OASIS 19

PKCS #11 Cryptographic Token
Interface Current Mechanisms
Specification Title Version 2.40

Committee Specification Draft 0203 /
Public Review Draft 0203

23 April16 July 2014

Specification URIs

This version:
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd03/pkes11-curr-v2.40-csprd03.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd03/pkes11-curr-v2.40-csprd03.html
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd03/pkes11-curr-v2.40-csprd03.pdf

Previous version:
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd02/pkes11-curr-v2.40-csprd02.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd02/pkes11-curr-v2.40-csprd02.html
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/csprd02/pkes11-curr-v2.40-csprd02.pdf

http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/pkecs11-curr-v2.40.doc
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/pkcs11-curr-v2.40.html
http://docs.oasis-open.org/pkcs11/pkes11-curr/v2.40/pkcs11-curr-v2.40.pdf

Technical Committee:
OASIS PKCS 11 TC

Chairs:
Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (czimman@bloomberg.com), Bloomberg Finance L.P.

Related work:
This specification is related to:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 1 of 212

* PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Edited by Susan
Gleeson and Chris Zimman. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
base/v2.40/pkcs11-base-v2.40.html.

* PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
open.org/pkcs11/pkes11-hist/v2.40/pkcs11-hist-v2.40.html.

* PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John
Leiseboer and Robert Griffin. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
ug/v2.40/pkcs11-ug-v2.40.html.

* PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim Hudson.
Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles-
v2.40.html.

Abstract:

This document defines mechanisms that are anticipated for use with the current version of PKCS
#11.

Status:
This document was last revised or approved by the OASIS PKCS 11 TC on the above date. The
level of approval is also listed above. Check the “Latest version” location noted above for possible
later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at hitps:/www-oasis-
open-orglcommittees/pkestthttps://www.oasis-open.org/committees/pkcs11.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (hitps:/iwww-oasis-
open-orglcommittees/pkestiprphphttps://www.oasis-open.org/committees/pkcs11/ipr.php.

Citation format:
When referencing this specification the following citation format should be used:

[PKCS11-Currcurr-v2.40]

PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40. Edited

by Susan Gleeson and Chris Zimman.-23-Ap+it16 July 2014. OASIS Committee Specification

Draft 8203 / Public Review Draft 862.03. hiip://doecs-oasis-open-org/pkesttpkestt-

eurriv2.40/esprdO2/pkesti-currv2.40-esprd02:-htmihttp://docs.oasis-open.org/pkcs11/pkcs11-

curr/v2.40/csprd03/pkcs11-curr-v2.40-csprd03.html. Latest version: hitp://doecs-oasis-
-http://docs.oasis-

open. orq/pkcs1 1/pkcs11-curr/v2. 40/pkcs11 -curr-v2. 40 html.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 2 of 212

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 3 of 212

Intraduction

Table of Contents

e HoIOg Y e e s

1 1 Tarminoloav

1 2 Nefinitions

Ly o = A R T = T T T T T T T T T T T T N T T N N T T T T NN R NN NN T NN TN NN NN TR T TN T T TR TR NN T NN

1 2 Nlarmative Rafarances

O INOHTIO Y O R I T O G O s s s s s s s s s s s s s s T s s s s s T s s T T s T s s T s s e s s s s s s s s s s s T T s e r e s s e R s R s e s s s e s ey

1 4 Nan-Naormative Rafarances

TN TN O AV T T O G O T s T s T s e s s s s s s s s s s s s s T s s s s s T s s e s e a s a s e s s s s s s ey

2 1 RBSA

=

Machanieme

2
=

2 1 1 Definitions

L BN S S A A~ = T

212 RDSA nublic kev ohieets

=

SO T YO/ T PrvVate ROy OO0jCOto s

21 32 RBSA nrivate kev ohiaectas

=

TN O T T T YO v ROy Pai O o T Ot e s s s s s s s s s s s s s s s s e s s s s s e e

“r

214 PKCS #1 RSA kev pairaeneration

=

L A~ A B B A A = L A= A = A e

215 X9 31 RSA kev nairaeneration

=

TNoO T

©

2168 PKGCS #1v1 5 RSA

=

TN O T T YO v I Y=t

O

’) 1 Q DI((‘Q #1 DQA nA':D R e sssssTassassassssssssisssssssssasssssssstsstssssssssssssssstsssssssssssssssssstasesseasnassnassasnsaneannann

=

\>4

2110 PKCS #1 RSA BSS

=

LB ASA /R § S = vy BrvAS By B N S S e

2111 ISOUNEC 9798 RSA

=

L A A~ A A L =y B N B S T

2112 X 509 (raw) RSA

=

[A R A~ AN~ s AN A T T T T TN NN T TN T T N T T T T TN TN N NN TN RN NN NN TR T RN R T TN TR NN T N TN

2113 ANS|I X9 31 RSA

=

=V

TZO O xIT

MD 128 Ar RIDE NN 180

Wiz

TTO 7T IINOT /AT O T IO T oighatur it Ot i v

2118 ANS| X9 31 RSA cianature-with SHA_1

=

VI TN N s s s s s s s s s s a s aa T e s e s s s s s s e s s e s e w

TNoOoO 1

=

VI

oara—

LA 2

T~

2110 TPM 1 1b and TPM 1 2 PKCS #1 v1 5 RSA

=

INOO T T TYO7 Y 7 Y1

=

LA2

oara—

LA 2

—=9

’).1 I)n TD'\A 1.1h an‘| TD“A 1.’) DI({\Q #1 DQA nAI:D..

=

-40

\A ARV

T N7 v Yo I

’) 1 1)1 DQA A':Q I(':v ‘AIDAD...

=

41

LIET=3> 2 B &

2122 FIDS 186-4

=

41

22 DSA

42
43
43
44
47

T O T W OO T T IO O T HT T o s s s s s s s s s s s s s v s v s s s s s s s s s s s s s s s e r s v s s s v s e s s e s e e e

O DO Y QOO T Parai O tCT OI0JO IO T s s s s s s s s s s s s s s s s s s e s s e s e s e e e s
O DOy RO Y Pan o atuO e s

LA PO PHYREKEY ODICCS e e
22 5E NSA domain naramater ohieects
22 11 DSA without hashing

22 4 DSA nrivate kev ohiects
22 8 NDSA kev nair aeneration

L T o S AT S L = A A T T
L e A e A A = A R S e T T

2 2 1 Definitions
22 2 NSA nublic kev ohieets
22 2 NSA Kev Ractrictinna

[=ry=n
==

23-Aprilcsprd03
Page 4 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

47
48
48
48
49
49
50
51

T DO v With Ot i/ v

22 12 DSA with SHA1

==

o T it O

2213 EIPS 186-4

==

T OOy W O T e e e s s s s s s s s s s s s s s s s s s s n s s s T s s s s s s s T T s s T s s T s e s s a s e s s s s s s T T T r e e s e R s R s e s s s e s e s

22 14 DSA with SHA_224

[=ry=n

TO DO Y Wit T OT I V200 s s s s s s s s s s e e s

22 15 NSA with SHA_ 2547

[=ry=n

TO Oy W O T O 0 T s T s s s s s s s s T T s s T s s e s s s s s s s s s s s T T e s r e e s e R s R s e s s s e s e s

2216 DSA with SHA_ 284

[=ry=n

O W T O T I O T s s s s s s s s s r s s s i s s s s s s s i T T T s s i s a s s a s s s i s s i s i T s s TS R R R R T s T s T T T s e s e s aa e n e

22 17 DSA with SHA-512

==

2 2 Ellintic Curve

[T L S A A A~ B A T e

2 3 1 EC Sianatures

=0

-51
52
53

-54
54
55

-55

CoDO Y Wit Ot i/ v

154

OO0 U O v W I TOU T T OO T T T To s e s s v s s s v s s s s s s e r e e

oo EHPHC ECUHeKeYpair geheratot—rrrr
237 ECDSA with SHA-1

o4 EmMPHECHVE PHVARE KEY-OBICESS e e e e e
228 ECDSA without hachina

2 2 4 Ellintic curvae nrivata kav nhiaete
2 2 5 Ellintic curvae kav nair nanaration

LT s e G A T T Sl A A = e T

2232 ECDSA nublic kev ohieets

=

-59

\ARR A

LR =A 4 =4 i gy S a iy =y |

2-3-8-EC-mechanismparameters—————————————
’) Q 1') ':r‘nl_l A':Q I(':V \AIDAD..

228 EC machaniem narameatars

= o~

61

L B B B

2314 FIPS 186-4

=~

2 4 Diffie-Heallman

e = A A~ R A R - T T T T N T T N T T T T T NN NN NN NN R TN NN N T T T T TR NN RN NN RN TR TR NI

o Ll B = S N A A e e

2 4 2 Diffia-Hallman nuhlic kev ahiacts

2 E \Nrannina/unwrannina nrivate kaveac

OV VAP PIgr oW iap it privatc KOy S s

2 68 Genericsecret keyv

O OO OO SO U Ot RO y s s s s s s s s s s s s s e s e e s e e e e s s s s e e e e

2 8 2 Ganaric cacrat kav ohiacts

O£ SEREACSECrEt KeY O0IECS e e e e
2 8 2 Ganaric csacrat kav aanaratinn

OO EReACSeeretKkey-generauoh——rrrre e e

TV N T T A IO T T I o s s s s s s s s s s s s s s s T s e s s s s s T e s s s s s s T T s T s T s s a s s s s e s s s s s s i T T s s s s s s a s s s s e s e s s s s i s T e s e s e n

2 7 HMAG mechanisms

=

28 ANES

23-Apritlcsprd03
Page 5 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

-78
78
79

-79
80

2992 AES caecrat kev ohiects
O£ NEO-SECFetKEeY-ODeCtS e e e e

L O A e A S A L e e T

28912 ANES kav ananeration
284 AES_ ECB

285 ANES_CBC

80

OO I O OD T W It T IO POUUT T s e e s e e s s s e e e e

28 8 AES_-CBC with PKCS naddinga
287 AES_OFB

81

81

2838 ANES CFB

81

29 0 General-llanath AES_MAC
O SeRERACAgI- AE O VIO e

82

28 10 AES-MAC

=0~

82

28 114 AES XTS

=0~

-82

T O~ O VN T e e e e e e e
2813 AES XCBC-MAC-Q6

28 12 AES XCBC-MAGC

=0~

83

IR ey AN~ = A~ kA~ A T T T T T T T T R TN TN NN N T TN N T T N TN T T TR TN N NN TN R TN TN NN T RN RN NN TN TR NN T NN

=0~

83

20 AES with Counter

84

LA AR AACAC I IaA AR le Ly Ay =S a p A o b L L B e b e e e

2 10 Additional AES Mechanieme

=

85

L = A~ R L S E E E E E E E TE E EEEN EE E EE E E N TE NN NN NN RN LN N LN LN LN RN LR L]

2 11 Nefinitions

=

-89

7= hEeEo-oVihYo e e
2 14 AES CBG with Cinher Text Stealina GTS

2132 NES_-GMAG

=

89

LA A e L B I T T

O oD o Wit T oTPTeT

=

89

i

2 14 1 Defi

=

89

LT B B B A~ B L= L N S = A~ B T T

214 2 AES CTS machanism naramatarc

=

90

LESARAACAC I EaA AR ie Ly Ay TS aa p A o b L L B e b I e e e

2 15 Additional AES Machanieme

=

-90

b

2 15 1 Defi

=

94

2 16 AES CMAGC

=

94

b

2 16 1 Defi

=

94

roZwvieCmaismpaRkaMmeterS————r e
216 3 General-lenath AES_CMAC

2 16 2 Machaniem naramatarc

=

94
-95

oo SRR eI N E OOV Yo e T e e e e
216 4 AES-CMAC

=

=

T T O = OV N O T s an s n i e

95

217 AES Kev Wran

=

95

2 17 1 Definitions

=

96

217 23 AES Kav \Aran

=

96

O~

2 18 1 Nefinitions

=

97

O VIO CHA O T A I I O T s T s s a s s s T s s s s s s s s s T s s T s s e s e R s e s e s e s s s s e e s

218 2 Machaniem DParamatarc

=

97

LS O N A B e s = A~ By S e e T

2183 Mechanism-Desecription

=

97

LI S e L e e e e

o OuhC—arita

219 Double-and Triple-lenath NES

=

23-Aprilcsprd03
Page 6 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

7

2 19 1 Defj

=

T DO OU U Ot ROy OO Ot s s s s s s s s s s s s e s s e e s e e s e e s e e e

2 10 2 DES2 secret keyv-obiects

=

LR A e e i s A= = A A S A T

210 2 NES? cacret kev ahieects

=

LI S e L e e L A A A e s

0

210 A Trinle-lenath NES in CBC Mode

=

210 7 NES and Trinle lenath DES in OEB Mode

Do ottt

~~1

=

TPPICICTIgUT DO 1T OT D WIOU U s s s s s s s s s s s s s s e s s s e e e e

LI S e L e e e) L A e e e

2 20 Nouble and Trinle-lenath NES CMAC

2o JouoctCant

2 20 1 Nefinitions

[=ry >

2 20 2 Machaniem naramatarcs

[T Ay~ A B R N A = L A A e e

2 20 2 General-lenath DNES3_MAC

U O SUNCTa T O gt T D OO VI YO e es

220 4 DES3-CMAGC

224 SHA_1
LT Ot Y

221 2 SHA_1 dinagt

f=ry = ey —aaS 4 B VA Y

2 21 2 Ganeral-lenath SHA_1_HMAC

oS EhReraeRgtmh—ori
221 4 SHA_ 1 HMAC

=y = S 4 B A Y

L A A A A A e e e

221 5 SHA 1 kev derivation

=y araS aaS 4 i Ay

2292 SHA 224

2 292 1 Nefinitions

[=ry = =

2292 2 SHA 294 diagest

2292 2 Ganaral-lenath SHA 224 _HMAC

O SO T O g U T O v 22 T VI Yo e e es

222 4 SHA 224 _HMAC

2929 5 QUHA 2924 kav derivation

L e B A T e N A~ A A= T

223 SHA 254

2 22 1 Nefinitions

[=ry =~

223 2 SHA 258 dinast

O OT vy 200 MO Ot s e e e s

2 22 2 Ganaral-lenath SHA _266_HMAC

Lo s e A A L i L = A L L A e e LT

223 4 SHA 256 . HMAC

222 5 QUHA 258 kav darivation

OO OT vy 200 ROy GOV atO T s e

2 24 SHA-384

2 24 1 Defi

X
N
N

224 2 SHA 3384 digest

2 24 3 General-lenath SHA 384 _HMAC

Lo o A A A N L i L = A e L L A T T

224 4 SHA_384-HMAC

T OO0 IV N O s s s s s s s s s s s s s e e

224 5 SHA_ 284 kav derivation

L e e A LA A N A~ R A= e

2925 SHA_ 519

2 25 1 Deafi

[=ry =S

2925 2 SHA_E19 dinact

2 25 2 Ganaral-lenath SHA _512_HMAC

Lo s e A A N L L e L A T e T

2925 4 SHA_ 512 HMAC

e O T I O T T VI N O cr s s s s s s s s s s s T s s s T s s s T T T s s e s e s e R iR R T s T T T T T T e T e s e st R s R s e s s s s T T e s e s e n e an e

29258 5E QHA_E12 kav darivation

Lo s e A A o N A~ R A= T e

228 SHA-512/2924

2 28 1 Definitions

=0

23-Aprilcsprd03
Page 7 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

228 2 SHA_E12/2924 digest

L S e L A o s A e

2 26 2 Ganeral-lenath SHA _512_HMAC

Lo e e A A N L L e L A e e T

228 4 SHA-512/224_HMAC

[y A e R I Ny 7 R /A~ AT T T T T N TN NN TN T NN NN N RN TN T TR T TR NN NN T TN N C NN TN TR T T TR T

2268 5 SHA_E5E12/224 kev derivation

OO OT vy O T 22 KOy GO v at O e s

=y

227 SHA-E12/2E8

=

=

227 1 Defj

=

L R A e A o e A A L A T

=y

227 2 SHA_B12/2548 digest

=

227 3 General-lenagth SHA-512-HMAG

O OO T IO T TG U T O T v O T T VI N carrar s s s s s s s s s s s s s s s s s s e s e v s s s s s s s s s s s e v

=y

=

A O O T AU T VI N O T s s s s s s s s s s s s e s s s s s T s T s s T s s e s s s e s R s R R T s T T s T T T T r e e s R s R R s R s s s s s e s T e e s

=y

227 4 SHA-512/2568-HMAGC

=

2927 5 SHA_E12/258 kav derivation

B I A e A o e A A A~ A A A A= = e e

=

=

228 SHA 5192/t

Iy A S S | R I AN N T T T T T N T T N N T N T N TR NN NN NN TN NN N T R E T E T TR TR R NN R NN TR NN

228 1 Nafi

b
N
]

228 2 SHA 5192/t dicast

Lo S S L A A o A T

228 2 Ganaral-lenath SHA _512_HMAC

Lo s e e L L e A L A e e T

228 4 SHA 512/ HMAC

O OT I v O T U T VI YT s

229 5E QUA _E12/t kav darivation

Lo S e T A A = A= L e

2 20 1 Nefinitions

[=ry =v

220 4 BKCS #5 PRBKN?2 kev aanaration

NoO o

T

L o AN A A A R = e e

230 1 SHA-1-PBE for 3-kev trinle-DES-CBC

DE O o ROy thpiC O e O~ OO s

2302 SHA_ 1. PBE for 2 kav trinlae-DES-CBC

T—OTi7 Y

= OoU

D O ROy PO D O O D T e s s s s s s s s s s s s s s s s s s e s s s e e s e e e

OU L Ot Y

D/ Yy TOTOoOti7 %

2303 SHA-1. PBA for SHA_1_HMAGC

ZOUO Ot I v

2 31 SS|

04

2 31 1 Definitions

=

machaniem naramatars

231 2 SGI

O T OO O Uar o ParartCte T o e e es

2 21 2 PDra_mactar kav ananaration

LR L s A N A A~ R = e e

oo

2 231 4 Mactar kav darivatinn

L e A = = A= A = A A e

2 231 68 Kev and MAC derivation

T A A A A L B s A A A e

231 7 MDE MACinagin-SSI

=

20

LA e A L B A A e e

04

20

L A S B L A e A e e e

231 8 SHA_1 MACinain-SS!

O 10Ot v

LT 3 A A=A R = R R S T T T T T T T T T T N T N T F T TN N NN N TN N TN TN E N N T T TN T T TN TR NN RN NN

=

2232 T1 S 1 2 Machanicme

oL

2 32 1 Deafi

.m
P
]

2232 2 T1 S 1 2 machaniem narametarcs

e T O O T PO O T T O e T O T e s s s s s s s s s s s e s asnses

23223 TI S MAC

OO

=0

[=ra> 7=y =

2 232 A Mactar kav darivatinn

O VOOt KOy GO IV Ot O s e e s

2232 8 Kev and MAC derivation

Lo L A A A LA I L s A A= A e

232 7 CKM T1 S12 KEY SAFE DERIVVE

LAY

=T

NIV

oz

2 33 \WTL S

2 33 1 Definitions

ZOv

23-Aprilcsprd03
Page 8 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

[T A= T~ B A Al i L L N S A= R L A~ B e
OO VOO teT SO O Ot RO Y G O T IV Ot O T T o e s s s s s s s s s s s s s s s s s e s e s s s e e e s

2232 2 \WTI S machaniesm narametars
2 232 A Mactar cacrat kav darivation

AN A s s A e = b A e e

Nt

2232 A \WTI S PRE (ncaudorandom funetion)

OO0 VYV T O T

A A A B N A s A A A A A A= L e T

2 22 7 Sarvar Kav and MAC derivation

oo

2 22 Q Cliant kev and MAC derivation
oo o oHetKeyY e Vi GeVattoR————— e e e e

2 34 1 Defi
204

2 234 8 XORina of a kev and data
OO ARG O KeY NG G e e e e e e

2 35 1 Defi

o9~

2 35 CMS

OO OO T e O T O T P AT O T T O T T O T r ss v s s s s sasasssssssssrores
OO OO OIgTOtUT OO e s s e s s e s s s e e s

2 35 2 CMS mechaniem narameaetars

2 235 4 CMS cianaturas
2 36 1 Definitions

2 28 Blawfich

= o0

Do Vvt T

2 36 5 Blowficsh - CBC with PKCS nadding

Lo A e A e e A A A A = A A A R L

2206 2 Bl OWEISH caecret kev ohieets
OO0 DI TTOTT-SECretKeY- OBt
2 26 2 Blowfich kev aanaration

2 36 4 Blowfish-CBC

O 0O DIoWiIToTT

IR A I T T T T T T T T E N T T T TN N TN NN N TN T NN T E N TR T I TN N NN RN NN

ot

2 237 Twofich

=

ot

2 37 1 Defj

=

TV OO SO G Ot RO Y OO O O O s s s s s s s s s s s s e e s e e e e e e e e

=

ot

2 37 2 Twofish-secret keyv-obiects

=

LI A A AN A A R = s e

154

ot

2 37 3 Twofish kev aeneration

=

TVVOITOTT

o1 T

2 37 4 Twofish -CBG

=

VWOoOToT— oD o VWit

04

ot

2 237 B Twaofich-CBC with PKCS naddina

=

2 28 1 Nefinitions

238 CAMELLIA

o0~

23-Aprilcsprd03
Page 9 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

A L A S L e A = A A T e

o0 Taoma SO O Ot RO Yy OO O Ot O s s s s s s s s s s s s e e s e e e s e s s
o0 O Tamoma KOy ot TauOT e e s

228 2 Camellia caecrat kev ohiactas

228 2 Camaellia kav aanaration

2 20 2 Machaniem DParamatarc
ovZwviethaitsih—aaheteers———r————— e e

o0 U TaOiCma- U DO Witht T INo O PatUityg s

228 A Camellia-CBC with PKCS naddina
2 28 7 Ganeral-lenath Camellia-MAC

2238 A Camellia-ECRB
228 5 Camellia-CBC
228 Q Camallia - MAC

2 20 1 Nefinitions

o0
= o

a0t
Standards Track Work Product

pkcs11-curr-v2.40-espra02

=T

= av

2 40 6 ARIA-CBC with PKCS naddina

2O NI oD o it

L A A A N A A A A = = R
[e A A AN A~ = T T T T T T E TN N T T T T TR TN N NN TR NN T

Ao A SEEret Ke Y ORCCtS e e e e e e
240 4 ARIA_ECB

2 40 2 Aria cacret kav ohiaete
240 3 ARIA kav nanaration
240 5 ARIA_CRC

A L A L A I L L A T T

240 7 General-lenath ARIA_MAC

[~ av ey

Oy

2 41 1 Definitions

240 8 ARIA_MAC

=

241 2 Machaniem Paramatarc
A= wvieChaitsSih—aaheteets——rrr e e e e

2 42 1 NDNefinitions

242 SEED
Ao e

=

242 6 SEED-CBC with PKCS nadding

242 5 SEEN_-CRBC
A0 Ot - o WHH

Ao O T ROy o atO T e e s

AL OEEDSEOret Ke Y OojICCtS e e e e e e
242 4 SEED-ECB

242 2 SEEDN ceecret kev ohieets
242 23 SEEN kev aanaration

A L A L e e L e T T

242 7 General-lenath SEED_MAC

=

242 8 SEEDN_-MAC
Ao oEEU- MY e e
2 43 1 Definitions

=0

2 43 2 Machaniem DParamatarc
Aoz wvieChaiSih—aaheters——

2 44 1 llesaae ovarviaw

244 OTP

=

STCHCTato T o<1

244 2 Case 1- Generation of OTDP valuac

L oaott

KOy s

244 4 Case 3 Generation of OTP kave

T oaoC o SCCiauoi oot

244 5 OTP ohiectas

oIt

OO O OGO IO Y s s s s s s s s s s T s s s s s s T s s s s s s s s T s s s s s s s T e s a s R R s R s s s e s s T e e s

2 44 6 OTP_ralatad notifications

= A A~ |

TGO s s s s s e

Tt

244 7 OTP mechanieme

=

244 O RSA SecurlD kav aaneration
Lhdo oot KeY- geReRatoR——— e e e e e e

244 11 Raturn valiince

244 8 RSA SecurlD

=

LS 2 o o i B A i |

’) AA 1’) nATl—I l_lnTD S esssssssssssssssssssssssssssssssstssssssssssasssssasnenn

=

L A A A = L L A A B e e

2 4413 Actividentity AGT!

=TT

LA

’) AR r\T I(ID...

oot

L A S A = A~ = A T e T T e

2 45 1 DPrincinlacs of Oneration

= >

VT T T O T PO T T O O T O T s asasssasssssssssssrsrasasnross

LA

245 4 CT-KIP Machaniem naramatars

[sy A=A R = R A S AT T T T T T N T T T T T T T T T N T T T T T T TR TN N NN T NN TN TN NN E T TN T

2 45 2 Machanieme
2 45 2 Nefinitions

oot

LA A A A A= A e

LA

245 5 CT KIP kav derivation

oo ot

LA A A=Y S s AN A L = ~ e e e

LA

245 6 CT-KIP kev wran and kav unwran

O 0ot

23-Aprilcsprd03
Page 10 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

A L= e e S A A A e e

245 7 CT KIP cianature aeanaration

[T 55 rn B~ BNy |

e

2 47 1 Definitions

247 GOST 28147-8Q

246 GOST

=

T OO T A T O U IV O T s s s s s s s s s s s s r e s s T T T s e e R R R T e s e s s s s T s e s e e e R e a s e s e

e

247 7 GOST 28147-80_MAC

AT O OO T 20 T O ROy QU O T Ot O T s s s s s s s s s s e e s s e e s e e s e e s e e

AT O OO T 20T 0T SOOI Ot RO Yy OOJO O O s s s s s s s s e e s e s e s e e e

247 2 GOST 28147-89 ceeret kev ohieets
247 4 GOST 28147-8Q kav aanaration

247 5 GOST 28147-80-ECB

=

T O OO T Ty O T T I OGO Ot s s s s s s s s s s s e s e e e e e s e e s e e e

e

24710 GOST R 34 11-94 dicest

2 47 8 Nefinitions

=

T T OGO T TN DA T T T IV YT s e s s s s s nasn s ns s s e vanss

-

247 11 GOST R 34 1194 HMAG

=

AU O OO T IV O U 20U T PUbnC RO Y OO OO s s s s s s s s s e s s s e s e s
A0 O OO T Ty O T U U U T WO U T T TO ST T g o s s s s s s s s s s s s s v s s s s v s s s s s s s s n v v o s

248 2 GOST R 34 10-2004 nublic kev-obiects
248 7 GOST R 34 10-2004 without hashing

2 48 1 Nefinitions

248 GOST R 34 10-2001
B 1 OTP Definitions

Do

B 2 Ohieet clacceas
B 2 Kav tunac
5O 1\EY

DO AttHOtHE- CORSTaA S e e e e

B 8 Attrihiita conctantce

B 4 Machaniemec

B 5 Attrihuitac

B 7 Othar conctants
B 8 Noatifications

B O Ratiirn valliac

) (Yo [0 Te] (o] o 1P PPN
It T =Y 0 VT T (o o

2.0 T DNt NS . ..ttt et e ettt et e ettt e et eeeeteeeetsaeeesaaeeesaaesaaaeesaniesennntetennteeennttennntatenataennnaas

1.4 NON-NOIM AtV E RO MM CES ... ittt it e ettt ettt e ettt eesststesesasasssaassssesessssessssaassssaressasansnsnns

1.3 N O AV E RO OB CES ...ttt ittt et e e ettt e ettt ettt eeetts s eessassesesaesessssasssstesesasaessssaassssasesssanansnns

012 DB TN OIS ..t ittt ittt e et e e et ee et eeetteeeetseessasesesssessssessssstesssssesssisessssiessssseessnieesanniorenatiesnnian

1

2 IV B O NI S IS .. ittt ittt e et e ettt e et ee et e eeetseeettaeeestaseessasessssiessssssesssssessssssssassesssatesssnttiennttetesnteernnaeiees

23 Aprilcsprd03
Page 11 of 212

Copyright © OASIS Open 2014. All Rights Reserved.

pkcs11-curr-v2.40-espra02
Standards Track Work Product

2.1.2 RS A DUDIIC KBY O O S ittt ittt i ittt ettt ettt e ettt eeesteesesiesesas s esesastaseaassasesssaeenssasssnssarenssaensnsnns 27

2.1.3 RSA Private KEY ODJECES ...uue it e et ee e e e e e aateeeeeeeeesaneeeesessennaeeeeeenes 28
2.1.4 PKCS #1 RSA Key pair geNEratioNuuu it eeeee e e e e e aieeeeeeeeeaieeeeeseessnnaaeeeeeeens 30
2.1.5 X9.31 RSA KeY PaIr GENEIAtIONuu it eeeeeeeaieeeeeseeessneeeeseessnnaaeeeeenes 30
2.1.6 PKCS #1 V1.5 RO A Lottt ettt e et e e e e e e e e e e e e et et et e ee et eeaetas s bbb eeeeeaeaeaaaaeas 31
2.1.7 PKCS #1 RSA OAEP mechanism parameters.........oouuuueiieiiiiie e ee e e eeeeeees 31
2. 1.8 PKCS #1 RSA QAEP ...ttt ettt et ettt e e e e e e e et e ettt ettt ae e tas bbb eeeeeaeaeaaaeeas 33
2.1.9 PKCS #1 RSA PSS mechanism parametersooooeuuuueieeeeeeiee e eeeeeeeeeeeeeiiaeeeeeeeees 33
2.1.10 PKCS #1 RSO A PSS L. ittt ettt et e et e e et e e e e e e e e e e et e et ettt eeaeteses bbb seeeeseaeaaaaeas 34
2.1 1T ISO/EC 9796 RS A ... ittt e et et e e e e e e e e e e e eeeeeeeeeeeeeeeesssesbsbss e eeeeeeeaeeaaeens 34
2.1.12 X509 (FaW) RS A Lottt et e et e e e e e e e e e e e eeeeeeeeeeeeeesetesbeb st eeeeeaeaeeeaaeas 35
2.1 18 ANSI XO. 31 RO A ittt ettt e e e e e e e e e e e e e eeeee ettt ettt ettt bbb e aeaaeaeaaaaaas 36
2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPE-
MD 128 OF RIPE-IMD T80 ...ututututiiiieieieiee et e e e e e e ettt ettt e s e e e e eeeaeeaaaaaaeseeesssssesesessssssnsnnnnnnnn 37
2.1.15 PKCS #1 v1.5 RSA signature with SHA-224........cccccooiiiiiiiiiiieeeee e 37
2.1.16 PKCS #1 RSA PSS signature With SHA-224ccccooeiiiiiiiiiieeeee et 37
2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512ccccceeeeeeeennn.... 37
2.1.18 ANSI X9.31 RSA signature With SHA-1uuiiiiiiiiiie et 38
2.1.19 TPM 1.1band TPM 1.2 PKCS #1 V1.5 RSA ..ot 38
2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEPccooiii it 39
2.1.21 RSA AES KEY WRAP ...ttt ettt ettt e et ettt et e e e e e e et et ettt ettt eb st aeeeeeeaeaaaeeas 40
2.1.22 RSA AES KEY WRAP mMechaniSm Parameters iiiiiiiiie i i eeiiseeeiiissieenssasesnsaesenanas 41
2128 FIPS 18684 ..o e e e et e e e e e e e e e eeeeee ettt ettt ee e —a——a bbb aaaaaaeaeaaaas 41
2.2 DS A ettt ettt a—a———.a e eeieeeeteteteeeeeeesetetesteteeeteetetteth— e aaaaaaeaaaees 41
2.2, DB NI IONS ...t ee ettt e e e e e e e e e e e e e e e eeeeeeeeeetere e e —arra b aeaaaaaaeaeaas 42
VA B Y N o0 o) [ol (=) VA o) o] (=Y o1 £ PN 43
2.2.3 DSA KEY RESHICHONS ...ttt e e e e ettt eeeeeeeteeeeeesessnnseeseeesnnnaeeseessnnaaeeeeenes 43
2.2.4 DSA PrivVate KEBY OB 80 S . ittt ittt e e it e e ettt e et ee et e eettteeesssteseasssasesssaeeassatssnsarennsaansnsnns 44
2.2.5 DSA domain parameter ODJECEScoiiieueie e e et e e e e e eeeeeeeaiaaeeeeeeees 45
2.2.6 DSA KEY Pl GENEIATIONiiiiiit et e e e e et eeeeeeeeetaeeeesssasseseeseeesnnnaeeseessnnaaeeeeenes 45
2.2.7 DSA domain parameter generationco.coieuuuei e e e e e e e e e e eeeeeaiaaeeaeeeees 46
2.2.8 DSA probabilistic domain parameter generation...........cccooooveeuiee i 46
2.2.9 DSA Shawe-Taylor domain parameter generation............oooovuuueeeiiiiiiiiee e 46
2.2.10 DSA base domain parameter GENEIratION ii.. ittt e ettt eieieeeieisseeeassiesnstaressaaenenanas 47
2.2.171 DS A WithOUE MBS NG ettt e et e ettt e ettt eeetteeettteeesssteseasssasesssaeenssasssnnarenssaannnsnns 47
2.2.12 DSA With SHA-T oottt e et et e e e e e e e e e e e e et e e et e eeteee e aa st bbb e e e e e e eaeaeaaaas 47
2.2 T8 FIPS 1804 ..o e e e e e e e e e e e e e e e eeeeee ettt te e e e —ar—a bbb aaaaaaaaaaeaas 48
2.2.14 DSA With SHA-224ottt ettt et ettt e et e e e e e et ettt ettt eeaeta e bbb aeeeeaeaeaaaaens 48
2.2.15 DSA With SHA-256 ... ettt ettt ettt ettt e e e e e e e e et et et e ee et eeeeaee et et aeeeaeaaeaaaaeas 48
2.2.16 DSA With SHA-384ottt ettt ettt e e e e e e e et et e et et eeee ettt eeaeeaeaeaaaeeas 49
2.2.17 DSA With SHA-DT 2 oottt e et et e e et e e e e e e e e et et e et eeeeeeaeaesaeb et eeeeeeeeaaaaaeas 49
DR I = Lo 1o U] Y7 50
PR Bt W (O Y (o [= (] (= PPN 51
2.3, 2 DIINMIIONS ...t ee ettt e e e e e e e e e e e e eeeeeeeeeeeeee eee e rar—a bbb aaaaaaeaeaeaas 51
PRCRCH =0 BISY ANy o1V o] [Tl =) Vi o] o =To3 (=N PPN 52
2.3.4 Elliptic curve private KeY ODJECESiiiii i e e eaaanaaas 53
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 12 of 212

2.3.5 Elliptic curve Key pair GENEratioN.cocu. i e et e e e e e e e eaeaanaaas 54

2.3.6 ECDSA WithOUt NASHINGiiiiiii et e e e e e e etteeeeeeeeessneeeeseessanaeeseeenes 54
2.3.7 ECDSA With SHA-T oottt e ettt et et e e e e e e e e et e ettt et eeeetesesb e bbb eeeeeeeaeaaaaens 55
2.3.8 EC MeChaniSmM ParameterSuuue it e e e e e eeteeeeeeseateeeeseeesnnaaeeseessnnaaeeeeenes 55
2.3.9 Elliptic curve Diffie-Hellman key derivationocouuuuieiiiiiiiiiee e eeee i e e eeeeeees 57
2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivationcocouuueeeiiiiiiiieeeeeeeeeeee 58
2.3.11 Elliptic curve Menezes-Qu-Vanstone key derivationceeeiiiiieiiieei e 58
2.3. 12 ECDH AES KEY WRAP ...ttt ettt ettt et e e et e e e e e e e e et et e et ee et eetetesesb st eeeeeeeaeaaaaeas 59
2.3.13 ECDH AES KEY WRAP mechanism parametersccooooovvuuieeiieeieee e aeeeeeeens 60
2.3.T4 FIPS 1804 ..o ei e e e e et e e e e e e e e eeeeeeeeeeetere e e tar—a— b aaaaaaaaeaaaas 61
2.4 DIffi@-HEIIMIAN L.t e e e e e et et e e e e e eeeeee et ettt ee ettt et it b b e b ab b aaaaaaeaaaaaas 61
2.4 1 D INMIIONS ...t ee et e e e e e e e e e e e e eeeeeeeeeeteeererr e — e aeaaaaeaeaeaas 61
2.4.2 Diffie-Hellman public KEY ODJECLScuuuuiiiiiiiiie e e e e e e e eeeeeesiaeeeeeeeees 62
2.4.3 X9.42 Diffie-Hellman public KEY 0DJECESccieeui e e e e e eeeeeeees 62
2.4.4 Diffie-Hellman private KeY ODJECESooiuueiii e e e e e e e e e e e eseieaeeeeeeees 63
2.4.5 X9.42 Diffie-Hellman private K&y ObjeCtS......covuuuieiiiieee e ee e e e eeeeees 64
2.4.6 Diffie-Hellman domain parameter ODJECEScuuuniiiiiiee e e e e e eeeeeees 65
2.4.7 X9.42 Diffie-Hellman domain parameters objectScoeiieiiiiiiee e 66
2.4.8 PKCS #3 Diffie-Hellman key pair generationueeieiiiiiiiee e eeeeiieeeeeeeeees 66
2.4.9 PKCS #3 Diffie-Hellman domain parameter generation..........ccceeeeeeveuuiieeeeiiiieeeeeeeeieeeeeeeees 67
2.4.10 PKCS #3 Diffie-Hellman key derivation............coooieeieuuiei oo eeeeeeeiieeeeeeeees 67
2.4.11 X9.42 Diffie-Hellman mechanism parameters...........uuue i e eeeeii e eeeeeees 68
2.4.12 X9.42 Diffie-Hellman Key pair GENErationc...iiiuiiiie it ee it e i eeieieaeeasssseensserenaaeeananas 71
2.4.13 X9.42 Diffie-Hellman domain parameter generationo.oo it i eeieieaenananas 71
2.4.14 X9.42 Diffie-Hellman KeY deriVationiiiu.i ittt e e ettt e i e eeieisaeeassaseenssarensaaenenanas 71
2.4.15 X9.42 Diffie-Hellman hybrid K€y deriVationooocuiiiiiii it ee it eeei e i eeiserenaaeeananas 72
2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivationcccoceeeeeiiiiieeeeeciiiieeeee. 72
2.5 Wrapping/unwrapping PriVate KEYS.oouuuuu e e e e et e e eeeeesteeeeeseetanaaeaseessnnnaeeeeeesnnanss 73
N N T g oY a (oo ol (= A (= O 75
2.6, T DIINMIIONS ...t ee et et e e e e e e e e e e e e e e eeeeeeeeeetetear e et ba bbb aaaaeaaaeaaaas 76
2.6.2 Generic SECret KEY ODJECES ... iiiuuti oot e e e e e e eeeee e e eeeeeeeiaaaeeeeeees 76
2.6.3 GeNeriC SECret KBY GBNEIAtION ...ttt ittt e et e e it e e ettt eeeststeseasssasesssaeeassasesnsarenssaanansnas 77
2.7 HMAC MECNANISIMS ...ttt e e ettt et e e e e eeeeeeeeeeeeeeeeeeesesesssbsb s eaeeeaeaeaaaaens 77
2.8 A S ittt ettt ——— e eeeeeeeeeseeeseeeeeeetetetteteeeeeetette—h— .. aaaaaaeaeaees 77
2.8, DIINMIIONS ...ttt e e e e e e e e e e e e e e eeeeeeeeeetetear et b e aeaaaaeaaaaaas 78
2.8.2 AES SECIEt KEY ODJECES ..uuuuiiiiiiit e e e e ettt eeeeeeeeateeeeeeeesnneeeeseessnnaeeeeeenes 78

PR RS A =Sl [e (=1 1= r= (o) o 1RO 79
2.8 4 AES-E C B uuuiiii i eeeeeeeeeeeeeeeeeeeeeeeteeere—e———————————— e aaaaaaeaaaeens 79
2.8.5 AES-CB ..uuuiiii i ee e e e e eeeeeeeeeeeeetetetteererr———————— b aaaaaaaaaaeeas 80
2.8.6 AES-CBC With PKCS PAAAING .eeiiiitiiiiiitititieeeeeeee et e e et eeeeeeeeeee e e et eeeeeeseseseababsiseeeaeeeeaeeaaeeas 80
2.8, 7 AES-OF B e e e e e e e e e e eeeeeeeeteeeeteeterr————— b aaaaaaaaaaeeas 81
2.8.8 AE S C B ..o ee e e e e e e eeeeeeeeeeeteeeteeereee————— b —— i aaaaeaeaeaeaas 81
2.8.9 General-length AES-MAC ... oo e e e e e et eteeeeeesesteeeeseeesnnaeeeseessnnaaeeeeenes 81
2.8. 10 AES-MA C oot e e e e e e e eeeeeeeeeeeeeeeeeeereer————— b —— i aaaaaaaaaaeeas 82
2.8. 11 AES-XCBC-MAC ... oot e e e et e et e e e e e e e e e e e eeee e et e eeeeeeeesesesbsb st eeeeeeeaeaeaaeas 82
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 13 of 212

2.8.12 AES-XCBC-MAGC-96. ...ttt ettt 83

2.9 AES WIth COUNTET ..ottt ettt et et e e e e e e e e e e et et e et et eeeeeesesssbsb e eaeeeeeaeaeaeeas 83
2.9, DIINMIIONS ...ttt ettt e e e e e e e e e e e e eeeeeeee ettt et reee e rra bbb aaaaaaaaeaeaas 83
2.9.2 AES with Counter mechanism parameterscoooooeieuuiei e eeeee e ee e eeeeeeeees 83
2.9.3 AES with Counter Encryption / DecCryption...........oeeeiieee e e e e e e eeeeeeeees 84

2.10 AES CBC with Cipher Text Stealing CT S oo e e e e eieeeeeeeeaeieaeeeeeesnnanss 84
210,71 DEIINMIIONS ...ttt ettt e e e e et e e e e e e e e e eeeeeeeeeeeeteer et e rba bbb aaaaeaaaaaeaas 85
2.10.2 AES CTS mechanism parameterscoooooieeuuie e e e eeeeeeeieeeeeseesenaaeeeeeeens 85

2.11 Additional AES MECRANISIMS.iiiiiiiiieiititee et et e et e e e e e e e e e et et et ettt e eeaeeese sttt eaeeeeaaeaaaaeas 85
2.1 D NI IONS ...ttt e e e e e e e e e e e e e e e ee ettt teteee e tarra b aeaaaaeaaaeeas 85

2.12 AES-GCM Authenticated Encryption / DecCryption............eeieiiieuieie e eeeeeeeaananss 86
2.12.1 AES-CCM authenticated Encryption / DeCryptionceioeiieeuieeeieeeee e eee e 88
2.12.2 AES-GIMAC ..o e e e e e e e eeeeeeeeeeeeeeeete—r——————— b aaaaaaeaaaeeas 89
2.12.3 AES GCM and CCM Mechanism parameterscuuuueieeiiiiiiee e eeeeiieeeeeeeeeaieeeeaeeeens 89
2.12.4 AES-GCM authenticated Encryption / DeCryptioncooeeuuueeeieiiiiieee e eeeeees 92
2.12.5 AES-CCM authenticated Encryption / DeCryptioncoieeiieiueieeieeeeee et eeeeees 93

218 AES CIMA C oot eeeeeeeeeeeeeeeeeeeeetetttree—————————————————— e aaaaaaeaeaeens 94
2. 181 D NI IONS ...t e e e e e e e e e e e e eeeee e et e et e re et a bbb aaaaaaaaeaaeas 94
2.13.2 MeChaNiSM PAraMEIErS ... ouen it e e e e et eeeaieeeetaeeeseaneesesneeeenaaeennanss 94
2.13.3 General-length AES-CIMAC ... oot e e et eeeeeeeeeateeeesseessnaseeseessnnaaeeeeenes 94
21804 AES-CMARC ..o e e e e e e e eeeeeeeeeeeeeeee e e — b aaaaaaaaaaaeas 95

o N =t N A= TP 95
2141 D NI IONS ...ttt e e e e e e e e e e e e eeeee ettt eeeetear et —ra bbb aaaaaaeaeaaeas 95
2.14.2 AES Key Wrap Mechanism parameters............. oo e eeeeie e e e eeeeiieeeeeeeeeiaeeeeeeeens 95
N N =S N (=1 AL =1 o NN 96

2.15 Key derivation by data encryption = DES & AES......ccoouuuiiiiiie e 96
2. 15,1 DIINMIIONS ...ttt e e e e e e e e e e e e e eeeeeeee et ee e ee et aeaaaaeaaaeeas 96
2.15.2 MeChaniSmM ParameEtersuuuuiiiiiiiuiiee ettt et e et ee s e e ettt e s e aeeeet s e eeteeesnn s easeesnsnnaaeaeeennen 97
2.15.3 MechaniSm DeSCIPIION ...ttt e e e e et e e e et e eeeeaeeeeaeeeeenaeeennanss 97

2.16 Double and Triple-1ength DESoo oot e e e e e e et eeeeeeetaeeeeeeessnnaeeeeeesnnanss 97
2161 DIINMIIONS ...t e e e et e e et e e e e e e e e e e e ee e e ettt ee e ee et et aeaaaaeaeaeeas 98
2.16.2 DES2 SECret KEY ODJECES ... oiiiiii et ee e e e e e eateeeeeeeeeaaeeeeeseessnnaeeeeeenes 98
2.16.3 DES3 SECret KEY ODJECES ... oot e e e e e eaeeeeeeeeeaaeeeeeseessanaeeeeeenes 99
2.16.4 Double-length DES K€Y gENEIratioNuuiiiiiiii e e e e e et eeeeeeesiaeeeeeeeees 99
2.16.5 Triple-length DES Order of Operationsuu.e e e e e e e e e eeseeainaaeaes 100
2.16.6 Triple-length DES iN CBC MOGE........cocuuiieiieee e e e e e e e eaaeeeeeseeesseeeeseesannaaaaees 100
2.16.7 DES and Triple length DES in OFB MOE.......cuuuiiiiiiiee e eeereeaiaeeaeas 100
2.16.8 DES and Triple length DES in CFB MOdE.......cuuuiiiiiiee e s 101

2.17 Double and Triple-1ength DES CMACcouuuiiiieee oo e e e e e e e e e eeetaeeeeeseesansaeeaeeenes 101
2171 D NI IONS ...ttt e e e e et e e e e e e e e e e e e e ee ettt et ee et r bbb aeaaaaaaaas 101
2.17.2 MeChaniSM PAramMEIErS .. ouun et e e e e e ee et e eeeeneeesaaeeeennaeeeenss 102
2.17.3 General-length DES3-IMAC .. .oouuui i e e e e e et eeeeeeeetteeeeseeessnneaeeseessnnaaaees 102
2174 DESS-CIMAC ..ot e e e e e e e e e e e e e e e e eeeee et ee ettt e ar it b r b aaaaaaaaeaas 102

218 SH AT ottt eeeeeeeeeeeeeeeeeeeeetettttttetterer—— .. aaaaaaaaeas 102
2. 18,1 DEfINMIIONS ...t ee ettt e e e e e e e e e e e e e e e e e e ettt e eeaereartr bbb aaaaaaaaaaas 103

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 14 of 212

2.18.2 SHA-1 dIgESE .eeiiiiiiiiiiiiiie et 103

2.18.3 General-length SHA-T-HMAC oot e e e e et eeeeeeesteeeseesesnnnsess 103
2.18.4 SHA-T-HMAC ... oot e e e e e et e e e e e e e e e e e ee e et et e eeeeeeaesssssbsb b aaeeeaaaeaeaas 103
2.18.5 SHA-1 KEY deriVatiONuun i eeeeeeeeteeeeeesastnneeeeseeessnnaeeeseessnnaaaanes 104
2.1 SHA 22 e eeeeeeeeeeeeeeeeeeeeeieeetettere———————————————————aaaaaaaaaeeaas 104
2,191 D iNMIIONS ...ttt e et e et e e e e ettt ettt aeaaaaaeaaaaaaaeeeeeees 105
2.19.2 SHA-224 digeST .. it e et e e e e et ettt aaaaaaeaas 105
2.19.3 General-length SHA-224-HMACot e e et eeeeeeesieeeeseeeeannnnss 105
2.19.4 SHA-224-HMAC ... oottt e e e et e e e e e e e e e e e e e ee e e e e eeeeeeeesssssbsb s aaeeeaeaaaeaas 105
2.19.5 SHA-224 KEY dEINVALION. ... it e e e eeeeeeeeteeeeeesestieeeeseesssnnaaeseessnnaaanes 105
2.20 SHA 256 .ttt eeieeeeeeeeeeeeeeeeeeietttettette——————————————————aaaaaaaaaeeas 106
2.20.1 D INMIIONS ...t e i et e e et e e e et e e e e e e e e e e ettt ettt et aeaaaaaeaaaaaeaaiereees 106
2.20.2 SHA-256 digEST ... cieiiiieiiiieiiieeieee et e et et e e e e e e e ettt ettt aaaaaaeaas 106
2.20.3 General-length SHA-256-HMACcooouiiii et e e et eeeeeeesteeeeseeeennnnenss 106
2.20.4 SHA-256-HMAC ... oottt e et e et e e e e e e e e e e e eeeeeeeeeeeeeeeesesesbsb b aeeeeaaeeaeaas 107
2.20.5 SHA-256 KEY dEINHVAtION.ot e e eeeee e et eeeeeseaetieeeeseeessnneaeseesennaaaees 107
2.2 SHA BB e eeeeeeeeeeeeeeeeeeeeeieeetetteee———————————————————aaaaaaaaeaas 107
2.2 D INMIIONS ..ottt e et e e e e e e ettt aeaeaaaeaaaaaaaeaeeeees 107
2.21.2 SHA-384 digeSt ... ciiiieeeiiiieii ettt et e ettt aaaaaeaas 107
2.21.3 General-length SHA-384-HMACot e e e e e e e eesteeeeseeeennnnsenss 108
2.21.4 SHA-384-HMAC ... oottt e e e e et e e e e e e e e e e e e e ee e et e eeeeeeeesssssbsb b eeeeeaaaeaeaas 108
2.21.5 SHA-384 KEY dEINVALION. ... oo e e e e e e e e et e eeeeesestieeeeseeessnneeeseessnnaaanes 108
2,22 SH A DT 2 ettt eeeeeeeeeeeeeeeeeeeeeietetetterte—————————————————aaaaaaaaeaees 108
2.22.1 D INMIIONS ...ttt et e e et e e e e e e e e e ettt ettt eaeaaaaaaaaaaaeseeeees 108
2.22.2 SHA-512 digeST ...t ettt et e e ettt aaaaaaeaas 108
2.22.3 General-length SHA-512-HMACot e e eeeeeeeateeeeaeeeeannaenss 109
2.22.4 SHA-ST12-HMAC ... oottt e e et et et e e e e e e e e e e et et e e e eeeeeeaesssesbsb b aeeeeaaaeaaaas 109
2.22.5 SHA-512 KEY dEINHVALION. ... it e e e e e et eeeeeeseetieeeeseeessnneeeseesennaaaees 109
2.283 SHAST2/224 ...t e e e e e e e e e ettt et ettt aaaaeiaaaaeaaaaaeaeieeeees 109
2.23.1 D iNMIIONS ...ttt e e e e e e e ettt ettt eeaaaaaaaaaaaaaesereees 109
2.23.2 SHA-512/224 digEST .. oo ettt et e ettt aaaaeas 109
2.23.3 General-length SHA-512-HMACot e e e eeeeeeesteeeeaeeeennnnenss 110
2.23.4 SHA-512/224-HMAC ... oottt et et et et e e e e e e e e e e e e et et e et eeeeaesssssbab s aaeeeeaaeaeaas 110
2.23.5 SHA-512/224 KEY driVAtION......ceuieitiiiititiiee et e e e e e e e e e e e e ee e e e e ee e et ee ettt aeeeeaeeaeeas 110
2.24 SHAST2/25B ..ot e e e e e e e e e e e et e ettt ettt e bbb aaaaeaeaaaaaaaaaeaeseeeees 110
2.24. 1 D iNMIIONS ...ttt e e e e e e e e et ettt ettt aeiaaaaeaaaaaaaaiereees 110
2.24.2 SHA-512/256 digeST ... cciiiiiiiiiiieeee et ettt et e e e ettt aaaaaeaas 111
2.24.3 General-length SHA-512-HM A C ...ttt e ettt e it e eetat s saseastaiessaeeasssaresnsaresnnns 111
2.24.4 SHA-512/256-HMAC ... oottt ettt et et et e e e e e e e e e e et et e ettt eeeeaesastsbsb s seeeeeaaaaeaas 111
2.24.5 SHA-512/256 KEY deriVatiON.......cueueuieiitiiiiiee et et e e et et e e e e e e ee ettt ee ettt aeeeeaeeaeeaas 111
22D SH A DT 2/t oo e e e e e e e e e eeeeeeeeeeeeeeeetee—e b —— b aaaaaaaaeaas 111
2.25. 1 D INMIIONS ...t ettt e e et e e e e e e e et ettt ettt aeaaaeaaaaaaaeaeaeeeees 111
2.25.2 SHA-5T 2/t dIgEST .. ittt ettt aaaaaeas 112
2.25.3 General-length SHA-512-HM A C ...t e ettt et eeetat s saeeastatessaeeasssaresnsaresnnns 112
2.25.4 SHA-ST12/H-HMAC ..ot e et e ettt et e e e e e e e e e e et et e e e et eeeeeesettsbeb b eeeeeeeeaaeaas 112
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 15 of 212

2.25.5 SHA-512/t KEY eIV ATION. ...t ittt e et e et e ettt esaeeetetesesesessasstasassssasssstasesssasennssarenns 112

2.26 PKCS #5 and PKCS #5-style password-based encryption (PBE)........coiiiuiiiiiiiiiiieeeieieeiiaes 112
2.26.1 DEfINMIIONS ...t ee it e e e et e e e e e e e e e e e eeee et et et re et r bbb aaaaaaaaaas 113
2.26.2 Password-based encryption/authentication mechanism parameters.........ccccceeeeeeevvvvunnnnn.... 113
2.26.3 PKCS #5 PBKDF2 key generation mechanism parameterscoeeeeiiieiiiiiiiiieiiiieieineeeenns 114
2.26.4 PKCS #5 PBKD2 KEY gENEIAtIONceeutiiiiiiiiitie e e e e eee e e eeeeeeesseeeeeseesannaaaaees 116

2.27 PKCS #12 password-based encryption/authentication mechanismsccccccceeeeeeeeieivieennnnne. 116
2.27.1 SHA-1-PBE for 3-key triple-DES-CBCuuiiiiiiiiiiieee et e e e e e 117
2.27.2 SHA-1-PBE for 2-key triple-DES-CBCuuuiiiiieiei it e e e e e 117
2.27.3 SHA-1-PBA fOr SHA-T-HMAC ...ttt ettt e e e e e i e e e e e eeaaaaaeaeeeeas 117

2. 28 S O ittt oottt et ettete—— .t ——.aa. e eeeeeeeeeeeeeeeeettetietttettetettttertnrh—a———————aaaaaaaaeas 117
2.28.1 DI IONS ...t ee et e e et e e e e e e e e e e eeeee et et eeee e et bbb aaaaaaaaaaas 118
2.28.2 SSL MeChaniSM ParamMEterSuu. e e e e e e e eteeeeeeseetaeeeeesessanaeeseesennnnsnss 118
2.28.3 Pre-master KEY geNEIratiON oo e e e e e e e e eeaaeeeanns 120
2.28.4 Master KeY derivationcoouui oo e e ee e ee e eeeaieeeeanns 120
2.28.5 Master key derivation for Diffie-HellmMan ..ot i e e i eereaiseseansaesenns 121
2.28.6 KEY AN MA C QeriVatioN ittt ii it e it e et e ettt e e et sesetaesesassessssstasassssesssssaresssasennnsarenns 122
2.28.7 MD5 MACING IN SSL 3.0 1iiiiiiiiiiiiiiiiiiitiiit et e e et et e e e e e e e e e eeeeeeeeeeeeeeeeeesssesbebasasaaaaeeeaaaaaeaas 123
2.28.8 SHA-1 MACING IN SSL 3.0 1iiiiiiiiiiiiiiiiiititit et e et et et e e e e e e e e e eeeeeeeeeeeeeeaesesbsbebannaaaeeeeaeaeeeaas 123

2.29 TLS 1.2 MECNANISIMS ...t e et e et et et e e e e eeeeeeeeeeeeeeeeeeeeesesssbsbnbnna e aaeaeaaaaaeaas 123
2.29.1 DI IONS ...t et et e e e e e e e e e e e e e e eeeeee ettt eeaerear et aaaaaaaaaaas 124
2.29.2 TLS 1.2 MEChaNi S PaAramM OIS ... ittt e it e ettt e et ee it esestssessesstasessssesssstaressasennssarenns 124
2.29.3 TLS A C .. et e et e e e et e e e e e e e e e e ettt ettt et ttete—a—e b ——————aaaaeiaaaaaaeaaaeaeiereees 127
2.29.4 Master KEY deIVatiON oiue ittt e it e e it e et e ettt esaesesesassesssesssnsasesssaesssssasesssasennssarenns 127
2.29.5 Master key derivation for Diffie-Hellmanccoooiiiiiiiiiee e 128
2.29.6 Key and MAC deHVatiON.cooeuueiei e e e e e e e et eeeeeesaeuieeeeseeessnneeeeseessnnaaanes 129
2.29.7 CKM_TLS12 KEY SAFE DERIVEutututiiiiiiiiie ettt e e e e e e 129
2.29.8 Generic Key Derivation using the TLS PRFuiiiiiiiie e 130

2. 30 WV T L S ettt ettt oo ettt eeeeeeeeeeeeeeeeeeetetetettetteter———a—h—a—a—— e aaaaaaaaeas 130
2.30. 1 DI IONS ...t ee ettt e e e e e e e e e e e e e eeeeee ettt ee et ae et a b a bbb aaaaaaaaaaas 131
2.30.2 WTLS mMecChaniSm ParamEtersS oo e e et e e e eeeeeeieeeeseeessnneeeeseessnnaaaees 131
2.30.3 Pre master secret key generation for RSA key exchange suite........cccceeeeeveeuuieeeeciiiiinnnnnn.., 134
2.30.4 Master secret Key derivationooouoo oo e i eeeaannns 134
2.30.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography................ 135
2.30.6 WTLS PRF (pseudorandom fUNCHION)oiiieeiie e e e e e eereeiiaeeaeas 136
2.30.7 Server Key and MAC deriVationeei oo e e e e eeeee e eeeeseeaannaaaaes 136
2.30.8 Client key and MAC deriVationo.uuuuieiiiie e e e e e e e e eeeeseeesieeeeeseesennaaaaees 137

2.31 Miscellaneous simple key derivation mechaniSmsccoooeiuiiiiiiei e 138
2.3 D NI IONS ...t ee et e e et et e e e e e e e e e e e ee et e et e e et aeaaaaaaaas 138
2.31.2 Parameters for miscellaneous simple key derivation mechanismscccccceeeeeeeveeiuunnnnn... 138
2.31.3 Concatenation of a base key and another K&Yocuuuueeiiiiiiiiieee e 139
2.31.4 Concatenation of a base key and data.........couuuueiiiiiiiiiie e 139
2.31.5 Concatenation of data and @ baSe KeYoooiuuuuiiiiiiieee e e e eeiae e 140
2.31.6 XORING Of @ KEY @NG a8iiuieiiiiiiiiii et e et e et ee et e eesesseesesstasessssasesstasesssasennssanenns 141
2.31.7 Extraction of one Key from another KBt e it e i e et eereasseseanaarenns 141

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 16 of 212

2832 CMS ... 142

2.32.1 D iNMIIONS ...ttt et e et et e e e e e e e ettt ettt eaaaaaaaaaaaaaaeeeeees 143
2.32.2 CMS Signature Mechanism ODJECESeiiiiiiiiie et e e e e s aeeaeas 143
2.32.3 CMS MeChaniSmM ParameterS e e et e e e e e et eeeeeeestaneeeseesennnnsenss 143
2.32.4 GV IS SIONMAIUIE S ..ttt ittt ieit i et e et e et e e e et eeetseeesassessesssesesaeeesas s eessastesasasassssasssnssssnnssasenns 144
2,33 BlOWTISI L1ttt ettt e e e e e e e eeeeeeeeeeeteteteteae e —————— b aaaaaaaaaaas 145
2,331 D iNMIIONS ...t e ettt e e e e e e ettt aeaaaaaaaaaaaaaeaeeeees 146
2.33.2 BLOWFISH secCret KEY ODJECES ...uuu. i e e e e e e e e 146
2.33.3 BlOWFiISN KEBY GBNEIAtiONiiiii ittt i et e et e ettt e et ee et esesasseessnstasessssasssssasesnsasennssasenns 147
2.33.4 BIOWTISN-CBC ... iiiiiiiiiiiieeeeeeeeeee et e e e e e et e e e e e e e e e e eeeeeeeeeeeeeeeeesssbsbs b e e eeeaaeaaeaas 147
2.33.5 Blowfish-CBC With PKCS PaAATING ...uuvututiiiiiiieeeeeeeeee ettt aa e e e e e aeaeaas 147
2.3 T WO S Lttt et et e e e e e e e e eeeeeeeeeeetettteeeer e e ——— bbb aaaaaaaaeaas 148
2.34. 1 D iNMIIONS ...ttt e e e e e e e e et ettt ettt aaeaaaaaeaaaaaaaaeeeeees 148
2.34.2 TwOfish SECIet KEY ODJECES .. .oiuuueei it e e e e e e e e eeeeeeeateeeeseesennaaaaes 148
2.34.3 TWOTiSh KEY GENEIAtIONiiiiiiie e e e e e e et eeeeeeeaeteeeeseeessnneeeeseessnnaaaees 149
2.34.4 TWOTISN “CBC ... ittt et e e e e et et e e e e e e e e e eeeeeeeeeeeeeeaesesbsbsb b aeeeeaaaaaaaas 149
2.34.5 Twofish-CBC with PKCS Paddingccceuueiiiiiiiiiie e e e e e eeeeeeeaaieeeeseesannaaeaes 149
2.35 CAMELLIA .o e e e e e e e e e e eeeeeeeeeteeteeteee—e——————— b aaaaaaaaeaas 150
2.35. 1 D iNMIIONS ...ttt et e e e e e e ettt eaeaaaaaeaaaaaaaeieeeees 150
2.35.2 Camellia SECIet KEY ODJECESouuuu ittt e e e e e e e e eeeeeeesteeeeseesennaaaaees 150
2.35.3 Camellia KEY GENEIAtIONcoeieeeie e e e e e e et eeeeeeeasteeeeseeessnneeeseessnnaaaees 151
2.35.4 CameEllia-ECBcici i e e e e e e et et ettt e et aaaaaaaaas 151
2.35.5 CameEllia-CBCo ciiiiiei ettt e e e e et e e e e e e e e e e e e e ee et ettt et teart bbb aaaaaaeaeaas 152
2.35.6 Camellia-CBC with PKCS Padding.....ccuuuiiiiiiiiiiie e eeeeeeeaieeeeeaeeaiieeeeeseesennaaeaes 152
2.35.7 General-length Camellia-MAC ..ot e e e e e e e eeeesteeeeseeeennnnnss 153
2.35.8 CameEllia-IMAC ... e e e e e e e e ee ettt ittt ettt aaaaaaaaeaas 153
2.36 Key derivation by data encryption - Camelliacooooieuuuuieiiiieee e eeaeeaes 154
2.36.1 D iNMIIONS ...t et e e et e e e e e e e e et ettt ettt eaaaaaaaaaaaaaeaeeeees 154
2.36.2 MeChaniSmM ParamEtersuuuuueie ittt e ettt e et e e sttt e e eeeeeeet e eeeseeenneeaesennnnnaaeaee 154
2,37 AR A et eeieeeeteeeteeeeeeeeeietttettetetttrrr—. .. ————————aaaaaaaaaees 154
2.37 .1 D INIIONS ...ttt e et et e et e e e e e e ettt ettt aeaeaaaaaaaaaaaeaeeeees 155
2.37.2 Aria secCret KEY ODJECES .. .ouun e e e eaeanns 155
2.37.3 ARIA KEY GENEIAtIONiiii e et e e e e e et e ee et eeraeeeeaaeeeaans 156
2.37.4 ARIA-ECB ...ttt e e ettt aeieaaaaaaaaaaaaiereees 156
2.37.5 ARIA-CBC ..ottt e e e e e e e e ee e et ettt ettt e a——— bbb aaeaeieaaaeaaaaaeseiereees 157
2.37.6 ARIA-CBC With PKCS PAATING ..etttititiiiiiiieeeiee ettt s e e e e s e e e e eaeaeaaaeaeeeeas 157
2.37.7 General-length ARIA-MACoouue et e e e et e e e eeeeatteeeeseeessnnaeeeseessnnaaaees 158
2.37.8 ARIA-NMARC ... oot e e e e e e e e e e e e e e e e e ettt ettt ———— i aaeaeaeaaaaaaaaaeaeieeeees 158
2.38 Key derivation by data encryption - ARIA oo e e 158
2.38.1 D iNMIIONS ...t ie et e e e e et e e e e e e et ettt ettt aeiaaaaaaaaaaaaeeeeeees 159
2.38.2 MeChaniSmM ParamEtersuuuuueieiiiiiiiie et e et e ettt e et e e sttt s e eeeeeeet e eeeseeennnaeeaesensnnnaaeaees 159
2.3 SEE D ..ttt et eeeeeeeteeeeeeeeeeeeetettttttetee—.——————h— b aaaaaaaaeas 159
2.39.1 D iNMIIONS ...ttt e et e e e e e e e e ettt ettt aeaaaaaeaaaaaaaeeeeeees 160
2.39.2 SEED SECIet KEY ODJECES ... it e e e et e e e eeeeaaieeeeeeeessneeeeseessnnaaaaees 161
PRSI RS = = B N (N e (= a1 = (o] o I 161
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 17 of 212

2.39.4 SEED-ECBociiiiiiiiiiii it 161

2.39.5 SEED-CBC ... ittt ettt e e e e e e e e e e et ettt ettt aaaeaeaaaeaaaaaaaeiereees 161
2.39.6 SEED-CBC With PKCS PAAAING ..etttttttiiiieeee et eeee ettt e s e e e e e eaaeaeaeaaaeaeeeens 162
2.39.7 General-length SEED-MACuui oottt e e e e eeeeteeeeeseeessneeeeseessnnaaaaees 162
2.39.8 SEED-MAC ... e e e e e et ettt ettt ettt aeaeaaaeaaaaaeaeseeeees 162
2.40 Key derivation by data encryption - SEED..........c..uieiiiiiiie e e e e eaeeaaes 162
2.40.1 D iNMIIONS ... ie et e e et e et et e e e e e e e e et et et ettt e ettt e eaeaeaaaaaaaaaeaeieeeees 162
2.40.2 MeChaniSmM ParamEtersuuuuuei it e ettt e ettt et e e sttt e e eeeeeent s eeeteeennaeeaesensnnnaaaaees 162
2.4 T P etttk ettt ettt ittt —— b eeeeeeeteeeteeeeeeeeeietetettetetttterra— e aaaaaaaaeas 163
P R I S oY= (o [e A=) VA [\ PP 163
2.41.2 Case 1: Generation Of OTP VAIUESuuuuuuuuiiiieieee ettt e e e e e e e 163
2.41.3 Case 2: Verification of provided OTP VAIUES.......ccooiiiueiiee e e eereeiiaeeaeas 164
2.41.4 Case 3: Generation Of OTP KEYSccocuuuiiiiiiiiitie et e e ettt e e e eeeeaeeeeeeeeeesteeeeseesennaaaaees 164
oy N O o] o) =T 165
2.41.6 OTP-related NOtIfiCAtiONSiiiiiieiitiiiit ettt e e e e e aeeeaas 167
2.41.7 OTP MECNANISINIS ...ttt ee e e e e et et e e e e eeeeeeeeeeeeeeeeeeesesssesbsbnsssnaaeeeeaaaaaeaas 168
2.41.8 RSA SECUID ...t ettt ettt e e e e e e e e e e e e e et et e e e eeeeeeeesesbsbsb s aeeeeeaeeaaaas 173
2.41.9 RSA SeCUID KEY GBNEBIAtIONiieiiiiiti ittt e et e et e ettt eeetisesessaesassasensatesssaeensssasesnsaresnnns 174
2.41.10 RSA SecurlD OTP generation and validation ..o e s eeeenns 174
241,11 REIUMN VAIUES ...t e et e et et e e e e e e e e e e et et et e et eeeeaess st sbs bt eeeeeeaaeaeaas 174
241,12 OATH HOT P ittt e e e e et e e e e e e e e e e e e et et e e e eeeeeeaesssssbsb s aeeeeeaaeaeaas 174
2.41.13 ACHVIAENTEY ACT L. ittt ettt e et et e et e e e e e e e et et e et eeeeeeeeeasesbsb e aeeeeeeaaaeaas 176
2.41.14 ACTI OTP generation and Validation..........coiiue it ee e e ee e teieiaeeiessasessasennssarenns 177
282 T Kl P Lttt ettt ettt eeeeeeeeeeeeeeeeetetettttttee e .————a—h— b aaaaaaaaeeas 177
2.42.1 PrinCIpIes Of O P Eration .. .ou.. ittt i it e it e et e ettt tesaesasessasassssessessasessssesssstaressasennssarenns 177
2.42.2 IMIECNANISINIS ..t tttttie et ettt ettt ettt ettt ettt e et eet e e e e eee et e e e et eee e e e et eee b e e et eernn e eeeterrnnaaaaaes 178
2.42.3 D iNMIIONS ...t eie it e e e e e e e e ettt aeaaaaaaaaaaaaaeiereees 178
2.42.4 CT-KIP MechaniSm pParameEtersuuuuieiiiiiiiee et e e e e e e eeeerestineeeseesennnnsenss 178
Py RN O B (]l NV e [T 5 \V7= L (o) o I 179
2.42.6 CT-KIP key Wrap and KEY UNWIADocuuueiieee it eeeee et eeeeeesastieeeeseeessnneeeeseesannaaaanes 179
2.42.7 CT-KIP Signature generationccooeuuueiei i e e e eeeeeeeeeeteeeeeesestaneeeseesennnnssass 179
2.8 GO S T .ttt ettt ettt ettt e ettt ettt ——a— . eeeeeeeeeeeeeeeeeeetetetttettetttteterra—h—a——————aaaaaaaaaeas 179
244 GOST 28T47-89 ...iiii ittt e et et e et et e e e e e e e e e et et ettt ettete et e b aaaeaeaeaaaaaaaaaerereees 180
2. 44,1 D iNMIIONS ...t eie ittt e e e e e e e e e e et et ettt aaeaeaaaaaaaaaeaeiereees 180
2.44.2 GOST 28147-89 secret KeY ODJECESuuueiiiiieiie e e e e e e e s eeaiaeeaeas 180
2.44.3 GOST 28147-89 domain parameter ObJECESieiiiieiee e 181
2.44.4 GOST 28147-89 KEY GENEIAtiONcceoeuiieie et e e e e e eeeeeeesteeeeseeeeannnsenss 182
2.44.5 GOST 28147-89-ECBcciiiiiiiiiiiitit ettt et et e e e e e e e e e e et et et et e ee et st st aeeeeaeeaaeaas 182
2.44.6 GOST 28147-89 encryption mode eXcept ECBccuuuieiiiiiiiiieie e 183
2.44.7 GOST 28147-89-MACottt e et e e et e e e e e e e e e e et et e et eeeeeeeesssbsbsb s seeeeeaaaaeaas 184
2.44.8 D iNMIIONS ...t e it e e e e e e e e e e et ettt ettt aeaaaaaaaaaaaaaeiereees 185
2.44.9 GOST R 34.11-94 domain parameter ObJECESoiiieeeee e 185
2.44.10 GOST R 34.11-94 digeSt...ciiiiiiiiiiiiiiiitite et e et et et e e e e e e e e et et ettt ee ettt aeeeeaeaaaeas 186
2.44.11 GOST R 34.11-94 HMAC ...ttt e et e et e e e e e e et ettt et e te bbbt seeeeeeeaaeas 186
2.45 GOST R B4.10-200 ... cieeeeeeeeeieieeeeeee ettt e e e e e e e e et e e e e eeeeeeeeeeeeeeeeeeeeesesesssbsbsbasnaeaaeaeaaaaaeaas 186
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 18 of 212

28D DB NI O S . ettt ittt it e et ettt ettt ettt eeetteeeeiaesesaeeeasssessaatesesaeesanitesenntotenntteennterentarennnns 186

2.45.2 GOST R 34.10-2001 publiC KEY ODJECES ...uuuuiieeeieeeei et 187
2.45.3 GOST R 34.10-2001 private key ObjJECES......couuueei e e e aeeaas 188
2.45.4 GOST R 34.10-2001 domain parameter 0bJecCtS.........uuueeiiiiiiiieee e 190
2.45.5 GOST R 34.10-2001 mechanism parametersoueeuuuee e eeeeeeieeeeeeseeiiaeeaeas 191
2.45.6 GOST R 34.10-2001 key pair generation...........ceeeeieeeiee e e e e e eeieeeeeseeiinaaeaeas 193
2.45.7 GOST R 34.10-2001 Without RASHINGuueuuiiiiiiiiiiiee e 193
2.45.8 GOST R 34.10-2001 with GOST R 34.11-94iiiiiieii e 193
2.45.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001cceeeeeveeeeennn.... 194

3 PKCS #11 Implementation CoONfOrMEaNCE i e e e e et e e eeeeeseieeeeeeeesennss 195
Appendix A. ACKNOWIEAGMENTSii et e e e e e e e e et eeetieeeitneeeeeiaeeennaaees 196
Appendix B. Manifest CoNStaNES. . ..u.. e e e e e e e e e e eesseeteeeeeeeesteeeeeeernnnaaaaes 198
B.1 OTP DEfiNIfIONS ...eiiiitiiiiitiiiititeeeee e e et et e et et et e e e e e e ettt ettt ittt eetttetet st aeaaeaeseaaaaeaeaeasesesssesssesessssssnsnsnnns 198
S @] o) [=Yo3 f o] b= oY= S 198
B3 KB Y I DS . ittt eeeeieees..eesi.seessseessssieesssseesssseessessessessesesssececeneees 198
S Y/ =Yed g =T TS 0 1P PP PP PP PPPPIRt 199
RN 4] 01U | = PP P PP PPPPIRt 206
B.6 AttribUte CONSIANTS. ... iiititi ittt ettt ettt e e e ettt e e e e e e e e er e e e e e e e 208
B.7 Other CONSEANTS ...oiiiiiiiitititttt e e e oottt ettt eeaeeeteaeaeeaeaaaaesesesesesesessesssssnsnnes 209
B.8 NOtIfICAIONSiiiiiiiiieeeietitit et e ettt e e e e e e e eeeeeeeaeeaeeeterererrrebeberrnrnrnnnnan 209
B.O RETUIM VAIUES ..ottt ettt ettt ettt et et ettt seeeeseett s e e e eee b e e eeesenbnnaeeaeeennnaaeens 209
APPENAIX C. REVISION HiS O ...ttt ittt ittt ie ettt ettt et ettt eeetaessesassessstaessssaesssaeessaesasstesssssaessssasnnsssares 212
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 19 of 212

1 Introduction

This document defines mechanisms that are anticipated to be used with the current version of PKCS #11.

All text is normative unless otherwise labeled.

‘ 1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in [RFC2119]

‘ 1.2 Definitions

For the purposes of this standard, the following definitions apply. Please refer to the [PKCS#11-Base] for

further definitions:
AES

CAMELLIA

BLOWFISH

CBC

CDMF

CMAC

CcCvs

CT-KIP

DES
DSA
EC
ECB
ECDH
ECDSA

ECMQV

pkcs11-curr-v2.40-esprdd2

Advanced Encryption Standard, as defined in FIPS PUB 197.
The Camellia encryption algorithm, as defined in RFC 3713.

The Blowfish Encryption Algorithm of Bruce Schneier,
www.schneier.com.

Cipher-Block Chaining mode, as defined in FIPS PUB 81.
Commercial Data Masking Facility, a block encipherment method
specified by International Business Machines Corporation and
based on DES.

Cipher-based Message Authenticate Code as defined in [NIST
sp800-38b] and [RFC 4493].

Cryptographic Message Syntax (see RFC 2630)

Cryptographic Token Key Initialization Protocol (as defined in [[CT-
KIP])

Data Encryption Standard, as defined in FIPS PUB 46-3.
Digital Signature Algorithm, as defined in FIPS PUB 186-2.
Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB 81.
Elliptic Curve Diffie-Hellman.

Elliptic Curve DSA, as in ANSI X9.62.

Elliptic Curve Menezes-Qu-Vanstone

23-Apritcsprd03

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 20 of 212

GOST 28147-89

GOSTR 34.11-94

GOST R 34.10-2001

pkcs11-curr-v2.40-esprdd2

v
MAC
mMQv

OAEP

PKCS

PRF
PTD
RSA

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SSL

SO
TLS
WIM

WTLS

The encryption algorithm, as defined in Part 2 [GOST 28147-89]
and [RFC 4357] [RFC 4490], and RFC [4491].

Hash algorithm, as defined in [GOST R 34.11-94] and [RFC 4357],
[RFC 4490], and [RFC 4491].

The digital signature algorithm, as defined in [GOST R 34.10-2001]
and [RFC 4357], [RFC 4490], and [RFC 4491].

Initialization Vector.

Message Authentication Code.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.
Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

The (revised) Secure Hash Algorithm with a 160-bit message digest,
as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 224-bit message digest, as
defined in RFC 3874. Also defined in FIPS PUB 180-2 with Change
Notice 1.

The Secure Hash Algorithm with a 256-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message digest, as
defined in FIPS PUB 180-2.

The Secure Sockets Layer 3.0 protocol.
A Security Officer user.

Transport Layer Security.

Wireless Identification Module.

Wireless Transport Layer Security.

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 21 of 212

1.3 Normative References

[ARIA]

[BLOWFISH]

[CAMELLIA]

[CDMF]

[DH]

[FIPS PUB 81]
[FIPS PUB 186-4]
[FIPS PUB 197]

[GOST]
2013. —

[MD2]
[MD5]

[OAEP]

[PKCS #11-Base]

[PKCS #11-Hist]

[PKCS #11-Prof]

[RFC2119]

[RIPEMD]

[SEED]

pkcs11-curr-v2.40-esprdd2

National Security Research Institute, Korea, “Block Cipher Algorithm ARIA”,
URL: http://tools.ietf.org/html/rfc5794
B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), December 1993.——
URL: https://www.schneier.com/paper-blowfish-fse.html
M. Matsui, J. Nakajima, S. Moriai. A Description of the Camellia Encryption
Algorithm, April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt
Johnson, D.B The Commercial Data Masking Facility (CDMF) data privacy
algorithm, March 1994.
URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5389557

W. Diffie, M. Hellman. New Directions in Cryptography. Nov, 1976.
URL: http://www-ee.stanford.edu/~hellman/publications/24.pdf
NIST. FIPS 81: DES Modes of Operation. December 1980.

URL: http://csrc.nist.gov/publications/fips/fips81/fips81.htm

NIST. FIPS 186-4: Digital Signature Standard. July 2013.

URL: http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

NIST. FIPS 197: Advanced Encryption Standard. November 26, 2001.—
URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

V. Dolmatov, A. Degtyarev. GOST R. 34.11-2012: Hash Function. -August
URL: http://tools.ietf.org/html/rfc6986

B. Kaliski. RSA Laboratories. The MD2 Message-Digest Algorithm. April, 1992.—
URL: http://tools.ietf.org/html/rfc1319

RSA Data Security. R. Rivest. The MD5 Message-Digest Algorithm. April, 1992.
URL: http://tools.ietf.org/html/rfc1319

M. Bellare, P. Rogaway. Optimal Asymmetric Encryption — How to
Encrypt with RSA.———— Nov 19, 1995.

-~ URL:
http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf

PKCS #11 Cryptographic Token Interface Base Specification Version 2.40.
Latest version.

URL: http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-
v2.40.html.

PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification
Version 2.40. Latest version.

URL: http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkes11-hist-
v2.40.html.

PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Latest version.
URL: http://docs.oasis-open.org/pkcs11/pkes11-profiles/v2.40/pkcs11-profiles-
v2.40.html.

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, March 1997.

URL: http://www.ietf.org/rfc/rfc2119.txt.

H. Dobbertin, A. Bosselaers, B. Preneel. The hash function RIPEMD-160, Feb
13, 2012.

URL: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

KISA. SEED 128 Algorithm Specification. Sep 2003.

URL:
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128 S
pecification_english_M.pdf

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 22 of 212

[SHA-1]
[SHA-2]

[TWOFISH]

NIST. FIPS 180-4: Secure Hash Standard. March 2012.
URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
NIST. FIPS 180-4: Secure Hash Standard. March 2012.
URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
B. Schneier, J. Kelsey, D. Whiting, C. Hall, N. Ferguson. Twofish: A 128-Bit Block
Cipher. June 15, 1998.-
URL: https://www.schneier.com/paper-twofish-paper.pdf

1.4 Non-Normative References

[CAP-1.2]
[AES KEYWRAP]

[ANSI C]
[ANSI X9.31]

[ANSI X9.42]

[ANSI X9.62]

| [ANSI X9.63]

[CT-KIP]

‘ [CCIPP]
| [NIST AES CTS]

‘ [PKCS #11-UG]

pkcs11-curr-v2.40-esprdd2

Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard.

URL: http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-0s.html

AES Key Wrap Specification (Draft)

URL: http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf.
ANSI/ISO. American National Standard for Programming Languages — C. 1990.

Accredited Standards Committee X9. Digital Signatures Using Reversible Public
Key Cryptography for the Financial Services Industry (rDSA). 1998.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography. 2003.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography. 20661 Ll
Eedlbecatere s ne el coc sl sone a0 00 012001

URL:
http://webstore.ansi.org/RecordDetail.aspx?sku=X9.63-2011

RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,
December 2005.
URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.
CCPP-STRUCT-VOCAB, G. Klyne, F. Reynolds, C. , H. Ohto, J. Hjelm, M. H.
Butler, L. Tran, Editors, W3C Recommendation, 15 January 2004,
URL: http://www.w3.0rg/TR/2004/REC-CCPP-struct-vocab-
20040115/ Latest version available at
http://www.w3.org/TR/CCPP-struct-vocab/

National Institute of Standards and Technology, Addendum to NIST Special
Publication 800-38A, “Recommendation for Block Cipher Modes of Operation:
Three Variants of Ciphertext Stealing for CBC Mode”
URL: http://csrc.nist.gov/publications/nistpubs/800-
38a/addendum-to-nist_sp800-38A.pdf

PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Latest
version.
URL: http://docs.oasis-open.org/pkcs11/pkes11-ug/v2.40/pkes11-ug-v2.40.html.

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 23 of 212

| pkcs11-curr-v2.40-esprdb2
Standards Track Work Product

Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF

J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap

Housley, “Using Advanced Encryption Standard (AES) Counter Mode With IPsec

Matsui, et al, A Description of the Camellia Encryption Algorithm,” IETF RFC

Whiting, D., Housley, R., and N. Ferguson, “Counter with CBC-MAC (CCM)",

Smit et al, “A 224-bit One-way Hash Function: SHA-224,” IETF RFC 3874, June

Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June

South Korean Information Security Agency (KISA) “The SEED Encryption

URL: ftp://ftp.rfc-editor.org/in-

Housley, R., “Using Advanced Encryption Standard (AES) CCM Mode with
IPsec Encapsulating Security Payload (ESP),” IETF RFC 4309, December

V. Popov, I. Kurepkin, S. Leontiev “Additional Cryptographic Algorithms for Use
with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R

S. Leontiev, Ed. G. Chudov, Ed. “Using the GOST 28147-89, GOST R 34.11-
94,GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic

S. Leontiev, Ed., D. Shefanovski, Ed., “Using the GOST R 34.10-94, GOST R
34.10-2001, and GOST R 34.11-94 Algorithms with the Internet X.509 Public Key

Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20,

Standards for Efficient Cryptography Group (SECG). Standards for Efficient
Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters.

[RFC 2865]
RFC2865, June 2000.
URL: http://www.ietf.org/rfc/rfc2865.txt.
[RFC 3394]
Algorithm, September 2002.——
URL: http://www.ietf.org/rfc/rfc3394.txt.
[RFC 3686]
Encapsulating Security Payload (ESP),” IETF RFC 3686, January 2004.
URL: http://www.ietf.org/rfc/rfc3686.txt.
[RFC 3717]
3717, April 2004.
URL: http://www.ietf.org/rfc/rfc3713.txt.
[RFC 3610]
IETF RFC 3610, September 2003.
URL: http://www.ietf.org/rfc/rfc3610.txt
[RFC 3874]
2004.
URL: http://www.ietf.org/rfc/rfc3874.ixt.
[RFC 3748]
2004.
URL: http://www.ietf.org/rfc/rfc3748.ixt.
[RFC 4269]
Algorithm”, December 2005.
notes/rfc4269.txt
[RFC 4309]
2005.
URL: http://www.ietf.org/rfc/rfc4309.ixt
[RFC 4357]
34.11-94 Algorithms”, January 2006.
[RFC 4490]
Message Syntax (CMS)”, May 2006.
[RFC 4491]
Infrastructure Certificate and CRL Profile”, May 2006.
[RFC 4493] J. Song et al. RFC 4493: The AES-CMAC Algorithm. June 2006.
URL: http://www.ietf.org/rfc/rfc4493.ixt
[SEC 1]
2000.
[SEC 2]
Version 1.0, September 20, 2000.
[TLS]

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246,
January 1999. http://www.ietf.org/rfc/rfc2246.txt, superseded by [RFC4346]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.1", RFC 4346, April 2006. http://www.ietf.org/rfc/rfc4346.txt, which was
superseded by [5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 24 of 212

[WIM]

[WPKI]

[WTLS]

[X.500]

[X.509]

[X.680]

[X.690]

pkcs11-curr-v2.40-esprdd2

URL: http://www.ietf.org/rfc/rfc5246.txt
WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-260-wim-20010712-a.pdf

Wireless Application Protocol: Public Key Infrastructure Definition. — WAP-217-
WPKI-20010424-a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-217-wpki-20010424-a.pdf

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-20010406-
a. April 2001.

URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc
Name=/wap/wap-261-wtls-20010406-a.pdf

ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. February 2001.
Identical to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. March 2000.
Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. Information Technology — ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 2002.

Identical to ISO/IEC 8825-1

Standards Track Work Product

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 25 of 212

2 Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11
implementations MAY use one of more mechanisms defined in this document.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a subset of
the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some
operations supports any other mechanism for any other operation (or even supports that same
mechanism for any other operation). For example, even if a token is able to create RSA digital signatures
with the CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can also
perform RSA encryption with CKM_RSA_PKCS.

Each mechanism description is be preceded by a table, of the following format, mapping mechanisms to
API functions.

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest & Derive
Decrypt Verify VR’ Key/ Unwrap
Key
Pair

1 SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the CK_MECHANISM_INFO structure, then those fields have no

meaning for that particular mechanism.

2.1 RSA
Table 1, Mechanisms vs. Functions
Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest & Derive
Decrypt Verify VR Key/ Unwrap
! Key
Pair
CKM_RSA_PKCS_KEY_PAIR_GEN v
CKM_RSA_X9 _31_KEY_PAIR_GEN v
CKM_RSA_PKCS v? v v v
CKM_RSA_PKCS_OAEP v? v
CKM_RSA_PKCS_PSS v?
CKM_RSA_9796 v v
CKM_RSA_X_ 509 v? v v v
CKM_RSA_X9 31 v
CKM_SHA1_RSA_PKCS v
CKM_SHA256_RSA_PKCS v
CKM_SHA384_RSA_PKCS v
CKM_SHA512_RSA_PKCS v
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 26 of 212

CKM_SHA1_RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA1_RSA_X9_31

CKM_RSA_PKCS_TPM_1_1 v? v
CKM_RSA_PKCS OAEP_TPM_1_1 v? v

ASRNENENEN

2.1.1 Definitions

This section defines the RSA key type “CKK_RSA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of RSA key objects.

Mechanisms:
CKM_RSA _PKCS_KEY_PAIR_GEN
CKM_RSA_PKCS
CKM_RSA_ 9796
CKM_RSA_X 509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA224 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMD128_RSA_PKCS
CKM_RIPEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP
CKM_RSA X9 31_KEY_PAIR_GEN
CKM_RSA X9 31
CKM_SHA1_RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHA1_RSA PKCS_PSS
CKM_SHA224 RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_RSA PKCS_TPM_1_1
CKM_RSA PKCS_OAEP_TPM_1_1
CKM_RSA_AES_KEY_WRAP

2.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.
The following table defines the RSA public key object attributes, in addition to the common attributes
defined for this object class:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 27 of 212

Table 2:2, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS™ Big integer Modulus n
CKA_MODULUS_BITS*® CK_ULONG Length in bits of modulus n
CKA_PUBLIC_EXPONENT’ Big integer Public exponent e

- Refer to [PKCS #11-Base] table 10 for footnotes

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more

information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK OBJECT CLASS class
CK_KEY TYPE keyType
CK_UTF8CHAR label[]
CK _BYTE modulus/[]
CK BYTE exponent][] {
CK _BBOOL true CK_TRU
CK ATTRIBUTE template]|
{CKA CLASS, &class,
{CKA_KEY TYPE, &key
{CKA_TOKEN, &true,
{CKA_LABEL, label,
{CKA_WRAP, &true, s
{CKA_ENCRYPT, &true

{.

{CKA_ MODULUS, modulus,

{CKA PUBLIC EXPONEN
}s

2.1.3 RSA private key objects

CKO_ PUBLIC KEY;

CKK_RSA;

“An RSA public key object”;
Y

e}

E;
]

{
sizeof (class) },
Type, sizeof (keyType) },
sizeof (true) },
sizeof (label) -1},
izeof (true) },
sizeof (true) },
sizeof (modulus) },
exponent, sizeof (exponent) }

14

T,

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.
The following table defines the RSA private key object attributes, in addition to the common attributes

defined for this object class:
Table 3, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS™*® Big integer | Modulus n
CKA_PUBLIC_EXPONENT*® Big integer | Public exponent e
CKA_PRIVATE_EXPONENT"*®’ Big integer | Private exponent d
CKA_PRIME_1*%7 Big integer | Prime p

CKA_PRIME_2*%7 Big integer | Prime q
CKA_EXPONENT_1*%7 Big integer | Private exponent d modulo p-1
CKA_EXPONENT_2*%/ Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT*®’ Big integer | CRT coefficient g mod p

- Refer to [PKCS #11-Base] table 10 for footnotes

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for

more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above

attributes, which can assist in performing

rapid RSA computations. Other tokens might store only the

CKA_MODULUS and CKA_PRIVATE_EXPONENT values. Effective with version 2.40, tokens MUST

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 28 of 212

also store CKA_PUBLIC_EXPONENT. This permits the retrieval of sufficient data to reconstitute the
associated public key.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token generates an
RSA private key, it stores whichever of the fields in Table 3 it keeps track of. Later, if an application asks
for the values of the key’s various attributes, Cryptoki supplies values only for attributes whose values it
can obtain (i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails). Note
that a Cryptoki implementation may or may not be able and/or willing to supply various attributes of RSA
private keys which are not actually stored on the token. E.g., if a particular token stores values only for
the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is
certainly able to report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this extra
computation. The only attributes from Table 3 for which a Cryptoki implementation is required to be able
to return values are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 3 are supplied to the
object creation call than are supported by the token, the extra attributes are likely to be thrown away. If
an attempt is made to create an RSA private key object on a token with insufficient attributes for that
particular token, then the object creation call fails and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute specified.
This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK OBJECT CLASS class = CKO_ PRIVATE KEY;
CK_KEY TYPE keyType = CKK RSA;
CK UTF8CHAR label[] = “An RSA private key object”;
CK BYTE subject[] = {...};
CK BYTE id[] = {123};
CK BYTE modulus([] = {...};
CK BYTE publicExponent[] = {...};
CK BYTE privateExponent[] = {...};
CK BYTE primel[] = {...};
CK BYTE primez2[] = {...};
CK BYTE exponentl[] = {...};
CK BYTE exponentZ2[] = {...};
CK BYTE coefficient[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA MODULUS, modulus, sizeof (modulus)},
{CKA_PUBLIC_EXPONENT, publicExponent,
sizeof (publicExponent) },
{CKA_PRIVATE EXPONENT, privateExponent,

sizeof (privateExponent) },

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 29 of 212

{CKA PRIME 1, primel, sizeof(primel)},

{CKA PRIME 2, prime2, sizeof (prime2)},

{CKA EXPONENT 1, exponentl, sizeof (exponentl)},

{CKA EXPONENT 2, exponent2, sizeof (exponent2)},

{CKA COEFFICIENT, coefficient, sizeof (coefficient)}
3

2.1.4 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key pair generation mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key. The CKA_PUBLIC_EXPONENT may be omitted in which case the
mechanism shall supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001 cannot be used by
the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may generate an error
if this attribute is omitted from the template. Experience has shown that many implementations of 2.11
and prior did allow the CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and
behaved as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot use the supplied
exponent value. It contributes the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it
may also contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT. Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys support) may
also be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted CKM_RSA_X9_31_KEY_PAIR_GEN, is a key
pair generation mechanism based on the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and public
exponent, as specified in the CKA_MODULUS_BITS and CKA_PUBLIC_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the following attributes
to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT.
Other attributes supported by the RSA public and private key types (specifically, the flags indicating which
functions the keys support) may also be specified in the templates for the keys, or else are assigned
default initial values. Unlike the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, this mechanism is
guaranteed to generate p and q values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 30 of 212

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats initially defined in PKCS #1 v1.5. It supports
single-part encryption and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the part of PKCS #1
v1.5 that involves RSA; it does not compute a message digest or a Digestinfo encoding as specified for
the md2withRSAEncryption and md5withRSAEncryption algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 4, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length

C_Encrypt' RSA public key < k-11 k block type 02
C_Decrypt’ RSA private key k < k-11 block type 02
C_Sign' RSA private key < k-11 k block type 01
C_SignRecover RSA private key < k-11 k block type 01
C_Verify' RSA public key < k-1, K N/A block type 01
C_VerifyRecover RSA public key k = k-11 block type 01
C_WrapKey RSA public key < k-11 k block type 02
C_UnwrapKey RSA private key k = k-11 block type 02

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.7 PKCS #1 RSA OAEP mechanism parameters
¢ CK_RSA_PKCS_MGF_TYPE; CK_RSA_PKCS_MGF_TYPE_PTR

CK_RSA_PKCS_MGF_TYPE is used to indicate the Message Generation Function (MGF) applied to a
message block when formatting a message block for the PKCS #1 OAEP encryption scheme or the
PKCS #1 PSS signature scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS MGF TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined functions.
Table 5, PKCS #1 Mask Generation Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 31 of 212

Source Identifier Value

CKG_MGF1_SHA1 0x00000001UL
CKG_MGF1_SHA224 0x00000005UL
CKG_MGF1_SHA256 0x00000002UL
CKG_MGF1_SHA384 0x00000003UL
CKG_MGF1_SHA512 0x00000004UL

CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_ MGF_TYPE.

¢ CK_RSA_PKCS_OAEP_SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source of the encoding parameter
when formatting a message block for the PKCS #1 OAEP encryption scheme. It is defined as follows:

typedef CK ULONG CK RSA PKCS OAEP SOURCE TYPE;

The following encoding parameter sources are defined in PKCS #1. The following table lists the defined
sources along with the corresponding data type for the pSourceData field in the
CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 6, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ_DATA_SPECIFIED 0x00000001UL | Array of CK_BYTE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatalen must be zero.

CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

¢ CK_RSA_PKCS_OAEP_PARAMS; CK_RSA_PKCS_OAEP_PARAMS_PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS OAEP PARAMS {
CK _MECHANISM TYPE hashAlg;
CK_RSA PKCS MGF TYPE mgf;
CK_RSA PKCS OAEP SOURCE TYPE source;
CK _VOID PTR pSourceData;
CK _ULONG ulSourceDatalen;

} CK_RSA PKCS OAEP PARAMS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to calculate
the digest of the encoding parameter

mgf mask generation function to use on the encoded block
source source of the encoding parameter
pSourceData data used as the input for the encoding parameter source

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 32 of 212

ulSourceDatal en length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS_PTR is a pointer to a CK_RSA_PKCS_OAEP_PARAMS.

2.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the OAEP block format defined in PKCS #1.
It supports single-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus, and hLen is the output length of the message digest algorithm
specified by the hashAlg field of the CK_RSA_PKCS_OAEP_PARAMS structure.

Table 7, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input length Output
length
C_Encrypt' RSA public key < k-2-2hLen k
C_Decrypt’ RSA private key k < k-2-2hLen
C_WrapKey RSA public key < k-2-2hLen k
C_UnwrapKey RSA private key k < k-2-2hLen

1 Single-part operations only.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.9 PKCS #1 RSA PSS mechanism parameters

¢ CK_RSA_PKCS_PSS_PARAMS; CK_RSA_PKCS_PSS_PARAMS_PTR

CK_RSA_PKCS_PSS_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:
typedef struct CK RSA PKCS PSS PARAMS ({
CK _MECHANISM TYPE hashAlg;
CK_RSA PKCS MGF TYPE mgf;
CK_ULONG sLen;
} CK_RSA PKCS PSS PARAMS;

The fields of the structure have the following meanings:

hashAlg hash algorithm used in the PSS encoding; if the signature
mechanism does not include message hashing, then this value
must be the mechanism used by the application to generate the
message hash; if the signature mechanism includes hashing, then

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 33 of 212

this value must match the hash algorithm indicated by the signature
mechanism

mgf mask generation function to use on the encoded block

slLen length, in bytes, of the salt value used in the PSS encoding; typical
values are the length of the message hash and zero

CK_RSA_PKCS_PSS PARAMS_PTR is a pointer to a CK_RSA_PKCS_PSS_PARAMS.

2.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism based on the
RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It supports single-part
signature generation and verification without message recovery. This mechanism corresponds only to the
part of PKCS #1 that involves block formatting and RSA, given a hash value; it does not compute a hash
value on the message to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be less than or
equal to k*2-hLen and hLen is the length of the input to the C_Sign or C_Verify function. k* is the length
in bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple
of 8, in which case k™ is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA.

Table 8, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input length Output
length

C_Sign’ RSA private key hLen k

C_Verify1 RSA public key hLen, k N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.11 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

* Datais converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

* A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 34 of 212

Table 9, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length
C_Sign’ RSA private key < |kI2] k
C_SignRecover RSA private key < |k/2] k
C_Verify' RSA public key < |ki2], K N/A
C_VerifyRecover RSA public key k < | k2]

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption; single-part signatures
and verification with and without message recovery; key wrapping; and key unwrapping. All these
operations are based on so-called “raw” RSA, as assumed in X.509.

“‘Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant byte first,
applying “raw” RSA exponentiation, and converting the result to a byte string, most-significant byte first.
The input string, considered as an integer, must be less than the modulus; the output string is also less
than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply them when
unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this mechanism,
padding should be performed by prepending plaintext data with 0-valued bytes. In effect, to encrypt the
sequence of plaintext bytes by b, ... by (n = k), Cryptoki forms P=2""b,+2"?b,+...+b,. This number must
be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus. Decryption of a k-byte
ciphertext C is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is to be used to
produce an unwrapped key, then however many bytes are specified in the template for the length of the
key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is specified in
X.5009.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus and is
numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if ciphertext is
supplied which has the same length as the RSA modulus and is numerically at least as large as the
modulus).

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 10, X.509 (Raw) RSA: Key And Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 35 of 212

Function Key type Input Output length
length

C_Encrypt' RSA public key <k k

C_Decrypt’ RSA private key k k

C_Sign' RSA private key <k k

C_SignRecover RSA private key <k k

C_Verify' RSA public key <k, K N/A

C_VerifyRecover RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or ISO/IEC
9796 block formats.

2.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA_X9_31, is a mechanism for single-part signatures
and verification without message recovery based on the RSA public-key cryptosystem and the block
formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The trailer field must
be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings. Accordingly,
the following transformations are performed:

* Datais converted between byte and bit string formats by interpreting the most-significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least-significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8).

* A signature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; it is converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus. For all operations, the k value must be at least
128 and a multiple of 32 as specified in ANSI X9.31.

Table 11, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign’ RSA private key < k-2 k

C_Verify' RSA public key < k-2, K N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 36 of 212

2.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-
384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described initially in PKCS #1 v1.5 with the object identifier
md2WithRSAEncryption, and as in the scheme RSASSA-PKCS1-v1_5 in the current version of PKCS #1,
where the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier md5WithRSAEncryption.
The PKCS #1 v1.5 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs
the same operations, except that it uses the hash function SHA-1 with object identifier
sha1WithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS, and CKM_SHA512_RSA_PKCS respectively,
perform the same operations using the SHA-256, SHA-384 and SHA-512 hash functions with the object
identifiers sha256WithRSAEncryption, sha384WithRSAEncryption and sha512WithRSAEncryption
respectively.

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128_RSA_PKCS and CKM_RIPEMD160_RSA_PKCS respectively, perform the same
operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 v1.5 RSA
signature with MD2 and PKCS #1 v1.5 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 v1.5 RSA signature with SHA-1 mechanism, k must be at least 31, and so on for other
underlying hash functions, where the minimum is always 11 bytes more than the length of the hash value.

Table 12, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, kK N/A block type 01

2 Data length, signature length.

For these mechanisms, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.
2.1.15 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signature with SHA-224 mechanism, denoted CKM_SHA224 RSA_PKCS,
performs similarly as the other CKM_SHAX_RSA_PKCS mechanisms but uses the SHA-224 hash
function.

2.1.16 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted
CKM_SHA224 RSA_PKCS_PSS, performs similarly as the other CKM_SHAX_RSA_PSS mechanisms
but uses the SHA-224 hash function.

2.1.17 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-
512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS_PSS,
performs single- and multiple-part digital signatures and verification operations without message

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 37 of 212

recovery. The operations performed are as described in PKCS #1 with the object identifier id-RSASSA-
PSS, i.e., as in the scheme RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms, denoted
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS_PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the SHA-256, SHA-
384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must
be less than or equal to k*-2-hLen where hLen is the length in bytes of the hash value. k™ is the length in
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a multiple of
8, in which case k* is one less than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table. In the table, k
is the length in bytes of the RSA modulus.

Table 13, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, kK N/A

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.18 ANSI X9.31 RSA signature with SHA-1

The ANSI X9.31 RSA signature with SHA-1 mechanism, denoted CKM_SHA1_RSA_X9_31, performs
single- and multiple-part digital signatures and verification operations without message recovery. The
operations performed are as described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all operations, the k value
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 14, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign RSA private key any k
C_Verify RSA public key any, k° N/A

2 Data length, signature length.

For these mechanisms, the uiIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

2119 TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA

The TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS_TPM_1_1,is a
multi-use mechanism based on the RSA public-key cryptosystem and the block formats initially defined in
PKCS #1 v1.5, with additional formatting rules defined in TCPA TPM Specification Version 1.1b.
Additional formatting rules remained the same in TCG TPM Specification 1.2 The mechanism supports
single-part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5 RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption, the version
field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain 0x01, 0x01,
0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, OxYY may be accepted.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 38 of 212

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 15, TPM 1.1b and TPM 1.2 PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt' RSA public key < k-11-5 k
C_Decrypt’ RSA private key k < k-11-5
C_WrapKey RSA public key < k-11-5 k
C_UnwrapKey RSA private key k =< k-11-5

1 Single-part operations only.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.20 TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP

The TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA_PKCS_OAEP_TPM_1_1, is a multi-purpose mechanism based on the RSA public-key
cryptosystem and the OAEP block format defined in PKCS #1, with additional formatting defined in TCPA
TPM Specification Version 1.1b. Additional formatting rules remained the same in TCG TPM
Specification 1.2. The mechanism supports single-part encryption and decryption; key wrapping; and key
unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP RSA encryption
mechanism in that the plaintext is wrapped in a TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM
1.2) structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA_PKCS_OAEP operation are fixed. On encryption,
the version field of the TCPA_BOUND_DATA (TPM_BOUND_DATA for TPM 1.2) structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, 0xXX, OxYY may be
accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a particular token
may not be able to wrap/unwrap every appropriate-length secret key that it supports. For wrapping, the
“input” to the encryption operation is the value of the CKA_VALUE attribute of the key that is wrapped;
similarly for unwrapping. The mechanism does not wrap the key type or any other information about the
key, except the key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes
to the recovered key during unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For encryption
and decryption, the input and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 16, TPM 1.1b and TPM 1.2 PKCS #1 RSA OAEP: Key And Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 39 of 212

Function Key type Input length Output
length
C_Encrypt' RSA public key < k-2-40-5 k
C_Decrypt’ RSA private key k < k-2-40-5
C_WrapKey RSA public key =< k-2-40-5 k
C_UnwrapKey RSA private key k < k-2-40-5

1 Single-part operations only.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

2.1.21 RSA AES KEY WRAP

| The RSA AES KEY-ARARPKey wrap mechanism, denoted CKM_RSA_AES_KEY_WRAP , is a
mechanism based on the RSA public-key cryptosystem and the AES key wrap mechanism. It supports
single-part key wrapping; and key unwrapping.-

It has a parameter, a CK_RSA_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and unwrap a target asymmetric key of any length and type using an RSA key.
- Atemporary AES key is used for wrapping the target key using
| CKM_AES_KEY WRAP_PAD mechanism.
- The temporary AES key is wrapped with the wrapping RSA key using
CKM_RSA_PKCS_OAEP mechanism.

For wrapping, the mechanism -

* Generates temporary random AES key of ul/AESKeyBits length. This key is not accessible to the
user - no handle is returned.

¢ Wraps the AES key with the wrapping RSA key using CKM_RSA_PKCS_OAEP with parameters
of OAEPParams.

e Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_PAD
(RFC5649) .

e Zeroizes the temporary AES key

* Concatenates two wrapped keys and outputs the concatenated blob.
The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeylnfo

The use of Attributes in the PrivateKeylInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylInfo structure, an error should be thrown

For unwrapping, the mechanism -

e Splits the input into two parts. The first is the wrapped AES key, and the second is the wrapped
target key. The length of the first part is equal to the length of the unwrapping RSA key.

e Un-wraps the temporary AES key from the first part with the private RSA key using
CKM_RSA_PKCS_OAEP with parameters of OAEPParams.

e Un-wraps the target key from the second part with the temporary AES key using
| CKM_AES_KEY_WRAP_PAD-{ (RFC5649) .

* Zeroizes the temporary AES key.

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 40 of 212

* Returns the handle to the newly unwrapped target key.
Table 177, CKM_RSA_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR1 Key Unwrap
Pair

| CKM_RSA_AES_KEY_WRAP | | | | | I

1SR = SignRecover, VR = VerifyRecover

2.1.22 RSA AES KEY WRAP mechanism parameters

¢ CK_RSA_AES_KEY_WRAP_PARAMS; CK_RSA_AES_KEY_WRAP_PARAMS_PTR

CK_RSA_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_RSA_AES_KEY_WRAP mechanism. lItis defined as follows:

typedef struct CK_RSA_AES_KEY_WRAP_PARAMS {
CK_ULONG ulAESKeyBits;
CK_RSA_PKCS_OAEP_PARAMS PTR pOAEPParams;
} CK_RSA_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:
ulAESKeyBits length of the temporary AES key in bits. Can be only 128, 192 or 256.

pOAEPParams pointer to the parameters of the temporary AES key wrapping. See also the
description of PKCS #1 RSA OAEP mechanism parameters.

CK_RSA_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_RSA_AES_KEY_WRAP_PARAMS.

2.1.23 FIPS 186-4

When CKM_RSA_PKCS is operated in FIPS mode, the length of the modulus SHALL only be 1024,
2048, or 3072 bits.

2.2 DSA

Table 188;, DSA Mechanisms vs. Functions

| Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verif VR’ Key Unwrap
y Pair
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA PARAMETER_GEN v
CKM_DSA PROBALISTICPRO v
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 41 of 212

| Functions

BABALISTIC_PARAMETER_GE
N

CKM_DSA_SHAWE_TAYLOR _ v
PARAMETER_GEN

CKM_DSA_FIPS_G_GEN v
CKM_DSA
CKM_DSA_SHAT1
CKM_DSA_SHA224
CKM_DSA_SHA256
CKM_DSA_SHA384
CKM_DSA_SHA512

S

RN NN

2.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of DSA key objects.
Mechanisms:

CKM_DSA_KEY_PAIR_GEN
CKM_DSA

CKM_DSA_SHA1

CKM_DSA_SHA224

CKM_DSA_SHA256

CKM_DSA_SHA384

CKM_DSA_SHA512
CKM_DSA_PARAMETER_GEN
CKM_DSA_PROBABLISTIC_PARAMETER_GEN
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN
CKM_DSA_FIPS_G_GEN

* CK_DSA_PARAMETER_GEN_PARAM

CK_DSA_PARAMETER_GEN_PARAM is a structure -which provides and returns parameters for the

NIST FIPS 186-4 parameter generating algorithms.

typedef struct CK_DSA_PARAMTERPARAMETER_GEN_PARAM {
CK_MECHANISM_TYPE hash;

CK BYTE_PTR- pSeed;
CK_ULONG ulSeedLen,;
CK_ULONG ullndex;

The fields of the structure have the following meanings:

hash Mechanism value for the base hash used in PQG generation, Valid
values are CKM_SHA1, CKM_SHA244SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512.

pSeed Seed value used to generate PQ and G. This value is returned by
CKM_DSA_PROBABLISTIC_PARAMETER_GEN,

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 42 of 212

CKM_DSA SHAWE_TAYLOR_PARAMETER_GEN, and passed into
CKM_DSA_FIPS_G_GEN.

ulSeedLen Length of seed value.

ulindex Index value for generating G. Input for CKM_DSA_FIPS_G_GEN.
Ignored by
CKM_DSA_PROBALISHECPROBABALISTIC_PARAMETER_GEN and
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN.

2.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
defined for this object class:

Table 19:19, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"™® Big integer | Prime p (512 to 3072 bits, in steps of 64 bits)
CKA_SUBPRIME'” Big integer | Subprime q (160, 224 bits, or 256 bits)
CKA_BASE'” Big integer | Base g

CKA_VALUE™ Big integer | Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA keys

The following is a sample template for creating a DSA public key object:

CK_OBJECT CLASS class = CKO PUBLIC KEY;
CK_KEY TYPE keyType = CKK DSA;

CK UTF8CHAR label[] = ™A DSA public key object”;
CK BYTE prime[] = {...};

CK BYTE subprime[] = {...};

CK BYTE base[] = {...};

CK BYTE value[] = {...};

CK _BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}

|

2.2.3 DSA Key Restrictions

FIPS PUB 186-4 specifies permitted combinations of prime and sub-prime lengths. They are:
e Prime: 1024 bits, Subprime: 160
e Prime: 2048 bits, Subprime: 224

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 43 of 212

* Prime: 2048 bits, Subprime: 256
e Prime: 3072 bits, Subprime: 256

any length less than 1024 bits.

2.2.4 DSA private key objects

Earlier versions of FIPS 186 permitted smaller prime lengths, and those are included here for backwards
compatibility. An implementation that is compliant to FIPS 186-4 does not permit the use of primes of

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes

defined for this object class:
Table 20.20, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"*® Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"*® Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA_BASE'*® Big integer Base g

CKA_VALUE"*®’ Big integer Private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain

parameters”. See FIPS PUB 186-4 for more information on DSA keys

Note that when generating a DSA private key, the DSA domain parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the DSA

domain parameters for the pair are specified in the template for the DSA public key.
The following is a sample template for creating a DSA private key object:

CK OBJECT CLASS class = CKO_ PRIVATE KEY;
CK_KEY TYPE keyType = CKK DSA;
CK UTF8CHAR label[] = “A DSA private key object”;
CK BYTE subject[] = {...};
CK _BYTE id[] = {123};
CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};
CK BYTE value[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA SIGN, &true, sizeof(true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

| pkcs11-curr-v2.40-esprdb2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

Page 44 of 212

2.2.5 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type CKK_DSA) hold
DSA domain parameters. The following table defines the DSA domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 21-21, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME™* Big integer Subprime q (160 bits, 224 bits, or 256 bits)
CKA BASE™ Big integer Base g

CKA_PRIME_BITS*® CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA domain
parameters”. See FIPS PUB 186-4 for more information on DSA domain parameters.

To ensure backwards compatibility, if CKA_SUBPRIME_BITS is not specified for a call to
C_GenerateKey, it takes on a default based on the value of CKA_PRIME_BITS as follows:

e If CKA_PRIME_BITS is less than or equal to 1024 then CKA_SUBPRIME_BITS shall be 160 bits
e If CKA_PRIME_BITS equals 2048 then CKA_SUBPRIME_BITS shall be 224 bits
e If CKA_PRIME_BITS equals 3072 then CKA_SUBPRIME_BITS shall be 256 bits

The following is a sample template for creating a DSA domain parameter object:
CK OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK _KEY TYPE keyType = CKK DSA;
CK UTF8CHAR labell[] “A DSA domain parameter object”;

CK BYTE prime[] = {...};
CK BYTE subprime[] = {...};
CK BYTE base[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA BASE, base, sizeof (base)},

|

2.2.6 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair
generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 45 of 212

CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and private

key types (specifically, the flags indicating which functions the keys support) may also be specified in the

templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.7 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted CKM_DSA_PARAMETER_GEN, is a
domain parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB
186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as specified in
the CKA_PRIME_BITS attribute of the template.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,

CKA_BASE and CKA_PRIME_BITS attributes to the new object. Other attributes supported by the DSA
domain parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.8 DSA probabilistic domain parameter generation

The DSA probabilistic domain parameter generation mechanism, denoted
CKM_DSA_PROBABLISTIC_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.1 Generation and
Validation of Probable Primes..

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.9 DSA Shawe-Taylor domain parameter generation

The DSA Shawe-Taylor domain parameter generation mechanism, denoted
CKM_DSA_SHAWE_TAYLOR_PARAMETER_GEN, is a domain parameter generation mechanism
based on the Digital Signature Algorithm defined in FIPS PUB 186-4, section Appendix A.1.2
Construction and Validation of Provable Primes p and q.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash and
returns the seed (pSeed) and the length (ulSeedLen).

The mechanism generates DSA the prime and subprime domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template and the subprime length as
specified in the CKA_SUBPRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_PRIME_BITS, and CKA_SUBPRIME_BITS attributes to the new object. CKA_BASE is not set by
this call. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 46 of 212

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.10 DSA base domain parameter generation

The DSA base domain parameter generation mechanism, denoted CKM_DSA_FIPS_G_GEN, is a base
parameter generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186-4,
section Appendix A.2 Generation of Generator G.

This mechanism takes a CK_DSA_PARAMETER_GEN_PARAM which supplies the base hash the seed
(pSeed) and the length (ulSeedLen) and the index value.

The mechanism generates the DSA base with the domain parameter specified in the CKA_PRIME and
CKA_SUBPRIME attributes of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_BASE attributes to the new
object. Other attributes supported by the DSA domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.11 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part signatures
and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute the hash
value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 222, DSA: Key And Data Length

Function Key type Input length | Output length
C_Sign' DSA private key 20, 28, 32, 2*length of

48, or 64 bits subprime
C_Verify’ DSA public key (20, 28, 32, N/A

48, or 64
bits),
(2*length of
subprime)®

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.12 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHAA1, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-2.
This mechanism computes the entire DSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 47 of 212

Table 23:23, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

2 Data length, signature length.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.13 FIPS 186-4

When CKM_DSA is operated in FIPS mode, only the following bit lengths of p and q, represented by L
and N, SHALL be used:

L =1024, N =160
L = 2048, N =224
L = 2048, N = 256
L =3072, N = 256

2.2.14 DSA with SHA-224

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA224, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-224.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 194,24, DSA with SHA-244: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

? Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

2.2.15 DSA with SHA-256

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA256, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-256.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 48 of 212

Constraints on key types and the length of data are summarized in the following table:
Table 205;25, DSA with SHA-256: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

? Data length, signature length.

2.2.16 DSA with SHA-384

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA384, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-384.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 216,26, DSA with SHA-384: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

? Data length, signature length.

2.2.17 DSA with SHA-512

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA512, is a mechanism for single- and multiple-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186-4.
This mechanism computes the entire DSA specification, including the hashing with SHA-512.

For the purposes of this mechanism, a DSA signature is a string of length 2*subprime, corresponding to
the concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 22227, DSA with SHA-512: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 2*subprime
length
C_Verify DSA public key any, N/A
2*subprime
Iength2

? Data length, signature length.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 49 of 212

2.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document is the one described in the
ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.

Table 28:28, Elliptic Curve Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR' Key Unwrap
Pair
CKM_EC_KEY_PAIR_GEN v
(CKM_ECDSA_KEY_PAIR_GE
N)
CKM_ECDSA v?
CKM_ECDSA_SHA1 v
CKM_ECDH1_DERIVE v
CKM_ECDH1_COFACTOR_DE v
RIVE
CKM_ECMQV_DERIVE v
CKM_ECDH_AES_KEY_WRAP v
Table 299;, Mechanism Information Flags
CKF_EC_F P 0x00100000UL | True if the mechanism can be used
with EC domain parameters over F,
CKF_EC_F_2M 0x00200000UL | True if the mechanism can be used
with EC domain parameters over Fom
CKF_EC_ECPARAMETERS 0x00400000UL | True if the mechanism can be used

with EC domain parameters of the
choice ecParameters
CKF_EC_NAMEDCURVE 0x00800000UL | True if the mechanism can be used
with EC domain parameters of the
choice namedCurve

CKF_EC_UNCOMPRESS 0x01000000UL | True if the mechanism can be used
with elliptic curve point uncompressed
CKF_EC_COMPRESS 0x02000000UL | True if the mechanism can be used

with elliptic curve point compressed

In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field F,).

2. EC using a field of characteristic two (i.e. the finite field F,m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a
Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two
varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag
identifies a Cryptoki library supporting EC keys over F, whereas the CKF_EC_F_2M flag identifies a
Cryptoki library supporting EC keys over Fom. A Cryptoki library that can perform EC mechanisms must
set either or both of these flags for each EC mechanism.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 50 of 212

In these specifications there are also three representation methods to define the domain parameters for
an EC key. Only the ecParameters and the namedCurve choices are supported in Cryptoki. The
CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library
supporting the ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC mechanisms must set
either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters
choice is used can be represented as an octet string of the uncompressed form or the compressed form.
The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library
supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library
supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or
both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation
of domain parameters or one form may encounter difficulties achieving interoperability with other
implementations.

If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the
attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create,
generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If
an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that
attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.

2.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at
most two times nLen octets, where nLen is the length in octets of the base point order n. The signature
octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string
of equal length of at most nLen with the most significant byte first. If r and s have different octet length,
the shorter of both must be padded with leading zero octets such that both have the same octet length.
Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a
token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification,
the signature may have a shorter length but must be composed as specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the
length of n will be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of length two times
nLen if possible. This ensures that the application works with PKCS#11 modules which have been
implemented based on an older version of this document. Older versions required all signatures to have
length two times nLen. It may be impossible to encode the signature with the maximum length of two
times nLen if the application just gets the integer values of rand s (i.e. without leading zeros), but does
not know the base point order n, because r and s can have any value between zero and the base point
order n.

2.3.2 Definitions

This section defines the key type “CKK_ECDSA” and “CKK_EC” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
Note: CKM_ECDSA_KEY_PAIR_GEN is deprecated in v2.11
CKM_ECDSA_KEY_PAIR_GEN
CKM_EC_KEY_PAIR_GEN
CKM_ECDSA
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 51 of 212

CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD- SHA1_KDF

2.3.3 ECDSA public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or
CKK_ECDSA) hold EC public keys. The following table defines the EC public key object attributes, in
addition to the common attributes defined for this object class:

Table 30--30, Elliptic Curve Public Key Object Attributes

Attribute Data type Meaning

CKA_EC_PARAMS'® Byte array | DER-encoding of an ANSI X9.62 Parameters

(CKA_ECDSA_PARAMS) value

CKA_EC_POINT™ Byte array | DER-encoding of ANSI X9.62 ECPoint value
Q

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain
parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with
the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or
implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be
used in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:
CK OBJECT CLASS class = CKO_PUBLIC KEY;
CK _KEY TYPE keyType = CKK EC;
CK UTF8CHAR label[] = “An EC public key object”;

CK BYTE ecParams[] = {...};
CK _BYTE ecPoint[] = {...};
CK _BBOOL true = CK TRUE;

CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA EC PARAMS, ecParams, sizeof (ecParams)},
{CKA EC POINT, ecPoint, sizeof (ecPoint)}

|

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 52 of 212

2.3.4 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC or
CKK_ECDSA) hold EC private keys. See Section 2.3 for more information about EC. The following table
defines the EC private key object attributes, in addition to the common attributes defined for this object
class:

Table 3131, Elliptic Curve Private Key Object Attributes

Attribute Data type Meaning
CKA_EC_PARAMS™*®° Byte array DER-encoding of an ANSI X9.62
(CKA_ECDSA_PARAMS) Parameters value
CKA_VALUE™*®’ Big integer | ANSI X9.62 private value d

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain
parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with
the following syntax:

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

This allows detailed specification of all required values using choice ecParameters, the use of a
namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or
implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a
namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be
used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not specified in the key’s
template. This is because EC private keys are only generated as part of an EC key pair, and the EC
domain parameters for the pair are specified in the template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK OBJECT CLASS class = CKO_ PRIVATE KEY;
CK_KEY TYPE keyType = CKK EC;
CK UTF8CHAR label[] = “An EC private key object”;
CK BYTE subject[] = {...};
CK _BYTE id[] = {123};
CK BYTE ecParams[] = {...};
CK BYTE valuel[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA EC PARAMS, ecParams, sizeof (ecParams)},

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 53 of 212

{CKA VALUE, value, sizeof (value)}
b

2.3.5 Elliptic curve key pair generation

The EC (also related to ECDSA) key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN or
CKM_ECDSA_KEY_PAIR_GEN, is a key pair generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain parameters, as
specified in the CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute of the template for the public
key. Note that this version of Cryptoki does not include a mechanism for generating these EC domain
parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS or
CKA_ECDSA_PARAMS and CKA_CKA-VALUE attributes to the new private key. Other attributes
supported by the EC public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2°° and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°®° is a 301-bit number).

2.3.6 ECDSA without hashing

Refer section 2.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that
processes the hash value, which should not be longer than 1024 bits; it does not compute the hash
value.)

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 32.32, ECDSA: Key and Data Length

Function Key type Input length Output
length

C_Sign' ECDSA private key any’ 2nLen

C_Verify' ECDSA public key any®, <2nLen ? N/A

1 Single-part operations only.
2 Data length, signature length.

3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2°° and 2°% elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in
binary notation, the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°®° is a 301-bit number).

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 54 of 212

‘ 2.3.7 ECDSA with SHA-1

Refer to section 2.3.1 for signature encoding.

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for single- and
multiple-part signatures and verification for ECDSA. This mechanism computes the entire ECDSA
specification, including the hashing with SHA-1.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
| Table 333;, ECDSA with SHA-1: Key and Data Length

Function Key type Input length | Output length
C_Sign ECDSA private key any 2nLen
C_Verify ECDSA public key any, <2nLen’ N/A

| 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between
2°° and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2°%° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°%is a 301-bit number).

‘ 2.3.8 EC mechanism parameters
¢ CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data
from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is
defined as follows:

typedef CK ULONG CK EC_KDF TYPE;

The following table lists the defined functions.
Table 344;, EC: Key Derivation Functions

Source Identifier
CKD_NULL
CKD_SHA1_KDF
CKD_SHA224 KDF

CKD_SHA256_KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation function CKD_SHA1_KDF, which is based on SHA-1,
derives keying data from the shared secret value as defined in ANSI X9.63.

CK_EC_KDF_TYPE_PTRis a pointer to a CK_EC_KDF_TYPE.
¢ CK_ECDH1_DERIVE_PARAMS, CK_ECDH1_DERIVE_PARAMS_PTR

CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where
each party contributes one key pair. The structure is defined as follows:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 55 of 212

typedef struct CK ECDH1 DERIVE PARAMS ({
CK_EC_KDF TYPE kdf;
CK _ULONG ulSharedDatalLen;
CK BYTE PTR pSharedData;
CK _ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;
} CK_ECDH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulSharedDatalen the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalen the length in bytes of the other party’s EC public key

pPub/icData’ pointer to other party’s EC public key value. A token MUST be able
to accept this value encoded as a raw octet string (as per section
A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting
this value as a DER-encoded ECPoint (as per section E.6 of [ANSI
X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling
application is responsible for converting the offered public key to the
compressed or uncompressed forms of these encodings if the token
does not support the offered form.

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and u/SharedDatalLen must be zero.

CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.

¢ CK_ECMQV _DERIVE_PARAMS, CK_ECMQV-_DERIVE_PARAMS_PTR

CK_-ECMQV_DERIVE_PARANMS is a structure that provides the parameters to the
CKM_ECMAQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The
structure is defined as follows:
typedef struct CK ECMQV DERIVE PARAMS ({

CK_EC_KDF TYPE kdf;

CK _ULONG ulSharedDatalen;

CK BYTE PTR pSharedData;

CK ULONG ulPublicDatalen;

CK_BYTE PTR pPublicData;

CK _ULONG ulPrivateDatalLen;

CK_OBJECT HANDLE hPrivateData;

1 The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding

(e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 56 of 212

CK _ULONG ulPublicDatalLen2;

CK _BYTE PTR pPublicData2;

CK_OBJECT HANDLE publicKey;
} CK_ECMQV DERIVE PARAMS;

The fields of the structure have the following meanings:

kdf
ulSharedDatalen
pSharedData
ulPublicDatalen

pPublicData

ulPrivateDatal.en
hPrivateData
ulPublicDatal.en?

pPublicData2

publicKey

key derivation function used on the shared secret value
the length in bytes of the shared info

some data shared between the two parties

the length in bytes of the other party’s first EC public key

pointer to other party’s first EC public key value. Encoding rules are
as per pPublicData of CK_ECDH1_DERIVE_PARAMS

the length in bytes of the second EC private key
key handle for second EC private key value
the length in bytes of the other party’s second EC public key

pointer to other party’s second EC public key value. Encoding rules
are as per pPublicData of CK_ECDH1_DERIVE_PARAMS

Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDatalLen must be
zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied,
which consists of some data shared by the two parties intending to share the shared secret. Otherwise,
pSharedData must be NULL and u/SharedDatalLen must be zero.

CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.

2.3.9 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman version of the elliptic curve key agreement
scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC
domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 57 of 212

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
examgl(()e, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2

and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notationéoo

200

the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2
is a 301-bit number).

2.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes one key pair all using the same EC domain parameters. Cofactor multiplication is
computationally efficient and helps to prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
examgle, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2
and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°%
is a 301-bit number).

200

2.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMAQV_DERIVE, is a mechanism for key derivation based the MQV version of the elliptic curve
key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using
the same EC domain parameters.

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 58 of 212

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the minimum and maximum supported number of bits in the field sizes, respectively. For
examgle, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2
and 2°% elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation,
the number 2°% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°%
is a 301-bit number).

200

2.3.12 ECDH AES KEY WRAP

The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism
based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-
part key wrapping; and key unwrapping.

It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and un-wrap an asymmetric target key of any length and type using an EC key.
- Atemporary AES key is derived from a temporary EC key and the wrapping EC key using the
CKM_ECDH1_DERIVE mechanism.
- The derived AES key is used for wrapping the target key using the
CKM_AES_KEY_WRAP_PAD mechanism.

For wrapping, the mechanism -

e Generates a temporary random EC key (transport key) having the same parameters as the
wrapping EC key (and domain parameters). Saves the transport key public key material.

e Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private key of the transport EC key and the public
key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the
temporary AES key

e Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_PAD
(RFC5649).

* Zeroizes the temporary AES key and EC transport private key

* Concatenates public key material of the transport key and output the concatenated blob.

‘ The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeylnfo

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 59 of 212

The use of Attributes in the PrivateKeylInfo structure is OPTIONAL. In case of conflicts between the
object attribute template, and Attributes in the PrivateKeylInfo structure, an error should be thrown.

For unwrapping, the mechanism -

e Splits the input into two parts. The first part is the public key material of the transport key and the
second part is the wrapped target key. The length of the first part is equal to the length of the
public key material of the unwrapping EC key

Note: since the transport key and the wrapping EC key share the same domain, the length of the
public key material of the transport key is the same length of the public key material of the
unwrapping EC key.

e Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf,
ulSharedDatalLen and pSharedData using the private part of unwrapping EC key and the public
part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the
temporary AES key

e Un-wraps the target key from the second part with the temporary AES key using
CKM_AES_KEY_WRAP_PAD (RFC5649).

e Zeroizes the temporary AES key

Table 35:35, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR1 Key Unwrap
Pair

CKM_ECDH_AES_KEY_WRAP | | | | | | “y |

1SR = SignRecover, VR = VerifyRecover

2.3.13 ECDH AES KEY WRAP mechanism parameters
¢ CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR

CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the
CKM_ECDH_AES_KEY_WRAP mechanism. Itis defined as follows:

typedef struct CK_ECDH_AES_KEY_ WRAP_PARAMS {

-CK_ULONG- ulAESKeyBits;

CK _EC _KDF_TYPE kdf;

CK_ULONG ulSharedDatalLen;
CK BYTE_PTR pSharedData;

} CK_ECDH_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

ulAESKeyBitslength of the temporary AES key in bits. Can be only 128, 192 or 256.
Kdf key derivation function used on the shared secret value to generate AES key.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 60 of 212

ulSharedDatalLenthe length in bytes of the shared info

pSharedDataSome data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a
CK_ECDH_AES_KEY_WRAP_PARAMS.

2.3.14 FIPS 186-4

When CKM_ECDSA is operated in FIPS mode, the curves SHALL either be NIST recommended curves
(with a fixed set of domain parameters) or curves with domain parameters generated as specified by
ANSI X9.64. The NIST recommended curves are:

P-192, P-224, P-256, P-384, P-521
K-163, B-163, K-233, B-233
K-283, B-283, K-409, B-409
K-571, B-571

2.4 Diffie-Hellman

Table 36:36, Diffie-Hellman Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_DH_PKCS_KEY_PAIR_GEN 4
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS_DERIVE v
CKM_X9 42 DH_KEY_PAIR_GEN v
CKM_X9 42 DH_PKCS_PARAMETER_GEN v
CKM_X9_42 DH_DERIVE v
CKM_X9_42 DH_HYBRID_DERIVE v
CKM_X9_42_MQV_DERIVE v

2.4.1 Definitions

This section defines the key type “CKK_DH?” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of [DH] key objects.

Mechanisms:
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_DERIVE
CKM_X9 42 DH_KEY_PAIR_GEN

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 61 of 212

CKM_X9_42_DH_DERIVE
CKM_X9_42_DH_HYBRID_DERIVE
CKM_X9_42_MQV_DERIVE
CKM_DH_PKCS_PARAMETER_GEN
CKM_X9 42 _DH_PARAMETER_GEN

‘ 2.4.2 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the Diffie-Hellman public key object attributes, in
addition to the common attributes defined for this object class:

| Table 377, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME"™® Big integer Prime p

CKA _BASE'” Big integer Base g
CKA_VALUE™ Big integer Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK OBJECT CLASS class = CKO_ PUBLIC KEY;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR labell[] “A Diffie-Hellman public key object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE valuel[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

2.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman public keys. The following table defines the X9.42 Diffie-Hellman public key
object attributes, in addition to the common attributes defined for this object class:

| Table 388;, X9.42 Diffie-Hellman Public Key Object Attributes

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 62 of 212

Attribute Data type Meaning

CKA_PRIME™® Big integer | Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE'” Big integer | Base g

CKA_SUBPRIME"® Big integer | Subprime g (= 160 bits)

CKA_VALUE™ Big integer | Public value y

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. See the ANSI X9.42 standard for more information on X9.42 Diffie-
Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

CK OBJECT CLASS class = CKO_ PUBLIC KEY;
CK_KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman public key
object”;
CK BYTE prime[] = {...
CK BYTE base[] = {...};
CK BYTE subprime[] {...};
CK BYTE valuel[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA SUBPRIME, subprime, sizeof (subprime)},
{CKA VALUE, value, sizeof (value)}
i

}s

2.4 .4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-
Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes defined for this object class:

Table 399;, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"*® Big integer Prime p

CKA_BASE"** Big integer Base g

CKA_VALUE™*®’ Big integer Private value x
CKA_VALUE_BITS*® CK_ULONG Length in bits of private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain
parameters”. Depending on the token, there may be limits on the length of the key components. See
PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating a Diffie-Hellman private key, the Diffie-Hellman parameters are not specified in
the key’s template. This is because Diffie-Hellman private keys are only generated as part of a Diffie-

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 63 of 212

Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in the template for the
Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK OBJECT CLASS class = CKO PRIVATE KEY;
CK_KEY TYPE keyType = CKK_ DH;
CK UTF8CHAR label[] = “A Diffie-Hellman private key object”;
CK BYTE subject[] = {...};
CK _BYTE id[] = {123};
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SUBJECT, subject, sizeof (subject)},
{CKA ID, id, sizeof (id)},
{CKA SENSITIVE, &true, sizeof (true)},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},
{CKA VALUE, value, sizeof (value)}
i

2.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_X9_42_DH)
hold X9.42 Diffie-Hellman private keys. The following table defines the X9.42 Diffie-Hellman private key
object attributes, in addition to the common attributes defined for this object class:

Table 40:40, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE'*® Big integer Base g

CKA_SUBPRIME"*® Big integer Subprime g (= 160 bits)
CKA_VALUE™*®’ Big integer Private value x

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the key
components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman domain
parameters are not specified in the key’s template. This is because X9.42 Diffie-Hellman private keys are
only generated as part of a X9.42 Diffie-Hellman key pair, and the X9.42 Diffie-Hellman domain
parameters for the pair are specified in the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key object:
CK OBJECT CLASS class = CKO_ PRIVATE KEY;
CK _KEY TYPE keyType = CKK X9 42 DH;

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 64 of 212

CK_UTF8CHAR label[]
CK BYTE subject[] =
CK _BYTE id[] = {123};
CK BYTE prime[] = {.
CK BYTE base[] = {...
CK BYTE subprime[] ..
CK BYTE valuel[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN &true, sizeof (true)},

{CKA LABEL, label, sizeof (label)-1},

{CKA SUBJECT, subject, sizeof (subject)},

{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, &true, sizeof (true)},

{CKA DERIVE, ¢&true, sizeof (true)},

{CKA PRIME, prime, sizeof (prime)},

{CKA BASE, base, sizeof (base)},

{CKA SUBPRIME, subprime, sizeof (subprime)},

{CKA VALUE, value, sizeof (value)}
i

(...}

Ny
i
{

2.4.6 Diffie-Hellman domain parameter objects
Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type

“A X9.42 Diffie-Hellman private key object”;

CKK_DH) hold Diffie-Hellman domain parameters. The following table defines the Diffie-Hellman domain

parameter object attributes, in addition to the common attributes defined for this object class:
| Table 4141, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p

CKA _BASE™ Big integer Base g
CKA_PRIME_BITS®® CK_ULONG Length of the prime value.

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman domain

parameters”. Depending on the token, there may be limits on the length of the key components. See

PKCS #3 for more information on Diffie-Hellman domain parameters.
The following is a sample template for creating a Diffie-Hellman domain parameter object:

CK OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK_DH;
CK _UTF8CHAR labell[] “A Diffie-Hellman domain parameters
object”;
CK BYTE prime[] = {...};
CK BYTE base[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 65 of 212

{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA PRIME, prime, sizeof (prime)},
{CKA BASE, base, sizeof (base)},

3

2.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_X9_42_DH) hold X9.42 Diffie-Hellman domain parameters. The following table defines the X9.42
Diffie-Hellman domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 42:42, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_PRIME™* Big integer Prime p (= 1024 bits, in steps of 256 bits)
CKA_BASE™* Big integer Base g

CKA_SUBPRIME"* Big integer Subprime g (= 160 bits)
CKA_PRIME_BITS*® CK_ULONG Length of the prime value.
CKA_SUBPRIME_BITS*® CK_ULONG Length of the subprime value.

- Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively the “X9.42 Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length of the domain
parameters components. See the ANSI X9.42 standard for more information on X9.42 Diffie-Hellman
domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain parameters object:
CK OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK _KEY TYPE keyType = CKK X9 42 DH;
CK UTF8CHAR label[] = “A X9.42 Diffie-Hellman domain
parameters object”;
CK BYTE prime[] = {...};

CK BYTE base[] = {...};
CK BYTE subprime[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof (label)-1},

{CKA PRIME, prime, sizeof (prime)},

{CKA BASE, base, sizeof (base)},

{CKA SUBPRIME, subprime, sizeof (subprime)},
|

2.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I”.

It does not have a parameter.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 66 of 212

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE (and
the CKA_VALUE_BITS attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types must be specified in the
templates.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime length in bits, as
specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_PRIME_BITS attributes to the new object. Other attributes supported by the Diffie-Hellman domain
parameter types may also be specified in the template, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. This is
what PKCS #3 calls “phase II”.

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of the other
party. It computes a Diffie-Hellman secret value from the public value and private key according to PKCS
#3, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one
and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes
bytes from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the
template.

This mechanism has the following rules about key sensitivity and extractabilityz:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the

2 Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have
changed in version 2.11 to match the policy used by other key derivation mechanisms such as CKM_SSL3_MASTER_KEY_DERIVE.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 67 of 212

derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

2.4.11 X9.42 Diffie-Hellman mechanism parameters
¢ CK_X9_42_DH_KDF_TYPE, CK_X9_42_DH_KDF_TYPE_PTR

CK_X9_42_ DH_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the X9.42 Diffie-Hellman
key agreement schemes. It is defined as follows:

typedef CK ULONG CK X9 42 DH KDF TYPE;

The following table lists the defined functions.
Table 43:43, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier

CKD_NULL
CKD_SHA1_KDF_ASN1
CKD_SHA1_KDF_CONCATENATE

The key derivation function CKD_NULL produces a raw shared secret value without applying any key
derivation function whereas the key derivation functions CKD_SHA1_KDF_ASN1 and
CKD_SHA1_KDF_CONCATENATE, which are both based on SHA-1, derive keying data from the
shared secret value as defined in the ANSI X9.42 standard.

CK_X9_42_DH_KDF_TYPE_PTR is a pointer to a CK_X9_42_DH_KDF_TYPE.

¢ CK_X9_42_DH1_DERIVE_PARAMS, CK_X9 42 DH1_DERIVE_PARAMS_PTR

CK_X9 42 DH1_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_ DH_DERIVE key derivation mechanism, where each party contributes one key pair. The
structure is defined as follows:
typedef struct CK X9 42 DH1 DERIVE PARAMS ({
CK X9 42 DH KDF TYPE kdf;
CK _ULONG ulOtherInfolen;
CK BYTE PTR pOtherInfo;
CK ULONG ulPublicDatalen;
CK BYTE PTR pPublicData;
} CK X9 42 DH1 DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen the length in bytes of the other info

pOtherinfo some data shared between the two parties

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 68 of 212

ulPublicDatalen the length in bytes of the other party’s X9.42 Diffie-Hellman public
key

pPublicData pointer to other party’s X9.42 Diffie-Hellman public key value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and u/OtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_DH1_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH1_DERIVE_PARAMS.

« CK_X9_42_DH2_DERIVE_PARAMS, CK_X9 42 DH2_DERIVE_PARAMS_PTR

CK_X9 42 DH2_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation mechanisms,
where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK X9 42 DH2Z DERIVE PARAMS ({
CK X9 42 DH KDF TYPE kdf;
CK _ULONG ulOtherInfolen;
CK BYTE PTR pOtherInfo;
CK _ULONG ulPublicDatalLen;
CK BYTE PTR pPublicData;
CK _ULONG ulPrivateDatalLen;
CK_OBJECT HANDLE hPrivateData;
CK _ULONG ulPublicDatalLen2;
CK BYTE PTR pPublicDataZ2;
} CK X9 42 DHZ DERIVE PARAMS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatalen the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pPublicData pointer to other party’s first X9.42 Diffie-Hellman public key value
ulPrivateDatalen the length in bytes of the second X9.42 Diffie-Hellman private key
hPrivateData key handle for second X9.42 Diffie-Hellman private key value

ulPublicDatalLen2 the length in bytes of the other party’s second X9.42 Diffie-Hellman

public key
pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman public key
value
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 69 of 212

With the key derivation function CKD_NULL, pOtherinfo must be NULL and u/OtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_DH2_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_DH2_DERIVE_PARAMS.

« CK_X9_42_MQV_DERIVE_PARAMS, CK_X9 42_MQV_DERIVE_PARAMS_PTR

CK_X9 42 MQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9_42_MQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The

structure is defined as follows:

typedef struct CK X9 42 MQV DERIVE PARAMS ({
CK_X9 42 DH KDF TYPE kdf;
CK _ULONG ulOtherInfolen;
CK BYTE PTR pOtherInfo;
CK ULONG ulPublicDatalen;
CK_BYTE PTR pPublicData;
CK _ULONG ulPrivateDatalLen;
CK_OBJECT HANDLE hPrivateData;
CK _ULONG ulPublicDatalLen2;
CK _BYTE PTR pPublicData2;
CK_OBJECT HANDLE publicKey;

} CK_X9 42 MQV DERIVE PARAMS;

The fields of the structure have the following meanings:

kdf
ulOtherinfolLen
pOtherinfo

ulPublicDatalen

pPublicData
ulPrivateDatal en
hPrivateData

ulPublicDatal.en?

pPublicData2

publicKey

pkcs11-curr-v2.40-esprdd2

key derivation function used on the shared secret value
the length in bytes of the other info
some data shared between the two parties

the length in bytes of the other party’s first X9.42 Diffie-Hellman
public key

pointer to other party’s first X9.42 Diffie-Hellman public key value
the length in bytes of the second X9.42 Diffie-Hellman private key
key handle for second X9.42 Diffie-Hellman private key value

the length in bytes of the other party’s second X9.42 Diffie-Hellman
public key

pointer to other party’s second X9.42 Diffie-Hellman public key
value

Handle to the first party’s ephemeral public key

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 70 of 212

With the key derivation function CKD_NULL, pOtherinfo must be NULL and u/OtherinfoLen must be zero.
With the key derivation function CKD_SHA1_KDF_ASN1, pOtherinfo must be supplied, which contains
an octet string, specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which consists of some
data shared by the two parties intending to share the shared secret. Otherwise, pOtherinfo must be
NULL and ulOtherinfoLen must be zero.

CK_X9_42_MQV_DERIVE_PARAMS_PTR is a pointer to a CK_X9_42_MQV_DERIVE_PARAMS.

2.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted CKM_X9_42_DH_KEY_PAIR_GEN,
is a key pair generation mechanism based on Diffie-Hellman key agreement, as defined in the ANSI
X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime, base and
subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME attributes of the template
for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and
CKA_VALUE attributes to the new private key; other attributes required by the X9.42 Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_X9_42_ DH_PARAMETER_GEN, is a domain parameters generation mechanism based on X9.42
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular prime and subprime
length in bits, as specified in the CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes of the
template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE,
CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS attributes to the new object. Other
attributes supported by the X9.42 Diffie-Hellman domain parameter types may also be specified in the
template for the domain parameters, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits.

2.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9_42_DH_DERIVE, is a
mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as defined in the
ANSI X9.42 standard, where each party contributes one key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9_42_DH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 71 of 212

use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

® The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

* If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted
CKM_X9_42_DH_HYBRID_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman
hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9_42_DH2_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9_42_MAQV_DERIVE, is a mechanism for key derivation based the MQV scheme, as defined in
the ANSI X9.42 standard, where each party contributes two key pairs, all using the same X9.42 Diffie-
Hellman domain parameters.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 72 of 212

It has a parameter, a CK_X9_42_MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE
attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of
the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key
type must be specified in the template. Note that in order to validate this mechanism it may be required to
use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA_1_HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of X9.42 Diffie-Hellman prime sizes, in bits, for the CKA_PRIME attribute.

2.5 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC (also related to ECDSA) private
keys and DSA private keys. For wrapping, a private key is BER-encoded according to PKCS #8’s
PrivateKeylnfo ASN.1 type. PKCS #8 requires an algorithm identifier for the type of the private key. The
object identifiers for the required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1 }
dhpublicnumber OBJECT IDENTIFIER ::= { iso(l) member-body(2)

us (840) ansi-x942(10046) number-type(2) 1 }

id-ecPublicKey OBJECT IDENTIFIER ::= { iso(l) member-body(2)
us (840) ansi-x9-62(10045) publicKeyType(2) 1 }

id-dsa OBJECT IDENTIFIER ::= {
iso(1l) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

where
pkcs-1 OBJECT IDENTIFIER ::= {
iso (1) member-body(2) US(840) rsadsi(113549) pkcs(l) 1 }

pkcs-3 OBJECT IDENTIFIER ::= ({
iso (1) member-body(2) US(840) rsadsi(113549) pkcs(l) 3 }

These parameters for the algorithm identifiers have the

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 73 of 212

following types, respectively:

NULL

DHParameter ::= SEQUENCE {
prime INTEGER, --p
base INTEGER, -- g

privateValuelLength INTEGER OPTIONAL
}

DomainParameters ::= SEQUENCE {
prime INTEGER, --p
base INTEGER, -- g
subprime INTEGER, -- g
cofactor INTEGER OPTIONAL, -]
validationParms ValidationParms OPTIONAL
}
ValidationParms ::= SEQUENCE ({
Seed BIT STRING, —-- seed
PGenCounter INTEGER -- parameter verification
}
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES. &id ({CurveNames}),

implicitlyCA NULL

Dss—-Parms ::= SEQUENCE ({
p INTEGER,
g INTEGER,
g INTEGER

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms optional fields
should not be used when wrapping or unwrapping X9.42 Diffie-Hellman private keys since their values
are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice

ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeylInfo type:

* RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1 type. This type
requires values to be present for all the attributes specific to Cryptoki’s RSA private key objects. In
other words, if a Cryptoki library does not have values for an RSA private key’'s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT2, and CKA_COEFFICIENT values, it must not create an
RSAPrivateKey BER-encoding of the key, and so it must not prepare it for wrapping.

» Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
e X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 74 of 212

e EC (also related with ECDSA) private keys are BER-encoded according to SECG SEC 1
ECPrivateKey ASN.1 type:

ECPrivateKey ::= SEQUENCE ({
Version INTEGER { ecPrivkeyVerl (1) }
(ecPrivkeyVerl),
privateKey OCTET STRING,
parameters [0] Parameters OPTIONAL,
publicKey [1] BIT STRING OPTIONAL

Since the EC domain parameters are placed in the PKCS #8’s privateKeyAlgorithm field, the optional
parameters field in an ECPrivateKey must be omitted. A Cryptoki application must be able to
unwrap an ECPrivateKey that contains the optional publicKey field; however, what is done with this
publicKey field is outside the scope of Cryptoki.

e DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes is
encrypted with the secret key. This encryption must be done in CBC mode with PKCS padding.
Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext is
decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeylInfo type, and the wrapped key is produced. An error will result if the original wrapped key
does not decrypt properly, or if the decrypted unpadded data does not parse properly, or its type does not
match the key type specified in the template for the new key. The unwrapping mechanism contributes
only those attributes specified in the PrivateKeyInfo type to the newly-unwrapped key; other attributes
must be specified in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm 12 }
algorithm OBJECT IDENTIFIER ::= {
iso(l) identifier-organization(3) oiw(1l4) secsig(3)
algorithm(2) }

with associated parameters

DSAParameters ::= SEQUENCE ({
primel INTEGER, -- modulus p
prime2 INTEGER, -- modulus g
base INTEGER -- base g

for wrapping DSA private keys. Note that although the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

2.6 Generic secret key

Table 44.44, Generic Secret Key Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 75 of 212

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR' Key Unwrap
Pair
CKM_GENERIC v
_SECRET_KEY
_GEN

2.6.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_GENERIC_SECRET_KEY_GEN

2.6.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. These keys do not support encryption or decryption; however, other keys can be
derived from them and they can be used in HMAC operations. The following table defines the generic
secret key object attributes, in addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.
Table 45.45, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE™*®’ Byte array Key value (arbitrary
length)

CKA_VALUE_LEN®® CK_ULONG | Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating a generic secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK_GENERIC SECRET;
CK UTF8CHAR label[] = ™A generic secret key object”;
CK BYTE value[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA DERIVE, ¢&true, sizeof (true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the SHA-1 hash of the generic secret key object's CKA_VALUE attribute.

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 76 of 212

2.6.3 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is used
to generate generic secret keys. The generated keys take on any attributes provided in the template
passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the key
to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template specifies
an object type and a class, they must have the following values:

CK _OBJECT CLASS = CKO SECRET KEY;
CK_KEY TYPE = CKK GENERIC SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bits.

2.7 HMAC mechanisms

Refer to RFC2104 and FIPS 198 for HMAC algorithm description.. The HMAC secret key shall
correspond to the PKCS11 generic secret key type or the mechanism specific key types (see mechanism
definition). Such keys, for use with HMAC operations can be created using C_CreateObject or
C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC mechanisms described in
the respective hash mechanism descriptions. The RFC should be consulted to obtain these test vectors.

2.8 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].
Table 46.46, AES Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_KEY_GEN 4
CKM_AES_ECB v v

\
<\

CKM_AES_CBC
CKM_AES_CBC_PAD

\
<\

CKM_AES_MAC_GENERAL v
CKM_AES_MAC v
CKM_AES_OFB v v
CKM_AES_CFB64 v v
CKM_AES_CFB8 v v
CKM_AES_CFB128 v v
CKM_AES_XTSCFB1 v v
CKM_AES_XCBC_MAC v
CKM_AES_XCBC_MAC_96 v
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 77 of 212

2.8.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.

Mechanisms:
CKM_AES_KEY_GEN
CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD
CKM_AES_OFB
CKM_AES_CFB64
CKM_AES_CFB8
CKM_AES_CFB128

| CKM_AES_XTSCFB1

CKM_AES_XCBC_MAC
CKM_AES_XCBC_MAC_96

‘ 2.8.2 AES secret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold AES keys. The
following table defines the AES secret key object attributes, in addition to the common attributes defined

for this object class:

| Table 47.47, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN*®° CK_ULONG | Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an AES secret key object:

CK OBJECT CLASS clas
CK_KEY TYPE keyType
CK UTF8CHAR labell[]
CK_BYTE valuel]
CK_BBOOL true

{CKA CLASS, &class

{CKA KEY TYPE,

{CKA TOKEN, &true,

{ CKA LABEL, label,

{CKA_ENCRYPT,

{CKA VALUE, value,
|

| pkcs11-curr-v2.40-esprdb2

S

14

&keyType,
sizeof (true) },

sizeof (label) -1},
&true,
sizeof (value) }

CKO_SECRET KEY;
CKK_AES;
“An AES secret key object”;

{...}7
CK_TRUE;
CK ATTRIBUTE templatel[]

= {
sizeof (class) },
sizeof (keyType) },

sizeof (true) },

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 78 of 212

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2.8.3 AES key generation

The AES key generation mechanism, denoted CKM_AES_KEY_GEN, is a key generation mechanism for
NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the AES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.4 AES-ECB

AES-ECB, denoted CKM_AES_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST Advanced Encryption Standard and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 48:48, AES-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 79 of 212

2.8.5 AES-CBC

AES-CBC, denoted CKM_AES_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on NIST’s Advanced Encryption Standard and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 49:49, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for single- and multiple-
part encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced
Encryption Standard; cipher-block chaining mode; and the block cipher padding method detailed in PKCS
#7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section 2.5
for details). The entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table £6:50, AES-CBC with PKCS Padding: Key And Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 80 of 212

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size bytes
block size shorter than input length
C_WrapKey AES any input length rounded up to
multiple of the block size
C_UnwrapKey AES multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.7 AES-OFB

AES-OFB, denoted CKM_AES_OFB. It is a mechanism for single and multiple-part encryption and
decryption with AES. AES-OFB mode is described in [NIST sp800-38a].

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table £1:51, AES-OFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.8.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES_CFB8, CKM_AES_CFB64, and
CKM_AES_CFB128. It is a mechanism for single and multiple-part encryption and decryption with AES.
AES-OFB mode is described [NIST sp800-38al.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

Constraints on key types and the length of data are summarized in the following table:

Table £62.52, AES-CFB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.8.9 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on NIST Advanced Encryption Standard as defined in
FIPS PUB 197 and data authentication as defined in FIPS PUB 113.

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 81 of 212

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table £3:53, General-length AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES any 0-block size, as specified in parameters
C_Verify AES any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.8.10 AES-MAC

AES-MAC, denoted by CKM_AES_MAC, is a special case of the general-length AES-MAC mechanism.
AES-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table £4.54, AES-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any Y2 block size (8 bytes)
C_Verify AES Any Y2 block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2-8-122.8.11 AES-XCBC-MAC

AES-XCBC-MAC, denoted CKM_AES_XCBC_MAC, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 82 of 212

Table £6:55, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 16 bytes
C_Verify AES Any 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2-8-132.8.12 AES-XCBC-MAC-96

AES-XCBC-MAC-96, denoted CKM_AES_XCBC_MAC-96, is a mechanism for single and multiple part
signatures and verification; based on NIST’s Advanced Encryption Standard and [RFC 3566].

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 5756, AES-XCBC-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign AES Any 12 bytes
C_Verify AES Any 12 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2.9 AES with Counter

Table 58:57, AES with Counter Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_CTR v v

2.9.1 Definitions

Mechanisms:
CKM_AES _CTR

2.9.2 AES with Counter mechanism parameters

¢ CK_AES_CTR_PARAMS; CK_AES_CTR_PARAMS_PTR

CK_AES_CTR_PARAMS is a structure that provides the parameters to the CKM_AES_CTR mechanism.
It is defined as follows:
typedef struct CK AES CTR PARAMS ({
CK _ULONG ulCounterBits;
CK BYTE cb[l6];
} CK_AES CTR PARAMS;

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 83 of 212

ulCounterBits specifies the number of bits in the counter block (cb) that shall be incremented. This
number shall be such that 0 < u/CounterBits <= 128. For any values outside this range the mechanism
shall return CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter bits. The counter
bits are the least significant bits of the counter block (cb). They are a big-endian value usually starting
with 1. The rest of ‘cb’ is for the nonce, and maybe an optional IV.

E.g. as defined in [RFC 3686]:

0 1 2 3
0123456789 01234567890123456789°01
e e et T e
| Nonce
e e et T e
| Initialization Vector (IV)
|
e e e et T e e et el o
| Block Counter
e e et T e

-+ — — + — +

This construction permits each packet to consist of up to 2°%-1 blocks = 4,294,967,295 blocks =
68,719,476,720 octets.

CK_AES_CTR_PARAMS_PTR is a pointer to a CK_AES_CTR _PARAMS.

2.9.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in RFC 3686. These
describe encryption using a counter block which may include a nonce to guarantee uniqueness of the
counter block. Since the nonce is not incremented, the mechanism parameter must specify the number of
counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is no support for
any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter block’s counter bits,
then the mechanism shall return CKR_DATA_LEN_RANGE. Note that the mechanism should allow the
final post increment of the counter to overflow (if it implements it this way) but not allow any further
processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of
data can be processed.

2.10 AES CBC with Cipher Text Stealing CTS

Ref [NIST AES CTS

This mode allows unpadded data that has length that is not a multiple of the block size to be encrypted to
the same length of cipher text.

2 10 Additi LAES Mecl .
Table 58_AES CBC with Cipher Text Stealing CTS Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 84 of 212

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwra
Key
Pair
CKM _AES CTS v 4
2.10.1 Definitions
Mechanisms:
CKM_AES _CTS
2.10.2 AES CTS mechanism parameters
It has a parameter, a 16-byte initialization vector.
Table 59, AES-CTS: Key And Data Length
Function Key Input length Output length Comments
type
C_Encrypt AES Any, > block same as input length no final part
size (16 bytes)
C_Decrypt AES any, = block same as input length no final part
size (16 bytes)
2.11 Additional AES Mechanisms
&9 Table 60, Additional AES Mechanisms vs. Functions
Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_AES_GCM 4 4
CKM_AES_CCM 4 4
CKM_AES GMAC v v
2.11.1 Definitions
Mechanisms:
[SKM_AES_GMAG | - |

— CKM_AES_GCM

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 85 of 212

CKM_AES_CCM

CKM_AES_GMAC

Authenticated

Encn;ption | Decryption

2.12 AES--GCM

DADAMC [

Al £ ot vt O N
O C L O

ESEETIN
Ty

T ZILNZ S 1o

T

T

4

-~ T
T LT ~ L

P s s

Ea

AT DYMT DM

22] T=-T
T L L v LT

I1IT AN
N

=

T

Iakva
T

BV A AW Y

T LT IEE =]
22 1 A DAINT
T LZ 21717

P s s
IIT AN

Ea

AT DYMT DM

Iakva

T
B

D
L rtagoLCoy

.1

VT
N

=
=

IIT AN

T
Iakva
T

T ZItZ LTy

DADAMC o

IakyAualal Vi
=

|
J

DADAMC [

Al £ ot vt O OON
O C L O

ESEETIN
Ty

T L ZILNZIL1rD

T

*o~ E
T~ Lot LIt T

n

T

1N

IIT AN

Iakv4

-

ToLL

T L COt oL

VT

=

AT DYMT DM

Ea

n

~NT

LY

Tt
o~

n
Tt

=T
20 1N
Sa=ama

IIT AN
VT

P s s
=

T

Ea
Iakv4
T

DA DT .

T LT I~
22 1 AT
[= mr v g

P s s
IIT AN

Ea

AT DYMT DM

Iakv4

Tt
12 I MAAOT n

VT

=

IIT AN

T
Iakv4

Tt

=

NG O LriZy
DADAMC o

=
Ial/Aualal Vi

|

T ZIIZ LTy

T

23-Aprilcsprd03
Page 86 of 212

pkcs11-curr-v2.40-espra02

Copyright © OASIS Open 2014. All Rights Reserved.

Standards Track Work Product

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM].

Encrypt:
e Setthe IV length ullvLen in the parameter block.

e Setthe |V data plv in the parameter block. p/V may be NULL if ullvLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the tag length ulTagBits in the parameter block.

e Call C _Encryptlnit() for CKM_AES_GCM mechanism with parameters and key K.

« Call C_Encrypt(), or C_EncryptUpdate()*> C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:
e . Setthe IV length ullvLen in the parameter block.

Wk

indicates 0 or more calls may be made as required

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 87 of 212

e Setthe IV data plv in the parameter block. p/V may be NULL if ullvLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

* Set the tag length ulTagBits in the parameter block.
e Call C_Decryptlnit() for CKM_AES_GCM mechanism with parameters and key K.

« Call C_Decrypt(), or C_DecryptUpdate()*' C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no
data should be returned until C_Decrypt() or C_DecryptFinal().

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost ulTagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL
parameters.

2-13-142.12.1 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610].

Encrypt:
* Set the message/data length u/DatalLen in the parameter block.

e Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if uINonceLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Encrypt(),C_DecryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining ciphertext
output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDatalen. The output length will be ulDataLen + ulMACLen.

Decrypt:

* Set the message/data length ulDatalLen in the parameter block. This length should not include the
length of the MAC that is appended to the cipher text.

e Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if uINonceLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be u/DatalLen
+ uIMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 88 of 212

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL
parameters.

243:22.12.2 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and
verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of
GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism
parameters. When HMAC is used with C_Sign or C_Verify, pData points to the AAD. HMAC does not
use plaintext or ciphertext.

The signature produced by HMAC, also referred to as a Tag, is 16 bytes long.

Its single mechanism parameter is a 12 byte initialization vector (1V).

Constraints on key types and the length of data are summarized in the following table:
Table £€0:61, AES-GMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES < 2’64 16 bytes
C_Verify CKK_AES < 2’64 16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 89 of 212

Commenis
no-finalpart
no-finalpart
Euretiens
Erepmpt | Sige | &R Cens | lap
Mecharizem & & & | Digest & Dearive
Decrypt | Verify | VR' Keyl | Unwrap
Key
Pais
(S AEe o
e
2 15.1 Definiti
B e
Sl A= o
Sl A Ee ol

2-15.:22.12.3 AES GCM and CCM Mechanism parameters

¢ CK M_PARAMS; CK M_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES GCM mechanism. It is
defined as follows:

typedef struct CK GCM PARAMS {

CK

BYTE PTR plv;

CK

ULONG ulIvlen;

CK

BYTE PTR pAAD;

CK

ULONG ulAADLen;

CK

ULONG ulTagBits;

} CK

GCM PARAMS;

The fields of the structure have the following meanings:

+ s 7 £ ot vt AT AN DADAMC (
CYM T ocCcLTuCtCT T OCT LT LI T T
AW DVYVMET DMD AT o
T D> i3 L I T 7
O TIT AN 1271 Tx7T n e
T |\ A N B NS B W s Ve o a2
O DVYVMET DTMD ~NNAT) e
T D> i3 L I ISEESTI=a]

pkcs11-curr-v2.40-esprdd2
Standards Track Work Product

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 90 of 212

O TIT AN -1 ANNT n e
T A\ 5 A B\ N R W R Y W e W B A N i
O TITANC 377 Mo ~D 2+ o e
T UOUINT arrftagybrcoy
1 O N DADAMCS .
T T OCTL T LNy

plv pointer to initialization vector

ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and 256. 96-bit (12 byte) IV
values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

ulAADLen length of pAAD in bytes.

ulTagBits length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

g AAE s AT ANANM DADAMS [
th/ A8 - o C L UCT T L T Y A W B W AR W R YW 1
O TITONC 33T DA+ T A . F N BN S + NEPNE N NS + %
L o1 TN | R iy B @ R WP @ i Iy tJ_L(_/L_LJ.lk, C oL _/_LtJJ.J. 1 C O
O DYVTE DTR N~ e
L T 117 J S tJL‘lUJ-l\./ I2
O ITITONC 111 NerneaT A .
L o1 TN OV OoOTTCO 1T Iy
O DYTMET DTOD ~NAT) .
L T 117 J S tJL_l.L_l.J_/,
O TITONC 33T AANDT A e
L o1 TN |05 N g W s W o i | Iy
O TITONC 33 TMAOT A
L o1 TN |0 R R W 1T Iy
lal AR AMC
Fany XTI

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 91 of 212

¢ CK M_PARAMS; CK M_PARAMS_PTR

K M_PARAMS is a structure that provi th rameters to the CKM_AE M mechanism. Iti
defined as follows:

typedef struct CK CCM PARAMS {
CK ULONG ulDatalen; /*plaintext or ciphertext*/
CK BYTE PTR pNonce;
CK ULONG ulNoncelen;
CK BYTE PTR pAAD;
CK ULONG ulAADLen;
CK ULONG ulMACLen;

} CK CCM PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 < | < 8):

ulDatal en length of the data where 0 <= ulDatalen < 28L.

pNonce the nonce.

ulNoncelen length of pNonce (<= 15-L) in bytes.

pAAD Additional authentication data. This data is authenticated but not
encrypted.

ulAADLen length of pAuthData in bytes.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

K M_PARAMS PTRi inter t K M_PARAMS.

2.12.4 AES-GCM henti En ion/D ion

Generic GCM mode is described in [GCM]. To set up for AES-GCM ugg thg following process, where K

ki and AAD (additional authenticat ata) ar ri in

Encrypt:
t the IV length ullvLen in the parameter block.
t the |V data plv.in th rameter block. p/lV m NULL ifullvLen i

| pkcs11-curr-v2.40-espra02 23-Apritlcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 92 of 212

» Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

» _ Set the tag length ulTagBits in the parameter block.

e Call C_Encryptlnit() for CKM_AES_GCM mechanism with parameters and key K.

* Call C_Encrypt(), or C_Encrythpdate()*4 C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:
e . Setthe IV length ullvLen in the parameter block.
e Set the IV data plv in the parameter block. p/V may be NULL if ullvLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

* Set the tag length ulTagBits in the parameter block.
e Call C_Decryptlnit() for CKM_AES_GCM mechanism with parameters and key K.

+ Call C_Decrypt(), or C_DecryptUpdate()*' C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the
tag bits are the rightmost u/TagBits bits.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL
parameters.

2-15:42.12.5 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610].

Encrypt:
e Set the message/data length u/DatalLen in the parameter block.

e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if uINonceLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

+ Call C_Encrypt(), or C_DecryptUpdate()** C_EncryptFinal(), for the plaintext obtaining ciphertext
output obtaining the final ciphertext output and the MAC. The total length of data processed must
be ulDatalen. The output length will be ulDataLen + ulMACLen.

Decrypt:

e Set the message/data length ulDatalLen in the parameter block. This length should not include the
length of the MAC that is appended to the cipher text.

4 " indicates 0 or more calls may be made as required

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 93 of 212

e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce
may be NULL if uINoncelLen is 0.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

+ Call C_Decrypt(), or C_DecryptUpdate()** C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalLen
+ uIMACLen.

The key type for K must be compatible with CKM_AES_ECB and the C_Encryptlnit/C_Decryptinit calls
shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL
parameters.

2-162.13 AES CMAC

Table £64:62, Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_AES_CMAC_GENERAL v
CKM_AES_CMAC v

1 SR = SignRecover, VR = VerifyRecover

2-16-12.13.1 Definitions

Mechanisms:
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

2-16-22.13.2 Mechanism parameters

CKM_AES_CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_AES_CMAC does not use a mechanism parameter.

2-16.32.13.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on [NIST sp800-385SP800-38B] and [RFC 44931-].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 65.63, General-length AES-CMAC: Key And Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 94 of 212

Function Key type Data length Signature length
C_Sign CKK_AES any 0-block size, as specified in parameters
C_Verify CKK_AES any 0-block size, as specified in parameters

References [NIST sp800-385SP800-38B] and [RFC 4493] recommend that the output MAC is not
truncated to less than 64 bits. The MAC length must be specified before the communication starts, and
must not be changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2-16:42.13.4 AES-CMAC

AES-CMAC, denoted CKM_AES_CMAC, is a special case of the general-length AES-CMAC mechanism.
AES-MAC always produces and verifies MACs that are a full block size in length, the default output length
specified by [RFC 4493].

Constraints on key types and the length of data are summarized in the following table:
Table 6664, AES-CMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign CKK_AES any Block size (16 bytes)
C_Verify CKK_AES any Block size (16 bytes)

References [NIST sp800-386SP800-38B] and [RFC 4493] recommend that the output MAC is not
truncated to less than 64 bits. The MAC length must be specified before the communication starts, and
must not be changed during the lifetime of the key. It is the caller’s responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of AES key sizes, in bytes.

2472.14 AES Key Wrap

Table 6765, AES Key Wrap Mechanisms vs. Functions

Functions

Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & |[Digest| Key/ & Derive

Decrypt| Verify | g1 Key | Unwrap

Pair

CKM_AES_KEY_WRAP &
CKM_AES_KEY_WRAP_PAD v
TSR = SignRecover, VR = VerifyRecover

2147142.14.1 Definitions

Mechanisms:
CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD

2-47.22.14.2 AES Key Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector which, if
present, must be a fixed size array of 8 bytes, and, if NULL, will use the default initial value defined in
Section 2.2.3.1 of [AES KEYWRAP].

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 95 of 212

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of 8 bytes to be used as
the initial value. The length shall be either 0 and the pointer NULL, or 8, and the pointer non-NULL.

2-17-32.14.3 AES Key Wrap

The mechanisms support only single-part operations, single part wrapping and unwrapping, and single-
part encryption and decryption.

The CKM_AES_KEY_WRAP mechanism can wrap a key of any length. A key whose length is not a
multiple of the AES Key Wrap block size (8 bytes) will be zero padded to fit. The CKM_AES_KEY_WRAP
mechanism can only encrypt a block of data whose size is an exact multiple of the AES Key Wrap
algorithm block size.

The CKM_AES_KEY_WRAP_PAD mechanism can wrap a key or block of data of any length. It does the
usual padding of inputs (keys or data blocks) that are not multiples of the AES Key Wrap algorithm block

size, always producing wrapped output that is larger than the input key/data to be wrapped. This padding
is done by the token before being passed to the AES key wrap algorithm, which adds an 8 byte AES Key
Wrap algorithm block of data.

2-182.15 Key derivation by data encryption — DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

Table 68:66, Key derivation by data encrzptionencryption Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_DES_ECB_ENCRYPT_DATA v
CKM_DES _CBC_ENCRYPT_DATA v
CKM_DES3 _ECB_ENCRYPT_DATA v
CKM_DES3 _CBC_ENCRYPT_DATA v
CKM_AES_ECB_ENCRYPT_DATA v
CKM_AES_CBC_ENCRYPT_DATA v
2-18-12.15.1 Definitions
Mechanisms:
CKM_DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3 _ECB_ENCRYPT_DATA
CKM_DES3 _CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA
typedef struct CK DES CBC ENCRYPT DATA PARAMS {
CK BYTE iv([8l; B B
CK BYTE PTR pData;
CK_ULONG length;
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 96 of 212

} CK_DES_CBC_ENCRYPT DATA PARAMS;
typedef CK DES CBC_ENCRYPT DATA PARAMS CK_PTR
CK_DES_CBC_ENCRYPT DATA PARAMS PTR;

typedef struct CK AES CBC ENCRYPT DATA PARAMS {

CK _BYTE iv[1l6];
CK BYTE PTR pData;
CK_ULONG length;

} CK_AES_CBC_ENCRYPT DATA PARAMS;
typedef CK AES CBC_ENCRYPT DATA PARAMS CK_PTR
CK_AES_CBC_ENCRYPT DATA PARAMS PTR;

2.18.22.15.2 Mechanism Parameters
Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 2.31.2

Table £9:67, Mechanism Parameters

CKM_DES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
CKM_DES3 ECB_ENCRYPT_DATA structure. Parameter is the data to be encrypted and
must be a multiple of 8 bytes long.

CKM_AES_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_DES_CBC_ENCRYPT_DATA Uses CK_DES_CBC_ENCRYPT_DATA_PARAMS.

CKM_DES3_CBC_ENCRYPT_DATA Parameter is an 8 byte IV value followed by the data.
The data value part must be a multiple of 8 bytes long.

CKM_AES_CBC_ENCRYPT_DATA Uses CK_AES_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 bytes long.

2-18-32.15.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using the base key.
The resulting cipher text shall be used to create the key value of the resulting key. If not all the cipher text
is used then the part discarded will be from the trailing end (least significant bytes) of the cipher text data.
The derived key shall be defined by the attribute template supplied but constrained by the length of cipher
text available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as per the SHA-1
Key Derivation mechanism in section 2.18.5.

If the data is too short to make the requested key then the mechanism returns
CKR_DATA_LENGTHINVALIBLEN RANGE.

2-192.16 Double and Triple-length DES

Table 70-68, Double and Triple-Length DES Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 97 of 212

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_DES2_KEY_GEN v
CKM_DES3_KEY_GEN v
CKM_DES3 _ECB v v
CKM_DES3 _CBC v v
CKM_DES3 CBC_PAD v v
CKM_DES3_MAC_GENERAL v
CKM_DES3_MAC v

2-19-12.16.1 Definitions

This section defines the key type “CKK_DES2” and “CKK_DES3” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

‘ 2-19.22.16.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length
DES keys. The following table defines the DES2 secret key object attributes, in addition to the common
attributes defined for this object class:

| Table 7#1-69, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value (always 16 bytes long)

| - Refer to [PKCS #11-Base] table 10 for footnotes

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES2 key must have its parity bits properly set). Attempting to create or
unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK DES2;
CK UTF8CHAR labell[] “A DES2 secret key object”;
CK BYTE value[l6] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 98 of 212

{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2-19.-32.16.3 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes defined for this object class:

Table #2:70, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value (always 24 bytes long)

- Refer to [PKCS #11-Base] table 10 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3 (i.e., each of
the DES keys comprising a DES3 key must have its parity bits properly set). Attempting to create or
unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK DES3;
CK UTF8CHAR labell[] “A DES3 secret key object”;
CK BYTE value[24] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three
bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with
the key type of the secret key object.

2-19.42.16.4 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length DES key
both have their parity bits set properly, as specified in FIPS PUB 46-3.

It does not have a parameter.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 99 of 212

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the double-length DES key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned default
initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3_ECB, CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES3_MAC_GENERAL, and
CKM_DES3_MAC. Triple-DES encryption with a double-length DES key is equivalent to encryption with
a triple-length DES key with K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is possible for either
of the component DES keys to be “weak” or “semi-weak” keys.

2-19.52.16.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt, decrypt, encrypt.
Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt. The mathematical
representations of the encrypt and decrypt operations are as follows:

DES3-E+—+({K1,K2,K3}, P—) = E(-K3, D(-K2, E(-K1l, P———)))

DES3-D+—+({K1,K2,K3}, C-) = D(-K1l, E(-K2, D(-K3, P———)))

2-19.62.16.6 Triple-length DES in CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are performed using outer
CBC as defined in X9.52. X9.52 describes this mode as TCBC. The mathematical representations of the
CBC encrypt and decrypt operations are as follows:

DES3-CBC-E+{{ ({K1,K2,K3}, P-) = E(-K3, D(-K2, E(-Kl, P + I
Tr)))

DES3-CBC-D+ ({K1,K2,K3}, C-) = D(-K1, E(-K2, D(-K3, P}
r))) + I

The value [is either an 8-byte initialization vector or the previous block of cipher text that is added to the
current input block. The addition operation is used is addition modulo-2 (XOR).

2-19.72.16.7 DES and Triple length DES in OFB Mode
Table 7#3:71, DES and Triple Length DES in OFB Mode Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair

CKM_DES_OFB64

CKM_DES_ OFB8

CKM_DES_ CFB64

NEASRR

CKM_DES_CFB8

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES_OFB8 and
CKM_DES_OFB64. It is a mechanism for single and multiple-part encryption and decryption with DES.

It has a parameter, an initialization vector for this mode. The initialization vector has the same length as
the block size.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 100 of 212

Constraints on key types and the length of data are summarized in the following table:

Table 74.72, OFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

‘ 2-19.82.16.8 DES and Triple length DES in CFB Mode

Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and CKM_DES_CFB64.

It is a mechanism for single and multiple-part encryption and decryption with DES.
It has a parameter, an initialization vector for this mode. The initialization vector has the same length as

the block size.

Constraints on key types and the length of data are summarized in the following table:

Table #5:73, CFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final part
CKK_DES2,
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final part
CKK_DES2,
CKK_DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC mode.

2.202.17 Double and Triple-length DES CMAC

Fabler6;Table 74, Double and Triple-length DES CMAC Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_DES3_CMAC_GENERAL v
CKM_DES3_CMAC v

Mechanisms:

1 SR = SignRecover, VR = VerifyRecover.

2.20.142.17.1 Definitions

CKM_DES3_CMAC_GENERAL

pkcs11-curr-v2.40-esprdd2

The following additional DES3 mechanisms have been added.

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03
Page 101 of 212

CKM_DES3_CMAC

2.20.22.17.2 Mechanism parameters

CKM_DES3 _CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS structure.
CKM_DES3_CMAC does not use a mechanism parameter.

2.20-32.17.3 General-length DES3-MAC

General-length DES3-CMAC, denoted CKM_DES3_CMAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification with DES3 or DES2 keys, based on [NIST sp800-38b].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final DES3 cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 7775, General-length DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any 0-block size, as specified in parameters
CKK_DES2

C_Verify CKK_DES3 any 0-block size, as specified in parameters
CKK_DES2

Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less than 64 bits
(which means using the entire block for DES). The MAC length must be specified before the
communication starts, and must not be changed during the lifetime of the key. It is the caller’s
responsibility to follow these rules.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used

2.20-42.17.4 DES3-CMAC

DES3-CMAC, denoted CKM_DES3_CMAC, is a special case of the general-length DES3-CMAC
mechanism. DES3-MAC always produces and verifies MACs that are a full block size in length, since the
DES3 block length is the minimum output length recommended by [NIST sp800-38b].

Constraints on key types and the length of data are summarized in the following table:
Table #8:76, DES3-CMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_DES3 any Block size (8 bytes)
CKK_DES2

C_Verify CKK_DES3 any Block size (8 bytes)
CKK_DES2

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2-212.18 SHA-1

Table 79:77, SHA-1 Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 102 of 212

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA _1 4
CKM_SHA_1_HMAC_GENERAL v
CKM_SHA_1_HMAC v
| | CKM_SHA1_KEY_DERIVATION v

2.24-12.18.1 Definitions

Mechanisms:
CKM_SHA _1
CKM_SHA_1_HMAC
CKM_SHA_1_HMAC_GENERAL
CKM_SHA1_KEY_DERIVATION
CKK_SHA_1_HMAC

2.21.22.18.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 80, SHA-1: Data Length

Function Input length | Digest length
C_Digest any 20

2-21.32.18.3 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1 hash
function. The keys it uses are generic secret keys and CKK_SHA_1_HMAC.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-20 (the output size of SHA-1 is 20 bytes). Signatures
(MACs) produced by this mechanism will be taken from the start of the full 20-byte HMAC output.

| Table £1.78, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any 0-20, depending on parameters
C_Verify generic secret any 0-20, depending on parameters

2-2442.18.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC, is a special case of the general-length
SHA-1-HMAC mechanism in Section 2.18.3.

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 103 of 212

It has no parameter, and always produces an output of length 20.

2-21.52.18.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism which provides the
capability of deriving a secret key by digesting the value of another secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of derived secret
key.

If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be 20 bytes (the output size of SHA-1).

If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a well-
defined length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be set
properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

2.222.19 SHA-224

Table 8279, SHA-224 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA224 v
CKM_SHA224 HMAC v
CKM_SHA224 HMAC_GENERAL v
CKM_SHA224 RSA_PKCS v
CKM_SHA224 RSA_PKCS_PSS v
CKM_SHA224 KEY_DERIVATION v
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 104 of 212

2.22.12.19.1 Definitions

Mechanisms:
CKM_SHA224
CKM_SHA224 HMAC
CKM_SHA224 HMAC_GENERAL
CKM_SHA224 KEY_DERIVATION
CKK_SHA224 HMAC

2.22.22.19.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 224-bit message digest defined in 0.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 83, SHA-224: Data Length

Function Input length Digest length
C_Digest any 28

2.22.32.19.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism except that it uses the HMAC construction based
on the SHA-224 hash function and length of the output should be in the range 0-28. The keys it uses are
generic secret keys and CKK_SHA224 HMAC. FIPS-198 compliant tokens may require the key length to
be at least 14 bytes; that is, half the size of the SHA-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-28 (the output size of SHA-224 is 28 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 14 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 28-byte HMAC
output.

Table 84.80, General-length SHA-224-HMAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret Any 0-28, depending on parameters
C_Verify generic secret Any 0-28, depending on parameters

2:22.42.19.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC, is a special case of the general-length
SHA-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.22.52.19.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 12.21.5 except that it uses the SHA-224 hash function and the relevant
length is 28 bytes.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 105 of 212

2:232.20 SHA-256

Table 85:81, SHA-256 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA256 v
CKM_SHA256_HMAC_GENERAL v
CKM_SHA256_HMAC v
CKM_SHA256_KEY_DERIVATION v

2.23.142.20.1 Definitions

Mechanisms:
CKM_SHA256
CKM_SHA256_HMAC
CKM_SHA256_HMAC_GENERAL
CKM_SHA256_KEY_DERIVATION
CKK_SHA256_HMAC

2-23.22.20.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 256-bit message digest defined in FIPS PUB 180-2.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table £6:82, SHA-256: Data Length

Function Input length | Digest length
C_Digest any 32

2.23.32.20.3 General-length SHA-256-HMAC

The general-length SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-256 hash function and length of the output should be in the range 0-32.
The keys it uses are generic secret keys and CKK_SHA256_HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-32 (the output size of SHA-256 is 32 bytes). FIPS-198
compliant tokens may constrain the output length to be at least 4 or 16 (half the maximum length).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 32-byte HMAC
output.

Table 783, General-length SHA-256-HMAC: Key And Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 106 of 212

Function Key type Data length Signature length
C_Sign generic secret Any 0-32, depending on parameters
C_Verify generic secret Any 0-32, depending on parameters

‘ 2.23-42.20.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256_HMAC, is a special case of the general-length
SHA-256-HMAC mechanism in Section 2.20.3.

It has no parameter, and always produces an output of length 32.

‘ 2.23.52.20.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-256 hash function and the relevant

length is 32 bytes.

2:242.21 SHA-384

Table 88:84, SHA-384 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA384 v
CKM_SHA384_HMAC_GENERAL v
CKM_SHA384_HMAC v
CKM_SHA384_KEY_DERIVATION v

‘ 2.24.12.21.1 Definitions
CKM_SHA384

CKM_SHA384_HMAC

CKM_SHA384_HMAC_GENERAL
CKM_SHA384_KEY_DERIVATION

CKK_SHA384_HMAC

‘ 2.24.22.21.2 SHA-384 digest
The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message digesting, following the

Secure Hash Algorithm with a 384-bit message digest defined in FIPS PUB 180-2.
It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs11-curr-v2.40-esprdd2

Table £9:85, SHA-384: Data Length

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 107 of 212

Function Input length

Digest length

C_Digest any

48

‘ 2-24.32.21.3 General-length SHA-384-HMAC

The general-length SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-384 hash function and length of the output should be in the range 0-48.

‘ 2:24-42.21.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384_HMAC, is a special case of the general-length
SHA-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

‘ 2.24.52.21.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-384 hash function and the relevant

length is 48 bytes.

2.252.22 SHA-512

Table 90.86, SHA-512 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA512 v
CKM_SHA512_HMAC_GENERAL v
CKM_SHA512_HMAC v
CKM_SHA512_KEY_DERIVATION v

‘ 2.25142.22.1 Definitions

CKM_SHA512

CKM_SHA512_HMAC

CKM_SHA512_HMAC_GENERAL
CKM_SHA512_KEY_DERIVATION

CKK_SHA512_HMAC

2.25:22.22.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHA512, is a mechanism for message digesting, following the
Secure Hash Algorithm with a 512-bit message digest defined in FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 108 of 212

23-Apritcsprd03

Table 91.87, SHA-512: Data Length

Function Input length | Digest length
C_Digest any 64

2.25.32.22.3 General-length SHA-512-HMAC

The general-length SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC_GENERAL, is the
same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the HMAC
construction based on the SHA-512 hash function and length of the output should be in the range 0-64.

2.25:42.22.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_HMAC, is a special case of the general-length
SHA-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

2.25:52.22.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHA512_KEY_DERIVATION, is the same as the SHA-1 key
derivation mechanism in Section 2.18.5, except that it uses the SHA-512 hash function and the relevant
length is 64 bytes.

2.262.23 SHA-512/224

Table 92.88, SHA-512/224 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR' Key/ | Unwrap
Key
Pair
CKM_SHA512_224 v
CKM_SHA512_224 HMAC_GENERAL v
CKM_SHA512_224 HMAC v
CKM_SHA512_224 KEY_DERIVATION v

‘ 2.26.42.23.1 Definitions
CKM_SHA512_224
CKM_SHA512_224 HMAC
CKM_SHA512_224 HMAC_GENERAL
CKM_SHA512_224 KEY_DERIVATION

CKK_SHA512_224 HMAC

2.26.22.23.2 SHA-512/224 digest

The SHA-512/224 mechanism, denoted CKM_SHA512_224, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit
message digest with a distinct initial hash value and truncated to 224 bits. CKM_SHA512_224 is the
same as CKM_SHAS512_T with a parameter value of 224.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 109 of 212

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 93:89, SHA-512/224: Data Length

Function Input length | Digest length
C_Digest any 28

2-26.32.23.3 General-length SHA-512-HMAC

The general-length SHA-512/224-HMAC mechanism, denoted CKM_SHA512_224 HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/224 hash function and length of the output should be in the
range 0-28.

2.26:42.23.4 SHA-512/224-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_224 HMAC, is a special case of the general-
length SHA-512/224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

2.26-52.23.5 SHA-512/224 key derivation

The SHA-512/224 key derivation, denoted CKM_SHA512_224 KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/224 hash function
and the relevant length is 28 bytes.

2.272.24 SHA-512/256

Table 94:90, SHA-512/256 Mechanisms vs. Functions

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive

Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair

CKM_SHA512_256 v

CKM_SHA512_256_HMAC_GENERAL v

CKM_SHA512_256_HMAC v

CKM_SHA512_256_KEY_DERIVATION v

2.27-142.24.1 Definitions

CKM_SHA512_256
CKM_SHA512_256_HMAC
CKM_SHA512_256_HMAC_GENERAL
CKM_SHA512_256_KEY_DERIVATION

CKK_SHA512_256_HMAC

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 110 of 212

2.27.22.24.2 SHA-512/256 digest

The SHA-512/256 mechanism, denoted CKM_SHA512_256, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit
message digest with a distinct initial hash value and truncated to 256 bits. CKM_SHA512_256 is the
same as CKM_SHAS512_T with a parameter value of 256.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 95:91, SHA-512/256: Data Length

Function Input length | Digest length
C_Digest any 32

2.27.32.24.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_256_HMAC_GENERAL,
is the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/256 hash function and length of the output should be in the
range 0-32.

2.27-42.24.4 SHA-512/256-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_256_HMAC, is a special case of the general-
length SHA-512/256-HMAC mechanism.

It has no parameter, and always produces an output of length 32.

2.27-52.24.5 SHA-512/256 key derivation

The SHA-512/256 key derivation, denoted CKM_SHAS512_256_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function
and the relevant length is 32 bytes.

2-282.25 SHA-512/t

Table 96:92, SHA-512 /t Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SHA512_T v
CKM_SHA512_T_HMAC_GENERAL v
CKM_SHA512_T_HMAC v
CKM_SHA512_T_KEY_DERIVATION v

2.28.42.25.1 Definitions
CKM_SHA512_T
CKM_SHA512_T_HMAC
CKM_SHA512_T_HMAC_GENERAL

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 111 of 212

CKM_SHA512_T_KEY_DERIVATION

CKK_SHA512_T_HMAC

2.28.22.25.2 SHA-512/t digest

The SHA-512/t mechanism, denoted CKM_SHAS512_T, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180-4, section 5.3.6. It is based on a 512-bit message
digest with a distinct initial hash value and truncated to t bits.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in
bytes of the desired output should be in the range of 0-I t/81, where 0 <t <512, and t <> 384.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 9793, SHA-512/256: Data Length

| Function | Inputlength | Digest length
C_Digest any [t/81, where 0 < t < 512, and t <> 384

2.28.32.25.3 General-length SHA-512-HMAC

The general-length SHA-512/256-HMAC mechanism, denoted CKM_SHA512_T_HMAC_GENERAL, is
the same as the general-length SHA-1-HMAC mechanism in Section 2.18.3, except that it uses the
HMAC construction based on the SHA-512/t hash function and length of the output should be in the range
0-Tt/81, where 0 <t< 512, and t <> 384.

2.28:42.25.4 SHA-512/t-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512_T_HMAC, is a special case of the general-
length SHA-512/256-HMAC mechanism.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the value of t in bits. The length in
bytes of the desired output should be in the range of 0-t/81, where 0 <t <512, and t <> 384.

2.28.52.25.5 SHA-512/t key derivation

The SHA-512/256 key derivation, denoted CKM_SHA512_T_KEY_DERIVATION, is the same as the
SHA-512 key derivation mechanism in section 2.25.5, except that it uses the SHA-512/256 hash function
and the relevant length is I't/81 bytes, where 0 <t <512, and t <> 384.

2-292.26 PKCS #5 and PKCS #5-style password-based encryption
(PBE)

The mechanisms in this section are for generating keys and Vs for performing password-based
encryption. The method used to generate keys and IVs is specified in PKCS #5.

Table 98:94, PKCS 5 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_PBE_SHA1_DES3_EDE_CBC 4
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 112 of 212

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_PBE_SHA1_DES2_EDE_CBC v
CKM_PBA_SHA1_WITH_SHA1_HMAC v
CKM_PKCS5_PBKD2 v

‘ 2.29.12.26.1 Definitions

Mechanisms:

CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PKCS5_PBKD2

CKM_PBA_SHA1_WITH_SHA1_HMAC

2.29.22.26.2 Password-based encryption/authentication mechanism

parameters

¢ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARANMS is a structure which provides all of the necessary information required by the

CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation
mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows:
typedef struct CK PBE PARAMS ({
CK BYTE PTR pInitVector;
CK _UTF8CHAR PTR pPassword;
CK ULONG ulPasswordLen;

CK_BYTE PTR pSalt;

CK_ULONG ulSaltLen;
CK ULONG ulIteration;

} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

plnitVector

pPassword
ulPasswordLen
pSalt

ulSaltLen

ullteration

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.

pkcs11-curr-v2.40-esprdd2

pointer to the location that receives the 8-byte initialization vector

(1V), if an IV is required;

points to the password to be used in the PBE key generation;

length in bytes of the password information;

points to the salt to be used in the PBE key generation;

length in bytes of the salt information;

number of iterations required for the generation.

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03
Page 113 of 212

2-29.32.26.3 PKCS #5 PBKDF2 key generation mechanism parameters

¢ CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the Pseudo-Random
Function (PRF) used to generate key bits using PKCS #5 PBKDF2. It is defined as follows:

typedef CK ULONG CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;

The following PRFs are defined in PKCS #5 v2.1. The following table lists the defined functions.
Table 99:95, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions

PRF Identifier Value Parameter Type

CKP_PKCS5_PBKD2_HMAC_SHA1 0x00000001UL | No Parameter. pPrfData must be
NULL and ulPrfDatalLen must be
zero.

CKP_PKCS5_PBKD2_HMAC_GOSTR3411 | 0x00000002UL | This PRF uses GOST R34.11-94

hash to produce secret key value.
pPrfData should point to DER-
encoded OID, indicating
GOSTR34.11-94 parameters.
ulPrfDatalen holds encoded OID
length in bytes. If pPrfData is set
to NULL_PTR, then id-
GostR3411-94-
CryptoProParamSet parameters
will be used (RFC 4357, 11.2),
and ulPrfDatalLen must be 0.

CKP_PKCS5_PBKD2 HMAC_SHAZ224 0x00000003UL No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
zero.
CKP_PKCS5_PBKD2 HMAC_SHA256 0x00000004UL No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
Zero.
CKP_PKCS5_PBKD2 HMAC_SHA384 0x00000005UL No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
zero.
CKP_PKCS5_PBKD2 HMAC_SHA512 0x00000006UL No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
zero.
CKP_PKCS5_PBKD2 HMAC_SHA512 224 | 0x00000007UL No Parameter. pPrfData must be
NULL and ulPrfDatal.en must be
zero.
CKP_PKCS5_PBKD2 HMAC_SHA512 256 | 0x00000008UL No Parameter. pPrfData must be

NULL and ulPrfDatal.en must be
zero.

CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 114 of 212

¢ CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR

CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is used to indicate the source of the salt value when
deriving a key using PKCS #5 PBKDF2. It is defined as follows:

typedef CK ULONG CK PKCS5 PBKDF2 SALT SOURCE TYPE;

The following salt value sources are defined in PKCS #5 v2.1. The following table lists the defined
sources along with the corresponding data type for the pSaltSourceData field in the
CK_PKCS5_PBKD2_PARAM structure defined below.

| Table 160.96, PKCS #5 PBKDF2 Key Generation: Salt sources

Source Identifier Value Data Type

CKZ_SALT_SPECIFIED

0x00000001 | Array of CK_BYTE containing the value of the

salt value.

CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR is a pointer to a
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE

¢ CK_PKCS5_PBKD2_PARAMS; CK_PKCS5 PBKD2_PARAMS_PTR

CK_PKCS5_PBKD2_PARAMS is a structure that provides the parameters to the CKM_PKCS5_PBKD2
mechanism. The structure is defined as follows:
typedef struct CK PKCS5 PBKDZ PARAMS ({

CK_PKCS5 PBKDF2 SALT SOURCE TYPE saltSource;

CK VOID PTR pSaltSourceData;

CK _ULONG ulSaltSourceDatalen;

CK ULONG iterations;

CK_PKCS5 PBKD2Z PSEUDO RANDOM FUNCTION TYPE prf;

CK VOID PTR pPrfData;

| CK _ULONG ulPrfDataLen;

CK _UTF8CHAR PTR pPassword;
CK _ULONG_PTR ulPasswordLen;
} CK_PKCS5 PBKD2 PARAMS;

The fields of the structure have the following meanings:

saltSource
pSaltSourceData
ulSaltSourceDatalen

iterations

prf
pPrfData
ulPrfDatalLen

pPassword

pkcs11-curr-v2.40-esprdd2

source of the salt value
data used as the input for the salt source
length of the salt source input

number of iterations to perform when generating each block of
random data

pseudo-random function used to generate the key
data used as the input for PRF in addition to the salt value
length of the input data for the PRF

points to the password to be used in the PBE key generation

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 115 of 212

ulPasswordLen length in bytes of the password information

CK_PKCS5_PBKD2_PARAMS_PTR is a pointer to a CK_PKCS5_PBKD2_PARAMS.

2.29.42.26.4 PKCS #5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5_PBKD2, is a mechanism used for generating
a secret key from a password and a salt value. This functionality is defined in PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5_PBKD2_PARAMS structure. The parameter specifies the salt value
source, pseudo-random function, and iteration count used to generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates must contain
the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a fixed length the
CKA_VALUE_LEN attribute may be omitted.

2:302.27 PKCS #12 password-based encryption/authentication
mechanisms

The mechanisms in this section are for generating keys and Vs for performing password-based
encryption or authentication. The method used to generate keys and IVs is based on a method that was
specified in PKCS #12.

We specify here a general method for producing various types of pseudo-random bits from a password,
p; a string of salt bits, s; and an iteration count, ¢. The “type” of pseudo-random bits to be produced is
identified by an identification byte, ID, the meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z," x Z," — Z," (that is, H has a chaining
variable and output of length u bits, and the message input to the compression function of H is v bits).
For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt
strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v-[s/v] bits (the final copy of the
salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length v-[p/v] bits (the final copy
of the password may be truncated to create P). Note that if the password is the empty string, then so
is P.
. Set I=S]|P to be the concatenation of S and P.
5. Setj=[nlu].
6. Fori=1,2, ..., j, do the following:
a. Set A=H(D||/), the ¢ hash of D||I. Thatis, compute the hash of D||/; compute the hash of

that hash; etc.; continue in this fashion until a total of ¢ hashes have been computed, each on
the result of the previous hash.

b. Concatenate copies of A, to create a string B of length v bits (the final copy of A; may be
truncated to create B).

c. Treating / as a concatenation Iy, /4, ..., I Of v-bit blocks, where k=[s/v]+[p/v], modify I by
setting /=(I+B+1) mod 2" for each j. To perform this addition, treat each v-bit block as a
binary number represented most-significant bit first.

7. Concatenate A4, A, ..., A;together to form a pseudo-random bit string, A.
8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to generate a key
and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To
generate a key, the identifier byte ID is set to the value 1; to generate an IV, the identifier byte ID is set to
the value 2.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 116 of 212

When the password based authentication mechanism presented in this section is used to generate a key
from a password, salt, and an iteration count, the above algorithm is used. The identifier byte ID is set to
the value 3.

2-30.12.27.1 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES3_EDE_CBC, is a mechanism
used for generating a 3-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 3-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the

key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2-30.22.27.2 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1_DES2_EDE_CBC, is a mechanism
used for generating a 2-key triple-DES secret key and IV from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described
above. Each byte of the key produced will have its low-order bit adjusted, if necessary, so that a valid 2-
key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process and the location of the application-supplied buffer which will receive the 8-byte IV
generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-based
encryption.

2-30-32.27.3 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1_WITH_SHA1_HMAC, is a mechanism used
for generating a 160-bit generic secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the
key generation process. The parameter also has a field to hold the location of an application-supplied
buffer which will receive an 1V; for this mechanism, the contents of this field are ignored, since
authentication with SHA-1-HMAC does not require an V.

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to perform
password-based authentication (not password-based encryption). At the time of this writing, this is
primarily done to ensure the integrity of a PKCS #12 PDU.

2-312.28 SSL

Table 101,97,SSL Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 117 of 212

Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SSL3_PRE_MASTER_KEY_GEN v
CKM_SSL3 MASTER_KEY_DERIVE 4
CKM_SSL3_MASTER_KEY_DERIVE_DH 4
CKM_SSL3_KEY_AND_MAC_DERIVE v
CKM_SSL3_MD5_MAC v
CKM_SSL3_SHA1_MAC v

2.34-142.28.1 Definitions

Mechanisms:
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_SSL3 MASTER_KEY_DERIVE
CKM_SSL3_KEY_AND_MAC_DERIVE
CKM_SSL3_MASTER_KEY_DERIVE_DH
CKM_SSL3_MD5 _MAC
CKM_SSL3_SHA1_MAC

2.314.22.28.2 SSL mechanism parameters

¢ CK_SSL3_RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the random data of a client
and a server in an SSL context. This structure is used by both the CKM_SSL3_MASTER_KEY_DERIVE
and the CKM_SSL3_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_SSL3 RANDOM DATA {

CK BYTE PTR pClientRandom;

CK _ULONG ulClientRandomLen;

CK BYTE PTR pServerRandom;

CK _ULONG ulServerRandomLen;
} CK_SSL3 RANDOM DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client’s random data

ulClientRandomLen length in bytes of the client’s random data

pServerRandom pointer to the server’s random data

ulServerRandomLen length in bytes of the server’s random data

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03
Page 118 of 212

¢ CK_SSL3_MASTER_KEY_DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3 MASTER KEY DERIVE PARAMS {
CK_SSL3 RANDOM DATA RandomInfo;
CK_VERSION PTR pVersion;

} CK_SSL3 MASTER KEY DERIVE PARAMS;

The fields of the structure have the following meanings:
Randominfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information

CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS.

¢ CK_SSL3_KEY_MAT_OUT; CK_SSL3_KEY_MAT_OUT_PTR

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization vectors
after performing a C_DeriveKey function with the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It
is defined as follows:
typedef struct CK_SSL3_KEY_MAT_OUT {
CK_OBJECT_HANDLE hClientMacSecret;
CK_OBJECT_HANDLE hServerMacSecret;
CK_OBJECT_HANDLE hClientKey;
CK_OBJECT_HANDLE hServerKey;
CK_BYTE_PTR plVClient;
CK_BYTE_PTR plVServer;
} CK_SSL3_KEY_MAT_OUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to a location which receives the initialization vector (1V)
created for the client (if any)

plVServer pointer to a location which receives the initialization vector (1V)
created for the server (if any)

CK_SSL3_KEY_MAT_OUT_PTRis a pointer to a CK_SSL3_KEY_MAT_OUT.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 119 of 212

¢ CK_SSL3_KEY_MAT_PARAMS; CK_SSL3_KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK SSL3 KEY MAT PARAMS ({
CK ULONG ulMacSizeInBits;
CK ULONG ulKeySizeInBits;
CK ULONG ulIVSizeInBits;
CK_BBOOL bIsExport;
CK_SSL3 RANDOM DATA RandomInfo;
CK SSL3 KEY MAT OUT PTR pReturnedKeyMaterial;
} CK_SSL3 KEY MAT PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase

ulKeySizelnBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

ullVSizelnBits the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no IV is required, the length should be set to 0

blsExport a Boolean value which indicates whether the keys have to be
derived for an export version of the protocol

Randominfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3 KEY MAT_OUT structures which receives
the handles for the keys generated and the IVs

CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.

2-314-32.28.3 Pre-master key generation

Pre-master key generation in SSL 3.0, denoted CKM_SSL3_PRE_MASTER_KEY_GEN, is a mechanism
which generates a 48-byte generic secret key. It is used to produce the "pre_master" key used in SSL
version 3.0 for RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client’'s SSL version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

2-31.42.28.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is a mechanism used
to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 120 of 212

the "master_secret" key used in the SSL protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.28.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template; otherwise they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2-31.562.28.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE_DH,
is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic
secret key. Itis used to produce the "master_secret" key used in the SSL protocol from the "pre_master”
key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.28. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 121 of 212

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites,
but excludes the RSA cipher suites.

2-31.62.28.6 Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3_KEY_AND_MAC_DERIVE, is a
mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and 1Vs which were generated. This structure is defined in Section
2.28.

This mechanism contributes to the creation of four distinct keys on the token and returns two Vs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys ("client_write_ MAC_secret" and "server_write_ MAC_secret") are always given a
type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and derivation
operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

IVs will be generated and returned if the ullVSizelnBits field of the CK_SSLSSL3_KEY_MAT_PARAMS
field has a nonzero value. If they are generated, their length in bits will agree with the value in the
ullVSizelnBits field.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
plVClient and plVServer fields will have 1Vs returned in them (if IVs are requested by the caller).
Therefore, these two fields must point to buffers with sufficient space to hold any Vs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 122 of 212

CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2-314-72.28.7 MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and multiple-part
signatures (data authentication) and verification using MD5, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 162,98, MD5 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 4-8, depending on
parameters

C_Verify generic secret any 4-8, depending on
parameters

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2-31-82.28.8 SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_MAC, is a mechanism for single- and multiple-
part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0 protocol. This
technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the following table:
Table 163,99, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data Signature length
length

C_Sign generic secret any 4-8, depending on parameters

C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of generic secret key sizes, in bits.

2.322.29 TLS 1.2 Mechanisms

Details for TLS 1.2 and its key derivation and MAC mechanisms can be found in [TLS 1.2]. TLS 1.2
mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS
PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2
mechanisms contains a new value in the parameters structure to specify the hash function.

This section also specifies CKM_TLS_MAC which should be used in place of CKM_TLS_PREF to
calculate the verify_data in the TLS "finished" message.

This section also specifies CKM_TLS_KDF that can be used in place of CKM_TLS_PRF to implement
key material exporters.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 123 of 212

Table 164;100, TLS 1.2 Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_TLS12_MASTER_KEY_DERIVE v
CKM_TLS12_MASTER_KEY_DERIVE_DH 4
CKM_TLS12_KEY_AND_MAC_DERIVE v
CKM_TLS12_KEY_SAFE_DERIVE v
CKM_TLS10_MAC_SERVER v
CKM_TLS10_MAC_CLIENT v
CKM_TLS_KDF v
CKM_TLS12_MAC v
2-32.142.29.1 Definitions
Mechanisms:
CKM_TLS12_MASTER_KEY_DERIVE
CKM_TLS12_MASTER_KEY_DERIVE_DH
CKM_TLS12_KEY_AND_MAC_DERIVE
CKM_TLS12_KEY_SAFE_DERIVE
CKM_TLS10_MAC_SERVER
CKM_TLS10_MAC_CLIENT
CKM_TLS_KDF
CKM_TLS12_MAC
2-32.22.29.2 TLS 1.2 mechanism parameters
¢ CK_TLS12_MASTER_KEY_DERIVE_PARAMS;
CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR
CK_TLS12_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_TLS12_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct CK TLS12 MASTER KEY DERIVE PARAMS {
CK SSL3 RANDOM DATA RandomInfo; B
CK VERSION PTR pVersion;
CK MECHANISM TYPE prfHashMechanism;
} CK_TLS12 MASTER KEY DERIVE PARAMS;
The fields of the structure have the following meanings:
Randominfo client’s and server’s random data information.
pVersion pointer to a CK_VERSION structure which receives the SSL
protocol version information
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 124 of 212

prfHashMechanism

base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_TLS12_MASTER_KEY_DERIVE_PARAMS.

¢ CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT PARAMS_PTR

CK_TLS12_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_TLS12_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK TLS12 KEY MAT PARAMS ({
CK ULONG ulMacSizeInBits;
CK ULONG ulKeySizeInBits;
CK ULONG ulIVSizeInBits;
CK BB6EBBOOL bIsExport;
CK_SSL3 RANDOM DATA RandomInfo;
CK SSL3 KEY MAT OUT PTR pReturnedKeyMaterial;
CK _MECHANISM TYPE prfHashMechanism;
} CK _TLS12 KEY MAT PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits

ulKeySizelnBits

ullVSizelnBits

blsExport

Randominfo

pReturnedKeyMaterial

prfHashMechanism

the length (in bits) of the MACing keys agreed upon during the
protocol handshake phase. If no MAC key is required, the length
should be set to 0.

the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

the length (in bits) of the IV agreed upon during the protocol
handshake phase. If no 1V is required, the length should be set to 0

must be set to CK_FALSE because export cipher suites must not be
used in TLS 1.1 and later.

client’s and server’s random data information.

points to a CK_SSL3 KEY MAT_OUT structures which receives
the handles for the keys generated and the IVs

base hash used in the underlying TLS1.2 PRF operation used to
derive the master key.

CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.

¢ CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR

CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF mechanism.

It is defined as follows:

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 125 of 212

typedef struct CK TLS KDF PARAMS ({
CK MECHANISM TYPE prfMechanism;
CK_BYTE PTR pLabel;
CK _ULONG ulLabelLength;
CK_SSL3 RANDOM DATA RandomInfo;
CK_BYTE PTR pContextData;
CK _ULONG ulContextDataLength;

} CK_TLS_KDF PARAMS;

The fields of the structure have the following meanings:

prtMechanism

pLabel
ulLabellength
Randominfo

pContextData

ulContextDatalength

the hash mechanism used in the TLS1.2 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

a pointer to the label for this key derivation
length of the label in bytes
the random data for the key derivation

a pointer to the context data for this key derivation. NULL_PTR if not
present

length of the context data in bytes. 0 if not present.

¢ CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR

CK_TLS_MAC_PARAMS is a structure that provides the parameters to the CKM_TLS_MAC

mechanism. It is defined as follows:

typedef struct CK TLS MAC PARAMS ({
CK MECHANISM TYPE prfMechanism;
CK_ULONG ulMacLength;
CK _ULONG ulServerOrClient;

} CK_TLS_MAC_ PARAMS;

The fields of the structure have the following meanings:

prtMechanism

ulMacLength

ulServerOrClient

the hash mechanism used in the TLS12 PRF construct or
CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct.

the length of the MAC tag required or offered. Always 12 octets in
TLS 1.0 and 1.1. Generally 12 octets, but may be negotiated to a
longer value in TLS1.2.

1 to use the label "server finished”, 2 to use the label "client
finished". All other values are invalid.

23-Apritcsprd03

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 126 of 212

CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

23232.29.3 TLS MAC

The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces
the use of the CKM_TLS_PREF function for TLS1.0 and 1.1 and that mechanism is deprecated.

CKM_TLS_MAC takes a parameter of CK_TLS_MAC_PARAMS. To use this mechanism with TLS1.0
and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note:
Although CKM_TLS_PREF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained
for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.

In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism)
is always 12 bytes. In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12
bytes, but may be negotiated to longer length.

Table 165;101, General-length TLS MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any >=12 bytes
C_Verify generic secret any >=12 bytes

2.32.42.29.4 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE, is a mechanism used to
derive one 48-byte generic secret key from another 48-byte generic secret key. It is used to produce the
"master_secret" key used in the TLS protocol from the "pre_master" key. This mechanism returns the
value of the client version, which is built into the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token as well as the returning of the protocol version number which is part
of the pre-master key. This structure is defined in Section 2.28.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 127 of 212

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_SSL3_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns,
this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an
embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher
suites.

2-32.52.29.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.0, denoted CKM_TLS_MASTER_KEY_DERIVE_DH, is
a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret
key. It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of random data to the token. This structure is defined in Section 2.28. The pVersion field of the
structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key
as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of
CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS12_KDF and
CKM_TLS12_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 48. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both
be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some
default value.

e Ifthe base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key
will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the
derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite
value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites,
but excludes the RSA cipher suites.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 128 of 212

2-32.62.29.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.0, denoted CKM_TLS_KEY_AND_MAC_DERIVE, is a mechanism
used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the keys generated in
the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of random
data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a
structure which receives the handles and 1Vs which were generated. This structure is defined in Section
2.28.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs
are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys ("client_write_ MAC_secret" and "server_write_ MAC_secret") (if present) are
always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found
in the template sent along with this mechanism during a C_DeriveKey function call. By default, they are
flagged as valid for encryption, decryption, and derivation operations.

For CKM_TLS12_KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ullVSizelnBits
field of the CK_SSLSSL3_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the ullVSizelnBits field.

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (1V)
data. It is possible to "leak" private data by the simple expedient of decreasing the length of
private data requested. E.g. Setting ulMacSizelnBits and ulKeySizelnBits to 0 (or other lengths
less than the key size) will result in the private key data being placed in the destination
designated for the IV's. Repeated calls with the same master key and same Randominfo but with
differing lengths for the private key material will result in different data being leaked.<

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which differ from those held
by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_SSL3_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the four
key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the
newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s
plVClient and plVServer fields will have 1Vs returned in them (if IVs are requested by the caller).
Therefore, these two fields must point to buffers with sufficient space to hold any Vs that will be returned.
This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns
all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the
token.

2.32.72.29.7 CKM_TLS12_KEY_SAFE_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it
shall never produce IV data, and the ullvSizelnBits field of CK_TLS12_KEY_MAT_PARAMS is ignored
and treated as 0. All of the other conditions and behavior described for

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 129 of 212

CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this
mechanism.

CKM_TLS12_KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the
export of IV material (and possible leaking of key material) through the use of the
CKA_ALLOWED_MECHANISMS key attribute.

2-32.82.29.8 Generic Key Derivation using the TLS PRF

CKM_TLS_KDF is the mechanism defined in RFC5705. It uses the TLS key material and TLS PRF
function to produce additional key material for protocols that want to leverage the TLS key negotiation
mechanism. CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS. If the protocol using this
mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the
ulContextDatalength field shall be set to 0.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in
place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for
C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the
TLS1.0/1.1 Pseudo-random function.

This mechanism can be used to derive multiple keys (e.g. similar to
CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET
of the necessary length and doing subsequent derives against that derived key stream using the
CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not
enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:

* If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the
original key.

* Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set either from the
supplied template or from the original key.

e The derived key’'s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2-332.30 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS one could argue
that there would be no need to have distinct handling of the client and server side of the handshake.
However, since in WTLS the server and client use different sequence numbers, there could be instances
(e.g. when WTLS is used to protect asynchronous protocols) where sequence numbers on the client and
server side differ, and hence this motivates the introduced split.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 130 of 212

Table 106:102, WTLS Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_WTLS_PRE_MASTER_KEY_GEN v
CKM_WTLS_MASTER_KEY_DERIVE v
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC v
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE v
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE v
CKM_WTLS_PRF v

2.33-142.30.1 Definitions

Mechanisms:
CKM_WTLS_PRE_MASTER_KEY_GEN
CKM_WTLS_MASTER_KEY_DERIVE
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC
CKM_WTLS_PRF
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE

2-33-22.30.2 WTLS mechanism parameters

¢ CK_WTLS_RANDOM_DATA; CK_WTLS_RANDOM_DATA_PTR

CK_WTLS_RANDOM_DATA is a structure, which provides information about the random data of a client
and a server in a WTLS context. This structure is used by the CKM_WTLS_MASTER_KEY_DERIVE
mechanism. It is defined as follows:
typedef struct CK WTLS RANDOM DATA {
CK BYTE PTR pClientRandom;

CK_ULONG ulClientRandomLen;
CK BYTE PTR pServerRandom;
CK_ULONG ulServerRandomLen;

} CK_WTLS RANDOM DATA;
The fields of the structure have the following meanings:
pClientRandom pointer to the client's random data
pClientRandomLen length in bytes of the client’s random data
pServerRaondom pointer to the server’s random data
ulServerRandomLen length in bytes of the server’s random data

CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 131 of 212

¢ CK_WTLS_MASTER_KEY_DERIVE_PARAMS;
CK_WTLS_MASTER_KEY_DERIVE_PARAMS PTR

CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK WTLS MASTER KEY DERIVE PARAMS {

CK _MECHANISM TYPE

DigestMechanism;

CK_WTLS_RANDOM DATA RandomInfo;

CK_BYTE PTR

pVersion;

} CK_WTLS_MASTER KEY DERIVE PARAMS;

The fields of the structure have the following meanings:

DigestMechanism

Randominfo

pVersion

the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

Client’'s and server’s random data information

pointer to a CK_BYTE which receives the WTLS protocol version
information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

¢ CK_WTLS_PRF_PARAMS; CK_WTLS_PRF_PARAMS_PTR

CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the CKM_WTLS_PRF

mechanism. It is defined as follows:

typedef struct CK WTLS PRF PARAMS {
CK _MECHANISM TYPE DigestMechanism;

CK_BYTE PTR
CK_ULONG
CK_BYTE PTR
CK_ULONG
CK_BYTE PTR
CK_ULONG_PTR

pSeed;
ulSeedLen;
pLabel;
ulLabellen;
pOutput;
pulOutputLen;

} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:

Digest Mechanism

pSeed
ulSeedLen
pLabel
ulLabellLen
pOutput

pkcs11-curr-v2.40-esprdd2

the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

pointer to the input seed

length in bytes of the input seed
pointer to the identifying label

length in bytes of the identifying label

pointer receiving the output of the operation

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 132 of 212

pulOutputLen pointer to the length in bytes that the output to be created shall
have, has to hold the desired length as input and will receive the
calculated length as output

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

¢ CK_WTLS_KEY_MAT_OUT; CK_WTLS_KEY_MAT_OUT_PTR

CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and initialization
vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVERSERVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct CK WTLS KEY MAT OUT ({
CK _OBJECT_ HANDLE hMacSecret;
CK _OBJECT HANDLE hKey;
CK _BYTE PTR pIV;
} CK_ WTLS KEY MAT OUT;

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC secret key
hKey Key handle for the resulting secret key

plv Pointer to a location which receives the initialization vector (1V)
created (if any)

CK_WTLS_KEY_MAT_OUT _PTRis a pointer to a CK_WTLS_KEY_MAT_OUT.

¢ CK_WTLS_KEY_MAT_PARAMS; CK_WTLS_KEY_MAT_PARAMS_PTR

CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_WTLS_SEVERSERVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK WTLS KEY MAT PARAMS {

CK_MECHANISM TYPE DigestMechanism;
CK_ULONG ulMacSizeInBits;
CK_ULONG ulKeySizelInBits;
CK_ULONG ulIVSizeInBits;
CK_ULONG ulSequenceNumber;
CK_BBOOL bIsExport;
CK_WTLS_ RANDOM DATA RandomInfo;

CK_WTLS_KEY MAT OUT PTR pReturnedKeyMaterial;
} CK_WTLS_KEY MAT PARAMS;

The fields of the structure have the following meanings:

Digest Mechanism the mechanism type of the digest mechanism to be used (possible
types can be found in [WTLS])

ulMaxSizelnBits the length (in bits) of the MACing key agreed upon during the
protocol handshake phase

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 133 of 212

ulKeySizelnBits the length (in bits) of the secret key agreed upon during the
handshake phase

ullVSizelnBits the length (in bits) of the IV agreed upon during the handshake
phase. If no IV is required, the length should be set to 0.

ulSequenceNumber the current sequence number used for records sent by the client
and server respectively

blsExport a boolean value which indicates whether the keys have to be
derives for an export version of the protocol. If this value is true
(i.e., the keys are exportable) then ulKeySizelnBits is the length of
the key in bits before expansion. The length of the key after
expansion is determined by the information found in the template
sent along with this mechanism during a C_DeriveKey function call
(either the CKA_KEY_TYPE or the CKA_VALUE_LEN attribute).

Randominfo client's and server’s random data information

pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT structure which receives
the handles for the keys generated and the IV

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a CK_WTLS_KEY_MAT_PARAMS.

2-33-32.30.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length secret key.
It is used to produce the pre master secret key for RSA key exchange suite used in WTLS. This
mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client's WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall indicate 20
bytes.

2-33-42.30.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a mechanism used
to derive a 20 byte generic secret key from variable length secret key. It is used to produce the master
secret key used in WTLS from the pre master secret key. This mechanism returns the value of the client
version, which is built into the pre master secret key as well as a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for passing
the mechanism type of the digest mechanism to be used as well as the passing of random data to the
token as well as the returning of the protocol version number which is part of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 134 of 212

attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure’s
pVersion field will be modified by the C_DeriveKey call. In particular, when the call returns, this byte will
hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master secret
key with an embedded version number. This includes the RSA key exchange suites, but excludes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

2-33.562.30.5 Master secret key derivation for Diffie-Hellman and Elliptic
Curve Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte generic
secret key from variable length secret key. It is used to produce the master secret key used in WTLS from
the pre master secret key. This mechanism returns a handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data to the token.
The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded
in the pre master secret key as it is for RSA-like key exchange suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template). Other attributes may
be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object
class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN
attribute has value 20. However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be
specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default
value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will
as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived
key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE,
then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 135 of 212

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length 20-byte
pre master secret key with an embedded version number. This includes the Diffie-Hellman and Elliptic
Curve Cryptography key exchange suites, but excludes the RSA key exchange suites.

2-33.62.30.6 WTLS PRF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PREF, is a mechanism used to produce a
securely generated pseudo-random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the mechanism type
of the digest mechanism to be used, the passing of the input seed and its length, the passing of an
identifying label and its length and the passing of the length of the output to the token and for receiving
the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the template
sent along with this mechanism during a C_DeriveKey function call, which means the template shall be a
NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result
of a successful completion. However, since the CKM_WTLS_PRF mechanism returns the requested
number of output bytes in the CK_WTLS_PRF_PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

2-33.72.30.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying material used by a cipher suite from the master secret key and random data. This
mechanism returns the key handles for the keys generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

The other key (server write key) is typed according to information found in the template sent along with
this mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An IV (server write V) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pl/V field

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 136 of 212

will have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a
buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

2-33.82.30.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE,
is a mechanism used to derive the appropriate cryptographic keying material used by a cipher suite from
the master secret key and random data. This mechanism returns the key handles for the keys generated
in the process, as well as the |V created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the passing of the
mechanism type of the digest mechanism to be used, random data, the characteristic of the cryptographic
material for the given cipher suite, and a pointer to a structure which receives the handles and IV which
were generated.

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is requested
by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given a type of CKK_GENERIC_SECRET. It is
flagged as valid for signing, verification and derivation operations.

The other key (client write key) is typed according to information found in the template sent along with this
mechanism during a C_DeriveKey function call. By default, it is flagged as valid for encryption,
decryption, and derivation operations.

An IV (client write IV) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS_KEY_MAT_PARANMS field has a nonzero value. If it is generated, its length in bits will agree
with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes that differ from those held by
the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the CK_WTLS_KEY_MAT_PARAMS
structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call. In particular, the two key
handle fields in the CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pl/V field
will have the IV returned in them (if an IV is requested by the caller). Therefore, this field must point to a
buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information.
For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a
successful completion. However, since the CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism
returns all of its key handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey
passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 137 of 212

2.-342.31 Miscellaneous simple key derivation mechanisms

Table 107:103, Miscellaneous simple key derivation Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_CONCATENATE_BASE_AND_KEY v
CKM_CONCATENATE_BASE_AND_DATA v
CKM_CONCATENATE_DATA_AND_BASE v
CKM_XOR_BASE_AND_DATA v
CKM_EXTRACT_KEY_FROM_KEY 4

2.34.12.31.1 Definitions

Mechanisms:
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY
CKM_CONCATENATE_BASE_AND_KEY

2-34-22.31.2 Parameters for miscellaneous simple key derivation
mechanisms

¢ CK_KEY_DERIVATION_STRING_DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND_DATA mechanisms. It is defined as follows:

typedef struct CK KEY DERIVATION STRING DATA {
CK_BYTE PTR pData;
CK_ULONG ulLen;

} CK_KEY DERIVATION STRING DATA;

The fields of the structure have the following meanings:
pData pointer to the byte string

ulLen length of the byte string

CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a CK_KEY_DERIVATION_STRING_DATA.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 138 of 212

¢ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR

| CK-_KEY_EXTRACT_PARAMS provides the parameter to the CKM_EXTRACT_KEY_FROM_KEY
mechanism. It specifies which bit of the base key should be used as the first bit of the derived key. Itis
defined as follows:

typedef CK ULONG CK EXTRACT PARAMS;

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.

2-34-32.31.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from the
concatenation of two existing secret keys. The two keys are specified by handles; the values of the keys
specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key value
information which is appended to the end of the base key’s value information (the base key is the key
whose handle is supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is 0x89ABCDEF,
then the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the values of the two original
keys.

* If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the two original keys’

values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

* If either of the two original keys has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

* Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to CK_FALSE,
so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either
from the supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if both of the
original keys have their CKA_ALWAYS_SENSITIVE attributes set to CK_TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.

2-34-42.31.4 Concatenation of a base key and data
This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by
concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be appended to the base key to derive another key.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 139 of 212

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the value of the original key
and the data.

* If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the original key’s

value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e Ifthe base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2-34-52.31.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by
prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the length and value of the data which will be prepended to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is 0X89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x89ABCDEF01234567.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the sum of the lengths of the data and the value of the
original key.

* If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by concatenating the data and the

original key’s value, an error is generated.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 140 of 212

This mechanism has the following rules about key sensitivity and extractability:

e Ifthe base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key’'s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2-34.62.31.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which provides the
capability of deriving a secret key by performing a bit XORing of a key pointed to by a base key handle
and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, which
specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is 0x89ABCDEF, then
the value of the derived key will be taken from a buffer containing the string 0x88888888.

e If no length or key type is provided in the template, then the key produced by this mechanism will be a
generic secret key. Its length will be equal to the minimum of the lengths of the data and the value of
the original key.

* If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than are available by taking the shorter of the data and

the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e Ifthe base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key’'s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2-34-72.31.7 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a mechanism
which provides the capability of creating one secret key from the bits of another secret key.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 141 of 212

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the original
key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-byte
value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21 (i.e., the
value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We regard this
binary string as holding the 32 bits of the key, labeled as b0, b1, ..., b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the end of the
binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for the
derivation to succeed.

* If no length or key type is provided in the template, then an error will be returned.

e If no key type is provided in the template, but a length is, then the key produced by this mechanism
will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a well-defined
length. If it does, then the key produced by this mechanism will be of the type specified in the
template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by this mechanism will be of the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will be set

properly.

If the requested type of key requires more bytes than the original key has, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e Ifthe base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key. If not,
then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied template or from a
default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the
supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the base
key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if
the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

2.352.32 CMS

Table 108:104, CMS Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt Verify VR' Key Unwrap
Pair
CKM_CMS_SIG v v
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 142 of 212

2.35142.32.1 Definitions

Mechanisms:
CKM_CMS_SIG

2-35.22.32.2 CMS Signature Mechanism Objects

These objects provide information relating to the CKM_CMS_SIG mechanism. CKM_CMS_SIG
mechanism object attributes represent information about supported CMS signature attributes in the token.
They are only present on tokens supporting the CKM_CMS_SIG mechanism, but must be present on
those tokens.

Table 169:105, CMS Signature Mechanism Object Attributes

Attribute Data type Meaning
CKA_REQUIRED_CMS_ATTRIBUTE | Byte array | Attributes the token always will include
S in the set of CMS signed attributes

CKA_DEFAULT_CMS_ATTRIBUTES | Byte array | Attributes the token will include in the
set of CMS signed attributes in the
absence of any attributes specified by
the application

CKA_SUPPORTED_CMS_ATTRIBUT | Byte array | Attributes the token may include in the
ES set of CMS signed attributes upon
request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with optional accompanying
values. Any attributes in the list shall be identified with its object identifier, and any values shall be DER-
encoded. The list of attributes is defined in ASN.1 as:
Attributes ::= SET SIZE (1..MAX) OF Attribute
Attribute ::= SEQUENCE ({
attrType OBJECT IDENTIFTIER,
attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER
OPTIONAL

}

The client may not set any of the attributes.

2-35-32.32.3 CMS mechanism parameters

- CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS_SIG_PARAMS is a structure that provides the parameters to the CKM_CMS_SIG mechanism.
It is defined as follows:

typedef struct CK CMS SIG PARAMS ({

CK_OBJECT HANDLE certificateHandle;

CK _MECHANISM PTR pSigningMechanism;

CK _MECHANISM PTR pDigestMechanism;

CK _UTF8CHAR PTR pContentType;

CK BYTE PTR pRequestedAttributes;
CK_ULONG ulRequestedAttributeslen;
CK BYTE PTR pRequiredAttributes;
CK_ULONG ulRequiredAttributesLen;

} CK _CMS_SIG PARAMS;

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 143 of 212

The fields of the structure have the following meanings:

certificateHandle

pSigningMechanism

pDigestMechanism

pContentType

pRequestedAfttributes

ulRequestedAttributesLen

pRequiredAttributes

ulRequiredAttributesLen

Object handle for a certificate associated with the signing key. The
token may use information from this certificate to identify the signer
in the Signerinfo result value. CertificateHandle may be NULL_PTR
if the certificate is not available as a PKCS #11 object or if the
calling application leaves the choice of certificate completely to the
token.

Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g. CKM_SHA1_RSA_PKCS.

Mechanism to use when digesting the data. Value shall be
NULL_PTR when the digest mechanism to use follows from the
pSigningMechanism parameter.

NULL-terminated string indicating complete MIME Content-type of
message to be signed; or the value NULL_PTR if the message is a
MIME object (which the token can parse to determine its MIME
Content-type if required). Use the value “application/octet-stream® if
the MIME type for the message is unknown or undefined. Note that
the pContentType string shall conform to the syntax specified in
RFC 2045, i.e. any parameters needed for correct presentation of
the content by the token (such as, for example, a non-default
“charset”) must be present. The token must follow rules and
procedures defined in RFC 2045 when presenting the content.

Pointer to DER-encoded list of CMS Attributes the caller requests to
be included in the signed attributes. Token may freely ignore this list
or modify any supplied values.

Length in bytes of the value pointed to by pRequestedAttributes

Pointer to DER-encoded list of CMS Attributes (with accompanying
values) required to be included in the resulting signed attributes.
Token must not modify any supplied values. If the token does not
support one or more of the attributes, or does not accept provided
values, the signature operation will fail. The token will use its own
default attributes when signing if both the pRequestedAttributes and
pRequiredAttributes field are set to NULL_PTR.

Length in bytes, of the value pointed to by pRequiredAttributes.

2.35.42.32.4 CMS signatures

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based on the structures
defined in PKCS #7 and RFC 2630. It supports single- or multiple-part signatures with and without
message recovery. The mechanism is intended for use with, e.g., PTDs (see MeT-PTD) or other capable
tokens. The token will construct a CMS SignedAttributes value and compute a signature on this value.
The content of the SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some attributes to be
present through the parameters pRequiredAttributes. The signature is computed in accordance with the

parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the pSignature return value
will point to a DER-encoded value of type Signerinfo. Signerinfo is defined in ASN.1 as follows (for a
complete definition of all fields and types, see RFC 2630):

SignerInfo ::= SEQUENCE ({

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 144 of 212

version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes
OPTIONAL }

The certificateHandle parameter, when set, helps the token populate the sid field of the Signerinfo value.

If certificateHandle is NULL_PTR the choice of a suitable certificate reference in the Signerinfo result
value is left to the token (the token could, e.g., interact with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the pSigningMechanism
mechanism instead).

For the pRequiredAttributes field, the token may have to interact with the user to find out whether to
accept a proposed value or not. The token should never accept any proposed attribute values without
some kind of confirmation from its owner (but this could be through, e.g., configuration or policy settings
and not direct interaction). If a user rejects proposed values, or the signature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when generating CMS-
compatible signatures rather than lower-level mechanisms such as CKM_SHA1_RSA_PKCS. This is
especially true when the signatures are to be made on content that the token is able to present to a user.
Exceptions may include those cases where the token does not support a particular signing attribute. Note
however that the token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application may avoid
sending the whole message to the token by electing to use a suitable signature mechanism (e.g.
CKM_RSA_PKCS) as the pSigningMechanism value in the CKMCK_CMS_SIG_PARAMS structure, and
digesting the message itself before passing it to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities, should attempt to
provide messages to be signed by the token in a format possible for the token to present to the user.
Tokens that receive multipart MIME-messages for which only certain parts are possible to present may
fail the signature operation with a return value of CKR_DATA_INVALID, but may also choose to add a
signing attribute indicating which parts of the message were possible to present.

2.362.33 Blowfish

Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption function 16 times.
The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex
initialization phase required before any encryption can take place, the actual encryption of data is very
efficient on large microprocessors.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 145 of 212

Table 1410-106, Blowfish Mechanisms vs. Functions

Functions
Encrypt| Sign | SR Gen.| Wrap
Mechanism & & & |[Digest| Key/ & Derive
Decrypt| Verify | g1 Key | Unwrap
Pair
CKM_BLOWFISH_CBC v v
CKM_BLOWFISH_CBC_PAD v v

2.36-12.33.1 Definitions

This section defines the key type “CKK_BLOWFISH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_BLOWFISH_KEY_GEN
CKM_BLOWFISH_CBC
CKM_BLOWFISH_CBC_PAD

2.36-22.33.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO_SECRET_KEY, key type CKK_BLOWFISH) hold Blowfish
keys. The following table defines the Blowfish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 144,107, BLOWFISH Secret Key Object

Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value the key can be
any length up to 448 bits.
Bit length restricted to a
byte array.
CKA_VALUE_LEN*® CK_ULONG Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK_BLOWFISH;
CK UTF8CHAR label[] = “A blowfish secret key object”;
CK BYTE value[l6] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 146 of 212

2.36-32.33.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, is a key generation
mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes in bytes.

2-36:42.33.4 Blowfish-CBC

Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 8-byte initialization vector.

This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism encrypts the value
of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size
minus one null bytes so that the resulting length is a multiple of the block size. The output data is the
same length as the padded input data. It does not wrap the key type, key length, or any other information
about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 112,108, BLOWFISH-CBC: Key and Data Length

[Function Key type Input lengthLength Output lengthLength
C_Encrypt BLOWFISH ttipleMultiple of block fameSame as input length
size
C_Decrypt BLOWFISH rttipleMultiple of block fameSame as input length
size
C_WrapKey BLOWFISH anyAny putinput length rounded
up to multiple of the block
Size
C_UnwrapKey BLOWFISH i tipleMultiple of block |determinedDetermined by
size type of key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of BLOWFISH key sizes, in bytes.

2.36.52.33.5 Blowfish-CBC with PKCS padding

Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode and the block
cipher padding method detailed in PKCS #7.

It has a parameter, a 8-byte initialization vector.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 147 of 212

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

The entries in the table below for data length constraints when wrapping and unwrapping keys do not
apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 113,109, BLOWFISH-CBC with PKCS Padding: Key and Data Length

[Function Key type Input lengthLength Output lengthLength
C_Encrypt BLOWFISH anyAny ptinput length rounded up
to multiple of the block size
C_Decrypt BLOWFISH mttipleMultiple of block ppetweenBetween 1 and
size block length block size bytes
shorter than input length
C_WrapKey BLOWFISH anyAny putinput length rounded
up to multiple of the block
Size
C_UnwrapKey BLOWFISH muttipleMultiple of block [petweenBetween 1 and block
size ength block size bytes shorter
than input length

2-372.34 Twofish

Ref. https://www.schneier.com/twofish.html

2.37-142.34.1 Definitions

This section defines the key type “CKK_TWOFISH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:
CKM_TWOFISH_KEY_GEN
CKM_TWOFISH_CBC
CKM_TWOFISH_CBC_PAD

2.37-22.34.2 Twofish secret key objects

Twofish secret key objects (object class CKO_SECRET_KEY, key type CKK_TWOFISH) hold Twofish
keys. The following table defines the Twofish secret key object attributes, in addition to the common
attributes defined for this object class:

Table 114;110, Twofish Secret Key Object

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 148 of 212

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value 128-, 192-, or
256-bit key

CKA_VALUE_LEN?® CK_ULONG | Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an TWOFISH secret key object:

CK _OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType CKK_TWOFISH;
CK UTF8CHAR label[] = “A twofish secret key object”;
CK BYTE value[l6] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

2-37-32.34.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a key generation
mechanism Twofish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the CKA_VALUE_LEN
attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the key type (specifically, the flags indicating which functions the key
supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes.

2-37-42.34.4 Twofish -CBC

Twofish-CBC, denoted CKM_TWOFISH_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

2.37.52.34.5 Twofish-CBC with PKCS padding

Twofish-CBC-PAD, denoted CKM_TOWEISHTWOFISH_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption, key wrapping and key unwrapping, cipher-block chaining mode
and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for
the CKA_VALUE_LEN attribute.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 149 of 212

2.382.35 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES.
Camellia is described e.g. in IETF RFC 3713.

Table 415:111, Camellia Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_CAMELLIA_KEY_GEN 4
CKM_CAMELLIA_ECB v 4
CKM_CAMELLIA_CBC v 4
CKM_CAMELLIA_CBC_PAD v 4
CKM_CAMELLIA_MAC_GENERAL v
CKM_CAMELLIA_MAC v
CKM_CAMELLIA_ECB_ENCRYPT_DATA v
CKM_CAMELLIA_CBC_ENCRYPT_DATA v

2.38-12.35.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA_ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA_MAC
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_CBC_PAD

2-38-22.35.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold
Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the
common attributes defined for this object class:

Table 116,112, Camellia Secret Key Object Attributes

value

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN>®° CK_ULONG | Length in bytes of key

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating a Camellia secret key object:

CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK CAMELLIA;

CK_OBJECT CLASS

pkcs11-curr-v2.40-esprdd2

class =

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03
Page 150 of 212

CK UTF8CHAR label[] = ™A Camellia secret key object”;
CK BYTE value[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

2-38-32.35.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a key generation
mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.42.35.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 117%:113, Camellia-ECB: Key and Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 151 of 212

Function Key type Input Output length Comments
length

C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size

C_WrapKey CKK_CAMELLIA any input length rounded up

to multiple of block size

C_UnwrapKey CKK_CAMELLIA multiple of determined by type of

block size | key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2-38-52.35.5 Camellia-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 118,114, Camellia-CBC: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_Decrypt CKK_CAMELLIA multiple of same as input length no final part
block size
C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the
block size
C_UnwrapKey CKK_CAMELLIA multiple of | determined by type of
block size key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.
2-38.62.35.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia;
cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 152 of 212

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 119;115, Camellia-CBC with PKCS Padding: Key and Data Length

Function Key type Input Output length
length
C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_CAMELLIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_CAMELLIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2-38.72.35.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on Camellia and data authentication as defined
in.JCAMELLIA]

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced
in the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 120:116, General-length Camellia-MAC: Key and Data Length

Function | Key type Data Signature length

length
C_Sign CKK_CAMELLIA any 0-block size, as specified in parameters
C_Verify CKK_CAMELLIA any 0-block size, as specified in parameters

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2.38.82.35.8 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-
MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in
length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 124,117, Camellia-MAC: Key and Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 153 of 212

Function | Key type Data Signature length
length

C_Sign CKK_CAMELLIA any 2 block size (8 bytes)

C_Verify CKK_CAMELLIA any Y2 block size (8 bytes)

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Camellia key sizes, in bytes.

2-392.36 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

2-39.12.36.1 Definitions

Mechanisms:
CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK CAMELLIA CBC ENCRYPT DATA PARAMS ({

CK _BYTE iv[1l6];
CK BYTE PTR pData;
CK_ULONG length;

} CK_CAMELLIA CBC_ENCRYPT DATA PARAMS;

typedef CK CAMELLIA CBC ENCRYPT DATA PARAMS CK PTR
CK _CAMELLIA CBC ENCRYPT DATA PARAMS PTR;

2.39.22.36.2 Mechanism Parameters
Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

Table 122,118, Mechanism Parameters for Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT_DATA Uses
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

2:402.37 ARIA

ARIA is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar to AES. ARIA is
described in NSRI “Specification of ARIA”.

Table 123:119, ARIA Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 154 of 212

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_ARIA_KEY_GEN 4
CKM_ARIA_ECB v v
CKM_ARIA_CBC v 4
CKM_ARIA_CBC_PAD v v
CKM_ARIA_MAC_GENERAL v
CKM_ARIA_MAC v
CKM_ARIA_ECB_ENCRYPT_DATA v
CKM_ARIA_CBC_ENCRYPT_DATA v

2:40.12.37.1 Definitions

This section defines the key type “CKK_ARIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE
attribute of key objects.

Mechanisms:
CKM_ARIA_KEY_GEN
CKM_ARIA_ECB
CKM_ARIA_CBC
CKM_ARIA_MAC
CKM_ARIA_MAC_GENERAL
CKM_ARIA_CBC_PAD

‘ 2.40.22.37.2 Aria secret key objects

ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA) hold ARIA keys. The
following table defines the ARIA secret key object attributes, in addition to the common attributes defined
for this object class:

| Table 124;120, ARIA Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE™*®’ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN*®° CK_ULONG | Length in bytes of key
value

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating an ARIA secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK ARIA;
CK UTF8CHAR labell[] “An ARIA secret key object”;
CK BYTE value[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 155 of 212

{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

2:40.32.37.3 ARIA key generation

The ARIA key generation mechanism, denoted CKM_ARIA_KEY_GEN, is a key generation mechanism
for Aria.

It does not have a parameter.

The mechanism generates ARIA keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the ARIA key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2:40-42.37.4 ARIA-ECB

ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on Aria and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 125:121, ARIA-ECB: Key and Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK_ARIA multiple of same as input length no final part
block size

C_Decrypt CKK_ARIA multiple of same as input length no final part
block size

C_WrapKey CKK_ARIA any input length rounded up

to multiple of block size

C_UnwrapKey CKK_ARIA multiple of determined by type of

block size | key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 156 of 212

2:40-52.37.5 ARIA-CBC

ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on ARIA and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the
CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus
one null bytes so that the resulting length is a multiple of the block size. The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:
Table 126,122, ARIA-CBC: Key and Data Length

Function Key type Input Output length Comments
length
C_Encrypt CKK_ARIA multiple of same as input length no final part
block size
C_Decrypt CKK_ARIA multiple of same as input length no final part
block size
C_WrapKey CKK_ARIA any input length rounded
up to multiple of the
block size
C_UnwrapKey CKK_ARIA multiple of determined by type of

block size key being unwrapped
or CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Aria key sizes, in bytes.

2.40.62.37.6 ARIA-CBC with PKCS padding

ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on ARIA; cipher-block
chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the
ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified
for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA,
Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section
TBA for details). The entries in the table below for data length constraints when wrapping and
unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:
Table 127123, ARIA-CBC with PKCS Padding: Key and Data Length

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 157 of 212

Function Key type Input Output length
length
C_Encrypt CKK_ARIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_ARIA multiple of between 1 and block size
block size bytes shorter than input length
C_WrapKey CKK_ARIA any input length rounded up to
multiple of the block size
C_UnwrapKey CKK_ARIA multiple of between 1 and block length
block size bytes shorter than input length

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2:40.72.37.7 General-length ARIA-MAC

General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on ARIA and data authentication as defined in [FIPS 113].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final ARIA cipher block produced in
the MACing process.

Constraints on key types and the length of data are summarized in the following table:
Table 128,124, General-length ARIA-MAC: Key and Data Length

Function | Key type Data Signature length

length
C_Sign CKK_ARIA any 0-block size, as specified in parameters
C_Verify CKK_ARIA any 0-block size, as specified in parameters

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2:40-82.37.8 ARIA-MAC

ARIA-MAC, denoted by CKM_ARIA_MAC, is a special case of the general-length ARIA-MAC
mechanism. ARIA-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 129,125, ARIA-MAC: Key and Data Length

Function | Key type Data Signature length
length

C_Sign CKK_ARIA any Y2 block size (8 bytes)

C_Verify CKK_ARIA any Y2 block size (8 bytes)

For this mechanism, the uIMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ARIA key sizes, in bytes.

2-412.38 Key derivation by data encryption - ARIA

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 158 of 212

2-41-12.38.1 Definitions

Mechanisms:

CKM_ARIA_ECB_ENCRYPT_DATA
CKM_ARIA_CBC_ENCRYPT_DATA

typedef struct
CK_BYTE
CK_BYTE PTR
CK_ULONG

CK _ARIA CBC ENCRYPT DATA PARAMS ({
iv[le];

pData;

length;

} CK_ARIA CBC_ENCRYPT DATA PARAMS;
typedef CK ARIA CBC ENCRYPT DATA PARAMS CK_PTR
CK_ARIA CBC_ENCRYPT DATA PARAMS PTR;

2.41.22.38.2 Mechanism Parameters
Uses CK_ARIA_CBC_ENCRYPT_DATA_PARAMS, and CK_KEY_DERIVATION_STRING_DATA.

| Table 130:126, Mechanism Parameters for Aria-based key derivation

[CKM_ARIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA

structure. Parameter is the data to be encrypted
and must be a multiple of 16 long.

|[CKM_ARIA_CBC_ENCRYPT_DATA Uses

CK_ARIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

‘2421393EED

SEED is a symmetric block cipher developed by the South Korean Information Security Agency (KISA). It
has a 128-bit key size and a 128-bit block size.

Its specification has been published as Internet [RFC 4269].
RFCs have been published defining the use of SEED in
TLS ftp://ftp.rfc-editor.org/in-notes/rfc4162.txt

IPsec ftp://ftp.rfc-editor.org/in-notes/rfc4196.txt

CMS ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS cipher suites that use SEED include:

CipherSuite
0x961};
CipherSuite
0x97};
CipherSuite
0x98};
CipherSuite
0x99};
CipherSuite

pkcs11-curr-v2.40-esprdd2

TLS_RSA WITH SEED CBC SHA = { 0x00,
TLS DH DSS WITH SEED CBC_SHA = { 0x00,
TLS DH RSA WITH SEED CBC_SHA = { 0x00,
TLS DHE DSS WITH SEED CBC SHA = { 0x00,
TLS DHE RSA WITH SEED CBC SHA = { 0x00,

Standards Track Work Product

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 159 of 212

O0x9A};
CipherSuite TLS DH anon WITH SEED CBC SHA =
0x9B};

{ 0x00,

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of operation, as well as

in a MAC algorithm such as HMAC.

OIDs have been published for all these uses. A list may be seen at
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Table 131,127, SEED Mechanisms vs. Functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SEED_KEY_GEN 4
CKM_SEED_ECB v
CKM_SEED_CBC v
CKM_SEED_CBC_PAD v v
CKM_SEED_MAC_GENERAL v
CKM_SEED_MAC v
CKM_SEED_ECB_ENCRYPT_DATA v
CKM_SEED_CBC_ENCRYPT_DATA v

2:42.12.39.1 Definitions

This section defines the key type “CKK_SEED” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE

attribute of key objects.

Mechanisms:
CKM_SEED_KEY_GEN
CKM_SEED_ECB
CKM_SEED_CBC
CKM_SEED_MAC
CKM_SEED_MAC_GENERAL
CKM_SEED_CBC_PAD

For all of these mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

are always 16.

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 160 of 212

2.42.22.39.2 SEED secret key objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED) hold SEED keys.
The following table defines the secret key object attributes, in addition to the common attributes defined
for this object class:

Table 132,128, SEED Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE™*®’ Byte array Key value (always 16
bytes long)

- Refer to [PKCS #11-Base] table 10 for footnotes.

The following is a sample template for creating a SEED secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK_KEY TYPE keyType = CKK_ SEED;
CK UTF8CHAR labell[] “A SEED secret key object”;
CK BYTE valuel[] = {...};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, value, sizeof (value)}
i

2:42.32.39.3 SEED key generation

The SEED key generation mechanism, denoted CKM_SEED_KEY_GEN, is a key generation mechanism
for SEED.

It does not have a parameter.
The mechanism generates SEED keys.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SEED key type (specifically, the flags indicating which functions
the key supports) may be specified in the template for the key, or else are assigned default initial values.

2:42.42.39.4 SEED-ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and electronic codebook mode.

It does not have a parameter.

2:42.52.39.5 SEED-CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on SEED and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 161 of 212

‘ 2.42.62.39.6 SEED-CBC with PKCS padding

SEED-CBC with PKCS padding, denoted CKM_SEED_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on SEED; cipher-
block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

‘ 2:42.72.39.7 General-length SEED-MAC
General-length SEED-MAC, denoted CKM_SEED_MAC_GENERAL, is a mechanism for single- and
multiple-part signatures and verification, based on SEED and data authentication as defined in 0.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final cipher block produced in the
MACing process.

‘ 2.42.82.39.8 SEED-MAC
SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length SEED-MAC
mechanism. SEED-MAC always produces and verifies MACs that are half the block size in length.
It does not have a parameter.

‘ 2:432.40 Key derivation by data encryption - SEED

These mechanisms allow derivation of keys using the result of an encryption operation as the key value.
They are for use with the C_DeriveKey function.

‘ 2:43142.40.1 Definitions

Mechanisms:
CKM_SEED_ECB_ENCRYPT_DATA
CKM_SEED_CBC_ENCRYPT_DATA

typedef struct CK _SEED CBC_ENCRYPT DATA PARAMS
CK_CBC_ENCRYPT DATA PARAMS;

typedef CK _CBC_ENCRYPT DATA PARAMS CK PTR

CK_CBC_ENCRYPT DATA PARAMS PTR;

2.43.22.40.2 Mechanism Parameters
Table 133;129, Mechanism Parameters for SEED-based key derivation

| CKM_SEED_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and
must be a multiple of 16 long.

| CKM_SEED_CBC_ENCRYPT_DATA Uses CK_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part must be a multiple of 16 bytes
long.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 162 of 212

2:442.41 OTP
2-44.12.41.1 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The usage cases
can be categorized according to the type of sought functionality.

2.44.22.41.2 Case 1: Generation of OTP values

.&

User

Client Application

J‘lj C_Sign{)

PKCS#11 Library

Client API

Connected Token AP

A
Vi

Authentication
Servar

Figure 1: Retrieving OTP values through C_Sign

A

Connected
Taken

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate users holding
OTP tokens. In this particular example, a connected hardware token is used, but a software token is
equally possible. The application invokes C_Sign to retrieve the OTP value from the token. In the
example, the application then passes the retrieved OTP value to a client API that sends it via the network
to an authentication server. The client APl may implement a standard authentication protocol such as
RADIUS [RFC 2865] or EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's

ACE/Agent® software.

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 163 of 212

2-44.32.41.3 Case 2: Verification of provided OTP values

Server Application

I C_Verify()

PKCS #11 Library

!

Internal Token API

!

Token (or query to
authentication
server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this case, a server
application invokes C_Verify with the received OTP value as the signature value to be verified.

2-44.42.41.4 Case 3: Generation of OTP keys

Client Application

I C_GenerateKey()

PKCS #11 Library

i

Internal Token API

i

Token (or software
version thereof)

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 164 of 212

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys. The application
invokes C_GenerateKey to generate an OTP key of a particular type on the token. The key may
subsequently be used as a basis to generate OTP values.

2-44.52.41.5 OTP objects

2.44.5.12.41.5.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens. The following
table defines the attributes common to all OTP keys, in addition to the attributes defined for secret keys,
all of which are inherited by this class:

Fablet34:Table 130: Common OTP key attributes

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 165 of 212

Attribute Data type Meaning

CKA_OTP_FORMAT CK_ULONG Format of OTP values produced
with this key:
CK_OTP_FORMAT_DECIMAL =
Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT_HEXADECIMA
L = Hexadecimal (UTF8-encoded)
CK_OTP_FORMAT_ALPHANUME
RIC = Alphanumeric (UTF8-
encoded)
CK_OTP_FORMAT_BINARY =
Only binary values.

CKA_OTP_LENGTH’ CK_ULONG | Default length of OTP values (in the
CKA_OTP_FORMAT) produced
with this key.

CKA_OTP_USER_FRIENDLY_MODE’ | CK_BBOOL | Setto CK_TRUE when the token is
capable of returning OTPs suitable
for human consumption. See the
description of
CKF_USER_FRIENDLY_OTP

below.
CKA_OTP CK_ULONG Parameter requirements when
_CHALLENGE_REQUIREMENT® generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A challenge must be supplied.
CK_OTP_PARAM_OPTIONAL = A
challenge may be supplied but need
not be.
CK_OTP_PARAM_IGNORED = A
challenge, if supplied, will be
ignored.

CKA_OTP_TIME_REQUIREMENT9 CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A time value must be supplied.
CK_OTP_PARAM_OPTIONAL = A
time value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
time value, if supplied, will be
ignored.
CKA_OTP_COUNTER_REQUIREMEN | CK_ULONG Parameter requirements when

T generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.
CK_OTP_PARAM_OPTIONAL = A
counter value may be supplied but
need not be.
CK_OTP_PARAM_IGNORED = A
counter value, if supplied, will be
ignored.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 166 of 212

Attribute Data type Meaning
CKA_OTP_PIN_REQUIREMENT’ CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.
CK_OTP_PARAM_OPTIONAL = A
PIN value may be supplied but
need not be (if not supplied, then
library will be responsible for
collecting it)
CK_OTP_PARAM_IGNORED = A
PIN value, if supplied, will be
ignored.

CKA_OTP_COUNTER Byte array Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_TIME RFC 2279 Value of the associated internal
string UTC time in the form
YYYYMMDDhhmmss. Default value
is empty (i.e. ulValueLen= 0).
CKA_OTP_USER_IDENTIFIER RFC 2279 Text string that identifies a user
string associated with the OTP key (may
be used to enhance the user
experience). Default value is empty
(i.e. ulValueLen = 0).
CKA_OTP_SERVICE_IDENTIFIER RFC 2279 Text string that identifies a service
string that may validate OTPs generated
by this key. Default value is empty
(i.e. ulValueLen = 0).
CKA_OTP_SERVICE_LOGO Byte array Logotype image that identifies a
service that may validate OTPs
generated by this key. Default value
is empty (i.e. ulValueLen = 0).
CKA_OTP_SERVICE_LOGO_TYPE RFC 2279 MIME type of the

string CKA_OTP_SERVICE_LOGO
attribute value. Default value is
empty (i.e. ulValueLen = 0).

CKA_VALUE"*®' Byte array Value of the key.
CKA_VALUE_LEN*® CK_ULONG | Length in bytes of key value.

Refer to [PKCS #11-Base] Table 15 for table footnotes..

Note: A Cryptoki library may support PIN-code caching in order to reduce user interactions. An OTP-
PKCS #11 application should therefore always consult the state of the CKA_OTP_PIN_REQUIREMENT
attribute before each call to C_Signlinit, as the value of this attribute may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects. The
CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO attribute may be used to
distinguish between keys. The actual choice of key for a particular operation is however application-
specific and beyond the scope of this document.

For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as required.

2.44.62.41.6 OTP-related notifications

This document extends the set of defined notifications as follows:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 167 of 212

CKN_OTP_CHANGED Cryptoki is informing the application that the OTP for a key on a
connected token just changed. This notification is particularly useful
when applications wish to display the current OTP value for time-
based mechanisms.

2.44.72.41.7 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 135:131. OTP mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_SECURID_KEY_GEN 4
CKM_SECURID v
CKM_HOTP_KEY_GEN v
CKM_HOTP v
CKM_ACTI_KEY_GEN v
CKM_ACTI v

The remainder of this section will present in detail the OTP mechanisms and the parameters that are
supplied to them.

2.44.7.12.41.7.1 OTP mechanism parameters

¢ CK_PARAM_TYPE

CK_PARAM_TYPE is a value that identifies an OTP parameter type. It is defined as follows:
typedef CK ULONG CK_ PARAM TYPE;

The following CK_PARAM_TYPE types are defined:

Table 136:132, OTP parameter types

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 168 of 212

Parameter Data type Meaning

CK_OTP_PIN RFC 2279 A UTF8 string containing a PIN for use
string when computing or verifying PIN-based
OTP values.
CK_OTP_CHALLENGE Byte array Challenge to use when computing or
verifying challenge-based OTP values.
CK_OTP_TIME RFC 2279 UTC time value in the form
string YYYYMMDDhhmmss to use when
computing or verifying time-based OTP
values.
CK_OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.
CK_OTP_FLAGS CK_FLAGS Bit flags indicating the characteristics of the

sought OTP as defined below.

CK_OTP_OUTPUT_LENGTH | CK_ULONG Desired output length (overrides any default
value). A Cryptoki library will return
CKR_MECHANISM_PARAM_INVALID if a
provided length value is not supported.

CK_OTP_FORMAT CK_ULONG Returned OTP format (allowed values are
the same as for CKA_OTP_FORMAT). This
parameter is only intended for C_Sign
output, see paragraphs below. When not
present, the returned OTP format will be the
same as the value of the
CKA_OTP_FORMAT attribute for the key in
question.

CK_OTP_VALUE Byte array An actual OTP value. This parameter type
is intended for C_Sign output, see
paragraphs below.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 169 of 212

The following table defines the possible values for the CK_OTP_FLAGS type:
Table 137:133: OTP Mechanism Flags

Bit flag Mask Meaning

CKF_NEXT_OTP 0x00000001 True (i.e. set) if the OTP computation shall
be for the next OTP, rather than the current
one (current being interpreted in the context
of the algorithm, e.g. for the current counter
value or current time window). A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if the
CKF_NEXT_OTP flag is set and the OTP
mechanism in question does not support the
concept of “next” OTP or the library is not
capable of generating the next OTP°.

CKF_EXCLUDE_TIME 0x00000002 | True (i.e. set) if the OTP computation must
not include a time value. Will have an effect
only on mechanisms that do include a time
value in the OTP computation and then only
if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER 0x00000004 | True (i.e. set) if the OTP computation must
not include a counter value. Will have an
effect only on mechanisms that do include a
counter value in the OTP computation and
then only if the mechanism (and token)
allows exclusion of this value. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE | 0x00000008 | True (i.e. set) if the OTP computation must
not include a challenge. Will have an effect
only on mechanisms that do include a
challenge in the OTP computation and then
only if the mechanism (and token) allows
exclusion of this value. A Cryptoki library
shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

5 Applications that may need to retrieve the next OTP should be prepared to handle this situation. For example, an
application could store the OTP value returned by C_Sign so that, if a next OTP is required, it can compare it to the
OTP value returned by subsequent calls to C_Sign should it turn out that the library does not support the
CKF_NEXT_OTP flag.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 170 of 212

Bit flag Mask Meaning

CKF_EXCLUDE_PIN 0x00000010 | True (i.e. set) if the OTP computation must
not include a PIN value. Will have an effect
only on mechanisms that do include a PIN in
the OTP computation and then only if the
mechanism (and token) allows exclusion of
this value. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.
CKF_USER_FRIENDLY_OTP 0x00000020 | True (i.e. set) if the OTP returned shall be in
a form suitable for human consumption. If
this flag is set, and the call is successful,
then the returned CK_OTP_VALUE shall be
a UTF8-encoded printable string. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if this
flag is set when
CKA_OTP_USER_FRIENDLY_MODE for
the key in question is CK_FALSE.

Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then there may still be
value in setting the CKF_USER_FRIENDLY_ OTP flag (assuming CKA OTP_USER_FRIENDLY_MODE
is CK_TRUE, of course) if the intent is for a human to read the generated OTP value, since it may
become shorter or otherwise better suited for a user. Applications that do not intend to provide a returned
OTP value to a user should not set the CKF_USER_FRIENDLY_OTP flag.

¢ CK_OTP_PARAM; CK_OTP_PARAM_PTR

CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP parameter. It is
defined as follows:
typedef struct CK OTP PARAM {
CK_PARAM TYPE type;
CK VOID PTR pValue;
CK_ULONG ulValuelLen;
} CK_OTP_PARAM;

The fields of the structure have the following meanings:
type the parameter type

pValue pointer to the value of the parameter
ulValuelLen length in bytes of the value

If a parameter has no value, then ulValueLen = 0, and the value of pValue is irrelevant. Note that pValue
is a “void” pointer, facilitating the passing of arbitrary values. Both the application and the Cryptoki library
must ensure that the pointer can be safely cast to the expected type (i.e., without word-alignment errors).

CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.
CK_OTP_PARAMS; CK_OTP_PARAMS_PTR

CK_OTP_PARANMS is a structure that is used to provide parameters for OTP mechanisms in a generic
fashion. It is defined as follows:
typedef struct CK OTP PARAMS ({
CK _OTP_ PARAM PTR pParams;
CK_ULONG ulCount;
} CK_OTP_ PARAMS;

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 171 of 212

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameters

ulCount the number of parameters in the array

CK_OTP_PARAMS_PTR is a pointer to a CK_OTP_PARAMS.

When calling C_Signlnit or C_Verifylnit with a mechanism that takes a CK_OTP_PARAMS structure as a
parameter, the CK_OTP_PARAMS structure shall be populated in accordance with the
CKA_OTP_X_REQUIREMENT key attributes for the identified key, where X is PIN, CHALLENGE, TIME,
or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_MANDATORY, then the
CK_OTP_TIME parameter shall be present. If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_OPTIONAL, then a CK_OTP_TIME parameter may be present. If it is not present,
then the library may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will always be ignored.
Additionally, a provided CK_OTP_TIME parameter will always be ignored if CKF_EXCLUDE_TIME is set
in a CK_OTP_FLAGS parameter. Similarly, if this flag is set, a library will not attempt to collect the value
itself, and it will also instruct the token not to make use of any internal value, subject to token policies. It is
an error (CKR_MECHANISM_PARAM_INVALID) to set the CKF_EXCLUDE_TIME flag when the
CKA_OTP_TIME_REQUIREMENT attribute is CK_OTP_PARAM_MANDATORY.

The above discussion holds for all CKA_OTP_X REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQURIEMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT). A library may set a
particular CKA_OTP_X REQUIREMENT attribute to CK_OTP_PARAM_OPTIONAL even if it is required
by the mechanism as long as the token (or the library itself) has the capability of providing the value to the
computation. One example of this is a token with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the CK_OTP_OUTPUT-FORMAT and the
CK-OUTPUTCKA OTP_LENGTH parameters to set additional parameters.

CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR

CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in successful calls to
C_Sign (C_SignFinal). The structure informs applications of actual parameter values used in particular
OTP computations in addition to the OTP value itself. It is used by all mechanisms for which the key
belongs to the class CKO_OTP_KEY and is defined as follows:

typedef struct CK OTP SIGNATURE INFO ({
CK _OTP_ PARAM PTR pParams;
CK_ULONG ulCount;

} CK_OTP_SIGNATURE INFO;

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameter values

ulCount the number of parameters in the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the pSignature parameter will
be set to point to a CK_OTP_SIGNATURE_INFO structure. One of the parameters in this structure will be
the OTP value itself, identified with the CK_OTP_VALUE tag. Other parameters may be present for
informational purposes, e.g. the actual time used in the OTP calculation. In order to simplify OTP
validations, authentication protocols may permit authenticating parties to send some or all of these
parameters in addition to OTP values themselves. Applications should therefore check for their presence
in returned CK_OTP_SIGNATURE_INFO values whenever such circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in Section 11.2 on producing output, a
call to C_Sign (or C_SignFinal) with pSignature set to NULL_PTR will return (in the pulSignatureLen
parameter) the required number of bytes to hold the CK_OTP_SIGNATURE_INFO structure as well as all

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 172 of 212

the data in all its CK_OTP_PARAM components. If an application allocates a memory block based on
this information, it shall therefore not subsequently de-allocate components of such a received value but
rather de-allocate the complete CK_OTP_PARAMS structure itself. A Cryptoki library that is called with a
non-NULL pSignature pointer will assume that it points to a contiguous memory block of the size
indicated by the pulSignatureLen parameter.

When verifying an OTP value using an OTP mechanism, pSignature shall be set to the OTP value itself,
e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure returned by a call to
C_Sign. The CK_OTP_PARAMS value supplied in the C_Verifylnit call sets the values to use in the
verification operation.

CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.
2:44.82.41.8 RSA SecurlD

2.44.8.12.41.8.1 RSA SecurlD secret key objects

RSA SecurlID secret key objects (object class CKO_OTP_KEY, key type CKK_SECURID) hold RSA
SecurlD secret keys. The following table defines the RSA SecurlD secret key object attributes, in
addition to the common attributes defined for this object class:

| Table -134138-, RSA SecurlD secret key object attributes

Attribute
CKA_OTR;HMEJNTERVAU

Data type
CK_ULONG

Meaning

Interval between OTP values produced
with this key, in seconds. Default is 60.

| Refer to [PKCS #11-Base] Table 15 for table footnotes

The following is a sample template for creating an RSA SecurlD secret key object:
CK OBJECT CLASS class CKO_OTP_KEY;

CK_KEY TYPE keyType
CK _DATE endDate = {.
CK_UTF8CHAR label[]

CKK_SECURID;

o1

“RSA SecurlID secret key object”;

CK BYTE keyId[]= {...};
CK _ULONG outputFormat CK _OTP_FORMAT DECIMAL;
CK _ULONG outputLength 6;
CK_ULONG needPIN = CK _OTP_ PARAM MANDATORY;
CK ULONG timelInterval = 60;
CK BYTE valuel[] {...}:
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)
{CKA END DATE, &endDate, sizeof (endDate)
{CKA TOKEN, &true, sizeof (true)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SIGN, &true, sizeof(true)},
{CKA VERIFY, &true, sizeof (true)},
{CKA ID, keyId, sizeof (keyId)},
{CKA_OTP_FORMAT, &outputFormat,
{CKA_OTP_LENGTH, &outputlLength,
{CKA_OTP_PIN_REQUIREMENT,
{CKA_OTP_TIME INTERVAL,

by
}

’

sizeof (outputFormat
sizeof (outputLength
&needPIN, sizeof (needPIN)
&timeInterval,

) b,
) b,
}

14

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 173 of 212

sizeof (timeInterval) },
{CKA VALUE, value, sizeof (value)}
b

2-44.92.41.9 RSA SecurlD key generation

The RSA SecurlD key generation mechanism, denoted CKM_SECURID_KEY_GEN, is a key generation
mechanism for the RSA SecurlD algorithm.

It does not have a parameter.

The mechanism generates RSA SecurlD keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE_LEN, and
CKA_VALUE attributes to the new key. Other attributes supported by the RSA SecurID key type may be
specified in the template for the key, or else are assigned default initial values

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of SecurlD key sizes, in bytes.

2-44.102.41.10 RSA SecurlD OTP generation and validation

CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurlD OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to NULL_PTR and
ulDatalen shall be set to 0.

2.44.1412.41.11 Return values

Support for the CKM_SECURID mechanism extends the set of return values for C_Verify with the
following values:

e CKR_NEW_PIN_MODE: The supplied OTP was not accepted and the library requests a new OTP
computed using a new PIN. The new PIN is set through means out of scope for this document.

e CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal drift in the
token's internal state (e.g. clock, counter). To ensure this was not due to a temporary problem, the
application should provide the next one-time password to the library for verification.

2:44122.41.12 OATH HOTP

2.44.12.12.41.12.1 OATH HOTP secret key objects

HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold generic secret keys
and associated counter values.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may setitto a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE.

For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true fora CK_OTP_COUNTER value in a CK_OTP_PARAM
structure.

The following is a sample template for creating a HOTP secret key object:
CK _OBJECT CLASS class = CKO_OTP KEY;
CK_KEY TYPE keyType = CKK HOTP;
CK UTF8CHAR labell[] “HOTP secret key object”;
CK BYTE keyId[]= {...};

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 174 of 212

CK _ULONG outputFormat
CK _ULONG outputLength =
CK _DATE endDate = {...};
CK BYTE counterValue[8]
CK BYTE valuel[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA END DATE, &endDate, sizeof (endDate) }
{CKA TOKEN, &true, sizeof (true)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SIGN, &true, sizeof(true)},
{CKA VERIFY, &true, sizeof (true)},
{CKA ID, keyId, sizeof (keyId)},
{CKA OTP_ FORMAT, &outputFormat, sizeof (outputFormat)},
{CKA OTP LENGTH, &outputLength, sizeof (outputLength)},
{CKA OTP_COUNTER, counterValue, sizeof (counterValue) }
{CKA VALUE, value, sizeof (value)}

CK _OTP_FORMAT DECIMAL;
6;

= {0}7

’

}s

2.44.12.22.41.12.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key generation mechanism
for the HOTP algorithm.

It does not have a parameter.

The mechanism generates HOTP keys with a particular set of attributes as specified in the template for
the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_OTP_COUNTER,
CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes supported by the HOTP
key type may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of HOTP key sizes, in bytes.

2.44.12.32.41.12.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values based on the current
internal counter, or a provided counter.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the CKM_HOTP mechanism,
pData shall be set to NULL_PTR and ulDatalLen shall be set to 0.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a CK_OTP_PARAM
parameter to C_Verifylnit. When verifying an OTP value using the CKM_HOTP mechanism, pSignature
shall be set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARANMS structure in the case of an earlier call to C_Sign.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 175 of 212

2:44-132.41.13 Actividentity ACTI

2.44.13.12.41.13.1 ACTI secret key objects

ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACTI) hold Actividentity ACTI
secret keys.

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer in big endian (i.e.
network byte order) form. The same holds true for the CK_OTP_COUNTER value in the
CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens may setitto a
fixed initial value. Depending on the token’s security policy, this value may not be modified and/or may
not be revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its
CKA_EXTRACTABLE attribute set to CK_FALSE

The CKA_OTP_TIME value may be set at key generation; however, some tokens may set it to a fixed
initial value. Depending on the token’s security policy, this value may not be modified and/or may not be
revealed if the object has its CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE

The following is a sample template for creating an ACTI secret key object:

CK _OBJECT CLASS class = CKO_OTP KEY;
CK_KEY TYPE keyType = CKK ACTI;
CK UTF8CHAR labell[] “ACTI secret key object”;
CK BYTE keyId[]= {...};
CK _ULONG outputFormat = CK OTP FORMAT DECIMAL;
CK _ULONG outputLength = 6;
CK _DATE endDate = {...};
CK BYTE counterValue([8]
CK BYTE valuel[] = {...};
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA END DATE, &endDate, sizeof (endDate) }
{CKA TOKEN, &true, sizeof (true)},
{CKA SENSITIVE, ¢&true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA SIGN, &true, sizeof(true)},
{CKA VERIFY, &true, sizeof (true)},
{CKA ID, keyId, sizeof (keyId)},
{CKA_OTP_FORMAT, &outputFormat,
sizeof (outputFormat) },
{CKA_OTP_LENGTH, &outputLength,
sizeof (outputLength) },
{CKA_OTP_COUNTER, counterValue,
sizeof (counterValue) },
{CKA VALUE, value, sizeof (value)}

= {0}7

14

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 176 of 212

2.44.13.22.41.13.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key generation mechanism
for the ACT]I algorithm.
It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as specified in the template for the
key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE and
CKA_VALUE_LEN attributes to the new key. Other attributes supported by the ACTI key type may be
specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of ACTI key sizes, in bytes.

2-44.142.41.14 ACTI OTP generation and validation

CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set to NULL_PTR and
ulDatalen shall be set to 0.

When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be set to the OTP value
itself, e.g. the value of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure in the case of
an earlier call to C_Sign.

2:452.42 CT-KIP
2-45.12.42 1 Principles of Operation

A

Server Application |« Client Application

A 4

C_DeriveKey,
C_WrapKey,
C_Verify

A 4

PKCS #11 Library

A

A 4

Internal Token API

A

A 4

Token (or software
version thereof)

Figure 4: PKCS #11 and CT-KIP integration

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 177 of 212

Figure 3 shows an integration of PKCS #11 into an application that generates cryptographic keys through
the use of CT-KIP. The application invokes C_DeriveKey to derive a key of a particular type on the token.
The key may subsequently be used as a basis to e.g., generate one-time password values. The
application communicates with a CT-KIP server that participates in the key derivation and stores a copy
of the key in its database. The key is transferred to the server in wrapped form, after a call to
C_WrapKey. The server authenticates itself to the client and the client verifies the authentication by calls
to C_Verify.

2.45.22.42.2 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by different
cryptographic operations. For any particular token, of course, a particular operation may well support
only a subset of the mechanisms listed. There is also no guarantee that a token that supports one
mechanism for some operation supports any other mechanism for any other operation (or even supports
that same mechanism for any other operation).

Table 139135: CT-KIP Mechanisms vs. applicable functions

Functions
Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest & Derive
Decrypt | Verify | VR’ Key/ | Unwrap
Key
Pair
CKM_KIP_DERIVE v
CKM_KIP_WRAP v
CKM_KIP_MAC v

The remainder of this section will present in detail the mechanisms and the parameters that are supplied
to them.

2.45.32.42.3 Definitions

Mechanisms:
CKM_KIP_DERIVE
CKM_KIP_WRAP
CKM_KIP_MAC

2:45.42.42.4 CT-KIP Mechanism parameters

¢ CK_KIP_PARAMS; CK_KIP_PARAMS_PTR

CK_KIP_PARANMS is a structure that provides the parameters to all the CT-KIP related mechanisms: The
CKM_KIP_DERIVE key derivation mechanism, the CKM_KIP_WRAP key wrap and key unwrap
mechanism, and the CKM_KIP_MAC signature mechanism. The structure is defined as follows:
typedef struct CK KIP PARAMS ({
CK MECHANISM PTR pMechanism;
CK OBJECT HANDLE hKey;
CK _BYTE PTR pSeed;
CK_ULONG ulSeedLen;
} CK_KIP PARAMS;

The fields of the structure have the following meanings:

pMechanism pointer to the underlying cryptographic mechanism (e.g. AES, SHA-
256), see further 0, Appendix D

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 178 of 212

hKey handle to a key that will contribute to the entropy of the derived key
(CKM_KIP_DERIVE) or will be used in the MAC operation
(CKM_KIP_MAC)

pSeed pointer to an input seed
ulSeedLen length in bytes of the input seed

CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.

2:45.52.42.5 CT-KIP key derivation

The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key derivation mechanism that
is capable of generating secret keys of potentially any type, subject to token limitations.

It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. In particular, when the hKey parameter is a handle
to an existing key, that key will be used in the key derivation in addition to the hBaseKey of C_DeriveKey.
The pSeed parameter may be used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the attributes of the
template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new key. Other
attributes supported by the key type may be specified in the template for the key, or else will be assigned
default initial values. Since the mechanism is generic, the CKA_KEY_TYPE attribute should be set in the
template, if the key is to be used with a particular mechanism.

2.45.62.42.6 CT-KIP key wrap and key unwrap

The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key wrap mechanism that
is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. It does not make use of the hKey parameter of
CK_KIP_PARAMS.

2:45.72.42.7 CT-KIP signature generation

The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism used to produce a
message authentication code of arbitrary length. The keys it uses are secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the desired underlying
cryptographic mechanism as well as some other data. The mechanism does not make use of the pSeed
and the ulSeedLen parameters of CT_KIP_PARAMS.

This mechanism produces a MAC of the length specified by pulSignatureLen parameter in calls to
C_Sign.

If a call to C_Sign with this mechanism fails, then no output will be generated.

2.462.43 GOST

The remainder of this section will present in detail the mechanisms and the parameters which are
supplied to them.

Table 140:136, GOST Mechanisms vs. Functions

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 179 of 212

Mechanism Functions

Encrypt Sign SR & Gen. Wrap
Dec&rypt Ve%ify " Digest ll((?),ll Unv%rap Derive
Pair
CKM_GOST28147_KEY_GEN v
CKM_ GOST28147_ECB ¥ alv’
CKM_GOST28147 ¥ alv’
CKM_ GOST28147_MAC v
CKM_ GOST28147_KEY_WRAP alv’
CKM_GOSTR3411 v
CKM_GOSTR3411_HMAC v
CKM_GOSTR3410_KEY_PAIR_GEN v
CKM_GOSTR3410 v
CKM_GOSTR3410_WITH_ v
GOST3411
CKM_GOSTR3410_KEY_WRAP alv’
CKM_GOSTR3410_DERIVE alv

1 Single-part operations only

2:472.44 GOST 28147-89
GOST 28147-89 is a block cipher with 64-bit block size and 256-bit keys.

2.47142.44.1 Definitions

This section defines the key type “CKK_GOST28147” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects and domain parameter objects.

Mechanisms:
CKM_GOST28147_KEY_GEN
CKM_GOST28147_ECB
CKM_GOST28147

CKM_GOST28147_MAC
CKM_GOST28147_KEY_WRAP

2:47.22.44.2 GOST 28147-89 secret key objects

GOST 28147-89 secret key objects (object class CKO_SECRET_KEY, key type CKK_GOST28147) hold
GOST 28147-89 keys. The following table defines the GOST 28147-89 secret key object attributes, in
addition to the common attributes defined for this object class:

Table 141,137, GOST 28147-89 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUEM’G‘7 Byte array 32 bytes in little endian order

CKA_GOST28147_PARAMS"?® Byte array DER-encoding of the object identifier
indicating the data object type of

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 180 of 212

GOST 28147-89.

When key is used the domain parameter
object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID

Refer to [PKCS #11-Base] Table 10 for footnotes

The following is a sample template for creating a GOST 28147-89 secret key object:

CK OBJECT CLASS class = CKO_SECRET KEY;
CK _KEY TYPE keyType = CKK GOST28147;
CK UTF8CHAR label[] = ™A GOST 28147-89 secret key object”;
CK BYTE value[32] = {...};
CK BYTE params_oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02Z,
0x02, O0x1f, 0x00};
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA ENCRYPT, &true, sizeof(true)},
{CKA GOST28147 PARAMS, params oid, sizeof (params_oid) },
{CKA VALUE, value, sizeof (value)}

}s

2-47-32.44.3 GOST 28147-89 domain parameter objects

GOST 28147-89 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOST28147) hold GOST 28147-89 domain parameters.

The following table defines the GOST 28147-89 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 142,138, GOST 28147-89 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE' Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.1 (type
Gost28147-89-ParamSetParameters)
CKA_OBJECT_ID' Byte array DER-encoding of the object identifier indicating
the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST 28147-89 domain parameter object:

CK_OBJECT CLASS class = CKO DOMATIN PARAMETERS;
CK_KEY TYPE keyType = CKK GOST28147;

CK UTF8CHAR label[] = “A GOST 28147-89 cryptographic
parameters object”;
CK BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02, 0x02,
Ox1f, 0x00};
pkcs11-curr-v2.40-csprd02 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 181 of 212

CK_BYTE value[] = {
0x30,0x62,0x04,0x40,0x4c,0xde, 0x38,0x9c,0x29,0x89, O0xef, Oxb
0,0xff, Oxeb, 0x56,
Oxch5, 0x5e, 0xc2,0x9%, 0x02,0x98,0x75,0x61,0x3b,0x11, 0x3f,0x8
9,0x60,0x03,0x97,
0x0c,0x79,0x8a,0xal, 0xd5, 0x5d, 0xe2, 0x10, Oxad, 0x43,0x37,0x5
d, 0xb3, 0x8e, 0xb4,
O0x2c,0x77,0xe7,0xcd, 0x46,0xca, 0xfa, O0xd6,0x06a, 0x20,0x1f, 0x7
0,0xf4,0x1le, 0xa4,
Oxab, 0x03,0xf2,0x21,0x65, 0xb8,0x44,0xd8,0x02,0x01, 0x00,0x0
2,0x01,0x40,
0x30, 0x0b, 0x06,0x07, 0x2a, 0x85,0x03,0x02,0x02, 0x0e, 0x00, 0x0
5,0x00
i
CK _BBOOL true = CK TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA_OBJECT ID, oid, sizeof(oid)},
{CKA VALUE, value, sizeof (value)}
i

2:47.42.44.4 GOST 28147-89 key generation

The GOST 28147-89 key generation mechanism, denoted CKM_GOST28147_KEY_GEN, is a key
generation mechanism for GOST 28147-89.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the GOST 28147-89 key type may be specified for objects of object
class CKO_SECRET_KEY.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO are not
used.

2:47-52.44.5 GOST 28147-89-ECB

GOST 28147-89-ECB, denoted CKM_GOST28147_ECB, is a mechanism for single and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on GOST 28147-89 and electronic
codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped, padded on the trailing end with up to block size so that the resulting length is a multiple
of the block size.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 182 of 212

Constraints on key types and the length of data are summarized in the following table:
Table 143,139, GOST 28147-89-ECB: Key Andand Data Length

Function Key type Input length | Output length

C_Encrypt CKK_GOST28147 Multiple of Same as input length
block size

C_Decrypt CKK_GOST28147 Multiple of Same as input length
block size

C_WrapKey CKK_GOST28147 A Input length rounded up to

ny . .
multiple of block size

C_UnwrapKey CKK_GOST28147 Multiple of Determined by type of key

block size being unwrapped

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.47.62.44.6 GOST 28147-89 encryption mode except ECB

GOST 28147-89 encryption mode except ECB, denoted CKM_GOST28147, is a mechanism for single
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on

[GOST 28147-89] and CFB, counter mode, and additional CBC mode defined in [RFC 4357] section 2.
Encryption’s parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

It has a parameter, which is an 8-byte initialization vector. This parameter may be omitted then a zero
initialization vector is used.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to
wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result
as the CKA_VALUE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:
Table 144,140, GOST 28147-89 encryption modes except ECB: Key Andand Data Length

. Input

Function Key type length Output length

C_Encrypt CKK_GOST28147 Any For counter mode and CFB is
the same as input length. For

C_Decrypt CKK_GOST28147 Any CBC is the same as input length
padded on the trailing end with

C_WrapKey CKK_GOST28147 Any up to block size so that the

C_UnwrapKey | CKK_GOST28147 Any | [oouling lengin s a multiple of

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 183 of 212

247-72.44.7 GOST 28147-89-MAC

GOST 28147-89-MAC, denoted CKM_GOST28147_MAC, is a mechanism for data integrity and
authentication based on GOST 28147-89 and key meshing algorithms [RFC 4357] section 2.3.

MACing parameters are specified in object identifier of attribute CKA_GOST28147_PARAMS.

The output bytes from this mechanism are taken from the start of the final GOST 28147-89 cipher block
produced in the MACing process.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:
Table 145,141, GOST28147-89-MAC: Key Andand Data Length

Function Key type Data length Signature length
C_Sign CKK_GOST28147 Any 4 bytes
C_Verify CKK_GOST28147 Any 4 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89

GOST 28147-89 keys as a KEK (key encryption keys) for encryption GOST 28147-89 keys, denoted by
CKM_GOST28147_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST 28147-89. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89.

For wrapping (C_WrapKey), the mechanism first computes MAC from the value of the CKA_VALUE
attribute of the key that is wrapped and then encrypts in ECB mode the value of the CKA_VALUE
attribute of the key that is wrapped. The result is 32 bytes of the key that is wrapped and 4 bytes of MAC.

For unwrapping (C_UnwrapKey), the mechanism first decrypts in ECB mode the 32 bytes of the key that
was wrapped and then computes MAC from the unwrapped key. Then compared together 4 bytes MAC
has computed and 4 bytes MAC of the input. If these two MACs do not match the wrapped key is
disallowed. The mechanism contributes the result as the CKA_VALUE attribute of the unwrapped key.

It has a parameter, which is an 8-byte MAC initialization vector. This parameter may be omitted then a
zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:
Table 146,142, GOST 28147-89 keys as KEK: Key Andand Data Length

Function Key type Input length Output length
C_WrapKey CKK_GOST28147 32 bytes 36 bytes
C_UnwrapKey CKK_GOST28147 32 bytes 36 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

GOST R 34.11-94

GOST R 34.11-94 is a mechanism for message digesting, following the hash algorithm with 256-bit
message digest defined in [GOST R 34.11-94].

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 184 of 212

‘ 2.47-82.44.8 Definitions

This section defines the key type “CKK_GOSTR3411” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of domain parameter objects.

Mechanisms:
CKM_GOSTR3411
CKM_GOSTR3411_HMAC

‘ 2.47.92.44.9 GOST R 34.11-94 domain parameter objects

GOST R 34.11-94 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type

CKK_GOSTR3411) hold GOST R 34.11

-94 domain parameters.

The following table defines the GOST R 34.11-94 domain parameter object attributes, in addition to the
common attributes defined for this object class:

| Table 147143, GOST R 34.11-94 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE' Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.2 (type
GostR3411-94-ParamSetParameters)

CKA_OBJECT_ID' Byte array DER-encoding of the object identifier indicating
the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.11-94 domain parameter object:

CK_OBJECT CLASS class = CKO_DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK GOSTR3411;
CK_UTF8CHAR label[] = “A GOST R34.11-94 cryptographic parameters object”;

CK_BYTE oid[] = {0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, Oxle, 0x00};
CK_BYTE valuel[] = {

}s

0x30,0x64,0x04,0x40,0x4e,0x57,0x64,0xdl, 0xab, 0x8d, Oxcb, Oxbf, 0x94, 0x1a,
OX4d,0222?6Xd1,0Xl0,0Xl0,0Xd6,0xao,OX57,0X35,0X8d,OX38,0Xf2,0Xf7,0XOf,
Oxdl,Oi?i?éxea,Ox2f,Ox8d,OX94,0X62,0xee,OX43,0XO9,0Xb3,0Xf4,0xa6,0xa2,
Oxc6,0i§é?éxe3,0xcl,Ox7c,Oxe5,0x7e,OX70,0x6b,OXO9,0X66,0Xf7,0X02,0x3c,
OX55,0i;g?éxbf,OX28,0X39,0Xb3,0X2e,OXCC,OXO4,0X20,0XO0,0XO0,0XO0,0XOO,
OXO0,0igg?éxoo,OXO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XOO,
OXO0,0iEg?éxoo,OXO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XO0,0XOO

CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {

pkcs11-curr-v2.40-esprdd2
Standards Track Work Product

{CKA CLASS, &class, sizeof(class)},

{CKA _KEY TYPE, &keyType, sizeof (keyType)},
{CKA_ TOKEN, &true, sizeof(true)},

{CKA LABEL, label, sizeof(label)-1},

{CKA OBJECT_ID, oid, sizeof (oid)},
{CKA_VALUE, value, sizeof(value)}

23-Apritcsprd03

Copyright © OASIS Open 2014. All Rights Reserved. Page 185 of 212

}s

2:47-102.44.10 GOST R 34.11-94 digest

GOST R 34.11-94 digest, denoted CKM_GOSTR3411, is a mechanism for message digesting based on
GOST R 34.11-94 hash algorithm [GOST R 34.11-94].

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]
(section 11.2) must be used.

Constraints on the length of input and output data are summarized in the following table. For single-part
digesting, the data and the digest may begin at the same location in memory.

Table 148;144, GOST R 34.11-94: Data Length

Function Input length | Digest length
C_Digest Any 32 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2:47112.44.11 GOST R 34.11-94 HMAC

GOST R 34.11-94 HMAC mechanism, denoted CKM_GOSTR3411_HMAC, is a mechanism for
signatures and verification. It uses the HMAC construction, based on the GOST R 34.11-94 hash
function [GOST R 34.11-94] and core HMAC algorithm [RFC 2104]. The keys it uses are of generic key
type CKK_GENERIC_SECRET or CKK_GOST28147.

To be conformed to GOST R 34.11-94 hash algorithm [GOST R 34.11-94] the block length of core HMAC
algorithm is 32 bytes long (see [RFC 2104] section 2, and [RFC 4357] section 3).

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A mechanism parameter
may be missed then parameters of the object identifier id-GostR3411-94-CryptoProParamSet [RFC 4357]
(section 11.2) must be used.

Signatures (MACs) produced by this mechanism are of 32 bytes long.
Constraints on the length of input and output data are summarized in the following table:
Table 149:145, GOST R 34.11-94 HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign CKK_GENERIC_SECRET or Any 32 byte
CKK_GOST28147

C_Verify CKK_GENERIC_SECRET or Any 32 bytes
CKK_GOST28147

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2:482.45 GOST R 34.10-2001

GOST R 34.10-2001 is a mechanism for single- and multiple-part signatures and verification, following
the digital signature algorithm defined in [GOST R 34.10-2001].

2.48.12.45.1 Definitions

This section defines the key type “CKK_GOSTR3410” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects and domain parameter objects.

Mechanisms:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 186 of 212

CKM_GOSTR3410_KEY_PAIR_GEN
CKM_GOSTR3410
CKM_GOSTR3410_WITH_GOSTR3411
CKM_GOSTR3410
CKM_GOSTR3410_KEY_WRAP
CKM_GOSTR3410_DERIVE

‘ 2.48.22.45.2 GOST R 34.10-2001 public key objects

GOST R 34.10-2001 public key objects (object class CKO_PUBLIC_KEY, key type CKK_GOSTR3410)
hold GOST R 34.10-2001 public keys.

The following table defines the GOST R 34.10-2001 public key object attributes, in addition to the
common attributes defined for this object class:

| Table 150:146, GOST R 34.10-2001 Public Key Object Attributes

Attribute Data Type | Meaning

CKA_VALUE™ Byte array | 64 bytes for public key; 32 bytes for each
coordinates X and Y of elliptic curve point
P(X, Y) in little endian order

GOSTR3410PARAMS” : ioct identif
‘ CKA_ GOST | Bytearray | pgRr-encoding of the object identifier

1,3
R3410_PARAMS indicating the data object type of GOST R
34.10-2001.

When key is used the domain parameter
object of key type CKK_GOSTR3410
must be specified with the same attribute
CKA_OBJECT_ID

GOSTR34H1PARAMST : ioct identif
‘ CKA_ GOST | Bytearray | pgRr-encoding of the object identifier

1,3,8
R3411_PARAMS indicating the data object type of GOST R
34.11-94.

When key is used the domain parameter
object of key type CKK_GOSTR3411
must be specified with the same attribute
CKA_OBJECT_ID

8
CKA_GOST28147_PARAMS Byte array | pER-encoding of the object identifier

indicating the data object type of
GOST 28147-89.

When key is used the domain parameter
object of key type CKK_GOST28147
must be specified with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

Refer to [PKCS #11-Base] Table 10 for footnotes

The following is a sample template for creating an GOST R 34.10-2001 public key object:

CK OBJECT CLASS class = CKO_ PUBLIC KEY;
CK_KEY TYPE keyType = CKK_GOSTR3410;
CK UTF8CHAR label[] “A GOST R34.10-2001 public key object”;
CK BYTE gostR3410params oid[] =
{0x06, 0x07, 0Ox2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};
CK BYTE gostR34llparams oid[] =

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 187 of 212

{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, Oxle, 0x00};
CK BYTE gost28l47params oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, Ox1f, 0x00};
CK BYTE value[64] = {...};
CK _BBOOL true = CK TRUE;
CK_ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA_G”STP3410P RAMSGOSTR3410 PARAMS,
gostR3410params oid, sizeof (gostR3410params oid) },
{CKA_G”STP3411P RAMSGOSTR3411 PARAMS,
gostR341llparams oid, sizeof (gostR34llparams oid) },
{CKA GOST28147 PARAMS, gostz28l47params oid,
sizeof (gost28l47params oid) },
{CKA VALUE, value, sizeof (value)}

}s

2:48.32.45.3 GOST R 34.10-2001 private key objects
GOST R 34.10-2001 private key objects (object class CKO_PRIVATE_KEY, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 private keys.

The following table defines the GOST R 34.10-2001 private key object attributes, in addition to the
common attributes defined for this object class:

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 188 of 212

| Table 151,147, GOST R 34.10-2001 Private Key Object Attributes

Attribute

Data Type

Meaning

CKA_VALUE"*®’

Byte array

32 bytes for private key in little endian
order

3410 PARAMS'*®

‘ CKA_GOSTR3410PARAMS'GOSTR

Byte array

DER-encoding of the object identifier
indicating the data object type of GOST
R 34.10-2001.

When key is used the domain
parameter object of key type
CKK_GOSTR3410 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411PARAMS'GOSTR
3411 PARAMS'*%#8

Byte array

DER-encoding of the object identifier
indicating the data object type of GOST
R 34.11-94.

When key is used the domain
parameter object of key type
CKK_GOSTR3411 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOST28147_PARAMS4™%®

Byte array

DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GOST28147 must be specified
with the same attribute
CKA_OBJECT_ID. The attribute value
may be omitted

Refer to [PKCS #11-Base] Table 10 for footnotes

Note that when generating an GOST R 34.10-2001 private key, the GOST R 34.10-2001 domain

parameters are not specified in the key’s template. This is because GOST R 34.10-2001 private keys are

only generated as part of an GOST R 34.10-2001 key pair, and the GOST R 34.10-2001 domain
parameters for the pair are specified in the template for the GOST R 34.10-2001 public key.

The following is a sample template for creating an GOST R 34.10-2001 private key object:
= CKO_PRIVATE KEY;

CKK_GOSTR3410;
“A GOST R34.10-2001 private key

CK OBJECT CLASS class

CK_KEY TYPE keyType =

CK_UTF8CHAR label[]
object”;

CK BYTE subject[] = {...

CK_BYTE id[] = {123};

}s

CK BYTE gostR3410params_ oid[]

{0x06, 0x07, O0x2a,

0x85,

CK BYTE gostR34llparams oid[]

{0x06, 0x07, O0x2a,

0x85,

CK BYTE gost28l47params_oid][]

{0x06, 0x07, O0x2a,

CK_BYTE value[32] = {.

CK _BBOOL true =

0x85,
o1

CK_TRUE;

0x03,
0x03,

0x03,

0x02, 0x02, 0x23, 0x00};

0x02, 0x02, Oxle, 0x00};

0x02, 0x02, Ox1f, 0x00};

pkcs11-curr-v2.40-esprdd2
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03
Page 189 of 212

CK _ATTRIBUTE template[] = {

{CKA CLASS, &class, sizeof (class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof (true)},

{CKA LABEL, label, sizeof (label)-1},

{CKA SUBJECT, subject, sizeof (subject)},

{CKA ID, id, sizeof (id)},

{CKA SENSITIVE, &true, sizeof (true)},

{CKA SIGN, &true, sizeof(true)},

{CKA_G”STP3410P R MSGOSTR34107PARAMS,
gostR3410params oid, sizeof (gostR3410params oid) },

{CKA_G”STP3411P R MSGOSTR34117PARAMS,
gostR341llparams oid, sizeof (gostR34llparams oid) },

{CKA GOST28147 PARAMS, gostz28l47params oid,
sizeof (gost28l47params_oid) },

{CKA VALUE, value, sizeof (value)}

}s

2.48.42.45.4 GOST R 34.10-2001 domain parameter objects

GOST R 34.10-2001 domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 domain parameters.

The following table defines the GOST R 34.10-2001 domain parameter object attributes, in addition to the
common attributes defined for this object class:

Table 152,148, GOST R 34.10-2001 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE' Byte array DER-encoding of the domain parameters as it
was introduced in [4] section 8.4 (type
GostR3410-2001-ParamSetParameters)
CKA_OBJECT_ID' Byte array DER-encoding of the object identifier indicating
the domain parameters

Refer to [PKCS #11-Base] Table 10 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters loading up
and/or fetching out. Furthermore, applications, that make direct use of domain parameters objects, should
take in account that CKA_VALUE attribute may be inaccessible.

The following is a sample template for creating a GOST R 34.10-2001 domain parameter object:
CK OBJECT CLASS class = CKO DOMAIN PARAMETERS;
CK_KEY TYPE keyType = CKK GOSTR3410;
CK UTF8CHAR label[] = ™A GOST R34.10-2001 cryptographic
parameters object”;
CK_BYTE oid[] =
{0x06, 0x07, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x23, 0x00};

CK BYTE value[] = {
0x30,0x81,0x90,0x02,0x01,0x07,0x02,0x20,0x5f,0xbf,0xf4,0x9
8,
Oxaa,0x93,0x8c,0xe”7,0x39, 0xb8, 0xel0, 0x22, 0xfb, O0xaf, Oxef, 0x4
0,
pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 190 of 212

O0x56,0x3f,0x06e,0x06a,0x34,0x72,0xfc,0x2a,0x51,0x4c,0x0c, Oxe
9,
Oxda, O0xe2,0x3b, 0x7e,0x02,0x21,0x00, 0x80,0x00, 0x00,0x00, 0x0
0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0
0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0
0,
0x00,0x04,0x31,0x02,0x21,0x00,0x80,0x00,0x00,0x00,0x00, 0x0
0,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x50,0xf
e,
Ox8a,0x18,0x92,0x97,0x061,0x54,0xc5,0x9c,0xfc,0x19,0x3a,0xc
Cy
O0xf5,0xb3,0x02,0x01,0x02,0x02,0x20,0x08,0xe2,0xa8,0xal, 0xe
6,
0x51,0x47,0xd4, 0xbd, 0x63,0x16,0x03, 0x0e,0x16,0xdl,0x9c, 0x8
5,
Oxc9,0x7f,0x0a,0x%c, 0xa2,0x67,0x12,0x2b,0x96, O0xab, Oxbc, Oxe
a,
Ox7e,0x8f, 0xc8
b
CK_BBOOL true = CK_TRUE;
CK _ATTRIBUTE template[] = {
{CKA CLASS, &class, sizeof (class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof (true)},
{CKA LABEL, label, sizeof (label)-1},
{CKA OBJECT ID, oid, sizeof (oid)},
{CKA VALUE, value, sizeof (value)}
b

2.48.52.45.5 GOST R 34.10-2001 mechanism parameters

+ CK_GOSTR3410_KEY_WRAP_PARAMS

CK_GOSTR3410_KEY_WRAP_PARANMS is a structure that provides the parameters to the
CKM_GOSTR3410_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK GOSTR3410 KEY WRAP PARAMS {

CK BYTE PTR pWrapOID;
CK_ULONG ulWrapOIDLen;
CK BYTE PTR PUKM;
CK_ULONG ulUKMLen;

CK_OBJECT HANDLE hKey;
} CK_GOSTR3410 KEY WRAP PARAMS;

The fields of the structure have the following meanings:

| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 191 of 212

pWrapOID pointer to a data with DER-encoding of the object
identifier indicating the data object type of
GOST 28147-89. If pointer takes NULL_PTR value in
C_WrapKey operation then parameters are specified in
object identifier of attribute
CKA_GOSTR34HMPARAMSGOSTR3411_PARAMS
must be used. For C_UnwrapKey operation the pointer
is not used and must take NULL_PTR value anytime

ulWrapOIDLen length of data with DER-encoding of the object identifier
indicating the data object type of GOST 28147-89

pUKM pointer to a data with UKM. If pointer takes NULL_PTR
value in C_WrapKey operation then random value of
UKM will be used. If pointer takes non-NULL_PTR value
in C_UnwrapKey operation then the pointer value will be
compared with UKM value of wrapped key. If these two
values do not match the wrapped key will be rejected

ulUKMLen length of UKM data. If pUKM-pointer is different from
NULL_PTR then equal to 8

hKey key handle. Key handle of a sender for C_WrapKey
operation. Key handle of a receiver for C_UnwrapKey
operation. When key handle takes
CK_INVALID_HANDLE value then an ephemeral (one
time) key pair of a sender will be used

+ CK_GOSTR3410_DERIVE_PARAMS

CK_GOSTR3410_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_GOSTR3410_DERIVE mechanism. It is defined as follows:

typedef struct CK GOSTR3410 DERIVE PARAMS ({
CK_EC_KDF TYPE kdf;

CK_BYTE PTR pPublicData;
CK_ULONG ulPublicDataLen;
CK_BYTE PTR pUKM;

CK_ULONG ulUKMLen;

} CK_GOSTR3410 DERIVE PARAMS;

The fields of the structure have the following meanings:

kdf additional key diversification algorithm identifier.
Possible values are CKD_NULL and
CKD_CPDIVERSIFY_KDF. In case of CKD_NULL,
result of the key derivation function

described in [RFC 4357], section 5.2 is used directly; In
case of CKD_CPDIVERSIFY_KDF, the resulting key
value is additionally processed with algorithm from [RFC
4357], section 6.5.

pPuincDai‘a1 pointer to data with public key of a receiver

ulPublicDatalen length of data with public key of a receiver (must be 64)

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 192 of 212

pUKM pointer to a UKM data
ulUKMLen length of UKM data in bytes (must be 8)

1 Public key of a receiver is an octet string of 64 bytes long. The public key octets correspond to the concatenation of X and Y coordinates of a point. Any one of

them is 32 bytes long and represented in little endian order.

2.48.62.45.6 GOST R 34.10-2001 key pair generation

The GOST R 34.10-2001 key pair generation mechanism, denoted
CKM_GOSTR3410_KEY_PAIR_GEN, is a key pair generation mechanism for GOST R 34.10-2001.

This mechanism does not have a parameter.

The mechanism generates GOST R 34.10-2001 public/private key pairs with particular

GOST R 34.10-2001 domain parameters, as specified in the

CKA_GOSTR3410PARAMSGOSTR3410 PARAMS,
CKA_GOSTR34MPARAMSGOSTR3411_PARAMS, and CKA_GOST28147_PARAMS attributes of the
template for the public key. Note that CKA_GOST28147_PARAMS attribute may not be present in the
template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_VALUE, and
CKA_GOSTR3410PARAMSGOSTR3410_PARAMS,
CKA_GOSTR34MPARAMSGOSTR3411_PARAMS, CKA_GOST28147_PARAMS attributes to the new
private key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2:48-72.45.7 GOST R 34.10-2001 without hashing

The GOST R 34.10-2001 without hashing mechanism, denoted CKM_GOSTR3410, is a mechanism for
single-part signatures and verification for GOST R 34.10-2001. (This mechanism corresponds only to the
part of GOST R 34.10-2001 that processes the 32-bytes hash value; it does not compute the hash value.)

This mechanism does not have a parameter.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

The input for the mechanism is an octet string of 32 bytes long with digest has computed by means of
GOST R 34.11-94 hash algorithm in the context of signed or should be signed message.

Table 153,149, GOST R 34.10-2001 without hashing: Key and Data Length

Function Key type Input length Output length
C_Sign' CKK_GOSTR3410 32 bytes 64 bytes
C_Verify' CKK_GOSTR3410 32 bytes 64 bytes

1 Single-part operations only.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2:48-82.45.8 GOST R 34.10-2001 with GOST R 34.11-94

The GOST R 34.10-2001 with GOST R 34.11-94, denoted CKM_GOSTR3410_WITH_GOSTR3411, is a
mechanism for signatures and verification for GOST R 34.10-2001. This mechanism computes the entire
GOST R 34.10-2001 specification, including the hashing with GOST R 34.11-94 hash algorithm.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 193 of 212

As a parameter this mechanism utilizes a DER-encoding of the object identifier indicating

GOST R 34.11-94 data object type. A mechanism parameter may be missed then parameters are
specified in object identifier of attribute CKA_GOSTR3411PARAMSGOSTR3411_PARAMS must be
used.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string of 64 bytes
long. The signature octets correspond to the concatenation of the GOST R 34.10-2001 values s and r’,
both represented as a 32 bytes octet string in big endian order with the most significant byte first [RFC
4490] section 3.2, and [RFC 4491] section 2.2.2.

The input for the mechanism is signed or should be signed message of any length. Single- and multiple-
part signature operations are available.

Table 154;150, GOST R 34.10-2001 with GOST R 34.11-94: Key and Data Length

Function Key type Input length Output length
C_Sign CKK_GOSTR3410 Any 64 bytes
C_Verify CKK_GOSTR3410 Any 64 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2:48.92.45.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-
2001

GOST R 34.10-2001 keys as a KEK (key encryption keys) for encryption GOST 28147 keys, denoted by
CKM_GOSTR3410_KEY_WRAP, is a mechanism for key wrapping; and key unwrapping, based on
GOST R 34.10-2001. Its purpose is to encrypt and decrypt keys have been generated by key generation
mechanism for GOST 28147-89. An encryption algorithm from [RFC 4490] (section 5.2) must be used.
Encrypted key is a DER-encoded structure of ASN.1 GostR3410-KeyTransport type [RFC 4490] section
4.2.

It has a parameter, a CK_GOSTR3410_KEY_WRAP_PARAMS structure defined in section 2.45.5.

For unwrapping (C_UnwrapKey), the mechanism decrypts the wrapped key, and contributes the result
as the CKA_VALUE attribute of the new key.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

2.48.9.12.45.9.1 Common key derivation with assistance of GOST R 34.10-2001
keys

Common key derivation, denoted CKM_GOSTR3410_DERIVE, is a mechanism for key derivation with

assistance of GOST R 34.10-2001 private and public keys. The key of the mechanism must be of object

class CKO_DOMAIN_PARAMETERS and key type CKK_GOSTR3410. An algorithm for key derivation
from [RFC 4357] (section 5.2) must be used.

The mechanism contributes the result as the CKA_VALUE attribute of the new private key. All other
attributes must be specified in a template for creating private key object.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 194 of 212

3 PKCS #11 Implementation Conformance

An implementation is a conforming implementation if it meets the conditions specified in one or more
server profiles specified in [PKCS #11-Prof].

If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL
conform to all normative statements within the clauses specified for that profile and for any subclauses to
each of those clauses.

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 195 of 212

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

Participants:

Gil Abel, Athena Smartcard Solutions, Inc.
Warren Armstrong, QuintessencelLabs
Peter Bartok, Venafi, Inc.

Anthony Berglas, Cryptsoft

Kelley Burgin, National Security Agency
Robert Burns, Thales e-Security
Wan-Teh Chang, Google Inc.

Hai-May Chao, Oracle

Janice Cheng, Vormetric, Inc.

Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI)
Doron Cohen, SafeNet, Inc.

Fadi Cotran, Futurex

Tony Cox, Cryptsoft

Christopher Duane, EMC

Chris Dunn, SafeNet, Inc.

Valerie Fenwick, Oracle

Terry Fletcher, SafeNet, Inc.

Susan Gleeson, Oracle

Sven Gossel, Charismathics

Robert Griffin, EMC

Paul Grojean, Individual

Peter Gutmann, Individual

Dennis E. Hamilton, Individual

Thomas Hardjono, M.I.T.

Tim Hudson, Cryptsoft

Gershon Janssen, Individual

Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI)
Andrey Jivsov, Symantec Corp.

Greg Kazmierczak, Wave Systems Corp.
Mark Knight, Thales e-Security

Darren Krahn, Google Inc.

Alex Krasnov, Infineon Technologies AG
Dina Kurktchi-Nimeh, Oracle

Mark Lambiase, SecureAuth Corporation

pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 196 of 212

Lawrence Lee, GoTrust Technology Inc.
John Leiseboer, QuintessencelLabs

Hal Lockhart, Oracle

Robert Lockhart, Thales e-Security

Dale Moberg, Axway Software

Darren Moffat, Oracle

Valery Osheter, SafeNet, Inc.

Sean Parkinson, EMC

Rob Philpott, EMC

Mark Powers, Oracle

Ajai Puri, SafeNet, Inc.

Robert Relyea, Red Hat

Saikat Saha, Oracle

Subhash Sankuratripati, NetApp

Johann Schoetz, Infineon Technologies AG
Rayees Shamsuddin, Wave Systems Corp.
Radhika Siravara, Oracle

Brian Smith, Mozilla Corporation

David Smith, Venafi, Inc.

Ryan Smith, Futurex

Jerry Smith, US Department of Defense (DoD)
Oscar So, Oracle

Michael Stevens, QuintessencelLabs
Michael Stdohns, Individual

Sander Temme, Thales e-Security

Kiran Thota, VMware, Inc.

Walter-John Turnes, Gemini Security Solutions, Inc.

Stef Walter, Red Hat

Jeff Webb, Dell

Magda Zdunkiewicz, Cryptsoft

Chris Zimman, Bloomberg Finance L.P.

pkcs11-curr-v2.40-esprdd2

23-Apritcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved.

Page 197 of 212

Appendix B.

The following definitions can be found in [PKCS11_T_H].

/*

Copyright © OASIS Open 2013. All Rights Reserved.

Manifest Constants

All capitalized terms in the following text have the meanings assigned to them in the
OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy").

*I

Also, refer [PKCS #11-Base] and [PKCS #11-Hist] for additional definitions.

B.1 OTP Definitions

Note: A C or C++ source file in a Cryptoki application or library can define all the types, mechanisms, and
other constants described here by including the header file otp-pkcs11.h. When including the otp-
pkcs11.h header file, it should be preceded by an inclusion of the top-level Cryptoki header file pkcs11.h,
and the source file must also specify the preprocessor directives indicated in Section 8 of [PKCS #11-B].

B.2 Object classes

#define CKO ©FR KEY 0x006000608
0x00000000
#define CKO CERTIFICATE 0x00000001
#define CKO PUBLIC KEY 0x00000002
#define CKO PRIVATE KEY 0x00000003
#define CKO SECRET KEY 0x00000004
#define CKO HW FEATURE 0x00000005
#define CKO DOMAIN PARAMETERS 0x00000006
#define CKO MECHANISM 0x00000007
#define CKO OTP KEY 0x00000008
#define CKO VENDOR DEFINED 0x80000000
B.3 Key types
#define CKK RSA 0x00000000
#define CKK DSA 0x00000001
#define CKK DH 0x00000002
#define CKK ECDSA 0x00000003
#define CKK EC 0x00000003
#define CKK X9 42 DH 0x00000004
#define CKK KEA 0x00000005
#define CKK GENERIC SECRET 0x00000010
#define CKK RC2 0x00000011
#define CKK RC4 0x00000012
#define CKK DES 0x00000013
#define CKK DES2 0x00000014

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 198 of 212

#define CKK DES3 0x00000015
#define CKK CAST 0x00000016
#define CKK CAST3 0x00000017
#define CKK CAST5 0x00000018
#define CKK CAST128 0x00000018
#define CKK RC5 0x00000019
#define CKK IDEA 0x0000001A
#define CKK SKIPJACK 0x0000001B
#define CKK BATON 0x0000001C
#define CKK JUNIPER 0x0000001D
#define CKK CDMF 0x0000001E
#define CKK AES 0x0000001F
#define CKK BLOWFISH 0x00000020
#define CKK TWOFISH 0x00000021
#define CKK_SECURID B
0x00000022
#define CKK_HOTP 0%06666623UL
0x00000023
#define CKK_ACTI 0%06666624UL
0x00000024
#define CKK CAMELLIA 0x00000025
#define CKK ARIA 0x00000026
#define CKK SHA512 224 HMAC 0x00000027
#define CKK SHA512 256 HMAC 0x00000028
#define CKK SHA512 T HMAC 0x00000029
#define CKK VENDOR DEFINED 0x80000000
B.4 Mechanisms
#define CKM_RSA_PKCS_KEY_PAIR_GEN 0x00000000
#define CKM RSA PKCS 0x00000001
#define CKM RSA 9796 0x00000002
#define CKM RSA X 509 0x00000003
#define CKM MD2 RSA PKCS 0x00000004
#define CKM MD5 RSA PKCS 0x00000005
#define CKM SHA1l RSA PKCS 0x00000006
#define CKM_RIPEMD128_RSA_PKCS 0x00000007
#define CKM RIPEMD160 RSA PKCS 0x00000008
#define CKM RSA PKCS OAEP 0x00000009
#define CKM RSA X9 31 KEY PAIR GEN 0x0000000A
#define CKM RSA X9 31 0x0000000B
#define CKM SHA1l RSA X9 31 0x0000000C
#define CKM RSA PKCS PSS 0x0000000D
#define CKM SHA1l RSA PKCS PSS 0x0000000E
#define CKM_DSA_KEY_PAIR_GEN 0x00000010
#define CKM DSA 0x00000011
#define CKM DSA SHA1 0x00000012
#define CKM DSA FIPS G GEN 0x00000013
#define CKM DSA SHA224 0x00000014

| pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 199 of 212

#define CKM DSA SHA256 0x00000015
#define CKM DSA SHA384 0x00000016
#define CKM DSA SHAS512 0x00000017
#define CKM DH PKCS KEY PAIR GEN 0x00000020
#define CKM DH PKCS DERIVE 0x00000021
#define CKM X9 42 DH KEY PAIR GEN 0x00000030
#define CKM X9 42 DH DERIVE 0x00000031
#define CKM X9 42 DH HYBRID DERIVE 0x00000032
#define CKM X9 42 MQV DERIVE 0x00000033
#define CKM SHA256 RSA PKCS 0x00000040
#define CKM SHA384 RSA PKCS 0x00000041
#define CKM SHA512 RSA PKCS 0x00000042
#define CKM SHA256 RSA PKCS PSS 0x00000043
#define CKM SHA384 RSA PKCS PSS 0x00000044
#define CKM SHA512 RSA PKCS PSS 0x00000045
#define CKM SHA224 RSA PKCS 0x00000046
#define CKM SHA224 RSA PKCS PSS 0x00000047
#define CKM SHA512 224 0x00000048
#define CKM SHA512 224 HMAC 0x00000049
#define CKM SHAS512 224 HMAC GENERAL 0x0000004A
#define CKM SHAS512 224 KEY DERIVATION 0x0000004B
#fdefine CKM SHA512 256 0x0000004cC
#define CKM SHA512 256 HMAC 0x0000004D
#define CKM SHAS512 256 HMAC GENERAL 0x0000004E
#define CKM SHAS512 256 KEY DERIVATION 0x0000004F
#define CKM SHA512 T 0x00000050
#define CKM SHA512 T HMAC 0x00000051
#define CKM SHAS512 T HMAC GENERAL 0x00000052
#define CKM SHAS512 T KEY DERIVATION 0x00000053
#define CKM RC2 KEY GEN 0x00000100
#define CKM RC2 ECB 0x00000101
#define CKM RC2 CBC 0x00000102
#define CKM RC2 MAC 0x00000103
#define CKM RC2 MAC GENERAL 0x00000104
#define CKM RC2 CBC PAD 0x00000105
#define CKM RC4 KEY GEN 0x00000110
#define CKM RC4 0x00000111
#define CKM DES KEY GEN 0x00000120
#define CKM DES ECB 0x00000121
#define CKM DES_CBC 0x00000122
#define CKM DES MAC 0x00000123
#define CKM DES MAC GENERAL 0x00000124
#define CKM DES CBC PAD 0x00000125
#define CKM DES2 KEY GEN 0x00000130
#define CKM DES3 KEY GEN 0x00000131
#define CKM DES3 ECB 0x00000132
#define CKM DES3 CBC 0x00000133
#define CKM DES3 MAC 0x00000134
| pkcs11-curr-v2.40-esprdd2 23-Apritcsprd03
Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 200 of 212

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CKM DES3 MAC GENERAL
CKM DES3 CBC_PAD
CKM_CDMF _KEY GEN
CKM_CDMF_ECB
CKM_CDMF_CBC
CKM_CDMF_MAC
CKM_CDMF_MAC GENERAL
CKM_CDMF_CBC_PAD
CKM_DES_OFB64
CKM_DES_OFBS8
CKM_DES_CFB64
CKM_DES_CFBS8

CKM_MD2

CKM_MD2 HMAC

CKM _MD2 HMAC GENERAL
CKM_MD5

CKM_MD5_ HMAC

CKM MD5 HMAC GENERAL
CKM_SHA 1
CKM_SHA 1 HMAC

CKM SHA 1 HMAC GENERAL
CKM_RIPEMD128

CKM RIPEMD128 HMAC

CKM RIPEMD128 HMAC GENERAL
CKM_RIPEMDI160

CKM RIPEMD160 HMAC

CKM RIPEMD160 HMAC GENERAL
CKM_SHA256

CKM_SHA256 HMAC
CKM_SHA256 HMAC GENERAL
CKM_SHA224

CKM SHA224 HMAC
CKM_SHA224 HMAC GENERAL
CKM_SHA384

CKM_SHA384 HMAC
CKM_SHA384 HMAC GENERAL
CKM_SHA512

CKM_SHA512 HMAC

CKM SHA512 HMAC GENERAL
CKM_SECURID KEY GEN
CKM_SECURID
CKM_HOTP_KEY GEN
CKM_HOTP

CKM_ACTI

CKM ACTI_KEY GEN
CKM_CAST KEY GEN
CKM_CAST ECB

CKM_CAST CBC

0x00000135
0x00000136
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000150
0x00000151
0x00000152
0x00000153
0x00000200
0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000230
0x00000231
0x00000232
0x00000240
0x00000241
0x00000242
0x00000250
0x00000251
0x00000252
0x00000255
0x00000256
0x00000257
0x00000260
0x00000261
0x00000262
0x00000270
0x00000271
0x00000272
0x00000280
0x00000282
0x00000290
0x00000291
0x000002A0
0x000002A1
0x00000300
0x00000301
0x00000302

| pkcs11-curr-v2.40-esprdb2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 201 of 212

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CKM_CAST MAC
CKM_CAST MAC GENERAL
CKM_CAST CBC_PAD
CKM_CAST3 KEY GEN
CKM_CAST3 ECB

CKM_CAST3_CBC

CKM_CAST3 MAC

CKM_CAST3 MAC_GENERAL
CKM_CAST3 CBC_PAD
CKM_CAST5 KEY GEN
CKM_CAST128 KEY GEN
CKM_CAST5 ECB
CKM_CAST128 ECB

CKM _CAST5 CBC
CKM_CAST128 CBC
CKM_CAST5 MAC
CKM_CAST128 MAC

CKM_CAST5 MAC_GENERAL
CKM_CAST128 MAC GENERAL
CKM_CAST5 CBC_PAD
CKM_CAST128 CBC_PAD
CKM_RC5 KEY GEN

CKM_RC5 ECB

CKM RC5 CBC

CKM_RC5 MAC
CKM_RC5 MAC_ GENERAL

CKM_RC5 CBC_PAD
CKM_IDEA KEY GEN

CKM_IDEA ECB

CKM_IDEA CBC

CKM_IDEA MAC

CKM IDEA MAC GENERAL
CKM_IDEA CBC_PAD

CKM GENERIC SECRET KEY GEN
CKM_CONCATENATE BASE AND KEY
CKM_CONCATENATE BASE AND DATA
CKM_CONCATENATE DATA AND BASE
CKM_XOR_BASE_ AND DATA
CKM_EXTRACT KEY FROM KEY

CKM SSL3 PRE MASTER KEY GEN
CKM SSL3 MASTER KEY DERIVE
CKM SSL3 KEY AND MAC DERIVE
CKM SSL3 MASTER KEY DERIVE DH
CKM TLS PRE_MASTER KEY GEN
CKM TLS MASTER KEY DERIVE
CKM TLS KEY AND MAC DERIVE
CKM TLS MASTER KEY DERIVE DH
CKM TLS_PRF

0x00000303
0x00000304
0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000320
0x00000321
0x00000321
0x00000322
0x00000322
0x00000323
0x00000323
0x00000324
0x00000324
0x00000325
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000373
0x00000374
0x00000375
0x00000376
0x00000377
0x00000378

| pkcs11-curr-v2.40-esprdb2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 202 of 212

#define CKM SSL3 MD5 MAC 0x00000380
#define CKM SSL3 SHAl MAC 0x00000381
#define CKM MD5 KEY DERIVATION 0x00000390
#define CKM MD2 KEY DERIVATION 0x00000391
#define CKM SHA1 KEY DERIVATION 0x00000392
#define CKM SHA256 KEY DERIVATION 0x00000393
#define CKM SHA384 KEY DERIVATION 0x00000394
#define CKM SHA512 KEY DERIVATION 0x00000395
#define CKM SHA224 KEY DERIVATION 0x00000396
#define CKM PBE_MD2 DES_CBC 0x000003A0
#define CKM PBE_MD5 DES_CBC 0x000003A1
#define CKM PBE_MD5 CAST CBC 0x000003A2
#define CKM PBE MD5 CAST3 CBC 0x000003A3
#define CKM PBE MD5 CAST5 CBC 0x000003A4
#define CKM PBE_MD5 CAST128 CBC 0x000003A4
#define CKM PBE_SHA1 CASTS5 CBC 0x000003A5
#define CKM PBE_SHA1 CAST128 CBC 0x000003A5
#define CKM PBE_SHA1l RC4 128 0x000003A6
#define CKM PBE_SHAl RC4 40 0x000003A7
#define CKM PBE_SHAl DES3 EDE_CBC 0x000003A8
#define CKM PBE_SHAl DES2 EDE_CBC 0x000003A9
#define CKM PBE SHA1 RC2 128 CBC 0x000003AA
#define CKM PBE_SHA1 RC2 40 CBC 0x000003AB
#define CKM_ PKCS5 PBKD2 0x000003B0
#define CKM PBA SHA1 WITH SHA1l HMAC 0x000003C0
#define CKM WTLS PRE_MASTER KEY GEN 0x000003D0
#define CKM WTLS MASTER KEY DERIVE 0x000003D1
#define CKM WTLS MASTER KEY DERIVE DH ECC 0x000003D2
#define CKM WTLS_ PRF 0x000003D3
#define CKM WTLS SERVER KEY AND MAC DERIVE —0x000003DA4
#define CKM WTLS CLIENT KEY AND MAC DERIVE —0x000003D5
#define CKM TLS10 MAC SERVER 0x000003D6
#define CKM TLS10 MAC CLIENT 0x000003D7
#define CKM TLS12 MAC 0x000003D8
#define CKM TLS12 MASTER KEY DERIVE 0x000003E0
#define CKM TLS12 KEY AND MAC DERIVE 0x000003E1
#define CKM TLS12 MASTER KEY DERIVE DH 0x000003E2
#define CKM TLS12 KEY SAFE DERIVE 0x000003E3
#define CKM TLS MAC 0x000003E4
#define CKM TLS_KDF 0x000003E5
#define CKM KEY WRAP LYNKS 0x00000400
#define CKM KEY WRAP SET OAEP 0x00000401
#define CKM CMS_SIG 0x00000500
#define CKM KIP DERIVE 0x00000510
#define CKM KIP WRAP 0x00000511
#define CKM KIP MAC 0x00000512
#define CKM CAMELLIA KEY GEN 0x00000550
#define CKM CAMELLIA ECB 0x00000551

| pkcs11-curr-v2.40-esprdb2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 203 of 212

#define CKM CAMELLIA CBC 0x00000552
#define CKM CAMELLIA MAC 0x00000553
#define CKM CAMELLIA MAC GENERAL 0x00000554
#define CKM CAMELLIA CBC_PAD 0x00000555
#define CKM CAMELLIA ECB ENCRYPT DATA 0x00000556
#define CKM CAMELLIA CBC ENCRYPT DATA 0x00000557
#define CKM CAMELLIA CTR 0x00000558
#define CKM ARIA KEY GEN 0x00000560
#define CKM ARIA ECB 0x00000561
#define CKM ARIA CBC 0x00000562
#define CKM ARIA MAC 0x00000563
#define CKM ARIA MAC GENERAL 0x00000564
#define CKM ARIA CBC_PAD 0x00000565
#define CKM ARIA ECB_ENCRYPT DATA 0x00000566
#define CKM ARTIA CBC_ENCRYPT DATA 0x00000567
#define CKM SKIPJACK KEY GEN 0x00001000
#define CKM SKIPJACK ECB64 0x00001001
#define CKM SKIPJACK CBC64 0x00001002
#define CKM SKIPJACK OFB64 0x00001003
#define CKM SKIPJACK CFB64 0x00001004
#define CKM SKIPJACK CFB32 0x00001005
#define CKM SKIPJACK CFB16 0x00001006
#define CKM SKIPJACK CFBS 0x00001007
#define CKM SKIPJACK WRAP 0x00001008
#define CKM SKIPJACK PRIVATE WRAP 0x00001009
#define CKM SKIPJACK RELAYX 0x0000100a
#define CKM KEA KEY PAIR GEN 0x00001010
#define CKM KEA KEY DERIVE 0x00001011
#define CKM FORTEZZA TIMESTAMP 0x00001020
#define CKM BATON KEY GEN 0x00001030
#define CKM BATON ECB128 0x00001031
#define CKM BATON ECB96 0x00001032
#define CKM BATON CBC128 0x00001033
#define CKM BATON COUNTER 0x00001034
#define CKM BATON SHUFFLE 0x00001035
#define CKM BATON WRAP 0x00001036
#define CKM ECDSA KEY PAIR GEN 0x00001040
#define CKM EC _KEY PATR GEN 0x00001040
#define CKM ECDSA 0x00001041
#define CKM ECDSA SHA1 0x00001042
#define CKM ECDH1 DERIVE 0x00001050
#define CKM ECDH1 COFACTOR DERIVE 0x00001051
#define CKM ECMQV DERIVE 0x00001052
#define CKM ECDH AES KEY WRAP 0x00001053
#define CKM RSA AES KEY WRAP 0x00001054
#define CKM JUNIPER KEY GEN 0x00001060
#define CKM JUNIPER ECB128 0x00001061
#define CKM JUNIPER CBC128 0x00001062

| pkcs11-curr-v2.40-esprdb2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 204 of 212

#define CKM_JUNIPER COUNTER 000001063
fdefine CKM_JUNIPER SHUFFLE 000001064
fdefine CKM_JUNIPER WRAP 000001065
fdefine CKM FASTHASH 000001070
fdefine CKM AES KEY GEN 000001080
fdefine CKM AES ECB 000001081
fdefine CKM AES CBC 000001082
fdefine CKM AES MAC 000001083
#define CKM _AES MAC GENERAL 000001084
fdefine CKM AES CBC_PAD 000001085
#define CKM AES CTR 000001086
fdefine CKM AES GCM 000001087
#define CKM AES CCM 000001088
#define CKM AES CMAC GENERAL 0x00001089
fdefine CKM AES CMAC 0x0000108A

#define CKM AES CTS 000001089
0x0000108B
#define CKM AES XCBC_ MAC 0x0000108C
#define CKM AES XCBC MAC 96 0x0000108D
#define CKM BLOWFISH KEY GEN 0x00001090
#define CKM BLOWFISH CBC 0x00001091
#define CKM TWOFISH KEY GEN 0x00001092
#define CKM_TWOFISH CBC 0x00001093
#define CKM BLOWFISH CBC_PAD 0x00001094
#define CKM TWOFISH CBC_PAD 0x00001095
#define CKM DES ECB ENCRYPT DATA 0x00001100
#define CKM DES_CBC_ENCRYPT DATA 0x00001101
#define CKM DES3 ECB ENCRYPT DATA 0x00001102
#define CKM DES3 CBC_ENCRYPT DATA 0x00001103
#define CKM AES ECB ENCRYPT DATA 0x00001104
#define CKM AES CBC_ENCRYPT DATA 0x00001105
#define CKM GOSTR3410 KEY PAIR GEN 0x00001200
#define CKM GOSTR3410 0x00001201
#define CKM GOSTR3410 WITH GOSTR3411 0x00001202
#define CKM GOSTR3410 KEY WRAP 0x00001203
#define CKM GOSTR3410 DERIVE 0x00001204
#define CKM GOSTR3411 0x00001210
#define CKM GOSTR3411 HMAC 0x00001211
#define CKM GOST28147 KEY GEN 0x00001220
#define CKM GOST28147 ECB 0x00001221
#define CKM GOST28147 0x00001222
#define CKM GOST28147 MAC 0x00001223
#define CKM GOST28147 KEY WRAP 0x00001224
#define CKA GOSTR3410 PARAMS 0x00000250
#define CKA GOSTR3411 PARAMS 0x00000251
#define CKA GOST28147 PARAMS 0x00000252
#define CKM DSA PARAMETER GEN 0x00002000
#define CKM DH PKCS PARAMETER GEN 0x00002001

| pkcs11-curr-v2.40-esprdb2
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 205 of 212

#define CKM X9 42 DH PKCS PARAMETER GEN 0x00002002

#define CKM DSA PROBABLISTIC PARAMETER GEN 0x00002003
#define CKM DSA SHAWE TAYLOR PARAMETER GEN 0x00002004
#define CKM AES OFB 0x00002104
#define CKM AES CFB64 0x00002105
#define CKM AES CFBS 0x00002106
#define CKM AES CFB128 0x00002107
#define CKM AES CFB1 0x00002108
#define CKM AES KEY WRAP 0x00002109
#define CKM AES KEY WRAP PAD 0x0000210A
#define CKM RSA PKCS TPM 1 1 0x00004001
#define CKM RSA PKCS OAEOAEP TPM 1 1 0x00004002
#define CKM_VENDOR_DEFINED 0x80000000
B.5 Attributes

#define CKA CLASS 0x00000000
#define CKA TOKEN 0x00000001
#define CKA PRIVATE 0x00000002
#define CKA LABEL 0x00000003
#define CKA APPLICATION 0x00000010
#define CKA VALUE 0x00000011
#define CKA OBJECT ID 0x00000012
#define CKA CERTIFICATE TYPE 0x00000080
#define CKA ISSUER 0x00000081
#define CKA SERIAL NUMBER 0x00000082
#define CKA AC ISSUER 0x00000083
#define CKA OWNER 0x00000084
#define CKA ATTR TYPES 0x00000085
#define CKA TRUSTED 0x00000086
#define CKA CERTIFICATE CATEGORY 0x00000087
#define CKA JAVA MIDP SECURITY DOMAIN 0x00000088
#define CKA URL 0x00000089
#define CKA HASH OF SUBJECT PUBLIC KEY 0x0000008A
#define CKA HASH OF ISSUER PUBLIC KEY 0x0000008B
#define CKA CHECK VALUE 0x00000090
#define CKA KEY TYPE 0x00000100
#define CKA SUBJECT 0x00000101
#define CKA ID 0x00000102
#define CKA SENSITIVE 0x00000103
#define CKA ENCRYPT 0x00000104
#define CKA DECRYPT 0x00000105
#define CKA WRAP 0x00000106
#define CKA UNWRAP 0x00000107
#define CKA SIGN 0x00000108
#define CKA SIGN RECOVER 0x00000109
#define CKA VERIFY 0x0000010A
#define CKA VERIFY RECOVER 0x0000010B

| pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 206 of 212

#define CKA DERIVE 0x0000010C
#define CKA START DATE 0x00000110
#define CKA END DATE 0x00000111
#define CKA MODULUS 0x00000120
#define CKA MODULUS BITS 0x00000121
#define CKA PUBLIC EXPONENT 0x00000122
#define CKA PRIVATE EXPONENT 0x00000123
#define CKA PRIME 1 0x00000124
#define CKA PRIME 2 0x00000125
#define CKA EXPONENT 1 0x00000126
#define CKA EXPONENT 2 0x00000127
#define CKA COEFFICIENT 0x00000128
#define CKA PUBLIC KEY INFO 0x00000129
#define CKA PRIME 0x00000130
#define CKA SUBPRIME 0x00000131
#define CKA BASE 0x00000132
#define CKA PRIME BITS 0x00000133
#define CKA SUBPRIME BITS 0x00000134
#define CKA SUB PRIME BITS CKA SUBPRIME BITS
#define CKA VALUE BITS 0x00000160
#define CKA VALUE LEN 0x00000161
#define CKA EXTRACTABLE 0x00000162
#define CKA LOCAL 0x00000163
#define CKA NEVER EXTRACTABLE 0x00000164
#define CKA ALWAYS SENSITIVE 0x00000165
#define CKA KEY GEN MECHANISM 0x00000166
#define CKA MODIFIABLE 0x00000170
#define CKA DESTROYABLE 0x00000172
#define CKA ECDSA PARAMS 0x00000180
#define CKA EC_ PARAMS 0x00000180
#define CKA EC_POINT 0x00000181
#define CKA SECONDARY AUTH 0x00000200
#define CKA AUTH PIN FLAGS 0x00000201
#define CKA ALWAYS AUTHENTICATE 0x00000202
#define CKA WRAP WITH TRUSTED 0x00000210
#define CKA WRAP TEMPLATE (CKF ARRAY ATTRIBUTE|0x00000211)
#define CKA UNWRAP TEMPLATE (CKF ARRAY ATTRIBUTE|0x00000212)
#define CKA_ OTP_FORMAT HROGOG0LZ01L
0x00000220
#define CKA OTP LENGTH HROGOG0LZIEL

#define

#define

#define

0x00000221

CKA OTP TIME INTERVAL

220171

0x00000222

CKA OTP USER FRIENDLY MODE

0x00000223850x00000223

CKA OTP CHALLENGE REQUIREMENT

0x00000224050x00000224

()
P
P
P
P
P

T
U1

| pkcs11-curr-v2.40-espra02

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Aprilcsprd03

Page 207 of 212

g

#define CKA_OTP_TIME_REQUIREMENT e
0x00000225

#define CKA_OTP_COUNTER_REQUIREMENT
0366660226UL0x00000226

#define CKA_OTP_PIN_REQUIREMENT e
0x00000227

#define CKA_OTP_USER_IDENTIFIER e
0x0000022A

#define CKA_OTP_SERVICE_IDENTIFIER
06666622BUL0x0000022B

#define CKA OTP_ SERVICE LOGO 6+6000022¢€
0x0000022C

#define CKA OTP SERVICE LOGO_TYPE
066660622PYE0x0000022D

#define CKA OTP_ COUNTER 660000228
0x0000022E

#define CKA OTP TIME 0x0000022F

0x0000022F

#define CKA HW FEATURE TYPE 0x00000300

#define CKA RESET ON INIT 0x00000301

#define CKA HAS RESET 0x00000302

#define CKA PIXEL X 0x00000400

#define CKA PIXEL Y 0x00000401

#define CKA RESOLUTION 0x00000402

#define CKA CHAR ROWS 0x00000403

#define CKA CHAR COLUMNS 0x00000404

#define CKA COLOR 0x00000405

#define CKA BITS PER PIXEL 0x000004006

#define CKA CHAR SETS 0x00000480

#define CKA ENCODING METHODS 0x00000481

#define CKA MIME TYPES 0x00000482

#define CKA MECHANISM TYPE 0x00000500

#define CKA REQUIRED CMS ATTRIBUTES 0x00000501

#define CKA DEFAULT CMS ATTRIBUTES 0x00000502

#define CKA SUPPORTED CMS ATTRIBUTES 0x00000503

#define CKA ALLOWED MECHANISMS
(CKF ARRAY ATTRIBUTE|0x00000600)

#define CKA VENDOR DEFINED 0x80000000

B.6 Attribute constants

#define CK_OTP_FORMAT_DECIMAL 0UL

#define CK_OTP_FORMAT_HEXADECIMAL 1UL

#define CK_OTP_FORMAT_ALPHANUMERIC 2UL

#define CK_OTP_FORMAT_BINARY 3UL

#define CK_OTP_PARAM_IGNORED 0UL

#define CK_OTP_PARAM_OPTIONAL 1UL

#define CK_OTP_PARAM_MANDATORY 2UL

23-Apritcsprd03

| pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

Page 208 of 212

B.7 Other constants

#define CK_OTP_VALUE 0UL

#define CK_OTP_PIN 1UL

#define CK_OTP_CHALLENGE 2UL

#define CK_OTP_TIME 3UL

#define CK_OTP_COUNTER 4UL

#define CK_OTP_FLAGS 5U0L

#define CK_OTP_OUTPUT_LENGTH oUL

#define CK_OTP_FORMAT 7UL

#define CKF_NEXT_OTP 0x00000001UL
#define CKF_EXCLUDE_TIME 0x00000002UL
#define CKF_EXCLUDE_COUNTER 0x00000004UL
#define CKF_EXCLUDE_CHALLENGE 0x00000008UL
#define CKF_EXCLUDE_PIN 0x00000010UL
#define CKF_USER_FRIENDLY_OTP 0x00000020UL

B.8 Notifications
#define CKN_OTP_CHANGED 1UL
B.9 Return values

#define CKR OK 0x00000000
#define CKR CANCEL 0x00000001
#define CKR HOST MEMORY 0x00000002
#define CKR SLOT ID INVALID 0x00000003
#define CKR GENERAL ERROR 0x00000005
#define CKR FUNCTION FAILED 0x00000006
#define CKR ARGUMENTS BAD 0x00000007
#define CKR NO EVENT 0x00000008
#define CKR NEED TO CREATE THREADS 0x00000009
#define CKR CANT LOCK 0x0000000A
#define CKR ATTRIBUTE READ ONLY 0x00000010
#define CKR ATTRIBUTE SENSITIVE 0x00000011
#define CKR ATTRIBUTE TYPE INVALID 0x00000012
#define CKR ATTRIBUTE VALUE INVALID 0x00000013
#define CKR ACTION PROHIBITED 0x0000001B
#define CKR DATA INVALID 0x00000020
#define CKR DATA LEN RANGE 0x00000021
#define CKR DEVICE ERROR 0x00000030
#define CKR DEVICE MEMORY 0x00000031
#define CKR DEVICE REMOVED 0x00000032
#define CKR ENCRYPTED DATA INVALID 0x00000040
#define CKR ENCRYPTED DATA LEN RANGE 0x00000041
#define CKR FUNCTION CANCELED 0x00000050
#define CKR FUNCTION NOT PARALLEL 0x00000051
#define CKR FUNCTION NOT SUPPORTED 0x00000054
#define CKR KEY HANDLE INVALID 0x00000060

pkcs11-curr-v2.40-esprdd2

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 209 of 212

#define CKR KEY SIZE RANGE 0x00000062

#fdefine CKR KEY TYPE INCONSISTENT 0x00000063
#define CKR KEY NOT NEEDED 0x00000064
#define CKR KEY CHANGED 0x00000065
#define CKR KEY NEEDED 0x00000066
#fdefine CKR KEY INDIGESTIBLE 0x00000067
#define CKR KEY FUNCTION NOT PERMITTED 0x00000068
#define CKR KEY NOT WRAPPABLE 0x00000069
#define CKR KEY UNEXTRACTABLE 0x0000006A
#define CKR MECHANISM INVALID 0x00000070
#define CKR MECHANISM PARAM INVALID 0x00000071
#define CKR OBJECT HANDLE INVALID 0x00000082
#define CKR OPERATION ACTIVE 0x00000090
#define CKR OPERATION NOT INITIALIZED 0x00000091
#define CKR PIN INCORRECT 0x000000A0
#define CKR PIN INVALID 0x000000A1
#define CKR PIN LEN RANGE 0x000000A2
#define CKR PIN EXPIRED 0x000000A3
#define CKR PIN LOCKED 0x000000A4
#define CKR SESSION CLOSED 0x000000BO
#define CKR SESSION COUNT 0x000000B1
#define CKR SESSION HANDLE INVALID 0x000000B3
#define CKR SESSION PARALLEL NOT SUPPORTED 0x000000B4
#define CKR SESSION READ ONLY 0x000000B5
#define CKR SESSION EXISTS 0x000000B6
#define CKR SESSION READ ONLY EXISTS 0x000000B7

#define CKR SESSION READ WRITE SO EXISTS 0x000000BS8

#define CKR SIGNATURE INVALID 0x000000CO
#define CKR SIGNATURE LEN RANGE 0x000000C1
#define CKR TEMPLATE INCOMPLETE 0x000000D0O
#define CKR TEMPLATE INCONSISTENT 0x000000D1
#define CKR TOKEN NOT PRESENT 0x000000EQ
#define CKR TOKEN NOT RECOGNIZED 0x000000E1
#define CKR TOKEN WRITE PROTECTED 0x000000E2
#define CKR UNWRAPPING KEY HANDLE INVALID 0x000000FO
#define CKR UNWRAPPING KEY SIZE RANGE 0x000000F1
#define CKR UNWRAPPING KEY TYPE INCONSISTENT 0x000000F2
#define CKR USER ALREADY LOGGED IN 0x00000100
#define CKR USER NOT LOGGED IN 0x00000101
#define CKR USER PIN NOT INITIALIZED 0x00000102
#define CKR USER TYPE INVALID 0x00000103
#define CKR USER ANOTHER ALREADY LOGGED IN 0x00000104
#define CKR USER TOO MANY TYPES 0x00000105
#define CKR WRAPPED KEY INVALID 0x00000110
#fdefine CKR WRAPPED KEY LEN RANGE 0x00000112

#define CKR WRAPPING KEY HANDLE INVALID 0x00000113

| pkcs11-curr-v2.40-espra02 23-Apritlcsprd03

Standards Track Work Product Copyright © OASIS Open 2014. All Rights Reserved. Page 210 of 212

\wum)

#define CKR WRAPPING KEY SIZE RANGE 0x00000114
#define CKR _WRAPPING KEY TYPE INCONSISTENT 0x00000115
#define CKR _RANDOM SEED NOT SUPPORTED 0x00000120
#define CKR_RANDOM NO RNG 0x00000121
#define CKR _DOMAIN PARAMS INVALID 0x00000130
#define CKR_CURVE NOT SUPPORTED 0x00000140
#define CKR BUFFER TOO SMALL 0x00000150
#define CKR_SAVED STATE INVALID 0x00000160
#define CKR INFORMATION SENSITIVE 0x00000170
#define CKR_STATE UNSAVEABLE 0x00000180
#define CKR_CRYPTOKI NOT INITIALIZED 0x00000190
#define CKR _CRYPTOKI ALREADY INITIALIZED 0x00000191
#define CKR MUTEX BAD 0x000001A0
#define CKR_MUTEX NOT LOCKED 0x000001A1
#define CKR _NEW PIN MODE 0:000001B0
0x000001B0
#define CKR_NEXT OTP 0x000001B1
0x000001B1
#define CKR EXCEEDED MAX ITERATIONS 0x000001C0
#define CKR _FIPS SELF TEST FAILED 0x000001C1
#define CKR_LIBRARY LOAD FAILED 0x000001C2
#define CKR _PIN TOO WEAK 0x000001C3
#define CKR PUBLIC KEY INVALID 0x000001C4
#define CKR _FUNCTION REJECTED 0x00000200
#define CKR_VENDOR DEFINED 0x80000000

\wum)

pkcs11-curr-v2.40-espra02

Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Aprilcsprd03

Page 211 of 212

Appendix C.

Revision History

Revision Date Editor Changes Made

wd01 Apr 29, 2013 | Chris Zimman Initial Template Import

wd02 July 7, 2013 | Chris Zimman 2" Working Draft

wd03 Aug 16, 2013 | Chris Zimman 3" Working Draft

wd04 Oct 1, 2013 Chris Zimman Incorporation of ballot items, prep for
Committee Specification Draft promotion

wd05 Oct 7, 2013 Chris Zimman Reviewed for typos and proof. Candidate for
Committee Specification Draft promotion.

wd06 Oct 27, 2013 | Robert Griffin Final participants list and other editorial
changes for Committee Specification Draft

wd07 Feb 18, 2014 | Chris Zimman Incorporation of changes and feedback from
public review

wd08 Feb 27,2014 | Chris Zimman Incorporation of changes and feedback from
public review

wd09 Mar 10, 2014 | Chris Zimman Incorporation of voted upon changes from last

meeting

pkcs11-curr-v2.40-esprdd2
Standards Track Work Product

Copyright © OASIS Open 2014. All Rights Reserved.

23-Apritcsprd03

Page 212 of 212

