
[image: image1.png]OASIS)

Service Component Architecture Client and Implementation Model for C Specification Version 1.1
Committee Draft 04 / Public Review Draft 02
21 January 2010
Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd04.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd04.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd04.pdf (Authoratative)
Previous Version:

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd03.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd03.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec-cd03.pdf (Authoratative)
Latest Version:

http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-ccni-1.1-spec.pdf (Authoratative)
Technical Committee:

OASIS Service Component Architecture / C and C++ (SCA-C-C++) TC
Chair:

Bryan Aupperle, IBM
Editors:

Bryan Aupperle, IBM

David Haney

Pete Robbins, IBM

Related work:

This specification replaces or supercedes:

· OSOA SCA C Client and Implementation V1.00
This specification is related to:

· OASIS Service Component Architecture Assembly Model Version 1.1
· OASIS SCA Policy Framework Version 1.1
· OASIS Service Component Architecture Web Service Binding Specification Version 1.1
Declared XML Namespace(s):

http://docs.oasis-open.org/ns/opencsa/sca/200912
http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901
Abstract:

This document describes the SCA Client and Implementation Model for the C programming language.

The SCA C implementation model describes how to implement SCA components in C. A component implementation itself can also be a client to other services provided by other components or external services. The document describes how a component implemented in C gets access to services and calls their operations.

The document also explains how non-SCA C components can be clients to services provided by other components or external services. The document shows how those non-SCA C component implementations access services and call their operations.

Status:

This document was last revised or approved by the Service Component Architecture / C and C++ TC on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/sca-c-cpp/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/sca-c-cpp/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/sca-c-cpp/.

Notices
Copyright © OASIS® 2007, 20010. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS",is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents
81
Introduction

81.1 Terminology

81.2 Normative References

91.3 Conventions

91.3.1 Naming Conventions

91.3.2 Typographic Conventions

102
Basic Component Implementation Model

102.1 Implementing a Service

112.1.1 Implementing a Remotable Service

112.1.2 AllowsPassByReference

122.1.3 Implementing a Local Service

122.2 Component and Implementation Lifecycles

132.3 Implementing a Configuration Property

132.4 Component Type and Component

142.4.1 Interface.c

152.4.2 Function and CallbackFunction

162.4.3 Implementation.c

172.4.4 Implementation Function

182.5 Implementing a Service with a Program

203
Basic Client Model

203.1 Accessing Services from Component Implementations

213.2 Accessing Services from non-SCA Component Implementations

213.3 Calling Service Operations

213.3.1 Proxy Functions

223.4 Long Running Request-Response Operations

223.4.1 Asynchronous Invocation

243.4.2 Polling Invocation

253.4.3 Synchronous Invocation

264
Asynchronous Programming

264.1 Non-blocking Calls

264.2 Callbacks

274.2.1 Using Callbacks

284.2.2 Callback Instance Management

284.2.3 Implementing Multiple Bidirectional Interfaces

295
Error Handling

306
C API

306.1 SCA Programming Interface

336.1.1 SCAGetReference

336.1.2 SCAGetReferences

346.1.3 SCAInvoke

346.1.4 SCAProperty<T>

366.1.5 SCAGetReplyMessage

376.1.6 SCAGetFaultMessage

376.1.7 SCASetFaultMessage

386.1.8 SCASelf

386.1.9 SCAGetCallback

386.1.10 SCAReleaseCallback

396.1.11 SCAInvokeAsync

396.1.12 SCAInvokePoll

406.1.13 SCACheckResponse

406.1.14 SCACancelInvoke

416.1.15 SCAEntryPoint

416.2 Program-Based Implemenation Support

426.2.1 SCAService

426.2.2 SCAOperation

426.2.3 SCAMessageIn

436.2.4 SCAMessageOut

447
C Contributions

447.1 Executable files

447.1.1 Executable in contribution

447.1.2 Executable shared with other contribution(s) (Export)

457.1.3 Executable outside of contribution (Import)

467.2 componentType files

467.3 C Contribution Extensions

467.3.1 Export.c

477.3.2 Import.c

488
C Interfaces

488.1 Types Supported in Service Interfaces

488.1.1 Local Service

488.1.2 Remotable Service

488.2 Restrictions on C header files

499
WSDL to C and C to WSDL Mapping

499.1 Interpretations for WSDL to C Mapping

499.1.1 Definitions

499.1.2 PortType

509.1.3 Operations

509.1.4 Types

509.1.5 Fault

519.1.6 Service and Port

519.1.7 XML Names

519.2 Interpretations for C to WSDL Mapping

519.2.1 Package

519.2.2 Class

519.2.3 Interface

529.2.4 Method

529.2.5 Method Parameters and Return Type

529.2.6 Service Specific Exception

539.2.7 Generics

539.3 Data Binding

539.3.1 Simple Content Binding

589.3.2 Complex Content Binding

6210
Conformance

6210.1 Conformance Targets

6210.2 SCA Implementations

6310.3 SCA Documents

6310.4 C Files

6310.5 WSDL Files

64A
C SCA Annotations

64A.1 Application of Annotations to C Program Elements

64A.2 Interface Header Annotations

64A.2.1 @Interface

65A.2.2 @Function

66A.2.3 @Operation

67A.2.4 @Remotable

67A.2.5 @Callback

67A.2.6 @OneWay

68A.3 Implementation Annotations

68A.3.1 @ComponentType

68A.3.2 @Service

69A.3.3 @Reference

70A.3.4 @Property

70A.3.5 @Init

71A.3.6 @Destroy

71A.3.7 @EagerInit

72A.3.8 @AllowsPassByReference

72A.4 Base Annotation Grammar

74B
C SCA Policy Annotations

74B.1 General Intent Annotations

75B.2 Specific Intent Annotations

76B.2.1 Security Interaction

76B.2.2 Security Implementation

76B.2.3 Reliable Messaging

77B.2.4 Transactions

77B.2.5 Miscellaneous

77B.3 Policy Set Annotations

78B.4 Policy Annotation Grammar Additions

78B.5 Annotation Constants

79C
C WSDL Annotations

79C.1 Interface Header Annotations

79C.1.1 @WebService

80C.1.2 @WebFunction

82C.1.3 @WebOperation

84C.1.4 @OneWay

85C.1.5 @WebParam

87C.1.6 @WebResult

89C.1.7 @SOAPBinding

90C.1.8 @WebFault

92C.1.9 @WebThrows

93D
C WSDL Mapping Extensions

93D.1 <sca-c:bindings>

93D.2 <sca-c:prefix>

94D.3 <sca-c:enableWrapperStyle>

96D.4 <sca-c:function>

97D.5 <sca-c:struct>

99D.6 <sca-c:parameter>

101D.7 JAX-WS WSDL Extensions

101D.8 sca-wsdlext-c-1.1.xsd

103E
XML Schemas

103E.1 sca-interface-c-1.1.xsd

103E.2 sca-implementation-c-1.1.xsd

104E.3 sca-contribution-c-1.1.xsd

106F
Normative Statement Summary

109F.1 Program-Based Normative Statements Summary

109F.2 Annotation Normative Statement Summary

110F.3 WSDL Extension Normative Statement Summary

111F.4 JAX-WS Normative Statements

114F.4.1 Ignored Normative Statments

116G
Migration

116G.1 Implementation.c attributes

116G.2 SCALocate and SCALocateMultiple

117H
Acknowledgements

118I
Revision History

1 Introduction
This document describes the SCA Client and Implementation Model for the C programming language.

The SCA C implementation model describes how to implement SCA components in C. A component implementation itself can also be a client to other services provided by other components or external services. The document describes how a component implemented in C gets access to services and calls their operations.

The document also explains how non-SCA C components can be clients to services provided by other components or external services. The document shows how those non-SCA C component implementations access services and call their operations.

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
This specification uses predefined namespace prefixes throughout; they are given in the following list. Note that the choice of any namespace prefix is arbitrary and not semantically significant.

	Prefix
	Namespace
	Notes

	xs
	"http://www.w3.org/2001/XMLSchema"
	Defined by XML Schema 1.0 specification

	sca
	"http://docs.oasis-open.org/ns/opencsa/sca/200912"
	Defined by the SCA specifications

	sca-c
	"http://docs.oasis-open.org/ns/opencsa/sca-c-c/c/200901"
	

Table 1‑1: Prefixes and Namespaces used in this Specification
1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt
[ASSEMBLY]
OASIS Committee Draft 05, Service Component Architecture Assembly Model Specification Version 1.1, January 2010. http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd05.pdf
[POLICY]
OASIS Commmittee Draft 02, SCA Policy Framework Version 1.1, March 2009. http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf
[SDO21]
OSOA, Service Data Objects For C Specification, September 2007. http://www.osoa.org/download/attachments/36/SDO_Specification_C_V2.1.pdf
[WSDL11]
World Wide Web Consortium, Web Service Description Language (WSDL), March 2001. http://www.w3.org/TR/wsdl
[XSD]
World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition, October 2004. http://www.w3.org/TR/xmlschema-2/
[JAXWS21]
Doug. Kohlert and Arun Gupta, The Java API for XML-Based Web Services (JAX-WS) 2.1, JSR, JCP, May 2007. http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
1.3 Conventions

1.3.1 Naming Conventions

This specification follows naming conventions for artifacts defined by the specification:

· For the names of elements and the names of attributes within XSD files, the names follow the CamelCase convention, with all names starting with a lower case letter.

e.g. <element name="componentType" type="sca:ComponentType"/>
· For the names of types within XSD files, the names follow the CamelCase convention with all names starting with an upper case letter

e.g. <complexType name="ComponentService">
· For the names of intents, the names follow the CamelCase convention, with all names starting with a lower case letter, EXCEPT for cases where the intent represents an established acronym, in which case the entire name is in upper case.

An example of an intent which is an acronym is the "SOAP" intent.

1.3.2 Typographic Conventions

This specification follows typographic conventions for specific constructs:
· Conformance points are highlighted, [numbered] and cross-referenced to Normative Statement Summary
· XML attributes are identified in text as @attribute
· Language identifiers used in text are in courier
· Literals in text are in italics
2 Basic Component Implementation Model

This section describes how SCA components are implemented using the C programming language. It shows how a C implementation based component can implement a local or remotable service, and how the implementation can be made configurable through properties.

A component implementation can itself be a client of services. This aspect of a component implementation is described in the basic client model section.

2.1 Implementing a Service

A component implementation based on a set of C functions (a C implementation) provides one or more services.

A service provided by a C implementation has an interface (a service interface) which is defined using one of:

· the declaration of the C functions implementing the services
· a WSDL 1.1 portType [WSDL11]
If function declarations are used to define the interface, they will typically be placed in a separate header file. A C implementation MUST implement all of the operation(s) of the service interface(s) of its componentType. [C20001]
Snippet 2‑1and Snippet 2‑2 show a C service interface and the C functions of a C implementation.

/* LoanService interface */

char approveLoan(long customerNumber, long loanAmount);

Snippet 2‑1: A C Service Interface
#include "LoanService.h"

char approveLoan(long customerNumber, long loanAmount)

{

 …

}
Snippet 2‑2: C Service Implementation
Snippet 2‑3 shows the component type for this component implementation.

<
componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912">

 <service name="LoanService">

 <interface.c header="LoanService.h"/>

 </service>

</componentType>
Snippet 2‑3: Component Type for Service Implementation in Snippet 2‑2

Figure 2‑1 shows the relationship between the C header files and implementation files for a component that has a single service and a single reference.

[image: image2]
Figure 2‑1: Relationship of C Implemenation Artifacts
2.1.1 Implementing a Remotable Service

A @remotable=”true” attribute on an interface.c element indicates that the interface is remotable as described in the Assembly Specification [ASSEMBLY]. Snippet 2‑4 shows the component type for a remotable service:

<
componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912">
 <service name="LoanService">

 <interface.c header="LoanService.h" remotable="true"/>

 </service>

</componentType>
Snippet 2‑4: ComponentType for a Remotable Service
2.1.2 AllowsPassByReference

Calls to remotable services have by-value semantics. This means that input parameters passed to the service can be modified by the service without these modifications being visible to the client. Similarly, the return value or exception from the service can be modified by the client without these modifications being visible to the service implemementation. For remote calls (either cross-machine or cross-process), these semantics are a consequence of marshalling input parameters, return values and exceptions “on the wire” and unmarshalling them “off the wire” which results in physical copies being made. For local calls within the same operating system address space, C calling semantics include by-reference and therefore do not provide the correct by-value semantics for SCA remotable interfaces. To compensate for this, the SCA runtime can intervene in these calls to provide by-value semantics by making copies of any by-reference values passed.

The cost of such copying can be very high relative to the cost of making a local call, especially if the data being passed is large. Also, in many cases this copying is not needed if the implementation observes certain conventions for how input parameters, return values and exceptions are used. An @allowsPassByReference=”true” attribute allows implementations to indicate that they use input parameters, return values and fault data in a manner that allows the SCA runtime to avoid the cost of copying by-reference values when a remotable service is called locally within the same operating system address space See Implementation.c and Implementation Function for a description of the @allowsPassByReference attribute and how it is used.

2.1.2.1 Marking services and references as “allows pass by reference”

Marking a service function implementation as “allows pass by reference” asserts that the function implementation observes the following restrictions:

· Function execution will not modify any input parameter before the function returns.

· The service implementation will not retain a pointer to any by-reference input parameter, return value or fault data after the function returns.

· The function will observe “allows pass by value” client semantics (see below) for any callbacks that it makes.
Marking a client as “allows pass by reference” asserts that the client observe the following restrictions for all references’ functions:
· The client implementation will not modify any function’s input parameters before the function returns. Such modifications might occur in callbacks or separate client threads.

· If a function is one-way, the client implementation will not modify any of the function’s input parameters at any time after calling the operation. This is because one-way function calls return immediately without waiting for the service function to complete.

2.1.2.2 Using “allows pass by reference” to optimize remotable calls

The SCA runtime MAY use by-reference semantics when passing input parameters, return values or exceptions on calls to remotable services within the same system address space if both the service function implementation and the client are marked “allows pass by reference”. [C20016]
The SCA runtime MUST use by-value semantics when passing input parameters, return values and exceptions on calls to remotable services within the same system address space if the service function implementation is not marked “allows pass by reference” or the client is not marked “allows pass by reference”. [C20017]
2.1.3 Implementing a Local Service

A service interface not marked as remotable is local.

2.2 Component and Implementation Lifecycles
Component implementations have to manage their own state. A library can be loaded as early as when any component implemented by the library enters the running state [ASSEMBLY] but no later than the first function invocation of a service provided by a component implemented by the

library. Component implementations can not make any assumptions about when a library might be unloaded. An SCA runtime MUST NOT perform any synchronization of access to component implementations. [C20015]

Component implementations can also specify lifecycle functions which are called when a
component

using the implementation enters the running state or the component
 leaves running state. An implementation is either initialized eagerly when the component enters the running state (specified by @eagerInit=”true”), or lazily when the first client request is received. Lazy instantiation is the default. The C implementation uses the @init=”true” attribute of an implementation function element to denote the function to be called upon initialization and the @destroy=”true” attribute for the function to be called when exiting the running state. A C implementation MUST only designate functions with no arguments and a void return type as lifecycle functions. [C20004]
1.1.1
 If an implementation is used by components

 that are not
1.1.2
in a domain-level composite [ASSEMBLY], it

is possible for a lifecycle function to be called multiple times.
2.3 Implementing a Configuration Property

Component implementations can be configured through properties. The properties and their types (not their values) are defined in the component type. The C component can retrieve properties values using the SCAProperty<T>() functions, for example SCAPropertyInt() to access an Int type property..

Snippet 2‑5 shows how to get a property value.
#include "SCA.h"

void clientFunction()

{

 …

 int32_t loanRating;

 int values, compCode, reason;

…

 SCAPropertyInt(L"maxLoanValue", &loanRating, &values, &compCode, &reason);

 …

}
Snippet 2‑5: Retrieving a Property Value
If the property is many valued, an array of the appropriate type is used as the second parameter. The SCA runtime populates the elements of the array with the configured values, using a stride based on <T> and a size parameter value for strings and binary data (see SCAProperty<T>) or the size of struct resulting from the default mapping in the case of complexTypes (see Complex Content Binding). On input, the num_values parameter indicates the number of configured values the client has memory to receive. On output, this parameter will indicated the actual number of configured values available. If this number exceeds the input value, only the input value will be returned and compCode and reason will be set to indicate that additional values exist.
If <T> is Bytes, Chars, CChars, String or CString and the property is many valued, the size parameter is also an array. On input only the first value of the array is relevant – indicating the width of each member of the value array. On return, for each returned configured value, the value of the size array is the number of bytes of characters in the corresponding configured value. If this number exceeds the input value, the configured value is truncated and compCode and reason will be set to indicate the data truncation.
2.4 Component Type and Component

For a C component implementation, a component type is specified in a side file. By default, the componentType side file is in the root directory of the composite containing the component or some subdirectory of the composite root directory with a name specified on the @componentType attribute. The location can be modified as described in Implementation.c.
This Client and Implementation Model for C extends the SCA Assembly model [ASSEMBLY] providing support for the C interface type system and support for the C implementation type.

Snippet 2‑6 and Snippet 2‑7 show a C service interface and a C implementation of a service.

/* LoanService interface */

char approveLoan(long customerNumber, long loanAmount);

Snippet 2‑6: A C Service Interface
#include "LoanService.h"

char approveLoan(long customerNumber, long loanAmount)

{

 …

}
Snippet 2‑7: C Service Implementation
Snippet 2‑8 shows the component type for this component implementation.

<
componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912">
 <service name="LoanService">

 <interface.c header="LoanService.h" />

 </service>

</componentType>
Snippet 2‑8: Component Type for Service Implementation in Snippet 2‑7
Snippet 2‑9 shows the component using the implementation.

<
composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 name="LoanComposite" >

 …
 <component name="LoanService">

 <implementation.c module="loan" componentType=”LoanService” />

 </component>

 …

</composite>
Snippet 2‑9: Component Using Implemenation in Snippet 2‑7
2.4.1 Interface.c

Snippet 2‑10 shows the pseudo-schema for the C interface element used to type services and references of component types.

<!—- interface.c schema snippet -->

<interface.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 header="string" remotable="boolean"? callbackHeader="string"?
 requires="listOfQNames"? policySets="listOfQNames"? >

 <function … />*

 <callbackFunction … />*
 <requires/>*

 <policySetAttachment/>*
</interface.c>
Snippet 2‑10: Pseudo-schema for C Interface Element
The interface.c element has the attributes:

· header : string (1..1) – full name of the header file, including either a full path, or its equivalent, or a relative path from the composite root. This header file describes the interface.

· callbackHeader : string (0..1) –full name of the header file that describes the callback interface, including either a full path, or its equivalent, or a relative path from the composite root.

· remotable : boolean (0..1) – indicates whether the service is remotable or local. The default is local. See Implementing a Remotable Service
· requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification [POLICY] for a description of this attribute. If intents are specified at both the interface and function level, the effective intents for the function is determined by merging the combined intents from the function with the combined intents for the interface according to the Policy Framework rules for merging intents within a structural hierarchy, with the function at the lower level and the interface at the higher level.

· policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification [POLICY] for a description of this attribute.

The interface.c element has the child elements:

· function : CFunction (0..n) – see Function and CallbackFunction
· callbackFunction : CFunction (0..n) – see Function and CallbackFunction
· requires : requires (0..n) - See the Policy Framework specification [POLICY] for a description of this element.

· policySetAttachment : policySetAttachment (0..n) - See the Policy Framework specification [POLICY] for a description of this element.
2.4.2 Function and CallbackFunction
A function of an interface might have behavioral characteristics that need to be identified. This is done using a function or callbackFunction child element of interface.c. These child elements are also used when not all functions in a header file are part of the interface or when the interface is implemented by a program.
· If the header file identified by the @header attribute of an <interface.c/> element contains function or struct declarations that are not operations of the interface, then the functions or structs that are not operations of the interface MUST be excluded using <function/> child elements of the <interface.c/> element with @exclude="true". [C20006]
· If the header file identified by the @callbackHeader attribute of an <interface.c/> element contains function or struct declarations that are not operations of the callback interface, then the functions or structs that are not operations of the callback interface MUST be excluded using <callbackFunction/> child elements of the <interface.c/> element with @exclude="true". [C20007]
· Snippet 2‑11
 shows the interface.c pseudo-schema with the pseudo-schema for the function and callbackFunction child elements:

<!—- interface.c schema snippet -->

<interface.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"… >

 <function name="NCName" requires="listOfQNames"? policySets="listOfQNames"?

 oneWay="Boolean"? exclude="Boolean"?
 input="NCName"? output="NCName"? >

 <requires/>*

 <policySetAttachment/>*

 </function> *
 <callbackFunction name="NCName" requires="listOfQNames"?
 policySets="listOfQNames"? oneWay="Boolean"? exclude="Boolean"?
 input="NCName"? output="NCName"? >
 <requires/>*

 <policySetAttachment/>*

 </callbackFunction> *
</interface.c>
Snippet 2‑11: Pseudo-schema for Interface Function and CallbackFunction Sub-elements
The function and callbackFunction elements have the attributes:

· name : NCName (1..1) – name of the operation being decorated. If the operation is implementd as a function, this is the function name. The @name attribute of a <function/> child element of a <interface.c/> MUST be unique amongst the <function/> elements of that <interface.c/>. [C20009]

The @name attribute of a <callbackFunction/> child element of a <interface.c/> MUST be unique amongst the <callbackFunction/> elements of that <interface.c/>. [C20010]
· requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification [POLICY] for a description of this attribute.

· policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification [POLICY] for a description of this attribute.

· oneWay : boolean (0..1) – see Non-blocking Calls
· exclude : boolean (0..1) – if true, the function or message struct is excluded from the interface. The default is false.
· input : NCNAME (0..1) – name of the request message struct if it not the same as the operation name. (See Implementing a Service with a Program)
· output : NCNAME (0..1) – name of the response message struct if it not the same as the operation name “Response” appended.
The function and callbackFunction elements have the child elements:

· requires : requires (0..n) - See the Policy Framework specification [POLICY]
· for a description of this element.

· policySetAttachment : policySetAttachment (0..n) - See the Policy Framework specification [POLICY]
· for a description of this element.
2.4.3 Implementation.c

Snippet 2‑12 shows the pseudo-schema for the C implementation element used to define the implementation of a component.

<!—- implementation.c schema snippet -->

<implementation.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 module="NCName" library="boolean"? path="string"?
 componentType="string" allowsPassByReference="Boolean"?

 eagerInit="Boolean"? init="Boolean"? destroy="Boolean"?
 requires="listOfQNames"? policySets="listOfQNames"? >

 <function … />*

 <requires/>*

 <policySetAttachment/>*
</implementation.c>
Snippet 2‑12: Pseudo-schema for C Implementation Element
The implementation.c element has the attributes:

· module : NCName (1..1) – name of the binary executable for the service component. This is the root name of the module.

· library : boolean (0..1) – indicates whether the service is implemented as a library or a program. The default is library. See Implementing a Service with a Program
· path : string (0..1) – path to the module which is either relative to the root of the contribution containing the composite or is prefixed with a contribution import name and is relative to the root of the import. See C Contributions.

·
· componentType : string (1..1) – name of the componentType file. A “.componentType” extention will be appended. A path to the componentType file which is relative to the root of the contribution containing the composite or is prefixed with a contribution import name and is relative to the root of the import (see C Contributions) can be included.

· allowsPassByReference : boolean (0..1) – indicates the implementation allows pass by reference data exchange semantics on calls to it or from it. These sematics apply to all services provided by and references used by an implementation. See AllowsPassByReference
· eagerInit : boolean (0..1) – indicates a composite scoped implementation is to be initialized when it is loaded. See Component and Implementation Lifecycles
· init : boolean (0..1) – indicates program is to be called with an initialize flag to initialize the implementation. See Component and Implementation Lifecycles
· destroy : boolean (0..1) – indicates is to be called with a destroy flag to to cleanup the implementation. See Component and Implementation Lifecycles
· requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification [POLICY] for a description of this attribute. If intents are specified at both the implementation and function level, the effective intents for the function is determined by merging the combined intents from the function with the combined intents for the implementation according to the Policy Framework rules for merging intents within a structural hierarchy, with the function at the lower level and the implementation at the higher level.

· policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification [POLICY] for a description of this attribute.

The interface.c element has the child elements:

· function : CImplementationFunction (0..n) – see Implementation Function
· requires : requires (0..n) - See the Policy Framework specification [POLICY] for a description of this element.

· policySetAttachment : policySetAttachment (0..n) - See the Policy Framework specification [POLICY] for a description of this element.
2.4.4 Implementation Function
A function of an implementation might have operational characteristics that need to be identified. This is done using a function child element of implementation.c

Snippet 2‑13 shows the implementation.c pseudo-schema with the pseudo-schema for a function child element:

<!—- ImplementationFunction schema snippet -->

<implementation.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"… >

 <function name="NCName" requires="listOfQNames"? policySets="listOfQNames"?
 allowsPassByReference="Boolean"?
 init="Boolean"?
 destroy="Boolean"? >

 <requires/>*

 <policySetAttachment/>*

 </function> *
</implementation.c>
Snippet 2‑13: Pseudo-schema for Implementation Function Sub-element
The function element has the attributes:

· name : NCName (1..1) – name of the functioon being decorated. The @name attribute of a <function/> child element of a <implementation.c/> MUST be unique amongst the <function/> elements of that <implementation.c/>. [C20013]
· requires : listOfQNames (0..1) – a list of policy intents. See the Policy Framework specification [POLICY] for a description of this attribute.

· policySets : listOfQNames (0..1) – a list of policy sets. See the Policy Framework specification [POLICY] for a description of this attribute.

· allowsPassByReference : boolean" (0..1) – indicates the function allows pass by reference data exchange semantics. See AllowsPassByReference
· init : boolean (0..1) – indicates this function is to be called to initialize the implementation. See Component and Implementation Lifecycles
· destroy : boolean (0..1) – indicates this function is to be called to cleanup the implementation. See Component and Implementation Lifecycles
The function element has the child elements:

· requires : requires (0..n) - See the Policy Framework specification [POLICY] for a description of this element.

· policySetAttachment : policySetAttachment (0..n) - See the Policy Framework specification [POLICY] for a description of this element.
2.5 Implementing a Service with a Program

Depending on the execution platform, services might be implemented in libraries, programs, or a combination of both libraries and programs. Services implemented as subroutines in a library are called directly by the runtime. Input and messages are passed as parameters, and output messages can either be additional parameters or a return value. Both local and remoteable interfaces are easily supported by this style of implementation.
For services implemented as programs, the SCA runtime uses normal platform functions to invoke the program. Accordingly, a service implemented as a program will run in its own address space and in its own process and its interface is most appropriately marked as remotable. Local services implemented as subroutines used by a service implemented in a program can run in the address space and process of the program.

Since a program can implement multiple services and often will implement multiple operations, the program has to query the runtime to determine which service and operation caused the program to be invoked. This is done using SCAService() and SCAOperation(). Once the specific service and operation is known, the proper input message can be retrieved using SCAMessageIn(). Once the logic of the operation is finished SCAMessageOut() is used to provide the return data to the runtime to be marshalled.

Since a program does not have a specific prototype for each operation of each service it implements, a C interface definition for the service identifes the operation names and the input and output message formats using functions elements, with input and output attributes, in an interface.c element. Alternatively, an external interface definition, such as a WSDL document, is used to describe the operations and message formats.

Snippet 2‑14 a program implementing a service using these support functions.

#include "SCA.h"
#include "myInterface.h"
main () {

 wchar_t myService [255];

 wchar_t myOperation [255];

 int compCode, reason;

 struct FirstInputMsg myFirstIn;

 struct FirstOutputMsg myFirstOut;

 SCAService(myService, &compCode, &reason);

 SCAOperation(myOperation, &compCode, &reason);

 if (wcscmp(myOperation,L"myFirstOperation")==0){

 SCAMessageIn(myService, myOperation,

 sizeof(struct FirstInputMsg), (void *)&myFirstIn,

 &compCode, &reason);

 …

 SCAMessageOut(myService, myOperation,

 sizeof(struct FirstOutputMsg),(void *)&myFirstOut,

 &compCode, &reason);

 }

 else

 {

 …

 }

}
Snippet 2‑14: C Service Implementation in a Program
3 Basic Client Model

This section describes how to get access to SCA services from both SCA components and from non-SCA components. It also describes how to call operations of these services.

3.1 Accessing Services from Component Implementations

A service can get access to another service using a reference of the current component

Snippet 3‑1 the SCAGetReference() function used for this.

void SCAGetReference(wchar_t *referenceName, SCAREF *referenceToken,

 int *compCode, int *reason);

void SCAInvoke(SCAREF referenceToken, wchar_t *operationName,

 int inputMsgLen, void *inputMsg,

 int outputMsgLen, void *outputMsg, int *compCode, int *reason);
Snippet 3‑1: Partial SCA API Definition
Snippet 3‑2 shows a sample of how a service is called in a C component implementation.
#include "SCA.h"

void clientFunction()

{

 SCAREF serviceToken;

 int compCode, reason;

 long custNum = 1234;

 short rating;

 …

 SCAGetReference(L”customerService”, &serviceToken, &compCode, &reason);

 SCAInvoke(serviceToken, L“getCreditRating”, sizeof(custNum),
 (void *)&custNum, sizeof(rating), (void *)&rating,
 &compCode, &reason);

}
Snippet 3‑2: Using SCAGetReference
If a reference has multiple targets, the client has to use SCAGetReferences() to retrieve tokens for each of the tokens and then invoke the operation(s) for each target. For example:

SCAREF *tokens;

int num_targets;

...

myFunction(...) {

 int compCode, reason;

 ...

 SCAGetReferences(L"myReference", &tokens, &num_targets, &compCode,

 &reason);

 for (i = 0; i < num_targets; i++)

 {

 SCAInvoke(tokens[i], L"myOperation", sizeof(inputMsg),
 (void *)&inputMsg, 0, NULL, &compCode, &reason);

 };

};
Snippet 3‑3: Using SCAGetReferences
3.2 Accessing Services from non-SCA Component Implementations
Non-SCA components can access component services by obtaining an SCAREF from the SCA runtime and then following the same steps as a component implementation as described above.

Snippet 3‑4 shows a sample of how a service is called in non-SCA C code.
#include "SCA.h"

void externalFunction()

{

 SCAREF serviceToken;

 int compCode, reason;

 long custNum = 1234;

 short rating;

 SCAEntryPoint(L”customerService”, L”http://example.com/mydomain”,

 &serviceToken, &compCode, &reason);

 SCAInvoke(serviceToken, L“getCreditRating”, sizeof(custNum),

 (void *)&custNum, sizeof(rating), (void *)&rating,

 &compCode, &reason);

}
Snippet 3‑4: Using SCAEntryPoint
No SCA metadata is specified for the client. E.g. no binding or policies are specified. Non-SCA clients cannot call services that use callbacks.

The SCA infrastructure decides which binding is used OR extended form of serviceURI is used:

· componentName/serviceName/bindingName
3.3 Calling Service Operations

The previous sections show the various options for getting access to a service and using SCAInvoke() to invoke operations of that service.

If you have access to a service whose interface is marked as remotable, then on calls to operations of that service you will experience remote semantics. Arguments and return values are passed by-value and it is possible to get a SCA_SERVICE_UNAVAILABLE reason code which is a Runtime error.
3.3.1 Proxy Functions

It is more natural to use specific function calls than the generic SCAInvoke() API for invoking operations. An SCA runtime typically needs to be involved when a client invokes on operation, particularly if the service is remote. Proxy functions provide a mechanism for using specific function calls and still allow the necessary SCA runtime processing. However, proxies require generated code and managing additional source files, so use of proxies is not always desirable.

For SCA, proxy functions have the form:

<functionReturn> SCA_<functionName>(SCAREF referenceToken,

 <functionParameters>)

where:

· <functionName> is the name of interface function

· <functionParameters> are the parameters of the interface function

· <functionReturn> is the return type of the interface function

Snippet : Proxy Function Format

Proxy functions can set errno to one of the following values:

· ENOENT if a remote service is unavailable

· EFAULT if a fault is returned by the operation

Snippet 3‑5 shows a sample of using a proxy function.
#include "SCA.h"

void clientFunction()

{

 SCAREF serviceToken;

 int compCode, reason;

 long custNum = 1234;

 short rating;

…

 SCAGetReference(L”customerService”, &serviceToken, &compCode, &reason);
 errno = 0;
 rating = SCA_getCreditRating(serviceToken, custNum);
 if (errno) {

 /* handle error or fault */

 }

 else {

 …

 }
}
Snippet 3‑5: Using a Proxy Function
An SCA implementation MAY support proxy functions. [C30001]
3.4 Long Running Request-Response Operations

The Assembly Specification [ASSEMBLY] allows service interfaces or individual operations to be marked long-running using an @requires=”asyncInvocation” intent, with the meaning that the operation(s) might not complete in any specified time interval, even when the operations are request-response operations. A client calling such an operation has to be prepared for any arbitrary delay between the time a request is made and the time the response is received. To support this kind of operation three invocation styles are available: asynchronous – the client provides a response handler, polling – the client will poll the SCA runtime to determine if a response is available, and synchronous – the SCA runtime handles suspension of the main thread, asynchronously receiving the response and resuming the main thread. The details of each of these styles are provided in the following sections.

3.4.1 Asynchronous Invocation

The asynchronous style of invocation uses SCAInvokeAsync() which has the same signature as SCAInvoke()without the outputMsgLen or outputMsg parameters but with a parameter taking the address of a haneler function. This API sends the operation request. The handler function has the signature

void <handler>(short responseType);

Snippet 3‑6: Asynchronous Handler Function Format

and is called when the response is ready. The response type indicates if the response is a reply message or a fault message. The implementation of the handler uses SCAGetReplyMessage() or SCAGetFaultMessage() to retrieve the data.

For program-based component implementations, the handler parameter is set to an empty string and when the SCA runtime starts the program to process the response, a call to SCAService() returns the name of the reference and a call to SCAOperation() returns the name of the reference operation.

If proxy functions are supported, for a service operation with signature

<return type> <function name>(<parameters>);

the asynchronous invocation style includes a proxy function

void SCA_<function name>Async(SCAREF, <in_parameters>, void (*)(short));

Snippet 3‑7: Asynchronous Proxy Function Format

which will set errno to EBUSY if one request is outstanding and another is attempted.

Snippet 3‑8 shows a sample of how the asynchronous invocation style is used in a C component implementation.
#include "SCA.h"

#include "TravelService.h"

SCAREF serviceToken;

int compCode, reason;

void makeReservationsHandler(short rspType)

{

 struct confirmationData cd;

 wchar_t *fault, *faultDetails;

 if (rspType == SCA_REPLY_MESSAGE) {

 SCAGetReplyMessage(serviceToken, sizeof(cd), &cd, &compCode, &reason);

 …

 }

 else {

 SCAGetFaultMessage(serviceToken, sizeof(faultDetails), &fault,

 &faultDetails, &compCode, &reason);

 if (wcscmp(*fault, L”noFlight”) {

 …

 }

 else {

 …

 }

 }

 return;

}

void clientFunction()

{

 struct itineraryData id;
 …

 void (*ah)(short) = &makeReservationsHandler;
 SCAGetReference(L”customerService”, &serviceToken, &compCode, &reason);
 SCAInvokeAsync(serviceToken, L“makeReservations”, sizeof(itineraryData),

 (void *)&id, ah, &compCode, &reason);

 return;
}
Snippet 3‑8: Using Asynchronous Invocation
3.4.2 Polling Invocation

The polling style of invocation uses SCAInvokePoll() which has the same signature as SCAInvoke() but without the outputMsgLen or outputMsg parameters. This API sends the operation request. After the request is sent the client can check to see if a response has been received by using SCACheckResponse()or cancel the request with SCACancelInvoke().

If proxy functions are supported, for a service operation with signature

<return type> <function name>(<parameters>);

the polling invocation style includes a proxy function

void SCA_<function name>Poll(SCAREF, <in_parameters>);

Snippet 3‑9: Asynchronous Pooling Proxy Function Format
which will set errno to EBUSY if one request is outstanding and another is attempted.

Snippet 3‑10 shows a sample of how the polling invocation style is used in a C component implementation.

#include "SCA.h"

#include "TravelService.h"

void pollingClientFunction()

{

 SCAREF serviceToken;

 int compCode, reason;
 short rspType;
 struct itineraryData id;
 struct confirmationData cd;

 wchar_t *fault, *faultDetails;

 …

 SCAGetReference(L”customerService”, &serviceToken, &compCode, &reason);
 SCAInvokePoll(serviceToken, L“makeReservations”, sizeof(itineraryData),

 (void *) &id), &compCode, &reason);

 SCACheckResponse(serviceToken, &rspType, &compCode, &reason);

 while (!rspType) {

 // do something, then wait for some time…

 SCACheckResponse(serviceToken, &rspType, &compCode, &reason);

 }
 if (rspType == SCA_REPLY_MESSAGE) {

 SCAGetReplyMessage(serviceToken, sizeof(cd), &cd, &compCode, &reason);

 …

 }

 else {

 SCAGetFaultMessage(serviceToken, sizeof(faultDetails), &fault,

 &faultDetails, &compCode, &reason);

 if (wcscmp(*fault, L”noFlight”) {

 …

 }

 else {

 …

 }

 }

 return;

}
Snippet 3‑10: Using Asynchronous Polling Invocation
3.4.3 Synchronous Invocation

In this style the client uses API SCAInvoke() but the implementation of this API suspends the main thread after the request is made, and in an implementation-dependent manner receives the response, resumes the main thread and returns from the member function call. If proxy functions are supported, the client can call SCA_<function name>() as normal, and again the implementation handles the asynchronous aspects.
Snippet 3‑11 shows a sample of how the synchronous invocation style is used in a C component implementation.
#include "SCA.h"

#include "TravelService.h"

void synchronousClientFunction()

{

 SCAREF serviceToken;

 int compCode, reason;
 struct itineraryData id;
 struct confirmationData *cd;

 wchar_t *fault, *faultDetails;

 …

 SCAGetReference(L”customerService”, &serviceToken, &compCode, &reason);
 SCAInvoke(serviceToken, L“makeReservations”, sizeof(itineraryData),

 (void *)&id, sizeof(confirmationData), (void *)&cd,

 &compCode, &reason);

 if (compCode == SCA_FAULT) {

 …

 }

 else {

 SCAGetFaultMessage(serviceToken, sizeof(faultDetails), &fault,

 &faultDetails, &compCode, &reason);

 if (wcscmp(*fault, L”noFlight”) {

 …

 }

 else {

 …

 }

 }

 return;

}
Snippet 3‑11: Using Synchronous Invocation for an Asynchronous Operation
4 Asynchronous Programming

Asynchronous programming of a service is where a client invokes a service and carries on executing without waiting for the service to execute. Typically, the invoked service executes at some later time. Output from the invoked service, if any, is fed back to the client through a separate mechanism, since no output is available at the point where the service is invoked. This is in contrast to the call-and-return style of synchronous programming, where the invoked service executes and returns any output to the client before the client continues. The SCA asynchronous programming model consists of support for non-blocking operation calls and callbacks. Each of these topics is discussed in the following sections.

4.1 Non-blocking Calls

Non-blocking calls represent the simplest form of asynchronous programming, where the client of the service invokes the service and continues processing immediately, without waiting for the service to execute.

Any function that returns void and has only by-value parameters can be marked with the @oneWay=”true” attribute in the interface definition of the service. An operation marked as oneWay is considered non-blocking and the SCA runtime MAY use a binding that buffers the requests to the function and sends them at some time after they are made. [C40001]
Snippet 4‑1 shows the component type for a service with the reportEvent() function declared as a one-way operation:

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912">

 <service name="LoanService">

 <interface.c header="LoanService.h">

 <function name="reportEvent" oneWay="true" />

 </interface.c>

 </service>

</componentType>
Snippet 4‑1: ComponentType with oneWay Function
SCA does not currently define a mechanism for making non-blocking calls to functions that return values. It is considered to be a best practice that service designers define one-way operations as often as possible, in order to give the greatest degree of binding flexibility to deployers.

4.2 Callbacks

Callbacks services are used by bidirectional services as defined in the Assembly Specification [ASSEMBLY]:

A callback interface is declared by the @callbackHeader and @callbackFunctions attributes in the interface definition of the service. Snippet 4‑2 shows the component type for a service MyService with the interface defined in MyService.h and the interface for callbacks defined in MyServiceCallback.h,

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" >

<service name="MyService">

 <interface.c header="MyService.h" callbackHeader="MyServiceCallback.h"/>

</service>

</componentType>
Snippet 4‑2: ComponentType with a Callback Interface
4.2.1 Using Callbacks

Bidirectional interfaces and callbacks are used when a simple request/response pattern isn’t sufficient to capture the business semantics of a service interaction. Callbacks are well suited for cases when a service request can result in multiple responses or new requests from the service back to the client, or where the service might respond to the client some time after the original request has completed.

Snippet 4‑3 – Snippet 4‑5 show a scenario in which bidirectional interfaces and callbacks could be used. A client requests a quotation from a supplier. To process the enquiry and return the quotation, some suppliers might need additional information from the client. The client does not know which additional items of information will be needed by different suppliers. This interaction can be modeled as a bidirectional interface with callback requests to obtain the additional information.

double requestQuotation(char *productCode,int quantity);

char *getState();

char *getZipCode();

char *getCreditRating();

Snippet 4‑3: C Interface with a Callback Interface
In Snippet 4‑3, the requestQuotation operation requests a quotation to supply a given quantity of a specified product. The QuotationCallBack interface provides a number of operations that the supplier can use to obtain additional information about the client making the request. For example, some suppliers might quote different prices based on the state or the zip code to which the order will be shipped, and some suppliers might quote a lower price if the ordering company has a good credit rating. Other suppliers might quote a standard price without requesting any additional information from the client.

Snippet 4‑4 illustrates a possible implementation of the example service.

#include "QuotationCallback.h"

#include "SCA.h"

double requestQuotation(char *productCode,int quantity) {

 double price, discount = 0;

 char state[3], creditRating[4];

 SCAREF callbackRef;

 int compCode, reason;

 price = getPrice(productQuote, quantity);
 SCAGetCallback(L"", &callbackRef, &compCode, &reason);

 SCAInvoke(callbackRef, L"getState", 0, NULL, sizeof(state), state,

 &compCode, &reason);

 if (quantity > 1000 && strcmp(state,“FL”) == 0)

 discount = 0.05;

 SCAInvoke(callbackRef, L"getCreditRating", 0, NULL, sizeof(creditRating),

 creditRating, &compCode, &reason);

 if (quantity > 10000 && creditRating[0] == ‘A’)

 discount += 0.05;

 SCAReleaseCallback(callbackRef, &compCode, &reason);

 return price * (1-discount);
}
Snippet 4‑4: Implementation of Forward Service with Interface in Snippet 4‑3
Snippet 4‑5 is taken from the client of this example service. The client’s service implementation implements the functions of the QuotationCallback interface as well as those of its own service interface ClientService.

#include "QuotationCallback.h"

#include "SCA.h"

char state[3] = “TX”, zipCode[6] = “78746”, creditRating[3] = “AA”;

ClientFunction() {

 SCAREF serviceToken;

 int compCode, reason;

 SCAGetReference(L”quotationService”, &serviceToken, &compCode, &reason);

 SCA_requestQuotation(serviceToken, “AB123”, 2000);

}
char *getState() {

 return state;

}

char *getZipCode() {

 return zipCode;

}

char *getCreditRating() {

 return creditRating;

}

Snippet 4‑5: Implementation of Callback Interface in Snippet 4‑3
In this example the callback is stateless, i.e., the callback requests do not need any information relating to the original service request. For a callback that needs information relating to the original service request (a stateful callback), this information can be passed to the client by the service provider as parameters on the callback request.
4.2.2 Callback Instance Management

As described in
Using Callbacks, a stateful callback can obtain information relating to the original service request from parameters on the callback request. Alternatively, a client could store information relating to the original request as data and retrieve it when the callback request is received. These approaches could be combined by using a key passed on the callback request (e.g., an order ID) to retrieve information that was stored by the client code that made the original request.
4.2.3 Implementing Multiple Bidirectional Interfaces

Since it is possible for a single component to implement multiple services, it is also possible for callbacks to be defined for each of the services that it implements. The service name parameter of SCAGetCallback() identifies the service for which the callback is to be obtained.
5 Error Handling

Clients calling service operations will experience business logic errors, and SCA runtime errors.

Business logic errors are generated by the implementation of the called service operation. They are handled by client the invoking the operation of the service.

SCA runtime errors are generated by the SCA runtime and signal problems in the management of the execution of components, and in the interaction with remote services. The SCA C API includes two return codes on every function, a completion code and a reason code. The reason code is used to provide more detailed information if a function does not complete successfully.
/* Completion Codes */

#define SCACC_OK 0

#define SCACC_WARNING 1

#define SCACC_FAULT 2

#define SCACC_ERROR 3

/* Reason Codes */

#define SCA_SERVICE_UNAVAILABLE 1

#define SCA_MULTIPLE_SERVICES 2
#define SCA_DATA_TRUNCATED 3
#define SCA_PRAMETER_ERROR 4
#define SCA_BUSY 5
#define SCA_RUNTIME_ERROR 6
#define SCA_ADDITIONAL_VALUES 7
/* Response Types */

#define SCA_NO_RESPONSE 0

#define SCA_REPLY_MESSAGE 1

#define SCA_FAULT_MESSAGE 2

Snippet 5‑1: SCA Constant Defintions
Reason codes between 0 and 100 are reserved for use by this specification. Vendor defined reason codes SHOULD start at 101. [C50001]
6 C API

6.1 SCA Programming Interface

The SCA API definition is:
typedef void *SCAREF;

void SCAGetReference(wchar_t *referenceName,

 SCAREF *referenceToken,

 int *compCode,

 int *reason);

void SCAGetReferences(wchar_t *referenceName,

 SCAREF **referenceTokens,

 int *num_targets,

 int *compCode,

 int *Reason);

void SCAInvoke(SCAREF token,

 wchar_t *operationName,

 int inputMsgLen,

 void *inputMsg,

 int *outputMsgLen,

 void *outputMsg,

 int *compCode,

 int *reason);

void SCAPropertyBoolean(wchar_t *propertyName,

 char *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyByte(wchar_t *propertyName,

 int8_t *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyBytes(wchar_t *propertyName,

 int8_t **value,

 int *size,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyChar(wchar_t *propertyName,

 wchar_t *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyChars(wchar_t *propertyName,

 wchar_t **value,

 int *size,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyCChar(wchar_t *propertyName,

 char *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyCChars(wchar_t *propertyName,

 char **value,

 int *size,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyShort(wchar_t *propertyName,

 int16_t *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyInt(wchar_t *propertyName,

 int32_t *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyLong(wchar_t *propertyName,

 int64_t *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyFloat(wchar_t *propertyName,

 float *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyDouble(wchar_t *propertyName,

 double *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyString(wchar_t *propertyName,

 wchar_t **value,

 int *size,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyCString(wchar_t *propertyName,

 char **value,

 int *size,

 int *num_values,
 int *compCode,

 int *reason);

void SCAPropertyStruct(wchar_t *propertyName,

 void *value,

 int *num_values,
 int *compCode,

 int *reason);

void SCAGetReplyMessage(SCAREF token,

 int *bufferLen,

 void *buffer,

 int *compCode,

 int *reason);

void SCAGetFaultMessage(SCAREF token,

 int *bufferLen,

 wchar_t **faultName,

 void *buffer,

 int *compCode,

 int *reason);

void SCASetFaultMessage(wchar_t *serviceName,

 wchar_t *operationName,

 wchar_t *faultName,

 int bufferLen,

 void *buffer,

 int *compCode,

 int *reason);

void SCASelf(wchar_t *serviceName,

 SCAREF *serviceToken,

 int *compCode,

 int *reason);
void SCAGetCallback(wchar_t *serviceName,

 SCAREF *serviceToken,

 int *compCode,

 int *reason);

void SCAReleaseCallback(SCAREF serviceToken,

 int *compCode,

 int *reason);
void SCAInvokeAsync(SCAREF token,

 wchar_t *operationName,

 int inputMsgLen,

 void *inputMsg,
 void (*handler)(short),
 int *compCode,

 int *reason);

void SCAInvokePoll(SCAREF token,

 wchar_t *operationName,

 int inputMsgLen,

 void *inputMsg,

 int *compCode,

 int *reason);

void SCACheckResponse(SCAREF token,

 short *responseType,
 int *compCode,

 int *reason);
void SCACancelInvoke(SCAREF token,

 int *compCode,

 int *reason);
void SCAEntryPoint(wchar_t *serviceURI,
 wchar_t *domainURI,
 SCAREF *serviceToken,

 int *compCode,

 int *reason);

Snippet 6‑1: SCA API Definition
6.1.1 SCAGetReference
A C component implementation uses SCAGetReference() to initialize a Reference before invoking any operations of the Reference.
	Precondition
	C component instance is running

	Input Parameter
	referenceName
	Name of the Reference to initialize

	Output Parameters
	referenceToken
	Token to be used in subsequent SCAInvoke() calls. This will be NULL if referenceName is not defined for the component.

	
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_SERVICE_UNAVAILABLE if no suitable service exists in the domain
SCA_MULTIPLE_SERVICES if the reference is bound to multiple services

	Post Condition
	If an operational Service exists for the reference, the component instance has a valid token to use for subsequent runtime calls.

Table 6‑1: SCAGetReference Details
6.1.2 SCAGetReferences
A C component implementation uses SCAGetReferences() to initialize a Reference that might be bound to multiple Services before invoking any operations of the Reference.
	Precondition
	C component instance is running

	Input Parameter
	referenceName
	Name of the Reference to initialize

	Output Parameters
	referenceTokens
	Array of tokens to be used in subsequent SCAInvoke() calls. These will all be NULL if referenceName is not defined for the component. Operations need to be invoked on each token in the array.

	
	num_targets
	Number of tokens returned in the array.

	
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	Reason
	SCA_SERVICE_UNAVAILABLE if no suitable service exists in the domain

	Post Condition
	If operational Services exist for the reference, the component instance has a valid token to use for subsequent runtime calls.

Table 6‑2: SCAGetReferencse Details
6.1.3 SCAInvoke

A C component implementation uses SCAInvoke() to invoke an operation of an interface.
	Precondition
	C component instance is running and has a valid token

	Input Parameters
	Token
	Token returned by prior SCAGetReference() or SCAGetReferences(), SCASelf() or SCAGetCallback() call.

	
	operationName
	Name of the operation to invoke

	
	inputMsgLen
	Length of the request message buffer

	
	inputMsg
	Request message

	In/Out Parameter
	outputMsgLen
	Input: Maximum number of bytes that can be returned

Output: Actual number of bytes returned or size needed to hold entire message

	Output Parameters
	outputMsg
	Response message

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the response data was truncated. The buffer size needs to be increased and SCAGetReplyMessage()called with the larger buffer.

SCACC_FAULT, if the operation returned a business fault. SCAGetFaultMessage() needs to be called to get the fault details.

SCACC_ERROR, otherwise – see reason for details

	
	Reason
	SCA_DATA_TRUNCATED if the response data was truncated
SCA_PARAMETER_ERROR if the operationName is not defined for the interface
SCA_SERVICE_UNAVAILABLE if the provider for the interface is no longer operational

	Post Condition
	Unless a SCA_SERVICE_UNAVAILABLE reason is returned, the token remains valid for subsequent calls.

Table 6‑3: SCAInvoke Details
6.1.4 SCAProperty<T>

A C component implementation uses SCAProperty<T>()to get the configured value for a Property.
This API is available for Boolean, Byte, Bytes, Char, Chars, CChar, CChars, Short, Int, Long, Float, Double, String, CString and Struct. The Char, Chars, and String variants return wchar_t based data while the CChar, CChars, and CString variants return char based data. The Bytes, Chars, and CChars variants return a buffer of data. The String and CString variants return a null terminated string.
An SCA runtime MAY additionally provide a DataObject variant of this API for handling properties with complex XML types. The type of the value parameter in this variant is DATAOBJECT. [C60002]
If <T> is one of: Boolean, Byte, Char, CChar, Short, Int, Long, Float, Double or Struct
	Precondition
	C component instance is running

	Input Parameter
	propertyName
	Name of the Property value to obtain

	
	
	

	
	
	

	In/Out Parameter
	num_values
	Input: Maximum number of configured values that can be returned
Output: Actual number of configured values

	Output Parameters
	value
	Configured value(s) of the property

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the number of configured values exceeds the input value of num_values. The call needs to be repeated wih value pointing to a location sufficient in size to hold all of the configured values.
SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_ADDITIONAL_VALUES if the number of configured values exceeds the input value of num_values
SCA_PARAMETER_ERROR if the propertyName is not defined for the component or its type is incompatible with <T>

	Post Condition
	The configured value of the Property is loaded into the appropriate variable.

Table 6‑4: SCAProperty<T> Details for fixed length types
If <T> is one of: Bytes, Chars, CChars, String or CString
	Precondition
	C component instance is running

	Input Parameter
	propertyName
	Name of the Property value to obtain

	
	
	

	
	
	

	
	
	

	In/Out Parameters
	size
	Input: Maximum number of bytes or characters that can be returned for each configured value

Output: Actual number of bytes or characters returned or size needed to hold a configured value.

If the property is many valued, size is an array. On input only the first value of the array is relevant – indicating the width of each member of the value array. On return, for each returned configured value, the corresponding value of size is the number of bytes of characters in the configured value. If this number exceeds the input value, the configured value is truncated and compCode and reason are set to indicate the data truncation.

	
	num_values
	Input: Maximum number of configured values that can be returned.

Output: Actual number of configured values

	Output Parameters
	value
	Configured value(s) of the property

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the data was truncated
 or the number of configured values exceeds the input value of num_values
SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_ADDITIONAL_VALUES if the number of configured values exceeds the input value of num_values. The call needs to be repeated wih value pointing to a location sufficient in size to hold all of the configured values.
SCA_DATA_TRUNCATED, if the data was truncated. The buffer size for each configured value needs to be increased and the call repeated with the larger buffer. If both the number of configured values exceeds the input value of num_values and some configured values was truncated, SCA_ADDITIONAL_VALUES is returned.
SCA_PARAMETER_ERROR if the propertyName is not defined for the component or its type is incompatible with <T>

	Post Condition
	The configured value of the Property is loaded into the appropriate variable.

Table 6‑5: SCAProperty<T> Details for variable length types
6.1.5 SCAGetReplyMessage

A C component implementation uses SCAGetReplyMessage() to retrieve the reply message of an operation invocation if the length of the message exceeded the buffer size provided on SCAInvoke().

	Precondition
	C component instance is running, has a valid token and an SCAInvoke() returned a SCACC_WARNING compCode or has a valid serviceToken and an SCACallback() returned a SCACC_WARNING compCode

	Input Parameter
	token
	Token returned by prior SCAGetReference(), SCAGetReferences(), SCASelf(), or SCAGetCallback() call.

	In/Out Parameter
	bufferLen
	Input: Maximum number of bytes that can be returned

Output: Actual number of bytes returned or size needed to hold entire message

	Output Parameters
	buffer
	Response message

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the fault data was truncated. The buffer size needs to be increased and the call repeated with the larger buffer.

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_DATA_TRUNCATED if the fault data was truncated.

	Post Condition
	The referenceToken remains valid for subsequent calls.

Table 6‑6: SCAGetReplyMessage Details
6.1.6 SCAGetFaultMessage

A C component implementation uses SCAGetFaultMessage() to retrieve the details of a business fault received in response to an operation invocation.
	Precondition
	C component instance is running, has a valid token and an SCAInvoke() returned a SCACC_FAULT compCode

	Input Parameter
	token
	Token returned by prior SCAGetReference(), SCAGetReferences(), SCASelf() or SCAGetCallback() call.

	In/Out Parameter
	bufferLen
	Input: Maximum number of bytes that can be returned

Output: Actual number of bytes returned or size needed to hold entire message

	Output Parameters
	faultName
	Name of the business fault

	
	buffer
	Fault message

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the fault data was truncated. The buffer size needs to be increased and the call repeated with the larger buffer.

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_DATA_TRUNCATED if the fault data was truncated.
SCA_PARAMETER_ERROR if the last operation invoked on the Reference did not return a business fault

	Post Condition
	The referenceToken remains valid for subsequent calls.

Table 6‑7: SCAGetFaultMessage Details
6.1.7 SCASetFaultMessage

A C component implementation uses SCASetFaultMessage() to return a business fault in response to a request.
	Precondition
	C component instance is running

	Input Parameters
	serviceName
	Name of the Service of the component for which the fault is being returned

	
	operationName
	Name of the operation of the Service for which the fault is being returned

	
	faultName
	Name of the business fault

	
	bufferLen
	Length of the fault message buffer

	
	buffer
	Fault message

	Output Parameters
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_PARAMETER_ERROR if the serviceName is not defined for the component, operationName is not defined for the Service or the faultName is not defined for the operation

	Post Condition
	No change

Table 6‑8: SCASetFaultMessage Details
6.1.8 SCASelf

A C component implementation uses SCASelf() to access a Service it provides.

	Precondition
	C component instance is running

	Input Parameter
	serviceName
	Name of the Service to access. If a component only provides one service, this string can be empty.

	Output Parameters
	serviceToken
	Token to be used in subsequent SCAInvoke() calls. This will be NULL if serviceName is not defined for the component.

	
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	Reason
	SCA_PARAMETER_ERROR if the serviceName is not defined for the component

	Post Condition
	The component instance has a valid token to use for subsequent calls.

Table 6‑9: SCASelf Details
6.1.9 SCAGetCallback

A C component implementation uses SCAGetCallback() to initialize a Service before invoking any callback operations of the Service.
	Precondition
	C component instance is running

	Input Parameter
	serviceName
	Name of the Service to initialize. If a component only provides one service, this string can be empty.

	Output Parameters
	serviceToken
	Token to be used in subsequent SCAInvoke() calls. This will be NULL if serviceName is not defined for the component.

	
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	Reason
	SCA_SERVICE_UNAVAILABLE if client is no longer available in the domain

	Post Condition
	If callback interface is defined for the Service, the component instance has a valid token to use for subsequent callbacks.

Table 6‑10: SCAGetCallback Details
6.1.10 SCAReleaseCallback

A C component implementation uses SCAReleaseCallback() to tell the SCA runtime it has completed callback processing and the EndPointReference can be released.
	Precondition
	C component instance is running and has a valid serviceToken

	Input Parameter
	serviceToken
	Token returned by prior SCAGetCallback() call.

	Output Parameters
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_PARAMETER_ERROR if the serviceToken is not valid

	Post Condition
	The token becomes invalid for subsequent calls.

Table 6‑11: SCAReleaseCallbacke Details
6.1.11 SCAInvokeAsync

A C component implementation uses SCAInvokeAsync() to invoke a long running operation of an interface using the asynchronous style.
	Precondition
	C component instance is running and has a valid token

	Input Parameters
	token
	Token returned by prior SCAGetReference(), SCAGetReferences(), SCASelf() or SCAGetCallback() call.

	
	operationName
	Name of the operation to invoke

	
	inputMsgLen
	Length of the request message buffer

	
	inputMsg
	Request message

	
	handler
	Address of the function to handle the asynchronous response.

	Output Parameters
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_BUSY if an operation is already outstanding for this Reference or Callback
SCA_PARAMETER_ERROR if the operationName is not defined for the interface
SCA_SERVICE_UNAVAILABLE if for the provider of the interface is no longer operational

	Post Condition
	Unless a SCA_SERVICE_UNAVAILABLE reason is returned, the token remains valid for subsequent calls.

Table 6‑12: SCAInvokeAsynch Details
6.1.12 SCAInvokePoll

A C component implementation uses SCAInvokePoll() to invoke a long running operation of a Reference using the polling style.
	Precondition
	C component instance is running and has a valid token

	Input Parameters
	token
	Token returned by prior SCAGetReference(), SCAGetReferences(), SCASelf() or SCAGetCallback() call.

	
	operationName
	Name of the operation to invoke

	
	inputMsgLen
	Length of the request message buffer

	
	inputMsg
	Request message

	Output Parameters
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	Reason
	SCA_BUSY if an operation is already outstanding for this Reference or Callback
SCA_PARAMETER_ERROR if the operationName is not defined for the interface
SCA_SERVICE_UNAVAILABLE if provider of the interface is no longer operational

	Post Condition
	Unless a SCA_SERVICE_UNAVAILABLE reason is returned, the token remains valid for subsequent calls.

Table 6‑13: SCAInvokePoll Details
6.1.13 SCACheckResponse

A C component implementation uses SCACheckResponse() to determine if a response to a long running operation request has been received.

	Precondition
	C component instance is running, has a valid token and has made a SCAInvokePoll() but has not received a response.

	Input Parameter
	token
	Token returned by prior SCALocate(), SCALocateMultiple(), SCASelf() or SCAGetCallback() call.

	Output Parameters
	responseType
	Type of response received

	
	compCode
	SCACC_OK if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_PARAMETER_ERROR if there is no outstanding operation for this Reference or Callback

	Post Condition
	No change

Table 6‑14: SCACheckResponse Details
6.1.14 SCACancelInvoke

A C component implementation uses SCACancelInvoke() to cancel a long running operation request.
	Precondition
	C component instance is running, has a valid token and has made a SCAInvokeAsync() or SCAInvokePoll() but has not received a response.

	Input Parameter
	token
	Token returned by prior SCALocate(), SCALocateMultiple(), SCASelf() or SCAGetCallback() call.

	Output Parameters
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_PARAMETER_ERROR if there is no outstanding operation for this Reference or Callback

	Post Condition
	If a response is subsequently received for the operation, it will be discarded.

Table 6‑15 : SCACancelInvokee Details
6.1.15 SCAEntryPoint

Non-SCA C code uses SCAEntryPoint() to access a Service before invoking any operations of the Service.
	Precondition
	None

	Input Parameter
	serviceURI
	URI of the Service to access

	
	domainURI
	URI of the SCA domain

	Output Parameters
	serviceToken
	Token to be used in subsequent SCAInvoke() calls. This will be NULL if the Service cannot be found.

	
	compCode
	SCACC_OK, if the call is successful

SCACC_ERROR, otherwise – see reason for details

	
	reason
	SCA_SERVICE_UNAVAILABLE if the domain does not exist of the service does not exist in the domain

	Post Condition
	If the Service exists in the domain, the client has a valid token to use for subsequent runtime calls.

Table 6‑16: SCAEntryPoint Details
6.2 Program-Based Implemenation Support

Support for components implemented via C programs is provided by the functions SCAService(), SCAOperation(), SCAMessageIn() and SCAMessageOut().

void SCAService(wchar_t *serviceName, int *compCode, int *reason);

void SCAOperation(wchar_t *operationName, int *compCode, int *reason);

void SCAMessageIn(wchar_t *serviceName,

 wchar_t *operationName,

 int *bufferLen,

 void *buffer,

 int *compCode,

 int *reason);

void SCAMessageOut(wchar_t *serviceName,

 wchar_t *operationName,

 int bufferLen,

 void *buffer,

 int *CompCode,

 int *Reason);

Snippet 6‑2: SCA API for Program Implementations Definition
6.2.1 SCAService

A program-based C component implementation uses SCAService() to determine which service was used to invoke it.

	Precondition
	C component instance is running

	Output Parameters
	serviceName
	Name of the service used to invoke the component

	
	compCode
	SCACC_OK

	
	reason
	

	Post Condition
	No change

Table 6‑17: SCAService Details
6.2.2 SCAOperation

A program-based C component implementation uses SCAOperation() to determine which operation of a Service was used to invoke it.

	Precondition
	C component instance is running

	Output Parameters
	operationName
	Name of the operation used to invoke the component

	
	compCode
	SCACC_OK

	
	reason
	

	Post Condition
	Component has sufficient information to select proper processing branch.

Table 6‑18: SCAOperation Details
6.2.3 SCAMessageIn

A program-based C component implementation uses SCAMessageIn() to retrieve its request message.
	Precondition
	C component instance is running, and has determined its invocation Service and operation

	Input Parameters
	serviceName
	Name returned by SCAService().

	
	operationName
	Name returned by SCAOperation().

	In/Out Parameter
	bufferLen
	Input: Maximum number of bytes that can be returned

Output: Actual number of bytes returned or size needed to hold entire message

	Output Parameters
	buffer
	Request message

	
	compCode
	SCACC_OK, if the call is successful

SCACC_WARNING, if the request data was truncated. The buffer size needs to be increased and the call repeated with the larger buffer.

	
	reason
	SCA_DATA_TRUNCATED if the request data was truncated.

	Post Condition
	The component is ready to begin processing.

Table 6‑19: SCAaMessgeIn Details
6.2.4 SCAMessageOut

A program-based C component implementation uses SCAMessageOut() to return a reply message.
	Precondition
	C component instance is running

	Input Parameters
	serviceName
	Name returned by SCAService().

	
	operationName
	Name returned by SCAOperation().

	
	bufferLen
	Length of the reply message buffer

	
	buffer
	Reply message

	Output Parameters
	compCode
	SCACC_OK

	
	reason
	

	Post Condition
	The component normally ends processing.

Table 6‑20: SCAMessgeOut Details
7 C Contributions

Contributions are defined in the Assembly specification [ASSEMBLY] C contributions are typically, but not necessarily contained in .zip files. In addition to SCDL and potentially WSDL artifacts, C contributions include binary executable files, componentType files and potentially C interface headers. No additional discussion is needed for header files, but there are additional considerations for executable and componentType files discussed.

7.1 Executable files

Executable files containing the C implementations for a contribution can be contained in the contribution, contained in another contribution or external to any contribution. In some cases, it could be desirable to have contributions share an executable. In other cases, an implementation deployment policy might dictate that executables are placed in specific directories in a file system.
7.1.1 Executable in contribution

When the executable file containing a C implementation is in the same contribution, the @path attribute of the implementation.c element is used to specify the location of the executable. The specific location of an executable within a contribution is not defined by this specification.

Snippet 7‑1 shows a contribution containing a DLL.

META-INF/

sca-contribution.xml

bin/

 autoinsurance.dll

AutoInsurance/

 AutoInsurance.composite

 AutoInsuranceService/

 AutoInsurance.h

 AutoInsurance.componentType

 include/

 Customers.h

 Underwriting.h

 RateUtils.h
Snippet 7‑1: Contribution Containing a DLL
The SCDL for the AutoInsuranceService component of Snippet 7‑1 is:

<component name="AutoInsuranceService">

 <implementation.c module="autoinsurance" path="bin/"
 componetType="AutoInsurance” />

</component>
Snippet 7‑2: Component Definition Using Implementation in a Common DLL
7.1.2 Executable shared with other contribution(s) (Export)

If a contribution contains an executable that also implements C components found in other contributions, the contribution has to export the executable. An executable in a contribution is made visible to other contributions by adding an export.c element to the contribution definition as shown in Snippet 7‑3.

<contribution>

 <deployable composite="myNS:RateUtilities"

 <export.c name="contribNS:rates" >
</contribution>
Snippet 7‑3: Exporting a Contribution
It is also possible to export only a subtree of a contribution. For a contribution:

META-INF/

 sca-contribution.xml

bin/

 rates.dll

RateUtilities/

 RateUtilities.composite

 RateUtilitiesService/

 RateUtils.h

 RateUtils.componentType
Snippet 7‑4: Contribution with a Subdirectory to be Shared
An export of the form:

<contribution>

 <deployable composite="myNS:RateUtilities"

 <export.c name="contribNS:ratesbin" path="bin/" >
</contribution>
Snippet 7‑5: Exporting a Subdirectory of a Contribution
only makes the contents of the bin directory visible to other contributions. By placing all of the executable files of a contribution in a single directory and exporting only that directory, the amount of information available to a contribution that uses the exported executable files is limited. This is considered a best practice.

7.1.3 Executable outside of contribution (Import)

When the executable that implements a C component is located outside of a contribution, the contribution has to import the executable. If the executable is located in another contribution, the import.c element of the contribution definition uses a @location attribute that identifies the name of the export as defined in the contribution that defined the export as shown in Snippet 7‑6.

<contribution>

 <deployable composite="myNS:Underwriting"

 <import.c name="rates" location="contribNS:rates">
</contribution>
Snippet 7‑6: Contribution with an Import
The SCDL for the UnderwritingService component of Snippet 7‑6 is:

<component name="UnderwritingService">

 <implementation.c module="rates" path="rates:bin/"
 componentType="Underwriting” />

</component>
Snippet 7‑7: Component Definition Using Implementation in an External DLL
If the executable is located in the file system, the @location attribute identifies the location in the files system used as the root of the import as shown in Snippet 7‑8.

<contribution>

 <deployable composite="myNS:CustomerUtilities"

 <import.c name="usr-bin" location="/usr/bin/" >
</contribution>
Snippet 7‑8: Component Definition Using Implementation in a File System
7.2 componentType files

As stated in Component Type and Component, each component implemented in C has a corresponding componentType file. This componentType file is, by default, located in the root directory of the composite containing the component or a subdirectory of the composite root with a name specified on the @componentType attribute as shown in the Snippet 7‑9.

META-INF/

 sca-contribution.xml

bin/

 autoinsurance.dll

AutoInsurance/

 AutoInsurance.composite

 AutoInsuranceService/

 AutoInsurance.h

 AutoInsurance.componentType
Snippet 7‑9: Contribution with ComponentType
The SCDL for the AutoInsuranceService component of Snippet 7‑9 is:

<component name="AutoInsuranceService">

 <implementation.c module="autoinsurance" path="bin/"
 componentType="AutoInsurance” />

</component>
Snippet 7‑10: Component Definition with Local ComponentType
Since there is a one-to-one correspondence between implementations and componentTypes, when an implementation is shared between contributions, it is desirable to also share the componentType file. ComponentType files can be exported and imported in the same manner as executable files. The location of a .componentType file can be specified using the @componentType attribute of the implementation.c element.

<component name="UnderwritingService">

 <implementation.c library="rates" path="rates:bin/"
 componentType="rates:types/Underwriting" />

</component>
Snippet 7‑11: Component Definition with Imported ComponentType
7.3 C Contribution Extensions

7.3.1 Export.c

Snippet 7‑12 shows the pseudo-schema for the C export element used to make an executable or componentType file visible outside of a contribution.

<!—- export.c schema snippet -->

<export.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 name="QName" path="string"? >
Snippet 7‑12: Pseudo-schema for C Export Element
The export.c element has the following attributes:

· name : QName (1..1) – name of the export. The @name attribute of a <export.c/> element MUST be unique amongst the <export.c/> elements in a domain. [C70001]
· path : string (0..1) – path of the exported executable relative to the root of the contribution. If not present, the entire contribution is exported.

7.3.2 Import.c

Snippet 7‑13 shows the pseudo-schema for the C import element used to reference an executable or componentType file that is outside of a contribution.

<!—- import.c schema snippet -->

<import.c xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 name="QName" location="string" >
Snippet 7‑13: Pseudo-schema for C Import Element
The import.c element has the following attributes:

· name : QName (1..1) – name of the import. The @name attribute of a <import.c/> child element of a <contribution/> MUST be unique amongst the <import.c/> elements in of that contribution. [C70002]
· location : string (1..1) – either the QName of a export or a file system location. If the value does not match an export name it is taken as an absolute file system path.

8 C Interfaces

A service interface can be defined by a set of C function and/or struct declarations.
When mapping a C interface to WSDL or when comparing two C interfaces for compatibility, as defined by the Assembly specification [ASSEMBLY], it is necessary for an SCA implementation to determine the signature (return type, name, and the names and types of the parameters) of every function or the type of every member of every struct in the service interface definition. An SCA implementation MUST translate declarations to tokens as part of conversion to WSDL or compatibility testing. [C80001] Snippet 8‑1 shows a case where a macro has to be processed to understand the return type of a function.

#if LIB_BUILD

define DECLSPEC_FUNC(ReturnType) __declspec(dllimport) ReturnType

#else

define DECLSPEC_FUNC(ReturnType) __declspec(dllexport) ReturnType

#endif

DECLSPEC_FUNC(int) fooFunc(void) {}

Snippet 8‑1: Example Macro Impacting Function Signature
Macros and typedefs in function or struct declarations might lead to portability problems. Complete function or struct declarations within a macro are discouraged. The processing of typedefs needs to be aware of the types that impact mapping to WSDL (see Table 9‑1 and Table 9‑2)
8.1 Types Supported in Service Interfaces

1.2

·
·
·
1.3
Not all service interfaces support the complete set of the types available in C.

8.1.1 Local Service

Any fundamental or compound type defined by C can be used in the interface of a local service.
8.1.2 Remotable Service

For a remotable service being called by another service the data exchange semantics is by-value. The return type and types of the parameters of a function of a remotable service interface MUST be one of:

·
· Any of the C types specified in Simple Content Binding and Complex Content Binding. These types may be passed by-value or by-pointer. Unless the function and client indicate that they allow by-reference semantics (see AllowsPassByReference), a copy will be explicitly created by the runtime for any parameters passed by-pointer.

· An SDO DATAOBJECT. This type may be passed by-value or by-pointer. Unless the function and client indicate that they allow by-reference semantics (see AllowsPassByReference), a deep-copy of the DATAOBJECT will be created by the runtime for any parameters passed by-value or by-pointer. When by-reference semantics are allowed, the DATAOBJECT handle will be passed.
 [C80002]

·
8.2 Restrictions on C header files

A C header file used to define an interface MUST
· declare at least one function or message format struct

·
 [C80003]
Function definitions in a header file are not considered part of a service definition.
9 WSDL to C and C to WSDL Mapping

The SCA Client and Implementation Model for C applies the principles of the WSDL to Java and Java to WSDL mapping rules (augmented and interpreted for C as detailed in the following section) defined in the JAX-WS specification [JAXWS21] for generating remotable C interfaces from WSDL portTypes and vice versa. Use of the JAX-WS specification as a guideline for WSDL to C and C to WSDL mappings does not imply that any support for the Java language is mandated by this specification.

A detailed mapping of C to WSDL types and WSDL to C types is covered in Data Binding.

General rules for the application of JAX-WS to C:

· References to Java are considered references to C.

· References to Java classes are considered references to a collection of C functions or programs that implement an interface.

· References to Java methods are considered references to C functions or message format struct declarations.

· References to Java interfaces are considered references to a collection of C function or message format struct declarations used to define an interface.

·
9.1 Interpretations for WSDL to C Mapping

External binding files are not supported.

For dispatching functions or invoking programs and marshalling data, an implementation can choose to interpret the WSDL document, possibly containing mapping customizations, at runtime or interpret the document as part of the deployment process generating implementation specific artifacts that represent the mapping.
9.1.1 Definitions

Since C has no namespace or package construct, the targetNamespace of a WSDL document is ignored by the mapping.

MIME binding is not supported.

9.1.2 PortType

A portType maps to a set of declarations that form the C interface for the service. The form of these declarations depends on the type of the service implementation.

If the implementation is a library, the declarations are one or more function declarations and potentially any necessary struct declarations corresponding to any complex XML schema types needed by messages used by operations of the portType. See Complex Content Binding for options for complex type mapping.

If the implementation is contained in a program, the declarations are all struct declarations. See the next section for details.

An SCA implementation MUST map a WSDL portType to a remotable C interface definition. [C100023]
In the absence of customizations, an SCA implementation SHOULD map each portType to separate header file. An SCA implementation MAY use any sca-c:prefix binding declarations to control this mapping. [C100001] For example, all portTypes in a WSDL document with a common sca-c:prefix binding declaration could be mapped to a single header file.
Header file naming is implementation dependent.

9.1.3 Operations

Asynchronous mapping is not supported.

9.1.3.1 Operation Names

WSDL operation names are only guaranteed to be unique with a portType. C requires function and struct names loaded into an address space to be distinct. The mapping of operation names to function or struct names have to take this into account.

For components implemented in libraries, in the absence of customizations, an SCA implementation MUST map an operation name, with the first character converted to lower case, to a function name. If necessary, to avoid name collisions, an SCA implementation MAY prepend the portType name, with the first character converted to lower case, and the operation name, with the first character converted to upper case, to form the function name. [C100002]
An application can customize this mapping using the sca-c:prefix and/or sca-c:function binding declarations.

For program-based service implementations:

· If the number of In parameters plus the number of In/Out parameters is greater than one there will be a request struct.

· If the number of Out parameters plus the number of In/Out parameters is greater than one there will be a response struct.

For components implemented in a program, in the absence of customizations, an SCA implementation MUST map an operation name, with the first character converted to lowercase to a request struct name. If necessary, to avoid name collisions, an SCA implementation MAY concatenate the portType name, with the first character converted to lower case, and the operation name, with the first character converted to upper case, to form the request stuct name. Additionally an SCA implementation MUST append “Response” to the request struct name to form the response struct name. [C100005]
An application can customize this mapping using the sca-c:prefix and/or sca-c:struct binding declarations.

9.1.3.2 Message and Part
In the absence of any customizations for a WSDL operation that does not meet the requirements for the wrapped style, the name of a mapped function parameter or struct member MUST be the value of the name attribute of the wsdl:part element with the first character converted to lower case. [C100003]
In the absence of any customizations for a WSDL operation that meets the requirements for the wrapped sytle, the name of a mapped function parameter or struct member MUST be the value of the local name of the wrapper child with the first character converted to lower case. [C100004]
An application can customize this mapping using the sca-c:parameter binding declaration.

For library-based service implementations, an SCA implementation MUST map In parameters as pass by-value or const and In/Out and Out parameters as pass via pointers. [C100019]
For program-based service implementations, an SCA implementation MUST map all values in the input message as pass by-value and the updated values for In/Out parameters and all Out parameters in the response message as pass by-value. [C100020]
9.1.4 Types

As per section Data Binding (based on SDO type mapping).

MTOM/XOP content processing is left to the application.

9.1.5 Fault

C has no exceptions so an API is provided for getting and setting fault messages (see SCAGetFaultMessage and SCASetFaultMessage). Fault messages are mapped in same manner as input and output messages.

In the absence of customizations, an SCA implementation MUST map the name of the message element referred to by a fault element to the name of the struct describing the fault message content. If necessary, to avoid name collisions, an implementation MAY append “Fault” to the name of the message element when mapping to the struct name. [C100006]
An application can customize this mapping using the sca-c:struct binding declaration.

9.1.6 Service and Port

This mapping does not define generation of client side code.

9.1.7 XML Names

See comments in Operations
9.2 Interpretations for C to WSDL Mapping

Where annotations are discusses as a means for an application to control the mapping to WSDL, an implementation-specific means of controlling the mapping can be used instead.

9.2.1 Package

Not relevant.

An SCA implementation SHOULD provide a default namespace mapping and this mapping SHOULD be configurable. [C100007]
9.2.2 Class

Not relevant since mapping is only based on declarations.
9.2.3 Interface

The declarations in a header file are used to define an interface. A header file can be used to define an interface if it satisfies either (for components implemented in libraries):

· Contains one or more function declarations

· Any of these functions declarations might carry a @WebFunction annotation

· The parameters and return types of these function declarations are compatible with the C to XML Schema mapping in Data Binding
or (for components implemented in programs):

· Contains one request message struct declarations

· Any of the request message struct declarations might carry a @WebOperation annotation

· Any of the request message struct declarations can have a corresponding response message struct, identified by either having a name with “Response” appended to the request message struct name or identified in a @WebOperation annotation

· Members of these struct declarations are compatible with the C to XML Schema mapping in Data Binding
An SCA implementation MUST map a C interface definition to WSDL as if it has a @WebService annotation with all default values.
 [C100024]
In the absence of customizations, an SCA implementation MUST map the header file name to the portType name. An implementation MAY append “PortType” to the header file name in the mapping to the portType name. [C100008]
An application can customize this mapping using the @WebService annotation.

9.2.4 Method

For components implemented in libraries, functions map to operations.

In the absence of customizations, an SCA implementation MUST map a function name to an operation name, stripping the portType name, if present and any namespace prefix from the front of function name before mapping it to the operation name. [C100009]
An application can customize function to operation mapping or exclude a function from an interface using the @WebFunction annotation.

For components implemented in programs, operations are mapped from request structs.

In the absence of customizations, a struct with a name that does not end in “Response” or “Fault” is considered to be a request message struct and an SCA implementation MUST map the struct name to the operation name, stripping the portType name, if present, and any namespace prefix from the front of the struct name before mapping it to the operation name. [C100010]
An application can customize stuct to operation mapping or exclude a struct from an interface using the @WebOperation annotation.

9.2.5 Method Parameters and Return Type

For components implemented in libraries, function parameters and return type map to either message or global element components.

In the absence of customizations, an SCA implementation MUST map a parameter name, if present, to a part or global element component name. If the parameter does not have a name the SCA implementation MUST use argN as the part or global element child name. [C100011]
An application can customize parameter to message or global element component mapping using the @WebParam annotation.

In the absence of customizations, an SCA implementation MUST map the return type to a part or global element child named “return”. [C100012]
An application can customize return type to message or global element component mapping using the @WebReturn annotation.

An SCA implementation MUST map:

· a function’s return value as an out parameter.

· by-value and const parameters as in parameters.

· in the absence of customizations, pointer parameters as in/out parameters.
 [C100017]
An application can customize parameter classification using the @WebParam annotation.

Program based implementation SHOULD use the Document-Literal style and encoding. [C100013]
In the absence of customizations, an SCA implementation MUST map the struct member name to the part or global element child name. [C100014]
An application can customize struct member to message or global element component mapping using the @WebParam annotation.

· Members of the request struct that are not members of the response struct are in parameters

· Members of the response struct that are not members of the request struct are out parameters

· Members of both the request and response structs are in/out parameters. Matching is done by member name. An SCA implementation MUST ensure that in/out parameters have the same type in the request and response structs. [C100015]
9.2.6 Service Specific Exception

C has no exceptions. A struct can be annotated as a fault message type. A function or operation declaration can be annotated to indicate that it potentially generates a specific fault.

An application can define a fault message format using the @WebFault annotation.

An application can indicate that a WSDL fault might be generated by a function or operation using the @WebThrows annotation.

9.2.7 Generics

Not relevant.

1.3.1

9.3 Data Binding

The data in wsdl:parts or wrapper children is mapped to and from C function parameters and return values (for llibrary-based component implementations), or struct members (for program-based component implementations and fault messages).
9.3.1 Simple Content Binding

The mapping between XSD simple content types and C types follows the convention defined in the SDO specification [SDO21]. Table 9‑1 summarizes that mapping as it applies to SCA services.

	XSD Schema Type (
	C Type
	(XSD Schema Type

	anySimpleType
	wchar_t *
	string

	anyType
	DATAOBJECT
	anyType

	anyURI
	wchar_t *
	string

	base64Binary
	char *
	string

	boolean
	char
	string

	byte
	int8_t
	byte

	date
	wchar_t *
	string

	dateTime
	wchar_t *
	string

	decimal
	wchar_t *
	string

	double
	double
	double

	duration
	wchar_t *
	string

	ENTITIES
	wchar_t *
	string

	ENTITY
	wchar_t *
	string

	float
	float
	float

	gDay
	wchar_t *
	string

	gMonth
	wchar_t *
	string

	gMonthDay
	wchar_t *
	string

	gYear
	wchar_t *
	string

	gYearMonth
	wchar_t *
	string

	hexBinary
	char *
	string

	ID
	wchar_t *
	string

	IDREF
	wchar_t *
	string

	IDREFS
	wchar_t *
	string

	int
	int32_t
	int

	integer
	wchar_t *
	string

	language
	wchar_t *
	string

	long
	int64_t
	long

	Name
	wchar_t *
	string

	NCName
	wchar_t *
	string

	negativeInteger
	wchar_t *
	string

	NMTOKEN
	wchar_t *
	string

	NMTOKENS
	wchar_t *
	string

	nonNegativeInteger
	wchar_t *
	string

	nonPositiveInteger
	wchar_t *
	string

	normalizedString
	wchar_t *
	string

	NOTATION
	wchar_t *
	string

	positiveInteger
	wchar_t *
	string

	QName
	wchar_t *
	string

	short
	int16_t
	short

	string
	wchar_t *
	string

	time
	wchar_t *
	string

	token
	wchar_t *
	string

	unsignedByte
	uint8_t
	unsignedByte

	unsignedInt
	uint32_t
	unsignedInt

	unsignedLong
	uint64_t
	unsignedLong

	unsignedShort
	uint16_t
	unsignedShort

Table 9‑1: XSD simple type to C type mapping
Table 9‑2 defines the mapping of C++ types to XSD schema types that are not covered in Table 9‑1.

	C Type (
	XSD Schema Type

	_Bool
	boolean

	wchar_t
	string

	signed char
	byte

	unsigned char
	unsignedByte

	short
	short

	unsigned short
	unsignedShort

	int
	int

	unsigned int
	unsignedInt

	long
	long

	unsigned long
	unsignedLong

	long long
	long

	unsigned long long
	unsignedLong

	
	

	long double
	decimal

	time_t
	time

	struct tm
	dateTime

Table 9‑2: C type to XSD type mapping
The C standard does not define value ranges for integer types so it is possible that on a platform parameters or return values could have values that are out of range for the default XSD schema type. In these circumstances, the mapping would need to be customized, using @WebParam or @WebResult if supported, or some other implementation-specific mechanism.

An SCA implementation MUST map simple types as defined in Table 9‑1 and Table 9‑2 by default. [C100021]
An SCA implementation MAY map boolean to _Bool by default. [C100022]
9.3.1.1 WSDL to C Mapping Details

In general, when xsd:string and types derived from xsd:string map to a struct member, the mapping is to a combination of a wchar_t * and a separately allocated data array. If either the length or maxLength facet is used, then a wchar_t[] is used. If the pattern facet is used, this might allow the use of char and/or also constrain the length.

Example:

<xsd:element name=”myString” type=”xsd:string”/>

maps to:

wchar_t *myString;

/* this points to a dymically allocated buffer with the data */
Snippet 9‑1: Unbounded String Mapping
<xsd:simpleType name=”boundedString25”>

 <xsd:restriction base="xsd:string">

 <xsd:length value="25"/>

 </xsd:restriction>

</xsd:simpletype>

…

<xsd:element name=”myString” type=”boundedString25”/>

maps to:

wchar_t myString[26];
Snippet 9‑2: Bounded String Mapping
· When unbounded binary data maps to a struct member, the mapping is to a char * that points to the location where the actual data is located. Like strings, if the binary data is bounded in length, a char[] is used.

Examples:

<xsd:element name=”myData” type=”xsd:hexBinary”/>

maps to:

char *myData;

/* this points to a dymically allocated buffer with the data */
Snippet 9‑3: Unbounded Binary Data Mapping
<xsd:simpleType name=”boundedData25”>

 <xsd:restriction base="xsd:hexBinary">

 <xsd:length value="25"/>

 </xsd:restriction>

</xsd:simpletype>

…

<xsd:element name=”myData” type=”boundedData25”/>

maps to:

char myData[26];
Snippet 9‑4: Bounded Binary Data Mapping
· Since C does not have a way of representing unset values, when elements with minOccurs != maxOccurs and lists with minLength != maxLength, which have a variable, but bounded, number of instances, map to a struct, the mapping is to a count of the number of occurrences and an array. If the count is 0, then the content of the array is undefined.
Examples:

<xsd:element name=”counts” type=”xsd:int” maxOccurs=”5”/>

maps to:

size_t counts_num;

int counts[5];
Snippet 9‑5: minOccurs != maxOccurs Mapping
<xsd:simpleType name=”lineNumList”>

 <xsd:list itemType=”xsd:int”/>

</xsd:simpleType>

<xsd:simpleType name=”lineNumList6”>

 <xsd:restriction base="lineNumList ">

 <xsd:minLength value="1"/>

 <xsd:maxLength value=”6”/>

 </xsd:restriction>

</xsd:simpletype>

…

<xsd:element name=”lineNums” type=”lineNumList6”/>

maps to:

size_t lineNums_num;

long lineNums[6];
Snippet 9‑6: minLength != maxLength Mapping
· Since C does not allow for unbounded arrays, when elements with maxOccurs = unbounded and lists without a defined length or maxLength, map to a struct, the mapping is to a count of the number of occurrences and a pointer to the location where the actual data is located as an array

Examples:

<xsd:element name=”counts” type=”xsd:int” maxOccurs=”unbounded”/>

maps to:

size_t counts_num;

int *counts;

/* this points to a dynamically allocated array of longs */
Snippet 9‑7: Unbounded Array Mapping
· Union Types are not supported.

9.3.1.2 C to WSDL Mapping Details

· wchar_t[] and char[] map to xsd:string with a maxLength facet.

· C arrays map as normal elements but with multiplicity allowed via the minOccurs and maxOccurs facets.
Example:

int idList[];

maps to:
<xsd:element name="idList" type="xsd:int"

 minOccurs="0" maxOccurs="unbounded"/>

Snippet 9‑8: Array Mapping
· Multi-dimensional arrays map into nested elements.

Example:

int multiIdArray[4][2];

maps to:

<xsd:element name="multiIdArray"
 minOccurs="0" maxOccurs="4"/>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="multiIdArray" type="xsd:int"

 minOccurs="2" maxOccurs="2" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

· Snippet 9‑9: Multi-Dimensional Array Mapping

· Except as detailed in the table above, pointers do not affect the type mapping, only the classification as in, out, or in/out.
9.3.2 Complex Content Binding

When mapping between XSD complex content types and C, either instances of SDO DataObjects or structs are used. An SCA implementation MUST support mapping message parts or global elements with complex types and parameters, return types and struct members with a type defined by a struct. The mapping from WSDL MAY be to DataObjects and/or structs. The mapping to and from structs MUST follow the rules defined in WSDL to C Mapping Details. [C100016]
9.3.2.1 WSDL to C Mapping Details

· Complex types and groups mapped to static DataObjects follow the rules defined in [SDO21].

· Complex types and groups mapped to structs have the attributes and elements of the type mapped to members of the struct.

· The name of the struct is the name of the type or group.

· Attributes appear in the struct before elements.

· Simple types are mapped to members as described above.

· The same rules for variable number of instances of a simple type element apply to complex type elements.

· A sequence group is mapped as either a simple type or a complex type as appropriate.

Example:

<xsd:complexType name=”myType”>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value=”25”/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="idList" type="xsd:int"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="value" type="xsd:double"/>

 </xsd:sequence>

</xsd:complexType>

maps to:

struct myType {

 wchar_t name[26];

 size_t idList_num;

 long *idList;

 /* this points to a dynamically allocated array of longs */

 double value;

};
Snippet 9‑10: Sequence Group Mapping
· While XML Schema allow the elements of an all group to appear in any order, the order is fixed in the C mapping. Each child of an all group is mapped as pointer to the value and value itself. If the child is not present, the pointer is NULL and the value is undefined.

Example:

<xsd:element name=”myVariable”>

 <xsd:complexType name=”myType”>

 <xsd:all>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="idList" type="xsd:int"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="value" type="xsd:double"/>

 </xsd:all>

 </xsd:complexType>

</xsd:element>

maps to:

struct myType {

 wchar_t *name;

 /* this points to a dynamically allocated string */

 size_t idList_num;

 long *idList;

 /* this points to a dynamically allocated array of longs */

 double *value;

 /* this points to a dynamically allocated long */

} *pmyVariable, myVariable;
Snippet 9‑11: All Group Mapping
· Handing of choice groups is not defined by this mapping, and is implementation dependent. For portability, choice groups are discouraged in service interfaces.

· Nillable elements are mapped to a pointer to the value and the value itself. If the element is not present, the pointer is NULL and the value is undefined.

Example:

<xsd:element name="priority" type="xsd:short" nillable="true"/>

maps to:

int16_t *pprioiry, priority;
Snippet 9‑12: Nillable Mapping
· Mixed content and open content (Any Attribute and Any Element) is supported via DataObjects.

9.3.2.2 C to WSDL Mapping Details

· C structs that contain types that can be mapped, are themselves mapped to complex types.
Example:

struct DataStruct {

 char *name;

 double value;

};

maps to:

<xsd:complexType name="DataStruct">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="value" type="xsd:double"/>

 </xsd:sequence>

</xsd:complexType>
Snippet 9‑13: Struct Mapping
· char and wchar_t arrays inside of structs are mapped to a restricted subtype of xsd:string that limits the length the space allowed in the array.

Example:

struct DataStruct {

 char name[256];

 double value;

};

maps to:

<xsd:complexType name="DataStruct">

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="value" type="xsd:double"/>

 </xsd:sequence>

</xsd:complexType>
Snippet 9‑14: Character Array in Struct Mapping
· C enums define a list of named symbols that map to values. If a function uses an enum type, this is mapped to a restricted element in the WSDL schema.

Example:

enum ParameterType {

 UNSET = 1,

 TYPEA,

 TYPEB,

 TYPEC

};

maps to:

<xsd:simpleType name="ParameterType">

 <xsd:restriction base="xsd:int">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="4"/>

 </xsd:restriction>

</xsd:simpleType>
Snippet 9‑15: Enum Mapping
The restriction used will have to be appropriate to the values of the enum elements.
Example:

enum ParameterType {

 UNSET = 'u',

 TYPEA = 'A',

 TYPEB = 'B',

 TYPEC = 'C'

};

maps to:

<xsd:simpleType name="ParameterType">

 <xsd:restriction base="xsd:int">

 <xsd:enumeration value="86"/> <!-- Character 'u' -->

 <xsd:enumeration value="65"/> <!-- Character 'A' -->

 <xsd:enumeration value="66"/> <!-- Character 'B' -->

 <xsd:enumeration value="67"/> <!-- Character 'C' -->

 </xsd:restriction>

</xsd:simpleType>
Snippet 9‑16: Non-contiguous Value Enum Mapping
· If a struct or enum contains other structs or enums, the mapping rules are applied recursively.
Example:

struct DataStruct data;
with types defined as follows:

struct DataStruct {

 char name[30];

 double values[20];

 ParameterType type;

};

enum ParameterType {

 UNSET = 1,

 TYPEA,

 TYPEB,

 TYPEC

};

maps to:

<xsd:complexType name="DataStruct">

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="29"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="values" type="xsd:double" minOccurs=20 maxOccurs=20/>

 <xsd:element name="type" type=" ParameterType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ParameterType">

 <xsd:restriction base="xsd:int">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="4"/>

 </xsd:restriction>

</xsd:simpleType>
Snippet 9‑17: Nested Struct Mapping
· Mapping of C unions is not supported by this specification.

· Typedefs are resolved when evaluating parameter and return types. Typedefs are resolved before the mapping to Schema is done.

·
10 Conformance

The XML schema pointed to by the RDDL document at the SCA namespace URI, defined by the Assembly specification [ASSEMBLY]
 and extended by this specification, are considered to be authoritative and take precedence over the XML schema in this document.

The XML schema pointed to by the RDDL document at the SCA C namespace URI, defined by this specification, is considered to be authoritative and takes precedence over the XML schema in this document.

Normative code artifacts related to this specification are considered to be authoritative and take precedence over specification text.

An SCA implementation MUST reject a composite file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd or http://docs.oasis-open.org/opencsa/sca/200912/sca-implementation-c-1.1.xsd.
 [C110001]

An SCA implementation MUST reject a componentType file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd.
 [C110002]
An SCA implementation MUST reject a contribution file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-contribution-c-1.1.xsd. [C110003]
An SCA implementation MUST reject a WSDL file that does not conform to http://docs.oasis-open.org/opencsa/sca-c-cpp/c/200901/sca-wsdlext-c-1.1.xsd. [C110004]
10.1 Conformance Targets

The conformance targets of this specification are:

· SCA implementations, which provide a runtime for SCA components and potentially tools for authoring SCA artifacts, component descriptions and/or runtime operations.

· SCA documents, which describe SCA artifacts, and specific elements within these documents.

· C files, which define SCA service interfaces and implementations.
· WSDL files, which define SCA service interfaces.
10.2 SCA Implementations

An implementation conforms to this specification if it meets these conditions:

1. It MUST conform to the SCA Assembly Model Specification [ASSEMBLY] and the SCA Policy Framework [POLICY].

2. It MUST comply with all statements in Table F‑1 and Table F‑5 related to an SCA implementation, notably all mandatory statements have to be implemented.
3. It MUST implement the SCA C API defined in section SCA Programming Interface.
4. It MAY support program-based component implementations. If program-based component implementations are supported, the implementation MUST implement the Program-Based Implemenation Support API defined in Program-Based Implemenation Support and MUST comply with all statements in Table F‑2 related to an SCA implementation, notably all mandatory statements in that section have to be implemented.

5. It MUST implement the mapping between C and WSDL 1.1 [WSDL11] defined in WSDL to C and C to WSDL Mapping.
6. It MUST support <interface.c/> and <implementation.c/> elements as defined in Component Type and Component in composite and componentType and documents.
7. It MUST support <export.c/> and <import.c/> elements as defined in C Contributions in contribution documents.
8. It MAY support source file annotations as defined in,C SCA Annotations, C SCA Policy Annotations and.C WSDL Annotations. If source file annotations are supported, the implementation MUST comply with all statements in Table F‑3 related to an SCA implementation, notably all mandatory statements in that section have to be implemented.
9. It MAY support WSDL extentsions as defined in C WSDL Mapping Extensions. If WSDL extentsions are supported, the implementation MUST comply with all statements in Table F‑4 related to an SCA implementation, notably all mandatory statements in that section have to be implemented.
10.3 SCA Documents

An SCA document conforms to this specification if it meets these conditions:

10. It MUST conform to the SCA Assembly Model Specification [ASSEMBLY] and, if appropriate, the SCA Policy Framework [POLICY].

11. If it is a composite document, it MUST conform to the http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd and http://docs.oasis-open.org/opencsa/sca/200912/sca-implementation-c-1.1.xsd schema and MUST comply with the additional constraints on the document contents as defined in Table F‑1.
If it is a componentType document, it MUST conform to the http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd schema and MUST comply with the additional constraints on the document contents as defined in Table F‑1.

If it is a contribution document, it MUST conform to the http://docs.oasis-open.org/opencsa/sca/200912/sca-contribution-c-1.1.xsd schema and MUST comply with the additional constraints on the document contents as defined in Table F‑1.
10.4 C Files

A C file conforms to this specification if it meets the conditions:

12. It MUST comply with all statements in,Table F‑1, Table F‑3 and Table F‑5 related to C contents and annotations, notably all mandatory statements have to be satisfied.
10.5 WSDL Files

A WSDL conforms to this specification if it meets these conditions:

13. It is a valid WSDL 1.1 [WSDL11] document.

14. It MUST comply with all statements in Table F‑1, Table F‑4 and Table F‑5 related to WSDL contents and extensions, notably all mandatory statements have to be satisfied.
A C SCA Annotations

To allow developers to define SCA related information directly in source files, without having to separately author SCDL files, a set of annotations is defined. If SCA annotations are supported by an implementation, the annotations defined here MUST be supported and MUST be mapped to SCDL as described. The SCA runtime MUST only process the SCDL files and not the annotations. [CA0001]
A.1 Application of Annotations to C Program Elements

In general an annotation immediately precedes the program element it applies to. If multiple annotations apply to a program element, all of the annotations SHOULD be in the same comment block. [CA0002]
· Function or Function Prototype

The annotation immediately precedes the function definition or declaration.

Example:

/* @OneWay */

reportEvent(int eventID);
Snippet A‑1: Example Function Annotation
· Variable

The annotation immediately precedes the variable definition.

Example:

/* @Property */

long loanType;
Snippet A‑2: Example Variable Annotation
· Set of Functions Implementing a Service

A set of functions implementing a service begins with an @Service annotations. Any annotations applying to this service as a whole immediately precede the @Service annotation. These annotations SHOULD be in the same comment block as the @Service annotation.

Example:

/* @ComponentType
 * @Service(name="LoanService", interfaceHeader="loan.h") */
Snippet A‑3: Example Set of Functions Annotation
· Set of Function Prototypes Defining an Interface

To avoid any ambiguity about the application of an annotation to a specific function or the set of functions defining an interface, if an annotation is to apply to the interface as a whole, then the @Interface annotation is used, even in the case where there is just one interface defined in a header file. Any annotations applying to the interface immediately precede the @Interface annotation.

/* @Remoteable
 * @Interface(name="LoanService" */
Snippet A‑4: Example Set of Function Declarations Annotation
A.2 Interface Header Annotations

This section lists the annotations that can be used in the header file that defines a service interface.

A.2.1 @Interface

Annotation that indicates the start of a new interface definition.
Corresponds to: interface.c element

Format:

/* @Interface(name="serviceName") */
Snippet A‑5: @Interface Annotation Format
where
· name : NCName (0..1) – specifies the name of a service using this interface. The default is the root name of the header file containing the annotation.

Applies to: Set of functions defining an interface.

Function declarations following this annotation form the definition of this interface. This annotation also serves to bound the scope of the remaining annotations in this section,

Example:

Interface header:

/* @Interface(name="LoanService") */

Service definition:

<service name="LoanService">

 <interface.c header="loans.h" />

</service>
Snippet A‑6: Example of @Interface Annotation
A.2.2 @Function
Annotation that indicates that a function defines an operation of a service. There are two formats for this annotation depending on if the service is implemented as a set of subroutines or in a program. An SCA implementation MUST treat a function with a @WebFunction annotation specified as if @Function was specified with the operationName value of the @WebFunction annotation used as the name value of the @Function annotation and the exclude value of the @WebFunction annotation used as the exclude value of the @Function annotation. [CA0004]
Corresponds to: function or callbackFunction child element of an interface.c element. If the file the function is contained in is being processed because it was identified via either interface.c/@callbackHeader or a @Callback annotation, then the @Function annotation corresponds to a callbackFunction element, otherwise it corresponds to a function element.
Format:

/* @Function(name="operationName", exclude="true") */
Snippet A‑7: @Operation Annotation Format for Functions
where
· name : NCName (0..1) – specifies the name of the operation. The default operation name is the function name.

· exclude : boolean (0..1) – specifies whether this function is to be excluded from the SCA interface. Default is false.

Applies to: Function declaration

Example:

Interface header (loans.h):

short internalFcn(char *param1, short param2);

/* @Function(name="getRate") */

void rateFcn(char *cust, float *rate);

Interface definition:

<interface.c header="loans.h">

 <function name="getRate" />

</interface.c>
Snippet A‑8: Example of @Operation Annotation for Functions
A.2.3 @Operation

Annotation that indicates a struct declaration defines a request message format of an operation of a service. An SCA implementation MUST treat a struct with a @WebOperation annotation specified as if @Operation was specified with the operationName value of the @WebOperation annotation used as the name value of the @Operation annotation, the response value of the @WebOperation annotation used as the response value of the @Operation annotation and the exclude value of the @WebFunction annotation used as the exclude value of the @Operation annotation.

·

 [CA0005]
Corresponds to: function or callbackFunction child element of an interface.c element. If the file the struct is contained in is being processed because it was identified via either interface.c/@callbackHeader or a @Callback annotation, then the @Operation annotation corresponds to a callbackFunction element, otherwise it corresponds to a function element.
Format:

/* @Operation(name="operationName", response="outStruct", exclude="true") */
Snippet A‑9: @Operation Annotation Format for Structs
where

· name: NCName (1..1) – specifies the name of the operation.
· The default operation name is the name of the request message struct.
· response : NCName (0..1) – specifies the name of a struct that defined the format of the response message if one is used.

· exclude : boolean (0..1) – specifies whether this struct is to be excluded from the SCA interface. Default is false.
Applies to: stuct declarations

Example:
Interface header (loans.h):

/* @Operation(name="getRate", response="rateOutput") */

struct rateInput {

 char cust[25];

 int term;

};

struct rateOutput {

 float rate;

 int rateClass;

};

Interface definition:

<interface.c header="loans.h">

 <function name="getRate" input="rateInput" output="rateOutput"/>

</interface.c>
Snippet A‑10: Example of @Operation Annotation for Structs
A.2.4 @Remotable

Annotation on service interface to indicate that a service is remotable and implies an @Interface annotation applies as well. An SCA implementation MUST treat a file with a @WebService annotation specified as if @Remotable and @Interface were specified with the name value of the @WebService annotation used as the name value of the @Interface annotation. [CA0003]
Corresponds to: @remotable=”true” attribute of an interface.c element.

Format:

/* @Remotable */
Snippet A‑11: @Remotable Annotation Format
The default is false (not remotable).

Applies to: Interface

Example:
Interface header (LoanService.h):

/* @Remotable */

Service definition:

<service name="LoanService">

 <interface.c header="LoanService.h" remotable="true" />

</service>
Snippet A‑12: Example of @Remotable Annotation
A.2.5 @Callback

Annotation on a service interface to specify the callback interface.

Corresponds to: @callbackHeader attribute of an interface.c element.

Format:

/* @Callback(header=”headerName”) */
Snippet A‑13: @Callback Annotation Format
where
· header : Name (1..1) – specifies the name of the header defining the callback service interface.
Applies to: Interface
Example:
Interface header (MyService.h):

/* @Callback(header="MyServiceCallback.h") */

Service definition:

<service name="MyService">

 <interface.c header="MyService.h" callbackHeader="MyServiceCallback.h" />

</service>
Snippet A‑14: Example of @Callback Annotation
A.2.6 @OneWay

Annotation on a service interface function declaration to indicate the function is one way. The @OneWay annotation also affects the representation of a service in WSDL. See @OneWay.

Corresponds to: @oneWay=”true” attribute of function element of an interface.c element.

Format:

/* @OneWay */
Snippet A‑15: @OneWay Annotation Format
The default is false (not OneWay).

Applies to: Function declaration
Example:
Interface header:

/* @OneWay */

reportEvent(int eventID);

Service definition:

<service name="LoanService">

 <interface.c header="LoanService.h">

 <function name="reportEvent" oneWay="true" />

 </interface.c>

</service>
Snippet A‑16: Example of @OneWay Annotation
A.3 Implementation Annotations

This section lists the annotations that can be used in the file that implements a service.

A.3.1 @ComponentType

Annotation used to indicate the start of a new componentType.

Corresponds to: @componentType attribute of an implementation.c element.

Format:

/* @ComponentType */
Snippet A‑17: @ComponetType Annotation Format
Applies to: Set of services, references and properties

Example:
Implementation:

/* @ComponentType */

Component definition:

<component name="LoanService">

<implementation.c module="loan" componentType="LoanService" />

</component>
Snippet A‑18: Example of @ComponentType Annotation
A.3.2 @Service

Annotation that indicates the start of a new service implementation.
Corresponds to: implementation.c element

Format:

/* @Service(name="serviceName", interfaceHeader="headerFile") */
Snippet A‑19: @Service Annotation Format
where

· name : NCName (0..1) – specifies the name of the service. The default is the service name for the interface.
· interfaceHeader : Name (1..1) – specifies the C header defining the interface.
Applies to: Set of functions implementing a service

Function definitions following this annotation form the implementation of this service. This annotation also serves to bound the scope of the remaining annotations in this section,

Example:
Implementation:

/* @Service(name="LoanService", interfaceHeader="loan.h") */

ComponentType definition:

<componentType name="LoanService">

 <service name="LoanService">

 <interface.c header="loans.h" />

 </service>

</componentType>
Snippet A‑20: Example of @Service Annotation
A.3.3 @Reference

Annotation on a service implementation to indicate it depends on another service providing a specified interface.

Corresponds to: reference element of a componentType element.

Format:

/* @Reference(name="referenceName", interfaceHeader="headerFile",

 required="true", multiple="true") */

Snippet A‑21: @Reference Annotation Format
where

· name : NCName (1..1) – specifies the name of the reference.

· interfaceHeader : Name (1..1) – specifies the C header defining the interface.
· required : boolean (0..1) – specifies whether a value has to be set for this reference. Default is true.
· multiple : boolean (0..1) – specifies whether this reference can be wired to multiple services. Default is false.
The multiplicity of the reference is determined from the required and multiple attributes. If the value of the multiple attribute is true, then component type has a reference with a multiplicity of either 0..n or 1..n depending on the value of the required attribute – 1..n applies if required=true. Otherwise a multiplicity of 0..1 or 1..1 is implied.

Applies to: Service

Example:
Implementation:

/* @Reference(name="getRate", interfaceHeader="rates.h") */

 *
 * @Reference(name="publishRate", interfaceHeader="myRates.h",

 * required="false", multiple="yes")
 */

ComponentType definition:

<componentType name="LoanService">

 <reference name="getRate">

 <interface.c header="rates.h">

 </reference>

 <reference name="publishRate" multiplicity="0..n">

 <interface.c header="myRates.h">

 </reference>

</componentType>
Snippet A‑22: Example of @Reference Annotation
A.3.4 @Property

Annotation on a service implementation to define a property of the service. Should idmmediately precede the variable that the property is based on. The variable declaration is only used for determining the type of the property. The variable will not be populated with the property value at runtime. Programs use the SCAProperty<Type>() functions for accessing property data.

Corresponds to: property element of a componentType element.

Format:

/* @Property(name="propertyName", type="typeName",

 default="defaultValue", required="true")*/

Snippet A‑23: @Property Annotation Format
where

· name : NCName (0..1) – specifies the name of the property. If name is not specified the property name is taken from the name of the variable.

· type : QName (0..1) – specifies the type of the property. If not specified the type of the property is based on the C mapping of the type of the following global variable to an xsd type as defined in Data Binding. If the variable is an array, then the property is many-valued.

· required : boolean (0..1) – specifies whether a value has to be set in the component definition for this property. Default is false.
· default : <type> (0..1) – specifies a default value and is only needed if required is false.

Applies to: Variable

An SCA implementation MUST ensure that all variables in a component implementation with the same name and annotated with @Property have the same type. [CA0007]
Example:
Implementation:

/* @Property */

long loanType;

ComponentType definition:

<componentType name="LoanService">

 <property name=”loanType” type=”xsd:int” />

</componentType>
A.1.1

·

Snippet A‑24: Example of @Property Annotation
A.3.5 @Init

Annotation on a service implementation to indicate a function to be called when the service is instantiated. If the service is implemented in a program, this annotation indicates the program is to be called with an initialization flag prior to the first operation.

Corresponds to: @ init=”true” attribute of an implementation.c element or a function child element of an implementation.c element.

Format:

/* @Init */
Snippet A‑25: @Init Annotation Format
The default is false (the function is not to be called on service initialization).

Applies to: Function or Service

Example:
Implementation:

/* @Init */

void init();

Component definition:

<component name="LoanService">

 <implementation.c module="loan" componentType="LoanService">
 <function name="init" init="true" />

 </implementation.c>
</component>
Snippet A‑26: Example of @Init Annotation
A.3.6 @Destroy

Annotation on a service implementation to indicate a function to be called when the service is terminated. If the service is implemented in a program, this annotation indicates the program is to be called with a termination flag after to the final operation.

Corresponds to: @destroy=”true” attribute of an implementation.c element or a function child element of an implementation.c element.

Format:

/* @Destroy */
Snippet A‑27: @Destroy Annotation Format
The default is false (the function is not to be called on service termination).

Applies to: Function or Service

Example:
Implementation:

/* @Destroy */

void cleanup();

Component definition:

<component name="LoanService">

 <implementation.c module="loan" componentType="LoanService">
 <function name="cleanup" destroy="true" />

 </implementation.c>
</component>
Snippet A‑28: Example of @Destroy Annotation
A.3.7 @EagerInit

Annotation on a service implementation to indicate the service is to be instantiated when its containing component is started.

Corresponds to: @eagerInit=”true” attribute of an implementation.c element.

Format:

/* @EagerInit */
Snippet A‑29: @EagerInit Annotation Format
The default is false (the service is initialized lazily).

Applies to: Service

Example:
Implementation:

/* @EagerInit */

Component definition:

<component name="LoanService">

 <implementation.c module="loan" componentType="LoanService"
 eagerInit="true" />

</component>
Snippet A‑30: Example of @EagerInit Annotation
A.3.8 @AllowsPassByReference

Annotation on service implementation or operation to indicate that a service or operation allows pass by reference semantics.

Corresponds to: @allowsPassByReference=”true” attribute of an implementation.c element or a function child element of an implementation.c element.

Format:

/* @AllowsPassByReference */
Snippet A‑31: @AllowsPassByReference Annotation Format
The default is false (the service does not allow by reference parameters).

Applies to: Service or Function

Example:
Implementation:

/* @Service(name="LoanService")

 * @AllowsPassByReference

 */

Component definition:

<component name="LoanService">

<implementation.c module="loan" componentType="LoanService"
 allowsPassByReference="true" />

</component>
Snippet A‑32: Example of @AllowsPassByReference Annotation
A.4 Base Annotation Grammar

While annotations are defined using the /* … */ format for comments, if the // … format is supported by a C compiler, the // … format MAY be supported by an SCA implementation annotation processor. [CA0006]
<annotation> ::= /* @<baseAnnotation> */
<baseAnnotation> ::= <name> [(<params>)]

<params> ::= <paramNameValue>[, <paramNameValue>]* |

 <paramValue>[, <paramValue>]*
<paramNameValue> ::= <name>=”<value>”
<paramValue> ::= “<value>”
<name> ::= NCName

<value> ::= string
Snippet A‑33: Base Annotation Grammar
· Adjacent string constants are concatenated

· NCName is as defined by XML schema [XSD]
· Whitespace including newlines between tokens is ignored.

· Annotations with parameters can span multiple lines within a comment, and are considered complete when the terminating “)” is reached.
B C SCA Policy Annotations

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence how implementations, services and references behave at runtime. The policy facilities are described in [POLICY]. In particular, the facilities include Intents and Policy Sets, where intents express abstract, high-level policy requirements and policy sets express low-level detailed concrete policies.

Policy metadata can be added to SCA assemblies through the means of declarative statements placed into Composite documents and into Component Type documents. These annotations are completely independent of implementation code, allowing policy to be applied during the assembly and deployment phases of application development.

However, it can be useful and more natural to attach policy metadata directly to the code of implementations. This is particularly important where the policies concerned are relied on by the code itself. An example of this from the Security domain is where the implementation code expects to run under a specific security Role and where any service operations invoked on the implementation have to be authorized to ensure that the client has the correct rights to use the operations concerned. By annotating the code with appropriate policy metadata, the developer can rest assured that this metadata is not lost or forgotten during the assembly and deployment phases.

The SCA C policy annotations provide the capability for the developer to attach policy information to C implementation code. The annotations provide both general facilities for attaching SCA Intents and Policy Sets to C code and annotations for specific policy intents. Policy annotation can be used in files for service interfaces or component implementations.
B.1 General Intent Annotations

SCA provides the annotation @Requires for the attachment of any intent to a C function, to a C function declaration or to sets of functions implementing a service or sets of function declarations defining a service interface.

The @Requires annotation can attach one or multiple intents in a single statement.
Each intent is expressed as a string. Intents are XML QNames, which consist of a Namespace URI followed by the name of the Intent. The precise form used is:
"{" + Namespace URI + "}" + intentname
Snippet B‑1: Intent Format
Intents can be qualified, in which case the string consists of the base intent name, followed by a ".", followed by the name of the qualifier. There can also be multiple levels of qualification.
This representation is quite verbose, so we expect that reusable constants will be defined for the namespace part of this string, as well as for each intent that is used by C code. SCA defines constants for intents such as the following:
/* @Define SCA_PREFIX "{http://docs.oasis-pen.org/ns/opencsa/sca/200912}" */
/* @Define CONFIDENTIALITY SCA_PREFIX ## "confidentiality" */
/* @Define CONFIDENTIALITY_MESSAGE CONFIDENTIALITY ## ".message" */
Snippet B‑2: Example Intent Constants
Notice that, by convention, qualified intents include the qualifier as part of the name of the constant, separated by an underscore. These intent constants are defined in the file that defines an annotation for the intent (annotations for intents, and the formal definition of these constants, are covered in a following section).

Multiple intents (qualified or not) are expressed as separate strings within an array declaration.

Corresponds to: @requires attribute of an interface.c, implementation.c, function or callbackFunction element.

Format:

/* @Requires("qualifiedIntent" | {"qualifiedIntent" [, "qualifiedIntent"]}) */

where

qualifiedIntent ::= QName | QName.qualifier | QName.qualifier1.qualifier2
Snippet B‑3: @Requires Annotation Format
Applies to: Interface, Service, Function, Function Prototype
Examples:

Attaching the intents "confidentiality.message" and "integrity.message".

/* @Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE}) */
Snippet B‑4: Example @Requires Annotation
A reference requiring support for confidentiality:

/* @Requires(CONFIDENTIALITY)

 * @Reference(interfaceHeader="SetBar.h") */

 void setBar(struct barType *bar);
Snippet B‑5: @Requires Annotation applied with an @Reference Annotation
Users can also choose to only use constants for the namespace part of the QName, so that they can add new intents without having to define new constants. In that case, this definition would instead look like this:
/* @Requires(SCA_PREFIX "confidentiality")

 * @Reference(interfaceHeader="SetBar.h") */

 void setBar(struct barType *bar);
Snippet B‑6: @Requires Annotation Using Mixed Constants and Literals
B.2 Specific Intent Annotations

In addition to the general intent annotation supplied by the @Requires annotation described above, there are C annotations that correspond to specific policy intents.
The general form of these specific intent annotations is an annotation with a name derived from the name of the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation in the form of a string or an array of strings.

For example, the SCA confidentiality intent described in General Intent Annotations using the @Requires(CONFIDENTIALITY) intent can also be specified with the specific @Confidentiality intent annotation. The specific intent annotation for the "integrity" security intent is:
/* @Integrity */
Snippet B‑7: Example Specific Intent Annotation
Corresponds to: @requires=”<Intent>” attribute of an interface.c, implementation.c, function or callbackFunction element.

Format:

/* @<Intent>[(qualifiers)] */

where Intent is an NCName that denotes a particular type of intent.

Intent ::= NCName

qualifiers ::= "qualifier" | {"qualifier" [, "qualifier"] }

qualifier ::= NCName | NCName/qualifier
Snippet B‑8: @<Intent> Annotation Format
Applies to: Interface, Service, Function, Function Prototype – but see specific intents for restrictions

Example:
/* @ClientAuthentication({"message", "transport"}) */
Snippet B‑9 Example @<Intent> Annotation
This annotation attaches the pair of qualified intents: authentication.message and authentication.transport (the sca: namespace is assumed in both of these cases – "http:// docs.oasis-open.org/ns/opencsa/sca/200912").

The Policy Framework [POLICY] defines a number of intents and qualifiers. Security Interaction – Miscellaneous define the annotations for those intents.

B.2.1 Security Interaction

	Intent
	Annotation

	clientAuthentication
	@ClientAuthentication

	serverAuthentication
	@ServerAuthentication

	mutualAuthentication
	@MutualAuthentication

	confidentiality
	@Confidentiality

	integrity
	@Integrity

Table B‑1: Security Interaction Intent Annotations
These three intents can be qualified with

· transport

· message

B.2.2 Security Implementation

	
	

	
	

	
	

	
	

	
	

	Intent
	Annotation
	Qualifiers

	authorization
	@Authorization
	fine_grain

Table B‑2: Security Implementation Intent Annotations
B.2.3 Reliable Messaging

	Intent
	Annotation

	atLeastOnce
	@AtLeastOnce

	atMostOnce
	@AtMostOnce

	ordered
	@Ordered

	exactlyOnce
	@ExactlyOnce

Table B‑3: Reliable Messagng Intent Annotations
B.2.4 Transactions

	Intent
	Annotation
	Qualifiers

	managedTransaction
	@ManagedTransaction
	
local

global

	noManagedTransaction
	@NoManagedTransaction
	

	transactedOneWay
	@TransactedOneWay
	

	immediateOneWay
	@ImmediateOneWay
	

	propagates Transaction
	@PropagatesTransaction
	

	suspendsTransaction
	@SuspendsTransaction
	

Table B‑4: Transaction Intent Annotations
B.2.5 Miscellaneous

	Intent
	Annotation
	Qualifiers

	SOAP
	@SOAP
	v1_1
v1_2

	
	
	

A.2

A.3

·
·
·
·

A.4

Table B‑5: Miscellaneous Intent Annotations
B.3 Policy Set Annotations

The SCA Policy Framework uses Policy Sets to capture detailed low-level concrete policies (for example, a concrete policy is the specific encryption algorithm to use when encrypting messages when using a specific communication protocol to link a reference to a service).
Policy Sets can be applied directly to C implementations using the @PolicySets annotation. The PolicySets annotation either takes the QName of a single policy set as a string or the name of two or more policy sets as an array of strings.

Corresponds to: @policySets attribute of an interface.c, implementation.c, function or callbackFunction element.

Format:

/* @PolicySets("<policy set QName>" |

 { "<policy set QName>" [, "<policy set QName>"] }) */
Snippet B‑10: @PolicySets Annotation Format
As for intents, PolicySet names are QNames – in the form of “{Namespace-URI}localPart”.

Applies to: Interface, Service, Function, Function Prototype

Example:

/* @Reference(name="helloService", interfaceHeader="helloService.h",

 * required=true)

 * @PolicySets({ MY_NS "WS_Encryption_Policy",

 * MY_NS "WS_Authentication_Policy" }) */

 HelloService* helloService;

…

}

Snippet B‑11: Example @PolicySets Annotation
In this case, the Policy Sets WS_Encryption_Policy and WS_Authentication_Policy are applied, both using the namespace defined for the constant MY_NS.

PolicySets satisfy intents expressed for the implementation when both are present, according to the rules defined in [POLICY].

B.4 Policy Annotation Grammar Additions

<annotation> ::= /* @<baseAnnotation> | @<requiresAnnotation> |

 @<intentAnnotation> | @<policySetAnnotation> */
<requiresAnnotation> ::= Requires(<intents>)

<intents> ::= “<qualifiedIntent>” |
 {“<qualifiedIntent>”[, “<qualifiedIntent>”]*})

<qualifiedIntent> ::= <intentName> | <intentName>.<qualifier> |

 <intentName>.<qualifier>.qualifier>

<intentName> ::= {anyURI}NCName

<intentAnnotation> ::= <intent>[(<qualifiers>)]

<intent> ::= NCName[(param)]
<qualifiers> ::= “<qualifier>” | {“<qualifier>”[, “<qualifier>”]*}

<qualifier> ::= NCName | NCName/<qualifier>

<policySetAnnotation> ::= policySets(<policysets>)

<policySets> ::= “<policySetName>” | {“<policySetName>”[, “<policySetName>”]*}

<policySetName> ::= {anyURI}NCName
Snippet B‑12: Annotation Grammar Additions for Policy Annotations
· anyURI is as defined by XML schema [XSD]
B.5 Annotation Constants

<annotationConstant> ::= /* @Define <identifier> <token string> */

<identifier> ::= token
<token string> ::= “string” | “string”[## <token string>]

Snippet B‑13: Annotation Constants Grammar
· Constants are immediately expanded
C C WSDL Annotations

To allow developers to control the mapping of C to WSDL, a set of annotations is defined. If WSDL mapping annotations are supported by an implementation, the annotations defined here MUST be supported and MUST be mapped to WSDL as described. [CC0005]
C.1 Interface Header Annotations

C.1.1 @WebService

Annotation on a C header file indicating that it represents a web service. A second or subsequent instance of this annotation in a file, or a first instance after any function declarations indicates the start of a new service and has to contain a name value. An SCA implementation MUST treat any instance of a @Remotable annotation and without an explicit @WebService annotation as if a @WebService annotation with a name value equal to the name value of the @Interface annotation, if specified, and no other parameters was specified. [CC0001]
Corresponds to: javax.jws.WebService annotation in the JAX-WS specification (7.11.1)

Format:

/* @WebService(name="portTypeName", targetNamespace="namespaceURI",
 * serviceName="WSDLServiceName", portName="WSDLPortName") */

Snippet C‑1: @WebService Annotation Format
where

· name : NCName (0..1) – specifies the name of the web service portType. The default is the root name of the header file containing the annotation. The name of the associated binding is also determined by the portType. The binding name is the name of the portType suffixed with “Binding”.
· targetNamespace : anyURI (0..1) – specifies the target namespace for the web service. The default namespace is determined by the implementation.

· serviceName : NCName (0..1) – specifies the name for the associated WSDL service. The default service name is the name of the header file containing the annotation suffixed with “Service”.
· portName : NCName (0..1) – specifies the name for the associated WSDL port for the service If portName is not specified, the name of the WSDL port is the name of the portType suffiexed with “Port”. See [CF0032]
Applies to: Header file

Example:

Input C header file (stockQuote.h):
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

…
Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑2: Example @WebService Annotation
C.1.2 @WebFunction

Annotation on a C function indicating that it represents a web service operation. An SCA implementation MUST treat a function annotated with an @Function annotation and without an explicit @WebFunction annotation as if a @WebFunction annotation with with an operationName value equal to the name value of the @Function annotation, an exclude value equal to the exclude value of the @Function annotation and no other parameters was specified. [CC0002]
Corresponds to: javax.jws.WebMethod annotation in the JAX-WS specification (7.11.2)

Format:

/* @WebFunction(operationName="operation", action="SOAPAction",

 * exclude="false") */

Snippet C‑3: @WebFunction Annotation Format
where:

· operationName : NCName (0..1) – specifies the name of the WSDL operation to associate with this function. The default is the name of the C function the annotation is applied to omitting any preceding namespace prefix and portType name.

· action : string (0..1) – specifies the value associated with the soap:operation/@soapAction attribute in the resulting code. The default value is an empty string.

· exclude : boolean (0..1) – specifies whether this function is included in the web service interface. The default value is “false”.

Applies to: Function.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice") */

float getLastTradePrice(const char *tickerSymbol);

/* @WebFunction(exclude="true") */

void setLastTradePrice(const char *tickerSymbol, float value);
Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>
 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑4: Example @WebFunction Annotation
C.1.3 @WebOperation

Annotation on a C request message struct indicating that it represents a web service operation. An SCA implementation MUST treat a struct annotated with an @Operation annotation without an explicit @WebOperation annotation as if a @WebOperation annotation with with an operationName value equal to the name value of the @Operation annotation, a response value equal to the response value of the @Operation annotation, an exclude value equal to the exclude value of the @Operation annotation and no other parameters was specified. [CC0003]
Corresponds to: javax.jws.WebMethod annotation in the JAX-WS specification (7.11.2)

Format:

/* @WebOperation(operationName="operation", response"responseStruct",

 * action="SOAPAction", exclude="false") */

Snippet C‑5: @WebOperation Annotation Format
where:

· operationName : NCName (0..1) – specifies the name of the WSDL operation to associate with this request message struct. The default is the name of the C struct the annotation is applied to omitting any preceding namespace prefix and portType name.

· response : NMTOKEN (0..1) – specifies the name of the struct that defines the format of the response message.

· action string : (0..1) – specifies the value associated with the soap:operation/@soapAction attribute in the resulting code. The default value is an empty string.

· exclude binary : (0..1) – specifies whether this struct is included in the web service interface. The default value is “false”.

Applies to: Struct.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebOperation(operationName="GetLastTradePrice",

 * response="getLastTradePriseResponseMsg"
 * action="urn:GetLastTradePrice") */

struct getLastTradePriceMsg {

 char tickerSymbol[10];

} getLastTradePrice;

struct getLastTradePriceResponseMsg {

 float return;

} getLastTradePriceResponse;

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:simpleType name="TickerSymbolType">

 <xs:restriction base="xs:string">

 <xsd:maxlength value="9"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="TickerSymbolType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>
 <message name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:struct name="getLastTradePrice"/>

 </sca-c:bindings>

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <sca-c:bindings>

 <sca-c:struct name="getLastTradePriceResponse"/>

 </sca-c:bindings>

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑6: Example @WebOperation Annotation
C.1.4 @OneWay

Annotation on a C function indicating that it represents a one-way request. The @OneWay annotation also affects the service interface. See @OneWay.

Corresponds to: javax.jws.OneWay annotation in the JAX-WS specification (7.11.3)

Format:

/* @OneWay */

Snippet C‑7: @OneWay Annotation Format
Applies to: Function.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="SetTradePrice",

 * action="urn:SetTradePrice")

 * @OneWay */

void setTradePrice(const char *tickerSymbol, float price);
Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="SetTradePrice" type="tns:SetTradePrice"/>

 <xs:complexType name="SetTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 <xs:element name="price" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="SetTradePrice">

 <part name="parameters" element="tns:SettTradePrice">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="SettTradePrice">

 <sca-c:bindings>

 <sca-c:function name="setTradePrice"/>

 </sca-c:bindings>

 <input name="SetTradePrice" message="tns:SetTradePrice">

 </input>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="SetTradePrice">

 <soap:operation soapAction="urn:SetTradePrice" style="document"/>

 <input name="SetTradePrice">

 <soap:body use="literal"/>

 </input>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑8: Example @OneWay Annotation
C.1.5 @WebParam

Annotation on a C function indicating the mapping of a parameter to the associated input and output WSDL messages. Or on a C struct indicating the mapping of a member to the associated WSDL message.
Corresponds to: javax.jws.WebParam annotation in the JAX-WS specification (7.11.4)

Format:

/* @WebParam(paramName="parameter", name="WSDLElement",

 * targetNamespace="namespaceURI", mode="IN"|"OUT"|"INOUT",

 * header="false", partName="WSDLPart", type="xsdType") */

Snippet C‑9: @WebParam Annotation Format
where:

· paramName : NCName (1..1) – specifies the name of the parameter that this annotation applies to. The value of the paramName of a @WebParam annotation MUST be the name of a parameter of the function the annotation is applied to. [CC0009]
· name : NCName (0..1) – specifies the name of the associated WSDL part or element. The default value is the name of the parameter. If an @WebParam annotation is not present, and the parameter is unnamed, then a name of “argN”, where N is an incrementing value from 1 indicating the position of he parameter in the argument list, will be used.

· targetNamespace : string (0..1) – specifies the target namespace for the part. The default namespace is is the namespace of the associated @WebService. The targetNamespace attribute is ignored unless the binding style is document, and the binding parameterStyle is bare. See @SOAPBinding.

· mode : token (0..1) – specifies whether the parameter is associated with the input message, output message, or both. The default value is determined by the passing mechanism for the parameter. See Method Parameters and Return Type.

· header : boolean (0..1) – specifies whether this parameter is associated with a SOAP header element. The default value is “false”.

· partName : NCName (0..1) – specifies the name of the WSDL part associated with this item. The default value is the value of name.

· type : QName (0..1) – specifies the XML Schema type of the WSDL part or element associated with this parameter. The value of the type property of a @WebParam annotation MUST be either one of the simpleTypes defined in namespace http://www.w3.org/2001/XMLSchemahttp://www.w3.org/2001/XMLSchema or, if the type of the parameter is a struct, the QName of a XSD complex type following the mapping specified in Complex Content Binding. [CC0006] The default type is determined by the mapping defined in Data Binding.

Applies to: Function parameter or struct member.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice")

 * @WebParam(paramName="tickerSymbol", name="symbol", mode="IN") */

float getLastTradePrice(char *tickerSymbol);
Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="symbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>
 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 <sca-c:parameter name="tickerSymbol"

 part="tns:GetLastTradePrice/parameter"

 childElementName="symbol"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑10: Example @WebParam Annotation
C.1.6 @WebResult

Annotation on a C function indicating the mapping of the function’s return type to the associated output WSDL message.

Corresponds to: javax.jws.WebResult annotation in the JAX-WS specification (7.11.5)

Format:

/* @WebResult(name="WSDLElement", targetNamespace="namespaceURI",

 * header="false", partName="WSDLPart", type="xsdType") */

Snippet C‑11: @WebResult Annotation Format
where:

· name : NCName (0..1) – specifies the name of the associated WSDL part or element. The default value is “return”.

· targetNamespace : string (0..1) – specifies the target namespace for the part. The default namespace is the namespace of the associated @WebService. The targetNamespace attribute is ignored unless the binding style is document, and the binding parameterStyle is bare. (See @SOAPBinding).

· header : boolean (0..1) – specifies whether the result is associated with a SOAP header element. The default value is “false”.

· partName : NCName (0..1) – specifies the name of the WSDL part associated with this item. The default value is the value of name.

· type : NCName (0..1) – specifies the XML Schema type of the WSDL part or element associated with this parameter. The value of the type property of a @WebResult annotation MUST be one of the simpleTypes defined in namespace http://www.w3.org/2001/XMLSchema. [CC0007] The default type is determined by the mapping defined in 11.3.1.

Applies to: Function.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice")

 * @WebResult(name="price") */

float getLastTradePrice(const char *tickerSymbol);

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="price" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑12: Example @WebResult Annotation
C.1.7 @SOAPBinding

Annotation on a C WebService or function specifying the mapping of the web service onto the SOAP message protocol.

Corresponds to: javax.jws.SOAPBinding annotation in the JAX-WS specification (7.11.6)

Format:

/* @SOAPBinding(style="DOCUMENT"|"RPC", use="LITERAL"|"ENCODED",

 * parameterStyle="BARE"|"WRAPPED") */

Snippet C‑13: @SOAPBinding Annotation Format
where:

· style : token (0..1) – specifies the WSDL binding style. The default value is “DOCUMENT”.

· use : token (0..1) – specifies the WSDL binding use. The default value is “LITERAL”.

· parameterStyle : token (0..1) – specifies the WSDL parameter style. The default value is “WRAPPED”.

Applies to: WebService, Function.

Example:

Input C header file:
/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

 * @SOAPBinding(style="RPC") */

…
Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑14: Example @SOAPBinding Annotation
C.1.8 @WebFault

Annotation on a C struct indicating that it format of a fault message.

Corresponds to: javax.xml.ws.WebFault annotation in the JAX-WS specification (7.2)

Format:

/* @WebFault(name="WSDLElement", targetNamespace="namespaceURI") */

Snippet C‑15: @WebFault Annotation Format
where:

· name : NCName (1..1) – specifies the local name of the global element mapped to this fault.
· targetNamespace : string (0..1) – specifies the namespace of the global element mapped to this fault. The default namespace is determined by the implementation.
Applies to: struct.

Example:

Input C header file:
/* @WebFault(name="UnknownSymbolFault",

 * targetNamespace="http://www.example.org/")

struct UnkSymMsg {

 char faultInfo[10];

} unkSymInfo;

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice")

 * @WebThrows(faults="unkSymMsg") */

float getLastTradePrice(const char *tickerSymbol);

Generated WSDL file:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="UnknownSymbolFaultType">

 <xs:restriction base="xs:string">

 <xsd:maxlength value="9"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="UnknownSymbolFault" type="UnknownSymbolFaultType"/>

 </xs:schema>

 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>
 <message name="UnknownSymbol">

 <sca-c:bindings>

 <sca-c:struct name="unkSymMsg"/>

 </sca-c:bindings>

 <part name="parameters" element="tns:UnknownSymbolFault">

 </part>

 </message>
 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 <fault name="UnknownSymbol” message="tns:UnknownSymbol">

 </fault>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 <fault>

 <soap:fault name="UnknownSymbol" use="literal"/>

 </fault>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Snippet C‑16: Example @WebFault Annotation
C.1.9 @WebThrows

Annotation on a C function or operation indicating which faults might be thrown by this function or operation.
Corresponds to: No equivalent in JAX-WS.

Format:

/* @WebThrows(faults="faultMsg1"[, "faultMsgn"]*) */

Snippet C‑17: @WebThrows Annotation Format
where:

· faults : NMTOKEN (1..n) – specifies the names of all faults that might be thrown by this function or operation. The name of the fault is the name of its associated C struct name. A C struct that is listed in a @WebThrows annotation MUST itself have a @WebFault annotation. [CC0004]
Applies to: Function or Operation

Example:

See @WebFault.
D C WSDL Mapping Extensions

The following WSDL extensions are used to augment the conversion process from WSDL to C. All of these extensions are defined in the namespace http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901. For brevity, all definitions of these extensions will be fully qualified, and all references to the “sca-c” prefix are associated with the namespace above. If WSDL extensions are supported by an implementation, all the extensions defined here MUST be supported and MUST be mapped to C as described. [CD0001]
D.1 <sca-c:bindings>

<sca-c:bindings> is a container type which can be used as a WSDL extension. All other SCA wsdl extensions will be specified as children of a <sca-c:bindings> element. An <sca-c:bindings> element can be used as an extension to any WSDL type that accepts extensions.

D.2 <sca-c:prefix>

<sca-c:prefix> provides a mechanism for defining an alternate prefix for the functions or structs implementing the operations of a portType.
Format:

<sca-c:prefix name="portTypePrefix"/>

Snippet D‑1: <sca-c:prefix> Element Format
where:

· prefix/@name : string (1..1) – specifies the string to prepend to an operation name when generating a C function or structure name.
Applicable WSDL element(s):
· wsdl:portType
A <sca-c:bindings/> element MUST NOT have more than one < sca-c:prefix/> child element. [CD0003]
Example:

Input WSDL file:
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>
 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Generated C header file:

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice") */

float stockQuoteGetLastTradePrice(const char *tickerSymbol);

Snippet D‑2: Example <sca-c:prefix> Element
D.3 <sca-c:enableWrapperStyle>

<sca-c:enableWrapperStyle> indicates whether or not the wrapper style for messages is applied, when otherwise applicable. If false, the wrapper style will never be applied.
Format:

<sca-c:enableWrapperStyle>value</sca-c:enableWrapperStyle>

Snippet D‑3: <sca-c:enableWrapperStyle> Element Format
where:

· enableWrapperStyle/text() : boolean (1..1) – specifies whether wrapper style is enabled or disabled for this element and any of it’s children. The default value is “true”.
Applicable WSDL element(s):

· wsdl:definitions
· wsdl:portType – overrides a binding applied to wsdl:definitions
· wsdl:portType/wsdl:operation – overrides a binding applied to wsdl:definitions or the enclosing wsdl:portType
A <sca-c:bindings/> element MUST NOT have more than one < sca-c:enableWrapperStyle/> child element. [CD0004]
Example:

Input WSDL file:
 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"

 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 <sca-c:enableWrapperStyle>false</sca-c:enableWrapperStyle>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

</definitions>

Generated C header file:

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/"

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice") */

DATAOBJECT getLastTradePrice(DATAOBJECT parameters);

Snippet D‑4: Example <sca-c:enableWrapperStyle> Element
D.4 <sca-c:function>

<sca-c:function> specifies the name of the C function that the associated WSDL operation is associated with. If <sca-c:function> is used, the portType prefix, either default or a specified with <sca-c:prefix> is not prepended to the function name.
Format:

<sca-c:function name="myFunction"/>

Snippet D‑5: <sca-c:function> Element Format
where:

· function/@name : NCName (1..1) – specifies the name of the C function associated with this WSDL operation.
Applicable WSDL element(s):

· wsdl:portType/wsdl:operation
A <sca-c:bindings/> element MUST NOT have more than one < sca-c:function/> child element. [CD0005]
Example:

Input WSDL file:
 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"

 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getTradePrice"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

</definitions>

Generated C header file:

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/"

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice") */

float getTradePrice(const wchar_t *tickerSymbol);

Snippet D‑6: Example <sca-c:function> Element
D.5 <sca-c:struct>

<sca-c:struct> specifies the name of the C struct that the associated WSDL message is associated with. If <sca-c:struct> is used for an operation request or response message, the portType prefix, either default or a specified with <sca-c:prefix> is not prepended to the struct name.
Format:

<sca-c:struct name="myStruct"/>

Snippet D‑7: <sca-c:struct> Element Format
where:

· struct/@name : NCName (1..1) – specifies the name of the C struct associated with this WSDL message.
Applicable WSDL element(s):

· wsdl:message
A <sca-c:bindings/> element MUST NOT have more than one < sca-c:struct/> child element. [CD0006]
Example:

Input WSDL file:
 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"

 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="tickerSymbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:struct name="getTradePrice"/>

 </sca-c:bindings>

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <sca-c:bindings>

 <sca-c:struct name="getTradePriceResponse"/>

 </sca-c:bindings>

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

</definitions>

Generated C header file:

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/"

 * serviceName="StockQuoteService") */

/* @WebOperation(operationName="GetLastTradePrice",

 * response="getLastTradePriseResponse"

 * action="urn:GetLastTradePrice") */

struct getLastTradePrice {

 wchar_t *tickerSymbol; /* Since the length of the element is not

 * restricted, a pointer is returned with the

 * actual value held by the SCA runtime. */

};

struct getLastTradePriceResponse {

 float return;

};

Snippet D‑8: Example <sca-c:struct> Element
D.6 <sca-c:parameter>

<sca-c:parameter> specifies the name of the C function parameter or struct member associated with a specific WSDL message part or wrapper child element.
Format:

<sca-c:parameter name="CParameter" part="WSDLPart"

 childElementName="WSDLElement" type="CType"/>

Snippet D‑9: <sca-c:parameter> Element Format
where:

· parameter/@name : NCName (1..1) – specifies the name of the C function parameter or struct member associated with this WSDL operation part or wrapper child element. “return” is used to denote the return value.
· parameter/@part : string (1..1) - an XPath expression identifying the wsdl:part of a wsdl:message.
· parameter/@childElementName : QName (1..1) – specifies the qualified name of a child element of the global element identified by parameter/@part.
· parameter/@type : string (0..1) – specifies the type of the parameter or struct member or return type. The @type attribute of a <parameter/> element MUST be either a C type specified in Simple Content Binding or, if the message part has complex content, a struct following the mapping specified in Complex Content Binding. [CD0002] The default type is determined by the mapping defined in Data Binding.

Applicable WSDL element(s):
· wsdl:portType/wsdl:operation
Example:

Input WSDL file:
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:tns="http://www.example.org/"
 targetNamespace="http://www.example.org/">

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.example.org/"

 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://www.example.org/">

 <xs:element name="GetLastTradePrice" type="tns:GetLastTradePrice"/>

 <xs:element name="GetLastTradePriceResponse"

 type="tns:GetLastTradePriceResponse"/>

 <xs:complexType name="GetLastTradePrice">

 <xs:sequence>

 <xs:element name="symbol" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GetLastTradePriceResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <message name="GetLastTradePrice">

 <part name="parameters" element="tns:GetLastTradePrice">

 </part>

 </message>

 <message name="GetLastTradePriceResponse">

 <part name="parameters" element="tns:GetLastTradePriceResponse">

 </part>

 </message>

 <portType name="StockQuote">

 <sca-c:bindings>

 <sca-c:prefix name="stockQuote"/>

 </sca-c:bindings>

 <operation name="GetLastTradePrice">

 <sca-c:bindings>

 <sca-c:function name="getLastTradePrice"/>

 <sca-c:parameter name="tickerSymbol"

 part="tns:GetLastTradePrice/parameters"

 childElementName="symbol"/>

 </sca-c:bindings>

 <input name="GetLastTradePrice" message="tns:GetLastTradePrice">

 </input>

 <output name="GetLastTradePriceResponse"

 message="tns:GetLastTradePriceResponse">

 </output>

 </operation>

 </portType>

 <binding name="StockQuoteServiceSoapBinding">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="urn:GetLastTradePrice" style="document"/>

 <input name="GetLastTradePrice">

 <soap:body use="literal"/>

 </input>

 <output name="GetLastTradePriceResponse">

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteServiceSoapBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

Generated C header file:

/* @WebService(name="StockQuote", targetNamespace="http://www.example.org/",

 * serviceName="StockQuoteService") */

/* @WebFunction(operationName="GetLastTradePrice",

 * action="urn:GetLastTradePrice")

 * @WebParam(paramName="tickerSymbol", name="symbol") */

float getLastTradePrice(const wchar_t *tickerSymbol);

Snippet D‑10: Example <sca-c:parameter> Element
D.7 JAX-WS WSDL Extensions

An SCA implementation MAY support the reading and interpretation of JAX-WS defined WSDL extensions; however it MUST give precedence to the corresponding SCA WSDL extension if present. Table D‑1 is a list of JAX-WS WSDL extensions that MAY be interpreted, and their corresponding SCA WSDL extension. [CD0007]
	JAX-WS Extension
	SCA Extension

	jaxws:bindings
	sca-c:bindings

	jaxws:class
	sca-c:prefix

	jaxws:method
	sca-c:function

	jaxws:parameter
	sca-c:parameter

	jaxws:enableWrapperStyle
	sca-c:enableWrapperStyle

A.5

Table D‑1: Allowed JAX-WS Extensions
D.8 sca-wsdlext-c-1.1.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:sca-c="http://docs.oasis-open.org/ns/opencsa/sca-c-cpp/c/200901"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <element name="bindings" type="sca-c:BindingsType" />

 <complexType name="BindingsType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="sca-c:prefix" />

 <element ref="sca-c:enableWrapperStyle" />

 <element ref="sca-c:function" />

 <element ref="sca-c:struct" />

 <element ref="sca-c:parameter" />

 </choice>

 </complexType>

 <element name="prefix" type="sca-c:PrefixType" />

 <complexType name="PrefixType">

 <attribute name="name" type="xsd:string" use="required" />

 </complexType>

 <element name="function" type="sca-c:FunctionType" />

 <complexType name="FunctionType">

 <attribute name="name" type="xsd:NCName" use="required" />

 </complexType>

 <element name="struct" type="sca-c:StructType" />

 <complexType name="StructType">

 <attribute name="name" type="xsd:NCName" use="required" />

 </complexType>

 <element name="parameter" type="sca-c:ParameterType" />

 <complexType name="ParameterType">

 <attribute name="part" type="xsd:string" use="required" />

 <attribute name="childElementName" type="xsd:QName" use="required" />

 <attribute name="name" type="xsd:NCName" use="required" />

 <attribute name="type" type="xsd:string" use="optional" />

 </complexType>

 <element name="enableWrapperStyle" type="xsd:boolean" />

</schema>
Snippet D‑11: SCA C WSDL Extension Schema
E XML Schemas

E.1 sca-interface-c-1.1.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 elementFormDefault="qualified">

 <include schemaLocation="sca-core.xsd"/>

 <element name="interface.c" type="sca:CInterface"

 substitutionGroup="sca:interface"/>

 <complexType name="CInterface">

 <complexContent>

 <extension base="sca:Interface">

 <sequence>

 <element name="function" type="sca:CFunction"
 minOccurs="0" maxOccurs="unbounded" />

 <element name="callbackFunction" type="sca:CFunction"
 minOccurs="0" maxOccurs=”unbounded" />

 <any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="header" type="string" use="required"/>

 <attribute name="callbackHeader" type="string" use="optional"/>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="CFunction">

 <sequence>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="sca:requires"/>

 <element ref="sca:policySetAttachment"/>

 </choice>

 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />

 </sequence>

 <attribute name="name" type="NCName" use="required"/>

 <attribute name="requires" type="sca:listOfQNames" use="optional"/>
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/>

 <attribute name="oneWay" type="boolean" use="optional"/>

 <attribute name="exclude" type="boolean" use="optional"/>
 <attribute name="input" type="NCName" use="optional"/>

 <attribute name="output" type="NCName" use="optional"/>

 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

</schema>
Snippet E‑1: SCA <interface.c> Schema
E.2 sca-implementation-c-1.1.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 elementFormDefault="qualified">

 <include schemaLocation="sca-core.xsd"/>

 <element name="implementation.c" type="sca:CImplementation"

 substitutionGroup="sca:implementation" />

 <complexType name="CImplementation">

 <complexContent>

 <extension base="sca:Implementation">

 <sequence>

 <element name="operation" type="sca:CImplementationFunction"
 minOccurs="0" maxOccurs="unbounded" />

 <any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="module" type="NCName" use="required"/>

 <attribute name="path" type="string" use="optional"/>

 <attribute name="library" type="boolean" use="optional"/>

 <attribute name="componentType" type="string" use="required"/>

 <attribute name="eagerInit" type="boolean" use="optional"/>

 <attribute name="init" type="boolean" use="optional"/>

 <attribute name="destoy" type="boolean" use="optional"/>

 <attribute name="allowsPassByReference" type="boolean"

 use="optional"/>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="CImplementationFunction">

 <sequence>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="sca:requires"/>

 <element ref="sca:policySetAttachment"/>

 </choice>

 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />

 </sequence>

 <attribute name="name" type="NCName" use="required"/>

 <attribute name="requires" type="sca:listOfQNames" use="optional"/>

 <attribute name="policySets" type="sca:listOfQNames" use="optional"/>

 <attribute name="allowsPassByReference" type="boolean"

 use="optional"/>

 <attribute name="init" type="boolean" use="optional"/>

 <attribute name="destoy" type="boolean" use="optional"/>

 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

</schema>
Snippet E‑2: SCA <implementation.c> Schema
E.3 sca-contribution-c-1.1.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 elementFormDefault="qualified">

 <include schemaLocation="sca-contributions.xsd"/>

 <element name="export.c" type="sca:CExport"

 substitutionGroup="sca:Export"/>

 <complexType name="CExport">

 <complexContent>

 <attribute name="name" type="QName" use="required"/>

 <attribute name="path" type="string" use="optional"/>

 </complexContent>

 </complexType>

 <element name="import.c" type="sca:CImport"

 substitutionGroup="sca:Import"/>

 <complexType name="CImport">

 <complexContent>

 <attribute name="name" type="QName" use="required"/>

 <attribute name="location" type="string" use="required"/>

 </complexContent>

 </complexType>

</schema>
B

Snippet E‑3: SCA <export.c> and <import.c> Schema
F Normative Statement Summary
This section contains a list of normative statements for this specification.

	Conformance ID
	Description

	[C20001]
	A C implementation MUST implement all of the operation(s) of the service interface(s) of its componentType.

	
	

	[C20004]
	A C implementation MUST only designate functions with no arguments and a void return type as lifecycle functions.

	[C20006]
	If the header file identified by the @header attribute of an <interface.c/> element contains function or struct declarations that are not operations of the interface, then the functions or structs that are not operations of the interface MUST be excluded using <function/> child elements of the <interface.c/> element with @exclude="true".

	[C20007]
	If the header file identified by the @callbackHeader attribute of an <interface.c/> element contains function or struct declarations that are not operations of the callback interface, then the functions or structs that are not operations of the callback interface MUST be excluded using <callbackFunction/> child elements of the <interface.c/> element with @exclude="true".

	
	

	[C20009]
	The @name attribute of a <function/> child element of a <interface.c/> MUST be unique amongst the <function/> elements of that <interface.c/>.

	[C20010]
	The @name attribute of a <callbackFunction/> child element of a <interface.c/> MUST be unique amongst the <callbackFunction/> elements of that <interface.c/>.

	
	

	
	

	[C20013]
	The @name attribute of a <function/> child element of a <implementation.c/> MUST be unique amongst the <function/> elements of that <implementation.c/>.

	[C20015]
	An SCA runtime MUST NOT perform any synchronization of access to component implementations.

	
	

	[C20016]
	The SCA runtime MAY use by-reference semantics when passing input parameters, return values or exceptions on calls to remotable services within the same system address space if both the service function implementation and the client are marked “allows pass by reference”.

	[C20017]
	The SCA runtime MUST use by-value semantics when passing input parameters, return values and exceptions on calls to remotable services within the same system address space if the service function implementation is not marked “allows pass by reference” or the client is not marked “allows pass by reference”.

	[C30001]
	An SCA implementation MAY support proxy functions.

	[C40001]
	An operation marked as oneWay is considered non-blocking and the SCA runtime MAY use a binding that buffers the requests to the function and sends them at some time after they are made.

	[C50001]
	Vendor defined reason codes SHOULD start at 101.

	[C60002]
	An SCA runtime MAY additionally provide a DataObject variant of this API for handling properties with complex XML types. The type of the value parameter in this variant is DATAOBJECT.

	
	

	[C70001]
	The @name attribute of a <export.c/> element MUST be unique amongst the <export.c/> elements in a domain.

	[C70002]
	The @name attribute of a <import.c/> child element of a <contribution/> MUST be unique amongst the <import.c/> elements in of that contribution.

	[C80001]
	
·
·
An SCA implementation MUST translate declarations to tokens as part of conversion to WSDL or compatibility testing.

	[C80002]
	The return type and types of the parameters of a function of a remotable service interface MUST be one of:

· Any of the C types
· specified in Simple Content Binding and Complex Content Binding. These types may be passed by-value or by-pointer. Unless the function and client indicate that they allow by-reference semantics (see AllowsPassByReference), a copy will be explicitly created by the runtime for any parameters passed by-pointer.

· An SDO DATAOBJECT. This type may be passed by-value or by-pointer. Unless the function and client indicate that they allow by-reference semantics (see AllowsPassByReference), a deep-copy of the DATAOBJECT will be created by the runtime for any parameters passed by-value or by-pointer. When by-reference semantics are allowed, the DATAOBJECT handle will be passed.

	[C80003]
	A C header file used to define an interface MUST
 declare at least one function or message format struct

	[C100001]
	
In the absence of customizations, an SCA implementation SHOULD map each portType to separate header file. An SCA implementation MAY use any sca-c:prefix binding declarations to control this mapping.

	[C100002]
	For components implemented in libraries, in the absence of customizations, an SCA implementation MUST map an operation name, with the first character converted to lower case, to a function name. If necessary, to avoid name collisions, an SCA implementation MAY prepend the portType name, with the first character converted to lower case, and the operation name, with the first character converted to upper case, to form the function name.

	
	

	[C100003]
	In the absence of any customizations for a WSDL operation that does not meet the requirements for the wrapped style, the name of a mapped function parameter or struct member MUST be the value of the name attribute of the wsdl:part element with the first character converted to lower case.

	[C100004]
	In the absence of any customizations for a WSDL operation that meets the requirements for the wrapped sytle, the name of a mapped function parameter or struct member MUST be the value of the local name of the wrapper child with the first character converted to lower case.

	[C100006]
	In the absence of customizations, an SCA implementation MUST map the name of the message element referred to by a fault element to the name of the struct describing the fault message content. If necessary, to avoid name collisions, an implementation MAY append “Fault” to the name of the message element when mapping to the struct name.

	
	

	[C100007]
	An SCA implementation SHOULD provide a default namespace mapping and this mapping SHOULD be configurable.

	[C100008]
	In the absence of customizations, an SCA implementation MUST map the header file name to the portType name. An implementation MAY append “PortType” to the header file name in the mapping to the portType name.

	[C100009]
	In the absence of customizations, an SCA implementation MUST map a function name to an operation name, stripping the portType name, if present and any namespace prefix from the front of function name before mapping it to the operation name.

	[C100011]
	In the absence of customizations, an SCA implementation MUST map a parameter name, if present, to a part or global element component name. If the parameter does not have a name the SCA implementation MUST use argN as the part or global element child name.

	
	

	[C100012]
	In the absence of customizations, an SCA implementation MUST map the return type to a part or global element child named “return”.

	[C100016]
	An SCA implementation MUST support mapping message parts or global elements with complex types and parameters, return types and struct members with a type defined by a struct. The mapping from WSDL MAY be to DataObjects and/or structs. The mapping to and from structs MUST follow the rules defined in WSDL to C Mapping Details.

	
	

	
	

	
	

	[C100017]
	An SCA implementation MUST map:

· a function’s return value as an out parameter.

· by-value and const parameters as in parameters.

· in the absence of customizations, pointer parameters as in/out parameters.

	[C100019]
	For library-based service implementations, an SCA implementation MUST map In parameters as pass by-value or const and In/Out and Out parameters as pass via pointers.

	[C100021]
	An SCA implementation MUST map simple types as defined in Table 9‑1 and Table 9‑2 by default.

	
	

	[C100022]
	An SCA implementation MAY map boolean to _Bool by default.

	[C100023]
	An SCA implementation MUST map a WSDL portType to a remotable C interface definition.

	[C100024]
	An SCA implementation MUST map a C interface definition to WSDL as if it has a @WebService annotation with all default values.

	[C110001]
	An SCA implementation MUST reject a composite file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd or http://docs.oasis-open.org/opencsa/sca/200912/sca-implementation-c-1.1.xsd.

	[C110002]
	An SCA implementation MUST reject a componentType file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-interface-c-1.1.xsd.

	[C110003]
	An SCA implementation MUST reject a contribution file that does not conform to http://docs.oasis-open.org/opencsa/sca/200912/sca-contribution-c-1.1.xsd.

	[C110004]
	An SCA implementation MUST reject a WSDL file that does not conform to http://docs.oasis-open.org/opencsa/sca-c-cpp/c/200901/sca-wsdlext-c-1.1.xsd.

Table F‑1: SCA C Core Normative Statements
F.1 Program-Based Normative Statements Summary
This section contains a list of normative statements related to program-based component implementations for this specification.

	Conformance ID
	Description

	[C100005]
	For components implemented in a program, in the absence of customizations, an SCA implementation MUST map an operation name, with the first character converted to lowercase to a request struct name. If necessary, to avoid name collisions, an SCA implementation MAY concatenate the portType name, with the first character converted to lower case, and the operation name, with the first character converted to upper case, to form the request stuct name. Additionally an SCA implementation MUST append “Response” to the request struct name to form the response struct name.

	[C100010]
	In the absence of customizations, a struct with a name that does not end in “Response” or “Fault” is considered to be a request message struct and an SCA implementation MUST map the struct name to the operation name, stripping the portType name, if present, and any namespace prefix from the front of the struct name before mapping it to the operation name.

	[C100013]
	Program based implementation SHOULD use the Document-Literal style and encoding.

	[C100014]
	In the absence of customizations, an SCA implementation MUST map the struct member name to the part or global element child name.

	[C100015]
	An SCA implementation MUST ensure that in/out parameters have the same type in the request and response structs.

	[C100020]
	For program-based service implementations, an SCA implementation MUST map all values in the input message as pass by-value and the updated values for In/Out parameters and all Out parameters in the response message as pass by-value.

Table F‑2: SCA C Program-Based Normative Statements
F.2 Annotation Normative Statement Summary
This section contains a list of normative statements related to source file annotations for this specification.

	Conformance ID
	Description

	[CA0001]
	If SCA annotations are supported by an implementation, the annotations defined here MUST be supported and MUST be mapped to SCDL as described. The SCA runtime MUST only process the SCDL files and not the annotations.

	[CA0002]
	If multiple annotations apply to a program element, all of the annotations SHOULD be in the same comment block.

	[CA0003]
	An SCA implementation MUST treat a file with a @WebService annotation specified as if @Remotable and @Interface were specified with the name value of the @WebService annotation used as the name value of the @Interface annotation.

	[CA0004]
	An SCA implementation MUST treat a function with a @WebFunction annotation specified as if @Function was specified with the operationName value of the @WebFunction annotation used as the name value of the @Function annotation and the exclude value of the @WebFunction annotation used as the exclude value of the @Function annotation.

	[CA0005]
	An SCA implementation MUST treat a struct with a @WebOperation annotation specified as if @Operation was specified with the operationName value of the @WebOperation annotation used as the name value of the @Operation annotation, the response value of the @WebOperation annotation used as the response value of the @Operation annotation and the exclude value of the @WebFunction annotation used as the exclude value of the @Operation annotation.

	[CA0006]
	While annotations are defined using the /* … */ format for comments, if the // … format is supported by a C compiler, the // … format MAY be supported by an SCA implementation annotation processor.

	[CA0007]
	An SCA implementation MUST ensure that all variables in a component implementation with the same name and annotated with @Property have the same type.

	[CC0001]
	An SCA implementation MUST treat any instance of a @Remotable annotation and without an explicit @WebService annotation as if a @WebService annotation with a name value equal to the name value of the @Interface annotation, if specified, and no other parameters was specified.

	[CC0002]
	An SCA implementation MUST treat a function annotated with an @Function annotation and without an explicit @WebFunction annotation as if a @WebFunction annotation with with an operationName value equal to the name value of the @Function annotation, an exclude value equal to the exclude value of the @Function annotation and no other parameters was specified.

	[CC0003]
	An SCA implementation MUST treat a struct annotated with an @Operation annotation without an explicit @WebOperation annotation as if a @WebOperation annotation with with an operationName value equal to the name value of the @Operation annotation, a response value equal to the response value of the @Operation annotation, an exclude value equal to the exclude value of the @Operation annotation and no other parameters was specified.

	[CC0004]
	A C struct that is listed in a @WebThrows annotation MUST itself have a @WebFault annotation.

	[CC0005]
	If WSDL mapping annotations are supported by an implementation, the annotations defined here MUST be supported and MUST be mapped to WSDL as described.

	[CC0006]
	The value of the type property of a @WebParam annotation MUST be either one of the simpleTypes defined in namespace http://www.w3.org/2001/XMLSchemahttp://www.w3.org/2001/XMLSchema or, if the type of the parameter is a struct, the QName of a XSD complex type following the mapping specified in Complex Content Binding.

	[CC0007]
	The value of the type property of a @WebResult annotation MUST be one of the simpleTypes defined in namespace http://www.w3.org/2001/XMLSchema.

	[CC0009]
	The value of the paramName of a @WebParam annotation MUST be the name of a parameter of the function the annotation is applied to.

Table F‑3: SCA C Annotation Normative Statements

F.3 WSDL Extension Normative Statement Summary
This section contains a list of normative statements related to WSDL extensions for this specification.

	Conformance ID
	Description

	[CD0001]
	If WSDL extensions are supported by an implementation, all the extensions defined here MUST be supported and MUST be mapped to C as described.

	[CD0002]
	The @type attribute of a <parameter/> element MUST be either a C type specified in Simple Content Binding or, if the message part has complex content, a struct following the mapping specified in Complex Content Binding.

	[CD0003]
	A <sca-c:bindings/> element MUST NOT have more than one < sca-c:prefix/> child element.

	[CD0004]
	A <sca-c:bindings/> element MUST NOT have more than one < sca-c:enableWrapperStyle/> child element.

	[CD0005]
	A <sca-c:bindings/> element MUST NOT have more than one < sca-c:function/> child element.

	[CD0006]
	A <sca-c:bindings/> element MUST NOT have more than one < sca-c:struct/> child element.

	[CD0007]
	An SCA implementation MAY support the reading and interpretation of JAX-WS defined WSDL extensions; however it MUST give precedence to the corresponding SCA WSDL extension if present. Table D‑1 is a list of JAX-WS WSDL extensions that MAY be interpreted, and their corresponding SCA WSDL extension.

Table F‑4: SCA C WSDL Extension Normative Statements
F.4 JAX-WS Normative Statements
The JAX-WS 2.1 specification [JAXWS21] defines normative statements for various requirements defined by that specification. Table F‑5 outlines those normative statements which apply to the WSDL mapping described in this specification.

	Number
	Conformance Point
	Notes
	Conformance ID

	2.1
	WSDL 1.1 support
	[A]
	[CF0001]

	2.2
	Customization required
	[CD0001]
The reference to the JAX-WS binding language is treated as a reference to the C WSDL extensions defined in C WSDL Mapping Extensions
	

	2.3
	Annotations on generated classes
	
	[CF0002]

	2.5
	WSDL and XML Schema import directives
	
	[CF0003]

	2.6
	Optional WSDL extensions
	
	[CF0004]

	2.7
	SEI naming
	[C100001]
	

	2.8
	javax.jws.WebService required
	[B]

References to javax.jws.WebService in the conformance statement are treated as the C annotation @WebService.
	[CF0005]

	2.10
	Method naming
	[C100002] and [C100005]
	

	2.11
	javax.jws.WebMethod required
	[A], [B]

References to javax.jws.WebMethod in the conformance statement are treated as the C annotation @WebFunction or @WebOperation.
	[CF0006]

	2.12
	Transmission primitive support
	
	[CF0007]

	2.13
	Using javax.jws.OneWay
	[A], [B]

References to javax.jws.OneWay in the conformance statement are treated as the C annotation @OneWay.
	[CF0008]

	2.14
	Using javax.jws.SOAPBinding
	[A], [B]

References to javax.jws.SOAPBinding in the conformance statement are treated as the C annotation @SOAPBinding.
	[CF0009]

	2.15
	Using javax.jws.WebParam
	[A], [B]

References to javax.jws.WebParam in the conformance statement are treated as the C annotation @WebParam.
	[CF0010]

	2.16
	Using javax.jws.WebResult
	[A], [B]

References to javax.jws.WebResult in the conformance statement are treated as the C annotation @WebResult.
	[CF0011]

	2.18
	Non-wrapped parameter naming
	[C100003]
	

	2.19
	Default mapping mode
	
	[CF0012]

	2.20
	Disabling wrapper style
	[B]

References to jaxws:enableWrapperStyle in the conformance statement are treated as the C annotation sca-c:enableWrapperStyle.
	[CF0013]

	2.21
	Wrapped parameter naming
	[C100004]
	

	2.22
	Parameter name clash
	[A]
	[CF0014]

	2.38
	javax.xml.ws.WebFault required
	[B]

References to javax.jws.WebFault in the conformance statement are treated as the C annotation @WebFault.
	[CF0015]

	2.39
	Exception naming
	[C100006]
	

	2.40
	Fault equivalence
	[A]

References to fault exception classes are treated as references to fault message structs.
	[CF0016]

	2.42
	Required WSDL extensions
	MIME Binding not necessary
	[CF0018]

	2.43
	Unbound message parts
	[A]
	[CF0019]

	2.44
	Duplicate headers in binding
	
	[CF0020]

	2.45
	Duplicate headers in message
	
	[CF0021]

	3.1
	WSDL 1.1 support
	[A]
	[CF0022]

	3.2
	Standard annotations
	[A]

[CC0005]
	

	3.3
	Java identifier mapping
	[A]
	[CF0023]

	3.6
	WSDL and XML Schema import directives
	
	[CF0024]

	3.8
	portType naming
	[C100008]
	

	3.11
	Operation naming
	[C100009] and [C100010]
	

	3.12
	One-way mapping
	[B]

References to javax.jws.OneWay in the conformance statement are treated as the C annotation @OneWay.
	[CF0025]

	3.13
	One-way mapping errors
	
	[CF0026]

	3.15
	Parameter classification
	[C100017]
	

	3.16
	Parameter naming
	[C100011] and [C100014]
	

	3.17
	Result naming
	[C100012]
	

	3.18
	Header mapping of parameters and results
	References to javax.jws.WebParam in the conformance statement are treated as the C annotation @WebParam.

References to javax.jws.WebResult in the conformance statement are treated as the C annotation @WebResult.
	[CF0027]

	3.24
	Exception naming
	[CC0004]
	

	3.27
	Binding selection
	References to the BindingType annotation are treated as references to SOAP related intents defined by [POLICY].
	[CF0029]

	3.28
	SOAP binding support
	[A]
	[CF0030]

	3.29
	SOAP binding style required
	
	[CF0031]

	3.31
	Port selection
	
	[CF0032]

	3.32
	Port binding
	References to the BindingType annotation are treated as references to SOAP related intents defined by [POLICY].
	[CF0033]

[A] All references to Java in the conformance point are treated as references to C.

[B] Annotation generation is only necessary if annotations are supported by an SCA implementation.

B.1.1
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table F‑5: JAX-WS Normative Statements that are Applicable to SCA C
F.4.1 Ignored Normative Statments
	Number
	Conformance Point

	2.4
	Definitions mapping

	2.9
	javax.xml.bind.XmlSeeAlso required

	2.17
	use of JAXB annotations

	2.23
	Using javax.xml.ws.RequestWrapper

	2.24
	Using javax.xml.ws.ResponseWrapper

	2.25
	Use of Holder

	2.26
	Asynchronous mapping required

	2.27
	Asynchronous mapping option

	2.28
	Asynchronous method naming

	2.29
	Asynchronous parameter naming

	2.30
	Failed method invocation

	2.31
	Response bean naming

	2.32
	Asynchronous fault reporting

	2.33
	Asychronous fault cause

	2.34
	JAXB class mapping

	2.35
	JAXB customization use

	2.36
	JAXB customization clash

	2.37
	javax.xml.ws.wsaddressing.W3CEndpointReference

	2.41
	Fault Equivalence

	2.46
	Use of MIME type information

	2.47
	MIME type mismatch

	2.48
	MIME part identification

	2.49
	Service superclass required

	2.50
	Service class naming

	2.51
	javax.xml.ws.WebServiceClient required

	2.52
	Default constructor required

	2.53
	2 argument constructor required

	2.54
	Failed getPort Method

	2.55
	javax.xml.ws.WebEndpoint required

	3.4
	Method name disambiguation

	3.5
	Package name mapping

	3.7
	Class mapping

	3.9
	Inheritance flattening

	3.10
	Inherited interface mapping

	3.14
	use of JAXB annotations

	3.19
	Default wrapper bean names

	3.20
	Default wrapper bean package

	3.21
	Null Values in rpc/literal

	3.25
	java.lang.RuntimeExceptions and java.rmi.RemoteExceptions

	3.26
	Fault bean name clash

	3.30
	Service creation

Table F‑6: JAX-WS Normative Statements that Are Not Applicable to SCA C
G Migration

To aid migration of an implementation or clients using an implementation based the version of the Service Component Architecture for C defined in SCA C Client and Implementation V1.00, this appendix identifies the relevant changes to APIs, annotations, or behavior defined in V1.00.

G.1 Implementation.c attributes

@location has been replaced with @path.

G.2 SCALocate and SCALocateMultiple

SCALocate() and SCALocateMultiple() have been renamed to SCAGetReference() SCAGetReferences() respectively.
H Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
	Participant Name
	Affiliation

	Bryan Aupperle
	IBM

	Andrew Borley
	IBM

	Jean-Sebastien Delfino
	IBM

	Mike Edwards
	IBM

	David Haney
	Individual

	Mark Little
	Red Hat

	Jeff Mischkinsky
	Oracle Corporation

	Peter Robbins
	IBM

I Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	
	
	
	·

Component

Service1

…

operation(…);

CustomerService.h

operation (…)

{

…

};

…

LoanService.c

LoanService.h

operation(…);

…

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 118
SCA Client and Implementation Model for C Specification Version 1.1
21 January 2010

Copyright © OASIS® 2007, 2010. All Rights Reserved.

Page 137 of 137

