
OpenC2 Extension for CACAO Version 1.0

Committee Specification Draft 01

7 August 2024

This stage:

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.md

(Authoritative)

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.html

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.pdf

Previous stage:

N/A

Latest stage:

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.md (Authoritative)

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.html

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chairs:

Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Michael Rosa (mjrosa@nsa.gov), National Security Agency

Editor:

David Lemire (david.lemire@hii-tsd.com), National Security Agency

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

JADN schema: schemas/oc2-cacao-ext.jadn

Related work:

This specification is related to:

Open Command and Control (OpenC2) Language Specification Version 2.0. Edited by Toby Considine and

Duncan Sparrell. Latest stage: [https://docs.oasis-open.org/openc2/oc2ls/v2.0/oc2ls-v2.0.html

CACAO-Security-Playbooks-v2.0. Edited by Bret Jordan and Allan Thomson. Latest stage:https://docs.oasis-

open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html

Abstract:

Collaborative Automated Course of Action Operations (CACAO) is a schema and taxonomy for cyber security

playbooks. The CACAO specification describes how these playbooks can be created, documented, and shared in a

structured and standardized way across organizational boundaries and technological solutions. This extension

https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.md
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.html
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.pdf
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.md
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.html
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:duncan@sfractal.com
https://www.sfractal.com/
mailto:mjrosa@nsa.gov
https://www.nsa.gov/
mailto:david.lemire@hii-tsd.com
https://www.nsa.gov/
https://docs.oasis-open.org/openc2/oc2ls/v2.0/oc2ls-v2.0.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html

builds on existing CACAO v2.0 OpenC2 features to improve modularity and utilize the current OpenC2 Transfer

Specifications for MQTT (v1.0) and HTTPS (v1.1).

Status:

This document was last revised or approved by the OASIS Open Command and Control (OpenC2) TC on the above

date. The level of approval is also listed above. Check the "Latest stage" location noted above for possible later

revisions of this document. Any other numbered Versions and other technical work produced by the Technical

Committee (TC) are listed at: https://www.oasis-open.org/committees/openc2/

TC members should send comments on this specification to the TC's email list. Others should send comments to

the TC's public comment list, after subscribing to it by following the instructions subscribing to it by following the

instructions at https://groups.oasis-open.org/communities/community-home?CommunityKey=9ae0f0f9-24b5-

44ea-9fe7-018dce260e09

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the

Technical Committee was established. For information on whether any patents have been disclosed that may be

essential to implementing this specification, and any offers of patent licensing terms, please refer to the

Intellectual Property Rights section of the TC's web page (https://www.oasis-

open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work

Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and

display content in the Work Product's prose narrative document(s), the content in the separate plain text file

prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as

described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be used:

[OpenC2-CACAO-ext-v1.0]

CACAO OpenC2 Extension Version 1.0. Edited by David Lemire. 07 August 2024. OASIS Committee Specification

Draft 01. https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.html

Latest stage: https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.html

Notices

Copyright © OASIS Open 2024. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used

only to refer to the organization and its official outputs.

For complete copyright information please see the full Notices section in an Appendix below.

Table of Contents

1 Introduction

1.1 Glossary

1.1.1 Definitions of terms

1.1.2 Acronyms and abbreviations

1.1.3 Document conventions

1.2 Schema

2 Key Concepts & Vocabularies

2.1 Key Concepts

2.2 Producers and Consumers

https://www.oasis-open.org/committees/openc2/
https://groups.oasis-open.org/communities/community-home?CommunityKey=9ae0f0f9-24b5-44ea-9fe7-018dce260e09
https://groups.oasis-open.org/communities/community-home?CommunityKey=9ae0f0f9-24b5-44ea-9fe7-018dce260e09
https://www.oasis-open.org/policies-guidelines/ipr/#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/csd01/openc2-cacao-ext-v1.0-csd01.html
https://docs.oasis-open.org/openc2/openc2-cacao-ext/v1.0/openc2-cacao-ext-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

2.3 CACAO Vocabulary Modifications

3 OpenC2 Commands In CACAO

3.1 OpenC2 Command Action Step

3.2 Base64 Encoding and Decoding

3.3 Invoking OpenC2 via Playbook Action Step

4 OpenC2 CACAO Agents and Targets

4.1 OpenC2 CACAO Agents

4.1.1 MQTT Broker Agent

4.1.2 OpenC2 HTTP-API Agent

4.2 OpenC2 CACAO Targets

5 Standardized Playbook Variables

5.1 __mqtt-topics__ Variable

5.2 __http-endpoints__ Variable

5.3 __openc2-responses__ Variable

6 Conformance

Appendix A. References

A.1 Normative References

A.2 Informative References

Appendix B. Safety, Security and Privacy Considerations

Appendix C. Acknowledgments

Appendix D. Revision History

Appendix E. Use Cases and Examples

E.1 Use Cases

E.1.1 Multiple OpenC2 Consumers With Common Profile

E.1.2 OpenC2 Command With Response Requested

E.1.3 OpenC2 Message Transfer via MQTT

E.1.4 Extended OpenC2 Consumer Execution Times

E.2 Examples

E.2.1 OpenC2 Single Consumer Command / Response via MQTT

E.2.2 OpenC2 Multiple Consumer Command / Response via MQTT

E.2.3 OpenC2 Command / Response via HTTPS

Appendix F. Notices

1 Introduction

This section is non-normative.

Collaborative Automated Course of Action Operations (CACAO) is a schema and

taxonomy for cyber security playbooks. The [CACAO Security

Playbooks] specification describes how these

playbooks can be created, documented, and shared in a structured and

standardized way across organizational boundaries and technological solutions.

OpenC2 is a suite of specifications that enables command and control of cyber

defense systems and components. OpenC2 typically uses a request-response

paradigm where a Command is encoded by a Producer (managing application) and

transferred to a Consumer (managed device or virtualized function) using a

secure transfer protocol, and the Consumer can respond with status and any

requested information.

This extension builds on existing CACAO v2.0 OpenC2 features to improve playbook

modularity when using OpenC2 capabilities, and to utilize the current OpenC2

Transfer Specifications for [MQTT] and

[HTTPS].

1.1 Glossary

1.1.1 Definitions of terms

The [OpenC2 Architecture] and [CACAO Security

Playbooks] specifications should be consulted

for the authoritative definition of terms used in this specification. A brief

overview of relevant concepts and associated terminology from those

specification is provided in Section 2.1.

1.1.2 Acronyms and abbreviations

Acronym Expansion

CACAO Collaborative Automated Course of Action Operations

CBOR Concise Binary Object Representation

JADN JSON Abstract Data Notation

JSON Javascript Object Notation

OpenC2 Open Command and Control

SLPF Stateless Packet Filtering

UUID Universally Unique Identifier

1.1.3 Document conventions

The following color, font and font style conventions are used in this document:

A fixed width font is used for all type names, property names, and literals.

Property names are in bold style: created_at.

All examples in this document are expressed in JSON. They are in fixed width

font, with straight quotes, black text and a light shaded background, and

4-space indentation. JSON examples in this document are representations of

JSON Objects. They should not be interpreted as string literals. The ordering

of object keys is insignificant. Whitespace before or after JSON structural

characters in the examples are insignificant [RFC8259].

Parts of the example may be omitted for conciseness and clarity. These omitted

parts are denoted with ellipses (...).

All CACAO identifiers (i.e., <object-type>--<UUID>) shown in the examples are

notional and for illustrative purposes, they do not represent real objects.

Example:

{
 "type": "openc2",
 "command_b64":
"ewogICJoZWFkZXJzIjogewogICAgInJlcXVlc3RfaWQiOiAiZDFhYzA0ODktZWQ1MS00MzQ1...",
 "agent": "mqtt-broker--7125c6f6-7f78-4a3d-8a43-f20d20632305",
 "step_variables": {
 "__mqtt-topics__:value": {
 "topic-array": ["oc2/cmd/ap/pf", "oc2/cmd/ap/edr"]
 }
 }
}

1.2 Schema

The schema for this AP is defined using a [JSON Abstract Data Notation

(JADN)] information model. The scope of the schema includes those

aspects of CACAO relevant to the extension described herein but does not

constitute a complete CACAO IM.

2 Key Concepts & Vocabularies

2.1 Key Concepts

This section is non-normative.

The key concepts from CACAO and OpenC2 listed below are applicable to this

specification. For additional information consult the [CACAO v2.0]

and the [OpenC2 Architecture] Specifications, respectively.

CACAO Concepts

Workflow Step: A CACAO playbook contains a with the processing logic

organized in to a set of workflow steps.

Action: The type of CACAO workflow step that contains commands to be

executed.

Playbook-Action: The type of CACAO workflow step that executes a

separate named playbook from within the current playbook.

Agents and Targets: CACAO agents are entities that execute commands on

or against CACAO targets.

OpenC2 Concepts

Command: An OpenC2 action-target pair, plus other optional

information, used to command an OpenC2 Consumer.

Response: An OpenC2 message sent from a Consumer to a Producer

reporting on the outcome of processing a Command.

Actuator Profile: A tailored subset of the OpenC2 language plus

any extensions that specifies the use of OpenC2 to command a particular

function.

Transfer Specification: The description of how an existing standard

transfer protocol (e.g., MQTT, HTTPS) is used to send and receive OpenC2

commands and responses.

Both OpenC2 and CACAO employ the term "target" but the meanings differ. In this

extension specification, the CACAO target is used to integrate the OpenC2

Actuator Profile concept. The logical flow is as follows:

An OpenC2 command is defined in a CACAO playbook openc2 action step

The openc2 action step specifies a CACAO agent that supports the desired

transfer protocol

The openc2 action step specifies a CACAO target that represents the AP that

should process the command.

2.2 Producers and Consumers

This section is non-normative.

Both OpenC2 and CACAO employ the terms "producer" and "consumer" but with

different meanings. The following table identifies the relevant definitions,

drawing on the CACAO v2.0 Specification and the OpenC2 Architecture

Specification.

Producer Consumer

OpenC2
An OpenC2 Producer is a manager

application that sends Commands.

An OpenC2 Consumer is a managed

device/application that receives commands.

CACAO

A "CACAO 2.0 Producer" is any software that

can create CACAO 2.0 content and conforms

to the requirements of Section 11.1 of the

CACAO Specification.

A "CACAO 2.0 Consumer" is any software that

can consume CACAO 2.0 content and conforms

to the requirements of Section 11.1 of the CACAO

Specification.

Figure 2-1 illustrates how the concepts of producer and consumer apply when

OpenC2 commands are incorporated into CACAO playbooks, illustrating an OpenC2

command invoked from a CACAO playbook action step, with the command sent and

received via the MQTT protocol using a corresponding CACAO agent.

Figure 2-1: Producer and Consumer Relationships

2.3 CACAO Vocabulary Modifications

This section is non-normative.

CACAO employs the concept of vocabularies to "enhance interoperability by increasing

the likelihood that different entities use the exact same string to represent the same concept". Some

CACAO vocabularies are "open" (designated by <vocabulary-type>-ov), which
means that they contain suggested values but that types that employ open

vocabularies can be extended with additional values if needed. This

specification proposes extensions to several open vocabularies from the CACAO

specification:

command-type-ov (CACAO Specification Section 5.2)

agent-target-type-ov (CACAO Specification Section 7.2)

security-category-type-ov (CACAO Specification Section 7.11.1)

variable-type-ov (CACAO Specification Section 10.18.4)

The specific proposed extended values are:

command-type-ov is extended with the type openc2 (see Section 3.1)

Command type openc2-http is deprecated in favor of the non-transport specific openc2 command type

agent-target-type-ov "Devices and Equipment" vocabulary is extended with the following types:
mqtt-broker agent type for message transfer via MQTT (see Section 4.1.1)

openc2-https agent type for OpenC2 message transfer via HTTPS (see Section 4.1.2)

security-category-type-ov is extended with the following types:
openc2-consumer (see Section 4.2)

variable-type-ov is extended with the following types
topic-list to identify publish / subscribe topics to which a message should be published (see

Section 5.1)

3 OpenC2 Commands In CACAO

This section describes the implementation of OpenC2 commands under CACAO,

including the format and processing of an openc2 command object, the handling

of base64 encoding and decoding, and the invocation of OpenC2 via openc2

command objects in a subordinate playbook.

This specification recommends deprecating CACAO's openc2-http command type in

favor of the transport-neutral openc2 command type defined here, in keeping

with OpenC2's intent for the language to be defined in a transport-independent

manner.

3.1 OpenC2 Command Action Step

The openc2 command represents a command that is intended to be processed via

an OpenC2 Consumer. The delivery of the command and specification of transfer

mechanism and desired OpenC2 AP are handled by identifying appropriate CACAO agents

and targets. The command type open vocabulary (command-type-ov) defined in
Section 5.2 of [CACAO v2.0] is extended with

the new value openc2 :

Command

Type
Description

openc2
An OpenC2 command to be transmitted to an OpenC2 Consumer via an OpenC2 transfer

protocol.

This section defines the use of properties defined in the [CACAO

v2.0] specification for an openc2 action step.

Specifically, it addresses the content of:

Workflow step common properties (CACAO Specification Section 4.1)

Workflow action step properties (CACAO Specification Section 4.5)

Workflow command object common properties (CACAO Specification Section 5.1)

The command and headers properties of the CACAO openc2-http command type

are not used in the openc2 command type defined here. The CACAO agents,

targets, and variables described in Sections 4 and 5 of this specification

provide mechanisms for selecting and controlling the transfer of OpenC2 command

messages generated by an openc2 command action step.

The table below defines how particular properties are addressed for an openc2

command object. The table also identifies the level of CACAO playbook where each

property is defined.

Level Property Name Data Type Details

Command type (required) string The value of this property MUST be openc2

Command
command_b64

(required)
string

An OpenC2 command that is base64 encoded (see

Section 4 of [RFC 4649]).

Workflow

Action

Step

agent (required) identifier
The agent property of the workflow action type step

MUST specify a suitable agent for OpenC2 message

transfer

Workflow

Common

step_variables

(required)
dictionary

The common workflow step_variables property for an
openc2 command MUST specify a variable suitable for

conveying OpenC2 command message destinations to

the specified agent.

Usage Requirements

When the agent is specified as an mqtt-broker (see

Section 4.1.1) the step_variables_ MUST

include an __mqtt-topics__ variable (see

Section 5.1).

When the agent is specified as an oc2-http-api agent (see

Section 4.1.2) the step_variables_

MUST include an __http-endpoints__ variable (see

Section 5.2).

To-Do: Should content_b64 be changed to command_b64 for consistency

with virtually all other CACAO command objects? Opened issue in CACAO

repo; using command_b64 for

now.

Example 3.1 (OpenC2 Command, transfer via MQTT)

The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.

{
 "type": "openc2",
 "command_b64":
"ewogICJoZWFkZXJzIjogewogICAgInJlcXVlc3RfaWQiOiAiZDFhYzA0ODktZWQ1MS00MzQ1 ...
B9CiAgfQp9",
 "agent": "mqtt-broker--7125c6f6-7f78-4a3d-8a43-f20d20632305",
 "step_variables": {
 "__mqtt-topics__:value": {
 "topic-array": ["oc2/cmd/ap/pf", "oc2/cmd/ap/edr"]
 }
 }
}

Example 3.2 (OpenC2 Command, transfer via HTTPS)

The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.

{
 "type": "openc2",
 "command_b64":
"ewogICJoZWFkZXJzIjogewogICAgInJlcXVlc3RfaWQiOiAiZDFhYzA0ODktZWQ1MS00MzQ1 ...
B9CiAgfQp9",
 "agent": "oc2-http-api--5ceccd83-8052-4d12-8b42-e941647867c7",
 "step_variables": {
 "__http-endpoints__:value": {
 "ipv4": ["11.22.33.44", "55.66.77.88"]
 }
 }
}

The abbreviated content of the base64 command (command_b64) in both of the
above examples is the encoded version of the OpenC2 content that is shown below

(decoded version). The command content is shown as text for illustration

purposes only.

https://github.com/oasis-tcs/cacao/issues/12
https://github.com/oasis-tcs/cacao/issues/12

{
 "headers": {
 "request_id": "d1ac0489-ed51-4345-9175-f3078f30afe5",
 "created": 1545257700000,
 "from": "oc2producer.company.net",
 "to": ["oc2consumer.company.net"]
 },
 "body": {
 "openc2": {
 "request": {
 "action": "deny",
 "target": {
 "ipv4_connection": {
 "protocol": "tcp",
 "src_addr": "1.2.3.4",
 "src_port": 10996,
 "dst_addr": "198.2.3.4",
 "dst_port": 80
 }
 },
 "args": {
 "start_time": 1534775460000,
 "duration": 500,
 "response_requested": "ack",
 "slpf": {
 "drop_process": "none"
 }
 },
 "profile": "slpf"
 }
 }
 }
}

3.2 Base64 Encoding and Decoding

CACAO uses base64 encoding, as defined in Section 4 of [RFC 4648], to

preserve the integrity of complex commands and scripts, such as the example

OpenC2 command shown in Section 3.1. The

default encoding for OpenC2 commands and responses is JSON, as defined in section 3.1.4 of the

[OpenC2 Language Specification]. The recommended conventions

for the handling of base64 encoding of OpenC2 commands and responses in the

context of a CACAO playbook being executed by a CACAO Consumer are:

OpenC2 commands in JSON format will be base64 encoded by the CACAO Producer

creating the playbook and stored as a string in the command_b64 field of an

OpenC2 command object.

The base64-encoded content will be passed to the specified OpenC2 CACAO agent

when the OpenC2 command object is executed.

The OpenC2 CACAO agent will decode the base64-encoded content and re-encode in

the appropriate transfer encoding (e.g., JSON, CBOR) for transfer to the

Consumer identified by the specified OpenC2 CACAO target, incorporating any

command content specified by CACAO variables when re-encoding the command.

The mechanism for exchange of the the transfer-encoded command between agent

and target is the responsibility of the CACAO Consumer executing the playbook.

The OpenC2 CACAO agent will accept transfer-encoded responses from the OpenC2

CACAO target.

To-Do: what happens to responses once they are accepted by the OpenC2 CACAO

agent? Are they base64 encoded? Where do they go? How are they represented

back to the CACAO Consumer to support any decision(s) that are dependent on

the response(s)?

3.3 Invoking OpenC2 via Playbook Action Step

To-Do: How much complexity is worthwhile here?

Selection of agent based on values in mqtt-topics or http-endpoints?

Selection of targets based on something that identifies the desired AP?

4 OpenC2 CACAO Agents and Targets

4.1 OpenC2 CACAO Agents

CACAO agents for OpenC2 correspond to OpenC2 transfer specifications. Each type

of OpenC2 CACAO agent supports the use of one transfer protocol for sending

OpenC2 commands and receiving OpenC2 responses.

4.1.1 MQTT Broker Agent

An mqtt-broker agent type supports publish / subscribe communications via the

OASIS [MQTT v5] protocol. The CACAO agent-target-type-ov "Devices

and Equipment" subcategory is extended as follows:

Type Description

mqtt-broker A publish/subscribe message transfer agent conforming to the OASIS MQTT v5.0 protocol.

The mqtt-broker agent is not specific to OpenC2 but when used for sending and

receiving OpenC2 messages its use MUST conform to the [OpenC2 MQTT Transfer

Specification]. In particular:

Topics for message publication passed to this agent for transmitting OpenC2

messages MUST conform to the default topic structure specified in

Section 2.2 of the OpenC2 MQTT Transfer Specification.

A CACAO mqtt-broker agent in an environment using OpenC2 MUST subscribe to

the response topics specified in Section 2.2 of the OpenC2 MQTT Transfer Specification.

The __mqtt-topics__ variable (see

Section 5.1) is used to pass the

requested topic(s) for publishing a message to an mqtt-broker agent.

This type defines an MQTT Broker agent object and is used for messages to be

transmitted via MQTT. In addition to the inherited properties, this section

defines the following additional properties that are valid for this type.

Property Name Data Type Details

type (required) string The value of this property MUST be mqtt-broker

address (required) dictionary

The key for each entry in the dictionary MUST be a string that

uniquely identifies one or more address types. The key(s) MUST be

one of the following values dname (domain name), ipv4 , ipv6 ,
l2mac , vlan , or url . The dictionary value associated with each
key MUST be a list of string that contains the corresponding

address(es) for that particular key type.

The address dictionary for an mqtt-broker agent MUST specify

only a single address for the broker to be used.

authentication_info

(optional)
identifier

This property contains an ID reference to a CACAO
authentication-info object that is stored at the Playbook level in

the authentication_info_definitions property.

The ID MUST reference a CACAO authentication-info object

(see section 6 of the [CACAO v2.0 Specification]).

category (optional)
list of
open-vocab

One or more identified categories of security infrastructure types

that this agent represents (see section 7.11.1 of the [CACAO v2.0

Specification]).

The value for this property SHOULD come from the security-
category-type-ov vocabulary.

Example 4.1.1 (MQTT Broker Agent)

The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.

"agent_definitions": {
 "mqtt-broker--7125c6f6-7f78-4a3d-8a43-f20d20632305": {
 "type": "mqtt-broker",
 "name": "mqtt.example.com",
 "description": "An MQTT pub/sub broker for company example dot com",
 "address": {
 "url": ["https://mqtt.example.com"]
 },
 "category": "server"
 }
}

To-Do: Should we define a new security-category-ov entry message-broker

or is server sufficient?

4.1.2 OpenC2 HTTP-API Agent

An oc2-http-api agent type supports point-to-point communications via the

HTTP or HTTPS protocol. The CACAO agent-target-type-ov "Devices

and Equipment" subcategory is extended as follows:

Type Description

oc2-http-
api

An agent capable of transferring OpenC2 commands to one or more specified endpoints per

requirements of the OASIS [OpenC2 HTTPS Transfer Protocol Specification].

The oc2-http-api agent is an extension of the CACAO http-api agent to

address the particular requirements for handling OpenC2 messages defined in the

[OpenC2 HTTPS Transfer Protocol Specification]. In

particular:

The preferred transfer protocols is HTTPS.

The HTTP message MUST begin with the headers:

POST /.well-known/openc2 HTTP/1.1

Content-type: application/openc2+json;version=1.0

The URL for destinations (i.e., OpenC2 consumers) MUST use the URI scheme

specified in Section 3.2.2 of the [OpenC2 HTTPS Transfer Protocol

Specification] (i.e., https://<consumer address>/.well-known/openc2).

The __http-endpoints__ variable (see

Section 5.2) is used to pass the desired

destinations for transferring an OpenC2 message to an oc2-http-api agent.

This type defines an OpenC2 HTTP-API agent object and is used for messages to be

transmitted via HTTP(S). In addition to the inherited properties, this section

defines the following additional properties that are valid for this type.

Property Name Data Type Details

type (required) string The value of this property MUST be oc2-http-api

address (required) dictionary
The destination(s) for transfer of this OpenC2 command. The

values for address are taken from the __http_endpoints__

variable

authentication_info

(optional)
identifier

This property contains an ID reference to a CACAO
authentication-info object that is stored at the Playbook level

in the authentication_info_definitions property.

The ID MUST reference a CACAO authentication-info object

(see section 6 of the [CACAO v2.0 Specification]).

category (optional)
list of
open-vocab

One or more identified categories of security infrastructure types

that this agent represents (see section 7.11.1 of the [CACAO v2.0

Specification]).

The value for this property SHOULD come from the security-
category-type-ov vocabulary.

Example 4.1.1 (OpenC2 HTTP-API)

The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.

"agent_definitions": {
 "oc2-http-api--5ceccd83-8052-4d12-8b42-e941647867c7": {
 "type": "oc2-http-api",
 "name": "p2p.example.com",
 "description": "An MQTT pub/sub broker for company example dot com",
 "address": "__http-endpoints__:value",
 "category": "server"
 }
}

To-Do: Should we define a new security-category-ov entry oc2-consumer

or is server sufficient?

4.2 OpenC2 CACAO Targets

OpenC2 CACAO Targets correspond to OpenC2 Actuator Profile (AP) specifications.

An openc2 command object SHOULD specify one or more CACAO targets to identify

the OpenC2 APs to be invoked for the execution of the object's OpenC2 command.

An OpenC2 CACAO target MUST be of type security-category as defined in

Section 7.11 of the [CACAO v2.0 Specification].

The CACAO security-category-type-ov is extended as follows:

Type Description

openc2-
consumer

A category of CACAO targets representing OpenC2 Consumers supporting one or more

OpenC2 APs

The category value of an OpenC2 CACAO target SHALL be set to openc2-consumer .

The security-category target object is extended with a new property:
openc2-profile . The resulting extended security-category target is

structured as follows:

Property Name Data Type Details

type (required) string The value of this property MUST be security-category .

category (required)
list of open-
vocab

The value for this property MUST include openc2-consumer .

openc2-profile

(required)
string

The value for this property SHOULD be the "Property Name" of

a registered OpenC2 AP.

The Property Names of registered OpenC2 APs are found in the

[OpenC2 Namespace Registry].

For example an OpenC2 CACAO target for the

Stateless Packet Filtering AP would specify the profile as follows:

"openc2-profile" : "slpf"

Example 4.2 (OpenC2 Target)

The IDs used in this example are notional and for illustrative purposes, they do not represent real objects.

"target_definitions": {
 "security-category--09b5b900-f333-41fd-9fdc-cb466e9b1f20": {
 "type": "security-category",
 "name": "OC2 Packet Filter",
 "category": ["openc2-consumer"],
 "openc2-profile" : "slpf"
 }
}

To-Do: determine what, if anything, needs to be defined beyond the correlation of APs and CACAO Targets.

5 Standardized Playbook Variables

This section defines a set of standardized CACAO variables for use when invoking

an MQTT broker or OpenC2 HTTP API agent to handle message transfer. These CACAO

variables are playbook variables whose values can be set internally via an
openc2 command object or from a playbook-action step in a calling playbook

and accessed by the appropriate agent.

A standardized CACAO variable is also defined for returning OpenC2 responses to

the calling openc2 action step for subsequent processing.

5.1 __mqtt-topics__ Variable

The __mqtt-topics__ variable is used to convey a list of MQTT topics onto

which a message should be published. The variable-type-ov is extended as follows:

Vocabulary

Value
Description Examples

topic-list
An object containing a list of strings that identify one or more publish /

subscribe topics to which a message should be published.

"type":
"topic-list",

`"value":

The mqtt-broker agent is general purpose. MQTT offers great flexibility

regarding topic naming. The format of the topic names in the __mqtt-topics__ value

should be appropriate to the application. The [OpenC2 MQTT Transfer

Specification] provides specific guidance regarding the use

of MQTT topics for OpenC2 message transfer. When an mqtt-broker agent is

employed for sending and receiving OpenC2 messages the topics specified as
__mqtt-topics__:value SHOULD conform to the topic structure guidance in

Section 2.2 of the

[OpenC2 MQTT Transfer Specification].

Other users of the MQTT Broker CACAO agent and __mqtt-topics__ variable for

publish / subscribe messaging should apply their own corresponding guidance.

Example 5.1 (__mqtt-topics__)

{
 "type": "playbook",
 …,
 "playbook_variables": {
 "__mqtt-topics__": {
 "type": "topic-list",
 "description": "Provides a list of topics to publish a message via an MQTT
broker",
 "value": {
 "topic-array": ["oc2/cmd/ap/pf","oc2/cmd/ap/edr"]
 },
 "constant": false,
 "external": true
 }
 }
}

5.2 __http-endpoints__ Variable

The __http_endpoints__ variable is used to convey a list of endpoints to an OpenC2 command should be

published.

The variable-type-ov for __http-endpoints__ MUST be dictionary .

The value of __http-endpoints__ MUST be a dictionary of address(es) as

defined for the CACAO http-api agent object (section 7.8 of the [CACAO

Playbooks] specification).

Example 5.2 (__http-endpoints__)

{
 "type": "playbook",
 …,
 "playbook_variables": {
 "__http-endpoints__": {
 "type": "dictionary",
 "description": "A list of endpoints for delivery of an OpenC2 command via
HTTP(S)",
 "value": {
 "url": ["https://oc2consumer.example.com"],
 "ipv4" : ["11.22.33.44", "55.66.77.88"]
 },
 "constant": false,
 "external": true
 }
 }
}

5.3 __openc2-responses__ Variable

The __openc2-responses variable is used to aggregate the responses from one or

more OpenC2 Consumers for return to the calling openc2 command action step.

The return of results from OpenC2 Consumer responses enables conditional

processing by subsequent action steps in the CACAO playbook.

To-Do: confirm this is a suitable variable-type-ov for this variable.

Since it's an -ov a new type may be in order.

The variable-type-ov for __openc2-responses__ MUST be dictionary .

To-Do: develop more realistic response content for this example

Example 5.3 (__openc2-response__)

{
 "type": "playbook",
 …,
 "playbook_variables": {
 "__openc2-response__": {
 "type": "dictionary",
 "description": "A collection of responses for an OpenC2 command",
 "value": {
 "device1": { <response from Device1>},
 "device4": { <response from Device4>},
 "device9": { <response from Device9>}
 },
 "constant": false,
 "external": false
 }
 }
}

6 Conformance

(Note: The OASIS TC Process requires that a specification approved by the TC at the Committee Specification

Public Review Draft, Committee Specification or OASIS Standard level must include a separate section, listing a set

of numbered conformance clauses, to which any implementation of the specification must adhere in order to claim

conformance to the specification (or any optional portion thereof). This is done by listing the conformance clauses

https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsConfClause

here.

For the definition of "conformance clause," see OASIS Defined Terms.

See "Guidelines to Writing Conformance Clauses":

http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html.

Remove this note before submitting for publication.)

Appendix A. References

This appendix contains the normative and informative references that are used in this document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their

long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of their content constitutes requirements of

this document.

(Reference sources:

For references to IETF RFCs, use the approved citation formats at:

http://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html.

For references to W3C Recommendations, use the approved citation formats at:

http://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html.

Remove this note before submitting for publication.)

[CACAO-Security-Playbooks-v2.0]

CACAO Security Playbooks Version 2.0. Edited by Bret Jordan and Allan Thomson. 27 November 2023. OASIS

Committee Specification 01. https://docs.oasis-open.org/cacao/security-playbooks/v2.0/cs01/security-playbooks-

v2.0-cs01.html. Latest version: https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-

v2.0.html.

[mqtt-v5.0]

MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. 07 March 2019. OASIS

Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. Latest version: https://docs.oasis-

open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[OpenC2-HTTPS-v1.1]

Specification for Transfer of OpenC2 Messages via HTTPS Version 1.1. Edited by David Lemire. Latest stage:

https://docs.oasis-open.org/openc2/open-impl-https/v1.1/open-impl-https-v1.1.html

[OpenC2-Lang-v1.1]

Open Command and Control (OpenC2) Language Specification Version 1.1. Edited by Duncan Sparrell and Toby

Considine. Latest stage: https://docs.oasis-open.org/openc2/oc2ls/v1.1/oc2ls-v1.1.html

[OpenC2-MQTT-v1.0]

Specification for Transfer of OpenC2 Messages via MQTT Version 1.0. Edited by David Lemire. 19 November 2021.

OASIS Committee Specification 01. https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-

cs01.html. Latest stage: https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html

[OpenC2-Namespaces]

OpenC2 Namespace Registry. https://github.com/oasis-tcs/openc2-oc2arch/blob/published/namespace-

registry.md

[OpenC2-SLPF-v1.1]

Open Command and Control (OpenC2) Profile for Stateless Packet Filtering Version 1.1. Edited by Joe Brule,

Duncan Sparrell, and Alex Everett. Latest stage: https://docs.oasis-open.org/openc2/oc2slpf/v1.1/oc2slpf-v1.1.html

https://www.oasis-open.org/policies-guidelines/oasis-defined-terms-2017-05-26#dConformanceClause
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html
http://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html
http://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/cs01/security-playbooks-v2.0-cs01.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/cs01/security-playbooks-v2.0-cs01.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.1/open-impl-https-v1.1.html
https://docs.oasis-open.org/openc2/oc2ls/v1.1/oc2ls-v1.1.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-mqtt-v1.0-cs01.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://github.com/oasis-tcs/openc2-oc2arch/blob/published/namespace-registry.md
https://github.com/oasis-tcs/openc2-oc2arch/blob/published/namespace-registry.md
https://docs.oasis-open.org/openc2/oc2slpf/v1.1/oc2slpf-v1.1.html

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,

March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC4648]

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October

2006, https://www.rfc-editor.org/info/rfc4648.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI

10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

[RFC8259]

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI

10.17487/RFC8259, December 2017, https://www.rfc-editor.org/info/rfc8259.

A.2 Informative References

[OpenC2-Arch-v1.0]

Open Command and Control (OpenC2) Architecture Specification Version 1.0. Edited by Duncan Sparrell. 30

September 2022. OASIS Committee Specification 01. https://docs.oasis-

open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html. Latest stage: https://docs.oasis-

open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html.

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, https://www.rfc-editor.org/info/rfc3552.

Appendix B. Safety, Security and Privacy
Considerations

OpenC2, as a cyber defense automation tool, is high-value target for adversaries

attempting to exploit an environment where it is used. Appendix B of the OpenC2

Architecture Specification [OpenC2-Arch-v1.0] discusses:

Threats to OpenC2

Applying security services to OpenC2 operations

Network topology considerations for OpenC2 messages

Refer to that document for a review of these topics in the context of OpenC2.

Appendix B of the [CACAO v2.0] Specification

includes information regarding security and privacy considerations for CACAO

playbook generation, consumption, and content sensitivity. Refer to that

document for information regarding these topics in the context of CACAO.

Appendix C. Acknowledgments

Note: A Work Product approved by the TC must include a list of people who participated in the development of the

Work Product. This is generally done by collecting the list of names in this appendix. This list shall be initially

compiled by the Chair, and any Member of the TC may add or remove their names from the list by request. Remove

this note before submitting for publication.

http://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648
http://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://www.rfc-editor.org/info/rfc3552

C.1 Special Thanks

Substantial contributions to this document from the following individuals are gratefully acknowledged:

Participant Name, Affiliation or "Individual Member"

C.2 Participants

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

OpenC2 TC Members:

First Name Last Name Company

Philippe Alman Something Networks

Alex Amirnovman Company B

Kris Anderman Mini Micro

Darren Anstman Big Networks

Appendix D. Revision History

Revision Date Editor Changes Made

specname-v1.0-wd01 yyyy-mm-dd Editor Name Initial working draft

Appendix E. Use Cases and Examples

E.1 Use Cases

E.1.1 Multiple OpenC2 Consumers With Common Profile

E.1.2 OpenC2 Command With Response Requested

E.1.3 OpenC2 Message Transfer via MQTT

E.1.4 Extended OpenC2 Consumer Execution Times

E.2 Examples

This section presents example CACAO playbooks aligned with this extension

specification for notional OpenC2 command scenarios.

E.2.1 OpenC2 Single Consumer Command / Response via MQTT

In this example an OpenC2 command is sent to a single OpenC2 consumer using MQTT as the

transfer mechanism. Consistent with the [OpenC2 MQTT Transfer Specification],

the consumer is addressed as an individual device. This scenario requires:

A CACAO openc2 command object containing the OpenC2 command to be sent

A CACAO agent defining an MQTT broker

A CACAO __mqtt-topics__ variable to convey the publication topic

A CACAO security-category target to identify the OpenC2 actuator profile being invoked'

A CACAO __openc2-responses__ variable to return the consumer's response for any subsequent decision

logic

Knowledge of the OpenC2 consumer device address

This example assumes an OpenC2 consumer implementing the [OpenC2 Profile for

Stateless Packet Filtering] (SLPF). A notional device

identification of oc2-slpf-consumer is assumed for MQTT topic addressing and

the OpenC2 command denies outbound FTP transfers (example A.1.2 in the SLPF AP).

The OpenC2 command to be sent is:

{
 "action": "deny",
 "target": {
 "ipv4_connection": {
 "protocol": "tcp",
 "src_port": 21
 }
 },
 "args": {
 "response_requested": "ack",
 "slpf": {
 "drop_process": "false_ack",
 "direction": "egress"
 }
 },
 "profile": {
 "slpf": {}
 }
}

The following is an excerpt from the CACAO playbook showing the openc2 action

workflow step and the CACAO agent and target definitions. The command_b64

property is truncated for presentation purposes.

"action--629b12de-f0e5-402e-944d-2c4df0883caa": {
 "name": "Example OpenC2 Action Step",
 "description": "Example openc2 action step based on the OpenC2 Extension for
CACAO Specification",
 "step_variables": {
 "__mqtt-topics__": {
 "type": "topic-list",
 "description": "example of MQTT topics IAW OC2 Ext. for CACAO Spec",
 "value":
 {
 "topic-array": ["oc2/cmd/device/oc2-slpf-consumer"]
 },
 "constant": false,
 "external": false
 },
 "__openc2-responses__": {
 "type": "dictionary",
 "description": "Captures responses returned from OpenC2 consumers",
 "constant": false,
 "external": false
 }
 },
 "on_completion": "end--4f6a186d-89da-4da7-9da4-0df89b223658",
 "type": "action",
 "commands": [
 {
 "type": "openc2",
 "description": "Example openc2 command",
 "command_b64": "ewogICJhY3Rpb24iOi ..."
 }
],
 "agent": "mqtt-broker--29ede420-29c1-4fa9-8d91-5ed0a26d6708",
 "targets": [
 "security-category--b0852f76-1c36-4f00-8dd7-bf433cdbb954"
]
},
"end--4f6a186d-89da-4da7-9da4-0df89b223658": {
 "type": "end"
},

"agent_definitions": {
 "mqtt-broker--29ede420-29c1-4fa9-8d91-5ed0a26d6708": {
 "type": "mqtt-broker",
 "name": "Example MQTT broker",
 "description": "Agent to provide an MQTT 5.0 broker",
 "location": {
 "name": "example-mqtt-broker",
 "network_details": "mqtt.example.com"
 }
 }
},

"target_definitions": {
 "security-category--b0852f76-1c36-4f00-8dd7-bf433cdbb954": {
 "type": "openc2-consumer",
 "category": ["openc2-consumer"],
 "name": "openc2 SLPF consumer",
 "openc2-profile":"slpf"
 }
}

E.2.2 OpenC2 Multiple Consumer Command / Response via MQTT

E.2.3 OpenC2 Command / Response via HTTPS

Appendix F. Notices

Copyright © OASIS Open 2024. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property

Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on

or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright notice and this section are included on

all such copies and derivative works. However, this document itself may not be modified in any way, including by

removing the copyright notice or references to OASIS, except as needed for the purpose of developing any

document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to

copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages

other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or

assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final

Deliverable documents (Committee Specification, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily

be infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and

provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with

the IPR Mode of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent

claims that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a

patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR

Mode of the OASIS Technical Committee that produced this OASIS Standards Final Deliverable. OASIS may include

such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be

claimed to pertain to the implementation or use of the technology described in this OASIS Standards Final

Deliverable or the extent to which any license under such rights might or might not be available; neither does it

represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to

rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS

website. Copies of claims of rights made available for publication and any assurances of licenses to be made

available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary

rights by implementers or users of this OASIS Standards Final Deliverable, can be obtained from the OASIS TC

Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any

time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used

only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use

of, specifications, while reserving the right to enforce its marks against misleading uses. Please see

https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

