Any 1-48, depending on parameters
CKK_SHA384
HMAC

C_Verify generic secret, Any 1-48, depending on parameters

CKK_SHA384_
HMAC

2.23.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC, is a special case of the general-length
SHA-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

2.23.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA-384 hash function and the relevant
length is 48 bytes.

2.23.6 SHA-384 HMAC key generation

The SHA-384-HMAC key generation mechanism, denoted CKM_SHA384 KEY_GEN, is a key
generation mechanism for NIST's SHA384-HMAC.
It does not have a parameter.

The mechanism generates SHA384-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA384-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA384_HMAC key sizes, in bytes.

2.24 SHA-512

Table 115, SHA-512 Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR Key | Unwrap

Pair
CKM_SHA512 v
CKM_SHA512_HMAC_GENERAL v
CKM_SHA512_HMAC v
CKM_SHA512_KEY_DERIVATION v
CKM_SHA512_KEY_GEN v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 125 of 261

3888

3889
3890

3891
3892
3893
3894
3895
3896

3897

3898
3899

3900

3901
3902

3903

3904

3905
3906
3907

3908
3909

3910
3911
3912
3913
3914

3915

3916

3917

3918
3919

3920

2.24.1 Definitions

This section defines the key type “CKK_SHA512 HMAC" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_SHA512
CKM_SHA512 HMAC
CKM_SHA512_HMAC_GENERAL
CKM_SHA512 KEY_DERIVATION
CKM_SHA512_KEY_GEN

2.24.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHA512, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 512-bit message digest defined in FIPS PUB 180-2.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 116, SHA-512: Data Length

Function Input length | Digest length

C_Digest any 64

2.24.3 General-length SHA-512-HMAC

The general-length SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the HMAC
construction based on the SHA-512 hash function and length of the output should be in the range 1-64.

The keys it uses are generic secret keys and CKK_SHA512 HMAC. FIPS-198 compliant tokens may
require the key length to be at least 32 bytes; that is, half the size of the SHA-512 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-64 (the output size of SHA-512 is 64 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 32 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 64-byte HMAC
output.

Table 117, General-length SHA-384-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret, Any 1-64, depending on parameters
CKK_SHA512_
HMAC

C_Verify generic secret, Any 1-64, depending on parameters
CKK_SHA512_

HMAC

2.24.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC, is a special case of the general-length
SHA-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 126 of 261

3921

3922
3923
3924

3925

3926
3927

3928

3929
3930

3931
3932
3933
3934

3935
3936

3937
3938

3939

3940
3941

3942
3943
3944
3945
3946
3947

3948

3949
3950

2.24.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHA512_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA-512 hash function and the relevant
length is 64 bytes.

2.24.6 SHA-512 HMAC key generation

The SHA-512-HMAC key generation mechanism, denoted CKM_SHA512 KEY_GEN, is a key
generation mechanism for NIST's SHA512-HMAC.

It does not have a parameter.

The mechanism generates SHA512-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA512-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA512_HMAC key sizes, in bytes.

2.25 SHA-512/224

Table 118, SHA-512/224 Mechanisms vs. Functions

Functions
Encryp | Sign | SR Gen. | Wrap
Mechanism t & & | Diges | Key/ & Deriv
& Verif | VR t Key | Unwra e
Decryp y ! Pair p
t
CKM_SHA512_224 v
CKM_SHA512_224 HMAC_GENERA v
L
CKM_SHA512_224 HMAC v
CKM_SHA512_224 KEY_DERIVATIO v
N
CKM_SHA512_224 KEY_GEN v

2.25.1 Definitions

This section defines the key type “CKK_SHA512_224 HMAC” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_SHA512_224
CKM_SHA512 224 HMAC
CKM_SHA512_224 HMAC_GENERAL
CKM_SHA512 224 KEY_DERIVATION
CKM_SHA512_224 KEY_GEN

2.25.2 SHA-512/224 digest

The SHA-512/224 mechanism, denoted CKM_SHA512_224, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. Itis based on a 512-bit

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 127 of 261

3951
3952

3953

3954
3955

3956

3957

3958
3959
3960
3961
3962
3963

3964
3965
3966
3967
3968

3969

3970

3971

3972
3973

3974

3975

3976
3977
3978

3979

3980
3981

3982

3983
3984

message digest with a distinct initial hash value and truncated to 224 bits. CKM_SHA512_224 is the
same as CKM_SHA512_T with a parameter value of 224.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 119, SHA-512/224: Data Length

Function Input length | Digest length

C_Digest any 28

2.25.3 General-length SHA-512/224-HMAC

The general-length SHA-512/224-HMAC mechanism, denoted CKM_SHA512_ 224 HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the
HMAC construction based on the SHA-512/224 hash function and length of the output should be in the
range 1-28. The keys it uses are generic secret keys and CKK_SHA512 224 HMAC. FIPS-198
compliant tokens may require the key length to be at least 14 bytes; that is, half the size of the SHA-
512/224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-28 (the output size of SHA-512/224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).
Signatures (MACSs) produced by this mechanism will be taken from the start of the full 28-byte HMAC
output.

Table 120, General-length SHA-384-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret, Any 1-28, depending on parameters
CKK_SHA512_
224 HMAC

C_Verify generic secret, Any 1-28, depending on parameters
CKK_SHA512_

224 HMAC

2.25.4 SHA-512/224-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_224 HMAC, is a special case of the general-
length SHA-512/224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.25.5 SHA-512/224 key derivation

The SHA-512/224 key derivation, denoted CKM_SHA512_224 KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/224 hash function
and the relevant length is 28 bytes.

2.25.6 SHA-512/224 HMAC key generation

The SHA-512/224-HMAC key generation mechanism, denoted CKM_SHA512_224 KEY_GEN, is a key
generation mechanism for NIST's SHA512/224-HMAC.

It does not have a parameter.

The mechanism generates SHA512/224-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 128 of 261

3985
3986
3987
3988

3989
3990

3991
3992

3993

3994
3995

3996
3997
3998
3999
4000
4001

4002

4003
4004
4005
4006

4007

4008
4009

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA512/224-HMAC key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA512_224 HMAC key sizes, in bytes.

2.26 SHA-512/256

Table 121, SHA-512/256 Mechanisms vs. Functions

Functions
Encryp | Sign | SR Gen. | Wrap
Mechanism t & & | Diges | Key/ & Deriv
& Verif | VR t Key | Unwra e
Decryp y ! Pair P
t
CKM_SHA512_256 v
CKM_SHA512_256_HMAC_GENERA v
L
CKM_SHA512_256_HMAC v
CKM_SHA512_256_KEY_DERIVATIO v
N
CKM_SHA512_256_KEY_GEN v

2.26.1 Definitions
This section defines the key type “CKK_SHA512 256 _HMAC” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SHA512_256
CKM_SHA512 256_HMAC
CKM_SHA512_256_HMAC_GENERAL
CKM_SHA512 256 _KEY_DERIVATION
CKM_SHA512 256_KEY_GEN

2.26.2 SHA-512/256 digest

The SHA-512/256 mechanism, denoted CKM_SHA512_256, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. Itis based on a 512-bit
message digest with a distinct initial hash value and truncated to 256 bits. CKM_SHA512_256 is the
same as CKM_SHA512_T with a parameter value of 256.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 129 of 261

4010

4011

4012
4013
4014
4015
4016
4017

4018
4019
4020
4021
4022

4023

4024

4025

4026
4027

4028

4029

4030
4031
4032

4033

4034
4035

4036

4037
4038

4039
4040
4041
4042

4043
4044

Table 122, SHA-512/256: Data Length

Function Input length | Digest length

C_Digest any 32

2.26.3 General-length SHA-512/256-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_256_HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the
HMAC construction based on the SHA-512/256 hash function and length of the output should be in the
range 1-32. The keys it uses are generic secret keys and CKK_SHA512_256_HMAC. FIPS-198
compliant tokens may require the key length to be at least 16 bytes; that is, half the size of the SHA-
512/256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-32 (the output size of SHA-512/256 is 32 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC
output.

Table 123, General-length SHA-384-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret, Any 1-32, depending on parameters
CKK_SHA512_
256_HMAC

C_Verify generic secret, Any 1-32, depending on parameters
CKK_SHA512_

256_HMAC

2.26.4 SHA-512/256-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_256_HMAC, is a special case of the general-
length SHA-512/256-HMAC mechanism.

It has no parameter, and always produces an output of length 32.

2.26.5 SHA-512/256 key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512_256_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function
and the relevant length is 32 bytes.

2.26.6 SHA-512/256 HMAC key generation

The SHA-512/256-HMAC key generation mechanism, denoted CKM_SHA512_256_KEY_GEN, is a key
generation mechanism for NIST's SHA512/256-HMAC.

It does not have a parameter.

The mechanism generates SHA512/256-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA512/256-HMAC key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA512_256_HMAC key sizes, in bytes.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 130 of 261

4045
4046

4047

4048
4049

4050
4051
4052
4053
4054
4055

4056

4057
4058
4059

4060
4061

4062
4063

4064

4065

4066
4067

4068
4069

2.27 SHA-512/t

Table 124, SHA-512 / t Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_SHA512_ T v
CKM_SHA512_T_HMAC_GENERAL v
CKM_SHA512_T_HMAC 4
CKM_SHA512_T_KEY_DERIVATION v
CKM_SHA512 T KEY_GEN v

2.27.1 Definitions

This section defines the key type “CKK_SHA512 T HMAC?” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_SHA512 T
CKM_SHA512 T_HMAC
CKM_SHA512 T_HMAC_GENERAL
CKM_SHA512 T_KEY_DERIVATION
CKM_SHA512 T_KEY_GEN

2.27.2 SHA-512/t digest

The SHA-512/t mechanism, denoted CKM_SHA512_T, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit message
digest with a distinct initial hash value and truncated to t bits.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in
bytes of the desired output should be in the range of O-T t/81, where 0 <t <512, and t <> 384.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 125, SHA-512/256: Data Length

Function Input length Digest length

C _Digest any [t/81, where 0 <t <512, and t <> 384

2.27.3 General-length SHA-512/t-HMAC

The general-length SHA-512/t-HMAC mechanism, denoted CKM_SHA512_T_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.3, except that it uses the HMAC

construction based on the SHA-512/t hash function and length of the output should be in the range 0 — T
/81, where 0 <t <512, and t <> 384.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 131 of 261

4070 2.27.4 SHA-512/t-HMAC

4071 The SHA-512/t-HMAC mechanism, denoted CKM_SHA512_T_HMAC, is a special case of the general-
4072 length SHA-512/t-HMAC mechanism.

4073 It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in
4074 bytes of the desired output should be in the range of 0-Tt/81, where 0 <t <512, and t <> 384.

4075 2.27.5 SHA-512/t key derivation

4076 The SHA-512/t key derivation, denoted CKM_SHA512_T_KEY_DERIVATION, is the same as the SHA-
4077 512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/t hash function and the
4078 relevant length is Tt/81 bytes, where 0 <t< 512, and t <> 384.

4079 2.27.6 SHA-512/t HMAC key generation

4080 The SHA-512/t-HMAC key generation mechanism, denoted CKM_SHA512_T_KEY_GEN, is a key
4081 generation mechanism for NIST's SHA512/t-HMAC.

4082 It does not have a parameter.

4083 The mechanism generates SHA512/t-HMAC keys with a particular length in bytes, as specified in the
4084 CKA_VALUE_LEN attribute of the template for the key.

4085 The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
4086 key. Other attributes supported by the SHA512/t-HMAC key type (specifically, the flags indicating which
4087 functions the key supports) may be specified in the template for the key, or else are assigned default
4088 initial values.

4089 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
4090 specify the supported range of CKM_SHA512_T_HMAC key sizes, in bytes.

4091

4092 2.28 SHA3-224
4093 Table 126, SHA-224 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Diges & Derive
Decrypt | Verif | VR! t Key/ | Unwrap
y Key
Pair
CKM_SHA3 224 v
CKM_SHA3 224 HMAC v
CKM_SHA3 224 HMAC_GENERAL v
CKM_SHA3 224 KEY_DERIVATION v
CKM_SHA3 224 KEY_GEN v
4094 2.28.1 Definitions
4095 Mechanisms:
4096 CKM_SHA3 224
4097 CKM_SHA3 224 HMAC
4098 CKM_SHA3 224 HMAC_GENERAL
4099 CKM_SHA3 224 KEY_DERIVATION
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 132 of 261

4100
4101
4102

4103

4104
4105
4106

4107
4108

4109

4110

4111
4112
4113
4114
4115

4116
4117
4118
4119
4120

4121

4122

4123
4124

4125

4126

4127
4128
4129

4130

4131
4132

4133

CKM_SHA3 224 KEY_GEN

CKK_SHA3_224 HMAC

2.28.2 SHA3-224 digest

The SHA3-224 mechanism, denoted CKM_SHA3_224, is a mechanism for message digesting, following
the Secure Hash 3 Algorithm with a 224-bit message digest defined in FIPS Pub 202.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 127, SHA3-224: Data Length

Function Input length Digest length

C_Digest any 28

2.28.3 General-length SHA3-224-HMAC

The general-length SHA3-224-HMAC mechanism, denoted CKM_SHA3_224 HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in section 2.20.4 except that it uses the HMAC
construction based on the SHA3-224 hash function and length of the output should be in the range 1-28.
The keys it uses are generic secret keys and CKK_SHA3 224 HMAC. FIPS-198 compliant tokens may
require the key length to be at least 14 bytes; that is, half the size of the SHA3-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-28 (the output size of SHA3-224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).
Signatures (MACSs) produced by this mechanism shall be taken from the start of the full 28-byte HMAC
output.

Table 128, General-length SHA3-224-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret or Any 1-28, depending on parameters
CKK_SHA3 224 HMAC

C_Verify generic secret or Any 1-28, depending on parameters
CKK_SHA3 224 HMAC

2.28.4 SHA3-224-HMAC

The SHA3-224-HMAC mechanism, denoted CKM_SHA3_224 HMAC, is a special case of the general-
length SHA3-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.28.5 SHA3-224 key derivation

SHA-224 key derivation, denoted CKM_SHA3_224_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5 except that it uses the SHA3-224 hash function and the relevant
length is 28 bytes.

2.28.6 SHA3-224 HMAC key generation

The SHA3-224-HMAC key generation mechanism, denoted CKM_SHA3_224 KEY_GEN, is a key
generation mechanism for NIST's SHA3-224-HMAC.

It does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 133 of 261

4134
4135

4136
4137
4138
4139

4140
4141

4142
4143

4144

4145
4146
4147
4148
4149
4150
4151
4152

4153

4154
4155

4156

4157
4158

The mechanism generates SHA3-224-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA3-224-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default

initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA3_224 HMAC key sizes, in bytes.

2.29 SHA3-256
Table 129, SHA3-256 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Diges & Derive
Decrypt | Verif | VR' t Key/ | Unwrap
y Key
Pair
CKM_SHA3 256 v
CKM_SHA3_256_HMAC_GENERAL v
CKM_SHA3_256_HMAC v
CKM_SHA3 256 KEY_DERIVATION v
CKM_SHA3_256_KEY_GEN v

2.29.1 Definitions

Mechanisms:
CKM_SHA3 256
CKM_SHA3_256_HMAC
CKM_SHA3 256 HMAC_GENERAL
CKM_SHA3_256_KEY_DERIVATION
CKM_SHA3 256 KEY_GEN

CKK_SHA3_256_HMAC

2.29.2 SHA3-256 digest

The SHA3-256 mechanism, denoted CKM_SHA3_256, is a mechanism for message digesting, following
the Secure Hash 3 Algorithm with a 256-bit message digest defined in FIPS PUB 202.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 134 of 261

4159

4160

4161
4162
4163
4164
4165

4166

4167
4168
4169
4170

4171

4172

4173
4174

4175

4176

4177
4178
4179

4180
4181
4182
4183

4184
4185

4186
4187
4188
4189

4190
4191

4192

Table 130, SHA3-256: Data Length

Function Input length Digest length

C_Digest any 32

2.29.3 General-length SHA3-256-HMAC

The general-length SHA3-256-HMAC mechanism, denoted CKM_SHA3_256_ HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.4, except that it uses the HMAC
construction based on the SHA3-256 hash function and length of the output should be in the range 1-32.
The keys it uses are generic secret keys and CKK_SHA3_256_HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA3-256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired

output. This length should be in the range 1-32 (the output size of SHA3-256 is 32 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length).
Signatures (MACSs) produced by this mechanism shall be taken from the start of the full 32-byte HMAC
output.

Table 131, General-length SHA3-256-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret or Any 1-32, depending on parameters
CKK_SHA3_256_HMAC

C_Verify generic secret or Any 1-32, depending on parameters
CKK_SHA3_256_HMAC

2.29.4 SHA3-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA3_256_HMAC, is a special case of the general-
length SHA-256-HMAC mechanism in Section 2.22.3.

It has no parameter, and always produces an output of length 32.

2.29.5 SHA3-256 key derivation

SHA-256 key derivation, denoted CKM_SHA3 256 _KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA3-256 hash function and the relevant
length is 32 bytes.

2.29.6 SHA3-256 HMAC key generation

The SHA3-256-HMAC key generation mechanism, denoted CKM_SHA3_256_KEY_GEN, is a key
generation mechanism for NIST’s SHA3-256-HMAC.

It does not have a parameter.

The mechanism generates SHA3-256-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA3-256-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA3_256_HMAC key sizes, in bytes.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 135 of 261

4193 2.30 SHA3-384
4194 Table 132, SHA3-384 Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & Diges Key/ & Derive

Decrypt | Verif | VR! t Key | Unwra

y Pair P

CKM_SHA3_384 v
CKM_SHA3 384 HMAC_GENERAL 4
CKM_SHA3_384_HMAC 4
CKM_SHA3_384_KEY_DERIVATION v
CKM_SHA3 384 KEY_GEN v

4195 2.30.1 Definitions

4196 CKM_SHA3_384

4197 CKM_SHA3_384 HMAC

4198 CKM_SHA3_384 HMAC_GENERAL
4199 CKM_SHA3_384 KEY_DERIVATION
4200 CKM_SHA3_384 KEY_GEN

4201

4202 CKK_SHA3_ 384 HMAC

4203 2.30.2 SHA3-384 digest

4204 The SHA3-384 mechanism, denoted CKM_SHA3_384, is a mechanism for message digesting, following
4205 the Secure Hash 3 Algorithm with a 384-bit message digest defined in FIPS PUB 202.

4206 It does not have a parameter.

4207 Constraints on the length of input and output data are summarized in the following table. For single-part
4208 digesting, the data and the digest may begin at the same location in memory.

4209 Table 133, SHA3-384: Data Length

Function Input length Digest length
C_Digest any 48

4210 2.30.3 General-length SHA3-384-HMAC

4211 The general-length SHA3-384-HMAC mechanism, denoted CKM_SHA3_384_HMAC_GENERAL, is the
4212 same as the general-length SHA-1-HMAC mechanism in Section 2.20.4, except that it uses the HMAC
4213 construction based on the SHA-384 hash function and length of the output should be in the range 1-
4214 48.The keys it uses are generic secret keys and CKK_SHA3 384 HMAC. FIPS-198 compliant tokens
4215 may require the key length to be at least 24 bytes; that is, half the size of the SHA3-384 hash output.

4216

4217 It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
4218 output. This length should be in the range 1-48 (the output size of SHA3-384 is 48 bytes). FIPS-198
4219 compliant tokens may constrain the output length to be at least 4 or 24 (half the maximum length).
4220 Signatures (MACSs) produced by this mechanism shall be taken from the start of the full 48-byte HMAC
4221 output.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 136 of 261

4222

4223

4224

4225
4226

4227

4228

4229
4230
4231

4232

4233
4234
4235

4236
4237

4238
4239
4240
4241

4242
4243

4244
4245

Table 134, General-length SHA3-384-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret or Any 1-48, depending on parameters
CKK_SHA3 384 HMAC

C_Verify generic secret or Any 1-48, depending on parameters
CKK_SHA3_384 HMAC

2.30.4 SHA3-384-HMAC

The SHA3-384-HMAC mechanism, denoted CKM_SHA3_384 HMAC, is a special case of the general-
length SHA3-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

2.30.5 SHA3-384 key derivation

SHA3-384 key derivation, denoted CKM_SHA3_384_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA-384 hash function and the relevant
length is 48 bytes.

2.30.6 SHA3-384 HMAC key generation

The SHA3-384-HMAC key generation mechanism, denoted CKM_SHA3_384_KEY_GEN, is a key
generation mechanism for NIST’s SHA3-384-HMAC.

It does not have a parameter.
The mechanism generates SHA3-384-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA3-384-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_SHA3_384 HMAC key sizes, in bytes.
2.31 SHA3-512
Table 135, SHA-512 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
1 Key
Pair
CKM_SHA3_512 v
CKM_SHA3_512_HMAC_GENERAL v
CKM_SHA3_512_HMAC v
CKM_SHA3_512_KEY_DERIVATION v
CKM_SHA3_512_KEY_GEN v

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 137 of 261

4246

4247
4248
4249
4250
4251
4252
4253

4254

4255
4256

4257

4258
4259

4260

4261

4262
4263
4264
4265
4266

4267

4268

4269
4270
4271
4272

4273

4274

4275

4276
4277

4278

2.31.1 Definitions

CKM_SHA3_512
CKM_SHA3_512_ HMAC
CKM_SHA3_512_ HMAC_GENERAL
CKM_SHA3 512_KEY_DERIVATION
CKM_SHA3_512_KEY_GEN

CKK_SHA3_512_HMAC

2.31.2 SHA3-512 digest

The SHA3-512 mechanism, denoted CKM_SHA3_512, is a mechanism for message digesting, following
the Secure Hash 3 Algorithm with a 512-bit message digest defined in FIPS PUB 202.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 136, SHA3-512: Data Length

Function Input length Digest length

C_Digest any 64

2.31.3 General-length SHA3-512-HMAC

The general-length SHA3-512-HMAC mechanism, denoted CKM_SHA3_512_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.20.4, except that it uses the HMAC
construction based on the SHA3-512 hash function and length of the output should be in the range 1-
64.The keys it uses are generic secret keys and CKK_SHA3_ 512 HMAC. FIPS-198 compliant tokens
may require the key length to be at least 32 bytes; that is, half the size of the SHA3-512 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired

output. This length should be in the range 1-64 (the output size of SHA3-512 is 64 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 32 (half the maximum length).
Signatures (MACs) produced by this mechanism shall be taken from the start of the full 64-byte HMAC
output.

Table 137, General-length SHA3-512-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret or Any 1-64, depending on parameters
CKK_SHA3 512_HMAC

C_Verify generic secret or Any 1-64, depending on parameters
CKK_SHA3_512_HMAC

2.31.4 SHA3-512-HMAC

The SHA3-512-HMAC mechanism, denoted CKM_SHA3_512_HMAC, is a special case of the general-
length SHA3-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 138 of 261

4279

4280
4281
4282

4283

4284
4285

4286

4287
4288

4289
4290
4291
4292

4293
4294

4295
4296

4297

4298
4299

4300

4301
4302
4303

4304
4305

4306
4307

4308
4309
4310

4311
4312

4313
4314

2.31.5 SHA3-512 key derivation

SHA3-512 key derivation, denoted CKM_SHA3_512 KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.20.5, except that it uses the SHA-512 hash function and the relevant
length is 64 bytes.

2.31.6 SHA3-512 HMAC key generation

The SHA3-512-HMAC key generation mechanism, denoted CKM_SHA3_512_KEY_GEN, is a key
generation mechanism for NIST's SHA3-512-HMAC.

It does not have a parameter.

The mechanism generates SHA3-512-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SHA3-512-HMAC key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of CKM_SHA3_512_HMAC key sizes, in bytes.
2.32 SHAKE
Table 138, SHA-512 Mechanisms vs. Functions
Functions
Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_SHAKE_128 KEY_DERIVATION v
CKM_SHAKE_256 KEY_DERIVATION 4

2.32.1 Definitions

CKM_SHAKE_128_KEY_DERIVATION
CKM_SHAKE_256_KEY_DERIVATION

2.32.2 SHAKE Key Derivation

SHAKE-128 and SHAKE-256 key derivation, denoted CKM_SHAKE_128 KEY_DERIVATION and
CKM_SHAKE_256_KEY_DERIVATION, implements the SHAKE expansion function defined in FIPS 202
on the input key.

e If no length or key type is provided in the template a CKR_TEMPLATE_INCOMPLETE error is
generated.

e If no key type is provided in the template, but a length is, then the key produced by this mechanism
shall be a generic secret key of the specified length.

e If no length was provided in the template, but a key type is, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism shall be of the type specified in
the template. If it doesn't, an error shall be returned.

o If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism shall be of the specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key shall be set

properly.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 139 of 261

4315 This mechanism has the following rules about key sensitivity and extractability:
4316 e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
4317 be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
4318 default value.
4319 o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
4320 shall as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
4321 derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
4322 CKA_SENSITIVE attribute.
4323 . Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then
4324 the derived key shall, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
4325 CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
4326 value from its CKA_EXTRACTABLE attribute.
4327 2.33 Blake2b-160
4328 Table 139, Blake2b-160 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & Diges | Key/ & Derive
Decrypt | Verif | VR! t Key | Unwrap
y Pair

CKM_BLAKE2B_160 v

CKM_BLAKE2B_160_HMAC v

CKM_BLAKE2B_160_HMAC_GENE v

RAL

CKM_BLAKE2B_160_KEY_DERIVE v

CKM_BLAKE2B_160_KEY_GEN v
4329 2.33.1 Definitions
4330 Mechanisms:
4331 CKM_BLAKE2B_160
4332 CKM_BLAKE2B_160_HMAC
4333 CKM_BLAKE?2B_160_HMAC_GENERAL
4334 CKM_BLAKE?2B_160_KEY_DERIVE
4335 CKM_BLAKE2B 160 _KEY_GEN
4336 CKK_BLAKE2B_160_HMAC
4337 2.33.2 BLAKE2B-160 digest
4338 The BLAKEZ2B-160 mechanism, denoted CKM_BLAKE2B_160, is a mechanism for message digesting,
4339 following the Blake2b Algorithm with a 160-bit message digest without a key as defined in RFC 7693.
4340 It does not have a parameter.
4341 Constraints on the length of input and output data are summarized in the following table. For single-part
4342 digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 140 of 261

https://tools.ietf.org/html/rfc7693

4343

4344

4345
4346
4347

4348
4349
4350

4351

4352

4353
4354

4355

4356

4357
4358
4359

4360

4361
4362
4363

4364
4365

4366
4367
4368
4369

4370
4371

4372
4373

Table 140, BLAKE2B-160: Data Length

Function Input length Digest length

C_Digest any 20

2.33.3 General-length BLAKE2B-160-HMAC

The general-length BLAKE2B-160-HMAC mechanism, denoted
CKM_BLAKE2B_160_HMAC_GENERAL, is the keyed variant of BLAKE2b-160 and length of the output
should be in the range 1-20. The keys it uses are generic secret keys and CKK_BLAKE2B_160_HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 1-20 (the output size of BLAKE2B-160 is 20 bytes). Signatures
(MACs) produced by this mechanism shall be taken from the start of the full 20-byte HMAC output.

Table 141, General-length BLAKE2B-160-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret or Any 1-20, depending on parameters
CKK_BLAKE2B_160 H
MAC
C_Verify generic secret or Any 1-20, depending on parameters
CKK_BLAKE2B_160 H
MAC

2.33.4 BLAKE2B-160-HMAC

The BLAKE2B-160-HMAC mechanism, denoted CKM_BLAKE2B_160_HMAC, is a special case of the
general-length BLAKE2B-160-HMAC mechanism.

It has no parameter, and always produces an output of length 20.

2.33.5 BLAKE2B-160 key derivation

BLAKE2B-160 key derivation, denoted CKM_BLAKE2B_160_KEY_DERIVE, is the same as the SHA-1
key derivation mechanism in Section 2.20.5 except that it uses the BLAKE2B-160 hash function and the
relevant length is 20 bytes.

2.33.6 BLAKE2B-160 HMAC key generation

The BLAKE2B-160-HMAC key generation mechanism, denoted CKM_BLAKE2B_160_KEY_GEN, is a
key generation mechanism for BLAKE2B-160-HMAC.

It does not have a parameter.

The mechanism generates BLAKE2B-160-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the BLAKE2B-160-HMAC key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_BLAKE2B_160_HMAC key sizes, in bytes.

2.34 BLAKE2B-256
Table 142, BLAKE2B-256 Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 141 of 261

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Diges & Derive
Decrypt | Verif | VR! t Key/ | Unwrap
y Key
Pair
CKM_BLAKE2B_256 v
CKM_BLAKE2B 256 HMAC_GENER 4
AL
CKM_BLAKE2B_ 256 _HMAC v
CKM_BLAKE2B_ 256 KEY_DERIVE v
CKM_BLAKE2B 256 KEY_GEN v
4374 2.34.1 Definitions
4375 Mechanisms:
4376 CKM_BLAKE2B_256
4377 CKM_BLAKE2B 256 HMAC
4378 CKM_BLAKE2B_ 256 HMAC_GENERAL
4379 CKM_BLAKE2B 256 KEY_DERIVE
4380 CKM_BLAKE2B_ 256 _KEY_GEN
4381 CKK_BLAKE2B 256 _HMAC

4382 2.34.2 BLAKE2B-256 digest

4383 The BLAKE2B-256 mechanism, denoted CKM_BLAKE2B_256, is a mechanism for message digesting,
4384 following the Blake2b Algorithm with a 256-bit message digest without a key as defined in RFC 7693.

4385 It does not have a parameter.

4386 Constraints on the length of input and output data are summarized in the following table. For single-part
4387 digesting, the data and the digest may begin at the same location in memory.

4388 Table 143, BLAKE2B-256: Data Length

Function Input length Digest length
C_Digest any 32

4389 2.34.3 General-length BLAKE2B-256-HMAC

4390 The general-length BLAKE2B-256-HMAC mechanism, denoted
4391 CKM_BLAKE2B_256_HMAC_GENERAL, is the keyed variant of Blake2b-256 and length of the output
4392 should be in the range 1-32. The keys it uses are generic secret keys and CKK_BLAKE2B_256_HMAC.

4393 It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired

4394 output. This length should be in the range 1-32 (the output size of BLAKE2B-256 is 32 bytes). Signatures
4395 (MACs) produced by this mechanism shall be taken from the start of the full 32-byte HMAC output.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 142 of 261

4396

Table 144, General-length BLAKE2B-256-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret or Any 1-32, depending on parameters
CKK_BLAKE2B_256_HM
AC
C_Verify generic secret or Any 1-32, depending on parameters
CKK_BLAKE2B_ 256 _HM
AC
4397 2.34.4 BLAKE2B-256-HMAC
4398 The BLAKE2B-256-HMAC mechanism, denoted CKM_BLAKE2B_256_HMAC, is a special case of the
4399 general-length BLAKE2B-256-HMAC mechanism in Section 2.22.3.
4400 It has no parameter, and always produces an output of length 32.
4401 2.34.5 BLAKE2B-256 key derivation
4402 BLAKE2B-256 key derivation, denoted CKM_BLAKE2B_256 KEY_DERIVE, is the same as the SHA-1
4403 key derivation mechanism in Section 2.20.5, except that it uses the BLAKE2B-256 hash function and the
4404 relevant length is 32 bytes.
4405 2.34.6 BLAKE2B-256 HMAC key generation
4406 The BLAKE2B-256-HMAC key generation mechanism, denoted CKM_BLAKE2B_256_KEY_GEN, is a
4407 key generation mechanism for7 BLAKE2B-256-HMAC.
4408 It does not have a parameter.
4409 The mechanism generates BLAKE2B-256-HMAC keys with a particular length in bytes, as specified in the
4410 CKA_VALUE_LEN attribute of the template for the key.
4411 The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
4412 key. Other attributes supported by the BLAKE2B-256-HMAC key type (specifically, the flags indicating
4413 which functions the key supports) may be specified in the template for the key, or else are assigned
4414 default initial values.
4415 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
4416 specify the supported range of CKM_BLAKE2B_256_HMAC key sizes, in bytes.
a417 2.35 BLAKE2B-384
4418 Table 145, BLAKE2B-384 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & Diges & Derive
Decrypt | Verif | VR! t Key/ | Unwrap
y Key
Pair
CKM_BLAKE2B_384 4
CKM_BLAKE2B 384 HMAC_ GENE v
RAL
CKM_BLAKE2B_384 HMAC v
CKM_BLAKE2B_384 KEY_DERIVE v
CKM_BLAKE2B 384 KEY_GEN v

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 143 of 261

4419

4420
4421
4422
4423
4424
4425

4426

4427
4428

4429

4430
4431

4432

4433

4434
4435
4436
4437

4438

4439

4440
4441

4442

4443

4444

4445
4446

4447

2.35.1 Definitions

CKM_BLAKE2B_384
CKM_BLAKE2B_384 HMAC
CKM_BLAKE2B_384 HMAC_GENERAL
CKM_BLAKE2B_384 KEY_DERIVE
CKM_BLAKE2B_384_KEY_GEN
CKK_BLAKE2B_384_HMAC

2.35.2 BLAKE2B-384 digest

The BLAKE2B-384 mechanism, denoted CKM_BLAKE2B_384, is a mechanism for message digesting,
following the Blake2b Algorithm with a 384-bit message digest without a key as defined in RFC 7693.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 146, BLAKE2B-384: Data Length

Function Input length Digest length

C_Digest any 48

2.35.3 General-length BLAKE2B-384-HMAC

The general-length BLAKE2B-384-HMAC mechanism, denoted

CKM_BLAKE2B_384 HMAC_GENERAL, is the keyed variant of the Blake2b-384 hash function and
length of the output should be in the range 1-48.The keys it uses are generic secret keys and
CKK_BLAKE2B_384_HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired

output. This length should be in the range 1-48 (the output size of BLAKE2B-384 is 48 bytes). Signatures
(MACs) produced by this mechanism shall be taken from the start of the full 48-byte HMAC output.

Table 147, General-length BLAKE2B-384-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret or Any 1-48, depending on parameters
CKK_BLAKE2B 384 H
MAC
C_Verify generic secret or Any 1-48, depending on parameters
CKK_BLAKE2B_384 H
MAC

2.35.4 BLAKE2B-384-HMAC

The BLAKE2B-384-HMAC mechanism, denoted CKM_BLAKE2B_384_HMAC, is a special case of the
general-length BLAKE2B-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 144 of 261

4448 2.35.5 BLAKE2B-384 key derivation
4449 BLAKEZ2B-384 key derivation, denoted CKM_BLAKE2B_384 KEY_DERIVE, is the same as the SHA-1
4450 key derivation mechanism in Section 2.20.5, except that it uses the SHA-384 hash function and the
4451 relevant length is 48 bytes.
4452 2.35.6 BLAKE2B-384 HMAC key generation
4453 The BLAKE2B-384-HMAC key generation mechanism, denoted CKM_BLAKE2B_384_KEY_GEN, is a
4454 key generation mechanism for NIST's BLAKE2B-384-HMAC.
4455 It does not have a parameter.
4456 The mechanism generates BLAKE2B-384-HMAC keys with a particular length in bytes, as specified in the
4457 CKA_VALUE_LEN attribute of the template for the key.
4458 The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
4459 key. Other attributes supported by the BLAKE2B-384-HMAC key type (specifically, the flags indicating
4460 which functions the key supports) may be specified in the template for the key, or else are assigned
4461 default initial values.
4462 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
4463 specify the supported range of CKM_BLAKE2B_384_ HMAC key sizes, in bytes.
4464 2.36 BLAKE2B-512
4465 Table 148, SHA-512 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
1 Key
Pair

CKM_BLAKE2B_512 4

CKM_BLAKE2B_512_HMAC_GENE v

RAL

CKM_BLAKE2B_512_HMAC v

CKM_BLAKE2B_512_KEY_DERIVE 4

CKM_BLAKE2B_512_KEY_GEN v
4466 2.36.1 Definitions
4467 CKM_BLAKE2B 512
4468 CKM_BLAKE2B 512 HMAC
4469 CKM_BLAKE2B 512 HMAC_GENERAL
4470 CKM_BLAKE2B 512 KEY_DERIVE
4471 CKM_BLAKE2B 512 KEY_GEN
4472 CKK_BLAKE2B_512_HMAC
4473 2.36.2 BLAKE2B-512 digest
4474 The BLAKE2B-512 mechanism, denoted CKM_BLAKE2B_512, is a mechanism for message digesting,
4475 following the Blake2b Algorithm with a 512-bit message digest defined in RFC 7693.
4476 It does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 145 of 261

4477
4478

4479

4480

4481
4482
4483
4484

4485

4486

4487
4488

4489

4490

4491

4492
4493

4494

4495

4496
4497
4498

4499

4500
4501

4502

4503
4504

4505
4506
4507
4508

4509
4510

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 149, BLAKE2B-512: Data Length

Function Input length Digest length

C_Digest any 64

2.36.3 General-length BLAKE2B-512-HMAC

The general-length BLAKE2B-512-HMAC mechanism, denoted

CKM_BLAKE2B_512 HMAC_GENERAL, is the keyed variant of the BLAKE2B-512 hash function and
length of the output should be in the range 1-64.The keys it uses are generic secret keys and
CKK_BLAKE2B_512_HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired

output. This length should be in the range 1-64 (the output size of BLAKE2B-512 is 64 bytes). Signatures
(MACs) produced by this mechanism shall be taken from the start of the full 64-byte HMAC output.

Table 150, General-length BLAKE2B-512-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret or Any 1-64, depending on parameters
CKK_BLAKE2B 512 _HM
AC
C_Verify generic secret or Any 1-64, depending on parameters
CKK_BLAKE2B_512_HM
AC

2.36.4 BLAKE2B-512-HMAC

The BLAKE2B-512-HMAC mechanism, denoted CKM_BLAKE2B_512_HMAC, is a special case of the
general-length BLAKE2B-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

2.36.5 BLAKE2B-512 key derivation

BLAKE2B-512 key derivation, denoted CKM_BLAKE2B_512_KEY_DERIVE, is the same as the SHA-1
key derivation mechanism in Section2.20.5, except that it uses the Blake2b-512 hash function and the
relevant length is 64 bytes.

2.36.6 BLAKE2B-512 HMAC key generation

The BLAKE2B-512-HMAC key generation mechanism, denoted CKM_BLAKE2B_512_KEY_GEN, is a
key generation mechanism for NIST's BLAKE2B-512-HMAC.

It does not have a parameter.

The mechanism generates BLAKE2B-512-HMAC keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the BLAKE2B-512-HMAC key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of CKM_BLAKE2B_512_HMAC key sizes, in bytes.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 146 of 261

4511

4512
4513
4514
4515

4516

4517
4518
4519
4520
4521

4522

4523

4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

4536

4537
4538

4539

4540

2.37 PKCS #5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and 1Vs for performing password-based
encryption. The method used to generate keys and Vs is specified in PKCS #5.

Table 151, PKCS 5 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
Key
Pair
CKM_PBE_SHA1_DES3_EDE_CBC 4
CKM_PBE_SHA1_DES2_EDE_CBC v
CKM_PBA_SHA1_WITH_SHA1_HMAC v
CKM_PKCS5_PBKD2 v

2.37.1 Definitions

Mechanisms:
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1 DES2 EDE_CBC
CKM_PKCS5_PBKD2
CKM_PBA_SHA1 WITH_SHA1 HMAC

2.37.2 Password-based encryption/authentication mechanism parameters

+ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the
CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation
mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows:

typedef struct CK PBE PARAMS ({

CK_BYTE PTR pInitVector;
CK UTF8CHAR PTR pPassword;
CK_ULONG ulPasswordLen;
CK_BYTE PTR pSalt;
CK_ULONG ulSaltLen;
CK_ULONG ullteration;

} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

plnitVector pointer to the location that receives the 8-byte initialization vector
(IV), if an IV is required;

pPassword points to the password to be used in the PBE key generation;

ulPasswordLen length in bytes of the password information;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 147 of 261

4541 pSalt points to the salt to be used in the PBE key generation;
4542 ulSaltLen length in bytes of the salt information;
4543 ullteration number of iterations required for the generation.

4544 CK_PBE_PARAMS_PTR s a pointer to a CK_PBE_PARAMS.
4545 2.37.3 PKCS #5 PBKDF2 key generation mechanism parameters

4546 o CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;
4547 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR

4548 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the Pseudo-Random
4549 Function (PRF) used to generate key bits using PKCS #5 PBKDF2. It is defined as follows:

4550 typedef CK ULONG CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;

4551
4552 The following PRFs are defined in PKCS #5 v2.1. The following table lists the defined functions.

4553 Table 152, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions

PRF Identifier Value Parameter Type

CKP_PKCS5_PBKD2_HMAC_SHA1 0x00000001UL | No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
zero.

CKP_PKCS5_PBKD2_HMAC_GOSTR3411 | 0x00000002UL | This PRF uses GOST R34.11-94

hash to produce secret key value.
pPrfData should point to DER-
encoded OID, indicating
GOSTR34.11-94 parameters.
ulPrfDatalen holds encoded OID
length in bytes. If pPrfData is set
to NULL_PTR, then id-
GostR3411-94-
CryptoProParamSet parameters
will be used (RFC 4357, 11.2),
and ulPrfDatalen must be 0.

CKP_PKCS5 PBKD2 HMAC_SHA224 0x00000003UL | No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
ZEero.

CKP_PKCS5 PBKD2 HMAC_SHA256 0x00000004UL | No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
Zero.

CKP_PKCS5 PBKD2 HMAC_SHA384 0x00000005UL | No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
ZEero.

CKP_PKCS5 PBKD2 HMAC_SHA512 0x00000006UL

No Parameter. pPrfData must be
NULL and ulPrfDatalen must be
zero.

CKP_PKCS5_PBKD2_HMAC_SHAS512_224 | 0x00000007UL | No parameter. pPrfData must be

NULL and ulPrfDatal.en must be
zero.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 148 of 261

CKP_PKCS5_PBKD2_HMAC_SHAS512_256 | 0x00000008UL | No parameter. pPrfData must be

NULL and ulPrfDatal.en must be
Zero.

4554 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a
4555 CK_PKCS5 _PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

4556

4557 o CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
4558 CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR

4559 CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is used to indicate the source of the salt value when
4560 deriving a key using PKCS #5 PBKDF2. It is defined as follows:

4561 typedef CK ULONG CK PKCS5 PBKDF2 SALT SOURCE TYPE;
4562

4563 The following salt value sources are defined in PKCS #5 v2.1. The following table lists the defined
4564 sources along with the corresponding data type for the pSaltSourceData field in the
4565 CK_PKCS5_PBKD2_PARAMS?2 structure defined below.

4566 Table 153, PKCS #5 PBKDF2 Key Generation: Salt sources

Source Identifier Value Data Type
CKZ_SALT_SPECIFIED 0x00000001 | Array of CK_BYTE containing the value of the
salt value.

4567 CK_PKCS5_PBKDF2_SALT SOURCE_TYPE_PTR is a pointer to a
4568 CK_PKCS5 PBKDF2_SALT_SOURCE _TYPE.

4569 ¢ CK_PKCS5_PBKD2_PARAMS2; CK_PKCS5_PBKD2_PARAMS2_PTR

4570 CK_PKCS5_PBKD2_PARAMS?2 is a structure that provides the parameters to the
4571 CKM_PKCS5_PBKD2 mechanism. The structure is defined as follows:

4572 typedef struct CK_PKCS5 PBKD2 PARAMS2 ({
4573 CK_PKCS5 PBKDF2 SALT SOURCE TYPE saltSource;
4574 CK _VOID PTR pSaltSourceData;
4575 CK_ULONG ulSaltSourceDatalen;
4576 CK_ULONG iterations;
4577 CK_PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE prf;
4578 CK VOID PTR pPrfData;
4579 CK_ULONG ulPrfDatalen;
4580 CK_UTF8CHAR PTR pPassword;
4581 CK_ULONG ulPasswordLen;
4582 } CK PKCS5 PBKD2 PARAMS2;
4583
4584 The fields of the structure have the following meanings:
4585 saltSource source of the salt value
4586 pSaltSourceData data used as the input for the salt source
4587 ulSaltSourceDatalen length of the salt source input
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 149 of 261

4588
4589

4590

4591

4592

4593

4594

4595

4596
4597
4598

4599
4600

4601
4602
4603

4604
4605

4606
4607
4608

4609
4610
4611

4612
4613
4614

4615
4616

4617

4618
4619

4620
4621
4622

4623
4624
4625

4626
4627
4628

iterations number of iterations to perform when generating each block of
random data

prf pseudo-random function used to generate the key
pPrfData data used as the input for PRF in addition to the salt value
ulPrfDatalLen length of the input data for the PRF
pPassword points to the password to be used in the PBE key generation
ulPasswordLen length in bytes of the password information

CK_PKCS5_PBKD2_PARAMS2_PTR is a pointer to a CK_PKCS5 PBKD2_PARAMS?2.

2.37.4 PKCS #5 PBKD2 key generation
PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5_PBKD2, is a mechanism used for generating
a secret key from a password and a salt value. This functionality is defined in PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5_PBKD2_PARAMS2 structure. The parameter specifies the salt value
source, pseudo-random function, and iteration count used to generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates must contain
the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a fixed length the
CKA_VALUE_LEN attribute may be omitted.

2.38 PKCS #12 password-based encryption/authentication
mechanisms
The mechanisms in this section are for generating keys and Vs for performing password-based

encryption or authentication. The method used to generate keys and IVs is based on a method that was
specified in PKCS #12.

We specify here a general method for producing various types of pseudo-random bits from a password,
p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to be produced is
identified by an identification byte, ID, the meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z>¥ x Z2¥ — Z2¥ (that is, H has a chaining
variable and output of length u bits, and the message input to the compression function of H is v bits).
For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt
strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v{ s/v] bits (the final copy of the
salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length v/ p/v] bits (the final copy
of the password may be truncated to create P). Note that if the password is the empty string, then so
is P.
. Set I=S]|P to be the concatenation of S and P.
5. Setj=ln/ul.
6. Fori=1, 2, ..., J, do the following:

a. Set A=Hc(D||/), the ¢ hash of D||/. That is, compute the hash of D||/; compute the hash of
that hash; etc.; continue in this fashion until a total of ¢ hashes have been computed, each on
the result of the previous hash.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 150 of 261

4629
4630

4631
4632
4633

4634
4635

4636
4637
4638
4639

4640
4641
4642

4643

4644
4645
4646
4647
4648

4649
4650
4651

4652
4653

4654

4655
4656
4657
4658
4659

4660
4661
4662

4663
4664

4665

4666
4667
4668

4669
4670
4671
4672

4673
4674
4675

b. Concatenate copies of Ajto create a string B of length v bits (the final copy of Ai may be
truncated to create B).

c. Treating / as a concatenation o, 1, ..., lk-1 of v-bit blocks, where k=[s/v [+ p/v], modify I by
setting Ii=(l+B+1) mod 2" for each j. To perform this addition, treat each v-bit block as a
binary number represented most-significant bit first.

7. Concatenate Ai, Az, ..., Ajtogether to form a pseudo-random bit string, A.
8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to generate a key
and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To
generate a key, the identifier byte ID is set to the value 1; to generate an 1V, the identifier byte ID is set to
the value 2.

When the password based authentication mechanism presented in this section is used to generate a key
from a password, salt, and an iteration count, the above algorithm is used. The identifier byte ID is set to
the value 3.

2.38.1 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES3_EDE_CBC, is a mechanism
used for generating a 3-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 3-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2.38.2 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES2_EDE_CBC, is a mechanism
used for generating a 2-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 2-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2.38.3 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1_WITH_SHA1 HMAC, is a mechanism used
for generating a 160-bit generic secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process. The parameter also has a field to hold the location of an application-supplied
buffer which will receive an 1V; for this mechanism, the contents of this field are ignored, since
authentication with SHA-1-HMAC does not require an IV.

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform
password-based authentication (not password-based encryption). At the time of this writing, this is
primarily done to ensure the integrity of a PKCS #12 PDU.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 151 of 261

4676
4677

4678

4679
4680
4681
4682
4683
4684
4685
4686

4687

4688

4689
4690
4691
4692
4693
4694
4695
4696
4697

4698
4699
4700

4701

2.39 SSL

Table 154,SSL Mechanisms vs. Functions

Functions
Encryp | Sign | SR Gen Wrap
Mechanism t & & | Diges & Deriv
& Verif | VR t Unwra e
Decryp | vy ! Key/ p
t Key
Pair
CKM_SSL3_PRE_MASTER_KEY_GEN v
CKM_TLS PRE_MASTER_KEY_GEN 4
CKM_SSL3 MASTER_KEY_DERIVE v
CKM_SSL3_MASTER_KEY_DERIVE_D v
H
CKM_SSL3 KEY_AND_MAC DERIVE v
CKM_SSL3 MD5 MAC v
CKM_SSL3 _SHA1_MAC v

2.39.1 Definitions

Mechanisms:

CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_SSL3_MASTER_KEY_DERIVE
CKM_SSL3_KEY_AND_MAC_DERIVE
CKM_SSL3_MASTER_KEY_DERIVE_DH

CKM_SSL3_MD5_MAC
CKM_SSL3_SHA1_MAC

2.39.2 SSL mechanism parameters

¢ CK_SSL3 RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the random data of a client
and a server in an SSL context. This structure is used by both the CKM_SSL3_MASTER_KEY_DERIVE

and the CKM_SSL3_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct CK SSL3 RANDOM DATA {
CK _BYTE PTR pClientRandom;
ulClientRandomLen;
CK _BYTE PTR pServerRandom;
ulServerRandomLen;

CK_ULONG

CK_ULONG
} CK_SSL3_RANDOM DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client’s random data

ulClientRandomLen length in bytes of the client’s random data

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 152 of 261

4702

4703

4704
4705

4706
4707

4708
4709
4710
4711
4712
4713
4714

4715
4716

4717
4718

4719

4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730

4731
4732
4733

4734

4735

4736

4737
4738

4739
4740

pServerRandom pointer to the server’s random data

ulServerRandomLen length in bytes of the server’s random data

¢ CK_SSL3 MASTER_KEY_DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK SSL3 MASTER KEY DERIVE PARAMS {
CK _SSL3 RANDOM DATA RandomInfo;
CK_VERSION PTR pVersion;
} CK SSL3 MASTER KEY DERIVE PARAMS;

The fields of the structure have the following meanings:
Randomlinfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS.

¢ CK_SSL3_KEY_MAT_OUT; CK_SSL3_KEY_MAT_OUT_PTR

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization vectors
after performing a C_DeriveKey function with the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It
is defined as follows:
typedef struct CK SSL3 KEY MAT OUT {
CK OBJECT HANDLE hClientMacSecret;
CK OBJECT HANDLE hServerMacSecret;
CK _OBJECT HANDLE hClientKey;
CK _OBJECT HANDLE hServerKey;
CK _BYTE PTR pIVClient;
CK_BYTE_PTR plvVServer;
} CK _SSL3 KEY MAT OUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to a location which receives the initialization vector (1V)
created for the client (if any)

plVServer pointer to a location which receives the initialization vector (IV)
created for the server (if any)

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 153 of 261

4741

4742

4743
4744
4745
4746
4747
4748
4749
4750
4751
4752

4753
4754

4755
4756

4757
4758

4759
4760

4761
4762

4763

4764
4765

4766

4767

4768
4769
4770

4771

4772
4773
4774

4775
4776
4777
4778

4779
4780

CK_SSL3_KEY_MAT_OUT_PTR is a pointer to a CK_SSL3_KEY_MAT_OUT.

¢ CK_SSL3_KEY_MAT_PARAMS; CK_SSL3_KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3 KEY MAT PARAMS {

CK_ULONG ulMacSizeInBits;
CK_ULONG ulKeySizeInBits;
CK_ULONG ulIVSizeInBits;
CK_BBOOL bIsExport;
CK_SSL3 RANDOM DATA RandomInfo;

CK_SSL3 KEY MAT OUT PTR pReturnedKeyMaterial;
} CK SSL3 KEY MAT PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits

ulKeySizelnBits

ullVSizelnBits

blsExport

Randomlinfo

pReturnedKeyMaterial

the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase

the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

the length (in bits) of the 1V agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

a Boolean value which indicates whether the keys have to be
derived for an export version of the protocol

client’s and server’s random data information.

points to a CK_SSL3 _KEY_MAT _OUT structures which receives
the handles for the keys generated and the Vs

CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.

2.39.3 Pre-master key generation

Pre-master key generation in SSL 3.0, denoted CKM_SSL3_PRE_MASTER_KEY_GEN, is a mechanism
which generates a 48-byte generic secret key. It is used to produce the "pre_master" key used in SSL
version 3.0 for RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client's SSL version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to

specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

both indicate 48 bytes.

pkcs1l-curr-v3.0-cos01

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 154 of 261

4781
4782
4783

4784

4785
4786
4787
4788
4789

4790
4791
4792

4793
4794
4795

4796
4797
4798
4799

4800

4801
4802
4803

4804
4805
4806
4807

4808
4809
4810
4811

4812
4813

4814
4815
4816

4817
4818
4819

4820

4821
4822
4823
4824

4825
4826
4827
4828

CKM_TLS_PRE_MASTER_KEY_GEN has identical functionality as
CKM_SSL3_PRE_MASTER_KEY_GEN. It exists only for historical reasons, please use
CKM_SSL3_PRE_MASTER_KEY_GEN instead.

2.39.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is a mechanism used
to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce
the "master_secret" key used in the SSL protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.39.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template; otherwise they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.39.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE_DH,
is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic
secret key. Itis used to produce the "master_secret" key used in the SSL protocol from the "pre_master"
key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.39. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 155 of 261

4829
4830
4831

4832
4833
4834
4835

4836

4837
4838
4839

4840
4841
4842
4843

4844
4845
4846
4847

4848
4849

4850
4851
4852

4853

4854
4855
4856
4857

4858
4859
4860
4861

4862
4863
4864

4865
4866
4867

4868
4869
4870

4871
4872
4873

4874
4875
4876
4877

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but
excludes the RSA cipher suites.

2.39.6 Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3_KEY_AND_MAC_DERIVE, is a
mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the 1Vs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and IVs which were generated. This structure is defined in Section
2.39.

This mechanism contributes to the creation of four distinct keys on the token and returns two Vs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys (“client_write_ MAC_secret" and "server_write_ MAC_secret") are always given a
type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and derivation
operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

IVs will be generated and returned if the ullVSizelnBits field of the CK_SSL3_KEY_MAT_PARAMS field
has a nonzero value. If they are generated, their length in bits will agree with the value in the
ullVSizelnBits field.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 156 of 261

4878
4879
4880
4881
4882
4883

4884
4885
4886
4887
4888
4889

4890
4891

4892

4893
4894
4895

4896
4897

4898
4899

4900
4901

4902

4903
4904
4905

4906
4907

4908
4909

4910
4911

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
plVClient and plVServer fields will have IVs returned in them (if IVs are requested by the caller).
Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2.39.7 MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and multiple-part
signatures (data authentication) and verification using MD5, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 155, MD5 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 4-8, depending on
parameters

C_Verify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.39.8 SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_ MAC, is a mechanism for single- and multiple-
part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 156, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data Signature length
length

C_Sign generic secret any 4-8, depending on parameters

C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 157 of 261

4912 2.40 TLS 1.2 Mechanisms

4913 Details for TLS 1.2 and its key derivation and MAC mechanisms can be found in [TLS12]. TLS 1.2

4914 mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS
4915 PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2
4916 mechanisms contains a new value in the parameters structure to specify the hash function.

4917 This section also specifies CKM_TLS12 MAC which should be used in place of CKM_TLS_PRF to
4918 calculate the verify_data in the TLS "finished" message.

4919 This section also specifies CKM_TLS_KDF that can be used in place of CKM_TLS_PRF to implement
4920 key material exporters.

4921
4922 Table 157, TLS 1.2 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_TLS12_MASTER_KEY_DERIVE v
CKM_TLS12_MASTER_KEY_DERIVE_DH v
CKM_TLS12_KEY_AND_MAC_DERIVE v
CKM_TLS12_KEY_SAFE_DERIVE v
CKM_TLS_KDF v
CKM_TLS12_MAC v
CKM_TLS12_KDF v
4923 2.40.1 Definitions
4924 Mechanisms:
4925 CKM_TLS12 MASTER_KEY_DERIVE
4926 CKM_TLS12 MASTER_KEY_DERIVE_DH
4927 CKM_TLS12_KEY_AND_MAC_DERIVE
4928 CKM_TLS12 KEY_SAFE_DERIVE
4929 CKM_TLS_KDF
4930 CKM_TLS12_MAC
4931 CKM_TLS12_KDF
4932 2.40.2 TLS 1.2 mechanism parameters
4933 ¢ CK_TLS12_MASTER_KEY_DERIVE_PARAMS;
4934 CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR
4935 CK_TLS12 MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
4936 CKM_TLS12_MASTER_KEY_DERIVE mechanism. Itis defined as follows:
4937 typedef struct CK TLS12 MASTER KEY DERIVE PARAMS {
4938 CK SSL3 RANDOM DATA RandomInfo; B
4939 CK VERSION PTR pVersion;
4940 CK_MECHANISM TYPE prfHashMechanism;
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 158 of 261

4941

4942
4943
4944

4945
4946

4947
4948

4949

4950
4951

4952

4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963

4964
4965

4966
4967
4968

4969
4970

4971
4972

4973
4974

4975

4976
4977

4978
4979

} CK TLS12 MASTER KEY DERIVE PARAMS;

The fields of the structure have the following meanings:
Randomlinfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12 MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_TLS12 MASTER_KEY_DERIVE_PARAMS.

¢ CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT_PARAMS_PTR

CK_TLS12 KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_TLS12_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK TLS12 KEY MAT PARAMS {
CK ULONG ulMacSizeInBits;
CK ULONG ulKeySizeInBits;
CK ULONG ullIVSizeInBits;
CK _BBOOL bIsExport;
CK _SSL3 RANDOM DATA RandomInfo;
CK SSL3 KEY MAT OUT PTR pReturnedKeyMaterial;
CK MECHANISM TYPE prfHashMechanism;
} CK TLS12 KEY MAT PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase. If no MAC key is required, the length
should be set to 0.

ulKeySizelnBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

ullvSizelnBits the length (in bits) of the 1V agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

blsExport must be set to CK_FALSE because export cipher suites must not be
used in TLS 1.1 and later.

Randominfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3 KEY _MAT _OUT structures which receives
the handles for the keys generated and the Vs

prfHashMechanism base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 159 of 261

4980

4981

4982
4983
4984
4985
4986
4987
4988
4989
4990
4991

4992
4993

4994
4995

4996

4997

4998

4999
5000

5001

5002

5003

5004
5005
5006
5007
5008
5009
5010
5011

5012

5013
5014

5015
5016
5017

CK_TLS12 KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12 KEY_MAT_PARAMS.

¢ CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR

CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF mechanism.
It is defined as follows:
typedef struct CK TLS KDF PARAMS ({
CK MECHANISM TYPE prfMechanism;
CK BYTE PTR pLabel;
CK_ULONG ulLabelLength;
CK SSL3 RANDOM DATA RandomInfo;
CK BYTE PTR pContextData;
CK_ULONG ulContextDatalLength;
} CK _TLS KDF PARAMS;

The fields of the structure have the following meanings:

prfMechanism the hash mechanism used in the TLS1.2 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

pLabel a pointer to the label for this key derivation
ulLabellength length of the label in bytes
Randominfo the random data for the key derivation

pContextData a pointer to the context data for this key derivation. NULL _PTR if not
present

ulContextDatalength length of the context data in bytes. 0 if not present.

CK_TLS_KDF_PARAMS_PTR is a pointer to a CK_TLS_KDF_PARAMS.

¢ CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR

CK_TLS_MAC_PARAMS is a structure that provides the parameters to the CKM_TLS_MAC
mechanism. It is defined as follows:
typedef struct CK TLS MAC PARAMS ({
CK MECHANISM TYPE prfMechanism;
CK _ULONG ulMacLength;
CK_ULONG ulServerOrClient;
} CK_TLS MAC PARAMS;

The fields of the structure have the following meanings:

prfMechanism the hash mechanism used in the TLS12 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

ulMacLength the length of the MAC tag required or offered. Always 12 octets in
TLS 1.0 and 1.1. Generally 12 octets, but may be negotiated to a
longer value in TLS1.2.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 160 of 261

5018
5019

5020
5021

5022

5023
5024
5025
5026
5027
5028
5029
5030
5031
5032

5033
5034
5035

5036

5037

5038

5039

5040
5041
5042

5043

5044

5045
5046

5047
5048
5049
5050

5051
5052
5053

ulServerOrClient 1 to use the label "server finished", 2 to use the label "client
finished". All other values are invalid.

CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

¢ CK_TLS_PRF_PARAMS; CK_TLS_PRF_PARAMS_PTR

CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_TLS_PRF
mechanism. It is defined as follows:

typedef struct CK TLS PRF PARAMS {

CK_BYTE PTR pSeed;
CK_ULONG ulSeedLen;
CK_BYTE PTR plabel;
CK_ULONG ulLabelLen;
CK_BYTE PTR pOutput;
CK_ULONG_PTR pulOutputLen;

} CK TLS PRF PARAMS;

The fields of the structure have the following meanings:
pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed
pLabel pointer to the identifying label
ulLabelLen length in bytes of the identifying label
pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be created shall
have, has to hold the desired length as input and will receive the
calculated length as output

CK_TLS_PRF_PARAMS_PTR is a pointer to a CK_TLS_PRF_PARAMS.

2.40.3 TLS MAC

The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces
the use of the CKM_TLS_PRF function for TLS1.0 and 1.1 and that mechanism is deprecated.

CKM_TLS_MAC takes a parameter of CK_TLS_MAC_PARAMS. To use this mechanism with TLS1.0
and TLS1.1, use CKM_TLS_PREF as the value for prfMechanism in place of a hash mechanism. Note:
Although CKM_TLS_PREF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained
for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.

In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism)
is always 12 bytes. In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12
bytes, but may be negotiated to longer length.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 161 of 261

5054

5055

5056

5057
5058
5059
5060
5061

5062
5063
5064

5065
5066
5067

5068
5069
5070

5071
5072
5073
5074

5075

5076
5077
5078

5079
5080
5081
5082

5083
5084
5085
5086

5087
5088

5089
5090
5091

5092
5093
5094

5095

5096
5097
5098

Table 158, General-length TLS MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any >=12 bytes
C_Verify generic secret any >=12 bytes

2.40.4 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE, is a mechanism used to
derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the
"master_secret" key used in the TLS protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version humber which is part
of the pre-master key. This structure is defined in Section 2.39.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_ MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12 KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an

embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2.40.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE_DH, is
a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret
key. It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 162 of 261

5099
5100
5101
5102

5103
5104
5105

5106
5107
5108

5109
5110
5111
5112

5113

5114
5115
5116

5117
5118
5119
5120

5121
5122
5123
5124

5125
5126

5127
5128
5129

5130

5131
5132
5133
5134

5135
5136
5137
5138

5139
5140
5141

5142
5143

5144
5145
5146

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.39. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but
excludes the RSA cipher suites.

2.40.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.0, denoted CKM_TLS_KEY_AND_MAC_DERIVE, is a mechanism
used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and 1Vs which were generated. This structure is defined in Section
2.39.

This mechanism contributes to the creation of four distinct keys on the token and returns two 1Vs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys (“client_write_ MAC_secret" and "server_write_ MAC_secret") (if present) are
always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 163 of 261

5147
5148
5149

5150

5151
5152
5153
5154
5155
5156

5157

5158
5159
5160
5161

5162
5163
5164
5165
5166
5167

5168
5169
5170
5171
5172
5173

5174
5175

5176

5177
5178
5179
5180
5181

5182
5183
5184

5185

5186
5187
5188
5189
5190

5191
5192
5193
5194

For CKM_TLS12 KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ullVSizelnBits
field of the CK_SSL3_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length
in bits will agree with the value in the ullVSizelnBits field.

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (V)
data. Itis possible to "leak" private data by the simple expedient of decreasing the length of
private data requested. E.g. Setting ulMacSizelnBits and ulKeySizelnBits to 0 (or other lengths
less than the key size) will result in the private key data being placed in the destination
designated for the IV's. Repeated calls with the same master key and same Randominfo but with
differing lengths for the private key material will result in different data being leaked.<

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
plVClient and p/VServer fields will have IVs returned in them (if Vs are requested by the caller).
Therefore, these two fields must point to buffers with sufficient space to hold any 1Vs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2.40.7 CKM_TLS12_KEY_SAFE_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it
shall never produce IV data, and the ullvSizelnBits field of CK_TLS12_KEY_MAT_PARAMS is ignored
and treated as 0. All of the other conditions and behavior described for
CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this
mechanism.

CKM_TLS12_ KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the
export of IV material (and possible leaking of key material) through the use of the
CKA_ALLOWED_MECHANISMS key attribute.

2.40.8 Generic Key Derivation using the TLS PRF

CKM_TLS_KDF is the mechanism defined in [RFC 5705]. It uses the TLS key material and TLS PRF
function to produce additional key material for protocols that want to leverage the TLS key negotiation
mechanism. CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS. If the protocol using this
mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the
ulContextDatal ength field shall be set to 0.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PREF as the value for prfMechanism in
place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for
C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the
TLS1.0/1.1 Pseudo-random function.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 164 of 261

5195
5196
5197
5198

5199
5200

5201

5202
5203
5204

5205
5206
5207

5208
5209

5210
5211

5212

5213
5214
5215
5216
5217

5218
5219
5220
5221

5222
5223
5224
5225

5226
5227

5228

5229
5230
5231

5232
5233
5234

5235
5236

5237
5238

This mechanism can be used to derive multiple keys (e.g. similar to
CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET
of the necessary length and doing subsequent derives against that derived key using the
CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not
enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:

e If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the
original key.

o Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either from the
supplied template or from the original key.

e The derived key’'s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

o Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.40.9 Generic Key Derivation using the TLS12 PRF

CKM_TLS12_KDF is the mechanism defined in [RFC 5705]. It uses the TLS key material and TLS PRF
function to produce additional key material for protocols that want to leverage the TLS key negotiation
mechanism. CKM_TLS12_KDF has a parameter of CK_TLS_KDF_PARAMS. |f the protocol using this
mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the
ulContextDatal ength field shall be set to O.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PREF as the value for prfMechanism in
place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for
C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the
TLS1.0/1.1 Pseudo-random function.

This mechanism can be used to derive multiple keys (e.g. similar to
CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET

of the necessary length and doing subsequent derives against that derived key stream using the
CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not
enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:

o If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the
original key.

e Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either from the
supplied template or from the original key.

e The derived key’'s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

o Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 165 of 261

5239

5240

5241
5242
5243
5244
5245

5246
5247

5248

5249
5250
5251
5252
5253
5254
5255

5256

5257

5258
5259
5260
5261
5262
5263
5264

2.41 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS one could argue
that there would be no need to have distinct handling of the client and server side of the handshake.
However, since in WTLS the server and client use different sequence numbers, there could be instances
(e.g. when WTLS is used to protect asynchronous protocols) where sequence numbers on the client and
server side differ, and hence this motivates the introduced split.

Table 159, WTLS Mechanisms vs. Functions

Functions
Encry | Sign | SR Gen | Wrap
Mechanism pt & & | Diges | - & Deriv
& Verif | VR t Unwra e
Decry y 1 Key p
pt !
Key
Pair
CKM_WTLS_PRE_MASTER _KEY_GEN v
CKM_WTLS_MASTER_KEY_DERIVE v
CKM_WTLS_MASTER_KEY DERIVE DH_ v
ECC
CKM_WTLS_SERVER_KEY_AND_MAC_D v
ERIVE
CKM_WTLS_CLIENT_KEY_AND_MAC_DE v
RIVE
CKM_WTLS_PRF v

2.41.1 Definitions

Mechanisms:
CKM_WTLS_PRE_MASTER_KEY_GEN
CKM_WTLS_MASTER_KEY_DERIVE
CKM_WTLS MASTER_KEY_DERIVE_DH_ECC
CKM_WTLS_PRF
CKM_WTLS SERVER_KEY_AND_MAC_DERIVE
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE

2.41.2 WTLS mechanism parameters

¢ CK_WTLS_RANDOM _DATA; CK_WTLS_RANDOM_DATA_PTR

CK_WTLS_RANDOM_DATA is a structure, which provides information about the random data of a client
and a server in a WTLS context. This structure is used by the CKM_WTLS_MASTER_KEY_DERIVE
mechanism. It is defined as follows:
typedef struct CK WTLS RANDOM DATA {
CK BYTE PTR pClientRandom;
CK_ULONG ulClientRandomLen;
CK BYTE PTR pServerRandom;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 166 of 261

5265 CK_ULONG ulServerRandomLen;

5266 } CK_WTLS RANDOM DATA;

5267

5268 The fields of the structure have the following meanings:

5269 pClientRandom pointer to the client’s random data

5270 pClientRandomLen length in bytes of the client’s random data
5271 pServerRaondom pointer to the server’s random data

5272 ulServerRandomlLen length in bytes of the server’s random data

5273 CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.

5274 ¢ CK_WTLS_MASTER_KEY DERIVE_PARAMS;
5275 CK_WTLS_MASTER_KEY_DERIVE_PARAMS _PTR

5276 CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the parameters to the
5277 CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:

5278 typedef struct CK WTLS MASTER KEY DERIVE PARAMS ({

5279 CK _MECHANISM TYPE DigestMechanism;

5280 CK _WTLS RANDOM DATA RandomInfo;

5281 CK BYTE PTR pVersion;

5282 } CK WTLS MASTER KEY DERIVE PARAMS;

5283

5284 The fields of the structure have the following meanings:

5285 DigestMechanism the mechanism type of the digest mechanism to be used (possible
5286 types can be found in [WTLS])

5287 Randominfo Client’s and server’s random data information

5288 pVersion pointer to a CK_BYTE which receives the WTLS protocol version
5289 information

5290 CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
5291 CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

5202 ¢ CK_WTLS_PRF_PARAMS; CK_WTLS_PRF_PARAMS_PTR

5293 CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_WTLS_PRF
5294 mechanism. It is defined as follows:

5295 typedef struct CK WTLS PRF PARAMS ({
5296 CK_MECHANISM TYPE DigestMechanism;
5297 CK_BYTE_PTR pSeed;
5298 CK_ULONG ulSeedLen;
5299 CK _BYTE PTR pLabel;
5300 CK ULONG ulLabellen;
5301 CK _BYTE PTR pOutput;
5302 CK_ULONG_PTR pulOutputlen;
5303 } CK_WTL S_PRF_PARAMS ;
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 167 of 261

5304
5305 The fields of the structure have the following meanings:

5306 Digest Mechanism the mechanism type of the digest mechanism to be used (possible
5307 types can be found in [WTLS])

5308 pSeed pointer to the input seed

5309 ulSeedLen length in bytes of the input seed

5310 pLabel pointer to the identifying label

5311 ulLabelLen length in bytes of the identifying label

5312 pOutput pointer receiving the output of the operation

5313 pulOutputLen pointer to the length in bytes that the output to be created shall
5314 have, has to hold the desired length as input and will receive the
5315 calculated length as output

5316 CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

5317 ¢ CK_WTLS_KEY_MAT_OUT; CK_WTLS_KEY_MAT_OUT_PTR

5318 CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization
5319 vectors after performing a C_DeriveKey function with the

5320 CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE or with the

5321 CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

5322 typedef struct CK WTLS KEY MAT OUT {

5323 CK _OBJECT_ HANDLE hMacSecret;

5324 CK_OBJECT HANDLE hKey;

5325 CK_BYTE PTR pIV;

5326 } CK_ WTLS KEY MAT OUT;

5327

5328 The fields of the structure have the following meanings:

5329 hMacSecret Key handle for the resulting MAC secret key
5330 hKey Key handle for the resulting secret key

5331 plv Pointer to a location which receives the initialization vector (1V)
5332 created (if any)

5333 CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

5334 ¢ CK_WTLS_KEY_MAT_PARAMS; CK_WTLS_KEY_MAT_PARAMS_PTR

5335 CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
5336 CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE and the
5337 CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

5338 typedef struct CK WTLS KEY MAT PARAMS ({
5339 CK _MECHANISM TYPE DigestMechanism;
5340 CK_ULONG ulMacSizeInBits;
5341 CK_ULONG ulKeySizeInBits;
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 168 of 261

5342
5343
5344
5345
5346
5347

5348
5349

5350
5351

5352
5353

5354
5355

5356
5357

5358
5359

5360
5361
5362
5363
5364
5365
5366

5367

5368
5369

5370

5371

5372
5373
5374
5375

5376

5377
5378
5379

5380
5381
5382

5383
5384

CK_ULONG ulIVSizeInBits;
CK_ULONG ulSequenceNumber;
CK_BBOOL bIsExport;
CK_WTLS RANDOM DATA RandomInfo;

CK_WTLS KEY MAT OUT PTR pReturnedKeyMaterial;
} CK WTLS KEY MAT PARAMS;

The fields of the structure have the following meanings:

Digest Mechanism

ulMaxSizelnBits

ulKeySizelnBits

ullVSizelnBits

ulSequenceNumber

blsExport

Randominfo

pReturnedKeyMaterial

the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

the length (in bits) of the MACing key agreed upon during the
protocol handshake phase

the length (in bits) of the secret key agreed upon during the
handshake phase

the length (in bits) of the IV agreed upon during the handshake
phase. If no IV is required, the length should be set to 0.

the current sequence number used for records sent by the client
and server respectively

a boolean value which indicates whether the keys have to be
derives for an export version of the protocol. If this value is true
(i.e., the keys are exportable) then ulKeySizelnBits is the length of
the key in bits before expansion. The length of the key after
expansion is determined by the information found in the template
sent along with this mechanism during a C_DeriveKey function call
(either the CKA_KEY_TYPE or the CKA_VALUE_LEN attribute).

client’s and server’s random data information

points to a CK_WTLS_KEY_MAT_OUT structure which receives
the handles for the keys generated and the IV

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a CK_WTLS_KEY_MAT_PARAMS.

2.41.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length secret key.
It is used to produce the pre master secret key for RSA key exchange suite used in WTLS. This
mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client’'s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall indicate 20

bytes.

pkcs1l-curr-v3.0-cos01

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 169 of 261

5385

5386
5387
5388
5389

5390
5391
5392

5393
5394
5395

5396
5397
5398
5399

5400

5401
5402
5403

5404
5405
5406

5407
5408
5409
5410

5411
5412

5413
5414
5415

5416
5417
5418

5419
5420

5421
5422
5423
5424

5425
5426
5427
5428

5429
5430
5431

5432
5433

2.41.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a mechanism used
to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master
secret key used in WTLS from the pre master secret key. This mechanism returns the value of the client
version, which is built into the pre master secret key as well as a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for passing
the mechanism type of the digest mechanism to be used as well as the passing of random data to the
token as well as the returning of the protocol version number which is part of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure’s
pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this byte will
hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master secret
key with an embedded version number. This includes the RSA key exchange suites, but excludes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

2.41.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve
Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted

CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte generic

secret key from variable length secret key. It is used to produce the master secret key used in WTLS from
the pre master secret key. This mechanism returns a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data to the token.
The pVersion field of the structure must be set to NULL_PTR since the version nhumber is not embedded
in the pre master secret key as it is for RSA-like key exchange suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 170 of 261

5434
5435

5436

5437
5438
5439

5440
5441
5442

5443
5444
5445
5446

5447
5448

5449
5450
5451

5452

5453
5454

5455
5456
5457
5458

5459
5460

5461
5462
5463
5464
5465
5466

5467

5468

5469
5470
5471
5472

5473
5474
5475
5476

5477
5478

5479
5480

attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length 20-byte
pre master secret key with an embedded version number. This includes the Diffie-Hellman and Elliptic
Curve Cryptography key exchange suites, but excludes the RSA key exchange suites.

2.41.6 WTLS PRF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to produce a
securely generated pseudo-random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the mechanism type
of the digest mechanism to be used, the passing of the input seed and its length, the passing of an
identifying label and its length and the passing of the length of the output to the token and for receiving
the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the template
sent along with this mechanism during a C_DeriveKey function call, which means the template shall be a
NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result
of a successful completion. However, since the CKM_WTLS_PRF mechanism returns the requested
number of output bytes in the CK_WTLS_PRF_PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

2.41.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying material used by a cipher suite from the master secret key and random data. This
mechanism returns the key handles for the keys generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic

material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 171 of 261

5481
5482
5483

5484
5485
5486

5487
5488
5489
5490

5491
5492
5493
5494
5495
5496

5497
5498
5499
5500
5501
5502

5503

5504

5505
5506
5507
5508

5509
5510
5511
5512

5513
5514

5515
5516

5517
5518
5519

5520
5521
5522

5523
5524
5525
5526

5527
5528
5529
5530

The other key (server write key) is typed according to information found in the template sent along with
this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An |V (server write 1V) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s plV field will
have the IV returned in them (if an 1V is requested by the caller). Therefore, this field must point to a
buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2.41.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE,
is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from
the master secret key and random data. This mechanism returns the key handles for the keys generated
in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

The other key (client write key) is typed according to information found in the template sent along with this
mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An IV (client write 1V) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARANMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s plV field will

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 172 of 261

5531
5532

5533
5534
5535
5536
5537
5538

5539

5540

5541
5542

5543
5544

5545
5546
5547
5548
5549

5550

5551

5552
5553
5554
5555
5556
5557
5558
5559
5560

5561

5562
5563
5564
5565
5566
5567

have the IV returned in them (if an 1V is requested by the caller). Therefore, this field must point to a

buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism
returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2.42 SP 800-108 Key Derivation

NIST SP800-108 defines three types of key derivation functions (KDF); a Counter Mode KDF, a

Feedback Mode KDF and a Double Pipeline Mode KDF-.
This section defines a unique mechanism for each type of KDF. These mechanisms can be used to

derive one or more symmetric keys from a single base symmetric key.
The KDFs defined in SP800-108 are all built upon pseudo random functions (PRF). In general terms, the

PRFs accepts two pieces of input; a base key and some input data. The base key is taken from the
hBaseKey parameter to C_Derive. The input data is constructed from an iteration variable (internally

defined by the KDF/PRF) and the data provided in the CK_ PRF_DATA_PARAM array that is part of the
mechanism parameter.
Table 160, SP800-108 Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
Key
Pair
CKM_SP800_108 COUNTER_KDF 4
CKM_SP800_108 FEEDBACK_KDF v
CKM_SP800_108 DOUBLE_PIPELINE_KDF 4

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the minimum and maximum supported base key size in bits. Note, these mechanisms
support multiple PRF types and key types; as such the values reported by ulMinKeySize and
ulMaxKeySize specify the minimum and maximum supported base key size when all PRF and keys types
are considered. For example, a Cryptoki implementation may support CKK_GENERIC_SECRET keys
that can be as small as 8-bits in length and therefore ulMinKeySize could report 8-bits. However, for an
AES-CMAC PRF the base key must be of type CKK_AES and must be either 16-bytes, 24-bytes or 32-
bytes in lengths and therefore the value reported by ulMinKeySize could be misleading. Depending on

the PRF type selected, additional key size restrictions may apply.

2.42.1 Definitions

Mechanisms:
CKM_SP800 108 COUNTER_KDF
CKM_SP800_108 FEEDBACK_KDF

CKM_SP800_108_DOUBLE_PIPELINE_KDF

Data Field Types:

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 173 of 261

5568
5569
5570
5571
5572
5573
5574
5575

5576

5577

5578
5579

5580

5581
5582

5583

5584

5585

5586
5587
5588
5589
5590
5591

5592
5593

CK_SP800_108_ITERATION_VARIABLE
CK_SP800_108_COUNTER
CK_SP800_108_DKM_LENGTH
CK_SP800_108_BYTE_ARRAY

DKM Length Methods:
CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS
CK_SP800_108 DKM_LENGTH_SUM_OF_SEGMENTS

2.42.2 Mechanism Parameters

¢ CK_SP800_108_PRF_TYPE

The CK_SP800_108 PRF_TYPE field of the mechanism parameter is used to specify the type of PRF
that is to be used. It is defined as follows:

typedef CK MECHANISM TYPE CK SP800 108 PRF TYPE;

The CK_SP800_108 PRF_TYPE field reuses the existing mechanisms definitions. The following table
lists the supported PRF types:

Table 161, SP800-108 Pseudo Random Functions

Pseudo Random Function Identifiers

CKM_SHA_1_HMAC

CKM_SHA224_HMAC

CKM_SHA256_HMAC

CKM_SHA384_HMAC

CKM_SHA512_HMAC

CKM_SHA3_224 HMAC

CKM_SHA3_256_HMAC

CKM_SHA3_384 HMAC

CKM_SHA3_512_HMAC

CKM_DES3_CMAC

CKM_AES_CMAC

¢ CK_PRF_DATA_TYPE

Each mechanism parameter contains an array of CK_PRF_DATA_PARAM structures. The
CK_PRF_DATA_PARAM structure contains CK_PRF_DATA_TYPE field. The CK_PRF_DATA_TYPE
field is used to identify the type of data identified by each CK_PRF_DATA_PARAM element in the array.
Depending on the type of KDF used, some data field types are mandatory, some data field types are
optional and some data field types are not allowed. These requirements are defined on a per-mechanism
basis in the sections below. The CK_PRF_DATA_TYPE is defined as follows:

typedef CK ULONG CK_PRF DATA TYPE;
The following table lists all of the supported data field types:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 174 of 261

5594

5595

5596

5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607

5608

5609
5610

5611

5612

5613
5614
5615
5616
5617
5618

5619

5620
5621
5622

Table 162, SP800-108 PRF Data Field Types

Data Field Identifier Description

CK_SP800_108_ITERATION_VARIABLE | Identifies the iteration variable defined internally by the
KDF.

CK_SP800_108 _COUNTER Identifies an optional counter value represented as a

binary string. Exact formatting of the counter value is
defined by the CK_SP800_108_COUNTER_FORMAT
structure. The value of the counter is defined by the
KDF’s internal loop counter.

CK_SP800_108 DKM LENGTH Identifies the length in bits of the derived keying material
(DKM) represented as a binary string. Exact formatting
of the length value is defined by the

CK_SP800_108 DKM_LENGTH_FORMAT structure.

CK_SP800_108 BYTE_ARRAY Identifies a generic byte array of data. This data type
can be used to provide “context”, “label”, “separator
bytes” as well as any other type of encoding information

required by the higher level protocol.

¢ CK_PRF_DATA_PARAM

CK_PRF_DATA_PARAM is used to define a segment of input for the PRF. Each mechanism parameter
supports an array of CK_PRF_DATA_PARAM structures. The CK_PRF_DATA_PARAM is defined as
follows:

typedef struct CK PRF DATA PARAM

{

CK_PRF DATA TYPE type;
CK _VOID PTR pValue;
CK_ULONG ulValuelen;

} CK_PRF_DATA PARAM;

typedef CK PRF DATA PARAM CK_PTR CK_PRF DATA PARAM PTR

The fields of the CK_PRF_DATA_PARAM structure have the following meaning:
type defines the type of data pointed to by pValue

pValue pointer to the data defined by type
ulValuelLen size of the data pointed to by pValue

If the type field of the CK_PRF_DATA_PARAM structure is set to

CK_SP800_108 ITERATION_VARIABLE, then pValue must be set the appropriate value for the KDF's
iteration variable type. For the Counter Mode KDF, pValue must be assigned a valid

CK_SP800_108 COUNTER_FORMAT_PTR and ulValueLen must be set to
sizeof(CK_SP800_108_COUNTER_FORMAT). For all other KDF types, pValue must be set to
NULL_PTR and ulValueLen must be set to 0.

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108 COUNTER, then
pValue must be assigned a valid CK_SP800_108_COUNTER_FORMAT_PTR and ulValueLen must be
set to sizeof(CK_SP800_108 COUNTER_FORMAT).

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 175 of 261

5623

5624
5625
5626

5627

5628
5629

5630

5631
5632

5633
5634
5635
5636
5637
5638
5639
5640
5641

5642
5643
5644

5645

5646

5647
5648

5649

5650
5651

5652

5653

5654
5655

5656

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800 108 DKM _LENGTH then
pValue must be assigned a valid CK_SP800_108 DKM_LENGTH_FORMAT_PTR and ulValueLen must
be set to sizeof(CK_SP800_108_DKM_LENGTH_FORMAT).

If the type field of the CK_PRF_DATA_PARAM structure is set to CK_SP800_108 BYTE_ARRAY, then
pValue must be assigned a valid CK_BYTE_PTR value and ulValueLen must be set to a non-zero length.

¢ CK_SP800_108_COUNTER_FORMAT

CK_SP800_108_COUNTER_FORMAT is used to define the encoding format for a counter value. The
CK_SP800_108_COUNTER_FORMAT is defined as follows:

typedef struct CK SP800 108 COUNTER FORMAT

{
CK_ BBOOL bLittleEndian;
CK ULONG ulWidthInBits;
} CK _SP800 108 COUNTER FORMAT;

typedef CK SP800 108 COUNTER FORMAT CK PTR
CK_SP800 108 COUNTER FORMAT PTR

The fields of the CK_SP800_108 COUNTER_FORMAT structure have the following meaning:
bLittleEndian defines if the counter should be represented in Big Endian or Little
Endian format

ulWidthinBits defines the number of bits used to represent the counter value

¢ CK_SP800_108_DKM_LENGTH_METHOD

CK_SP800_108_DKM_LENGTH_METHOD is used to define how the DKM length value is calculated.
The CK_SP800_108 DKM_LENGTH_METHOD type is defined as follows:

typedef CK ULONG CK_SP800 108 DKM LENGTH METHOD;
The following table lists all of the supported DKM Length Methods:
Table 163, SP800-108 DKM Length Methods

DKM Length Method Identifier Description

CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS Specifies that the DKM length should be set to the
sum of the length of all keys derived by this
invocation of the KDF.

CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS | Specifies that the DKM length should be set to the
sum of the length of all segments of output produced
by the PRF by this invocation of the KDF.

¢ CK_SP800_108_DKM_LENGTH_FORMAT

CK_SP800_108 DKM_LENGTH_FORMAT is used to define the encoding format for the DKM length
value. The CK_SP800_108_DKM_LENGTH_FORMAT is defined as follows:

typedef struct CK_SP800_108 DKM LENGTH FORMAT

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 176 of 261

5657
5658
5659
5660
5661
5662
5663
5664

5665

5666
5667

5668
5669

5670

5671

5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682

5683

5684
5685

5686

5687

5688

5689
5690

5691
5692
5693
5694
5695
5696
5697

CK_SP800 108 DKM LENGTH METHOD dkmLengthMethod;
CK_ BBOOL bLittleEndian;
CK_ULONG ulWidthInBits;

} CK_SP800 108 DKM LENGTH FORMAT;

typedef CK SP800 108 DKM LENGTH FORMAT CK PTR
CK_SP800 108 DKM LENGTH FORMAT PTR

The fields of the CK_SP800_108 DKM_LENGTH_FORMAT structure have the following meaning:
dkmLengthMethod defines the method used to calculate the DKM length value

bLittleEndian defines if the DKM length value should be represented in Big
Endian or Little Endian format

ulWidthinBits defines the number of bits used to represent the DKM length value

¢ CK_DERIVED_KEY

CK_DERIVED_KEY is used to define an additional key to be derived as well as provide a
CK_OBJECT_HANDLE_PTR to receive the handle for the derived keys. The CK_DERIVED_KEY is
defined as follows:

typedef struct CK DERIVED KEY

{
CK _ATTRIBUTE PTR pTemplate;
CK_ULONG ulAttributeCount;
CK_OBJECT HANDLE PTR phKey;

} CK_DERIVED KEY;

typedef CK DERIVED KEY CK PTR CK DERIVED KEY PTR

The fields of the CK_DERIVED_KEY structure have the following meaning:
pTemplate pointer to a template that defines a key to derive

ulAttributeCount number of attributes in the template pointed to by pTemplate

phKey pointer to receive the handle for a derived key

o CK_SP800_108_KDF_PARAMS, CK_SP800_108_KDF_PARAMS_PTR

CK_SP800_108_KDF_PARAMS is a structure that provides the parameters for the
CKM_SP800_108_COUNTER_KDF and CKM_SP800_108_DOUBLE_PIPELINE_KDF mechanisms.

typedef struct CK SP800 108 KDF PARAMS

{
CK SP800 108 PRF TYPE prfType;

CK_ULONG ulNumberOfDataParams;

CK_PRF DATA PARAM PTR pDataParams;

CK_ULONG ulAdditionalDerivedKeys;
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 177 of 261

5698
5699
5700
5701
5702
5703

5704
5705

5706

5707
5708
5709

5710
5711
5712
5713

5714
5715
5716

5717
5718

5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733

5734

5735
5736

5737
5738

5739
5740

CK _DERIVED KEY PTR pAdditionalDerivedKeys;
} CK_SP800 108 KDF PARAMS;

typedef CK SP800 108 KDF PARAMS CK PTR
CK_SP800 108 KDF PARAMS PTR;

The fields of the CK_SP800_108 KDF_PARAMS structure have the following meaning:
priType type of PRF

ulNumberOfDataParams number of elements in the array pointed to by pDataParams

pDataParams an array of CK_PRF_DATA_PARAM structures. The array defines
input parameters that are used to construct the “data” input to the
PRF.

ulAdditionalDerivedKeys number of additional keys that will be derived and the number of
elements in the array pointed to by pAdditionalDerivedKeys. If
pAdditionalDerivedKeys is set to NULL _PTR, this parameter must
be set to 0.

pAdditionalDerivedKeys an array of CK_DERIVED KEY structures. If
ulAdditionalDerivedKeys is set to 0, this parameter must be set to
NULL_PTR

¢ CK_SP800_108_FEEDBACK_KDF_PARAMS,
CK_SP800_108_FEEDBACK_KDF_PARAMS_PTR

The CK_SP800_108_FEEDBACK_KDF_PARAMS structure provides the parameters for the
CKM_SP800_108 FEEDBACK_KDF mechanism. It is defined as follows:

typedef struct CK_SP800 108 FEEDBACK KDF PARAMS

{
CK_SP800 108 PRF TYPE prfType;

CK_ULONG ulNumberOfDataParams;
CK_PRF DATA PARAM PTR pDataParams;

CK ULONG ulIVLen;

CK_BYTE_PTR pIV;

CK_ULONG ulAdditionalDerivedKeys;
CK _DERIVED KEY PTR pAdditionalDerivedKeys;

} CK_SP800 108 FEEDBACK KDF PARAMS;

typedef CK SP800 108 FEEDBACK KDF PARAMS CK PTR
CK_SP800 108 FEEDBACK KDF PARAMS PTR;

The fields of the CK_SP800_108_FEEDBACK_KDF_PARAMS structure have the following meaning:
prfType type of PRF

ulNumberOfDataParams number of elements in the array pointed to by pDataParams
pDataParams an array of CK_PRF_DATA_PARAM structures. The array defines
input parameters that are used to construct the “data” input to the
PRF.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 178 of 261

5741
5742

5743
5744
5745

5746
5747
5748
5749

5750
5751
5752

5753

5754
5755
5756

5757
5758
5759

5760

5761
5762
5763
5764

ullVLen the length in bytes of the IV. If plV is set to NULL_PTR, this
parameter must be set to 0.

plv an array of bytes to be used as the |V for the feedback mode KDF.
This parameter is optional and can be set to NULL_PTR. If ullVLen
is set to 0, this parameter must be set to NULL_PTR.

ulAdditionalDerivedKeys number of additional keys that will be derived and the number of
elements in the array pointed to by pAdditionalDerivedKeys. If
pAdditionalDerivedKeys is set to NULL PTR, this parameter must
be set to 0.

pAdditionalDerivedKeys an array of CK_DERIVED KEY structures. If
ulAdditionalDerivedKeys is set to 0, this parameter must be set to
NULL_PTR.

2.42.3 Counter Mode KDF

The SP800-108 Counter Mode KDF mechanism, denoted CKM_SP800_108_COUNTER_KDF,
represents the KDF defined SP800-108 section 5.1. CKM_SP800_108 COUNTER_KDF is a
mechanism for deriving one or more symmetric keys from a symmetric base key.

It has a parameter, a CK_SP800_108_KDF_PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:

Table 164, Counter Mode data field requirements

Data Field Identifier Description

CK_SP800_108_ITERATION_VARIABLE | This data field type is mandatory.

This data field type identifies the location of the iteration
variable in the constructed PRF input data.

The iteration variable for this KDF type is a counter.

Exact formatting of the counter value is defined by the
CK_SP800_108_COUNTER_FORMAT structure.

CK_SP800_108 COUNTER This data field type is invalid for this KDF type.

CK_SP800_108 DKM_LENGTH This data field type is optional.

This data field type identifies the location of the DKM length
in the constructed PRF input data.

Exact formatting of the DKM length is defined by the
CK_SP800_108_DKM_LENGTH_FORMAT structure.

If specified, only one instance of this type may be specified.

CK_SP800_108 BYTE_ARRAY This data field type is optional.
This data field type identifies the location and value of a byte

array of data in the constructed PRF input data.

This standard does not restrict the number of instances of
this data type.

SP800-108 limits the amount of derived keying material that can be produced by a Counter Mode KDF by
limiting the internal loop counter to (2'-1), where “r" is the number of bits used to represent the counter.
Therefore the maximum number of bits that can be produced is (2'-1)h, where “h” is the length in bits of
the output of the selected PRF.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 179 of 261

5765

5766
5767
5768

5769
5770
5771

5772

5773
5774
5775

5776

5777
5778
5779
5780

5781
5782

2.42.4 Feedback Mode KDF

The SP800-108 Feedback Mode KDF mechanism, denoted CKM_SP800 108 FEEDBACK_KDF,
represents the KDF defined SP800-108 section 5.2. CKM_SP800 108 FEEDBACK_KDF is a
mechanism for deriving one or more symmetric keys from a symmetric base key.

It has a parameter, a CK_SP800_108 FEEDBACK_KDF_PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:
Table 165, Feedback Mode data field requirements

Data Field Identifier Description

CK_SP800_108_ITERATION_VARIABLE | This data field type is mandatory.

This data field type identifies the location of the iteration
variable in the constructed PRF input data.

The iteration variable is defined as K(i-1) in section 5.2 of
SP800-108.

The size, format and value of this data input is defined by the
internal KDF structure and PRF output.

Exact formatting of the counter value is defined by the
CK_SP800_108_COUNTER_FORMAT structure.

CK_SP800_108_COUNTER This data field type is optional.

This data field type identifies the location of the counter in the
constructed PRF input data.

Exact formatting of the counter value is defined by the
CK_SP800_108_COUNTER_FORMAT structure.

If specified, only one instance of this type may be specified.

CK_SP800_108 DKM_LENGTH This data field type is optional.

This data field type identifies the location of the DKM length
in the constructed PRF input data.

Exact formatting of the DKM length is defined by the
CK_SP800_108_DKM_LENGTH_FORMAT structure.

If specified, only one instance of this type may be specified.

CK SP800 108 BYTE ARRAY This data field type is optional.
- - B This data field type identifies the location and value of a byte

array of data in the constructed PRF input data.

This standard does not restrict the number of instances of
this data type.

SP800-108 limits the amount of derived keying material that can be produced by a Feedback Mode KDF
by limiting the internal loop counter to (2%2-1). Therefore the maximum number of bits that can be
produced is (2%2-1)h, where “h” is the length in bits of the output of the selected PRF.

2.42.5 Double Pipeline Mode KDF

The SP800-108 Double Pipeline Mode KDF mechanism, denoted
CKM_SP800_108_DOUBLE_PIPELINE_KDF, represents the KDF defined SP800-108 section 5.3.
CKM_SP800_108_DOUBLE_PIPELINE_KDF is a mechanism for deriving one or more symmetric keys
from a symmetric base key.

It has a parameter, a CK_SP800_108 KDF_ PARAMS structure.
The following table lists the data field types that are supported for this KDF type and their meaning:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 180 of 261

5783

5784

5785
5786
5787

5788
5789
5790
5791
5792

5793

5794
5795
5796

5797
5798
5799
5800
5801
5802
5803

Table 166, Double Pipeline Mode data field requirements

Data Field Identifier Description

CK_SP800_108_ITERATION_VARIABLE This data field type is mandatory.

This data field type identifies the location of the iteration
variable in the constructed PRF input data.

The iteration variable is defined as A(i) in section 5.3 of
SP800-108.

The size, format and value of this data input is defined by
the internal KDF structure and PRF output.

Exact formatting of the counter value is defined by the
CK_SP800_108_COUNTER_FORMAT structure.

CK_SP800_108 COUNTER This data field type is optional.

This data field type identifies the location of the counter in
the constructed PRF input data.

Exact formatting of the counter value is defined by the
CK_SP800_108_COUNTER_FORMAT structure.

If specified, only one instance of this type may be specified.

CK_SP800_108 DKM_LENGTH This data field type is optional.

This data field type identifies the location of the DKM length
in the constructed PRF input data.

Exact formatting of the DKM length is defined by the
CK_SP800_108 DKM_LENGTH_FORMAT structure.

If specified, only one instance of this type may be specified.

CK_SP800_108 BYTE_ARRAY This data field type is optional.
This data field type identifies the location and value of a

byte array of data in the constructed PRF input data.
This standard does not restrict the number of instances of

this data type.

SP800-108 limits the amount of derived keying material that can be produced by a Double-Pipeline Mode
KDF by limiting the internal loop counter to (2%2-1). Therefore the maximum number of bits that can be
produced is (2%2-1)h, where “h” is the length in bits of the output of the selected PRF.

The Double Pipeline KDF requires an internal IV value. The IV is constructed using the same method
used to construct the PRF input data; the data/values identified by the array of CK_PRF_DATA_PARAM
structures are concatenated in to a byte array that is used as the IV. As shown in SP800-108 section 5.3,
the CK_SP800_108 ITERATION_VARIABLE and CK_SP800_108 COUNTER data field types are not
included in IV construction process. All other data field types are included in the construction process.

2.42.6 Deriving Additional Keys

The KDFs defined in this section can be used to derive more than one symmetric key from the base key.
The C_Derive function accepts one CK_ATTRIBUTE_PTR to define a single derived key and one
CK_OBJECT_HANDLE_PTR to receive the handle for the derived key.

To derive additional keys, the mechanism parameter structure can be filled in with one or more
CK_DERIVED_KEY structures. Each structure contains a CK_ATTRIBUTE_PTR to define a derived key
and a CK_OBJECT_HANDLE_PTR to receive the handle for the additional derived keys. The key
defined by the C_Derive function parameters is always derived before the keys defined by the
CK_DERIVED_KEY array that is part of the mechanism parameter. The additional keys that are defined
by the CK_DERIVED_KEY array are derived in the order they are defined in the array. That is to say that
the derived keying material produced by the KDF is processed from left to right, and bytes are assigned

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 181 of 261

5804
5805

5806
5807
5808
5809

5810
5811
5812
5813
5814
5815
5816

5817
5818

5819
5820
5821
5822

5823
5824
5825
5826

5827

5828
5829
5830

5831
5832
5833

5834
5835
5836
5837

5838
5839
5840
5841

5842

5843
5844
5845

5846
5847
5848
5849

first to the key defined by the C_Derive function parameters, and then bytes are assigned to the keys that
are defined by the CK_DERIVED_KEY array in the order they are defined in the array.

Each internal iteration of a KDF produces a unique segment of PRF output. Sometimes, a single iteration
will produce enough keying material for the key being derived. Other times, additional internal iterations
are performed to produce multiple segments which are concatenated together to produce enough keying
material for the derived key(s).

When deriving multiple keys, no key can be created using part of a segment that was used for another
key. All keys must be created from disjoint segments. For example, if the parameters are defined such
that a 48-byte key (defined by the C_Derive function parameters) and a 16-byte key (defined by the
content of CK_DERIVED_KEY) are to be derived using CKM_SHA256_HMAC as a PRF, three internal
iterations of the KDF will be performed and three segments of PRF output will be produced. The first
segment and half of the second segment will be used to create the 48-byte key and the third segment will
be used to create the 16-byte key.

In the above example, if the CK_SP800_108 DKM_LENGTH data field type is specified with method
CK_SP800_108 DKM_LENGTH_SUM_OF_KEYS, then the DKM length value will be 512 bits. If the
CK_SP800_108 DKM_LENGTH data field type is specified with method

CK_SP800_108 DKM_LENGTH_SUM_OF_ SEGMENTS, then the DKM length value will be 768 bits.

When deriving multiple keys, if any of the keys cannot be derived for any reason, none of the keys shall
be derived. If the failure was caused by the content of a specific key’s template (ie the template defined
by the content of pTemplate), the corresponding phKey value will be set to CK_INVALID_HANDLE to
identify the offending template.

2.42.7 Key Derivation Attribute Rules

The CKM_SP800_108 COUNTER_KDF, CKM_SP800_108 FEEDBACK_KDF and
CKM_SP800_108_DOUBLE_PIPELINE_KDF mechanisms have the following rules about key sensitivity
and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key(s) can
both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on
some default value.

o |f the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.42.8 Constructing PRF Input Data
SP800-108 defines the PRF input data for each KDF at a high level using terms like “label”, “context”,

“separator”, “counter”...etc. The value, formatting and order of the input data is not strictly defined by
SP800-108, instead it is described as being defined by the “encoding scheme”.

To support any encoding scheme, these mechanisms construct the PRF input data from from the array of
CK_PRF_DATA_PARAM structures in the mechanism parameter. All of the values defined by the
CK_PRF_DATA PARAM array are concatenated in the order they are defined and passed in to the PRF
as the data parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 182 of 261

5850
5851

5852

5853
5854
5855

5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905

2.42.8.1 Sample Counter Mode KDF
SP800-108 section 5.1 outlines a sample Counter Mode KDF which defines the following PRF input:

PRF (Ki, [i]2 || Label || 0x00 || Context || [L]2)

Section 5.1 does not define the number of bits used to represent the counter (the “r” value) or the DKM
length (the “L” value), so 16-bits is assumed for both cases. The following sample code shows how to
define this PRF input data using an array of CK_PRF_DATA_PARAM structures.

#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT HANDLE hBaseKey;
CK_OBJECT HANDLE hDerivedKey;
CK ATTRIBUTE derivedKeyTemplate = { .. };

CK BYTE baLabel[] = {0Oxde, Oxad, Oxbe , Oxef};
CK _ULONG ulLabelLen = sizeof (balLabel) ;

CK BYTE baContext[] = {Oxfe, Oxed, Oxbe , Oxef};
CK _ULONG ulContextLen = sizeof (baContext);

CK _SpP800_108 COUNTER FORMAT counterFormat = {0, 16};
CK_SP800 108 DKM LENGTH FORMAT dkmFormat
= {CK_SP800 108 DKM LENGTH SUM OF KEYS, 0, 16};

CK _PRF DATA PARAM dataParams[] =
{
{ CK_SP800 108 ITERATION VARIABLE,
&counterFormat, sizeof (counterFormat) 1},
CK _Sp800_108 BYTE ARRAY, balLabel, ulLabellLen },
CK Sp800_108 BYTE ARRAY, {0x00}, 1 1},
CK _Sp800_108 BYTE ARRAY, baContext, ulContextLen },
CK _SP800_108 DKM LENGTH, dkmFormat, sizeof (dkmFormat) }

e e

CK SpP800_108 KDF PARAMS kdfParams =

CKM_AES_ CMAC,

DIM(dataParams),

&dataParams,

0, /* no addition derived keys */
NULL /* no addition derived keys */

CK _MECHANISM = mechanism

CKM SP800 108 COUNTER KDF,
&kdfParams,
sizeof (kdfParams)

}i
hBaseKey = GetBaseKeyHandle(.....) ;

rv = C_DeriveKey (
hSession,
&mechanism,
hBaseKey,
&derivedKeyTemplate,
DIM (derivedKeyTemplate),
&hDerivedKey) ;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 183 of 261

5906
5907

5908

5909
5910
5911

5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961

2.42.8.2 Sample SCP03 Counter Mode KDF
The SCPO03 standard defines a variation of a counter mode KDF which defines the following PRF input:

PRF (K1, Label || 0x00 || [L]2 || [i]2 || Context)

SCPO03 defines the number of bits used to represent the counter (the “r’ value) and number of bits used to
represent the DKM length (the “L” value) as 16-bits. The following sample code shows how to define this
PRF input data using an array of CK_PRF_DATA_PARAM structures.

#define DIM(a)

CK_OBJECT HANDLE hBaseKey;
CK_OBJECT HANDLE hDerivedKey;

CK_ATTRIBUTE derivedKeyTemplate

CK BYTE balabel[] =

{O0xde,

Oxad,

(sizeof((a))/sizeof((a)[0]))

{ .. 1

Oxbe , Oxef};

CK _ULONG ulLabelLen = sizeof (balLabel) ;
CK BYTE baContext[] = {0Oxfe,

CK_

CK _SP800_108 COUNTER FORMAT counterFormat = {0,

Oxed,
ULONG ulContextLen = sizeof (baContext);

Oxbe , Oxef};

16};

CK_SP800_108 DKM LENGTH FORMAT dkmFormat

CK_PRF_DATA PARAM dataParams|[]

{

}i

hBaseKey = GetBaseKeyHandle (

rv

= {CK_SP800_108 DKM LENGTH SUM OF KEYS, O,

CK_SP800_108 BYTE ARRAY,

e s e

&counterFormat,

_SP800_108 KDF PARAMS kdfParams

CKM_AES CMAC,
DIM(dataParams),
&dataParams,

CK_SP800 108 BYTE ARRAY, balabel,
{0x00},
CK Sp800_108 DKM LENGTH, dkmFormat,
CK_SPS 0 O_l 0 8_I TERATION_VARIABLE ,

sizeof (counterFormat) 1},
{ CK_SP800 108 BYTE ARRAY, baContext,

le};

ulLabellen 1},
11},
sizeof (dkmFormat)

ulContextlLen }

0, /* no addition derived keys */

NULL

_MECHANISM = mechanism

CKM SP800 108 COUNTER KDF,
&kdfParams,
sizeof (kdfParams)

= C_DeriveKey (

hSession,

&mechanism,

hBaseKey,
&derivedKeyTemplate,

DIM (derivedKeyTemplate),
&hDerivedKey) ;

pkcs1l-curr-v3.0-cos01

Standards Track Work Product

/* no addition derived keys */

Copyright © OASIS Open 2020. All Rights Reserved.

by

27 March 2020
Page 184 of 261

5962
5963
5964

5965
5966
5967
5968

5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016

2.42.8.3 Sample Feedback Mode KDF

SP800-108 section 5.2 outlines a sample Feedback Mode KDF which defines the following PRF input:

PRF (K1, K(i-1) {|| [{]2 }|| Label || 0x00 || Context || [L]2)

Section 5.2 does not define the number of bits used to represent the counter (the “r’ value) or the DKM
length (the “L” value), so 16-bits is assumed for both cases. The counter is defined as being optional and
is included in this example. The following sample code shows how to define this PRF input data using an

array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT HANDLE hBaseKey;
CK_OBJECT HANDLE hDerivedKey;
CK _ATTRIBUTE derivedKeyTemplate = { .. };

CK BYTE baFeedbackIV[] = {0x01, 0x02, 0x03, 0x04};
CK _ULONG ulFeedbackIVLen = sizeof (baFeedbackIV);

CK BYTE baLabel[] = {0Oxde, Oxad, Oxbe, Oxef};
CK _ULONG ulLabelLen = sizeof (balabel) ;
CK BYTE baContext[] = {Oxfe, Oxed, Oxbe, Oxef};

CK _ULONG ulContextLen = sizeof (baContext);

CK _SpP800_108 COUNTER FORMAT counterFormat = {0, 16};
CK_SP800 108 DKM LENGTH FORMAT dkmFormat
= {CK_SP800 108 DKM LENGTH SUM OF KEYS, 0, 16};

CK_PRF DATA PARAM dataParams[] =
{

{ CK_SP800 108 ITERATION VARIABLE,
&counterFormat, sizeof (counterFormat) 1},
CK Sp800_108 BYTE ARRAY, balLabel, ulLabellLen },
CK_SP800 108 BYTE ARRAY, {0x00}, 1 },

e e

b

CK_SP800 108 FEEDBACK KDF PARAMS kdfParams =
{
CKM_AES_CMAC,
DIM (dataParams),
&dataParams,
ulFeedbackIVLen,
baFeedbacklV,
0, /* no addition derived keys */
NULL /* no addition derived keys */
}i

CK_MECHANISM = mechanism

{
CKM SP800_ 108 FEEDBACK KDF,
&kdfParams,
sizeof (kdfParams)

}i
hBaseKey = GetBaseKeyHandle(.....)

rv = C_DeriveKey (

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

CK Sp800_108 BYTE ARRAY, baContext, ulContextLen },
CK _SP800 108 DKM LENGTH, dkmFormat, sizeof (dkmFormat)

27 March 2020
Page 185 of 261

6017
6018
6019
6020
6021
6022

6023

6024
6025

6026
6027

6028
6029
6030
6031

6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070

hSession,

&mechanism,

hBaseKey,
&derivedKeyTemplate,

DIM (derivedKeyTemplate),
&hDerivedKey) ;

2.42.8.4 Sample Double-Pipeline Mode KDF

SP800-108 section 5.3 outlines a sample Double-Pipeline Mode KDF which defines the two following

PRF inputs:

PRF (KI, A(i-1))
PRF (KL, K (i-1) {||[{12 }|| Label || 0x00 || Context || [L]2)

Section 5.3 does not define the number of bits used to represent the counter (the “r” value) or the DKM
length (the “L” value), so 16-bits is assumed for both cases. The counter is defined as being optional so it
is left out in this example. The following sample code shows how to define this PRF input data using an

array of CK_PRF_DATA_PARAM structures.
#define DIM(a) (sizeof((a))/sizeof((a)[0]))

CK_OBJECT HANDLE hBaseKey;
CK_OBJECT HANDLE hDerivedKey;
CK _ATTRIBUTE derivedKeyTemplate = { .. };

CK BYTE baLabel[] = {0Oxde, Oxad, Oxbe , Oxef};
CK _ULONG ulLabelLen = sizeof (balabel) ;
CK BYTE baContext[] = {Oxfe, Oxed, Oxbe , Oxef};

CK _ULONG ulContextLen = sizeof (baContext);

CK_SP800 108 DKM LENGTH FORMAT dkmFormat
= {CK_SP800_108 DKM LENGTH SUM OF KEYS, 0, 16};

CK_PRF DATA PARAM dataParams[] =

{
{ CK_sp800_108 BYTE ARRAY, baLabel, ulLabellLen },
{ CK_sp800 108 BYTE ARRAY, {0x00}, 1 },

{ CK_SpP800 108 BYTE ARRAY, baContext, ulContextLen },
{ CK_sSp800 108 DKM LENGTH, dkmFormat, sizeof (dkmFormat)

b

CK sp800 108 KDF PARAMS kdfParams =
{
CKM_AES_CMAC,
DIM (dataParams),
&dataParams,
0, /* no addition derived keys */
NULL /* no addition derived keys */
}i

CK_MECHANISM = mechanism

{
CKM SP800_ 108 DOUBLE PIPELINE KDF,
&kdfParams,
sizeof (kdfParams)

}i

hBaseKey = GetBaseKeyHandle(.....)

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

}

27 March 2020
Page 186 of 261

6071
6072
6073
6074
6075
6076
6077
6078

6079
6080

6081

6082
6083
6084
6085
6086
6087

6088

6089
6090

6091
6092
6093

6094
6095
6096
6097

6098
6099
6100

6101

rv = C_DeriveKey(
hSession,
&mechanism,
hBaseKey,
&derivedKeyTemplate,
DIM (derivedKeyTemplate),
&hDerivedKey) ;

2.43 Miscellaneous simple key derivation mechanisms

Table 167, Miscellaneous simple key derivation Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR Key/ | Unwrap
Key
Pair

CKM_CONCATENATE_BASE_AND_KEY

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA

ANERN RN EANERN

CKM_EXTRACT_KEY_FROM_KEY

2.43.1 Definitions

Mechanisms:
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY
CKM_CONCATENATE_BASE_AND_KEY

2.43.2 Parameters for miscellaneous simple key derivation mechanisms

¢ CK_KEY_DERIVATION_STRING_DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND_DATA mechanisms. ltis defined as follows:

typedef struct CK KEY DERIVATION STRING DATA ({
CK BYTE PTR pData;
CK_ULONG ulLen;

} CK_KEY DERIVATION STRING DATA;

The fields of the structure have the following meanings:
pData pointer to the byte string
ulLen length of the byte string

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 187 of 261

6102
6103

6104

6105
6106
6107

6108
6109
6110

6111

6112
6113
6114

6115
6116
6117

6118
6119

6120
6121
6122

6123
6124

6125
6126
6127

6128
6129

6130
6131

6132
6133

6134

6135
6136
6137

6138
6139
6140

6141
6142

6143
6144

CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a
CK_KEY_DERIVATION_STRING_DATA.

¢ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR

CK_EXTRACT_PARAMS provides the parameter to the CKM_EXTRACT_KEY_FROM_KEY
mechanism. It specifies which bit of the base key should be used as the first bit of the derived key. It is
defined as follows:

typedef CK ULONG CK EXTRACT PARAMS;

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.

2.43.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from the
concatenation of two existing secret keys. The two keys are specified by handles; the values of the keys
specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value
information which is appended to the end of the base key’s value information (the base key is the key
whose handle is supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is 0X89ABCDEF,
then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the values of the two original
keys.

e If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

¢ If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DESS3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the two original keys’

values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If either of the two original keys has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

e Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to CK_FALSE,
so does the derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either
from the supplied template or from a default value.

e The derived key's CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if both of the
original keys have their CKA_ALWAYS_SENSITIVE attributes set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 188 of 261

6145

6146
6147

6148
6149

6150
6151

6152
6153
6154

6155
6156

6157
6158
6159

6160
6161

6162
6163

6164
6165

6166

6167
6168
6169

6170
6171
6172

6173
6174

6175
6176

6177

6178
6179

6180
6181

6182
6183

6184
6185
6186

6187
6188

6189
6190
6191

2.43.4 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by
concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be appended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0OX89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

o If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the value of the original key
and the data.

e If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

o If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the original key’s

value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

¢ If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key's CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.43.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by
prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be prepended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x89ABCDEF01234567.

o If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the data and the value of the
original key.

o If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 189 of 261

6192
6193

6194
6195

6196
6197

6198

6199
6200
6201

6202
6203
6204

6205
6206

6207
6208

6209

6210
6211
6212

6213
6214

6215
6216

6217
6218
6219

6220
6221

6222
6223
6224

6225
6226

6227
6228

6229
6230

6231

6232
6233
6234

6235
6236
6237

6238
6239

¢ If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the data and the

original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key's CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.43.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which provides the
capability of deriving a secret key by performing a bit XORing of a key pointed to by a base key handle
and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x88888888.

¢ If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the minimum of the lengths of the data and the value of
the original key.

o If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

o If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by taking the shorter of the data and

the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o |If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key's CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 190 of 261

6240
6241

6242
6243
6244

6245
6246

6247
6248
6249

6250
6251

6252
6253

6254

6255
6256

6257
6258

6259

6260
6261

6262
6263
6264

6265
6266

6267
6268

6269
6270

6271
6272
6273

6274
6275
6276

6277
6278

6279
6280

6281
6282

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.43.7 Extraction of one key from another key
Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a mechanism
which provides the capability of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the original
key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-byte
value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21 (i.e., the
value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We regard this
binary string as holding the 32 bits of the key, labeled as b0, b1, ..., b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the end of the
binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for the
derivation to succeed.

¢ If no length or key type is provided in the template, then an error will be returned.

¢ If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

¢ If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than the original key has, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,

then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key's CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key's CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.44 CMS

Table 168, CMS Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 191 of 261

6283

6284
6285

6286

6287
6288
6289
6290

6291

6292
6293
6294
6295
6296
6297
6298
6299
6300

6301

6302

6303

6304
6305
6306
6307
6308
6309

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR’ Key Unwrap
Pair
CKM_CMS_SIG v v

2.44.1 Definitions

Mechanisms:
CKM_CMS_SIG

2.44.2 CMS Signature Mechanism Objects

These objects provide information relating to the CKM_CMS_SIG mechanism. CKM_CMS_SIG
mechanism object attributes represent information about supported CMS signature attributes in the token.
They are only present on tokens supporting the CKM_CMS_SIG mechanism, but must be present on
those tokens.

Table 169, CMS Signature Mechanism Object Attributes

Attribute Data type Meaning
CKA_REQUIRED_CMS_ATTRIBUTE | Byte array | Attributes the token always will include
S in the set of CMS signed attributes

CKA_DEFAULT_CMS_ATTRIBUTES | Byte array | Attributes the token will include in the
set of CMS signed attributes in the
absence of any attributes specified by
the application

CKA_SUPPORTED_CMS_ATTRIBUT | Byte array | Attributes the token may include in the
ES set of CMS signed attributes upon
request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with optional accompanying
values. Any attributes in the list shall be identified with its object identifier, and any values shall be DER-
encoded. The list of attributes is defined in ASN.1 as:

Attributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE ({

attrType OBJECT IDENTIFIER,

attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER

OPTIONAL

}

The client may not set any of the attributes.
2.44.3 CMS mechanism parameters

e CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS_SIG_PARAMS is a structure that provides the parameters to the CKM_CMS_SIG mechanism.
It is defined as follows:

typedef struct CK CMS SIG PARAMS ({

CK _OBJECT HANDLE certificateHandle;
CK _MECHANISM PTR pSigningMechanism;
CK_MECHANISM PTR pDigestMechanism;
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 192 of 261

6310
6311
6312
6313
6314
6315

6316
6317

6318
6319
6320
6321
6322
6323

6324
6325

6326
6327
6328

6329
6330
6331
6332
6333
6334
6335
6336
6337
6338

6339
6340
6341

6342

6343
6344
6345
6346
6347
6348
6349

6350

6351

6352
6353
6354
6355

CK_UTF8CHAR PTR
CK_BYTE_PTR
CK_ULONG

CK_BYTE PTR
CK_ULONG

} CK CMS SIG PARAMS;

pContentType;
pRequestedAttributes;
ulRequestedAttributeslen;
pPRequiredAttributes;
ulRequiredAttributesLen;

The fields of the structure have the following meanings:

certificateHandle

pSigningMechanism

pDigestMechanism

pContentType

pRequestedAttributes

ulRequestedAttributesLen

pRequiredAttributes

ulRequiredAttributesLen

2.44.4 CMS signhatures

Object handle for a certificate associated with the signing key. The
token may use information from this certificate to identify the signer
in the Signerinfo result value. CertificateHandle may be NULL _PTR
if the certificate is not available as a PKCS #11 object or if the
calling application leaves the choice of certificate completely to the
token.

Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g. CKM_SHA1_RSA_PKCS.

Mechanism to use when digesting the data. Value shall be
NULL_PTR when the digest mechanism to use follows from the
pSigningMechanism parameter.

NULL-terminated string indicating complete MIME Content-type of
message to be signed; or the value NULL PTR if the message is a
MIME object (which the token can parse to determine its MIME
Content-type if required). Use the value “application/octet-stream” if
the MIME type for the message is unknown or undefined. Note that
the pContentType string shall conform to the syntax specified in
RFC 2045, i.e. any parameters needed for correct presentation of
the content by the token (such as, for example, a non-default
“charset”) must be present. The token must follow rules and
procedures defined in RFC 2045 when presenting the content.

Pointer to DER-encoded list of CMS Attributes the caller requests to
be included in the signed afttributes. Token may freely ignore this list
or modify any supplied values.

Length in bytes of the value pointed to by pRequestedAfttributes

Pointer to DER-encoded list of CMS Attributes (with accompanying
values) required to be included in the resulting signed attributes.
Token must not modify any supplied values. If the token does not
support one or more of the attributes, or does not accept provided
values, the signature operation will fail. The token will use its own
default attributes when signing if both the pRequestedAttributes and
pRequiredAttributes field are set to NULL PTR.

Length in bytes, of the value pointed to by pRequiredAttributes.

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based on the structures
defined in PKCS #7 and RFC 2630. It supports single- or multiple-part signatures with and without
message recovery. The mechanism is intended for use with, e.g., PTDs (see MeT-PTD) or other capable
tokens. The token will construct a CMS SignedAttributes value and compute a signature on this value.

pkcs1l-curr-v3.0-cos01

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 193 of 261

6356
6357
6358
6359

6360
6361
6362

6363
6364
6365
6366
6367
6368
6369
6370
6371

6372
6373
6374

6375
6376

6377
6378
6379
6380
6381

6382
6383
6384
6385
6386
6387

6388
6389
6390
6391

6392
6393
6394
6395
6396

6397

6398
6399
6400
6401

6402
6403

The content of the SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some attributes to be
present through the parameters pRequiredAttributes. The signature is computed in accordance with the
parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the pSignature return value
will point to a DER-encoded value of type Signerinfo. Signerinfo is defined in ASN.1 as follows (for a
complete definition of all fields and types, see RFC 2630):

SignerInfo ::= SEQUENCE ({
version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes
OPTIONAL }

The certificateHandle parameter, when set, helps the token populate the sid field of the Signerinfo value.
If certificateHandle is NULL_PTR the choice of a suitable certificate reference in the Signerinfo result
value is left to the token (the token could, e.g., interact with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the pSigningMechanism
mechanism instead).

For the pRequiredAttributes field, the token may have to interact with the user to find out whether to
accept a proposed value or not. The token should never accept any proposed attribute values without
some kind of confirmation from its owner (but this could be through, e.g., configuration or policy settings
and not direct interaction). If a user rejects proposed values, or the signature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when generating CMS-
compatible signatures rather than lower-level mechanisms such as CKM_SHA1_RSA_PKCS. This is
especially true when the signatures are to be made on content that the token is able to present to a user.
Exceptions may include those cases where the token does not support a particular signing attribute. Note
however that the token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application may avoid
sending the whole message to the token by electing to use a suitable signature mechanism (e.g.
CKM_RSA_PKCS) as the pSigningMechanism value in the CK_CMS_SIG_PARAMS structure, and
digesting the message itself before passing it to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities, should attempt to
provide messages to be signed by the token in a format possible for the token to present to the user.
Tokens that receive multipart MIME-messages for which only certain parts are possible to present may
fail the signature operation with a return value of CKR_DATA_INVALID, but may also choose to add a
signing attribute indicating which parts of the message were possible to present.

2.45 Blowfish

Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption function 16 times.
The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex
initialization phase required before any encryption can take place, the actual encryption of data is very
efficient on large microprocessors.

Table 170, Blowfish Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 194 of 261

6404

6405
6406

6407
6408
6409
6410

6411

6412
6413
6414

6415

6416
6417

6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430

Functions
Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & |Digest| Key/ & Derive
Decrypt| Verify | g1 Key | Unwrap
Pair
CKM_BLOWFISH_CBC v v
CKM_BLOWFISH_CBC_PAD v v

2.45.1 Definitions

This section defines the key type “CKK_BLOWFISH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.
Mechanisms:

CKM_BLOWFISH_KEY_GEN

CKM_BLOWFISH_CBC

CKM_BLOWFISH_CBC_PAD

2.45.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO_SECRET_KEY, key type CKK_BLOWFISH) hold Blowfish
keys. The following table defines the Blowfish secret key object attributes, in addition to the common

attributes defined for this object class:
Table 171, BLOWFISH Secret Key Object

Attribute Data type Meaning

CKA_VALUE"467 Byte array Key value the key can be
any length up to 448 bits.
Bit length restricted to a
byte array.

CKA_VALUE_LEN?23 CK_ULONG Length in bytes of key

value

- Refer to [PKCS11-Base] table 11 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK_BLOWFISH;
CK UTF8CHAR label[] = “A blowfish secret key object”;
CK BYTE value[l6] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 195 of 261

6431

6432
6433

6434

6435
6436

6437
6438
6439

6440
6441

6442

6443
6444

6445

6446
6447
6448
6449
6450

6451
6452
6453
6454

6455

6456

6457
6458

6459

6460
6461
6462

6463

6464
6465
6466

6467
6468

2.45.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, is a key generation
mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes.

2.45.4 Blowfish-CBC

Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 8-byte initialization vector.

This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism encrypts the value
of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size
minus one null bytes so that the resulting length is a multiple of the block size. The output data is the
same length as the padded input data. It does not wrap the key type, key length, or any other information
about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 172, BLOWFISH-CBC: Key and Data Length

Function Key type Input Length Output Length
C_Encrypt BLOWFISH Multiple of block size Same as input length
C_Decrypt BLOWFISH Multiple of block size Same as input length
C_WrapKey BLOWFISH Any Input length rounded up to
multiple of the block size
C_UnwrapKey BLOWFISH Multiple of block size Determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of BLOWFISH key sizes, in bytes.

2.45.5 Blowfish-CBC with PKCS padding

Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 8-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

The entries in the table below for data length constraints when wrapping and unwrapping keys do not
apply to wrapping and unwrapping private keys.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 196 of 261

6469 Constraints on key types and the length of data are summarized in the following table:
6470
6471 Table 173, BLOWFISH-CBC with PKCS Padding: Key and Data Length

Function Key type Input Length Output Length

C_Encrypt BLOWFISH Any Input length rounded up to
multiple of the block size

C_Decrypt BLOWFISH Multiple of block size Between 1 and block

length block size bytes
shorter than input length

C_WrapKey BLOWFISH Any Input length rounded up to
multiple of the block size

C_UnwrapKey BLOWFISH Multiple of block size Between 1 and block length
block size bytes shorter than
input length

6472 2.46 Twofish

6473 Ref. https://www.schneier.com/twofish.html

6474 2.46.1 Definitions

6475 This section defines the key type “CKK_TWOFISH” for type CK_KEY_TYPE as used in the
6476 CKA_KEY_TYPE attribute of key objects.

6477 Mechanisms:

6478 CKM_TWOFISH_KEY_GEN
6479 CKM_TWOFISH_CBC

6480 CKM_TWOFISH_CBC_PAD
6481

6482 2.46.2 Twofish secret key objects

6483 Twofish secret key objects (object class CKO_SECRET_KEY, key type CKK_TWOFISH) hold Twofish
6484 keys. The following table defines the Twofish secret key object attributes, in addition to the common
6485 attributes defined for this object class:

6486 Table 174, Twofish Secret Key Object

Attribute Data type Meaning
CKA_VALUE"467 Byte array Key value 128-, 192-, or
256-bit key
CKA_VALUE_LEN23 CK_ULONG Length in bytes of key
value
6487 - Refer to [PKCS11-Base] table 11 for footnotes

6488 The following is a sample template for creating an TWOFISH secret key object:

6489 CK_OBJECT CLASS class = CKO_SECRET KEY;
6490 CK_KEY TYPE keyType = CKK TWOFISH;
6491 CK UTF8CHAR label[] = “A twofish secret key object”;
6492 CK BYTE value[l6] = {...};
6493 CK BBOOL true = CK TRUE;
6494 CK_ATTRIBUTE template[] = {
6495 {CKA CLASS, é&class, sizeof(class)},
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 197 of 261

file:///D:/blp/data/.%20http:/www.counterpane.com/twofish-brief.html

6496
6497
6498
6499
6500
6501

6502

6503
6504
6505

6506
6507

6508
6509
6510

6511
6512

6513

6514
6515

6516

6517

6518
6519
6520

6521

6522
6523
6524

6525

6526
6527

6528

{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

2.46.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a key generation
mechanism Twofish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes.

2.46.4 Twofish -CBC

Twofish-CBC, denoted CKM_TWOFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

2.46.5 Twofish-CBC with PKCS padding

Twofish-CBC-PAD, denoted CKM_TWOFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

2.47 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES.
Camellia is described e.g. in IETF RFC 3713.

Table 175, Camellia Mechanisms vs. Functions

Functions
Encryp | Sign | SR Gen | Wrap
Mechanism t & & | Diges . & Deriv
& Verif | VR t Unwra e
Decryp | y ! Key/ p
t Key
Pair
CKM_CAMELLIA_KEY_GEN v
CKM_CAMELLIA _ECB v v
CKM_CAMELLIA_CBC v v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 198 of 261

6529

6530
6531

6532
6533
6534
6535
6536
6537
6538

6539

6540
6541
6542

6543

6544
6545

6546
6547
6548
6549
6550
6551
6552
6553

Functions
Encryp | Sign | SR Gen | Wrap
Mechanism t & & | Diges . & Deriv
& Verif | VR t Unwra e
Decryp | y ! Key/ p
t Key
Pair
CKM_CAMELLIA_CBC_PAD v v
CKM_CAMELLIA_MAC_GENERAL 4
CKM_CAMELLIA_MAC v
CKM_CAMELLIA_ECB_ENCRYPT_DAT v
A
CKM_CAMELLIA_CBC_ENCRYPT_DAT v
A

2.47.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA MAC
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_CBC_PAD

2.47.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold
Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the

common attributes defined for this object class:
Table 176, Camellia Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE'467 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN?236 CK_ULONG Length in bytes of key
value

- Refer to [PKCS11-Base] table 11 for footnotes.

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK CAMELLIA;

CK UTF8CHAR label[] = ™A Camellia secret key object”;
CK BYTE valuel[] = {...};

CK _BBOOL true = CK TRUE;

CK_ATTRIBUTE template[] = {

{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 199 of 261

6554
6555
6556
6557
6558

6559

6560
6561

6562

6563
6564

6565
6566
6567

6568
6569

6570

6571
6572

6573

6574
6575
6576
6577
6578
6579

6580
6581
6582
6583

6584
6585

6586
6587

{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}

}i

2.47.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA KEY_GEN, is a key generation
mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.47.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 177, Camellia-ECB: Key and Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_WrapKey CKK_CAMELLIA any input length rounded up

to multiple of block size

C_UnwrapKey CKK_CAMELLIA multiple of determined by type of

block size | key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 200 of 261

6588

6589
6590

6591

6592
6593
6594
6595
6596
6597

6598
6599
6600
6601

6602
6603

6604
6605

6606

6607
6608
6609

6610

6611
6612
6613

6614
6615
6616
6617

6618

2.47.5 Camellia-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 178, Camellia-CBC: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the
block size
C_UnwrapKey CKK_CAMELLIA multiple of determined by type of
block size key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.47.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia;
cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 201 of 261

6619

6620
6621

6622

6623

6624

6625
6626

6627
6628
6629
6630
6631

6632
6633
6634

6635
6636
6637

6638

6639
6640
6641
6642
6643
6644
6645
6646
6647
6648

6649

6650
6651

6652
6653

Table 179, Camellia-CBC with PKCS Padding: Key and Data Length

Function Key type Input Output length
length
C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_CAMELLIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_CAMELLIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.47.7 CAMELLIA with Counter mechanism parameters

¢ CK_CAMELLIA_CTR_PARAMS; CK_CAMELLIA_CTR_PARAMS_PTR

CK_CAMELLIA_CTR_PARAMS is a structure that provides the parameters to the
CKM_CAMELLIA_CTR mechanism. It is defined as follows:

typedef struct CK CAMELLIA CTR PARAMS ({
CK ULONG ulCounterBits;
CK_BYTE cb[16];

} CK_CAMELLIA CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that 0 < ulCounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:
0 1 2 3
0123456789 01234567890123456789¢01
e s s S e e s e
\ Nonce |
e s s S e e s e
\ Initialization Vector (IV)
\ |
Fod ottt =ttt -ttt —F -+ —+—+—+
\ Block Counter \
Fod ottt =ttt -ttt —F -+ —+—+—+

This construction permits each packet to consist of up to 2%2-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_CAMELLIA_CTR_PARAMS_PTR is a pointer to a CK_CAMELLIA_CTR_PARAMS.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 202 of 261

6654

6655
6656
6657

6658
6659

6660
6661

6662
6663

6664
6665

6666

6667
6668
6669

6670
6671
6672

6673
6674

6675

6676
6677

6678

6679
6680
6681
6682
6683
6684
6685
6686
6687

2.47.8 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_ MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on Camellia and data authentication as defined
in.[CAMELLIA]

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced
in the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 180, General-length Camellia-MAC: Key and Data Length

Function | Key type Data Signature length

length
C_Sign CKK_CAMELLIA any 1-block size, as specified in parameters
C_Verify CKK_CAMELLIA any 1-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.47.9 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-
MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in
length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 181, Camellia-MAC: Key and Data Length

Function | Key type Data Signature length
length

C_Sign CKK_CAMELLIA any 2 block size (8 bytes)

C_Verify CKK_CAMELLIA any 2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.48 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.48.1 Definitions

Mechanisms:
CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA CBC_ENCRYPT_DATA

typedef struct CK CAMELLIA CBC_ENCRYPT DATA PARAMS {

CK _BYTE iv[l6];
CK_BYTE PTR pbData;
CK_ULONG length;

} CK_CAMELLIA CBC_ENCRYPT DATA PARAMS;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 203 of 261

6688
6689
6690

6691

6692
6693

6694

6695

6696
6697

6698

6699

6700
6701

6702
6703
6704
6705
6706
6707

typedef CK CAMELLIA CBC ENCRYPT DATA PARAMS CK PTR

CK CAMELLIA CBC ENCRYPT DATA PARAMS PTR;

2.48.2 Mechanism Parameters
Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY DERIVATION_STRING_DATA.

Table 182, Mechanism Parameters for Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT_DATA

Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT_DATA

Uses
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.49 ARIA

ARIA is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. ARIA is
described in NSRI “Specification of ARIA”.

Table 183, ARIA Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_ARIA_KEY_GEN v
CKM_ARIA_ECB v v
CKM_ARIA_CBC v 4
CKM_ARIA_CBC_PAD v 4
CKM_ARIA_MAC_GENERAL v
CKM_ARIA_MAC v
CKM_ARIA_ECB_ENCRYPT_DATA v
CKM_ARIA_CBC_ENCRYPT_DATA v

2.49.1 Definitions

This section defines the key type “CKK_ARIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.

Mechanisms:
CKM_ARIA_KEY_GEN
CKM_ARIA_ECB
CKM_ARIA_CBC
CKM_ARIA_MAC

CKM_ARIA_MAC_GENERAL

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020

Page 204 of 261

6708

6709

6710
6711
6712

6713

6714
6715

6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728

6729
6730
6731
6732

6733
6734

6735
6736
6737

6738
6739

6740

6741
6742

6743

6744
6745
6746

CKM_ARIA_CBC_PAD

2.49.2 Aria secret key objects

ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA) hold ARIA keys. The
following table defines the ARIA secret key object attributes, in addition to the common attributes defined
for this object class:

Table 184, ARIA Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"467 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN236 CK_ULONG Length in bytes of key
value

- Refer to [PKCS11-Base] table 11 for footnotes.

The following is a sample template for creating an ARIA secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK ARIA;
CK UTF8CHAR label[] = “An ARIA secret key object”;
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

2.49.3 ARIA key generation

The ARIA key generation mechanism, denoted CKM_ARIA_KEY_GEN, is a key generation mechanism
for Aria.

It does not have a parameter.

The mechanism generates ARIA keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the ARIA key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.49.4 ARIA-ECB

ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on Aria and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 205 of 261

6747
6748
6749

6750
6751
6752
6753

6754
6755

6756
6757

6758

6759
6760

6761

6762
6763
6764
6765
6766
6767

6768
6769
6770
6771

6772

one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 185, ARIA-ECB: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_ARIA multiple of same as input length no final part
block size
C_Decrypt CKK_ARIA multiple of same as input length no final part
block size
C_WrapKey CKK_ARIA any input length rounded up
to multiple of block size
C_UnwrapKey CKK_ARIA multiple of determined by type of
block size | key being unwrapped or
CKA VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.49.5 ARIA-CBC

ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on ARIA and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 206 of 261

6773

6774
6775

6776

6777
6778
6779

6780

6781
6782
6783

6784
6785
6786
6787

6788
6789

6790
6791

6792

6793
6794

6795
6796

Table 186, ARIA-CBC: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_ARIA multiple of same as input length no final part
block size
C_Decrypt CKK_ARIA multiple of same as input length no final part
block size
C_WrapKey CKK_ARIA any input length rounded
up to multiple of the
block size
C_UnwrapKey CKK_ARIA multiple of determined by type of
block size key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Aria key sizes, in bytes.

2.49.6 ARIA-CBC with PKCS padding

ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA; cipher-block
chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 187, ARIA-CBC with PKCS Padding: Key and Data Length

Function Key type Input Output length
length
C_Encrypt CKK_ARIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_ARIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_ARIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_ARIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.49.7 General-length ARIA-MAC
General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on ARIA and data authentication as defined in [FIPS 113].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 207 of 261

6797
6798

6799
6800

6801
6802

6803

6804
6805

6806
6807
6808

6809
6810

6811

6812
6813

6814

6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826

6827
6828

The output bytes from this mechanism are taken from the start of the final ARIA cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 188, General-length ARIA-MAC: Key and Data Length

Function | Key type Data Signature length

length
C_Sign CKK_ARIA any 1-block size, as specified in parameters
C_Verify CKK_ARIA any 1-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2.49.8 ARIA-MAC

ARIA-MAC, denoted by CKM_ARIA_MAC, is a special case of the general-length ARIA-MAC
mechanism. ARIA-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 189, ARIA-MAC: Key and Data Length

Function | Key type Data Signature length
length

C_Sign CKK_ARIA any 2 block size (8 bytes)

C_Verify CKK_ARIA any 2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.
2.50 Key derivation by data encryption - ARIA

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.50.1 Definitions

Mechanisms:
CKM_ARIA _ECB_ENCRYPT_DATA
CKM_ARIA CBC_ENCRYPT_DATA

typedef struct CK _ARIA CBC_ENCRYPT DATA PARAMS {

CK_BYTE iv[16];
CK BYTE PTR pbData;
CK_ULONG length;

} CK_ARIA CBC_ENCRYPT DATA PARAMS;

typedef CK ARIA CBC ENCRYPT DATA PARAMS CK_PTR
CK_ARIA CBC ENCRYPT DATA PARAMS PTR;

2.50.2 Mechanism Parameters
Uses CK_ARIA_CBC_ENCRYPT _DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 208 of 261

6829

6830

6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853

6854
6855

6856
6857

6858
6859

Table 190, Mechanism Parameters for Aria-based key derivation

CKM_ARIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA

structure. Parameter is the data to be encrypted
and must be a multiple of 16 long.

CKM_ARIA_CBC_ENCRYPT_DATA Uses

CK_ARIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

2.51 SEED

SEED is a symmetric block cipher developed by the South Korean Information Security Agency (KISA). It
has a 128-bit key size and a 128-bit block size.

Its specification has been published as Internet [RFC 4269].
RFCs have been published defining the use of SEED in
TLS ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt

IPsec ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt

CMS ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS cipher suites that use SEED include:

CipherSuite
0x961};
CipherSuite
0x97};
CiphersSuite
0x98};
CipherSuite
0x99};
CipherSuite
0x9A};
CiphersSuite
0x9B};

TLS RSA WITH SEED CBC SHA = { 0x00,
TLS DH DSS WITH SEED CBC_SHA = { 0x00,
TLS DH RSA WITH SEED CBC_SHA = { 0x00,
TLS DHE DSS WITH SEED CBC SHA = { 0x00,
TLS DHE RSA WITH SEED CBC SHA = { 0x00,
TLS_DH anon WITH SEED CBC SHA = { 0x00,

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of operation, as well as
in a MAC algorithm such as HMAC.

OIDs have been published for all these uses. A list may be seen at
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Table 191, SEED Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

27 March 2020
Copyright © OASIS Open 2020. All Rights Reserved. Page 209 of 261

ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

6860

6861
6862

6863
6864
6865
6866
6867
6868
6869
6870

6871
6872

6873

6874
6875
6876

6877

6878
6879

6880
6881
6882
6883
6884
6885

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_SEED_KEY_GEN v
CKM_SEED_ECB v
CKM_SEED_CBC v
CKM_SEED_CBC_PAD v v
CKM_SEED_MAC_GENERAL v
CKM_SEED_MAC v
CKM_SEED_ECB_ENCRYPT_DATA v
CKM_SEED_CBC_ENCRYPT_DATA 4

2.51.1 Definitions

This section defines the key type “CKK_SEED” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.

Mechanisms:
CKM_SEED KEY_GEN
CKM_SEED_ECB
CKM_SEED_CBC
CKM_SEED_MAC
CKM_SEED_MAC_GENERAL
CKM_SEED CBC_PAD

For all of these mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

are always 16.

2.51.2 SEED secret key objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys.
The following table defines the secret key object attributes, in addition to the common attributes defined

for this object class:
Table 192, SEED Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE"467 Byte array Key value (always 16
bytes long)

- Refer to [PKCS11-Base] table 11 for footnotes.

The following is a sample template for creating a SEED secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK_ SEED;

CK UTF8CHAR label[] = “A SEED secret key object”;

CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 210 of 261

6886
6887
6888
6889
6890
6891
6892

6893

6894
6895

6896
6897

6898
6899
6900

6901

6902
6903

6904

6905

6906
6907

6908

6909

6910
6911
6912

6913

6914

6915
6916

6917
6918

6919
6920

6921

6922
6923

6924

{CKA CLASS, &class, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}

i

2.51.3 SEED key generation

The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism
for SEED.

It does not have a parameter.
The mechanism generates SEED keys.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SEED key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

2.51.4 SEED-ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and electronic codebook mode.

It does not have a parameter.

2.51.5 SEED-CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

2.51.6 SEED-CBC with PKCS padding

SEED-CBC with PKCS padding, denoted CKM_SEED_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED; cipher-
block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

2.51.7 General-length SEED-MAC

General-length SEED-MAC, denoted CKM_SEED_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on SEED and data authentication as defined in 0.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final cipher block produced in the
MACing process.

2.51.8 SEED-MAC

SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEED-MAC
mechanism. SEED-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 211 of 261

6925

6926
6927

6928

6929
6930
6931
6932

6933
6934
6935
6936
6937
6938
6939
6940

6941
6942

6943

6944

6945

6946
6947

2.52 Key derivation by data encryption - SEED

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2.52.1 Definitions

Mechanisms:
CKM_SEED ECB _ENCRYPT_DATA
CKM_SEED_CBC_ENCRYPT_DATA

typedef struct CK SEED CBC ENCRYPT DATA PARAMS {

CK BYTE iv([1le6];
CK BYTE PTR pData;
CK _ULONG length;

} CK SEED CBC ENCRYPT DATA PARAMS;

typedef CK SEED CBC ENCRYPT DATA PARAMS CK_PTR
CK_SEED CBC_ENCRYPT DATA PARAMS PTR;

2.52.2 Mechanism Parameters

Table 193, Mechanism Parameters for SEED-based key derivation

CKM_SEED_ECB_ENCRYPT_DATA

Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_SEED_CBC_ENCRYPT_DATA

Uses CK_SEED_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part must be a multiple of 16 bytes
long.

2.53 OTP

2.53.1 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The usage cases
can be categorized according to the type of sought functionality.

pkcs1l-curr-v3.0-cos01

27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 212 of 261

6948

6949
6950

6951
6952
6953
6954
6955
6956
6957

2.53.2 Case 1: Generation of OTP values

%

User

Client Application

’l: . Signi)

PRCS #11 Library

Client API Connected Token API
A A
N/

Authentication Connected
Server Token

Figure 1: Retrieving OTP values through C_Sign

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate users holding
OTP tokens. In this particular example, a connected hardware token is used, but a software token is
equally possible. The application invokes C_Sign to retrieve the OTP value from the token. In the
example, the application then passes the retrieved OTP value to a client API that sends it via the network
to an authentication server. The client APl may implement a standard authentication protocol such as
RADIUS [RFC 2865] or EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's
ACE/Agent® software.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 213 of 261

6958

6959
6960

6961
6962

6963

6964

2.53.3 Case 2: Verification of provided OTP values

Server Application

I

C_Verify()

PKCS #11 Library

!

Internal Token API

!

Token (or query to
authentication

server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this case, a server
application invokes C_Verify with the received OTP value as the signature value to be verified.

2.53.4 Case 3: Generation of OTP keys

pkcs1l-curr-v3.0-cos01

Standards Track Work Product

Client Application

I C_GenerateKey()

PKCS #11 Library

!

Internal Token API

i

Token (or software
version thereof)

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 214 of 261

6965

6966
6967
6968

6969

6970

6971
6972
6973

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys. The application
invokes C_GenerateKey to generate an OTP key of a particular type on the token. The key may
subsequently be used as a basis to generate OTP values.

2.53.5 OTP objects

2.53.5.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens. The following
table defines the attributes common to all OTP keys, in addition to the attributes defined for secret keys,
all of which are inherited by this class:

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 215 of 261

6974 Table 194: Common OTP key attributes

Attribute Data type Meaning
CKA_OTP_FORMAT CK_ULONG | Format of OTP values produced
with this key:

CK_OTP_FORMAT_DECIMAL =
Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT_HEXADECIMA
L = Hexadecimal (UTF8-encoded)
CK_OTP_FORMAT_ALPHANUME
RIC = Alphanumeric (UTF8-
encoded)
CK_OTP_FORMAT_BINARY =
Only binary values.

CKA _OTP_LENGTH?® CK_ULONG | Default length of OTP values (in the
CKA_OTP_FORMAT) produced
with this key.

CKA_OTP_USER_FRIENDLY_MODE® | CK BBOOL | Setto CK_TRUE when the token is
capable of returning OTPs suitable
for human consumption. See the
description of
CKF_USER_FRIENDLY_OTP

below.
CKA_OTP_CHALLENGE_REQUIREM | CK_ULONG | Parameter requirements when
ENT? generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A challenge must be supplied.
CK_OTP_PARAM_OPTIONAL = A
challenge may be supplied but need
not be.
CK_OTP_PARAM_IGNORED = A
challenge, if supplied, will be
ignored.
CKA_OTP_TIME_REQUIREMENT?® CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A time value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
time value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
time value, if supplied, will be
ignored.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 216 of 261

CKA _OTP_COUNTER_REQUIREMEN | CK_ULONG Parameter requirements when

T° generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
counter value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
counter value, if supplied, will be
ignored.

CKA_OTP_PIN_REQUIREMENT?® CK_ULONG | Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
PIN value may be supplied but
need not be (if not supplied, then
library will be responsible for
collecting it)
CK_OTP_PARAM_IGNORED = A
PIN value, if supplied, will be
ignored.

CKA_OTP_COUNTER Byte array Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_TIME RFC 2279 Value of the associated internal
string UTC time in the form
YYYYMMDDhhmmss. Default value
is empty (i.e. ulValueLen= 0).

CKA_OTP_USER_IDENTIFIER RFC 2279 Text string that identifies a user
string associated with the OTP key (may
be used to enhance the user
experience). Default value is empty
(i.e. ulValueLen = 0).

CKA_OTP_SERVICE_IDENTIFIER RFC 2279 Text string that identifies a service
string that may validate OTPs generated
by this key. Default value is empty
(i.e. ulValueLen = 0).

CKA_OTP_SERVICE_LOGO Byte array Logotype image that identifies a
service that may validate OTPs
generated by this key. Default value
is empty (i.e. ulValueLen = 0).

CKA _OTP_SERVICE_LOGO TYPE RFC 2279 MIME type of the

string CKA_OTP_SERVICE_LOGO
attribute value. Default value is
empty (i.e. ulValueLen = 0).

CKA_VALUE"46.7 Byte array Value of the key.
CKA_VALUE_LEN23 CK_ULONG | Length in bytes of key value.
6975 Refer to [PKCS11-Base] table 11 for footnotes.
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 217 of 261

6976
6977
6978

6979
6980
6981
6982

6983

6984

6985

6986
6987
6988
6989

6990

6991
6992
6993
6994
6995

6996

6997
6998

6999

7000
7001
7002
7003

Note: A Cryptoki library may support PIN-code caching in order to reduce user interactions. An OTP-
PKCS #11 application should therefore always consult the state of the CKA_OTP_PIN_REQUIREMENT
attribute before each call to C_Signlnit, as the value of this attribute may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects. The
CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO attribute may be used to
distinguish between keys. The actual choice of key for a particular operation is however application-
specific and beyond the scope of this document.

For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as required.

2.53.6 OTP-related notifications

This document extends the set of defined notifications as follows:

CKN_OTP_CHANGED Cryptoki is informing the application that the OTP for a key on a
connected token just changed. This notification is particularly useful
when applications wish to display the current OTP value for time-
based mechanisms.

2.53.7 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 195: OTP mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR! Key/ | Unwrap
Key
Pair
CKM_SECURID_KEY_GEN v
CKM_SECURID v
CKM_HOTP_KEY_GEN 4
CKM_HOTP v
CKM_ACTI_KEY_GEN v
CKM_ACTI v

The remainder of this section will present in detail the OTP mechanisms and the parameters that are
supplied to them.

2.53.7.1 OTP mechanism parameters

¢+ CK_OTP_PARAM_TYPE

CK_OTP_PARAM_TYPE is a value that identifies an OTP parameter type. It is defined as follows:
typedef CK ULONG CK _OTP_ PARAM TYPE;

The following CK_OTP_PARAM_TYPE types are defined:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 218 of 261

7004 Table 196, OTP parameter types

Parameter Data type Meaning
CK_OTP_PIN RFC 2279 A UTF8 string containing a PIN for use
string when computing or verifying PIN-based
OTP values.
CK_OTP_CHALLENGE Byte array Challenge to use when computing or
verifying challenge-based OTP values.
CK_OTP_TIME RFC 2279 UTC time value in the form
string YYYYMMDDhhmmss to use when
computing or verifying time-based OTP
values.
CK_OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.
CK_OTP_FLAGS CK_FLAGS Bit flags indicating the characteristics of the

sought OTP as defined below.

CK_OTP_OUTPUT_LENGTH | CK_ULONG Desired output length (overrides any default
value). A Cryptoki library will return
CKR_MECHANISM_PARAM_INVALID if a
provided length value is not supported.

CK_OTP_OUTPUT_FORMA | CK_ULONG Returned OTP format (allowed values are

T the same as for CKA_OTP_FORMAT). This
parameter is only intended for C_Sign
output, see paragraphs below. When not
present, the returned OTP format will be the
same as the value of the
CKA_OTP_FORMAT attribute for the key in
question.

CK_OTP_VALUE Byte array An actual OTP value. This parameter type is

intended for C_Sign output, see paragraphs
below.

7005

7006 The following table defines the possible values for the CK_OTP_FLAGS type:
7007 Table 197: OTP Mechanism Flags

Bit flag Mask Meaning

CKF_NEXT_OTP 0x00000001 True (i.e. set) if the OTP computation shall
be for the next OTP, rather than the current
one (current being interpreted in the context
of the algorithm, e.g. for the current counter
value or current time window). A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if the
CKF_NEXT_OTP flag is set and the OTP
mechanism in question does not support the
concept of “next” OTP or the library is not
capable of generating the next OTP®.

9 Applications that may need to retrieve the next OTP should be prepared to handle this situation. For example, an application could store the OTP value returned
by C_Sign so that, if a next OTP is required, it can compare it to the OTP value returned by subsequent calls to C_Sign should it turn out that the library does not
support the CKF_NEXT_OTP flag.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 219 of 261

7008
7009
7010
7011
7012

7013

7014
7015

Bit flag Mask Meaning

CKF_EXCLUDE_TIME 0x00000002 | True (i.e. set) if the OTP computation must
not include a time value. Will have an effect
only on mechanisms that do include a time
value in the OTP computation and then only
if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER 0x00000004 | True (i.e. set) if the OTP computation must
not include a counter value. Will have an
effect only on mechanisms that do include a
counter value in the OTP computation and
then only if the mechanism (and token)
allows exclusion of this value. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE [0x00000008 | True (i.e. set) if the OTP computation must
not include a challenge. Will have an effect
only on mechanisms that do include a
challenge in the OTP computation and then
only if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_PIN 0x00000010 | True (i.e. set) if the OTP computation must
not include a PIN value. Will have an effect
only on mechanisms that do include a PIN in
the OTP computation and then only if the
mechanism (and token) allows exclusion of
this value. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_USER_FRIENDLY_OTP 0x00000020 | True (i.e. set) if the OTP returned shall be in
a form suitable for human consumption. If
this flag is set, and the call is successful,
then the returned CK_OTP_VALUE shall be
a UTF8-encoded printable string. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if this
flag is set when
CKA_OTP_USER_FRIENDLY_MODE for

the key in question is CK_FALSE.

Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then there may still be
value in setting the CKF_USER_FRIENDLY_OTP flag (assuming CKA_OTP_USER_FRIENDLY_MODE
is CK_TRUE, of course) if the intent is for a human to read the generated OTP value, since it may
become shorter or otherwise better suited for a user. Applications that do not intend to provide a returned
OTP value to a user should not set the CKF_USER_FRIENDLY_OTP flag.

¢ CK_OTP_PARAM; CK_OTP_PARAM_PTR

CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP parameter. It is
defined as follows:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 220 of 261

7016
7017
7018
7019
7020

7021
7022

7023

7024

7025
7026
7027

7028
7029

7030

7031
7032

7033
7034
7035
7036

7037
7038

7039

7040
7041

7042
7043
7044
7045

7046
7047
7048
7049
7050
7051
7052
7053
7054
7055

7056
7057
7058
7059

typedef struct CK OTP PARAM ({
CK OTP_PARAM TYPE type;
CK VOID PTR pValue;
CK_ULONG ulValueLen;

} CK_OTP_ PARAM;

The fields of the structure have the following meanings:
type the parameter type

pValue pointer to the value of the parameter
ulValuelLen length in bytes of the value

If a parameter has no value, then ulValueLen = 0, and the value of pValue is irrelevant. Note that pValue
is a “void” pointer, facilitating the passing of arbitrary values. Both the application and the Cryptoki library
must ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).

CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.

¢ CK_OTP_PARAMS; CK_OTP_PARAMS_PTR

CK_OTP_PARAMS is a structure that is used to provide parameters for OTP mechanisms in a generic
fashion. It is defined as follows:

typedef struct CK OTP PARAMS ({
CK OTP PARAM PTR pParams;
CK_ULONG ulCount;

} CK _OTP PARAMS;

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameters

ulCount the number of parameters in the array

CK_OTP_PARAMS_PTR is a pointer to a CK_OTP_PARAMS.

When calling C_Signlnit or C_Verifylnit with a mechanism that takes a CK_OTP_PARAMS structure as a
parameter, the CK_OTP_PARAMS structure shall be populated in accordance with the
CKA_OTP_X_REQUIREMENT key attributes for the identified key, where X is PIN, CHALLENGE, TIME,
or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_MANDATORY, then the
CK_OTP_TIME parameter shall be present. If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_OPTIONAL, then a CK_OTP_TIME parameter may be present. If it is not present,
then the library may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will always be ignored.
Additionally, a provided CK_OTP_TIME parameter will always be ignored if CKF_EXCLUDE_TIME is set
in a CK_OTP_FLAGS parameter. Similarly, if this flag is set, a library will not attempt to collect the value
itself, and it will also instruct the token not to make use of any internal value, subject to token policies. It is
an error (CKR_MECHANISM_PARAM_INVALID) to set the CKF_EXCLUDE_TIME flag when the
CKA_OTP_TIME_REQUIREMENT attribute is CK_OTP_PARAM_MANDATORY.

The above discussion holds for all CKA_OTP_X_REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQUIREMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT). A library may set a
particular CKA_OTP_X REQUIREMENT attribute to CK_OTP_PARAM_OPTIONAL even if it is required

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 221 of 261

7060
7061

7062
7063

7064

7065

7066
7067
7068
7069

7070
7071
7072
7073

7074
7075

7076

7077
7078
7079
7080
7081
7082
7083

7084
7085
7086
7087
7088
7089
7090
7091

7092
7093
7094
7095

7096

7097

7098

7099
7100
7101

by the mechanism as long as the token (or the library itself) has the capability of providing the value to the
computation. One example of this is a token with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the CK_OTP_OUTPUT_FORMAT and the
CKA_OTP_LENGTH parameters to set additional parameters.

¢ CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR

CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in successful calls to
C_Sign (C_SignFinal). The structure informs applications of actual parameter values used in particular
OTP computations in addition to the OTP value itself. It is used by all mechanisms for which the key
belongs to the class CKO_OTP_KEY and is defined as follows:

typedef struct CK OTP SIGNATURE INFO ({
CK _OTP PARAM PTR pParams;
CK _ULONG ulCount;

} CK_OTP_ SIGNATURE INFO;

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameter values

ulCount the number of parameters in the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the pSignature parameter will
be set to point to a CK_OTP_SIGNATURE_INFO structure. One of the parameters in this structure will be
the OTP value itself, identified with the CK_OTP_VALUE tag. Other parameters may be present for
informational purposes, e.g. the actual time used in the OTP calculation. In order to simplify OTP
validations, authentication protocols may permit authenticating parties to send some or all of these
parameters in addition to OTP values themselves. Applications should therefore check for their presence
in returned CK_OTP_SIGNATURE_INFO values whenever such circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in [PKCS11-Base] Section 5.2 on
producing output, a call to C_Sign (or C_SignFinal) with pSignature set to NULL_PTR will return (in the
pulSignatureLen parameter) the required number of bytes to hold the CK_OTP_SIGNATURE_INFO
structure as well as all the data in all its CK_OTP_PARAM components. If an application allocates a
memory block based on this information, it shall therefore not subsequently de-allocate components of
such a received value but rather de-allocate the complete CK_OTP_PARAMS structure itself. A Cryptoki
library that is called with a non-NULL pSignature pointer will assume that it points to a contiguous
memory block of the size indicated by the pulSignatureLen parameter.

When verifying an OTP value using an OTP mechanism, pSignature shall be set to the OTP value itself,
e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAM structure returned by a call to
C_Sign. The CK_OTP_PARAM value supplied in the C_Verifylnit call sets the values to use in the
verification operation.

CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.
2.53.8 RSA SecuriD

2.53.8.1 RSA SecurID secret key objects

RSA SecurlD secret key objects (object class CKO_OTP_KEY, key type CKK_SECURID) hold RSA
SecurlD secret keys. The following table defines the RSA SecurlD secret key object attributes, in
addition to the common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 222 of 261

7102

7103
7104

7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132

7133

7134
7135

7136

7137
7138

7139
7140
7141

7142
7143

Table 198, RSA SecurlD secret key object attributes

Attribute Data type Meaning

CKA _OTP_TIME_INTERVAL' CK_ULONG | Interval between OTP values produced
with this key, in seconds. Default is 60.

Refer to [PKCS11-Base] table 11 for footnotes.

The following is a sample template for creating an RSA SecurlD secret key object:

CK_OBJECT CLASS class = CKO OTP KEY;

CK _KEY TYPE keyType = CKK SECURID;

CK DATE endDate = {...};

CK UTF8CHAR label[] = “RSA SecurlID secret key object”;
CK BYTE keyId[]= {...};

CK ULONG outputFormat CK OTP FORMAT DECIMAL;
CK_ULONG outputLength 6;

CK _ULONG needPIN = CK OTP_ PARAM MANDATORY;

CK ULONG timeInterval = 60;

CK BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA END DATE, &endDate, sizeof (endDate) }
{CKA TOKEN, &true, sizeof (true)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SIGN, &true, sizeof(true)},
{CKA VERIFY, &true, sizeof (true)},
{CKA ID, keylId, sizeof (keyId)},
{CKA _OTP_ FORMAT, é&outputFormat, sizeof (outputFormat)
{CKA OTP LENGTH, &outputLength, sizeof (outputLength)
{CKA_OTP_PIN_REQUIREMENT, &needPIN, sizeof (needPIN) }
{CKA_OTP_TIME_INTERVAL, &timelInterval,

sizeof (timeInterval) },
{CKA VALUE, value, sizeof (value)}

14

by
by

’

}s

2.53.8.2 RSA SecurlD key generation

The RSA SecurlD key generation mechanism, denoted CKM_SECURID_KEY_GEN, is a key generation
mechanism for the RSA SecurID algorithm.

It does not have a parameter.

The mechanism generates RSA SecurlD keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and
CKA_VALUE attributes to the new key. Other attributes supported by the RSA SecurlD key type may be
specified in the template for the key, or else are assigned default initial values

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of SecurlD key sizes, in bytes.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 223 of 261

7144

7145
7146

7147
7148

7149

7150
7151

7152
7153

7154
7155
7156

7157

7158

7159
7160

7161
7162
7163
7164

7165
7166
7167

7168

7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188

2.53.8.3 SecurlD OTP generation and validation

CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurlD OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to NULL_PTR and
ulDatalLen shall be set to 0.

2.53.8.4 Return values

Support for the CKM_SECURID mechanism extends the set of return values for C_Verify with the
following values:

¢ CKR_NEW_PIN_MODE: The supplied OTP was not accepted and the library requests a new OTP
computed using a new PIN. The new PIN is set through means out of scope for this document.

o CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal drift in the
token's internal state (e.g. clock, counter). To ensure this was not due to a temporary problem, the
application should provide the next one-time password to the library for verification.

2.53.9 OATH HOTP

2.53.9.1 OATH HOTP secret key objects

HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold generic secret keys
and associated counter values.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for a CK_OTP_COUNTER value in a CK_OTP_PARAM
structure.

The following is a sample template for creating a HOTP secret key object:

CK OBJECT CLASS class = CKO_OTP KEY;
CK_KEY TYPE keyType = CKK HOTP;
CK UTF8CHAR labell[] “HOTP secret key object”;
CK BYTE keyId[]= {...};
CK_ULONG outputFormat = CK_OTP FORMAT DECIMAL;
CK _ULONG outputLength = 6;
CK_DATE endDate = {...};
CK BYTE counterValue([8]
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA _END DATE, &endDate, sizeof (endDate) }
{CKA TOKEN, &true, sizeof (true)},
{CKA SENSITIVE, é&true, sizeof(true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SIGN, &true, sizeof(true)},
{CKA VERIFY, &true, sizeof (true)},
{CKA ID, keyld, sizeof (keyId)},

= {0}

14

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 224 of 261

7189
7190
7191
7192
7193

7194

7195
7196

7197

7198
7199

7200
7201
7202

7203
7204

7205

7206
7207

7208

7209
7210

7211
7212
7213
7214

7215

7216

7217
7218

7219
7220
7221

7222
7223
7224
7225

7226
7227
7228
7229

7230

7231
7232
7233

{CKA OTP FORMAT, é&outputFormat, sizeof (outputFormat)},
{CKA OTP LENGTH, &outputLength, sizeof (outputLength)},
{CKA OTP COUNTER, counterValue, sizeof (counterValue) }
{CKA VALUE, value, sizeof (value)}

}s

2.53.9.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key generation mechanism
for the HOTP algorithm.

It does not have a parameter.

The mechanism generates HOTP keys with a particular set of attributes as specified in the template for
the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_OTP_COUNTER,
CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the HOTP
key type may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of HOTP key sizes, in bytes.

2.53.9.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values based on the current
internal counter, or a provided counter.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the CKM_HOTP mechanism,
pData shall be setto NULL_PTR and ulDatalLen shall be set to O.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a CK_OTP_PARAM
parameter to C_Verifylnit. When verifying an OTP value using the CKM_HOTP mechanism, pSignature
shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAM structure in the case of an earlier call to C_Sign.

2.53.10 Actividentity ACTI

2.53.10.1 ACTI secret key objects

ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACTI) hold Actividentity ACTI
secret keys.

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for the CK_OTP_COUNTER value in the
CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may set it to a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

The CKA_OTP_TIME value may be set at key generation; however, some tokens may set it to a fixed
initial value. Depending on the token’s security policy, this value may not be modified and/or may not be
revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE.

The following is a sample template for creating an ACTI secret key object:
CK _OBJECT CLASS class = CKO_OTP _KEY;
CK _KEY TYPE keyType = CKK ACTI;
CK UTF8CHAR label[] “ACTI secret key object”;

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 225 of 261

7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258

7259

7260
7261

7262

7263
7264

7265
7266
7267

7268
7269

7270

7271
7272

7273
7274

7275
7276
7277

CK BYTE keyId[]= {...};
CK ULONG outputFormat
CK _ULONG outputLength =
CK_DATE endDate = {...};
CK BYTE counterValue([8]
CK BYTE valuel[] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE templatel[] {

{CKA CLASS, é&class, sizeof(class)},

{CKA _KEY TYPE, &keyType, sizeof (keyType)},

{CKA END DATE, &endDate, sizeof (endDate) }

{CKA TOKEN, é&true, sizeof (true)},

{CKA SENSITIVE, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA SIGN, &true, sizeof (true)},

{CKA VERIFY, &true, sizeof (true)},

{CKA ID, keyId, sizeof (keyId)},

{CKA_OTP_ FORMAT, &outputFormat,

sizeof (outputFormat) },

{CKA OTP LENGTH, é&outputLength,

sizeof (outputLength) },

{CKA OTP_ COUNTER, counterValue,

sizeof (counterValue) },

{CKA VALUE, value, sizeof (value)}

CK _OTP FORMAT DECIMAL;
6;

{0}7

14

}s

2.53.10.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key generation mechanism
for the ACTI algorithm.

It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as specified in the template for the
key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE and
CKA_VALUE_LEN attributes to the new key. Other attributes supported by the ACTI key type may be
specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ACTI key sizes, in bytes.

2.53.10.3 ACTI OTP generation and validation

CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set to NULL_PTR and
ulDatalen shall be set to 0.

When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be set to the OTP value
itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAM structure in the case of
an earlier call to C_Sign.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 226 of 261

7278

7279

7280
7281

7282
7283
7284
7285
7286
7287
7288

7289

7290
7291
7292
7293
7294

2.54 CT-KIP

2.54.1 Principles of Operation

Server Application

A
A 4

Client Application

C_DeriveKey,
C_WrapKey,
C_Verify

PKCS #11 Library

A

Internal Token API

Token (or software
version thereof)

Figure 4: PKCS #11 and CT-KIP integration

Figure 4 shows an integration of PKCS #11 into an application that generates cryptographic keys through
the use of CT-KIP. The application invokes C_DeriveKey to derive a key of a particular type on the token.
The key may subsequently be used as a basis to e.g., generate one-time password values. The
application communicates with a CT-KIP server that participates in the key derivation and stores a copy
of the key in its database. The key is transferred to the server in wrapped form, after a call to
C_WrapKey. The server authenticates itself to the client and the client verifies the authentication by calls
to C_Verify.

2.54.2 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 227 of 261

7295

7296
7297

7298

7299
7300
7301
7302

7303

7304

7305
7306
7307
7308
7309
7310
7311
7312
7313

7314

7315
7316

7317
7318
7319
7320
7321

7322

7323

7324
7325

Table 199: CT-KIP Mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_KIP_DERIVE v
CKM_KIP_WRAP v
CKM_KIP_MAC v

The remainder of this section will present in detail the mechanisms and the parameters that are supplied
to them.

2.54.3 Definitions

Mechanisms:
CKM_KIP_DERIVE
CKM_KIP_WRAP
CKM_KIP_MAC

2.54.4 CT-KIP Mechanism parameters

¢ CK_KIP_PARAMS; CK_KIP_PARAMS_PTR

CK_KIP_PARAMS is a structure that provides the parameters to all the CT-KIP related mechanisms: The
CKM_KIP_DERIVE key derivation mechanism, the CKM_KIP_WRAP key wrap and key unwrap
mechanism, and the CKM_KIP_MAC signature mechanism. The structure is defined as follows:
typedef struct CK KIP PARAMS ({
CK MECHANISM PTR pMechanism;
CK OBJECT HANDLE hKey;
CK_BYTE PTR pSeed;
CK_ULONG ulSeedLen;
} CK_KIP PARAMS;

The fields of the structure have the following meanings:

pMechanism pointer to the underlying cryptographic mechanism (e.g. AES, SHA-
256), see further 0, Appendix D

hKey handle to a key that will contribute to the entropy of the derived key
(CKM_KIP_DERIVE) or will be used in the MAC operation
(CKM_KIP_MAC)
pSeed pointer to an input seed
ulSeedLen length in bytes of the input seed
CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.

2.54.5 CT-KIP key derivation

The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key derivation mechanism that
is capable of generating secret keys of potentially any type, subject to token limitations.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 228 of 261

7326
7327
7328
7329

7330
7331

7332
7333
7334
7335

7336

7337
7338

7339
7340
7341

7342

7343
7344

7345
7346
7347

7348
7349

7350

7351

7352
7353
7354

7355

It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. In particular, when the hKey parameter is a handle
to an existing key, that key will be used in the key derivation in addition to the hBaseKey of C_DeriveKey.
The pSeed parameter may be used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the attributes of the
template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new key. Other
attributes supported by the key type may be specified in the template for the key, or else will be assigned
default initial values. Since the mechanism is generic, the CKA_KEY_TYPE attribute should be set in the
template, if the key is to be used with a particular mechanism.

2.54.6 CT-KIP key wrap and key unwrap
The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key wrap mechanism that
is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. It does not make use of the hKey parameter of
CK_KIP_PARAMS.

2.54.7 CT-KIP signature generation

The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism used to produce a
message authentication code of arbitrary length. The keys it uses are secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. The mechanism does not make use of the pSeed
and the ulSeedLen parameters of CT_KIP_PARAMS.

This mechanism produces a MAC of the length specified by pulSignatureLen parameter in calls to
C_Sign.

If a call to C_Sign with this mechanism fails, then no output will be generated.

2.55 GOST 28147-89
GOST 28147-89 is a block cipher with 64-bit block size and 256-bit keys.

Table 200, GOST 28147-89 Mechanisms vs. Functions

Mechanism Functions
Encrypt | Sign | SR Gen. | Wrap
De(f;ypt Vegr‘ify VKI; Digest lI(((:a)),/l Unv%rap Derive
Pair
CKM_GOST28147_KEY_GEN v
CKM_GOST28147_ECB v v
CKM_GOST28147 v v
CKM_GOST28147_MAC v
CKM_GOST28147_KEY_WRAP v
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 229 of 261

7356

7357
7358

7359
7360
7361
7362
7363
7364

7365

7366
7367
7368

7369

7370
7371

7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387

2.55.1 Definitions

This section defines the key type “CKK_GOST28147" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects and domain parameter objects.

Mechanisms:

CKM_GOST28147_KEY_GEN
CKM_GOST28147_ECB

CKM_GOST28147

CKM_GOST28147_MAC
CKM_GOST28147_KEY_WRAP

2.55.2 GOST 28147-89 secret key objects

GOST 28147-89 secret key objects (object class CKO_SECRET_KEY, key type CKK_GO0ST28147) hold
GOST 28147-89 keys. The following table defines the GOST 28147-89 secret key object attributes, in
addition to the common attributes defined for this object class:

Table 201, GOST 28147-89 Secret Key Object Attributes

Attribute

Data type

Meaning

CKA_VALUE 467

Byte array

32 bytes in little endian order

CKA_GOST28147_PARAMS!35 Byte array

DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain parameter
object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID

Refer to [PKCS11-Base] Table 11 for footnotes

The following is a sample template for creating a GOST 28147-89 secret key object:

CK_OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK GOST28147;

CK_UTF8CHAR label[]

CK BYTE value[32] = {...};

CK BYTE params_oid[] = {0x0¢,

0x02, Ox1f, 0x00};

CK_BBOOL true =

CK_TRUE;

CK_ATTRIBUTE template[] = {

{CKA_CLASS,

&class,

{CKA KEY TYPE, s&keyType,
{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL,

label,

“A GOST 28147-89 secret key object”;

0x07, 0Ox2a, 0x85, 0x03, 0x02,

sizeof (class) },
sizeof (keyType) },

sizeof (label) -1},

{CKA ENCRYPT, &true, sizeof(true)},
{CKA GOST28147 PARAMS, params_oid, sizeof (params_oid)},

{CKA VALUE, value,

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

sizeof (value) }

27 March 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 230 of 261

7388

7389
7390

7391
7392

7393

7394

7395
7396
7397

7398

7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423

7424

7425
7426

7427

2.55.3 GOST 28147-89 domain parameter objects

GOST 28147-89 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GO0ST28147) hold GOST 28147-89 domain parameters.

The following table defines the GOST 28147-89 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 202, GOST 28147-89 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_ VALUE! Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.1 (type
Gost28147-89-ParamSetParameters)

CKA_OBJECT _ID? Byte array DER-encoding of the object identifier indicating
the domain parameters

Refer to [PKCS11-Base] Table 11 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST 28147-89 domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK GOST28147;

CK UTF8CHAR label[] = “A GOST 28147-89 cryptographic
parameters object”;

CK BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02, 0x02,
Ox1f, 0x00};

CK BYTE value[] = {

0x30,0x62,0x04,0x40,0x4c, Oxde, 0x38,0x9c, 0x29, 0x89, Oxef, O0xbo6,
Oxff, Oxeb, 0x56, 0xc5, 0x5e, O0xc2, 0x9%,0x02, 0x98, 0x75,0x61, 0x3Db,
0x11,0x3f,0x89,0x60,0x03,0x97,0x0c,0x79,0x8a,0xal,0xd5,0x5d,
Oxe2,0x10,0xad, 0x43,0x37,0x5d, 0xb3,0x8e, 0xb4, 0x2c,0x77, 0xe7,
Oxcd, 0x46, Oxca, Oxfa, O0xd6, Oxo6a, 0x20,0x1f,0x70,0xf4,0x1le, Oxal4,
Oxab, 0x03,0xf2,0x21,0x65, 0xb8,0x44,0xd8,0x02,0x01,0x00,0x02,
0x01,0x40,0x30,0x0b,0x06,0x07,0x2a,0x85,0x03,0x02,0x02, 0x0e,
0x00,0x05,0x00
i
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA_KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA OBJECT ID, oid, sizeof (oid)},
{CKA VALUE, value, sizeof (value)}
}i

2.55.4 GOST 28147-89 key generation

The GOST 28147-89 key generation mechanism, denoted CKM_GOST28147_KEY_GEN, is a key
generation mechanism for GOST 28147-89.

It does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 231 of 261

7428
7429
7430

7431
7432

7433

7434
7435
7436

7437

7438
7439

7440
7441
7442

7443
7444
7445
7446

7447
7448

7449

7450
7451

7452

7453
7454
7455
7456

7457
7458

7459
7460

7461
7462

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the GOST 28147-89 key type may be specified for objects of object
class CKO_SECRET_KEY.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO are not
used.

2.55.5 GOST 28147-89-ECB

GOST 28147-89-ECB, denoted CKM_GOST28147_ECB, is a mechanism for single and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on GOST 28147-89 and electronic
codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped, padded on the trailing end with up to block size so that the resulting length is a multiple
of the block size.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:
Table 203, GOST 28147-89-ECB: Key and Data Length

Function Key type Input length | Output length

C_Encrypt CKK_GO0ST28147 Multiple of Same as input length
block size

C_Decrypt CKK_GO0ST28147 Multiple of Same as input length
block size

C_WrapKey CKK_GO0ST28147 Input length rounded up to

Any . .
multiple of block size

C_UnwrapKey CKK_GO0ST28147 Multiple of Determined by type of key

block size being unwrapped

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.55.6 GOST 28147-89 encryption mode except ECB

GOST 28147-89 encryption mode except ECB, denoted CKM_GOST28147, is a mechanism for single
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on

[GOST 28147-89] and CFB, counter mode, and additional CBC mode defined in [RFC 4357] section 2.
Encryption’s parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

It has a parameter, which is an 8-byte initialization vector. This parameter may be omitted then a zero
initialization vector is used.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 232 of 261

7463
7464

7465
7466

7467

7468
7469

7470
7471
7472
7473

7474
7475

7476
1477

7478
7479

7480

7481
7482
7483

7484

7485
7486
7487
7488

7489
7490
7491

7492
7493

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as
the CKA_VALUE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:
Table 204, GOST 28147-89 encryption modes except ECB: Key and Data Length

. Input

Function Key type length Output length

C_Encrypt CKK_GO0ST28147 Any For counter mode and CFB is
the same as input length. For

C_Decrypt CKK_GOST28147 Any CBC is the same as input length
padded on the trailing end with

C_WrapKey CKK_GOST28147 Any up to block size so that the

C_UnwrapKey | CKK_GOST28147 Any [ﬁzub'tlg‘fk'gggeth 's a multiple of

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.55.7 GOST 28147-89-MAC

GOST 28147-89-MAC, denoted CKM_GOST28147_MAC, is a mechanism for data integrity and
authentication based on GOST 28147-89 and key meshing algorithms [RFC 4357] section 2.3.
MACing parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

The output bytes from this mechanism are taken from the start of the final GOST 28147-89 cipher block
produced in the MACing process.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:
Table 205, GOST28147-89-MAC: Key and Data Length

Function Key type Data length Signature length
C_Sign CKK_GOST28147 Any 4 bytes
C_Verify CKK_GOST28147 Any 4 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.55.8 GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89

GOST 28147-89 keys as a KEK (key encryption keys) for encryption GOST 28147-89 keys, denoted by
CKM_GO0ST28147_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST 28147-89. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89.

For wrapping (C_WrapKey), the mechanism first computes MAC from the value of the CKA_VALUE
attribute of the key that is wrapped and then encrypts in ECB mode the value of the CKA_VALUE
attribute of the key that is wrapped. The result is 32 bytes of the key that is wrapped and 4 bytes of MAC.

For unwrapping (C_UnwrapKey), the mechanism first decrypts in ECB mode the 32 bytes of the key that
was wrapped and then computes MAC from the unwrapped key. Then compared together 4 bytes MAC

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 233 of 261

7494
7495

7496
7497

7498
7499

7500

7501
7502
7503

7504

7505
7506

7507
7508

7509

7510

7511
7512

7513
7514
7515

7516

7517
7518

7519
7520

has computed and 4 bytes MAC of the input. If these two MACs do not match the wrapped key is
disallowed. The mechanism contributes the result as the CKA_VALUE attribute of the unwrapped key.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:
Table 206, GOST 28147-89 keys as KEK: Key and Data Length

Function Key type Input length Output length
C_WrapKey CKK_GO0sST28147 32 bytes 36 bytes
C_UnwrapKey CKK_GO0sST28147 32 bytes 36 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.56 GOST R 34.11-94

GOST R 34.11-94 is a mechanism for message digesting, following the hash algorithm with 256-bit
message digest defined in [GOST R 34.11-94].

Table 207, GOST R 34.11-94 Mechanisms vs. Functions

Mechanism Functions
Encrypt | Sign | SR Gen. | Wrap
& & & | pigest | Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_GOSTR3411 v
CKM_GOSTR3411_HMAC v

2.56.1 Definitions

This section defines the key type “CKK_GOSTR3411” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of domain parameter objects.

Mechanisms:
CKM_GOSTR3411
CKM_GOSTR3411_HMAC

2.56.2 GOST R 34.11-94 domain parameter objects

GOST R 34.11-94 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOSTR3411) hold GOST R 34.11-94 domain parameters.

The following table defines the GOST R 34.11-94 domain parameter object attributes, in addition to the
common attributes defined for this object class:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 234 of 261

7521

7522

7523
7524
7525

7526

7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552

7553

7554
7555

7556
7557
7558

7559
7560

Table 208, GOST R 34.11-94 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_ VALUE! Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.2 (type
GostR3411-94-ParamSetParameters)

CKA_OBJECT_ID! Byte array DER-encoding of the object identifier indicating

the domain parameters

Refer to [PKCS11-Base] Table 11 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.11-94 domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;

CK_KEY TYPE keyType = CKK GOSTR3411;

CK UTF8CHAR label[] = “A GOST R34.11-94 cryptographic

parameters object”;

CK BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02, 0x02,

Oxle, 0x00};

CK BYTE value[] = {
0x30,0x64,0x04,0x40,0x4e,0x57,0x64,0xdl, Oxab, 0x8d, Oxcb, O0xbf,
0x94,0x1la,0x7a,0x4d,0x2c,0xdl,0x10,0x10, O0xd6, 0xal0,0x57, 0x35,
0x8d, 0x38,0xf2,0xf7,0x0f,0x49,0xd1l, 0x5a,0xea, 0x2f, 0x8d, 0x94,
0x62,0xee,0x43,0x09,0xb3,0xf4,0xa6,0xa2,0x18,0xc6,0x98, 0xe3,
Oxcl,0Ox7c, Oxeb,0x7e,0x70,0x6b, 0x09,0x66,0x£f7,0x02,0x3c, 0x8b,
0x55,0x95, O0xbf, 0x28,0x39, 0xb3, 0x2e, Oxcc, 0x04, 0x20, 0x00, 0x00,
0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00

i

CK BBOOL true = CK TRUE;

CK ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA_KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA OBJECT ID, oid, sizeof (oid)},

{CKA VALUE, value, sizeof (value)}
}i

2.56.3 GOST R 34.11-94 digest

GOST R 34.11-94 digest, denoted CKM_GOSTR3411, is a mechanism for message digesting based on
GOST R 34.11-94 hash algorithm [GOST R 34.11-94].

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]
(section 11.2) must be used.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 235 of 261

7561

7562

7563
7564

7565

7566
7567
7568
7569

7570
7571

7572
7573
7574

7575
7576
7577

7578
7579

7580

7581
7582

7583
7584

7585

Table 209, GOST R 34.11-94: Data Length

Function Input length | Digest length

C_Digest Any 32 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.56.4 GOST R 34.11-94 HMAC

GOST R 34.11-94 HMAC mechanism, denoted CKM_GOSTR3411_HMAC, is a mechanism for
signatures and verification. It uses the HMAC construction, based on the GOST R 34.11-94 hash
function [GOST R 34.11-94] and core HMAC algorithm [RFC 2104]. The keys it uses are of generic key
type CKK_GENERIC_SECRET or CKK_GOST28147.

To be conformed to GOST R 34.11-94 hash algorithm [GOST R 34.11-94] the block length of core HMAC
algorithm is 32 bytes long (see [RFC 2104] section 2, and [RFC 4357] section 3).

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]
(section 11.2) must be used.

Signatures (MACSs) produced by this mechanism are of 32 bytes long.
Constraints on the length of input and output data are summarized in the following table:
Table 210, GOST R 34.11-94 HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_GENERIC_SECRET or Any 32 byte
CKK_GOST28147

C_Verify CKK_GENERIC_SECRET or Any 32 bytes
CKK_GOST28147

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.57 GOST R 34.10-2001

GOST R 34.10-2001 is a mechanism for single- and multiple-part signatures and verification, following
the digital signature algorithm defined in [GOST R 34.10-2001].

Table 211, GOST R34.10-2001 Mechanisms vs. Functions

Mechanism Functions
Encrypt | Sign | SR Gen. | Wrap
& & & | pigest | Keyl & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_GOSTR3410_KEY_PAIR_GEN v
CKM_GOSTR3410 v
CKM_GOSTR3410_WITH_GOSTR3411 v
CKM_GOSTR3410_KEY_WRAP v
CKM_GOSTR3410_DERIVE v
1 Single-part operations only
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 236 of 261

7586

7587 2.57.1 Definitions

7588 This section defines the key type “CKK_GOSTR3410" for type CK_KEY_TYPE as used in the
7589 CKA_KEY_TYPE attribute of key objects and domain parameter objects.

7590 Mechanisms:

7591 CKM_GOSTR3410_KEY_PAIR_GEN
7592 CKM_GOSTR3410

7593 CKM_GOSTR3410_WITH_GOSTR3411
7594 CKM_GOSTR3410

7595 CKM_GOSTR3410_KEY_WRAP

7596 CKM_GOSTR3410_DERIVE

7597 2.57.2 GOST R 34.10-2001 public key objects

7598 GOST R 34.10-2001 public key objects (object class CKO_PUBLIC_KEY, key type CKK_GOSTR3410)
7599 hold GOST R 34.10-2001 public keys.

7600 The following table defines the GOST R 34.10-2001 public key object attributes, in addition to the
7601 common attributes defined for this object class:

7602 Table 212, GOST R 34.10-2001 Public Key Object Attributes

Attribute Data Type | Meaning

CKA VALUE'4 Byte array | 64 bytes for public key; 32 bytes for each
coordinates X and Y of elliptic curve point
P(X, Y) in little endian order

CKA_GOSTR3410_PARAMS'? Byte array | peR-encoding of the object identifier

indicating the data object type of GOST R
34.10-2001.

When key is used the domain parameter
object of key type CKK_GOSTR3410
must be specified with the same attribute
CKA_OBJECT_ID

DER-encoding of the object identifier
indicating the data object type of GOST R
34.11-94.

When key is used the domain parameter
object of key type CKK_GOSTR3411
must be specified with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411_PARAMS"38 Byte array

CKA_GOST28147_PARAMS? Byte array | peRr-encoding of the object identifier

indicating the data object type of
GOST 28147-89.

When key is used the domain parameter
object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

7603 Refer to [PKCS11-Base] Table 11 for footnotes

7604 The following is a sample template for creating an GOST R 34.10-2001 public key object:

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 237 of 261

7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628

7629

7630
7631

7632
7633

7634

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK GOSTR3410;
CK_UTFSCHAR label[]
CK BYTE gostR3410params oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03,
CK BYTE gostR34llparams oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03,
CK BYTE gost28l47params oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03,
CK BYTE value[64] = {...};
CK BBOOL true = CK TRUE;

0x02,
0x02,

0x02,

0x02,
0x02,

0x02,

“A GOST R34.10-2001 public key object”;

0x23, 0x00};

Oxle, 0x00};

Ox1f, 0x00};

CK ATTRIBUTE template[] = {

}s

{CKA CLASS, &class, sizeof (class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, é&true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA GOSTR3410 PARAMS, gostR341l0params oid,
sizeof (gostR3410params oid) },

{CKA GOSTR3411 PARAMS, gostR34llparams oid,
sizeof (gostR341llparams oid) },

{CKA GOST28147 PARAMS, gost28l47params oid,
sizeof (gost28l47params oid) },

{CKA VALUE, value, sizeof (value)}

2.57.3 GOST R 34.10-2001 private key objects

GOST R 34.10-2001 private key objects (object class CKO_PRIVATE_KEY, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 private keys.

The following table defines the GOST R 34.10-2001 private key object attributes, in addition to the
common attributes defined for this object class:

Table 213, GOST R 34.10-2001 Private Key Object Attributes

Attribute

Data Type | Meaning

CKA_VALUE'#467

Byte array | 32 bytes for private key in little endian

order

CKA_GOSTR3410_PARAMS 46

Byte array | pgRr-encoding of the object identifier

indicating the data object type of GOST
R 34.10-2001.

When key is used the domain
parameter object of key type
CKK_GOSTR3410 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411_PARAMS'4638

Byte array | pgRr-encoding of the object identifier

indicating the data object type of GOST
R 34.11-94.

When key is used the domain
parameter object of key type
CKK GOSTR3411 must be specified

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 238 of 261

7635

7636
7637
7638
7639

7640

7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670

Attribute Data Type | Meaning
with the same attribute
CKA_OBJECT_ID
CKA_GOST28147_PARAMS#6:8 Byte array

DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GO0ST28147 must be specified
with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

Refer to [PKCS11-Base] Table 11 for footnotes

Note that when generating an GOST R 34.10-2001 private key, the GOST R 34.10-2001 domain
parameters are not specified in the key’s template. This is because GOST R 34.10-2001 private keys are
only generated as part of an GOST R 34.10-2001 key pair, and the GOST R 34.10-2001 domain
parameters for the pair are specified in the template for the GOST R 34.10-2001 public key.

The following is a sample template for creating an GOST R 34.10-2001 private key object:

CK_OBJECT CLASS class = CKO_PRIVATE KEY;
CK_KEY TYPE keyType = CKK GOSTR3410;
CK UTF8CHAR label[] “A GOST R34.10-2001 private key
object”;
CK BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK BYTE gostR3410params oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03,
CK BYTE gostR34llparams oid[] =
{0x06, 0x07, O0x2a, 0x85, 0x03,
CK BYTE gost28l47params oid[] =
{0x06, 0x07, 0O0x2a, 0x85, 0x03,
CK BYTE value[32] = {...};
CK_BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA SIGN, &true, sizeof(true)},
{CKA GOSTR3410 PARAMS, gostR341l0params oid,
sizeof (gostR3410params oid)},
{CKA GOSTR3411 PARAMS, gostR34llparams oid,
sizeof (gostR341llparams oid)},
{CKA GOST28147 PARAMS, gostz28l47params oid,
sizeof (gost28l47params oid) },
{CKA VALUE, value, sizeof (value)}

0x02, 0x02, 0x23,

0x02, 0x02, Oxle,

0x02, 0x02, Ox1f,

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

0x00};
0x00};

0x00};

27 March 2020
Page 239 of 261

7671
7672

7673

7674
7675

7676
7677

7678

7679

7680
7681
7682

7683

7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710

}s

2.57.4 GOST R 34.10-2001 domain parameter objects

GOST R 34.10-2001 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 domain parameters.

The following table defines the GOST R 34.10-2001 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 214, GOST R 34.10-2001 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_ VALUE! Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.4 (type
GostR3410-2001-ParamSetParameters)

CKA_OBJECT_ID? Byte array DER-encoding of the object identifier indicating

the domain parameters

Refer to [PKCS11-Base] Table 11 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.10-2001 domain parameter object:

CK_OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK GOSTR3410;
CK UTF8CHAR label[] = ™A GOST R34.10-2001 cryptographic
parameters object”;
CK_BYTE oid[] =
{0Ox06, 0x07, 0Ox2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};
CK_BYTE value[] = {
0x30,0x81,0x%90,0x02,0x01,0x07,0x02,0x20,0x5f,0xbf,0xf4,0x98,
Oxaa, 0x93, 0x8c, 0xe7,0x39, 0xb8, 0xel0, 0x22, 0xfb, Oxaf, Oxef, 0x40,
0x56,0x3f, 0x06e,0x6a,0x34,0x72,0xfc,0x2a,0x51,0x4c,0x0c, O0xe9,
Oxda, Oxe2, 0x3b, 0x7e,0x02, 0x21, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00, 0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x04,0x31,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x50,0xfe,
0x8a,0x18,0x%92,0x97,0x61,0x54,0xc5,0x9c,0xfc,0x19,0x3a, 0xcc,
0xf5, 0xb3,0x02,0x01,0x02,0x02,0x20,0x08, 0xe2,0xa8,0xal0, 0xeb6,
0x51,0x47,0xd4,0xbd, 0x63,0x16,0x03,0x0e,0x16,0xdl,0x9c, 0x85,
Oxc9,0x7f,0x0a,0x9c, 0xa2,0x67,0x12,0x2b,0x9%96, O0xab, O0xbc, Oxea,
Ox7e,0x8f, 0xc8
i
CK _BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 240 of 261

7711
7712
7713
7714

7715

7716

7717
7718
7719
7720
7721
7722
7723
7724
7725

7726
7727

7728
7729

7730

7731
7732

7733

{CKA OBJECT ID, oid, sizeof (oid)},
{CKA VALUE, value, sizeof (value)}
b

2.57.5 GOST R 34.10-2001 mechanism parameters

¢+ CK_GOSTR3410_KEY_WRAP_PARAMS

CK_GOSTR3410_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_GOSTR3410_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK GOSTR3410 KEY WRAP PARAMS {

CK BYTE PTR PWrapOID;
CK_ULONG ulWrapOIDLen;
CK_BYTE PTR pPUKM;

CK ULONG ulUKMLen;

CK_OBJECT HANDLE hKey;
} CK_GOSTR3410 KEY WRAP PARAMS;

The fields of the structure have the following meanings:

pWrapOID pointer to a data with DER-encoding of the object
identifier indicating the data object type of
GOST 28147-89. If pointer takes NULL_PTR value in
C_WrapKey operation then parameters are specified in
object identifier of attribute
CKA_GOSTR3411_PARAMS must be used. For
C_UnwrapKey operation the pointer is not used and
must take NULL_PTR value anytime

ulWrapOIDLen length of data with DER-encoding of the object identifier
indicating the data object type of GOST 28147-89

pUKM pointer to a data with UKM. If pointer takes NULL_PTR
value in C_WrapKey operation then random value of
UKM will be used. If pointer takes non-NULL_PTR value
in C_UnwrapKey operation then the pointer value will be
compared with UKM value of wrapped key. If these two
values do not match the wrapped key will be rejected

ulUKMLen length of UKM data. If pUKM-pointer is different from
NULL_PTR then equal to 8

hKey key handle. Key handle of a sender for C_WrapKey
operation. Key handle of a receiver for C_UnwrapKey
operation. When key handle takes
CK_INVALID_HANDLE value then an ephemeral (one
time) key pair of a sender will be used

CK_GOSTR3410_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_GOSTR3410_KEY_WRAP_PARAMS.

+ CK_GOSTR3410_DERIVE_PARAMS

CK_GOSTR3410_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_GOSTR3410_DERIVE mechanism. It is defined as follows:

typedef struct CK GOSTR3410 DERIVE PARAMS {

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 241 of 261

7734
7735
7736
7737
7738
7739
7740
7741

7742

7743
7744

7745

7746

7747
7748

7749

7750
7751
7752
7753

7754
7755
7756

7757
7758

7759

7760
7761
7762

7763

CK_EC KDF TYPE kdf;

CK_BYTE PTR pPublicData;
CK_ULONG ulPublicDataLen;
CK_BYTE PTR pUKM;

CK_ULONG ulUKMLen;

} CK GOSTR3410 DERIVE PARAMS;

The fields of the structure have the following meanings:

kdf additional key diversification algorithm identifier.
Possible values are CKD_NULL and
CKD_CPDIVERSIFY_KDF. In case of CKD_NULL,
result of the key derivation function

described in [RFC 4357], section 5.2 is used directly; In
case of CKD_CPDIVERSIFY_KDF, the resulting key
value is additionally processed with algorithm from [RFC
4357], section 6.5.

pPublicData* pointer to data with public key of a receiver
ulPublicDatalen length of data with public key of a receiver (must be 64)
pUKM pointer to a UKM data
ulUKMLen length of UKM data in bytes (must be 8)

1 Public key of a receiver is an octet string of 64 bytes long. The public key octets correspond to the concatenation of X and Y coordinates of a point. Any one of

them is 32 bytes long and represented in little endian order.

CK_GOSTR3410_DERIVE_PARAMS_PTR is a pointer to a CK_GOSTR3410_DERIVE_PARAMS.

2.57.6 GOST R 34.10-2001 key pair generation

The GOST R 34.10-2001 key pair generation mechanism, denoted
CKM_GOSTR3410_KEY_PAIR_GEN, is a key pair generation mechanism for GOST R 34.10-2001.

This mechanism does not have a parameter.

The mechanism generates GOST R 34.10-2001 public/private key pairs with particular

GOST R 34.10-2001 domain parameters, as specified in the CKA_GOSTR3410_PARAMS,
CKA_GOSTR3411_PARAMS, and CKA_GOST28147_PARAMS attributes of the template for the public
key. Note that CKA_GOST28147_PARAMS attribute may not be present in the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and CKA_GOSTR3410_PARAMS,
CKA_GOSTR3411_PARAMS, CKA_GOST28147_PARAMS attributes to the new private key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.57.7 GOST R 34.10-2001 without hashing

The GOST R 34.10-2001 without hashing mechanism, denoted CKM_GOSTR3410, is a mechanism for
single-part signatures and verification for GOST R 34.10-2001. (This mechanism corresponds only to the
part of GOST R 34.10-2001 that processes the 32-bytes hash value; it does not compute the hash value.)

This mechanism does not have a parameter.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 242 of 261

7764
7765
7766
7767

7768
7769

7770

7771

7772
7773

7774

7775
7776
e

7778
7779
7780

7781
7782
7783
7784

7785
7786

7787

7788
7789

7790

7791
7792
7793
7794
7795
7796

7797

7798
7799

7800
7801

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

The input for the mechanism is an octet string of 32 bytes long with digest has computed by means of
GOST R 34.11-94 hash algorithm in the context of signed or should be signed message.

Table 215, GOST R 34.10-2001 without hashing: Key and Data Length

Function Key type Input length Output length
C_Sign' CKK_GOSTR3410 32 bytes 64 bytes
C_Verify! CKK_GOSTR3410 32 bytes 64 bytes

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.57.8 GOST R 34.10-2001 with GOST R 34.11-94

The GOST R 34.10-2001 with GOST R 34.11-94, denoted CKM_GOSTR3410_WITH_GOSTR3411, is a
mechanism for signatures and verification for GOST R 34.10-2001. This mechanism computes the entire
GOST R 34.10-2001 specification, including the hashing with GOST R 34.11-94 hash algorithm.

As a parameter this mechanism utilizes a DER-encoding of the object identifier indicating
GOST R 34.11-94 data object type. A mechanism parameter may be missed then parameters are
specified in object identifier of attribute CKA_GOSTR3411_PARAMS must be used.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

The input for the mechanism is signed or should be signed message of any length. Single- and multiple-
part signature operations are available.

Table 216, GOST R 34.10-2001 with GOST R 34.11-94: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_GOSTR3410 Any 64 bytes
C_Verify CKK_GOSTR3410 Any 64 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.57.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001

GOST R 34.10-2001 keys as a KEK (key encryption keys) for encryption GOST 28147 keys, denoted by
CKM_GOSTR3410_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST R 34.10-2001. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89. An encryption algorithm from [RFC 4490] (section 5.2) must be used.
Encrypted key is a DER-encoded structure of ASN.1 GostR3410-KeyTransport type [RFC 4490] section
4.2.

It has a parameter, a CK_GOSTR3410_KEY_WRAP_PARAMS structure defined in section 2.57.5.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result as
the CKA_VALUE attribute of the new key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

27 March 2020
Page 243 of 261

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

7802

7803
7804
7805
7806

7807
7808

7809

7810
7811

7812

7813

7814
7815
7816
7817
7818

7819

7820
7821
7822

7823

7824

7825
7826
7827
7828
7829
7830
7831

2.57.10 Common key derivation with assistance of GOST R 34.10-2001 keys

Common key derivation, denoted CKM_GOSTR3410_DERIVE, is a mechanism for key derivation with
assistance of GOST R 34.10-2001 private and public keys. The key of the mechanism must be of object
class CKO_DOMAIN_PARAMETERS and key type CKK_GOSTR3410. An algorithm for key derivation
from [RFC 4357] (section 5.2) must be used.

The mechanism contributes the result as the CKA_VALUE attribute of the new private key. All other
attributes must be specified in a template for creating private key object.

2.58 ChaCha20

ChaCha20 is a secret-key stream cipher described in [CHACHA].
Table 217, ChaCha20 Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & . Key/ & Derive
Decrypt| Verify 1 Digest Key |Unwrap
VR Pair
CKM_CHACHA20_KEY_GEN V4
CKM_CHACHA20 V4 V4

2.58.1 Definitions

This section defines the key type “CKK_CHACHA20” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_CHACHA20 KEY_GEN
CKM_CHACHAZ20

2.58.2 ChaCha20 secret key objects

ChaCha20 secret key objects (object class CKO_SECRET_KEY, key type CKK_CHACHAZ20) hold
ChaCha20 keys. The following table defines the ChaCha20 secret key object attributes, in addition to the
common attributes defined for this object class:

Table 218, ChaCha20 Secret Key Object

Attribute Data type Meaning

CKA_VALUE"467 Byte array Key length is fixed at 256 bits.
Bit length restricted to a byte
array.

CKA_VALUE_LEN?23 CK_ULONG Length in bytes of key value

The following is a sample template for creating a ChaCha20 secret key object:

CK_OBJECT CLASS class = CKO SECRET KEY;
CK_KEY TYPE keyType = CKK CHACHA20;
CK UTF8CHAR label[] = ™A ChaCha20 secret key object”;
CK BYTE value[32] = {...};
CK BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, é&class, sizeof(class)},

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 244 of 261

7832
7833
7834
7835
7836
7837

7838
7839

7840

7841

7842
7843

7844
7845
7846
7847
7848
7849
7850
7851

7852

7853

7854
7855

7856
7857

7858

7859
7860
7861
7862
7863

7864
7865
7866

7867
7868
7869

7870

{CKA _KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA ENCRYPT, &true, sizeof (true)},

{CKA VALUE, value, sizeof (value)}
i
CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first
three bytes of the SHA-1 hash of the ChaCha20 secret key object's CKA_VALUE attribute.

2.58.3 ChaCha20 mechanism parameters

¢ CK_CHACHA20_PARAMS; CK_CHACHA20_PARAMS_PTR

CK_CHACHA20_PARAMS provides the parameters to the CKM_CHACHA20 mechanism. It is defined
as follows:
typedef struct CK CHACHA20 PARAMS {
CK _BYTE PTR pBlockCounter;

CK_ULONG blockCounterBits;
CK BYTE PTR pNonce;
CK_ULONG ulNonceBits;

} CK CHACHA20 PARAMS;
The fields of the structure have the following meanings:
pBlockCounter pointer to block counter

ulblockCounterBits length of block counter in bits (can be either 32 or 64)
pNonce nonce (This should be never re-used with the same key.)

ulNonceBits length of nonce in bits (is 64 for original, 96 for IETF and 192 for
xchachaZ20 variant)

The block counter is used to address 512 bit blocks in the stream. In certain settings (e.g. disk encryption)
it is necessary to address these blocks in random order, thus this counter is exposed here.

CK_CHACHA20_PARAMS_PTR is a pointer to CK_CHACHA20_PARAMS.

2.58.4 ChaCha20 key generation

The ChaCha20 key generation mechanism, denoted CKM_CHACHA20_KEY_GEN, is a key generation
mechanism for ChaChaZ20.

It does not have a parameter.
The mechanism generates ChaCha20 keys of 256 bits.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes. As a practical matter, the key size for ChaCha20 is
fixed at 256 bits.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 245 of 261

7871

7872
7873
7874
7875

7876
7877

7878
7879

7880
7881

7882

7883
7884
7885
7886
7887

2.58.5 ChaCha20 mechanism

ChaCha20, denoted CKM_CHACHA20, is a mechanism for single and multiple-part encryption and
decryption based on the ChaCha20 stream cipher. It comes in 3 variants, which only differ in the size and
handling of their nonces, affecting the safety of using random nonces and the maximum size that can be
encrypted safely.

Chacha20 has a parameter, CK_CHACHA20_PARAMS, which indicates the nonce and initial block
counter value.

Constraints on key types and the length of input and output data are summarized in the following table:

Table 219, ChaCha20: Key and Data Length

Function

Key type

Input length

Output length

Comments

C_Encrypt

ChaCha20

Any /only
up to 256
GB in case
of IETF
variant

Same as input length

No final part

C_Decrypt

ChaCha20

Any / only
up to 256
GB in case
of IETF
variant

Same as input length

No final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ChaCha20 key sizes, in bits.

Table 220, ChaCha20: Nonce and block counter lengths

Variant

Nonce

Block
counter

Maximum message

Nonce
generation

original

64 bit

64 bit

Virtually unlimited

1t msg:
nonceo=rand
om

n" msg:
noncen.1++

IETF

96 bit

32 bit

Max ~256 GB

18t msgq:
nonceo=rand
om

n" msg:
noncen-1++

XChaCha
20

192 bit

64 bit

Virtually unlimited

Each nonce
can be
randomly
generated.

Nonces must not ever be reused with the same key. However due to the birthday paradox the first two
variants cannot guarantee that randomly generated nonces are never repeating. Thus the recommended
way to handle this is to generate the first nonce randomly, then increase this for follow-up messages.
Only the last (XChaCha20) has large enough nonces so that it is virtually impossible to trigger with
randomly generated nonces the birthday paradox.

pkcs1l-curr-v3.0-cos01

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 246 of 261

7888 2.59 Salsa20

7889 Salsa20 is a secret-key stream cipher described in [SALSA].
7890 Table 221, Salsa20 Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen. | Wrap
Mechanism & & & . Key/ & Derive
Decrypt| Verify 1 Digest Key | Unwrap
VR Pair
CKM_SALSA20_KEY_GEN v
CKM_SALSA20 v v

7891

7892 2.59.1 Definitions

7893 This section defines the key type “CKK_SALSA20” and “CKK_SALSA20" for type CK_KEY_TYPE as
7894 used in the CKA_KEY_TYPE attribute of key objects.

7895 Mechanisms:
7896 CKM_SALSA20_KEY_GEN
7897 CKM_SALSA20

7898 2.59.2 Salsa20 secret key objects

7899 Salsa20 secret key objects (object class CKO_SECRET_KEY, key type CKK_SALSAZ20) hold Salsa20
7900 keys. The following table defines the Salsa20 secret key object attributes, in addition to the common
7901 attributes defined for this object class:

7902 Table 222, ChaCha20 Secret Key Object

Attribute Data type Meaning
CKA_VALUE"467 Byte array Key length is fixed at 256 bits.
Bit length restricted to a byte
array.

CKA_VALUE_LEN23 CK_ULONG Length in bytes of key value
7903 The following is a sample template for creating a Salsa20 secret key object:
7904 CK OBJECT CLASS class = CKO SECRET KEY;
7905 CK _KEY TYPE keyType = CKK_ SALSAZ20;
7906 CK UTF8CHAR label[] = “A Salsa20 secret key object”;
7907 CK BYTE value[32] = {...};
7908 CK _BBOOL true = CK TRUE;
7909 CK ATTRIBUTE template[] = {
7910 {CKA CLASS, &class, sizeof (class)},
7911 {CKA KEY TYPE, &keyType, sizeof (keyType)},
7912 {CKA TOKEN, é&true, sizeof (true)},
7913 {CKA LABEL, label, sizeof (label)-1},
7914 {CKA_ENCRYPT, &true, sizeof (true)},
7915 {CKA VALUE, value, sizeof (value)}
7916 }s
7917 CKA_CHECK VALUE: The value of this attribute is derived from the key object by taking the first
7918 three bytes of the SHA-1 hash of the ChaCha20 secret key object's CKA_VALUE attribute.

pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 247 of 261

7919

7920

7921
7922

7923
7924
7925
7926
7927
7928
7929
7930

7931

7932

7933
7934

7935

7936

7937
7938
7939
7940

7941
7942
7943

7944
7945
7946

7947

7948
7949
7950

7951
7952

7953
7954

2.59.3 Salsa20 mechanism parameters

¢ CK_SALSA20 PARAMS; CK_SALSA20_PARAMS_PTR

CK_SALSA20_PARAMS provides the parameters to the CKM_SALSA20 mechanism. It is defined as
follows:

typedef struct CK SALSAZ20 PARAMS ({
CK _BYTE PTR pBlockCounter;
CK BYTE PTR pNonce;
CK_ULONG ulNonceBits;

} CK_SALSA20 PARAMS;

The fields of the structure have the following meanings:
pBlockCounter pointer to block counter (64 bits)

pNonce nonce
ulNonceBits size of the nonce in bits (64 for classic and 192 for XSalsa20)

The block counter is used to address 512 bit blocks in the stream. In certain settings (e.g. disk encryption)
it is necessary to address these blocks in random order, thus this counter is exposed here.

CK_SALSA20 PARAMS_PTR is a pointer to CK_SALSA20_PARAMS.

2.59.4 Salsa20 key generation

The Salsa20 key generation mechanism, denoted CKM_SALSA20_KEY_GEN, is a key generation
mechanism for Salsa20.

It does not have a parameter.

The mechanism generates Salsa20 keys of 256 bits.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes. As a practical matter, the key size for Salsa20 is fixed
at 256 bits.

2.59.5 Salsa20 mechanism

Salsa20, denoted CKM_SALSA20, is a mechanism for single and multiple-part encryption and decryption
based on the Salsa20 stream cipher. Salsa20 comes in two variants which only differ in the size and
handling of their nonces, affecting the safety of using random nonces.

Salsa20 has a parameter, CK_SALSA20_PARAMS, which indicates the nonce and initial block counter
value.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 223, Salsa20: Key and Data Length

Function | Keytype | Inputlength | Output length Comments
C_Encrypt | Salsa20 Any Same as input length | No final part
C_Decrypt | Salsa20 Any Same as input length | No final part
pkcs1l-curr-v3.0-cos01 27 March 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 248 of 261

7955
7956

7957

7958
7959
7960
7961
7962

7963

7964
7965

7966

7967

7968
7969

7970
7971
7972

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure

specify the supported range of ChaCha20 key sizes, in bits.

Table 224, Salsa20: Nonce sizes

Variant Nonce Maximum message Nonce

generation

original 64 bit Virtually unlimited 1t msg:

nonceo=rand
om

n" msg:
noncen-1++

XSalsa20 | 192 bit Virtually unlimited Each nonce

can be
randomly
generated.

Nonces must not ever be reused with the same key. However due to the birthday paradox the original
variant cannot guarantee that randomly generated nonces are never repeating. Thus the recommended
way to handle this is to generate the first nonce randomly, then increase this for follow-up messages.
Only the XSalsa20 has large enough nonces so that it is virtually impossible to trigger with randomly
generated nonces the birthday paradox.

2.60 Poly1305

Poly1305 is a message authentication code designed by D.J Bernsterin [POLY1305]. Poly1305 takes a
256 bit key and a message and produces a 128 bit tag that is used to verify the message.

Table 225, Poly1305 Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & . Key/ & Derive
. Digest
Decrypt| Verify 1 Key |Unwrap
VR Pair
CKM_POLY1305 KEY_GEN V4
CKM_POLY1305 v

2.60.1 Definitions

This section defines the key type “CKK_POLY1305" for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_POLY1305_KEY_GEN
CKM_POLY1305

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 249 of 261

7973

7974
7975
7976

7977

7978

7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991

7992

7993

7994
7995

7996
7997
7998

7999
8000
8001

8002
8003

8004

2.60.2 Poly1305 secret key objects

Poly1305 secret key objects (object class CKO_SECRET_KEY, key type CKK_POLY1305) hold
Poly1305 keys. The following table defines the Poly1305 secret key object attributes, in addition to the
common attributes defined for this object class:

Table 226, Poly1305 Secret Key Object

Attribute Data type Meaning

CKA_VALUE'467 Byte array Key length is fixed at 256 bits.
Bit length restricted to a byte
array.

CKA_VALUE_LEN23 CK_ULONG Length in bytes of key value

The following is a sample template for creating a Poly1305 secret key object:

CK_OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK POLY1305;
CK UTF8CHAR label[] = “A Polyl305 secret key object”;
CK BYTE value[32] = {...};
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, é&true, sizeof (true)},
{CKA LABEL, label, sizeof(label)-1},
{CKA SIGN, &true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
}i

2.60.3 Poly1305 mechanism

Poly1305, denoted CKM_POLY1305, is a mechanism for producing an output tag based on a 256 bit key
and arbitrary length input.

It has no parameters.
Signatures (MACSs) produced by this mechanism will be fixed at 128 bits in size.
Table 227, Poly1305: Key and Data Length

Function | Key type | Data length | Signature Length

C_Sign Poly1305 | Any 128 bits

C_Verify | Poly1305 | Any 128 bits

2.61 Chacha20/Poly1305 and Salsa20/Poly1305 Authenticated
Encryption | Decryption
The stream ciphers Salsa20 and ChaCha20 are normally used in conjunction with the Poly1305

authenticator, in such a construction they also provide Authenticated Encryption with Associated Data
(AEAD). This section defines the combined mechanisms and their usage in an AEAD setting.

Table 228, Poly1305 Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 250 of 261

8005

8006

8007
8008

8009

8010
8011
8012
8013

8014

8015
8016

8017

8018
8019

8020
8021

8022
8023

8024

8025
8026

8027

8028
8029

8030
8031

8032
8033
8034
8035

Functions

Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & . Key/ & Derive
Decrypt| Verify 1 Digest Key |Unwrap
VR Pair
CKM_CHACHA20_POLY1305 V4
CKM_SALSA20_POLY1305 V4

2.61.1 Definitions

Mechanisms:

CKM_CHACHA20_POLY1305
CKM_SALSA20_POLY1305

2.61.2 Usage

Generic ChaCha20, Salsa20, Poly1305 modes are described in [CHACHA], [SALSA] and [POLY1305].
To set up for ChaCha20/Poly1305 or Salsa20/Poly1305 use the following process. ChaCha20/Poly1305
and Salsa20/Poly1305 both use CK_SALSA20 CHACHA20_POLY1305_ PARAMS for Encrypt, Decrypt
and CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS for MessageEncrypt, and MessageDecrypt.

Encrypt:

Set the Nonce length u/NonceLen in the parameter block. (this affects which variant of Chacha20
will be used: 64 bits - original, 96 bits - IETF, 192 bits -~ XChaCha20)

Set the Nonce data pNonce in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
UlAADLen is O.

Call C_Encryptinit() for CKM_CHACHA20_POLY1305 or CKM_SALSA20 POLY1305
mechanism with parameters and key K.

Call C_Encrypt(), or C_EncryptUpdate()*'° C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

Set the Nonce length u/NonceLen in the parameter block. (this affects which variant of Chacha20
will be used: 64 bits — original, 96 bits - IETF, 192 bits -~ XChaCha20)

Set the Nonce data pNonce in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Call C_Decryptlnit() for CKM_CHACHA20_POLY1305 or CKM_SALSA20 POLY1305
mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()*! C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_CHACHA20_POLY1305 and
CKM_SALSA20_POLY1305 are AEAD ciphers, no data should be returned until C_Decrypt() or
C_DecryptFinal().

10 “*" indicates 0 or more calls may be made as required

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 251 of 261

8036

8037
8038

8039

8040
8041

8042
8043

8044
8045

8046
8047

8048
8049

8050

8051
8052

8053
8054

8055
8056

8057

8058
8059

8060
8061
8062
8063

8064
8065
8066

8067
8068
8069

8070

8071
8072

8073
8074

MessageEncrypt::

e Set the Nonce length ulNonceLen in the parameter block. (this affects which variant of Chacha20
will be used: 64 bits - original, 96 bits - IETF, 192 bits - XChaCha20)

e Set the Nonce data pNonce in the parameter block.

o Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

e Call C_MessageEncryptlnit() for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305
mechanism with key K.

e Call C_EncryptMessage(), or C_EncryptMessageBegin followed by C_EncryptMessageNext()***.
The mechanism parameter is passed to all three of these functions.

e Call C_MessageEncryptFinal() to close the message decryption.
MessageDecrypt:

e Set the Nonce length u/NonceLen in the parameter block. (this affects which variant of Chacha20
will be used: 64 bits — original, 96 bits - IETF, 192 bits -~ XChaCha20)

e Set the Nonce data pNonce in the parameter block.

e Set the tag data pTag in the parameter block before C_DecryptMessage or the final
C_DecryptMessageNext()

e Call C_MessageDecryptlnit() for CKM_CHACHA20_POLY1305 or CKM_SALSA20_POLY1305
mechanism with key K.

e Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()**2.
The mechanism parameter is passed to all three of these functions.

e Call C_MessageDecryptFinal() to close the message decryption

ulNonceLen is the length of the nonce in bits.

In Encrypt and Decrypt the tag is appended to the cipher text. In MessageEncrypt the tag is returned in
the pTag filed of CK_SALSA20 _CHACHA20 POLY1305 _MSG_PARAMS. In MesssageDecrypt the tag is
provided by the pTag field of CK_SALSA20 CHACHA20 POLY1305_MSG_PARAMS. The application
must provide 16 bytes of space for the tag.

The key type for K must be compatible with CKM_CHACHA20 or CKM_SALSA20 respectively and the
C_EncryptInit/C_Decryptlinit calls shall behave, with respect to K, as if they were called directly with
CKM_CHACHA20 or CKM_SALSA20, K and NULL parameters.

Unlike the atomic Salsa20/ChaCha20 mechanism the AEAD mechanism based on them does not expose
the block counter, as the AEAD construction is based on a message metaphor in which random access is
not needed.

2.61.3 ChaCha20/Poly1305 and Salsa20/Poly1305 Mechanism parameters

¢ CK_SALSA20_CHACHA20_POLY1305_PARAMS;
CK_SALSA20_CHACHA20_POLY1305_PARAMS_PTR

CK_SALSA20_CHACHA20_POLY1305_PARAMS is a structure that provides the parameters to the
CKM_CHACHA20_POLY1305 and CKM_SALSA20_POLY1305 mechanisms. It is defined as follows:

11 “*" indicates 0 or more calls may be made as required

12 “*" indicates 0 or more calls may be made as required

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 252 of 261

8075
8076
8077
8078
8079
8080

8081
8082

8083
8084

8085
8086

8087

8088
8089

8090
8091

8092
8093

8094
8095
8096
8097
8098
8099

8100

8101
8102
8103

8104
8105

8106
8107

8108

8109
8110
8111

typedef struct CK SALSA20 CHACHA20 POLY1305 PARAMS ({
CK BYTE PTR pNonce;

CK_ULONG ulNoncelen;
CK_BYTE_PTR pAAD;
CK ULONG ulAADLen;

} CK SALSA20 CHACHA20 POLY1305 PARAMS;

The fields of the structure have the following meanings:
pNonce nonce (This should be never re-used with the same key.)

ulNoncelLen length of nonce in bits (is 64 for original, 96 for IETF (only for
chachaZ20) and 192 for xchacha20/xsalsa20 variant)

pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

ulAADLen length of pAAD in bytes.

CK_SALSA20_CHACHA20_POLY1305 PARAMS_PTR is a pointer to a
CK_SALSA20 CHACHA20 POLY1305 PARAMS.

¢ CK_SALSA20 CHACHA20 _POLY1305 MSG_PARAMS;
CK_SALSA20_CHACHA20_POLY1305_MSG_PARAMS_PTR

CK_CHACHA20POLY1305_PARAMS is a structure that provides the parameters to the CKM_
CHACHA20_POLY1305 mechanism. It is defined as follows:

typedef struct CK SALSA20 CHACHAZ0 POLY1305 MSG PARAMS ({
CK_BYTE PTR pNonce;
CK_ULONG ulNoncelen;
CK _BYTE PTR rTag;
} CK_SALSA20 CHACHA20 POLY1305 MSG_PARAMS;
The fields of the structure have the following meanings:

pNonce pointer to nonce
ulNoncelLen length of nonce in bits. The length of the influences which variant of
the ChaChaZ20 will be used (64 original, 96 IETF(only for
ChaChaZ20), 192 XChaCha20/XSalsa20)

pTag location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

CK_SALSA20_CHACHA20_POLY1305 MSG_PARAMS_PTR is a pointer to a
CK_SALSA20 CHACHA20 POLY1305 MSG_PARAMS.

2.62 HKDF Mechanisms
Details for HKDF key derivation mechanisms can be found in [RFC 5869].

Table 229, HKDF Mechanisms vs. Functions

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 253 of 261

8112

8113
8114
8115
8116
8117
8118
8119

8120

8121

8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136

8137

8138

8139

8140

8141

8142
8143

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive
Decrypt | Verify | VR' Key | Unwrap
Pair
CKM_HKDF_DERIVE v
CKM_HKDF_DATA v
CKM_HKDF_KEY_GEN v

2.62.1 Definitions

Mechanisms:
CKM_HKDF_DERIVE
CKM_HKDF_DATA
CKM_HKDF_KEY_GEN

Key Types:
CKK_HKDF

2.62.2 HKDF mechanism parameters

¢ CK_HKDF_PARAMS; CK_HKDF_PARAMS_PTR

CK_HKDF_PARAMS is a structure that provides the parameters to the CKM_HKDF_DERIVE and

CKM_HKDF_DATA mechanisms. It is defined as follows:

typedef struct CK HKDEF PARAMS {
CK_BBOOL bExtract;
CK _BBOOL bExpand;
CK MECHANISM TYPE prfHashMechanism;
CK_ULONG ulSaltType;
CK BYTE PTR pSalt;
CK _ULONG ulSaltLen;
CK_OBJECT HANDLE hSaltKey;
CK BYTE PTR pInfo;
CK _ULONG ulInfolLen;
} CK_HKDF PARAMS;

The fields of the structure have the following meanings:

bExtract execute the extract portion of HKDF.

bExpand execute the expand portion of HKDF.

prfHashMechanism base hash used for the HMAC in the underlying HKDF operation.

ulSaltType specifies how the salt for the extract portion of the KDF is supplied.

CKF_HKDF _SALT NULL no salt is supplied.

CKF_HKDF _SALT DATA salt is supplied as a data in pSalt with

length ulSaltLen.

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 254 of 261

8144

8145

8146

8147

8148

8149

8150

8151

8152

8153
8154

8155
8156
8157

8158
8159
8160
8161

8162
8163
8164
8165
8166
8167
8168

8169
8170

8171
8172
8173

8174

8175
8176
8177

8178
8179
8180
8181

8182
8183
8184
8185

CKF_HKDF _SALT_KEY salt is supplied as a key in hSaltKey.
pSalt pointer to the salt.
ulSaltLen length of the salt pointed to in pSal.
hSaltKey object handle to the salt key.
pinfo info string for the expand stage.

ulinfoLen length of the info string for the expand stage.

CK_HKDF_PARAMS_PTR is a pointer to a CK_HKDF_PARAMS.

2.62.3 HKDF derive

HKDF derivation implements the HKDF as specified in [RFC 5869]. The two booleans bExtract and
bExpand control whether the extract section of the HKDF or the expand section of the HKDF is in use.

It has a parameter, a CK_HKDF_PARAMS structure, which allows for the passing of the salt and or the
expansion info. The structure contains the bools bExtract and bExpand which control whether the extract
or expand portions of the HKDF is to be used. This structure is defined in Section 2.62.2.

The input key must be of type CKK_HKDF or CKK_GENERIC_SECRET and the length must be the size
of the underlying hash function specified in prfHashMechanism. The exception is a data object which has
the same size as the underlying hash function, and which may be supplied as an input key. In this case
bExtract should be true and non-null salt should be supplied.

Either bExtract or bExpand must be set to true. If they are both set to true, input key is first extracted then
expanded. The salt is used in the extraction stage. If bExtract is set to true and no salt is given, a ‘zero’
salt (salt whose length is the same as the underlying hash and values all set to zero) is used as specified
by the RFC. If bExpand is set to true, CKA_VALUE_LEN should be set to the desired key length. If it is
false CKA_VALUE_LEN may be set to the length of the hash, but that is not necessary as the mechanism
will supply this value. The salt should be ignored if bExtract is false. The pInfo should be ignored if
bExpand is set to false.

The mechanism also contributes the CKA_CLASS, and CKA_VALUE attributes to the new key. Other
attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY. However, since these facts are all implicit in the mechanism, there is no
need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e |If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 255 of 261

8186

8187
8188
8189
8190
8191
8192
8193

8194

8195
8196

8197

8198
8199
8200

8201

8202

8203
8204

8205

8206
8207
8208

8209
8210
8211

8212

8213
8214
8215

8216

2.62.4 HKDF Data

HKDF Data derive mechanism, denoted CKM_HKDF_DATA, is identical to HKDF Derive except the
output is a CKO_DATA object whose value is the result to the derive operation. Some tokens may restrict
what data may be successfully derived based on the pinfo portion of the CK_HKDF_PARAMS. All tokens
must minimally support bExtract set to true and p/nfo values which contain the value “tIs1.3 iv” as opaque
label as per [TLS13] struct HkdfLabel. Future additional required combinations may be specified in the
profile document and applications could then query the appropriate profile before depending on the
mechanism.

2.62.5 HKDF Key gen

HKDF key gen, denoted CKM_HKDF_KEY_GEN generates a new random HKDF key.
CKA_VALUE_LEN must be set in the template.

2.63 NULL Mechanism

CKM_NULL is a mechanism used to implement the trivial pass-through function.

Table 230, CKM_NULL Mechanisms vs. Functions

Functions
Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | g1 Key Unwrap
Pair
CKM_NULL v v v v v v
TSR = SignRecover, VR = VerifyRecover

2.63.1 Definitions

Mechanisms:
CKM_NULL

2.63.2 CKM_NULL mechanism parameters

CKM_NULL does not have a parameter.

When used for encrypting / decrypting data, the input data is copied unchanged to the output data.

When used for signing, the input data is copied to the signature. When used for signature verification, it
compares the input data and the signature, and returns CKR_OK (indicating that both are identical) or
CKR_SIGNATURE_INVALID.

When used for digesting data, the input data is copied to the message digest.

When used for wrapping a private or secret key object, the wrapped key will be identical to the key to be
wrapped. When used for unwrapping, a new object with the same value as the wrapped key will be
created.

When used for deriving a key, the derived key has the same value as the base key.

pkcs1l-curr-v3.0-cos01 27 March 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 256 of 261

8217

8218
8219

8220
8221
8222

3 PKCS #11 Implementation Conformance

An implementation is a conforming implementation if it meets the conditions specified in one or more
server profiles specified in [PKCS11-Prof].

If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL
conform to all normative statements within the clauses specified for that profile and for any subclauses to

each of those clauses.

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 257 of 261

8223

8224
8225

8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238

8239
8240

8241
8242
8243

8244
8245

8246
8247
8248
8249
8250
8251
8252
8253
8254
8255

8256
8257

8258
8259
8260
8261
8262
8263

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully

acknowledged:

Participants:

Gil Abel, Athena Smartcard Solutions, Inc.
Warren Armstrong, QuintessencelLabs

Jeff Bartell, Semper Foris Solutions LLC
Peter Bartok, Venafi, Inc.

Anthony Berglas, Cryptsoft

Joseph Brand, Semper Fortis Solutions LLC
Kelley Burgin, National Security Agency
Robert Burns, Thales e-Security

Wan-Teh Chang, Google Inc.

Hai-May Chao, Oracle

Janice Cheng, Vormetric, Inc.

Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI)

Doron Cohen, SafeNet, Inc.
Fadi Cotran, Futurex

Tony Cox, Cryptsoft
Christopher Duane, EMC
Chris Dunn, SafeNet, Inc.

Valerie Fenwick, Oracle
Terry Fletcher, SafeNet, Inc.

Susan Gleeson, Oracle

Sven Gossel, Charismathics
John Green, QuintessencelLabs
Robert Griffin, EMC

Paul Grojean, Individual

Peter Gutmann, Individual
Dennis E. Hamilton, Individual
Thomas Hardjono, M.I.T.

Tim Hudson, Cryptsoft
Gershon Janssen, Individual

Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI)
Wang Jingman, Feitan Technologies

Andrey Jivsov, Symantec Corp.

Mark Joseph, P6R

Stefan Kaesar, Infineon Technologies
Greg Kazmierczak, Wave Systems Corp.
Mark Knight, Thales e-Security

Darren Krahn, Google Inc.

pkcs1l-curr-v3.0-cos01
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 258 of 261

8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305

Alex Krasnov, Infineon Technologies AG
Dina Kurktchi-Nimeh, Oracle

Mark Lambiase, SecureAuth Corporation
Lawrence Lee, GoTrust Technology Inc.
John Leiseboer, QuintessencelLabs
Sean Leon, Infineon Technologies
Geoffrey Li, Infineon Technologies
Howie Liu, Infineon Technologies

Hal Lockhart, Oracle

Robert Lockhart, Thales e-Security

Dale Moberg, Axway Software

Darren Moffat, Oracle

Valery Osheter, SafeNet, Inc.

Sean Parkinson, EMC

Rob Philpott, EMC

Mark Powers, Oracle

Ajai Puri, SafeNet, Inc.

Robert Relyea, Red Hat

Saikat Saha, Oracle

Subhash Sankuratripati, NetApp
Anthony Scarpino, Oracle

Johann Schoetz, Infineon Technologies AG
Rayees Shamsuddin, Wave Systems Corp.
Radhika Siravara, Oracle

Brian Smith, Mozilla Corporation

David Smith, Venafi, Inc.

Ryan Smith, Futurex

Jerry Smith, US Department of Defense (DoD)
Oscar So, Oracle

Graham Steel, Cryptosense

Michael Stevens, QuintessencelLabs
Michael StJohns, Individual

Jim Susoy, P6R

Sander Temme, Thales e-Security

Kiran Thota, VMware, Inc.

Walter-John Turnes, Gemini Security Solutions, Inc.

Stef Walter, Red Hat

James Wang, Vormetric

Jeff Webb, Dell

Peng Yu, Feitian Technologies
Magda Zdunkiewicz, Cryptsoft
Chris Zimman, Individual

pkcs1l-curr-v3.0-cos01

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 259 of 261

8306

8307
8308

8309
8310
8311
8312

Appendix B. Manifest Constants

The definitions for manifest constants specified in this document can be found in the following normative
computer language definition files:

e include/pkcs11-v3.00/pkcs11.h
e include/pkcs11-v3.00/pkcs11t.h
e include/pkcs11-v3.00/pkcs11f.h

pkcs1l-curr-v3.0-cos01
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

27 March 2020
Page 260 of 261

include/pkcs11-v3.0/pkcs11.h
include/pkcs11-v3.0/pkcs11t.h
include/pkcs11-v3.0/pkcs11f.h

8313

8314

Appendix C. Revision History

Revision Date Editor Changes Made
csprd 02 Oct 2 2019 Dieter Bong Created csprd02 based on csprd01
wd01
csprd 02 Dieter Bong, Daniel | Intermediate versions
wdO02 .. 04 Minder
csprd 02 Dec 32019 Dieter Bong, Daniel | Changes as per “PKCS11 mechnisms review-
wd05 Minder v9.docx”

pkcs1l-curr-v3.0-cos01

Standards Track Work Product

27 March 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 261 of 261

