
Specification for Transfer of OpenC2
Messages via MQTT Version 1.0
Committee Specification Draft 01
07 July 2020

This version:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.md
(Authoritative)
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.pdf

Previous version:

N/A

Latest version:

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.md (Authoritative)
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chairs:

Joe Brule (jmbrule@radium.ncsc.mil), National Security Agency
Duncan Sparrell (duncan@sfractal.com), sFractal Consulting

Editors:

Joe Brule (jmbrule@radium.ncsc.mil), National Security Agency
Danny Martinez (danny.martinez@hii-tsd.com), G2, Inc.
David Lemire (david.lemire@hii-tsd.com), National Security Agency

Related work:

This specification is related to:

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 1 of 29

https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.pdf
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.md
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:jmbrule@radium.ncsc.mil
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
mailto:jmbrule@radium.ncsc.mil
https://www.nsa.gov/
mailto:danny.martinez@hii-tsd.com
http://www.g2-inc.com/
mailto:david.lemire@hii-tsd.com
https://www.nsa.gov/

Open Command and Control (OpenC2) Specification for Transfer of OpenC2
Messages via HTTPS Version 1.0. Edited by David Lemire. Latest version:
https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html.

Abstract:

Open Command and Control (OpenC2) is a concise and extensible language to enable the
command and control of cyber defense components, subsystems and/or systems in a manner
that is agnostic of the underlying products, technologies, transport mechanisms or other
aspects of the implementation. Message Queuing Telemetry Transport (MQTT) is a widely
used publish / subscribe (pub/sub) transfer protocol. This specification describes the use of
MQTT as a transfer mechanism for OpenC2 messages.

Status:

This document was last revised or approved by the OASIS Open Command and Control
(OpenC2) TC on the above date. The level of approval is also listed above. Check the "Latest
version" location noted above for possible later revisions of this document. Any other
numbered Versions and other technical work produced by the Technical Committee (TC) are
listed at https://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=openc2#technical.

TC members should send comments on this specification to the TC's email list. Others should
send comments to the TC's public comment list, after subscribing to it by following the
instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-
open.org/committees/openc2/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared
Normative for this Work Product is provided in separate plain text files. In the event of a
discrepancy between any such plain text file and display content in the Work Product's prose
narrative document(s), the content in the separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be used:

[OpenC2-MQTT-v1.0]

Specification for Transfer of OpenC2 Messages via MQTT Version 1.0. Edited by Joe Brule,
Danny Martinez, and David Lemire. 07 July 2020. OASIS Committee Specification Draft 01.
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.html. Latest
version: https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 2 of 29

https://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/csd01/transf-mqtt-v1.0-csd01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html

Notices
Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the
OASIS website.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS
Standards Final Deliverable documents (Committee Specification, Candidate OASIS
Standard, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims
that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
OASIS Standards Final Deliverable by a patent holder that is not willing to provide a license to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS may include such
claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this OASIS Standards Final Deliverable or the extent to which any license under

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 3 of 29

https://www.oasis-open.org/policies-guidelines/ipr

such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Information on OASIS' procedures with respect to rights in any
document or deliverable produced by an OASIS Technical Committee can be found on the
OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS
Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes
reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark for above guidance.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 4 of 29

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents
1 Introduction

1.1 IPR Policy
1.2 Normative References
1.3 Non-Normative References
1.4 Terminology
1.5 Document Conventions

1.5.1 Naming Conventions
1.5.2 Font Colors and Style

1.6 Overview
1.7 Goal

2 Operating Model
2.1 Publishers, Subscribers, and Brokers
2.2 Default Topic Structure
2.3 Message Format
2.4 Quality of Service
2.5 MQTT Client Identifier
2.6 Keep-Alive Interval

3 Protocol Mappings
4 Security Considerations
5 Conformance
Appendix A. Message Examples
Appendix B. Acknowledgments
Appendix C. Revision History

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 5 of 29

1 Introduction
This section is non-normative.

NOTE: The content of Section 1 is currently a direct copy-and-paste from previous OpenC2
specifications. It is anticipated that this section will be greatly abbreviated once the relevant
material is captured in the OpenC2 Architecture Specification. Relevant content for reviewer
is currently in Section 2 and Appendix A.

OpenC2 is a suite of specifications that enables command and control of cyber defense
systems and components. OpenC2 typically uses a request-response paradigm where a
command is encoded by an OpenC2 Producer (managing application) and transferred to an
OpenC2 Consumer (managed device or virtualized function) using a secure transport
protocol, and the Consumer can respond with status and any requested information.

OpenC2 allows the application producing the commands to discover the set of capabilities
supported by the managed devices. These capabilities permit the managing application to
adjust its behavior to take advantage of the features exposed by the managed device. The
capability definitions can be easily extended in a noncentralized manner, allowing standard
and non-standard capabilities to be defined with semantic and syntactic rigor.

1.1 IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

1.2 Normative References
[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC
8174, DOI 10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

[RFC8259]

Bray, T., ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90,
RFC 8259, DOI 10.17487/RFC8259, December 2017, http://www.rfc-editor.org/info/rfc8259

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 6 of 29

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/openc2/ipr.php
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8259

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by
Jason Romano and Duncan Sparrell. Latest version: http://docs.oasis-
open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

[mqtt-v3.1.1]

MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS
Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

1.3 Non-Normative References
[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations",
BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, https://www.rfc-
editor.org/info/rfc3552.

[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time Cyber Defense,"
Journal of Information Warfare, vol. 13, Issue 2, p. 80, April 2014.

Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure Orchestration",
International Command and Control Research and Technology Symposium, June 2015.

[Sparkplug-B]

Eclipse Foundation, "Sparkplug (TM) MQTT Topic & Payload Definition", Version 2.2,
October 2019,
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-
with%20appendix%20B%20format%20-%20Eclipse.pdf

1.4 Terminology
Action: The task or activity to be performed (e.g., 'deny').
Actuator: The entity that performs the action (e.g., 'Stateless Packet Filtering').
Command: A message defined by an action-target pair that is sent from a Producer
and received by a Consumer.
Consumer: A managed device / application that receives Commands. Note that a
single device / application can have both Consumer and Producer capabilities.
Producer: A manager application that sends Commands.
Response: A message from a Consumer to a Producer acknowledging a command or
returning the requested resources or status to a previously received request.
Target: The object of the action, i.e., the action is performed on the target (e.g., IP
Address).

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 7 of 29

http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.rfc-editor.org/info/rfc3552
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

A list of acronyms is provided in Annex A.

1.5 Document Conventions
1.5.1 Naming Conventions

[RFC2119]/[RFC8174] key words (see section 1.2) are in all uppercase.
All property names and literals are in lowercase, except when referencing canonical
names defined in another standard (e.g., literal values from an IANA registry).
All words in structure component names are capitalized and are separated with a
hyphen, e.g., ACTION, TARGET, TARGET-SPECIFIER.
Words in property names are separated with an underscore (_), while words in string
enumerations and type names are separated with a hyphen (-).
The term "hyphen" used here refers to the ASCII hyphen or minus character, which in
Unicode is "hyphen-minus", U+002D.
All type names, property names, object names, and vocabulary terms are between three
and 40 characters long.

1.5.2 Font Colors and Style

The following color, font and font style conventions are used in this document:

A fixed width font is used for all type names, property names, and literals.

Property names are in bold style – 'created_at'.

All examples in this document are expressed in JSON. They are in fixed width font, with
straight quotes, black text and a light shaded background, and 4-space indentation.
JSON examples in this document are representations of JSON Objects. They should not
be interpreted as string literals. The ordering of object keys is insignificant. Whitespace
before or after JSON structural characters in the examples are insignificant [RFC8259].

Parts of the example may be omitted for conciseness and clarity. These omitted parts
are denoted with the ellipses (...).

Example:

PUT AN EXAMPLE HERE
1.6 Overview
OpenC2 is a suite of specifications to command actuators that execute cyber defense
functions. These specifications include the OpenC2 Language Specification, Actuator
Profiles, and Transfer Specifications. The OpenC2 Language Specification and Actuator

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 8 of 29

Profile specifications focus on the language content and meaning at the producer and
consumer of the command and response while the transfer specifications focus on the
protocols for their exchange.
In general, there are two types of participants involved in the exchange of OpenC2 messages,
as depicted in Figure 1-1:

1. OpenC2 Producers: An OpenC2 Producer is an entity that creates commands to
provide instruction to one or more systems to act in accordance with the content of the
command. An OpenC2 Producer may receive and process responses in conjunction
with a command.

2. OpenC2 Consumers: An OpenC2 Consumer is an entity that receives and may act
upon an OpenC2 command. An OpenC2 Consumer may create responses that provide
any information captured or necessary to send back to the OpenC2 Producer.

The OpenC2 Language Specification [OpenC2-Lang-v1.0] provides the semantics for
the essential elements of the language, the structure for commands and responses, and
the schema that defines the proper syntax for the language elements that represents the
command or response.
OpenC2 Actuator Profiles specify the subset of the OpenC2 language relevant in the
context of specific actuator functions. Cyber defense components, devices, systems
and/or instances may (in fact are likely) to implement multiple actuator profiles. Actuator
profiles extend the language by defining specifiers that identify the actuator to the
required level of precision. Actuator Profiles may define command arguments and
targets that are relevant and/or unique to those actuator functions.
OpenC2 Transfer Specifications utilize existing protocols and standards to implement
OpenC2 in specific environments. These standards are used for communications and
security functions beyond the scope of the language, such as message transfer
encoding, authentication, and end-to-end transport of OpenC2 messages.

The OpenC2 Language Specification defines a language used to compose messages for
command and control of cyber defense systems and components. A message consists of a
header and a payload (defined as a message body in the OpenC2 Language Specification
Version 1.0 and specified in one or more actuator profiles).

The language defines two payload structures:

1. Command: An instruction from one system known as the OpenC2 "Producer", to one or
more systems, the OpenC2 "Consumer(s)", to act on the content of the command.

2. Response: Any information sent back to the OpenC2 Producer as a result of the
command.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 9 of 29

Figure 1-1. OpenC2 Message Exchange

OpenC2 implementations integrate the related OpenC2 specifications described above with
related industry specifications, protocols, and standards. Figure 1-2 depicts the relationships
among OpenC2 specifications, and their relationships to other industry standards and
environment-specific implementations of OpenC2. Note that the layering of implementation
aspects in the diagram is notional, and not intended to preclude any particular approach to
implementing the needed functionality (for example, the use of an application-layer message
signature function to provide message source authentication and integrity).

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 10 of 29

Figure 1-2. OpenC2 Documentation and Layering Model

OpenC2 is conceptually partitioned into four layers as shown in Table 1-1.

Table 1-1. OpenC2 Protocol Layers

Layer Examples

Function-Specific Content Actuator Profiles
(standard and extensions)

Common Content OpenC2 Language Specification

Message Transfer Specifications
(OpenC2-over-HTTPS, OpenC2-over-CoAP, …)

Secure Transport HTTPS, CoAP, MQTT, OpenDXL, ...

The Secure Transport layer provides a communication path between the producer and
the consumer. OpenC2 can be layered over any standard transport protocol.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 11 of 29

http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html

The Message layer provides a transport- and content-independent mechanism for
conveying requests, responses, and notifications. A transfer specification maps
transport-specific protocol elements to a transport-independent set of message
elements consisting of content and associated metadata.
The Common Content layer defines the structure of OpenC2 commands and
responses and a set of common language elements used to construct them.
The Function-specific Content layer defines the language elements used to support a
particular cyber defense function. An actuator profile defines the implementation
conformance requirements for that function. OpenC2 Producers and Consumers will
support one or more profiles.

The components of an OpenC2 Command are an action (what is to be done), a target (what
is being acted upon), an optional actuator (what is performing the command), and command
arguments, which influence how the command is to be performed. An action coupled with a
target is sufficient to describe a complete OpenC2 Command. Though optional, the inclusion
of an actuator and/or command arguments provides additional precision to a command, when
needed.

The components of an OpenC2 Response are a numerical status code, an optional status text
string, and optional results. The format of the results, if included, depend on the type or
response being transferred.

1.7 Goal
The goal of the OpenC2 Language Specification is to provide a language for interoperating
between functional elements of cyber defense systems. This language used in conjunction
with OpenC2 Actuator Profiles and OpenC2 Transfer Specifications allows for vendor-
agnostic cybertime response to attacks.

The Integrated Adaptive Cyber Defense (IACD) framework defines a collection of activities,
based on the traditional OODA (Observe–Orient–Decide–Act) Loop [IACD]:

Sensing: gathering of data regarding system activities
Sense Making: evaluating data using analytics to understand what's happening
Decision Making: determining a course-of-action to respond to system events
Acting: Executing the course-of-action

The goal of OpenC2 is to enable coordinated defense in cyber-relevant time between
decoupled blocks that perform cyber defense functions. OpenC2 focuses on the Acting
portion of the IACD framework; the assumption that underlies the design of OpenC2 is that the
sensing/analytics have been provisioned and the decision to act has been made. This goal
and these assumptions guides the design of OpenC2:

Technology Agnostic: The OpenC2 language defines a set of abstract atomic cyber
defense actions in a platform and implementation agnostic manner
Concise: An OpenC2 command is intended to convey only the essential information
required to describe the action required and can be represented in a very compact form

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 12 of 29

for communications-constrained environments
Abstract: OpenC2 commands and responses are defined abstractly and can be
encoded and transferred via multiple schemes as dictated by the needs of different
implementation environments
Extensible: While OpenC2 defines a core set of actions and targets for cyber defense,
the language is expected to evolve with cyber defense technologies, and permits
extensions to accommodate new cyber defense technologies.

2 Operating Model
This section is non-normative.

This section provides an overview of the approach to employing MQTT as a message transfer
protocol for OpenC2 messages.

NOTE: Tentative list of Qs the MQTT Transfer Spec should answer; feedback on additional
questions or questions that might be out-of-scope / SEP (someone else's problem) is
welcome. As consensus is developed on each aspect of the operating model, the
corresponding question(s) should be deleted.

What is the required interoperable topic structure?
A proposal is contained in 2.2 Default Topic Structure.

Is OpenC2 going to use the MQTT Will feature? If so, what should be used for the will
topic(s)?

Should be addressed in Section 2.2 once resolved.

What is the OpenC2 message format over MQTT?
See Section 2.3

Are there any special requirements for the MQTT ClientId?
See Section 2.5; a proposal for ClientId assignment is TBD.

How does a Producer discover the active consumers in a pub/subs space?

How does a Producer discover the capabilities of active consumers in a pub/sub

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 13 of 29

space?
The above two questions have an element of registration (making Consumers
known to the Producer) vs. discovery (enabling the Producer to know what
Consumers are currently active in the Producer's sphere of control).
Proposed: Discovery as defined above is an appropriate topic for a transfer
specification, registration is outside the scope of a transfer specification
Proposed: Determination of actuator capabilities is outside the scope of a
transfer specification, but a transfer specification might facilitate use of the
OpenC2 Language's features to make such determination (details TBD)

What is the appropriate QoS for MQTT messaging for OpenC2?
See Section 2.4.

Should Consumers publish any kind of birth and/or death messages?
MQTT includes a "last will" mechanism to provide information when a device is
disconnected
The Sparkplug B specification defines a birth certificate mechanism to provide
information when devices become connected.
The operating model should address whether and how OpenC2 should leverage
either of those capabilities.

Should we recommend a maximum keep-alive interval?
Section 2.6 proposes an approach

Do we need to describe the nature / structure of the Consumer Device / Actuator(s)?
The in-development Architecture Specification is the appropriate location for this
information; transfer specifications should reference the architecture, once it's
published.

Is there a need to describe a state model for the Producer or Consumer?

2.1 Publishers, Subscribers, and Brokers
When transferring OpenC2 Command and Response messages via MQTT, both Producers
and Consumers act as both publishers and subscribers:

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 14 of 29

file:///C:/Users/Paul/Documents/OASIS/OASIS-TCs/AB-inProcess/openc2/transf-mqtt-v1.0/csd01/paul1/sparkplug-b
https://github.com/oasis-tcs/oc2arch/tree/working

Producers publish Commands and subscribe to receive Responses
Consumers subscribe to receive Commands and publish Responses

The MQTT broker and MQTT client software used by Producers and Consumers are beyond
the scope of this specification, but are assumed to be conformant with the MQTT v3.1.1
specification [MQTT-V3.1.1]. In the content of OpenC2, and in accordance with the
Terminology section (1.2) of [MQTT-V3.1.1]:

MQTT Brokers are Servers
OpenC2 Producers and Consumer are Clients

2.2 Default Topic Structure
NOTE: a brief Slack discussion on this proposed topic structure can be found here.

The MQTT topic structure below is used to exchange OpenC2 messages. The "oc2" prefix on
the topic names segregates OpenC2-related topics from other topics that might exist on the
same broker. Topic name components in brackets (e.g., [actuator_profile]) are
placeholders for specific values that would be used in implementation. For example, a device
that includes a Stateless Packet Filter AP would subscribe to oc2/cmd/ap/slpf.

NOTE: a point for consideration is whether to use abbreviations (e.g., dt for device_type)
to shorten the topic names. If we adopt v5.0 instead of v3.1.1, the option to use integer "topic
aliases" is also available.

Topic Purpose Producer Consumer

oc2/cmd/ap/[actuator_profile] Used to
send
OpenC2
commands
to all
instances
of
specified
Actuator
Profile.

Pub Sub

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 15 of 29

https://openc2-community.slack.com/archives/C5RF00U9Z/p1584121853014300

oc2/cmd/device_type/[device_type] Used to
send
OpenC2
commands
to all
instances
of a
particular
device
type. It is
assumed
that a
device of a
given type
may
support
multiple
APs, and
that all
devices of
the same
type
support the
same set
of APs.

Pub Sub

oc2/cmd/device_id/[device_id] Used to
send
OpenC2
commands
to all APs
within a
specific
device.

Pub Sub

Topic Purpose Producer Consumer

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 16 of 29

oc2/cmd/action_target/[action_target] Used to
send
commands
to all
devices
and/or
actuators
that
implement
the
specified
command
(i.e.,
action-
target pair)

Pub Sub

oc2/cmd/action/[action] Used to
send
OpenC2
commands
to all
devices
and/or
actuators
that
implement
the
specified
action.

Pub Sub

oc2/rsp Used to
return
OpenC2
response
messages.

Sub Pub

Topic Purpose Producer Consumer

In order to receive commands intended for its security functions, a Consumer device
registering with the broker would subscribe to:

oc2/cmd/ap/[acutator_profile] for all actuator profiles the device
implements
oc2/cmd/device_type/[device_type] for that device's TYPE
oc2/cmd/device_id/[device_id] for that device's ID

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 17 of 29

oc2/cmd/action_target/[action_target] for all action-target pairs in the
union set of actuator profiles the device implements
oc2/cmd/action/[action] for all actions in the union set of actuator profiles the
device implements

In order to receive responses to the commands is sends, a Producer registering with the
broker would subscribe to:

oc2/rsp

NOTE (from Duncan Sparrell on Slack): I think a lot of this depends on our model of APs
within a ‘device’ (which may be in a ‘device’) and what operates at which level (AP/ inner
device/outer device) which we haven’t discussed much. And I think that discussion depend on
the ‘lots of little atomic APs’ or ‘fewer compound APs with optional pieceparts’ (which BTW I’ll
argue is just the lots of little atomic with an added layer). I think the pub/sub discussion
“informs” the atomic/compound AP discussion but I also think reality of todays tech informs the
discussion and we should look at how real world products work today

2.3 Message Format
NOTE: The format proposed by Dave Kemp in Language Spec issue #353, or similar, seems
appropriate for use with pub/sub protocols. It encapsulates all of the needed information. This
draft MQTT Transfer Specification anticipates the adoption of this message format and
utilizes its structure.

OpenC2 messages transferred using MQTT utilize the OpenC2-Message structure
containing the message elements listed in Section 3.2 of OpenC2-Lang-v1.0.

OpenC2-Message = Record {
 1 content Content, // Message body
as specified by msg_type (the ID/Name of Content)
 2 request_id String optional, // A unique
identifier created by Producer and copied by Consumer into
responses
 3 created Date-Time optional, // Creation
date/time of the content
 4 from String optional, // Authenticated
identifier of the creator of / authority for a request
 5 to ArrayOf(String) optional // Authenticated
identifier(s) of the authorized recipient(s) of a message
}

Content = Choice {

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 18 of 29

https://github.com/oasis-tcs/openc2-oc2ls/issues/353
file:///C:/Users/Paul/Documents/OASIS/OASIS-TCs/AB-inProcess/openc2/transf-mqtt-v1.0/csd01/paul1/openc2-lang-v10

 1 request OpenC2-Command, // The initiator
of a two-way message exchange.
 2 response OpenC2-Response, // A response
linked to a request in a two-way message exchange.
 3 notification OpenC2-Notification // A (one-way)
message that is not a request or response. (Placeholder)
}

A Producer sending an OpenC2 Command includes its identifier in the message from field,
allowing Consumers receiving the command to know its origin. A Consumer sending a
response to an OpenC2 command includes its identifier in the message from field, allowing
responses from different actuators to be identified by the Producer receiving the response.

The to field is not utilized, as the MQTT Topic Structure and Client subscriptions regulate
which recipients receive each individual message.

The request_id field can contain any string; UUIDv4 format is recommended for request
IDs.

Note: The selection of the IMF-fixdate format is a carryover from the HTTPS Transfer Spec.
There may be date formats more suitable for use with MQTT.

The created field is populated with the date/time when the message was created, in the
preferred IMF-fixdate format as defined by Section 7.1.1.1 of RFC 7231; the conditions for
populating the Date: header specified in Section 7.1.1.2 of RFC 7231 SHALL be followed.

2.4 Quality of Service

mqtt-v3.1.1 Section 4.3, Quality of Service Levels and Protocol Flows defines three quality of
service (QoS) levels:

QoS 0: "At most once", where messages are delivered according to the best efforts
of the operating environment. Message loss can occur. This level could be used, for
example, with ambient sensor data where it does not matter if an individual reading is
lost as the next one will be published soon after.
QoS 1: "At least once", where messages are assured to arrive but duplicates can
occur.
QoS 2: "Exactly once", where message are assured to arrive exactly once. This level
could be used, for example, with billing systems where duplicate or lost messages could
lead to incorrect charges being applied.

QoS 1 is appropriate for most OpenC2 applications and should be specified as the default.
Implementers have the option of electing to use QoS 2 where the additional overhead is
justified by application requirements. QoS 0 is not recommended for use in OpenC2
messaging.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 19 of 29

2.5 MQTT Client Identifier

As described in mqtt-v3.1.1 Section 3.1, CONNECT – Client requests a connection to a
Server, the Client Identifier (ClientId) is a required field in the CONNECT control packet.
Further requirements are contained in Section 3.1.3.1, Client Identifier, which defines the
ClientId as a UTF-8 string containing only letters and numbers of between 1 and 23 bytes
(MQTT servers may accept longer ClientIds). mqtt-v3.1.1 provides no further definition
regarding the format or assignment of ClientIds.

NOTE: the approach for creating ClientIds for OpenC2 MQTT clients is TBD.

2.6 Keep-Alive Interval
mqtt-v3.1.1 section 3.1.2.10 provides a keep alive feature where a Client connected to a
Broker must send either a Control Packet or a PINGREQ to the broker before a specified
time interval has elapsed to prevent the Broker from disconnecting from the Client. The
specification notes that "The actual value of the Keep Alive is application specific; typically
this is a few minutes. The maximum value is 18 hours 12 minutes and 15 seconds."

This transfer specification leaves the selection of a keep alive interval to the implementer but
defines a value of 5 minutes (300 seconds) as the maximum value for conformant
implementations. For reliability, an OpenC2 client should send an MQTT PINGREQ when
95% of the Keep Alive interval has expired without any other control packets being
exchanged.

3 Protocol Mappings
TBSL The protocol mappings will be specified once consensus has been achieved on the
operating model.

4 Security Considerations
Bare minimum requirement for operational instance should be use of TLS 1.2 or higher
for operational client-broker connections. Basically, extract and use the TLS guidance
from the v1.0 HTTPS Transfer CS.
Unsecured MQTT should only be used for testing purposes.

(Note: OASIS strongly recommends that Technical Committees consider issues that could
affect security when implementing their specification and document them for implementers
and adopters. For some purposes, you may find it required, e.g. if you apply for IANA
registration.

While it may not be immediately obvious how your specification might make systems

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 20 of 29

vulnerable to attack, most specifications, because they involve communications between
systems, message formats, or system settings, open potential channels for exploit. For
example, IETF [RFC3552] lists “eavesdropping, replay, message insertion, deletion,
modification, and man-in-the-middle” as well as potential denial of service attacks as threats
that must be considered and, if appropriate, addressed in IETF RFCs.

In addition to considering and describing foreseeable risks, this section should include
guidance on how implementers and adopters can protect against these risks.

We encourage editors and TC members concerned with this subject to read Guidelines for
Writing RFC Text on Security Considerations, IETF [RFC3552], for more information.

Remove this note before submitting for publication.)

5 Conformance
TBSL Conformance requirements will be developed once the protocol mappings have been
developed.

(Note: The OASIS TC Process requires that a specification approved by the TC at the
Committee Specification Public Review Draft, Committee Specification or OASIS Standard
level must include a separate section, listing a set of numbered conformance clauses, to
which any implementation of the specification must adhere in order to claim conformance to
the specification (or any optional portion thereof). This is done by listing the conformance
clauses here. For the definition of "conformance clause," see OASIS Defined Terms.

See "Guidelines to Writing Conformance Clauses":
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html.

Remove this note before submitting for publication.)

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 21 of 29

https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsConfClause
https://www.oasis-open.org/policies-guidelines/oasis-defined-terms-2017-05-26#dConformanceClause
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html

Appendix A: Message Examples
NOTE: Example message creation and presentation format are work-in-progress and two
alternative representations as currently provided. The editors would welcome suggestions for
the most useful presentation format.

A.1 Example 1: Connect and Subscribe
The following diagram illustrates the process of the Orchestrator and a Consumer each
connecting to the MQTT broker and subscribing to a relevant channel.

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 22 of 29

Example CONNECT packed fields and values.

Region Field Value

FH Type CONNECT

FH Remaining Length

VH Protocol Name - Length 4

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 23 of 29

VH Protocol Name - Value MQTT

VH Protocol Level 4

VH Connect Flags (bitmap)

Clean Session TBD

Will Flag TBD

Will QoS TBD

Will Retain TBD

User Name Flag TBD

Password Flag TBD

VH Keep Alive Number < 300 (seconds)

PL Client Identifier

PL Will Topic TBD string

PL Will Message TBD string

PL Username TBD

PL Password TBDS

Region Field Value

NOTE: Further example messages to-be-supplied

A.2 Example 2: Command / Response Exchange
The example messages in A.2.1 and A.2.2 illustrate the process of an OpenC2 Producer
publishing a command to a channel for a specific device type,
oc2/cmd/device_type/alpha, with Quality of Service level 1. A similar exchange would
then occur between the broker and every device subscribed to
oc2/cmd/device_type/alphato distribute the command to the intended recipients. The
examples assume a notional device type named "Alpha" exists and that one or more devices
of that types are subscribed to the appropriate device_type channel.

The response message in the sequence diagram below is published with a QoS of 1, which
requires the broker to respond to the PUBLISH packet with a PUBACK packet. If response

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 24 of 29

messages are sent with QoS of 0 no reply from the broker would be required.

A.2.1: Orchestrator PUBLISHes a Command to All Devices of Type "alpha"

NOTE: This example shows the required information for the MQTT PUBLISH message, but
the presentation needs fine tuning / verification. Two different approaches are shown for the
first example MQTT Control Packet (PUBLISH).

Bullet-list representation of control packet

Fixed Header

Type: PUBLISH
Dup: 0
QoS: 1
Retain: 0
Remaining Length: [computed]

Variable Header

Topic Name: oc2/cmd/device_type/alpha
Packet Identifier: 1234

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 25 of 29

Payload

Content: request (JSON-encoded OpenC2 command)

{
 "action": "contain",
 "target": {
 "device": {
 "device_id": "9BCE8431AC106FAA3861C7E771D20E53"
 }
 }
}

request_id: d1ac0489-ed51-4345-9175-f3078f30afe5
created: Wed, 19 Dec 2018 22:15:00 GMT
from: producer_one

Tabular representation of control packet

The values FH, VH, and PL represent the Fixed Header, Variable Header, and Payload
portions, respectively, of the MQTT Control Packet.

Region Field Value

FH Type PUBLISH

FH Dup 0

FH QoS 1

FH Retain 0

FH Remaining Length <computed>

VH Topic Name oc2/cmd/device_type/alpha

VH Packet Identifier 1234

PL Content request (JSON-encoded OpenC2 command)

PL request_id d1ac0489-ed51-4345-9175-f3078f30afe5

PL created Wed, 19 Dec 2018 22:15:00 GMT

PL from producer_one

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 26 of 29

The JSON-encoded command in the PL:Content field is:

{
 "action": "contain",
 "target": {
 "device": {
 "device_id": "9BCE8431AC106FAA3861C7E771D20E53"
 }
 }
}
A.2.2: Broker Acknowledges the PUBLISH Control Packet

Bullet-list representation of control packet

Fixed Header

Type: PUBACK
Remaining Length: 2

Variable Header

Packet Identifier: 1234

Tabular representation of control packet

Region Field Value

FH Type PUBACK

FH Remaining Length 2

VH Packet Identifier 1234

Appendix B. Acknowledgments
The following individuals have participated in the creation of this specification and are
gratefully acknowledged:

OpenC2 TC Members:

First Name Last Name Company

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 27 of 29

TBD TBD TBD

First Name Last Name Company

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 28 of 29

Appendix C. Revision History
Revision Date Editor Changes Made

transf-mqtt-v1.0-wd01 2020-xx-xx David Lemire Initial working draft

Standards Track Work Product

transf-mqtt-v1.0-csd01 Copyright © OASIS Open 2020. All Rights Reserved. 07 July 2020 - Page 29 of 29

