
Open	Command	and	Control	(OpenC2)	Language	Specification	Version	1.0
Committee	Specification	Draft	09	/
Public	Review	Draft	03
31	May	2019
Specification	URIs

This	version:

http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.md	(Authoritative)
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.pdf

Previous	version:

http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.md	(Authoritative)
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.pdf

Latest	version:

http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.md	(Authoritative)
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.pdf

Technical	Committee:

OASIS	Open	Command	and	Control	(OpenC2)	TC

Chairs:

Joe	Brule	(jmbrule@nsa.gov),	National	Security	Agency
Duncan	Sparrell	(duncan@sfractal.com),	sFractal	Consulting	LLC

Editors:

Jason	Romano	(jdroman@nsa.gov),	National	Security	Agency
Duncan	Sparrell	(duncan@sfractal.com),	sFractal	Consulting	LLC

Abstract:

Cyberattacks	are	increasingly	sophisticated,	less	expensive	to	execute,	dynamic	and	automated.	The	provision	of	cyber	defense
via	statically	configured	products	operating	in	isolation	is	untenable.	Standardized	interfaces,	protocols	and	data	models	will
facilitate	the	integration	of	the	functional	blocks	within	a	system	and	between	systems.	Open	Command	and	Control	(OpenC2)	is
a	concise	and	extensible	language	to	enable	machine-to-machine	communications	for	purposes	of	command	and	control	of
cyber	defense	components,	subsystems	and/or	systems	in	a	manner	that	is	agnostic	of	the	underlying	products,	technologies,
transport	mechanisms	or	other	aspects	of	the	implementation.	It	should	be	understood	that	a	language	such	as	OpenC2	is
necessary	but	insufficient	to	enable	coordinated	cyber	responses	that	occur	within	cyber	relevant	time.	Other	aspects	of
coordinated	cyber	response	such	as	sensing,	analytics,	and	selecting	appropriate	courses	of	action	are	beyond	the	scope	of
OpenC2.

Status:

This	document	was	last	revised	or	approved	by	the	OASIS	Open	Command	and	Control	(OpenC2)	TC	on	the	above	date.	The
level	of	approval	is	also	listed	above.	Check	the	"Latest	version"	location	noted	above	for	possible	later	revisions	of	this
document.	Any	other	numbered	Versions	and	other	technical	work	produced	by	the	Technical	Committee	(TC)	are	listed	at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

TC	members	should	send	comments	on	this	specification	to	the	TC's	email	list.	Others	should	send	comments	to	the	TC's	public
comment	list,	after	subscribing	to	it	by	following	the	instructions	at	the	"Send	A	Comment"	button	on	the	TC's	web	page	at

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	1	of	40

http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.md
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.pdf
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.md
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.pdf
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.md
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:jmbrule@nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
mailto:jdroman@nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical


https://www.oasis-open.org/committees/openc2/.

This	specification	is	provided	under	the	Non-Assertion	Mode	of	the	OASIS	IPR	Policy,	the	mode	chosen	when	the	Technical
Committee	was	established.	For	information	on	whether	any	patents	have	been	disclosed	that	may	be	essential	to	implementing
this	specification,	and	any	offers	of	patent	licensing	terms,	please	refer	to	the	Intellectual	Property	Rights	section	of	the	TC's	web
page	(https://www.oasis-open.org/committees/openc2/ipr.php).

Note	that	any	machine-readable	content	(Computer	Language	Definitions)	declared	Normative	for	this	Work	Product	is	provided
in	separate	plain	text	files.	In	the	event	of	a	discrepancy	between	any	such	plain	text	file	and	display	content	in	the	Work
Product's	prose	narrative	document(s),	the	content	in	the	separate	plain	text	file	prevails.

Citation	format:

When	referencing	this	specification	the	following	citation	format	should	be	used:

[OpenC2-Lang-v1.0]

Open	Command	and	Control	(OpenC2)	Language	Specification	Version	1.0.	Edited	by	Jason	Romano	and	Duncan	Sparrell.	31
May	2019.	OASIS	Committee	Specification	Draft	09	/	Public	Review	Draft	03.	http://docs.oasis-
open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.html.	Latest	version:	http://docs.oasis-
open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	2	of	40

https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
http://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd03/oc2ls-v1.0-csprd03.html
http://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html


Notices

Copyright	©	OASIS	Open	2019.	All	Rights	Reserved.

All	capitalized	terms	in	the	following	text	have	the	meanings	assigned	to	them	in	the	OASIS	Intellectual	Property	Rights	Policy
(the	"OASIS	IPR	Policy").	The	full	Policy	may	be	found	at	the	OASIS	website.

This	document	and	translations	of	it	may	be	copied	and	furnished	to	others,	and	derivative	works	that	comment	on	or	otherwise
explain	it	or	assist	in	its	implementation	may	be	prepared,	copied,	published,	and	distributed,	in	whole	or	in	part,	without
restriction	of	any	kind,	provided	that	the	above	copyright	notice	and	this	section	are	included	on	all	such	copies	and	derivative
works.	However,	this	document	itself	may	not	be	modified	in	any	way,	including	by	removing	the	copyright	notice	or	references	to
OASIS,	except	as	needed	for	the	purpose	of	developing	any	document	or	deliverable	produced	by	an	OASIS	Technical
Committee	(in	which	case	the	rules	applicable	to	copyrights,	as	set	forth	in	the	OASIS	IPR	Policy,	must	be	followed)	or	as
required	to	translate	it	into	languages	other	than	English.

The	limited	permissions	granted	above	are	perpetual	and	will	not	be	revoked	by	OASIS	or	its	successors	or	assigns.

This	document	and	the	information	contained	herein	is	provided	on	an	"AS	IS"	basis	and	OASIS	DISCLAIMS	ALL
WARRANTIES,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	ANY	WARRANTY	THAT	THE	USE	OF	THE
INFORMATION	HEREIN	WILL	NOT	INFRINGE	ANY	OWNERSHIP	RIGHTS	OR	ANY	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.

OASIS	requests	that	any	OASIS	Party	or	any	other	party	that	believes	it	has	patent	claims	that	would	necessarily	be	infringed	by
implementations	of	this	OASIS	Committee	Specification	or	OASIS	Standard,	to	notify	OASIS	TC	Administrator	and	provide	an
indication	of	its	willingness	to	grant	patent	licenses	to	such	patent	claims	in	a	manner	consistent	with	the	IPR	Mode	of	the	OASIS
Technical	Committee	that	produced	this	specification.

OASIS	invites	any	party	to	contact	the	OASIS	TC	Administrator	if	it	is	aware	of	a	claim	of	ownership	of	any	patent	claims	that
would	necessarily	be	infringed	by	implementations	of	this	specification	by	a	patent	holder	that	is	not	willing	to	provide	a	license	to
such	patent	claims	in	a	manner	consistent	with	the	IPR	Mode	of	the	OASIS	Technical	Committee	that	produced	this
specification.	OASIS	may	include	such	claims	on	its	website,	but	disclaims	any	obligation	to	do	so.

OASIS	takes	no	position	regarding	the	validity	or	scope	of	any	intellectual	property	or	other	rights	that	might	be	claimed	to
pertain	to	the	implementation	or	use	of	the	technology	described	in	this	document	or	the	extent	to	which	any	license	under	such
rights	might	or	might	not	be	available;	neither	does	it	represent	that	it	has	made	any	effort	to	identify	any	such	rights.	Information
on	OASIS'	procedures	with	respect	to	rights	in	any	document	or	deliverable	produced	by	an	OASIS	Technical	Committee	can	be
found	on	the	OASIS	website.	Copies	of	claims	of	rights	made	available	for	publication	and	any	assurances	of	licenses	to	be
made	available,	or	the	result	of	an	attempt	made	to	obtain	a	general	license	or	permission	for	the	use	of	such	proprietary	rights
by	implementers	or	users	of	this	OASIS	Committee	Specification	or	OASIS	Standard,	can	be	obtained	from	the	OASIS	TC
Administrator.	OASIS	makes	no	representation	that	any	information	or	list	of	intellectual	property	rights	will	at	any	time	be
complete,	or	that	any	claims	in	such	list	are,	in	fact,	Essential	Claims.

The	name	"OASIS"	is	a	trademark	of	OASIS,	the	owner	and	developer	of	this	specification,	and	should	be	used	only	to	refer	to
the	organization	and	its	official	outputs.	OASIS	welcomes	reference	to,	and	implementation	and	use	of,	specifications,	while
reserving	the	right	to	enforce	its	marks	against	misleading	uses.	Please	see	https://www.oasis-open.org/policies-
guidelines/trademark	for	above	guidance.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	3	of	40

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark


Table	of	Contents
1	Introduction

1.1	IPR	Policy
1.2	Terminology
1.3	Normative	References
1.4	Non-Normative	References
1.5	Document	Conventions

1.5.1	Naming	Conventions
1.5.2	Font	Colors	and	Style

1.6	Overview
1.7	Goal
1.8	Purpose	and	Scope

2	OpenC2	Language	Description
2.1	OpenC2	Command
2.2	OpenC2	Response

3	OpenC2	Language	Definition
3.1	Base	Components	and	Structures

3.1.1	Data	Types
3.1.2	Semantic	Value	Constraints
3.1.3	Multiplicity
3.1.4	Extensions
3.1.5	Serialization

3.2	Message
3.3	Content

3.3.1	OpenC2	Command
3.3.1.1	Action
3.3.1.2	Target
3.3.1.3	Actuator
3.3.1.4	Command	Arguments

3.3.2	OpenC2	Response
3.3.2.1	Response	Status	Code
3.3.2.2	Response	Results

3.4	Type	Definitions
3.4.1	Target	Types

3.4.1.1	Artifact
3.4.1.2	Device
3.4.1.3	Domain	Name
3.4.1.4	Email	Address
3.4.1.5	Features
3.4.1.6	File
3.4.1.7	Internationalized	Domain	Name
3.4.1.8	Internationalized	Email	Address
3.4.1.9	IPv4	Address	Range
3.4.1.10	IPv4	Connection
3.4.1.11	IPv6	Address	Range
3.4.1.12	IPv6	Connection
3.4.1.13	IRI
3.4.1.14	MAC	Address
3.4.1.15	Process
3.4.1.16	Properties
3.4.1.17	URI

3.4.2	Data	Types
3.4.2.1	Action-Targets
3.4.2.2	Date-Time
3.4.2.3	Duration
3.4.2.4	Feature
3.4.2.5	Hashes
3.4.2.6	Hostname
3.4.2.7	Internationalized	Hostname
3.4.2.8	IPv4	Address
3.4.2.9	IPv6	Address

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	4	of	40



3.4.2.10	L4	Protocol
3.4.2.11	Message-Type
3.4.2.12	Namespace	Identifier
3.4.2.13	Payload
3.4.2.14	Port
3.4.2.15	Response-Type
3.4.2.16	Version

4	Mandatory	Commands/Responses
4.1	Implementation	of	'query	features'	Command
4.2	Examples	of	'query	features'	Commands	and	Responses

5	Conformance
5.1	Conformance	Clause	1:	Command
5.2	Conformance	Clause	2:	Response
5.3	Conformance	Clause	3:	Producer
5.4	Conformance	Clause	4:	Consumer

Annex	A.	Examples
A.1	Example	1
A.2	Example	2
A.3	Example	3

Annex	B.	Acronyms
Annex	C.	Design	Elements
Annex	D.	Revision	History
Annex	E.	Acknowledgments

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	5	of	40



1	Introduction
The	content	in	this	section	is	non-normative,	except	where	it	is	marked	normative.

OpenC2	is	a	suite	of	specifications	that	enables	command	and	control	of	cyber	defense	systems	and	components.	OpenC2
typically	uses	a	request-response	paradigm	where	a	Command	is	encoded	by	a	Producer	(managing	application)	and	transferred
to	a	Consumer	(managed	device	or	virtualized	function)	using	a	secure	transfer	protocol,	and	the	Consumer	can	respond	with
status	and	any	requested	information.

OpenC2	allows	the	application	producing	the	commands	to	discover	the	set	of	capabilities	supported	by	the	managed	devices.
These	capabilities	permit	the	managing	application	to	adjust	its	behavior	to	take	advantage	of	the	features	exposed	by	the
managed	device.	The	capability	definitions	can	be	easily	extended	in	a	noncentralized	manner,	allowing	standard	and	non-
standard	capabilities	to	be	defined	with	semantic	and	syntactic	rigor.

1.1	IPR	Policy

This	specification	is	provided	under	the	Non-Assertion	Mode	of	the	OASIS	IPR	Policy,	the	mode	chosen	when	the	Technical
Committee	was	established.	For	information	on	whether	any	patents	have	been	disclosed	that	may	be	essential	to	implementing
this	specification,	and	any	offers	of	patent	licensing	terms,	please	refer	to	the	Intellectual	Property	Rights	section	of	the	TC's	web
page	(https://www.oasis-open.org/committees/openc2/ipr.php).

1.2	Terminology

This	section	is	normative.

Action:	The	task	or	activity	to	be	performed	(e.g.,	'deny').
Actuator:	The	function	performed	by	the	Consumer	that	executes	the	Command	(e.g.,	'Stateless	Packet	Filtering').
Argument:	A	property	of	a	Command	that	provides	additional	information	on	how	to	perform	the	Command,	such	as
date/time,	periodicity,	duration,	etc.
Command:	A	Message	defined	by	an	Action-Target	pair	that	is	sent	from	a	Producer	and	received	by	a	Consumer.
Consumer:	A	managed	device	/	application	that	receives	Commands.	Note	that	a	single	device	/	application	can	have	both
Consumer	and	Producer	capabilities.
Message:	A	content-	and	transport-independent	set	of	elements	conveyed	between	Consumers	and	Producers.
Producer:	A	manager	application	that	sends	Commands.
Response:	A	Message	from	a	Consumer	to	a	Producer	acknowledging	a	Command	or	returning	the	requested	resources
or	status	to	a	previously	received	Command.
Specifier:	A	property	or	field	that	identifies	a	Target	or	Actuator	to	some	level	of	precision.
Target:	The	object	of	the	Action,	i.e.,	the	Action	is	performed	on	the	Target	(e.g.,	IP	Address).

The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",	"SHOULD",	"SHOULD	NOT",
"RECOMMENDED",	"NOT	RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this	document	are	to	be	interpreted	as	described	in
[RFC2119]	and	[RFC8174]	when,	and	only	when,	they	appear	in	all	capitals,	as	shown	here.

1.3	Normative	References
[OpenC2-HTTPS-v1.0]

Specification	for	Transfer	of	OpenC2	Messages	via	HTTPS	Version	1.0.	Edited	by	David	Lemire.	Latest	version:
http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html

[OpenC2-SLPF-v1.0]

Open	Command	and	Control	(OpenC2)	Profile	for	Stateless	Packet	Filtering	Version	1.0.	Edited	by	Joe	Brule,	Duncan	Sparrell,
and	Alex	Everett.	Latest	version:	http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

[RFC0768]

Postel,	J.,	"User	Datagram	Protocol",	STD	6,	RFC	768,	DOI	10.17487/RFC0768,	August	1980,	https://www.rfc-
editor.org/info/rfc768.

[RFC0791]

Postel,	J.,	"Internet	Protocol",	STD	5,	RFC	791,	DOI	10.17487/RFC0791,	September	1981,	https://www.rfc-editor.org/info/rfc791.

[RFC0792]

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	6	of	40

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/openc2/ipr.php
http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791


Postel,	J.,	"Internet	Control	Message	Protocol",	STD	5,	RFC	792,	DOI	10.17487/RFC0792,	September	1981,	https://www.rfc-
editor.org/info/rfc792.

[RFC0793]

Postel,	J.,	"Transmission	Control	Protocol",	STD	7,	RFC	793,	DOI	10.17487/RFC0793,	September	1981,	https://www.rfc-
editor.org/info/rfc793.

[RFC1034]

Mockapetris,	P.,	"Domain	names	-	concepts	and	facilities",	STD	13,	RFC	1034,	DOI	10.17487/RFC1034,	November	1987,
https://www.rfc-editor.org/info/rfc1034.

[RFC1123]

Braden,	R.,	Ed.,	"Requirements	for	Internet	Hosts	-	Application	and	Support",	STD	3,	RFC	1123,	DOI	10.17487/RFC1123,
October	1989,	https://www.rfc-editor.org/info/rfc1123.

[RFC1321]

Rivest,	R.,	"The	MD5	Message-Digest	Algorithm",	RFC	1321,	DOI	10.17487/RFC1321,	April	1992,	https://www.rfc-
editor.org/info/rfc1321.

[RFC2119]

Bradner,	S.,	"Key	words	for	use	in	RFCs	to	Indicate	Requirement	Levels",	BCP	14,	RFC	2119,	DOI	10.17487/RFC2119,	March
1997,	https://www.rfc-editor.org/info/rfc2119.

[RFC2673]

Crawford,	M.,	"Binary	Labels	in	the	Domain	Name	System",	RFC	2673,	August	1999,	https://tools.ietf.org/html/rfc2673

[RFC3986]

Berners-Lee,	T.,	Fielding,	R.,	and	L.	Masinter,	"Uniform	Resource	Identifier	(URI):	Generic	Syntax",	STD	66,	RFC	3986,	DOI
10.17487/RFC3986,	January	2005,	https://www.rfc-editor.org/info/rfc3986.

[RFC3987]

Duerst,	M.	and	M.	Suignard,	"Internationalized	Resource	Identifiers	(IRIs)",	RFC	3987,	DOI	10.17487/RFC3987,	January	2005,
https://www.rfc-editor.org/info/rfc3987.

[RFC4122]

Leach,	P.,	Mealling,	M.,	and	R.	Salz,	"A	Universally	Unique	IDentifier	(UUID)	URN	Namespace",	RFC	4122,	DOI
10.17487/RFC4122,	July	2005,	https://www.rfc-editor.org/info/rfc4122.

[RFC4291]

Hinden,	R.	and	S.	Deering,	"IP	Version	6	Addressing	Architecture",	RFC	4291,	DOI	10.17487/RFC4291,	February	2006,
https://www.rfc-editor.org/info/rfc4291.

[RFC4632]

Fuller,	V.	and	T.	Li,	"Classless	Inter-domain	Routing	(CIDR):	The	Internet	Address	Assignment	and	Aggregation	Plan",	BCP	122,
RFC	4632,	DOI	10.17487/RFC4632,	August	2006,	https://www.rfc-editor.org/info/rfc4632.

[RFC4648]

Josefsson,	S.,	"The	Base16,	Base32,	and	Base64	Data	Encodings",	RFC	4648,	DOI	10.17487/RFC4648,	October	2006,
https://www.rfc-editor.org/info/rfc4648.

[RFC4960]

Stewart,	R.,	Ed.,	"Stream	Control	Transmission	Protocol",	RFC	4960,	DOI	10.17487/RFC4960,	September	2007,	https://www.rfc-
editor.org/info/rfc4960.

[RFC5237]

Arkko,	J.	and	S.	Bradner,	"IANA	Allocation	Guidelines	for	the	Protocol	Field",	BCP	37,	RFC	5237,	DOI	10.17487/RFC5237,

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	7	of	40

https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/rfc2673
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4632
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4960


February	2008,	https://www.rfc-editor.org/info/rfc5237.

[RFC5322]

Resnick,	P.,	Ed.,	"Internet	Message	Format",	RFC	5322,	DOI	10.17487/RFC5322,	October	2008,	https://www.rfc-
editor.org/info/rfc5322.

[RFC5890]

Klensin,	J.,	"Internationalized	Domain	Names	for	Applications	(IDNA):	Definitions	and	Document	Framework",	RFC	5890,	DOI
10.17487/RFC5890,	August	2010,	https://www.rfc-editor.org/info/rfc5890.

[RFC5952]

Kawamura,	S.	and	M.	Kawashima,	"A	Recommendation	for	IPv6	Address	Text	Representation",	RFC	5952,	DOI
10.17487/RFC5952,	August	2010,	https://www.rfc-editor.org/info/rfc5952.

[RFC6234]

Eastlake	3rd,	D.	and	T.	Hansen,	"US	Secure	Hash	Algorithms	(SHA	and	SHA-based	HMAC	and	HKDF)",	RFC	6234,	DOI
10.17487/RFC6234,	May	2011,	https://www.rfc-editor.org/info/rfc6234.

[RFC6335]

Cotton,	M.,	Eggert,	L.,	Touch,	J.,	Westerlund,	M.,	and	S.	Cheshire,	"Internet	Assigned	Numbers	Authority	(IANA)	Procedures	for
the	Management	of	the	Service	Name	and	Transport	Protocol	Port	Number	Registry",	BCP	165,	RFC	6335,	DOI
10.17487/RFC6335,	August	2011,	https://www.rfc-editor.org/info/rfc6335.

[RFC6531]

Yao,	J.	and	W.	Mao,	"SMTP	Extension	for	Internationalized	Email",	RFC	6531,	DOI	10.17487/RFC6531,	February	2012,
https://www.rfc-editor.org/info/rfc6531.

[RFC6838]

Freed,	N.,	Klensin,	J.,	and	T.	Hansen,	"Media	Type	Specifications	and	Registration	Procedures",	BCP	13,	RFC	6838,	DOI
10.17487/RFC6838,	January	2013,	https://www.rfc-editor.org/info/rfc6838.

[RFC7493]

Bray,	T.,	Ed.,	"The	I-JSON	Message	Format",	RFC	7493,	DOI	10.17487/RFC7493,	March	2015,	https://www.rfc-
editor.org/info/rfc7493.

[RFC8174]

Leiba,	B.,	"Ambiguity	of	Uppercase	vs	Lowercase	in	RFC	2119	Key	Words",	BCP	14,	RFC	8174,	DOI	10.17487/RFC8174,	May
2017,	https://www.rfc-editor.org/info/rfc8174.

[RFC8200]

Deering,	S.	and	R.	Hinden,	"Internet	Protocol,	Version	6	(IPv6)	Specification",	STD	86,	RFC	8200,	DOI	10.17487/RFC8200,	July
2017,	https://www.rfc-editor.org/info/rfc8200.

[RFC8259]

Bray,	T.,	Ed.,	"The	JavaScript	Object	Notation	(JSON)	Data	Interchange	Format",	STD	90,	RFC	8259,	DOI	10.17487/RFC8259,
December	2017,	https://www.rfc-editor.org/info/rfc8259.

[EUI]

"IEEE	Registration	Authority	Guidelines	for	use	of	EUI,	OUI,	and	CID",	IEEE,	August	2017,
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf

1.4	Non-Normative	References
[IACD]

M.	J.	Herring,	K.	D.	Willett,	"Active	Cyber	Defense:	A	Vision	for	Real-Time	Cyber	Defense,"	Journal	of	Information	Warfare,	vol.
13,	Issue	2,	p.	80,	April	2014.https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-Time-Cyber-
Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	8	of	40

https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6531
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8259
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://www.semanticscholar.org/paper/Active-Cyber-Defense-%253A-A-Vision-for-Real-Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8


Willett,	Keith	D.,	"Integrated	Adaptive	Cyberspace	Defense:	Secure	Orchestration",	International	Command	and	Control
Research	and	Technology	Symposium,	June	2015	https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-
Defense-%3A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762.

[UML]

"UML	Multiplicity	and	Collections",	https://www.uml-diagrams.org/multiplicity.html

1.5	Document	Conventions
1.5.1	Naming	Conventions

[RFC2119]/[RFC8174]	key	words	(see	Section	1.2)	are	in	all	uppercase.
All	property	names	and	literals	are	in	lowercase,	except	when	referencing	canonical	names	defined	in	another	standard
(e.g.,	literal	values	from	an	IANA	registry).
Words	in	property	names	are	separated	with	an	underscore	(_),	while	words	in	string	enumerations	and	type	names	are
separated	with	a	hyphen	(-).
The	term	"hyphen"	used	here	refers	to	the	ASCII	hyphen	or	minus	character,	which	in	Unicode	is	"hyphen-minus",	U+002D.

1.5.2	Font	Colors	and	Style

The	following	color,	font	and	font	style	conventions	are	used	in	this	document:

A	fixed	width	font	is	used	for	all	type	names,	property	names,	and	literals.
Property	names	are	in	bold	style	–	'created_at'.
All	examples	in	this	document	are	expressed	in	JSON.	They	are	in	fixed	width	font,	with	straight	quotes,	black	text	and	a
light	shaded	background,	and	4-space	indentation.	JSON	examples	in	this	document	are	representations	of	JSON	Objects.
They	should	not	be	interpreted	as	string	literals.	The	ordering	of	object	keys	is	insignificant.	Whitespace	before	or	after
JSON	structural	characters	in	the	examples	are	insignificant	[RFC8259].
Parts	of	the	example	may	be	omitted	for	conciseness	and	clarity.	These	omitted	parts	are	denoted	with	ellipses	(...).

Example:

{
				"action":	"deny",
				"target":	{
								"file":	{
												"hashes":	{
																"sha256":	"22fe72a34f006ea67d26bb7004e2b6941b5c3953d43ae7ec24d41b1a928a6973"
												}
								}
				}
}

1.6	Overview

In	general,	there	are	two	types	of	participants	involved	in	the	exchange	of	OpenC2	Messages,	as	depicted	in	Figure	1-1:

1.	 Producers:	A	Producer	is	an	entity	that	creates	Commands	to	provide	instruction	to	one	or	more	systems	to	act	in
accordance	with	the	content	of	the	Command.	A	Producer	may	receive	and	process	Responses	in	conjunction	with	a
Command.

2.	 Consumers:	A	Consumer	is	an	entity	that	receives	and	may	act	upon	a	Command.	A	Consumer	may	create	Responses
that	provide	any	information	captured	or	necessary	to	send	back	to	the	Producer.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	9	of	40

https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%253A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762
https://www.uml-diagrams.org/multiplicity.html


Figure	1-1.	OpenC2	Message	Exchange

OpenC2	is	a	suite	of	specifications	for	Producers	and	Consumers	to	command	and	execute	cyber	defense	functions.	These
specifications	include	the	OpenC2	Language	Specification,	Actuator	Profiles,	and	Transfer	Specifications.	The	OpenC2
Language	Specification	and	Actuator	Profile	specifications	focus	on	the	language	content	and	meaning	at	the	Producer	and
Consumer	of	the	Command	and	Response	while	the	transfer	specifications	focus	on	the	protocols	for	their	exchange.

The	OpenC2	Language	Specification	(this	document)	provides	the	semantics	for	the	essential	elements	of	the	language,
the	structure	for	Commands	and	Responses,	and	the	schema	that	defines	the	proper	syntax	for	the	language	elements	that
represents	the	Command	or	Response.
OpenC2	Actuator	Profiles	specify	the	subset	of	the	OpenC2	language	relevant	in	the	context	of	specific	Actuator
functions.	Cyber	defense	components,	devices,	systems	and/or	instances	may	(in	fact	are	likely	to)	implement	multiple
Actuator	profiles.	Actuator	profiles	extend	the	language	by	defining	Specifiers	that	identify	the	Actuator	to	the	required	level
of	precision.	Actuator	Profiles	may	define	Command	Arguments	and	Targets	that	are	relevant	and/or	unique	to	those
Actuator	functions.
OpenC2	Transfer	Specifications	utilize	existing	protocols	and	standards	to	implement	OpenC2	in	specific	environments.
These	standards	are	used	for	communications	and	security	functions	beyond	the	scope	of	the	language,	such	as	message
transfer	encoding,	authentication,	and	end-to-end	transport	of	OpenC2	Messages.

The	OpenC2	Language	Specification	defines	a	language	used	to	compose	Messages	for	command	and	control	of	cyber	defense
systems	and	components.	A	Message	consists	of	a	header	and	a	payload	(defined	as	a	Message	body	in	the	OpenC2	Language
Specification	Version	1.0	and	specified	in	one	or	more	Actuator	profiles).

The	language	defines	two	payload	structures:

1.	 Command:	An	instruction	from	one	system	known	as	the	Producer,	to	one	or	more	systems,	the	Consumer(s),	to	act	on
the	content	of	the	Command.

2.	 Response:	Any	information	sent	back	to	the	Producer	as	a	result	of	the	Command.

OpenC2	implementations	integrate	the	related	OpenC2	specifications	described	above	with	related	industry	specifications,
protocols,	and	standards.	Figure	1-2	depicts	the	relationships	among	OpenC2	specifications,	and	their	relationships	to	other
industry	standards	and	environment-specific	implementations	of	OpenC2.	Note	that	the	layering	of	implementation	aspects	in	the
diagram	is	notional,	and	not	intended	to	preclude	any	particular	approach	to	implementing	the	needed	functionality	(for	example,
the	use	of	an	application-layer	message	signature	function	to	provide	message	source	authentication	and	integrity).

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	10	of	40



Figure	1-2.	OpenC2	Documentation	and	Layering	Model

OpenC2	is	conceptually	partitioned	into	four	layers	as	shown	in	Table	1-1.

Table	1-1.	OpenC2	Protocol	Layers

Layer Examples

Function-Specific	Content Actuator	Profiles
([OpenC2-SLPF-v1.0],	...)

Common	Content Language	Specification
(this	document)

Message Transfer	Specifications
([OpenC2-HTTPS-v1.0],	OpenC2-over-CoAP,	...)

Secure	Transport HTTPS,	CoAP,	MQTT,	OpenDXL,	...

The	Secure	Transport	layer	provides	a	communication	path	between	the	Producer	and	the	Consumer.	OpenC2	can	be
layered	over	any	standard	transport	protocol.
The	Message	layer	provides	a	transfer-	and	content-independent	mechanism	for	conveying	Messages.	A	transfer
specification	maps	transfer-specific	protocol	elements	to	a	transfer-independent	set	of	message	elements	consisting	of
content	and	associated	metadata.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	11	of	40



The	Common	Content	layer	defines	the	structure	of	Commands	and	Responses	and	a	set	of	common	language	elements
used	to	construct	them.
The	Function-specific	Content	layer	defines	the	language	elements	used	to	support	a	particular	cyber	defense	function.
An	Actuator	profile	defines	the	implementation	conformance	requirements	for	that	function.	Producers	and	Consumers	will
support	one	or	more	profiles.

The	components	of	a	Command	are	an	Action	(what	is	to	be	done),	a	Target	(what	is	being	acted	upon),	an	optional	Actuator
(what	is	performing	the	command),	and	Command	Arguments,	which	influence	how	the	Command	is	to	be	performed.	An	Action
coupled	with	a	Target	is	sufficient	to	describe	a	complete	Command.	Though	optional,	the	inclusion	of	an	Actuator	and/or
Command	Arguments	provides	additional	precision	to	a	Command.

The	components	of	a	Response	are	a	numerical	status	code,	an	optional	status	text	string,	and	optional	results.	The	format	of
the	results,	if	included,	depend	on	the	type	of	Response	being	transferred.

1.7	Goal

The	goal	of	the	OpenC2	Language	Specification	is	to	provide	a	language	for	interoperating	between	functional	elements	of	cyber
defense	systems.	This	language	used	in	conjunction	with	OpenC2	Actuator	Profiles	and	OpenC2	Transfer	Specifications	allows
for	vendor-agnostic	cybertime	response	to	attacks.

The	Integrated	Adaptive	Cyber	Defense	(IACD)	framework	defines	a	collection	of	activities,	based	on	the	traditional	OODA
(Observe–Orient–Decide–Act)	Loop	[IACD]:

Sensing:	gathering	of	data	regarding	system	activities
Sense	Making:	evaluating	data	using	analytics	to	understand	what's	happening
Decision	Making:	determining	a	course-of-action	to	respond	to	system	events
Acting:	Executing	the	course-of-action

The	goal	of	OpenC2	is	to	enable	coordinated	defense	in	cyber-relevant	time	between	decoupled	blocks	that	perform	cyber
defense	functions.	OpenC2	focuses	on	the	Acting	portion	of	the	IACD	framework;	the	assumption	that	underlies	the	design	of
OpenC2	is	that	the	sensing/analytics	have	been	provisioned	and	the	decision	to	act	has	been	made.	This	goal	and	these
assumptions	guide	the	design	of	OpenC2:

Technology	Agnostic:	The	OpenC2	language	defines	a	set	of	abstract	atomic	cyber	defense	actions	in	a	platform	and
implementation	agnostic	manner
Concise:	A	Command	is	intended	to	convey	only	the	essential	information	required	to	describe	the	action	required	and
can	be	represented	in	a	very	compact	form	for	communications-constrained	environments
Abstract:	Commands	and	Responses	are	defined	abstractly	and	can	be	encoded	and	transferred	via	multiple	schemes	as
dictated	by	the	needs	of	different	implementation	environments
Extensible:	While	OpenC2	defines	a	core	set	of	Actions	and	Targets	for	cyber	defense,	the	language	is	expected	to
evolve	with	cyber	defense	technologies,	and	permits	extensions	to	accommodate	new	cyber	defense	technologies.

1.8	Purpose	and	Scope

The	OpenC2	Language	Specification	defines	the	set	of	components	to	assemble	a	complete	command	and	control	Message
and	provides	a	framework	so	that	the	language	can	be	extended.	To	achieve	this	purpose,	the	scope	of	this	specification
includes:

1.	 the	set	of	Actions	and	options	that	may	be	used	in	Commands
2.	 the	set	of	Targets	and	Target	Specifiers
3.	 a	syntax	that	defines	the	structure	of	Commands	and	Responses
4.	 a	JSON	serialization	of	Commands	and	Responses
5.	 the	procedures	for	extending	the	language

The	OpenC2	language	assumes	that	the	event	has	been	detected,	a	decision	to	act	has	been	made,	the	act	is	warranted,	and
the	initiator	and	recipient	of	the	Commands	are	authenticated	and	authorized.	The	OpenC2	language	was	designed	to	be
agnostic	of	the	other	aspects	of	cyber	defense	implementations	that	realize	these	assumptions.	The	following	items	are	beyond
the	scope	of	this	specification:

1.	 Language	elements	applicable	to	some	Actuators,	which	may	be	defined	in	individual	Actuator	profiles.
2.	 Alternate	serializations	of	Commands	and	Responses.
3.	 The	enumeration	of	the	protocols	required	for	transport,	information	assurance,	sensing,	analytics	and	other	external

dependencies.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	12	of	40



2	OpenC2	Language	Description
The	content	in	this	section	is	non-normative.

The	OpenC2	language	has	two	distinct	content	types:	Command	and	Response.	The	Command	is	sent	from	a	Producer	to	a
Consumer	and	describes	an	Action	to	be	performed	by	an	Actuator	on	a	Target.	The	Response	is	sent	from	a	Consumer,	usually
back	to	the	Producer,	and	is	a	means	to	provide	information	(such	as	acknowledgment,	status,	etc.)	as	a	result	of	a	Command.

2.1	OpenC2	Command

The	Command	describes	an	Action	to	be	performed	on	a	Target	and	may	include	information	identifying	the	Actuator	or
Actuators	that	are	to	execute	the	Command.

A	Command	has	four	main	components,	two	required	and	two	optional.	The	required	components	are	the	Action	and	the	Target.
The	optional	components	are	Command	Arguments	and	the	Actuator.	A	Command	can	also	contain	an	optional	Command
identifier,	if	necessary.	Section	3.3.1	defines	the	syntax	of	an	OpenC2	Command.

The	following	list	summarizes	the	main	four	components	of	a	Command.

Action	(required):	The	task	or	activity	to	be	performed.
Target	(required):	The	object	of	the	action.	The	Action	is	performed	on	the	Target.	Properties	of	the	Target,	called	Target
Specifiers,	further	identify	the	Target	to	some	level	of	precision,	such	as	a	specific	Target,	a	list	of	Targets,	or	a	class	of
Targets.
Arguments	(optional):	Provide	additional	information	on	how	the	command	is	to	be	performed,	such	as	date/time,
periodicity,	duration,	etc.
Actuator	(optional):	The	Actuator	executes	the	Command.	The	Actuator	will	be	defined	within	the	context	of	an	Actuator
Profile.	Properties	of	the	Actuator,	called	Actuator	Specifiers,	further	identify	the	Actuator	to	some	level	of	precision,	such
as	a	specific	Actuator,	a	list	of	Actuators,	or	a	group	of	Actuators.

The	Action	and	Target	components	are	required	and	are	populated	by	one	of	the	Actions	in	Section	3.3.1.1	and	the	Targets	in
Section	3.3.1.2.	A	particular	Target	may	be	further	refined	by	the	Target	type	definitions	in	Section	3.4.1.	Procedures	to	extend
the	Targets	are	described	in	Section	3.1.4.

Command	Arguments,	if	present,	influence	the	Command	by	providing	information	such	as	timing,	periodicity,	duration,	or	other
details	on	what	is	to	be	executed.	They	can	also	be	used	to	convey	the	need	for	acknowledgment	or	additional	status	information
about	the	execution	of	a	Command.	The	valid	Arguments	defined	in	this	specification	are	in	Section	3.3.1.4.	Procedures	to
extend	Arguments	are	described	in	Section	3.1.4.

An	Actuator	is	an	implementation	of	a	cyber	defense	function	that	executes	the	Command.	An	Actuator	Profile	is	a	specification
that	identifies	the	subset	of	Actions,	Targets	and	other	aspects	of	this	language	specification	that	are	required	or	optional	in	the
context	of	a	particular	Actuator.	An	Actuator	Profile	may	extend	the	language	by	defining	additional	Targets,	Arguments,	and
Actuator	Specifiers	that	are	meaningful	and	possibly	unique	to	the	Actuator.

The	Actuator	may	be	omitted	from	a	Command	and	typically	will	not	be	included	in	implementations	where	the	identities	of	the
endpoints	are	unambiguous	or	when	a	high-level	effects-based	Command	is	desired	and	the	tactical	decisions	on	how	the	effect
is	achieved	is	left	to	the	recipient.

2.2	OpenC2	Response

The	Response	is	a	Message	sent	from	the	recipient	of	a	Command.	Response	messages	provide	acknowledgment,	status,
results	from	a	query,	or	other	information.	At	a	minimum,	a	Response	will	contain	a	status	code	to	indicate	the	result	of
performing	the	Command.	Additional	status	text	and	response	fields	optionally	provide	more	detailed	information	that	is	specific
to	or	requested	by	the	Command.	Section	3.3.2	defines	the	syntax	of	an	OpenC2	Response.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	13	of	40



3	OpenC2	Language	Definition
The	content	in	this	section	is	normative.

3.1	Base	Components	and	Structures
3.1.1	Data	Types

OpenC2	data	types	are	defined	using	an	abstract	notation	that	is	independent	of	both	their	representation	within	applications
("API"	values)	and	their	format	for	transmission	between	applications	("serialized"	values).	The	data	types	used	in	OpenC2
Messages	are:

Type Description

Primitive
Types

Any Anything,	used	to	designate	fields	with	an	unspecified	value.

Binary A	sequence	of	octets.	Length	is	the	number	of	octets.

Boolean An	element	with	one	of	two	values:	true	and	false.

Integer A	whole	number.

Number A	real	number.

Null Nothing,	used	to	designate	fields	with	no	value.

String A	sequence	of	characters,	each	of	which	has	a	Unicode	codepoint.	Length	is	the	number	of	characters.

Structures

Array An	ordered	list	of	unnamed	fields	with	positionally-defined	semantics.	Each	field	has	a	position,	label,	and
type.

ArrayOf(vtype) An	ordered	list	of	fields	with	the	same	semantics.	Each	field	has	a	position	and	type	vtype.

Choice One	field	selected	from	a	set	of	named	fields.	The	API	value	has	a	name	and	a	type.

Choice.ID One	field	selected	from	a	set	of	fields.	The	API	value	has	an	id	and	a	type.

Enumerated A	set	of	named	integral	constants.	The	API	value	is	a	name.

Enumerated.ID A	set	of	unnamed	integral	constants.	The	API	value	is	an	id.

Map An	unordered	map	from	a	set	of	specified	keys	to	values	with	semantics	bound	to	each	key.	Each	field	has
an	id,	name	and	type.

Map.ID An	unordered	set	of	fields.	The	API	value	of	each	field	has	an	id,	label,	and	type.

MapOf(ktype,
vtype)

An	unordered	set	of	keys	to	values	with	the	same	semantics.	Each	key	has	key	type	ktype	and	is	mapped	to
value	type	vtype.

Record An	ordered	map	from	a	list	of	keys	with	positions	to	values	with	positionally-defined	semantics.	Each	key	has
a	position	and	name,	and	is	mapped	to	a	type.	Represents	a	row	in	a	spreadsheet	or	database	table.

API	values	do	not	affect	interoperabilty,	and	although	they	must	exhibit	the	characteristics	specified	above,	their
representation	within	applications	is	unspecified.	A	Python	application	might	represent	the	Map	type	as	a	dict	variable,	a
javascript	application	might	represent	it	as	an	object	literal	or	an	ES6	Map	type,	and	a	C#	application	might	represent	it	as
a	Dictionary	or	a	Hashtable.

Serialized	values	are	critical	to	interoperability,	and	this	document	defines	a	set	of	serialization	rules	that	unambiguously
define	how	each	of	the	above	types	are	serialized	using	a	human-friendly	JSON	format.	Other	serialization	rules,	such	as

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	14	of	40



for	XML,	machine-optimized	JSON,	and	CBOR	formats,	exist	but	are	out	of	scope	for	this	document.	Both	the	format-
specific	serialization	rules	in	Section	3.1.5	and	the	format-agnostic	type	definitions	in	Section	3.4	are	Normative.

Types	defined	with	an	".ID"	suffix	(Choice.ID,	Enumerated.ID,	Map.ID)	are	equivalent	to	the	non-suffixed	types	except:

1.	 Field	definitions	and	API	values	are	identified	only	by	ID.	The	non-normative	description	may	include	a	suggested	name.
2.	 Serialized	values	of	Enumerated	types	and	keys	of	Choice/Map	types	are	IDs	regardless	of	serialization	format.

OpenC2	type	definitions	are	presented	in	table	format.	All	table	columns	except	Description	are	Normative.	The	Description
column	is	always	Non-normative.

For	types	without	individual	field	definitions	(Primitive	types	and	ArrayOf),	the	type	definition	includes	the	name	of	the	type	being
defined	and	the	definition	of	that	type.	This	table	defines	a	type	called	Email-Addr	that	is	a	String	that	has	a	semantic	value
constraint	of	email:

Type	Name Type	Definition Description

Email-Addr String	(email) Email	address

For	Structure	types,	the	definition	includes	the	name	of	the	type	being	defined,	the	built-in	type	on	which	it	is	based,	and	options
applicable	to	the	type	as	a	whole.	This	is	followed	by	a	table	defining	each	of	the	fields	in	the	structure.	This	table	defines	a	type
called	Args	that	is	a	Map	containing	at	least	one	field.	Each	of	the	fields	has	an	integer	Tag/ID,	a	Name,	and	a	Type.	Each	field	in
this	definition	is	optional	(Multiplicity	=	0..1),	but	per	the	type	definition	at	least	one	must	be	present.

Type:	Args	(Map)	[1..*]

ID Name Type # Description

1 start_time Date-Time 0..1 The	specific	date/time	to	initiate	the	action

2 stop_time Date-Time 0..1 The	specific	date/time	to	terminate	the	action

3 duration Duration 0..1 The	length	of	time	for	an	action	to	be	in	effect

The	field	columns	present	in	a	structure	definition	depends	on	the	base	type:

Base	Type Field	Definition	Columns

Enumerated.ID ID,	Description

Enumerated ID,	Name,	Description

Array,	Choice.ID,	Map.ID ID,	Type,	Multiplicity	(#),	Description

Choice,	Map,	Record ID,	Name,	Type,	Multiplicity	(#),	Description

The	ID	column	of	Array	and	Record	types	contains	the	ordinal	position	of	the	field,	numbered	sequentially	starting	at	1.	The	ID
column	of	Choice,	Enumerated,	and	Map	types	contains	tags	with	arbitrary	integer	values.	IDs	and	Names	are	unique	within
each	type	definition.

3.1.2	Semantic	Value	Constraints

Structural	validation	alone	may	be	insufficient	to	validate	that	an	instance	meets	all	the	requirements	of	an	application.	Semantic
validation	keywords	specify	value	constraints	for	which	an	authoritative	definition	exists.

Keyword Applies	to	Type Constraint

email String Value	must	be	an	email	address	as	defined	in	[RFC5322],	Section	3.4.1

eui Binary Value	must	be	an	EUI-48	or	EUI-64	as	defined	in	[EUI]

hostname String Value	must	be	a	hostname	as	defined	in	[RFC1034],	Section	3.1

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	15	of	40



idn-email String Value	must	be	an	internationalized	email	address	as	defined	in	[RFC6531]

idn-hostname String Value	must	be	an	internationalized	hostname	as	defined	in	[RFC5890],	Section	2.3.2.3

iri String Value	must	be	an	Internationalized	Resource	Identifier	(IRI)	as	defined	in	[RFC3987]

uri String Value	must	be	a	Uniform	Resource	Identifier	(URI)	as	defined	in	[RFC3986]

Keyword Applies	to	Type Constraint

3.1.3	Multiplicity

Property	tables	for	types	based	on	Array,	Choice,	Map	and	Record	include	a	multiplicity	column	(#)	that	specifies	the	minimum
and	maximum	cardinality	(number	of	elements)	of	a	field.	As	used	in	the	Unified	Modeling	Language	([UML]),	typical	examples	of
multiplicity	are:

Multiplicity Description Keywords

1 Exactly	one	instance Required

0..1 No	instances	or	one	instance Optional

1..* At	least	one	instance Required,	Repeatable

0..* Zero	or	more	instances Optional,	Repeatable

m..n At	least	m	but	no	more	than	n	instances Required,	Repeatable

When	used	with	a	Type,	multiplicity	is	enclosed	in	square	brackets,	e.g.,:

Type	Name Base	Type Description

Features ArrayOf(Feature)	[0..10] An	array	of	zero	to	ten	names	used	to	query	an	actuator	for	its	supported	capabilities.

A	multiplicity	of	0..1	denotes	a	single	optional	value	of	the	specified	type.	A	multiplicity	of	0..n	denotes	a	field	that	is	either	omitted
or	is	an	array	containing	one	or	more	values	of	the	specified	type.

An	array	containing	zero	or	more	values	of	a	specified	type	cannot	be	created	implicitly	using	multiplicity,	it	must	be	defined
explicitly	as	a	named	ArrayOf	type.	The	named	type	can	then	be	used	as	the	type	of	a	required	field	(multiplicity	1).	Results	are
unspecified	if	an	optional	field	(multiplicity	0..1)	is	a	named	ArrayOf	type	with	a	minimum	length	of	zero.

3.1.4	Extensions

One	of	the	main	design	goals	of	OpenC2	was	extensibility.	Actuator	profiles	define	the	language	extensions	that	are	meaningful
and	possibly	unique	to	the	Actuator.

Each	Actuator	profile	has	a	unique	name	used	to	identify	the	profile	document	and	a	short	reference	called	a	namespace
identifier	(NSID).	The	NSID	is	used	to	separate	extensions	from	the	core	language	defined	in	this	specification.

All	extensions	MUST	be	identified	with	a	short	namespace	reference,	called	a	namespace	identifier	(NSID).

For	example,	the	OASIS	standard	Stateless	Packet	Filtering	actuator	profile	has:

Unique	Name:	http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.md
NSID:	slpf

The	namespace	identifier	for	non-standard	extensions	MUST	be	prefixed	with	"x-".

For	example,	the	fictional,	non-standard	Superwidget	actuator	profile	has:

Unique	Name:	http://www.acme.com/openc2/superwidget-v1.0.html
NSID:	x-acme

The	list	of	Actions	in	Section	3.3.1.1	SHALL	NOT	be	extended.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	16	of	40

http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.md
http://www.acme.com/openc2/superwidget-v1.0.html


Targets,	defined	in	Section	3.3.1.2,	MAY	be	extended.	Extended	Target	names	MUST	be	prefixed	with	a	namespace	identifier
followed	by	a	colon	(":").

Example:	In	this	example	Command,	the	extended	Target,	rule_number,	is	defined	within	the	Stateless	Packet	Filtering	Profile
with	the	namespace	identifier,	slpf.

{
				"action":	"delete",
				"target":	{
								"slpf:rule_number":	1234
				}
}

Command	Arguments,	defined	in	Section	3.3.1.4,	MAY	be	extended	using	the	namespace	identifier	as	the	Argument	name,
called	an	extended	Argument	namespace.	Extended	Arguments	MUST	be	defined	within	the	extended	Argument	namespace.

Example:	In	this	example	Command,	the	extended	Argument,	direction,	is	defined	within	the	Stateless	Packet	Filtering
Profile	namespace,	slpf.

{
				"action":	"deny",
				"target":	{
								"ipv6_net":	{...}
				},
				"args":	{
								"slpf":	{
												"direction":	"ingress"
								}
				}
}

The	Actuator	property	of	a	Command,	defined	in	Section	3.3.1.3,	MUST	be	extended	using	the	namespace	identifier	as	the
Actuator	name,	called	an	extended	Actuator	namespace.	Actuator	Specifiers	MUST	be	defined	within	the	extended	Actuator
namespace.

Example:	In	this	example	Command,	the	Actuator	Specifier	asset_id	is	defined	within	the	Stateless	Packet	Filtering	Profile
namespace,	slpf.

{
				"action":	"deny",
				"target":	{
								"ipv4_connection":	{...}
				},
				"actuator":	{
								"slpf":	{
												"asset_id":	"30"
								}
				}
}

Response	results,	defined	in	Section	TBD,	MAY	be	extended	using	the	namespace	identifier	as	the	results	name,	called	an
extended	results	namespace.	Extended	results	MUST	be	defined	within	the	extended	results	namespace.

Example:	In	this	example	Response,	the	Response	results	property,	rule_number,	is	defined	within	the	Stateless	Packet
Filtering	Profile	namespace,	slpf.

{
				"status":	200,
				"results":	{
								"slpf":	{

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	17	of	40



												"rule_number":	1234
								}
				}
}

3.1.5	Serialization

OpenC2	is	agnostic	of	any	particular	serialization;	however,	implementations	MUST	support	JSON	serialization	in	accordance
with	[RFC7493]	and	additional	requirements	specified	in	the	following	table.

JSON	Serialization	Requirements:

OpenC2	Data
Type

JSON	Serialization	Requirement

Binary JSON	string	containing	Base64url	encoding	of	the	binary	value	as	defined	in	[RFC4648],	Section	5.

Binary	/x JSON	string	containing	Base16	(hex)	encoding	of	a	binary	value	as	defined	in	[RFC4648],	Section	8.	Note
that	the	Base16	alphabet	does	not	include	lower-case	letters.

IPv4-Addr JSON	string	containing	the	"dotted-quad"	representation	of	an	IPv4	address	as	specified	in	[RFC2673],
Section	3.2.

IPv6-Addr JSON	string	containing	the	text	representation	of	an	IPv6	address	as	specified	in	[RFC5952],	Section	4.

MAC-Addr JSON	string	containing	the	text	representation	of	a	MAC	Address	in	colon	hexadecimal	format	as	defined
in	[EUI].

Boolean JSON	true	or	false

Integer JSON	number

Number JSON	number

Null JSON	null

String JSON	string

Array JSON	array

Array	/ipv4-net JSON	string	containing	the	text	representation	of	an	IPv4	address	range	as	specified	in	[RFC4632],	Section
3.1.

Array	/ipv6-net JSON	string	containing	the	text	representation	of	an	IPv6	address	range	as	specified	in	[RFC4291],	Section
2.3.

ArrayOf JSON	array

Choice JSON	object	with	one	member.	Member	key	is	the	field	name.

Choice.ID JSON	object	with	one	member.	Member	key	is	the	integer	field	id	converted	to	string.

Enumerated JSON	string

Enumerated.ID JSON	integer

Map JSON	object.	Member	keys	are	field	names.

Map.ID JSON	object.	Member	keys	are	integer	field	ids	converted	to	strings.

MapOf JSON	object.	Member	keys	are	as	defined	in	the	specified	key	type.

Record JSON	object.	Member	keys	are	field	names.

3.1.5.1	ID	and	Name	Serialization

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	18	of	40



Instances	of	Enumerated	types	and	keys	for	Choice	and	Map	types	are	serialized	as	ID	values	except	when	using	serialization
formats	intended	for	human	consumption,	where	Name	strings	are	used	instead.	Defining	a	type	using	".ID"	appended	to	the
base	type	(e.g.,	Enumerated.ID,	Map.ID)	indicates	that:

1.	 Type	definitions	and	application	values	use	only	the	ID.	There	is	no	corresponding	name	except	as	an	optional	part	of	the
description.

2.	 Instances	of	Enumerated	values	and	Choice/Map	keys	are	serialized	as	IDs	regardless	of	serialization	format.

3.2	Message

This	language	specification	and	one	or	more	Actuator	profiles	define	the	content	of	Commands	and	Responses,	while	transfer
specifications	define	the	on-the-wire	format	of	a	Message	over	specific	secure	transport	protocols.	Transfer	specifications	are
agnostic	with	regard	to	content,	and	content	is	agnostic	with	regard	to	transfer	protocol.	This	decoupling	is	accomplished	by
defining	a	standard	message	interface	used	to	transfer	any	type	of	content	over	any	transfer	protocol.

A	message	is	a	content-	and	transport-independent	set	of	elements	conveyed	between	Producers	and	Consumers.	To	ensure
interoperability	all	transfer	specifications	must	unambiguously	define	how	the	Message	elements	in	Table	3-1	are	represented
within	the	secure	transport	protocol.	This	does	not	imply	that	all	Message	elements	must	be	used	in	all	Messages.	Content,
content_type,	and	msg_type	are	required	in	all	Messages.	Other	Message	elements	are	not	required	by	this	specification	but
may	be	required	by	other	specifications.	The	internal	representation	of	a	Message	does	not	affect	interoperability	and	is	therefore
beyond	the	scope	of	OpenC2.

Table	3-1.	Common	Message	Elements

Name Type Description

content Message	body	as	specified	by	content_type	and	msg_type.

content_type String Media	Type	that	identifies	the	format	of	the	content,	including	major	version.	Incompatible
content	formats	must	have	different	content_types.	Content_type	application/openc2
identifies	content	defined	by	OpenC2	language	specification	versions	1.x,	i.e.,	all	versions
that	are	compatible	with	version	1.0.

msg_type Message-Type The	type	of	OpenC2	Message.

status Status-Code Populated	with	a	numeric	status	code	in	Responses.

request_id String A	unique	identifier	created	by	the	Producer	and	copied	by	Consumer	into	all	Responses,	in
order	to	support	reference	to	a	particular	Command,	transaction,	or	event	chain.

created Date-Time Creation	date/time	of	the	content.

from String Authenticated	identifier	of	the	creator	of	or	authority	for	execution	of	a	message.

to ArrayOf(String) Authenticated	identifier(s)	of	the	authorized	recipient(s)	of	a	message.

Usage	Requirements:

A	Producer	MUST	include	a	request_id	in	the	Message	header	of	a	Command	if	it	requests	a	Response.
The	request_id	of	a	Message	SHOULD	be	a	Version	4	UUID	as	specified	in	[RFC4122],	Section	4.4.
A	Consumer	MUST	copy	the	request_id	from	the	Message	header	of	a	Command	into	each	Response	to	that
Command.

3.3	Content

The	purpose	of	this	specification	is	to	define	the	Action	and	Target	portions	of	a	Command	and	the	common	portions	of	a
Response.	The	properties	of	the	Command	are	defined	in	Section	3.3.1	and	the	properties	of	the	Response	are	defined	in
Section	3.3.2.

In	addition	to	the	Action	and	Target,	a	Command	has	an	optional	Actuator.	Other	than	identification	of	namespace	identifier,	the
semantics	associated	with	the	Actuator	Specifiers	are	defined	in	Actuator	Profiles.	The	Actuators	and	Actuator-specific	results
contained	in	a	Response	are	specified	in	'Actuator	Profile	Specifications'	such	as	StateLess	Packet	Filtering	Profile,	Routing
Profile	etc.

3.3.1	OpenC2	Command

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	19	of	40



The	Command	defines	an	Action	to	be	performed	on	a	Target.

Type:	OpenC2-Command	(Record)

ID Name Type # Description

1 action Action 1 The	task	or	activity	to	be	performed	(i.e.,	the	'verb').

2 target Target 1 The	object	of	the	Action.	The	Action	is	performed	on	the	Target.

3 args Args 0..1 Additional	information	that	applies	to	the	Command.

4 actuator Actuator 0..1 The	subject	of	the	Action.	The	Actuator	executes	the	Action	on	the	Target.

5 command_id String 0..1 An	identifier	of	this	Command.

Usage	Requirements:

A	Consumer	receiving	a	Command	with	command_id	absent	and	request_id	present	in	the	header	of	the	Message
MUST	use	the	value	of	request_id	as	the	command_id.
If	present,	the	args	property	MUST	contain	at	least	one	element	defined	in	Section	3.3.1.4.

3.3.1.1	Action

Type:	Action	(Enumerated)

ID Name Description

1 scan Systematic	examination	of	some	aspect	of	the	entity	or	its	environment.

2 locate Find	an	object	physically,	logically,	functionally,	or	by	organization.

3 query Initiate	a	request	for	information.

6 deny Prevent	a	certain	event	or	action	from	completion,	such	as	preventing	a	flow	from	reaching	a	destination	or
preventing	access.

7 contain Isolate	a	file,	process,	or	entity	so	that	it	cannot	modify	or	access	assets	or	processes.

8 allow Permit	access	to	or	execution	of	a	Target.

9 start Initiate	a	process,	application,	system,	or	activity.

10 stop Halt	a	system	or	end	an	activity.

11 restart Stop	then	start	a	system	or	an	activity.

14 cancel Invalidate	a	previously	issued	Action.

15 set Change	a	value,	configuration,	or	state	of	a	managed	entity.

16 update Instruct	a	component	to	retrieve,	install,	process,	and	operate	in	accordance	with	a	software	update,
reconfiguration,	or	other	update.

18 redirect Change	the	flow	of	traffic	to	a	destination	other	than	its	original	destination.

19 create Add	a	new	entity	of	a	known	type	(e.g.,	data,	files,	directories).

20 delete Remove	an	entity	(e.g.,	data,	files,	flows).

22 detonate Execute	and	observe	the	behavior	of	a	Target	(e.g.,	file,	hyperlink)	in	an	isolated	environment.

23 restore Return	a	system	to	a	previously	known	state.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	20	of	40



28 copy Duplicate	an	object,	file,	data	flow,	or	artifact.

30 investigate Task	the	recipient	to	aggregate	and	report	information	as	it	pertains	to	a	security	event	or	incident.

32 remediate Task	the	recipient	to	eliminate	a	vulnerability	or	attack	point.

ID Name Description

Usage	Requirements:

Each	Command	MUST	contain	exactly	one	Action	defined	in	Section	3.3.1.1.

3.3.1.2	Target

Type:	Target	(Choice)

ID Name Type # Description

1 artifact Artifact 1 An	array	of	bytes	representing	a	file-like	object	or	a	link	to	that	object.

2 command String 1 A	reference	to	a	previously	issued	Command.

3 device Device 1 The	properties	of	a	hardware	device.

7 domain_name Domain-Name 1 A	network	domain	name.

8 email_addr Email-Addr 1 A	single	email	address.

9 features Features 1 A	set	of	items	used	with	the	query	Action	to	determine	an	Actuator's
capabilities.

10 file File 1 Properties	of	a	file.

11 idn_domain_name IDN-Domain-
Name

1 An	internationalized	domain	name.

12 idn_email_addr IDN-Email-
Addr

1 A	single	internationalized	email	address.

13 ipv4_net IPv4-Net 1 An	IPv4	address	range	including	CIDR	prefix	length.

14 ipv6_net IPv6-Net 1 An	IPv6	address	range	including	prefix	length.

15 ipv4_connection IPv4-
Connection

1 A	5-tuple	of	source	and	destination	IPv4	address	ranges,	source	and
destination	ports,	and	protocol

16 ipv6_connection IPv6-
Connection

1 A	5-tuple	of	source	and	destination	IPv6	address	ranges,	source	and
destination	ports,	and	protocol

20 iri IRI 1 An	internationalized	resource	identifier	(IRI).

17 mac_addr MAC-Addr 1 A	Media	Access	Control	(MAC)	address	-	EUI-48	or	EUI-64	as	defined	in
[EUI]

18 process Process 1 Common	properties	of	an	instance	of	a	computer	program	as	executed	on	an
operating	system.

25 properties Properties 1 Data	attribute	associated	with	an	Actuator

19 uri URI 1 A	uniform	resource	identifier	(URI).

Usage	Requirements:

The	target	field	in	a	Command	MUST	contain	exactly	one	type	of	Target	(e.g.,	ipv4_net).

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	21	of	40



3.3.1.3	Actuator

Type:	Actuator	(Choice)

ID Name Type # Description

1024 slpf slpf:Actuator 1 Example:	Actuator	Specifiers	defined	in	the	Stateless	Packet	Filtering	Profile

3.3.1.4	Command	Arguments

Type:	Args	(Map)

ID Name Type # Description

1 start_time Date-Time 0..1 The	specific	date/time	to	initiate	the	Command

2 stop_time Date-Time 0..1 The	specific	date/time	to	terminate	the	Command

3 duration Duration 0..1 The	length	of	time	for	an	Command	to	be	in	effect

4 response_requested Response-
Type

0..1 The	type	of	Response	required	for	the	Command:	none,	ack,	status,	
complete.

Usage	Requirements:

start_time,	stop_time,	duration:
If	none	are	specified,	then	start_time	is	now,	stop_time	is	never,	and	duration	is	infinity.
Only	two	of	the	three	are	allowed	on	any	given	Command	and	the	third	is	derived	from	the	equation	stop_time	=	
start_time	+	duration.
If	only	start_time	is	specified	then	stop_time	is	never	and	duration	is	infinity.
If	only	stop_time	is	specified	then	start_time	is	now	and	duration	is	derived.
If	only	duration	is	specified	then	start_time	is	now	and	stop_time	is	derived.

response_requested:
If	response_requested	is	specified	as	none	then	the	Consumer	SHOULD	NOT	send	a	Response.
If	response_requested	is	specified	as	ack	then	the	Consumer	SHOULD	send	a	Response	acknowledging	receipt
of	the	Command:	{"status":	102}.
If	response_requested	is	specified	as	status	then	the	Consumer	SHOULD	send	a	Response	containing	the
current	status	of	Command	execution.
If	response_requested	is	specified	as	complete	then	the	Consumer	SHOULD	send	a	Response	containing	the
status	or	results	upon	completion	of	Command	execution.
If	response_requested	is	not	explicitly	specified	then	the	Consumer	SHOULD	respond	as	if	complete	was
specified.

3.3.2	OpenC2	Response

Type:	OpenC2-Response	(Map)

ID Name Type # Description

1 status Status-Code 1 An	integer	status	code

2 status_text String 0..1 A	free-form	human-readable	description	of	the	Response	status

3 results Results 0..1 Map	of	key:value	pairs	that	contain	additional	results	based	on	the	invoking
Command.

Example:

{
				"status":	200,
				"results":	{

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	22	of	40



								"versions":	["1.0"]
				}
}

Usage	Requirements:

All	Responses	MUST	contain	a	status.

3.3.2.1	Response	Status	Code

Type:	Status-Code	(Enumerated.ID)

ID Description

102 Processing	-	an	interim	Response	used	to	inform	the	Producer	that	the	Consumer	has	accepted	the	Command	but	has
not	yet	completed	it.

200 OK	-	the	Command	has	succeeded.

400 Bad	Request	-	the	Consumer	cannot	process	the	Command	due	to	something	that	is	perceived	to	be	a	Producer	error
(e.g.,	malformed	Command	syntax).

401 Unauthorized	-	the	Command	Message	lacks	valid	authentication	credentials	for	the	target	resource	or	authorization
has	been	refused	for	the	submitted	credentials.

403 Forbidden	-	the	Consumer	understood	the	Command	but	refuses	to	authorize	it.

404 Not	Found	-	the	Consumer	has	not	found	anything	matching	the	Command.

500 Internal	Error	-	the	Consumer	encountered	an	unexpected	condition	that	prevented	it	from	performing	the	Command.

501 Not	Implemented	-	the	Consumer	does	not	support	the	functionality	required	to	perform	the	Command.

503 Service	Unavailable	-	the	Consumer	is	currently	unable	to	perform	the	Command	due	to	a	temporary	overloading	or
maintenance	of	the	Consumer.

3.3.2.2	Response	Results

Type:	Results	(Map	[1..*])

ID Name Type # Description

1 versions Version 0..* List	of	OpenC2	language	versions	supported	by	this	Actuator

2 profiles ArrayOf(Nsid) 0..1 List	of	profiles	supported	by	this	Actuator

3 pairs Action-Targets 0..* List	of	targets	applicable	to	each	supported	Action

4 rate_limit Number 0..1 Maximum	number	of	requests	per	minute	supported	by	design	or	policy

1024 slpf slpf:Results 0..1 Example:	Result	properties	defined	in	the	Stateless	Packet	Filtering	Profile

3.4	Type	Definitions
3.4.1	Target	Types

3.4.1.1	Artifact

Type:	Artifact	(Record)	[1..*]

ID Name Type # Description

1 mime_type String 0..1 Permitted	values	specified	in	the	IANA	Media	Types	registry,	[RFC6838]

2 payload Payload 0..1 Choice	of	literal	content	or	URL

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	23	of	40



3 hashes Hashes 0..1 Hashes	of	the	payload	content

ID Name Type # Description

Usage	Requirement:

An	"Artifact"	Target	MUST	contain	at	least	one	property.

3.4.1.2	Device

Type:	Device	(Map)	[0..*]

ID Name Type # Description

1 hostname Hostname 0..1 A	hostname	that	can	be	used	to	connect	to	this	device	over	a	network

2 idn_hostname IDN-
Hostname

0..1 An	internationalized	hostname	that	can	be	used	to	connect	to	this	device	over	a
network

3 device_id String 0..1 An	identifier	that	refers	to	this	device	within	an	inventory	or	management	system

Usage	Requirement:

A	"Device"	Target	MUST	contain	at	least	one	property.

3.4.1.3	Domain	Name

Type	Name Type	Definition Description

Domain-Name String	(hostname) [RFC1034],	Section	3.5

3.4.1.4	Email	Address

Type	Name Type	Definition Description

Email-Addr String	(email) Email	address,	[RFC5322],	Section	3.4.1

3.4.1.5	Features

Type	Name Type	Definition Description

Features ArrayOf(Feature)	[0..10] An	array	of	zero	to	ten	names	used	to	query	an	Actuator	for	its	supported
capabilities.

Usage	Requirements:

A	Producer	MUST	NOT	send	a	list	containing	more	than	one	instance	of	any	Feature.
A	Consumer	receiving	a	list	containing	more	than	one	instance	of	any	Feature	SHOULD	behave	as	if	the	duplicate(s)	were
not	present.
A	Producer	MAY	send	a	'query'	Command	containing	an	empty	list	of	features.	A	Producer	could	do	this	to	determine	if	a
Consumer	is	responding	to	Commands	(a	heartbeat	command)	or	to	generate	idle	traffic	to	keep	a	connection	to	a
Consumer	from	being	closed	due	to	inactivity	(a	keep-alive	command).	An	active	Consumer	could	return	an	empty
response	to	this	command,	minimizing	the	amount	of	traffic	used	to	perform	heartbeat	/	keep-alive	functions.

3.4.1.6	File

Type:	File	(Map)	[0..*]

ID Name Type # Description

1 name String 0..1 The	name	of	the	file	as	defined	in	the	file	system

2 path String 0..1 The	absolute	path	to	the	location	of	the	file	in	the	file	system

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	24	of	40



3 hashes Hashes 0..1 One	or	more	cryptographic	hash	codes	of	the	file	contents

ID Name Type # Description

Usage	Requirement:

A	"File"	Target	MUST	contain	at	least	one	property.

3.4.1.7	Internationalized	Domain	Name

Type	Name Type	Definition Description

IDN-Domain-Name String	(idn-hostname) Internationalized	Domain	Name,	[RFC5890],	Section	2.3.2.3.

3.4.1.8	Internationalized	Email	Address

Type	Name Type	Definition Description

IDN-Email-Addr String	(idn-email) Internationalized	email	address,	[RFC6531]

3.4.1.9	IPv4	Address	Range

An	IPv4	address	range	is	a	CIDR	block	per	"Classless	Inter-domain	Routing	(CIDR):	The	Internet	Address	Assignment	and
Aggregation	Plan"	[RFC4632]	and	consists	of	two	values,	an	IPv4	address	and	a	prefix.

For	example,	"192.168.17.0/24"	is	range	of	IP	addresses	with	a	prefix	of	24	(i.e.	192.168.17.0	-	192.168.17.255).

JSON	serialization	of	an	IPv4	address	range	SHALL	use	the	'dotted/slash'	textual	representation	of	[RFC4632].

CBOR	serialization	of	an	IPv4	address	range	SHALL	use	a	binary	representation	of	the	IP	address	and	the	prefix,	each	in	their
own	field.

Type:	IPv4-Net	(Array	/ipv4-net)

ID Type # Description

1 IPv4-Addr 1 IPv4	address	as	defined	in	[RFC0791]

2 Integer 0..1 CIDR	prefix-length.	If	omitted,	refers	to	a	single	host	address.

3.4.1.10	IPv4	Connection

Type:	IPv4-Connection	(Record)	[0..*]

ID Name Type # Description

1 src_addr IPv4-Net 0..1 IPv4	source	address	range

2 src_port Port 0..1 source	service	per	[RFC6335]

3 dst_addr IPv4-Net 0..1 IPv4	destination	address	range

4 dst_port Port 0..1 destination	service	per	[RFC6335]

5 protocol L4-Protocol 0..1 layer	4	protocol	(e.g.,	TCP)	-	see	Section	3.4.2.10

Usage	Requirement:

An	"IPv4-Connection"	MUST	contain	at	least	one	property.

3.4.1.11	IPv6	Address	Range

Type:	IPv6-Net	(Array	/ipv6-net)

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	25	of	40



ID Type # Description

1 IPv6-Addr 1 IPv6	address	as	defined	in	[RFC8200]

2 Integer 0..1 prefix-length.	If	omitted,	refers	to	a	single	host	address.

3.4.1.12	IPv6	Connection

Type:	IPv6-Connection	(Record)	[0..*]

ID Name Type # Description

1 src_addr IPv6-Net 0..1 IPv6	source	address	range

2 src_port Port 0..1 source	service	per	[RFC6335]

3 dst_addr IPv6-Net 0..1 IPv6	destination	address	range

4 dst_port Port 0..1 destination	service	per	[RFC6335]

5 protocol L4-Protocol 0..1 layer	4	protocol	(e.g.,	TCP)	-	Section	3.4.2.10

Usage	Requirement:

An	"IPv6-Connection"	Target	MUST	contain	at	least	one	property.

3.4.1.13	IRI

Type	Name Type	Definition Description

IRI String	(iri) Internationalized	Resource	Identifier,	[RFC3987].

3.4.1.14	MAC	Address

Type
Name

Type
Definition

Description

MAC-Addr Binary	(eui) Media	Access	Control	/	Extended	Unique	Identifier	address	-	EUI-48	or	EUI-64	as	defined	in
[EUI].

3.4.1.15	Process

Type:	Process	(Map)	[0..*]

ID Name Type # Description

1 pid Integer 0..1 Process	ID	of	the	process

2 name String 0..1 Name	of	the	process

3 cwd String 0..1 Current	working	directory	of	the	process

4 executable File 0..1 Executable	that	was	executed	to	start	the	process

5 parent Process 0..1 Process	that	spawned	this	one

6 command_line String 0..1 The	full	command	line	invocation	used	to	start	this	process,	including	all	arguments

Usage	Requirement:

A	"Process"	Target	MUST	contain	at	least	one	property.

3.4.1.16	Properties

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	26	of	40



Type	Name Type	Definition Description

Properties ArrayOf(String) A	list	of	names	that	uniquely	identify	properties	of	an	Actuator.

3.4.1.17	URI

Type	Name Type	Definition Description

URI String	(uri) Uniform	Resource	Identifier,	[RFC3986].

3.4.2	Data	Types

3.4.2.1	Action-Targets

Type	Name Type	Definition Description

Action-
Targets

MapOf(Action,
Targets)

Map	of	each	action	supported	by	this	actuator	to	the	list	of	targets	applicable	to	that
action.

Type	Name Type	Definition Description

Targets ArrayOf(Target.Enum)	[1..*] List	of	Target	fields

3.4.2.2	Date-Time

Type	Name Type	Definition Description

Date-Time Integer Date	and	Time

Usage	Requirements:

Value	is	the	number	of	milliseconds	since	00:00:00	UTC,	1	January	1970

3.4.2.3	Duration

Type	Name Type	Definition Description

Duration Integer A	length	of	time

Usage	Requirements:

Value	is	a	number	of	milliseconds

3.4.2.4	Feature

Specifies	the	results	to	be	returned	from	a	query	features	Command.

Type:	Feature	(Enumerated)

ID Name Description

1 versions List	of	OpenC2	Language	versions	supported	by	this	Actuator

2 profiles List	of	profiles	supported	by	this	Actuator

3 pairs List	of	supported	Actions	and	applicable	Targets

4 rate_limit Maximum	number	of	Commands	per	minute	supported	by	design	or	policy

3.4.2.5	Hashes

Type:	Hashes	(Map)	[0..*]

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	27	of	40



ID Name Type # Description

1 md5 Binary	/x 0..1 MD5	hash	as	defined	in	[RFC1321]

2 sha1 Binary	/x 0..1 SHA1	hash	as	defined	in	[RFC6234]

3 sha256 Binary	/x 0..1 SHA256	hash	as	defined	in	[RFC6234]

Usage	Requirement:

A	"Hashes"	data	type	MUST	contain	at	least	one	key.

3.4.2.6	Hostname

Type	Name Type	Definition Description

Hostname String	(hostname) Internet	host	name	as	specified	in	[RFC1123]

3.4.2.7	Internationalized	Hostname

Type	Name Type	Definition Description

IDN-Hostname String	(idn-hostname) Internationalized	Internet	host	name	as	specified	in	[RFC5890],	Section	2.3.2.3.

3.4.2.8	IPv4	Address

Type	Name Base	Type Description

IPv4-Addr Binary	/ipv4-addr 32	bit	IPv4	address	as	defined	in	[RFC0791]

3.4.2.9	IPv6	Address

Type	Name Base	Type Description

IPv6-Addr Binary	/ipv6-addr 128	bit	IPv6	address	as	defined	in	[RFC8200]

3.4.2.10	L4	Protocol

Value	of	the	protocol	(IPv4)	or	next	header	(IPv6)	field	in	an	IP	packet.	Any	IANA	value,	[RFC5237]

Type:	L4-Protocol	(Enumerated)

ID Name Description

1 icmp Internet	Control	Message	Protocol	-	[RFC0792]

6 tcp Transmission	Control	Protocol	-	[RFC0793]

17 udp User	Datagram	Protocol	-	[RFC0768]

132 sctp Stream	Control	Transmission	Protocol	-	[RFC4960]

3.4.2.11	Message-Type

Identifies	the	type	of	Message.

Type:	Message-Type	(Enumerated)

ID Name Description

1 command The	Message	content	is	an	OpenC2	Command

2 response The	Message	content	is	an	OpenC2	Response

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	28	of	40



3.4.2.12	Namespace	Identifier

Type	Name Base	Type Description

Nsid String	[1..16] A	short	identifier	that	refers	to	a	namespace.

3.4.2.13	Payload

Type:	Payload	(Choice)

ID Name Type # Description

1 bin Binary 1 Specifies	the	data	contained	in	the	artifact

2 url URI 1 MUST	be	a	valid	URL	that	resolves	to	the	un-encoded	content

3.4.2.14	Port

Type	Name Type	Definition Description

Port Integer	[0..65535] Transport	Protocol	Port	Number,	[RFC6335]

3.4.2.15	Response-Type

Type:	Response-Type	(Enumerated)

ID Name Description

0 none No	response

1 ack Respond	when	Command	received

2 status Respond	with	progress	toward	Command	completion

3 complete Respond	when	all	aspects	of	Command	completed

3.4.2.16	Version

Type	Name Type	Definition Description

Version String Major.Minor	version	number

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	29	of	40



4	Mandatory	Commands/Responses
The	content	in	this	section	is	normative,	except	where	it	is	marked	non-normative.

A	Command	consists	of	an	Action/Target	pair	and	associated	Specifiers	and	Arguments.	This	section	enumerates	the	allowed
Commands,	identifies	which	are	required	or	optional	to	implement,	and	presents	the	associated	responses.

4.1	Implementation	of	'query	features'	Command

The	'query	features'	Command	is	REQUIRED	for	all	Producers	and	Consumers	implementing	OpenC2.	This	section	defines	the
REQUIRED	and	OPTIONAL	aspects	of	the	'query	features'	Command	and	associated	response	for	Producers	and	Consumers.

The	'query	features'	Command	is	REQUIRED	for	all	Producers.	The	'query	features'	Command	MAY	include	one	or	more
Features	as	defined	in	Section	3.4.2.4.	The	'query	features'	Command	MAY	include	the	"response_requested":	
"complete"	Argument.	The	'query	features'	Command	MUST	NOT	include	any	other	Argument.

The	'query	features'	Command	is	REQUIRED	for	all	Consumers.	Consumers	that	receive	and	parse	the	'query	features':

With	any	Argument	other	than	"response_requested":	"complete"
MUST	NOT	respond	with	OK/200.
SHOULD	respond	with	Bad	Request/400.
MAY	respond	with	the	500	status	code.

With	no	Target	Specifiers	MUST	respond	with	response	code	200.
With	the	"versions"	Target	Specifier	MUST	respond	with	status	200	and	populate	the	versions	field	with	a	list	of	the
OpenC2	Language	Versions	supported	by	the	consumer.
With	the	"profiles"	Target	Specifier	MUST	respond	with	status	200	and	populate	the	profiles	field	with	a	list	of	profiles
supported	by	the	consumer.
With	the	"pairs"	Target	Specifier	MUST	respond	with	status	200	and	populate	the	pairs	field	with	a	list	of	action	target	pairs
that	define	valid	commands	supported	by	the	consumer.
With	the	"rate_limit"	Target	Specifier	populated:

SHOULD	respond	with	status	200	and	populate	the	rate_limit	field	with	the	maximum	number	of	Commands	per
minute	that	the	Consumer	may	support.
MAY	respond	with	status	200	and	with	the	rate_limit	field	unpopulated.

4.2	Examples	of	'query	features'	Commands	and	Responses

This	section	is	non-normative.

This	sub-section	provides	examples	of	'query	features'	Commands	and	Responses.	The	examples	provided	in	this	section	are
for	illustrative	purposes	only	and	are	not	to	be	interpreted	as	operational	examples	for	actual	systems.

4.2.1	Example	1

There	are	no	features	specified	in	the	'query	features'	Command.	A	simple	"OK"	Response	Message	is	returned.

Command:

{
				"action":	"query",
				"target":	{
								"features":	[]
				}
}

Response:

{
				"status":	200
}

4.2.2	Example	2

There	are	several	features	requested	in	the	'query	features'	Command.	All	requested	features	can	be	returned	in	a	single

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	30	of	40



Response	Message.

Command:

{
				"action":	"query",
				"target":	{
								"features":	["versions",	"profiles",	"rate_limit"]
				}
}

Response:

{
				"status":	200,
				"results":	{
								"versions":	["1.0"],
								"profiles":	["slpf",	"x-lock"],
								"rate_limit":	30
				}
}

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	31	of	40



5	Conformance
This	content	in	this	section	is	normative.

5.1	Conformance	Clause	1:	Command

A	conformant	Command

5.1-1	MUST	be	structured	in	accordance	with	Section	3.3.1.
5.1-2	MUST	include	exactly	one	action	property	defined	in	accordance	with	Section	3.3.1.1.
5.1-3	MUST	include	exactly	one	target	property	defined	in	accordance	with	Section	3.3.1.2	or	exactly	one	imported	
target	property	defined	in	accordance	with	Section	3.1.4.
5.1-4	MUST	include	zero	or	one	actuator	property	defined	in	accordance	with	Section	3.3.1.3	or	zero	or	one	imported	
actuator	property	defined	in	accordance	with	Section	3.1.4.
5.1-5	MUST	include	zero	or	one	args	property	defined	in	accordance	with	Section	3.3.1.4	or	zero	or	one	imported	args
property	defined	in	accordance	with	Section	3.1.4.

5.2	Conformance	Clause	2:	Response

A	conformant	Response

5.2-1	MUST	be	structured	in	accordance	with	Section	3.3.2.
5.2-2	MUST	include	exactly	one	status	property	defined	in	accordance	with	Section	3.3.2.1.

5.3	Conformance	Clause	3:	Producer

A	conformant	Producer

5.3-1	MUST	issue	Commands	and	process	Responses	in	accordance	with	Section	4.
5.3-2	MUST	implement	JSON	serialization	of	generated	Commands	in	accordance	with	[RFC7493].
5.3-3	MUST	implement	JSON	serialization	of	received	Responses	in	accordance	with	[RFC7493].

5.4	Conformance	Clause	4:	Consumer

A	conformant	Consumer

5.4-1	MUST	process	Commands	and	issue	Responses	in	accordance	with	Section	4.
5.4-2	MUST	implement	JSON	serialization	of	generated	Responses	in	accordance	with	[RFC7493].
5.4-3	MUST	implement	JSON	serialization	of	received	Commands	in	accordance	with	[RFC7493].

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	32	of	40



Annex	A.	Examples
The	content	in	this	section	is	non-normative.

A.1	Example	1

This	Command	would	be	used	to	quarantine	a	device	on	the	network.

{
				"action":	"contain",
				"target":	{
								"device":	{
												"device_id":	"9BCE8431AC106FAA3861C7E771D20E53"
								}
				}
}

A.2	Example	2

This	Command	blocks	a	particular	connection	within	the	domain.	The	standard	Actuator	profile	defines	the	extended	Command
Argument,	drop_process,	and	the	Actuator	Specifier,	asset_id.	The	Response	is	a	simple	acknowledgment	that	was
requested	in	the	Command.

Command:

{
				"action":	"deny",
				"target":	{
								"ipv4_connection":	{
												"protocol":	"tcp",
												"src_addr":	"1.2.3.4",
												"src_port":	10996,
												"dst_addr":	"198.2.3.4",
												"dst_port":	80
								}
				},
				"args":	{
								"start_time":	1534775460000,
								"duration":	500,
								"response_requested":	"ack",
								"slpf":	{
												"drop_process":	"none"
								}
				},
				"actuator":	{
								"slpf":	{
												"asset_id":	"30"
								}
				}
}

Response:

{
				"status":	102
}

A.3	Example	3

This	is	a	notional	example	of	a	Command	issued	to	a	non-standard	Actuator.	A	Producer	sends	a	'query	properties'	Command	to

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	33	of	40



request	detail	about	a	'battery'.	The	Consumer	responses	with	the	battery	information	extended	in	the	results	of	the	Response.

Command:

{
				"action":	"query",
				"target":	{
								"properties":	["battery"]
				},
				"actuator":	{
								"x-esm":	{
												"asset_id":	"TGEadsasd"
								}
				}
}

Response:

{
				"status":	200,
				"results":	{
								"x-esm":	{
												"battery":	{
																"capacity":	0.577216,
																"charged_at":	1547506988,
																"status":	12,
																"mode":	{
																				"output":	"high",
																				"supported":	[	"high",	"trickle"	]
																},
																"visible_on_display":	true
												},
												"asset_id":	"TGEadsasd"
								}
				}
}

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	34	of	40



Annex	B.	Acronyms
Acronym Definition

API Application	Programming	Interface

ASCII American	Standard	Code	for	Information	Interchange

BCP Best	Current	Practice

CBOR Concise	Binary	Object	Representation

CIDR Classless	Inter-Domain	Routing

CoAP Constrained	Application	Protocol

DOI Digital	Object	Identifier

EUI Extended	Unique	Identifier

HTTP Hyper	Text	Transfer	Protocol

HTTPS Hyper	Text	Transfer	Protocol	Secure

IACD Integrated	Adaptive	Cyber	Defense

IANA Internet	Assigned	Numbers	Authority

ICMP Internet	Control	Message	Protocol

ID Identifier

IP Internet	Protocol

IPR Intellectual	Property	Rights

JSON JavaScript	Object	Notation

MAC Media	Access	Control

MD5 Message	Digest

MQTT Message	Queuing	Telemetry	Transfer

OASIS Organization	for	the	Advancement	of	Structured	Information	Standards

OODA Observe-Orient-Decide-Act

OpenC2 Open	Command	and	Control

OpenDXL Open	Data	eXchange	Layer

PDF Portable	Document	Format

RFC Request	for	Comment

SCTP Stream	Control	Transmission	Protocol

SHA Security	Hash	Algorithm

SLPF StateLess	Packet	Filtering

STD Standard

TC Technical	Committee

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	35	of	40



TCP Transmission	Control	Protocol

UDP User	Datagram	Control	Protocol

UML Unified	Modeling	Language

URI Uniform	Resource	Identifier

UTC Coordinated	Universal	Time

UUID Universally	Unique	IDentifier

XML eXtensibel	Markup	Language

Acronym Definition

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	36	of	40



Annex	C.	Design	Elements
C.1	Derived	Enumerations

It	is	sometimes	useful	to	reference	the	fields	of	a	structure	definition,	for	example	to	list	fields	that	are	usable	in	a	particular
context,	or	to	read	or	update	the	value	of	a	specific	field.	An	instance	of	a	reference	can	be	validated	against	the	set	of	valid
references	using	either	an	explicit	or	a	derived	Enumerated	type.	A	derived	enumeration	is	created	by	appending	".Enum"	to	the
type	being	referenced,	and	it	results	in	an	Enumerated	type	containing	the	ID	and	Name	columns	of	the	referenced	type.

This	is	the	design	element	that	defines	the	"Action-Targets"	data	type.	The	"Action-Targets"	data	type	is	a	map	of	each	action
supported	by	an	actuator	to	a	list	of	targets	implemented	for	each	action.	The	list	of	Actions,	defined	in	Section	3.3.1.1,	is
appropriately	an	enumerated	list	of	possible	Actions.	The	list	of	Targets,	defined	in	Section	3.3.1.2,	is	a	Choice	data	structure
where	each	element	is	a	complex	data	type	of	its	own.	A	derived	enumeration	is	used	in	this	case	to	signify	that	the	list	of
Targets	for	the	"Action-Targets"	data	type	should	be	an	enumerated	list	of	the	possible	Targets

Definition	of	"Action-Targets"	Data	Type:	The	Targets	data	type	is	defined	as	an	array	of	"Target"	enumerations.	The	"Target"
enumerations	are	derived	from	the	"Target"	data	type.

Type	Name Type	Definition Description

Action-
Targets

MapOf(Action,
Targets)

Map	of	each	action	supported	by	this	actuator	to	the	list	of	targets	applicable	to	that
action.

Type	Name Type	Definition Description

Targets ArrayOf(Target.Enum)	[1..*] List	of	Target	fields

Example:	The	"pairs"	property	is	defined	as	an	"Action-Targets"	data	type.

{
				"status":	200,
				"results":	{
								"pairs":	{
												"allow":	["ipv6_net",	"ipv6_connection"],
												"deny":	["ipv6_net",	"ipv6_connection"],
												"query":	["features"],
												"delete":	["slpf:rule_number"],
												"update":	["file"]
								}
				}
}

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	37	of	40



Annex	D.	Revision	History
The	content	in	this	section	is	non-normative.

Revision Date Editor Changes	Made

v1.0-
wd01

10/31/2017 Romano,
Sparrell

Initial	working	draft

v1.0-
csd01

11/14/2017 Romano,
Sparrell

approved	wd01

v1.0-
wd02

01/12/2018 Romano,
Sparrell

csd01	ballot	comments
Targets

v1.0-
wd03

01/31/2018 Romano,
Sparrell

wd02	review	comments

v1.0-
csd02

02/14/2018 Romano,
Sparrell

approved	wd03

v1.0-
wd04

03/02/2018 Romano,
Sparrell

Property	tables
threads	(cmd/resp)	from	use	cases
previous	comments

v1.0-
wd05

03/21/2018 Romano,
Sparrell

wd04	review	comments

v1.0-
csd03

04/03/2018 Romano,
Sparrell

approved	wd05

v1.0-
wd06

05/15/2018 Romano,
Sparrell

Finalizing	message	structure
message=header+body
Review	comments
Using	word	'arguments'	instead	of	'options'

v1.0-
csd04

5/31/2018 Romano,
Sparrell

approved	wd06

v1.0-
wd07

7/11/2018 Romano,
Sparrell

Continued	refinement	of	details
Review	comments
Moved	some	Actions	and	Targets	to	reserved	lists

v1.0-
wd08

10/05/2018 Romano,
Sparrell

Continued	refinement	of	details
Review	comments

v1.0-
wd09

10/17/2018 Romano,
Sparrell

Additional	review	comments	to	create	wd09	for	CSD	approval	and	release	for
public	review.

v1.0-
wd10

03/04/2019 Romano,
Sparrell

Produce	interim	working	draft.

v1.0-
wd11

03/21/2019 Romano,
Sparrell

Produce	interim	working	draft.

v1.0-
wd12

03/27/2019 Romano,
Sparrell

Produce	candidate	working	draft	for	next	public	review.

v1.0-
wd13

05/14/2019 Romano,
Sparrell

Incorporated	comments	from	CSPRD02.

v1.0-
wd14

05/23/2019 Romano,
Sparrell

Incorporated	comments	from	WD13	ballot.

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	38	of	40



Annex	E.	Acknowledgments
The	content	in	this	section	is	non-normative.

The	following	individuals	have	participated	in	the	creation	of	this	specification	and	are	gratefully	acknowledged:

OpenC2	TC	Members:

First	Name Last	Name Company

Philippe Alcoy Arbor	Networks

Darren Anstee Arbor	Networks

Michelle Barry AT&T

Brian Berliner Symantec	Corp.

Adam Bradbury EclecticIQ

Joe Brule National	Security	Agency

Michael Butt NC4

Toby Considine University	of	North	Carolina	at	Chapel	Hill

Trey Darley New	Context	Services	Inc.

David Darnell North	American	Energy	Standards	Board

Sudeep Das McAfee

Andrea De	Bernardi Moviri	SPA

Blake Essing AT&T

Alex Everett University	of	North	Carolina	at	Chapel	Hill

Joyce Fai National	Security	Agency

Travis Farral Anomali

David Girard Trend	Micro

Andy Gray ForeScout

John-Mark Gurney New	Context	Services	Inc.

Stefan Hagen Individual

David Hamilton AT&T

Nick Humphrey Huntsman	Security

Christian Hunt New	Context	Services	Inc.

April Jackson G2

Sridhar Jayanthi Individual

Bret Jordan Symantec	Corp.

Jason Keirstead IBM

David Kemp National	Security	Agency

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	39	of	40



David Lemire G2

Jason Liu Northrop	Grumman

Radu Marian Bank	of	America

Danny Martinez G2

Lisa Mathews National	Security	Agency

James Meck FireEye	Inc.

Efrain Ortiz Symantec	Corp.

Paul Patrick FireEye	Inc.

Michael Pepin NC4

Nirmal Rajarathnam ForeScout

Chris Ricard Financial	Services	Information	Sharing	and	Analysis	Center	(FS-ISAC)

Daniel Riedel New	Context	Services	Inc.

Jason Romano National	Security	Agency

Philip Royer Splunk	Inc.

Thomas Schreck Siemens	AG

Duane Skeen Northrop	Grumman

Duncan Sparrell sFractal	Consulting	LLC

Michael Stair AT&T

Andrew Storms New	Context	Services	Inc.

Gerald Stueve Fornetix

Rodney Sullivan NCI	Agency

Allan Thomson LookingGlass

Bill Trost AT&T

Raymon van	der	Velde EclecticIQ

Jyoti Verma Cisco	Systems

David Waltermire NIST

Jason Webb LookingGlass

Sean Welsh AT&T

Charles White Fornetix

Sounil Yu Bank	of	America

First	Name Last	Name Company

Standards	Track	Work	Product

oc2ls-v1.0-csprd03 Copyright	©	OASIS	Open	2018.	All	Rights	Reserved. 31	May	2019	-	Page	40	of	40


	Open Command and Control (OpenC2) Language Specification Version 1.0
	Committee Specification Draft 09 / Public Review Draft 03
	31 May 2019
	Specification URIs
	This version:
	Previous version:
	Latest version:
	Technical Committee:
	Chairs:
	Editors:
	Abstract:
	Status:
	Citation format:


	Notices

	Table of Contents
	1 Introduction
	1.1 IPR Policy
	1.2 Terminology
	1.3 Normative References
	[OpenC2-HTTPS-v1.0]
	[OpenC2-SLPF-v1.0]
	[RFC0768]
	[RFC0791]
	[RFC0792]
	[RFC0793]
	[RFC1034]
	[RFC1123]
	[RFC1321]
	[RFC2119]
	[RFC2673]
	[RFC3986]
	[RFC3987]
	[RFC4122]
	[RFC4291]
	[RFC4632]
	[RFC4648]
	[RFC4960]
	[RFC5237]
	[RFC5322]
	[RFC5890]
	[RFC5952]
	[RFC6234]
	[RFC6335]
	[RFC6531]
	[RFC6838]
	[RFC7493]
	[RFC8174]
	[RFC8200]
	[RFC8259]
	[EUI]

	1.4 Non-Normative References
	[IACD]
	[UML]

	1.5 Document Conventions
	1.5.1 Naming Conventions
	1.5.2 Font Colors and Style

	1.6 Overview
	1.7 Goal
	1.8 Purpose and Scope

	2 OpenC2 Language Description
	2.1 OpenC2 Command
	2.2 OpenC2 Response

	3 OpenC2 Language Definition
	3.1 Base Components and Structures
	3.1.1 Data Types
	3.1.2 Semantic Value Constraints
	3.1.3 Multiplicity
	3.1.4 Extensions
	3.1.5 Serialization
	3.1.5.1 ID and Name Serialization


	3.2 Message
	Table 3-1. Common Message Elements

	3.3 Content
	3.3.1 OpenC2 Command
	3.3.1.1 Action
	3.3.1.2 Target
	3.3.1.3 Actuator
	3.3.1.4 Command Arguments

	3.3.2 OpenC2 Response
	3.3.2.1 Response Status Code
	3.3.2.2 Response Results


	3.4 Type Definitions
	3.4.1 Target Types
	3.4.1.1 Artifact
	3.4.1.2 Device
	3.4.1.3 Domain Name
	3.4.1.4 Email Address
	3.4.1.5 Features
	3.4.1.6 File
	3.4.1.7 Internationalized Domain Name
	3.4.1.8 Internationalized Email Address
	3.4.1.9 IPv4 Address Range
	3.4.1.10 IPv4 Connection
	3.4.1.11 IPv6 Address Range
	3.4.1.12 IPv6 Connection
	3.4.1.13 IRI
	3.4.1.14 MAC Address
	3.4.1.15 Process
	3.4.1.16 Properties
	3.4.1.17 URI

	3.4.2 Data Types
	3.4.2.1 Action-Targets
	3.4.2.2 Date-Time
	3.4.2.3 Duration
	3.4.2.4 Feature
	3.4.2.5 Hashes
	3.4.2.6 Hostname
	3.4.2.7 Internationalized Hostname
	3.4.2.8 IPv4 Address
	3.4.2.9 IPv6 Address
	3.4.2.10 L4 Protocol
	3.4.2.11 Message-Type
	3.4.2.12 Namespace Identifier
	3.4.2.13 Payload
	3.4.2.14 Port
	3.4.2.15 Response-Type
	3.4.2.16 Version



	4 Mandatory Commands/Responses
	4.1 Implementation of 'query features' Command
	4.2 Examples of 'query features' Commands and Responses
	4.2.1 Example 1
	4.2.2 Example 2


	5 Conformance
	5.1 Conformance Clause 1: Command
	5.2 Conformance Clause 2: Response
	5.3 Conformance Clause 3: Producer
	5.4 Conformance Clause 4: Consumer

	Annex A. Examples
	A.1 Example 1
	A.2 Example 2
	A.3 Example 3

	Annex B. Acronyms
	Annex C. Design Elements
	C.1 Derived Enumerations

	Annex D. Revision History
	Annex E. Acknowledgments

