
Open Command and Control (OpenC2)
Language Specification Version 1.0
Committee Specification 01
11 July 2019

This version:

https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.md (Authoritative)
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.pdf

Previous version:

https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.md (Authoritative)
https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.pdf

Latest version:

https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.md (Authoritative)
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chairs:

Joe Brule (jmbrule@nsa.gov), National Security Agency
Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Editors:

Jason Romano (jdroman@nsa.gov), National Security Agency
Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Abstract:

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 1 of 59

https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.md
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.pdf
https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.md
https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/csprd02/oc2ls-v1.0-csprd02.pdf
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.md
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:jmbrule@nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
mailto:jdroman@nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/

Cyberattacks are increasingly sophisticated, less expensive to execute, dynamic and
automated. The provision of cyber defense via statically configured products operating in
isolation is untenable. Standardized interfaces, protocols and data models will facilitate the
integration of the functional blocks within a system and between systems. Open Command
and Control (OpenC2) is a concise and extensible language to enable machine-to-machine
communications for purposes of command and control of cyber defense components,
subsystems and/or systems in a manner that is agnostic of the underlying products,
technologies, transport mechanisms or other aspects of the implementation. It should be
understood that a language such as OpenC2 is necessary but insufficient to enable
coordinated cyber responses that occur within cyber relevant time. Other aspects of
coordinated cyber response such as sensing, analytics, and selecting appropriate courses of
action are beyond the scope of OpenC2.

Status:

This document was last revised or approved by the OASIS Open Command and Control
(OpenC2) TC on the above date. The level of approval is also listed above. Check the "Latest
version" location noted above for possible later revisions of this document. Any other
numbered Versions and other technical work produced by the Technical Committee (TC) are
listed at https://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=openc2#technical.

TC members should send comments on this specification to the TC's email list. Others should
send comments to the TC's public comment list, after subscribing to it by following the
instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-
open.org/committees/openc2/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared
Normative for this Work Product is provided in separate plain text files. In the event of a
discrepancy between any such plain text file and display content in the Work Product's prose
narrative document(s), the content in the separate plain text file prevails.

Citation format:

When referencing this specification the following citation format should be used:

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by
Jason Romano and Duncan Sparrell. 11 July 2019. OASIS Committee Specification 01.
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.html. Latest version:
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 2 of 59

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs01/oc2ls-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html

Notices
Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the
OASIS website.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that
would necessarily be infringed by implementations of this OASIS Committee Specification or
OASIS Standard, to notify OASIS TC Administrator and provide an indication of its
willingness to grant patent licenses to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
specification by a patent holder that is not willing to provide a license to such patent claims in
a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification. OASIS may include such claims on its website, but disclaims any obligation to
do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such
rights. Information on OASIS' procedures with respect to rights in any document or deliverable
produced by an OASIS Technical Committee can be found on the OASIS website. Copies of
claims of rights made available for publication and any assurances of licenses to be made

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 3 of 59

https://www.oasis-open.org/policies-guidelines/ipr

available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes
reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark for above guidance.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 4 of 59

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents
1 Introduction

1.1 IPR Policy
1.2 Terminology
1.3 Normative References
1.4 Non-Normative References
1.5 Document Conventions

1.5.1 Naming Conventions
1.5.2 Font Colors and Style

1.6 Overview
1.7 Goal
1.8 Purpose and Scope

2 OpenC2 Language Description
2.1 OpenC2 Command
2.2 OpenC2 Response

3 OpenC2 Language Definition
3.1 Base Components and Structures

3.1.1 Data Types
3.1.2 Semantic Value Constraints
3.1.3 Multiplicity
3.1.4 Extensions
3.1.5 Serialization

3.2 Message
3.3 Content

3.3.1 OpenC2 Command
3.3.1.1 Action
3.3.1.2 Target
3.3.1.3 Actuator
3.3.1.4 Command Arguments

3.3.2 OpenC2 Response
3.3.2.1 Response Status Code
3.3.2.2 Response Results

3.4 Type Definitions
3.4.1 Target Types

3.4.1.1 Artifact
3.4.1.2 Device
3.4.1.3 Domain Name
3.4.1.4 Email Address
3.4.1.5 Features
3.4.1.6 File
3.4.1.7 Internationalized Domain Name
3.4.1.8 Internationalized Email Address
3.4.1.9 IPv4 Address Range
3.4.1.10 IPv4 Connection

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 5 of 59

3.4.1.11 IPv6 Address Range
3.4.1.12 IPv6 Connection
3.4.1.13 IRI
3.4.1.14 MAC Address
3.4.1.15 Process
3.4.1.16 Properties
3.4.1.17 URI

3.4.2 Data Types
3.4.2.1 Action-Targets
3.4.2.2 Date-Time
3.4.2.3 Duration
3.4.2.4 Feature
3.4.2.5 Hashes
3.4.2.6 Hostname
3.4.2.7 Internationalized Hostname
3.4.2.8 IPv4 Address
3.4.2.9 IPv6 Address
3.4.2.10 L4 Protocol
3.4.2.11 Message-Type
3.4.2.12 Namespace Identifier
3.4.2.13 Payload
3.4.2.14 Port
3.4.2.15 Response-Type
3.4.2.16 Version

4 Mandatory Commands/Responses
4.1 Implementation of 'query features' Command
4.2 Examples of 'query features' Commands and Responses

5 Conformance
5.1 Conformance Clause 1: Command
5.2 Conformance Clause 2: Response
5.3 Conformance Clause 3: Producer
5.4 Conformance Clause 4: Consumer

Annex A. Examples
A.1 Example 1
A.2 Example 2
A.3 Example 3

Annex B. Acronyms
Annex C. Design Elements
Annex D. Revision History
Annex E. Acknowledgments

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 6 of 59

1 Introduction
The content in this section is non-normative, except where it is marked normative.

OpenC2 is a suite of specifications that enables command and control of cyber defense
systems and components. OpenC2 typically uses a request-response paradigm where a
Command is encoded by a Producer (managing application) and transferred to a Consumer
(managed device or virtualized function) using a secure transfer protocol, and the Consumer
can respond with status and any requested information.

OpenC2 allows the application producing the commands to discover the set of capabilities
supported by the managed devices. These capabilities permit the managing application to
adjust its behavior to take advantage of the features exposed by the managed device. The
capability definitions can be easily extended in a noncentralized manner, allowing standard
and non-standard capabilities to be defined with semantic and syntactic rigor.

1.1 IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/openc2/ipr.php).

1.2 Terminology

This section is normative.

Action: The task or activity to be performed (e.g., 'deny').
Actuator: The function performed by the Consumer that executes the Command (e.g.,
'Stateless Packet Filtering').
Argument: A property of a Command that provides additional information on how to
perform the Command, such as date/time, periodicity, duration, etc.
Command: A Message defined by an Action-Target pair that is sent from a Producer
and received by a Consumer.
Consumer: A managed device / application that receives Commands. Note that a
single device / application can have both Consumer and Producer capabilities.
Message: A content- and transport-independent set of elements conveyed between
Consumers and Producers.
Producer: A manager application that sends Commands.
Response: A Message from a Consumer to a Producer acknowledging a Command or
returning the requested resources or status to a previously received Command.
Specifier: A property or field that identifies a Target or Actuator to some level of
precision.
Target: The object of the Action, i.e., the Action is performed on the Target (e.g., IP
Address).

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 7 of 59

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/openc2/ipr.php

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in [RFC2119] and [RFC8174] when, and
only when, they appear in all capitals, as shown here.

1.3 Normative References
[OpenC2-HTTPS-v1.0]

Specification for Transfer of OpenC2 Messages via HTTPS Version 1.0. Edited by David
Lemire. Latest version: http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-
https-v1.0.html

[OpenC2-SLPF-v1.0]

Open Command and Control (OpenC2) Profile for Stateless Packet Filtering Version 1.0.
Edited by Joe Brule, Duncan Sparrell, and Alex Everett. Latest version: http://docs.oasis-
open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

[RFC0768]

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768, August
1980, https://www.rfc-editor.org/info/rfc768.

[RFC0791]

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, September 1981,
https://www.rfc-editor.org/info/rfc791.

[RFC0792]

Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, DOI 10.17487/RFC0792,
September 1981, https://www.rfc-editor.org/info/rfc792.

[RFC0793]

Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793,
September 1981, https://www.rfc-editor.org/info/rfc793.

[RFC1034]

Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI
10.17487/RFC1034, November 1987, https://www.rfc-editor.org/info/rfc1034.

[RFC1123]

Braden, R., Ed., "Requirements for Internet Hosts - Application and Support", STD 3, RFC
1123, DOI 10.17487/RFC1123, October 1989, https://www.rfc-editor.org/info/rfc1123.

[RFC1321]

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 8 of 59

http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1123

Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, DOI 10.17487/RFC1321, April
1992, https://www.rfc-editor.org/info/rfc1321.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997, https://www.rfc-editor.org/info/rfc2119.

[RFC2673]

Crawford, M., "Binary Labels in the Domain Name System", RFC 2673, August 1999,
https://tools.ietf.org/html/rfc2673

[RFC3986]

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, https://www.rfc-
editor.org/info/rfc3986.

[RFC3987]

Duerst, M. and M. Suignard, "Internationalized Resource Identifiers (IRIs)", RFC 3987, DOI
10.17487/RFC3987, January 2005, https://www.rfc-editor.org/info/rfc3987.

[RFC4122]

Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN
Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, https://www.rfc-
editor.org/info/rfc4122.

[RFC4291]

Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI
10.17487/RFC4291, February 2006, https://www.rfc-editor.org/info/rfc4291.

[RFC4632]

Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment
and Aggregation Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August 2006,
https://www.rfc-editor.org/info/rfc4632.

[RFC4648]

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI
10.17487/RFC4648, October 2006, https://www.rfc-editor.org/info/rfc4648.

[RFC4960]

Stewart, R., Ed., "Stream Control Transmission Protocol", RFC 4960, DOI
10.17487/RFC4960, September 2007, https://www.rfc-editor.org/info/rfc4960.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 9 of 59

https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/rfc2673
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4632
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4960

[RFC5237]

Arkko, J. and S. Bradner, "IANA Allocation Guidelines for the Protocol Field", BCP 37, RFC
5237, DOI 10.17487/RFC5237, February 2008, https://www.rfc-editor.org/info/rfc5237.

[RFC5322]

Resnick, P., Ed., "Internet Message Format", RFC 5322, DOI 10.17487/RFC5322, October
2008, https://www.rfc-editor.org/info/rfc5322.

[RFC5890]

Klensin, J., "Internationalized Domain Names for Applications (IDNA): Definitions and
Document Framework", RFC 5890, DOI 10.17487/RFC5890, August 2010, https://www.rfc-
editor.org/info/rfc5890.

[RFC5952]

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text
Representation", RFC 5952, DOI 10.17487/RFC5952, August 2010, https://www.rfc-
editor.org/info/rfc5952.

[RFC6234]

Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF)", RFC 6234, DOI 10.17487/RFC6234, May 2011, https://www.rfc-
editor.org/info/rfc6234.

[RFC6335]

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S. Cheshire, "Internet Assigned
Numbers Authority (IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", BCP 165, RFC 6335, DOI 10.17487/RFC6335,
August 2011, https://www.rfc-editor.org/info/rfc6335.

[RFC6531]

Yao, J. and W. Mao, "SMTP Extension for Internationalized Email", RFC 6531, DOI
10.17487/RFC6531, February 2012, https://www.rfc-editor.org/info/rfc6531.

[RFC6838]

Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration
Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013, https://www.rfc-
editor.org/info/rfc6838.

[RFC7493]

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493, March
2015, https://www.rfc-editor.org/info/rfc7493.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 10 of 59

https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6531
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7493

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC
8174, DOI 10.17487/RFC8174, May 2017, https://www.rfc-editor.org/info/rfc8174.

[RFC8200]

Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC
8200, DOI 10.17487/RFC8200, July 2017, https://www.rfc-editor.org/info/rfc8200.

[RFC8259]

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90,
RFC 8259, DOI 10.17487/RFC8259, December 2017, https://www.rfc-editor.org/info/rfc8259.

[EUI]

"IEEE Registration Authority Guidelines for use of EUI, OUI, and CID", IEEE, August 2017,
https://standards.ieee.org/content/dam/ieee-
standards/standards/web/documents/tutorials/eui.pdf

1.4 Non-Normative References
[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time Cyber Defense,"
Journal of Information Warfare, vol. 13, Issue 2, p. 80, April
2014.https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-
Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8.

Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure Orchestration",
International Command and Control Research and Technology Symposium, June 2015
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%3A-
Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762.

[UML]

"UML Multiplicity and Collections", https://www.uml-diagrams.org/multiplicity.html

1.5 Document Conventions
1.5.1 Naming Conventions

[RFC2119]/[RFC8174] key words (see Section 1.2) are in all uppercase.
All property names and literals are in lowercase, except when referencing canonical
names defined in another standard (e.g., literal values from an IANA registry).
Words in property names are separated with an underscore (_), while words in string
enumerations and type names are separated with a hyphen (-).
The term "hyphen" used here refers to the ASCII hyphen or minus character, which in
Unicode is "hyphen-minus", U+002D.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 11 of 59

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8259
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://www.semanticscholar.org/paper/Active-Cyber-Defense-%253A-A-Vision-for-Real-Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%253A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762
https://www.uml-diagrams.org/multiplicity.html

1.5.2 Font Colors and Style

The following color, font and font style conventions are used in this document:

A fixed width font is used for all type names, property names, and literals.
Property names are in bold style – 'created_at'.
All examples in this document are expressed in JSON. They are in fixed width font, with
straight quotes, black text and a light shaded background, and 4-space indentation.
JSON examples in this document are representations of JSON Objects. They should not
be interpreted as string literals. The ordering of object keys is insignificant. Whitespace
before or after JSON structural characters in the examples are insignificant [RFC8259].
Parts of the example may be omitted for conciseness and clarity. These omitted parts
are denoted with ellipses (...).

Example:

{
 "action": "deny",
 "target": {
 "file": {
 "hashes": {
 "sha256":
"22fe72a34f006ea67d26bb7004e2b6941b5c3953d43ae7ec24d41b1a928a6973"

 }
 }
 }
}
1.6 Overview
In general, there are two types of participants involved in the exchange of OpenC2 Messages,
as depicted in Figure 1-1:

1. Producers: A Producer is an entity that creates Commands to provide instruction to
one or more systems to act in accordance with the content of the Command. A
Producer may receive and process Responses in conjunction with a Command.

2. Consumers: A Consumer is an entity that receives and may act upon a Command. A
Consumer may create Responses that provide any information captured or necessary
to send back to the Producer.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 12 of 59

Figure 1-1. OpenC2 Message Exchange

OpenC2 is a suite of specifications for Producers and Consumers to command and execute
cyber defense functions. These specifications include the OpenC2 Language Specification,
Actuator Profiles, and Transfer Specifications. The OpenC2 Language Specification and
Actuator Profile specifications focus on the language content and meaning at the Producer
and Consumer of the Command and Response while the transfer specifications focus on the
protocols for their exchange.

The OpenC2 Language Specification (this document) provides the semantics for the
essential elements of the language, the structure for Commands and Responses, and
the schema that defines the proper syntax for the language elements that represents the
Command or Response.
OpenC2 Actuator Profiles specify the subset of the OpenC2 language relevant in the
context of specific Actuator functions. Cyber defense components, devices, systems
and/or instances may (in fact are likely to) implement multiple Actuator profiles. Actuator
profiles extend the language by defining Specifiers that identify the Actuator to the
required level of precision. Actuator Profiles may define Command Arguments and
Targets that are relevant and/or unique to those Actuator functions.
OpenC2 Transfer Specifications utilize existing protocols and standards to
implement OpenC2 in specific environments. These standards are used for
communications and security functions beyond the scope of the language, such as
message transfer encoding, authentication, and end-to-end transport of OpenC2
Messages.

The OpenC2 Language Specification defines a language used to compose Messages for
command and control of cyber defense systems and components. A Message consists of a
header and a payload (defined as a Message body in the OpenC2 Language Specification
Version 1.0 and specified in one or more Actuator profiles).

The language defines two payload structures:

1. Command: An instruction from one system known as the Producer, to one or more
systems, the Consumer(s), to act on the content of the Command.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 13 of 59

2. Response: Any information sent back to the Producer as a result of the Command.

OpenC2 implementations integrate the related OpenC2 specifications described above with
related industry specifications, protocols, and standards. Figure 1-2 depicts the relationships
among OpenC2 specifications, and their relationships to other industry standards and
environment-specific implementations of OpenC2. Note that the layering of implementation
aspects in the diagram is notional, and not intended to preclude any particular approach to
implementing the needed functionality (for example, the use of an application-layer message
signature function to provide message source authentication and integrity).

Figure 1-2. OpenC2 Documentation and Layering Model

OpenC2 is conceptually partitioned into four layers as shown in Table 1-1.

Table 1-1. OpenC2 Protocol Layers

Layer Examples

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 14 of 59

Function-Specific Content Actuator Profiles
([OpenC2-SLPF-v1.0], ...)

Common Content Language Specification
(this document)

Message Transfer Specifications
([OpenC2-HTTPS-v1.0], OpenC2-over-CoAP, ...)

Secure Transport HTTPS, CoAP, MQTT, OpenDXL, ...

Layer Examples

The Secure Transport layer provides a communication path between the Producer
and the Consumer. OpenC2 can be layered over any standard transport protocol.
The Message layer provides a transfer- and content-independent mechanism for
conveying Messages. A transfer specification maps transfer-specific protocol elements
to a transfer-independent set of message elements consisting of content and
associated metadata.
The Common Content layer defines the structure of Commands and Responses and a
set of common language elements used to construct them.
The Function-specific Content layer defines the language elements used to support a
particular cyber defense function. An Actuator profile defines the implementation
conformance requirements for that function. Producers and Consumers will support one
or more profiles.

The components of a Command are an Action (what is to be done), a Target (what is being
acted upon), an optional Actuator (what is performing the command), and Command
Arguments, which influence how the Command is to be performed. An Action coupled with a
Target is sufficient to describe a complete Command. Though optional, the inclusion of an
Actuator and/or Command Arguments provides additional precision to a Command.

The components of a Response are a numerical status code, an optional status text string,
and optional results. The format of the results, if included, depend on the type of Response
being transferred.

1.7 Goal
The goal of the OpenC2 Language Specification is to provide a language for interoperating
between functional elements of cyber defense systems. This language used in conjunction
with OpenC2 Actuator Profiles and OpenC2 Transfer Specifications allows for vendor-
agnostic cybertime response to attacks.

The Integrated Adaptive Cyber Defense (IACD) framework defines a collection of activities,
based on the traditional OODA (Observe–Orient–Decide–Act) Loop [IACD]:

Sensing: gathering of data regarding system activities

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 15 of 59

Sense Making: evaluating data using analytics to understand what's happening
Decision Making: determining a course-of-action to respond to system events
Acting: Executing the course-of-action

The goal of OpenC2 is to enable coordinated defense in cyber-relevant time between
decoupled blocks that perform cyber defense functions. OpenC2 focuses on the Acting
portion of the IACD framework; the assumption that underlies the design of OpenC2 is that the
sensing/analytics have been provisioned and the decision to act has been made. This goal
and these assumptions guide the design of OpenC2:

Technology Agnostic: The OpenC2 language defines a set of abstract atomic cyber
defense actions in a platform and implementation agnostic manner
Concise: A Command is intended to convey only the essential information required to
describe the action required and can be represented in a very compact form for
communications-constrained environments
Abstract: Commands and Responses are defined abstractly and can be encoded and
transferred via multiple schemes as dictated by the needs of different implementation
environments
Extensible: While OpenC2 defines a core set of Actions and Targets for cyber
defense, the language is expected to evolve with cyber defense technologies, and
permits extensions to accommodate new cyber defense technologies.

1.8 Purpose and Scope
The OpenC2 Language Specification defines the set of components to assemble a complete
command and control Message and provides a framework so that the language can be
extended. To achieve this purpose, the scope of this specification includes:

1. the set of Actions and options that may be used in Commands
2. the set of Targets and Target Specifiers
3. a syntax that defines the structure of Commands and Responses
4. a JSON serialization of Commands and Responses
5. the procedures for extending the language

The OpenC2 language assumes that the event has been detected, a decision to act has been
made, the act is warranted, and the initiator and recipient of the Commands are authenticated
and authorized. The OpenC2 language was designed to be agnostic of the other aspects of
cyber defense implementations that realize these assumptions. The following items are
beyond the scope of this specification:

1. Language elements applicable to some Actuators, which may be defined in individual
Actuator profiles.

2. Alternate serializations of Commands and Responses.
3. The enumeration of the protocols required for transport, information assurance, sensing,

analytics and other external dependencies.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 16 of 59

2 OpenC2 Language Description
The content in this section is non-normative.

The OpenC2 language has two distinct content types: Command and Response. The
Command is sent from a Producer to a Consumer and describes an Action to be performed
by an Actuator on a Target. The Response is sent from a Consumer, usually back to the
Producer, and is a means to provide information (such as acknowledgment, status, etc.) as a
result of a Command.

2.1 OpenC2 Command
The Command describes an Action to be performed on a Target and may include information
identifying the Actuator or Actuators that are to execute the Command.

A Command has four main components, two required and two optional. The required
components are the Action and the Target. The optional components are Command
Arguments and the Actuator. A Command can also contain an optional Command identifier, if
necessary. Section 3.3.1 defines the syntax of an OpenC2 Command.

The following list summarizes the main four components of a Command.

Action (required): The task or activity to be performed.
Target (required): The object of the action. The Action is performed on the Target.
Properties of the Target, called Target Specifiers, further identify the Target to some
level of precision, such as a specific Target, a list of Targets, or a class of Targets.
Arguments (optional): Provide additional information on how the command is to be
performed, such as date/time, periodicity, duration, etc.
Actuator (optional): The Actuator executes the Command. The Actuator will be defined
within the context of an Actuator Profile. Properties of the Actuator, called Actuator
Specifiers, further identify the Actuator to some level of precision, such as a specific
Actuator, a list of Actuators, or a group of Actuators.

The Action and Target components are required and are populated by one of the Actions in
Section 3.3.1.1 and the Targets in Section 3.3.1.2. A particular Target may be further refined
by the Target type definitions in Section 3.4.1. Procedures to extend the Targets are
described in Section 3.1.4.

Command Arguments, if present, influence the Command by providing information such as
timing, periodicity, duration, or other details on what is to be executed. They can also be used
to convey the need for acknowledgment or additional status information about the execution of
a Command. The valid Arguments defined in this specification are in Section 3.3.1.4.
Procedures to extend Arguments are described in Section 3.1.4.

An Actuator is an implementation of a cyber defense function that executes the Command. An
Actuator Profile is a specification that identifies the subset of Actions, Targets and other

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 17 of 59

aspects of this language specification that are required or optional in the context of a
particular Actuator. An Actuator Profile may extend the language by defining additional
Targets, Arguments, and Actuator Specifiers that are meaningful and possibly unique to the
Actuator.

The Actuator may be omitted from a Command and typically will not be included in
implementations where the identities of the endpoints are unambiguous or when a high-level
effects-based Command is desired and the tactical decisions on how the effect is achieved is
left to the recipient.

2.2 OpenC2 Response
The Response is a Message sent from the recipient of a Command. Response messages
provide acknowledgment, status, results from a query, or other information. At a minimum, a
Response will contain a status code to indicate the result of performing the Command.
Additional status text and response fields optionally provide more detailed information that is
specific to or requested by the Command. Section 3.3.2 defines the syntax of an OpenC2
Response.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 18 of 59

3 OpenC2 Language Definition
The content in this section is normative.

3.1 Base Components and Structures
3.1.1 Data Types

OpenC2 data types are defined using an abstract notation that is independent of both their
representation within applications ("API" values) and their format for transmission between
applications ("serialized" values). The data types used in OpenC2 Messages are:

Type Description

Primitive
Types

Any Anything, used to designate fields with an unspecified value.

Binary A sequence of octets. Length is the number of octets.

Boolean An element with one of two values: true and false.

Integer A whole number.

Number A real number.

Null Nothing, used to designate fields with no value.

String A sequence of characters, each of which has a Unicode codepoint.
Length is the number of characters.

Structures

Array An ordered list of unnamed fields with positionally-defined semantics.
Each field has a position, label, and type.

ArrayOf(vtype) An ordered list of fields with the same semantics. Each field has a
position and type vtype.

Choice One field selected from a set of named fields. The API value has a name
and a type.

Choice.ID One field selected from a set of fields. The API value has an id and a
type.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 19 of 59

Enumerated A set of named integral constants. The API value is a name.

Enumerated.ID A set of unnamed integral constants. The API value is an id.

Map An unordered map from a set of specified keys to values with semantics
bound to each key. Each field has an id, name and type.

Map.ID An unordered set of fields. The API value of each field has an id, label,
and type.

MapOf(ktype,
vtype)

An unordered set of keys to values with the same semantics. Each key
has key type ktype and is mapped to value type vtype.

Record An ordered map from a list of keys with positions to values with
positionally-defined semantics. Each key has a position and name, and is
mapped to a type. Represents a row in a spreadsheet or database table.

Type Description

API values do not affect interoperabilty, and although they must exhibit the
characteristics specified above, their representation within applications is unspecified.
A Python application might represent the Map type as a dict variable, a javascript
application might represent it as an object literal or an ES6 Map type, and a C#
application might represent it as a Dictionary or a Hashtable.

Serialized values are critical to interoperability, and this document defines a set of
serialization rules that unambiguously define how each of the above types are
serialized using a human-friendly JSON format. Other serialization rules, such as for
XML, machine-optimized JSON, and CBOR formats, exist but are out of scope for this
document. Both the format-specific serialization rules in Section 3.1.5 and the format-
agnostic type definitions in Section 3.4 are Normative.

Types defined with an ".ID" suffix (Choice.ID, Enumerated.ID, Map.ID) are equivalent to the
non-suffixed types except:

1. Field definitions and API values are identified only by ID. The non-normative description
may include a suggested name.

2. Serialized values of Enumerated types and keys of Choice/Map types are IDs
regardless of serialization format.

OpenC2 type definitions are presented in table format. All table columns except Description
are Normative. The Description column is always Non-normative.

For types without individual field definitions (Primitive types and ArrayOf), the type definition
includes the name of the type being defined and the definition of that type. This table defines a
type called Email-Addr that is a String that has a semantic value constraint of email:

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 20 of 59

Type Name Type Definition Description

Email-Addr String (email) Email address

For Structure types, the definition includes the name of the type being defined, the built-in type
on which it is based, and options applicable to the type as a whole. This is followed by a table
defining each of the fields in the structure. This table defines a type called Args that is a Map
containing at least one field. Each of the fields has an integer Tag/ID, a Name, and a Type.
Each field in this definition is optional (Multiplicity = 0..1), but per the type definition at least
one must be present.

Type: Args (Map) [1..*]

ID Name Type # Description

1 start_time Date-Time 0..1 The specific date/time to initiate the action

2 stop_time Date-Time 0..1 The specific date/time to terminate the action

3 duration Duration 0..1 The length of time for an action to be in effect

The field columns present in a structure definition depends on the base type:

Base Type Field Definition Columns

Enumerated.ID ID, Description

Enumerated ID, Name, Description

Array, Choice.ID, Map.ID ID, Type, Multiplicity (#), Description

Choice, Map, Record ID, Name, Type, Multiplicity (#), Description

The ID column of Array and Record types contains the ordinal position of the field, numbered
sequentially starting at 1. The ID column of Choice, Enumerated, and Map types contains tags
with arbitrary integer values. IDs and Names are unique within each type definition.

3.1.2 Semantic Value Constraints

Structural validation alone may be insufficient to validate that an instance meets all the
requirements of an application. Semantic validation keywords specify value constraints for
which an authoritative definition exists.

Keyword Applies to
Type

Constraint

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 21 of 59

email String Value must be an email address as defined in [RFC5322],
Section 3.4.1

eui Binary Value must be an EUI-48 or EUI-64 as defined in [EUI]

hostname String Value must be a hostname as defined in [RFC1034], Section
3.1

idn-email String Value must be an internationalized email address as defined in
[RFC6531]

idn-
hostname

String Value must be an internationalized hostname as defined in
[RFC5890], Section 2.3.2.3

iri String Value must be an Internationalized Resource Identifier (IRI) as
defined in [RFC3987]

uri String Value must be a Uniform Resource Identifier (URI) as defined
in [RFC3986]

Keyword Applies to
Type

Constraint

3.1.3 Multiplicity

Property tables for types based on Array, Choice, Map and Record include a multiplicity
column (#) that specifies the minimum and maximum cardinality (number of elements) of a
field. As used in the Unified Modeling Language ([UML]), typical examples of multiplicity are:

Multiplicity Description Keywords

1 Exactly one instance Required

0..1 No instances or one instance Optional

1..* At least one instance Required, Repeatable

0..* Zero or more instances Optional, Repeatable

m..n At least m but no more than n instances Required, Repeatable

When used with a Type, multiplicity is enclosed in square brackets, e.g.,:

Type
Name

Base Type Description

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 22 of 59

Features ArrayOf(Feature)
[0..10]

An array of zero to ten names used to query an actuator for
its supported capabilities.

Type
Name

Base Type Description

A multiplicity of 0..1 denotes a single optional value of the specified type. A multiplicity of 0..n
denotes a field that is either omitted or is an array containing one or more values of the
specified type.

An array containing zero or more values of a specified type cannot be created implicitly using
multiplicity, it must be defined explicitly as a named ArrayOf type. The named type can then be
used as the type of a required field (multiplicity 1). Results are unspecified if an optional field
(multiplicity 0..1) is a named ArrayOf type with a minimum length of zero.

3.1.4 Extensions

One of the main design goals of OpenC2 was extensibility. Actuator profiles define the
language extensions that are meaningful and possibly unique to the Actuator.

Each Actuator profile has a unique name used to identify the profile document and a short
reference called a namespace identifier (NSID). The NSID is used to separate extensions
from the core language defined in this specification.

All extensions MUST be identified with a short namespace reference, called a namespace
identifier (NSID).

For example, the OASIS standard Stateless Packet Filtering actuator profile has:

Unique Name: http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.md
NSID: slpf

The namespace identifier for non-standard extensions MUST be prefixed with "x-".

For example, the fictional, non-standard Superwidget actuator profile has:

Unique Name: http://www.acme.com/openc2/superwidget-v1.0.html
NSID: x-acme

The list of Actions in Section 3.3.1.1 SHALL NOT be extended.

Targets, defined in Section 3.3.1.2, MAY be extended. Extended Target names MUST be
prefixed with a namespace identifier followed by a colon (":").

Example: In this example Command, the extended Target, rule_number, is defined within
the Stateless Packet Filtering Profile with the namespace identifier, slpf.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 23 of 59

http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.md
http://www.acme.com/openc2/superwidget-v1.0.html

{
 "action": "delete",
 "target": {
 "slpf:rule_number": 1234
 }
}

Command Arguments, defined in Section 3.3.1.4, MAY be extended using the namespace
identifier as the Argument name, called an extended Argument namespace. Extended
Arguments MUST be defined within the extended Argument namespace.

Example: In this example Command, the extended Argument, direction, is defined within
the Stateless Packet Filtering Profile namespace, slpf.

{
 "action": "deny",
 "target": {
 "ipv6_net": {...}
 },
 "args": {
 "slpf": {
 "direction": "ingress"
 }
 }
}

The Actuator property of a Command, defined in Section 3.3.1.3, MUST be extended using
the namespace identifier as the Actuator name, called an extended Actuator namespace.
Actuator Specifiers MUST be defined within the extended Actuator namespace.

Example: In this example Command, the Actuator Specifier asset_id is defined within the
Stateless Packet Filtering Profile namespace, slpf.

{
 "action": "deny",
 "target": {
 "ipv4_connection": {...}
 },
 "actuator": {
 "slpf": {
 "asset_id": "30"
 }
 }
}

Response results, defined in Section TBD, MAY be extended using the namespace identifier

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 24 of 59

as the results name, called an extended results namespace. Extended results MUST be
defined within the extended results namespace.

Example: In this example Response, the Response results property, rule_number, is
defined within the Stateless Packet Filtering Profile namespace, slpf.

{
 "status": 200,
 "results": {
 "slpf": {
 "rule_number": 1234
 }
 }
}
3.1.5 Serialization

OpenC2 is agnostic of any particular serialization; however, implementations MUST support
JSON serialization in accordance with [RFC7493] and additional requirements specified in
the following table.

JSON Serialization Requirements:

OpenC2 Data
Type

JSON Serialization Requirement

Binary JSON string containing Base64url encoding of the binary value as
defined in [RFC4648], Section 5.

Binary /x JSON string containing Base16 (hex) encoding of a binary value as
defined in [RFC4648], Section 8. Note that the Base16 alphabet does
not include lower-case letters.

IPv4-Addr JSON string containing the "dotted-quad" representation of an IPv4
address as specified in [RFC2673], Section 3.2.

IPv6-Addr JSON string containing the text representation of an IPv6 address as
specified in [RFC5952], Section 4.

MAC-Addr JSON string containing the text representation of a MAC Address in
colon hexadecimal format as defined in [EUI].

Boolean JSON true or false

Integer JSON number

Number JSON number

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 25 of 59

Null JSON null

String JSON string

Array JSON array

Array /ipv4-net JSON string containing the text representation of an IPv4 address
range as specified in [RFC4632], Section 3.1.

Array /ipv6-net JSON string containing the text representation of an IPv6 address
range as specified in [RFC4291], Section 2.3.

ArrayOf JSON array

Choice JSON object with one member. Member key is the field name.

Choice.ID JSON object with one member. Member key is the integer field id
converted to string.

Enumerated JSON string

Enumerated.ID JSON integer

Map JSON object. Member keys are field names.

Map.ID JSON object. Member keys are integer field ids converted to strings.

MapOf JSON object. Member keys are as defined in the specified key type.

Record JSON object. Member keys are field names.

OpenC2 Data
Type

JSON Serialization Requirement

3.1.5.1 ID and Name Serialization

Instances of Enumerated types and keys for Choice and Map types are serialized as ID
values except when using serialization formats intended for human consumption, where Name
strings are used instead. Defining a type using ".ID" appended to the base type (e.g.,
Enumerated.ID, Map.ID) indicates that:

1. Type definitions and application values use only the ID. There is no corresponding name
except as an optional part of the description.

2. Instances of Enumerated values and Choice/Map keys are serialized as IDs regardless
of serialization format.

3.2 Message

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 26 of 59

This language specification and one or more Actuator profiles define the content of
Commands and Responses, while transfer specifications define the on-the-wire format of a
Message over specific secure transport protocols. Transfer specifications are agnostic with
regard to content, and content is agnostic with regard to transfer protocol. This decoupling is
accomplished by defining a standard message interface used to transfer any type of content
over any transfer protocol.

A message is a content- and transport-independent set of elements conveyed between
Producers and Consumers. To ensure interoperability all transfer specifications must
unambiguously define how the Message elements in Table 3-1 are represented within the
secure transport protocol. This does not imply that all Message elements must be used in all
Messages. Content, content_type, and msg_type are required in all Messages. Other
Message elements are not required by this specification but may be required by other
specifications. The internal representation of a Message does not affect interoperability and
is therefore beyond the scope of OpenC2.

Table 3-1. Common Message Elements

Name Type Description

content Message body as specified by content_type and
msg_type.

content_type String Media Type that identifies the format of the content,
including major version. Incompatible content formats
must have different content_types. Content_type
application/openc2 identifies content defined by
OpenC2 language specification versions 1.x, i.e., all
versions that are compatible with version 1.0.

msg_type Message-Type The type of OpenC2 Message.

status Status-Code Populated with a numeric status code in Responses.

request_id String A unique identifier created by the Producer and copied
by Consumer into all Responses, in order to support
reference to a particular Command, transaction, or event
chain.

created Date-Time Creation date/time of the content.

from String Authenticated identifier of the creator of or authority for
execution of a message.

to ArrayOf(String) Authenticated identifier(s) of the authorized recipient(s)
of a message.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 27 of 59

Usage Requirements:

A Producer MUST include a request_id in the Message header of a Command if it
requests a Response.
The request_id of a Message SHOULD be a Version 4 UUID as specified in
[RFC4122], Section 4.4.
A Consumer MUST copy the request_id from the Message header of a Command
into each Response to that Command.

3.3 Content
The purpose of this specification is to define the Action and Target portions of a Command
and the common portions of a Response. The properties of the Command are defined in
Section 3.3.1 and the properties of the Response are defined in Section 3.3.2.

In addition to the Action and Target, a Command has an optional Actuator. Other than
identification of namespace identifier, the semantics associated with the Actuator Specifiers
are defined in Actuator Profiles. The Actuators and Actuator-specific results contained in a
Response are specified in 'Actuator Profile Specifications' such as StateLess Packet
Filtering Profile, Routing Profile etc.

3.3.1 OpenC2 Command

The Command defines an Action to be performed on a Target.

Type: OpenC2-Command (Record)

ID Name Type # Description

1 action Action 1 The task or activity to be performed (i.e., the 'verb').

2 target Target 1 The object of the Action. The Action is performed on
the Target.

3 args Args 0..1 Additional information that applies to the Command.

4 actuator Actuator 0..1 The subject of the Action. The Actuator executes the
Action on the Target.

5 command_id String 0..1 An identifier of this Command.

Usage Requirements:

A Consumer receiving a Command with command_id absent and request_id
present in the header of the Message MUST use the value of request_id as the
command_id.
If present, the args property MUST contain at least one element defined in Section

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 28 of 59

3.3.1.4.

3.3.1.1 Action

Type: Action (Enumerated)

ID Name Description

1 scan Systematic examination of some aspect of the entity or its environment.

2 locate Find an object physically, logically, functionally, or by organization.

3 query Initiate a request for information.

6 deny Prevent a certain event or action from completion, such as preventing a
flow from reaching a destination or preventing access.

7 contain Isolate a file, process, or entity so that it cannot modify or access
assets or processes.

8 allow Permit access to or execution of a Target.

9 start Initiate a process, application, system, or activity.

10 stop Halt a system or end an activity.

11 restart Stop then start a system or an activity.

14 cancel Invalidate a previously issued Action.

15 set Change a value, configuration, or state of a managed entity.

16 update Instruct a component to retrieve, install, process, and operate in
accordance with a software update, reconfiguration, or other update.

18 redirect Change the flow of traffic to a destination other than its original
destination.

19 create Add a new entity of a known type (e.g., data, files, directories).

20 delete Remove an entity (e.g., data, files, flows).

22 detonate Execute and observe the behavior of a Target (e.g., file, hyperlink) in an
isolated environment.

23 restore Return a system to a previously known state.

28 copy Duplicate an object, file, data flow, or artifact.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 29 of 59

30 investigate Task the recipient to aggregate and report information as it pertains to
a security event or incident.

32 remediate Task the recipient to eliminate a vulnerability or attack point.

ID Name Description

Usage Requirements:

Each Command MUST contain exactly one Action defined in Section 3.3.1.1.

3.3.1.2 Target

Type: Target (Choice)

ID Name Type # Description

1 artifact Artifact 1 An array of bytes representing a file-like
object or a link to that object.

2 command String 1 A reference to a previously issued
Command.

3 device Device 1 The properties of a hardware device.

7 domain_name Domain-
Name

1 A network domain name.

8 email_addr Email-Addr 1 A single email address.

9 features Features 1 A set of items used with the query Action to
determine an Actuator's capabilities.

10 file File 1 Properties of a file.

11 idn_domain_name IDN-
Domain-
Name

1 An internationalized domain name.

12 idn_email_addr IDN-Email-
Addr

1 A single internationalized email address.

13 ipv4_net IPv4-Net 1 An IPv4 address range including CIDR prefix
length.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 30 of 59

14 ipv6_net IPv6-Net 1 An IPv6 address range including prefix
length.

15 ipv4_connection IPv4-
Connection

1 A 5-tuple of source and destination IPv4
address ranges, source and destination
ports, and protocol

16 ipv6_connection IPv6-
Connection

1 A 5-tuple of source and destination IPv6
address ranges, source and destination
ports, and protocol

20 iri IRI 1 An internationalized resource identifier (IRI).

17 mac_addr MAC-Addr 1 A Media Access Control (MAC) address -
EUI-48 or EUI-64 as defined in [EUI]

18 process Process 1 Common properties of an instance of a
computer program as executed on an
operating system.

25 properties Properties 1 Data attribute associated with an Actuator

19 uri URI 1 A uniform resource identifier (URI).

ID Name Type # Description

Usage Requirements:

The target field in a Command MUST contain exactly one type of Target (e.g.,
ipv4_net).

3.3.1.3 Actuator

Type: Actuator (Choice)

ID Name Type # Description

1024 slpf slpf:Actuator 1 Example: Actuator Specifiers defined in the Stateless
Packet Filtering Profile

3.3.1.4 Command Arguments

Type: Args (Map)

ID Name Type # Description

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 31 of 59

1 start_time Date-Time 0..1 The specific date/time to initiate the
Command

2 stop_time Date-Time 0..1 The specific date/time to terminate the
Command

3 duration Duration 0..1 The length of time for an Command to be
in effect

4 response_requested Response-
Type

0..1 The type of Response required for the
Command: none, ack, status,
complete.

ID Name Type # Description

Usage Requirements:

start_time, stop_time, duration:
If none are specified, then start_time is now, stop_time is never, and
duration is infinity.
Only two of the three are allowed on any given Command and the third is derived
from the equation stop_time = start_time + duration.
If only start_time is specified then stop_time is never and duration is
infinity.
If only stop_time is specified then start_time is now and duration is
derived.
If only duration is specified then start_time is now and stop_time is
derived.

response_requested:
If response_requested is specified as none then the Consumer SHOULD
NOT send a Response.
If response_requested is specified as ack then the Consumer SHOULD
send a Response acknowledging receipt of the Command: {"status": 102}.
If response_requested is specified as status then the Consumer SHOULD
send a Response containing the current status of Command execution.
If response_requested is specified as complete then the Consumer
SHOULD send a Response containing the status or results upon completion of
Command execution.
If response_requested is not explicitly specified then the Consumer
SHOULD respond as if complete was specified.

3.3.2 OpenC2 Response

Type: OpenC2-Response (Map)

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 32 of 59

ID Name Type # Description

1 status Status-
Code

1 An integer status code

2 status_text String 0..1 A free-form human-readable description of the
Response status

3 results Results 0..1 Map of key:value pairs that contain additional results
based on the invoking Command.

Example:

{
 "status": 200,
 "results": {
 "versions": ["1.0"]
 }
}

Usage Requirements:

All Responses MUST contain a status.

3.3.2.1 Response Status Code

Type: Status-Code (Enumerated.ID)

ID Description

102 Processing - an interim Response used to inform the Producer that the Consumer
has accepted the Command but has not yet completed it.

200 OK - the Command has succeeded.

400 Bad Request - the Consumer cannot process the Command due to something that
is perceived to be a Producer error (e.g., malformed Command syntax).

401 Unauthorized - the Command Message lacks valid authentication credentials for
the target resource or authorization has been refused for the submitted credentials.

403 Forbidden - the Consumer understood the Command but refuses to authorize it.

404 Not Found - the Consumer has not found anything matching the Command.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 33 of 59

500 Internal Error - the Consumer encountered an unexpected condition that prevented
it from performing the Command.

501 Not Implemented - the Consumer does not support the functionality required to
perform the Command.

503 Service Unavailable - the Consumer is currently unable to perform the Command
due to a temporary overloading or maintenance of the Consumer.

ID Description

3.3.2.2 Response Results

Type: Results (Map [1..*])

ID Name Type # Description

1 versions Version 0..* List of OpenC2 language versions supported by
this Actuator

2 profiles ArrayOf(Nsid) 0..1 List of profiles supported by this Actuator

3 pairs Action-
Targets

0..* List of targets applicable to each supported
Action

4 rate_limit Number 0..1 Maximum number of requests per minute
supported by design or policy

1024 slpf slpf:Results 0..1 Example: Result properties defined in the
Stateless Packet Filtering Profile

3.4 Type Definitions
3.4.1 Target Types
3.4.1.1 Artifact

Type: Artifact (Record) [1..*]

ID Name Type # Description

1 mime_type String 0..1 Permitted values specified in the IANA Media Types
registry, [RFC6838]

2 payload Payload 0..1 Choice of literal content or URL

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 34 of 59

3 hashes Hashes 0..1 Hashes of the payload content

ID Name Type # Description

Usage Requirement:

An "Artifact" Target MUST contain at least one property.

3.4.1.2 Device

Type: Device (Map) [0..*]

ID Name Type # Description

1 hostname Hostname 0..1 A hostname that can be used to connect to this
device over a network

2 idn_hostname IDN-
Hostname

0..1 An internationalized hostname that can be used
to connect to this device over a network

3 device_id String 0..1 An identifier that refers to this device within an
inventory or management system

Usage Requirement:

A "Device" Target MUST contain at least one property.

3.4.1.3 Domain Name

Type Name Type Definition Description

Domain-Name String (hostname) [RFC1034], Section 3.5

3.4.1.4 Email Address

Type Name Type Definition Description

Email-Addr String (email) Email address, [RFC5322], Section 3.4.1

3.4.1.5 Features

Type
Name

Type Definition Description

Features ArrayOf(Feature)
[0..10]

An array of zero to ten names used to query an Actuator for
its supported capabilities.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 35 of 59

Usage Requirements:

A Producer MUST NOT send a list containing more than one instance of any Feature.
A Consumer receiving a list containing more than one instance of any Feature SHOULD
behave as if the duplicate(s) were not present.
A Producer MAY send a 'query' Command containing an empty list of features. A
Producer could do this to determine if a Consumer is responding to Commands (a
heartbeat command) or to generate idle traffic to keep a connection to a Consumer
from being closed due to inactivity (a keep-alive command). An active Consumer could
return an empty response to this command, minimizing the amount of traffic used to
perform heartbeat / keep-alive functions.

3.4.1.6 File

Type: File (Map) [0..*]

ID Name Type # Description

1 name String 0..1 The name of the file as defined in the file system

2 path String 0..1 The absolute path to the location of the file in the file system

3 hashes Hashes 0..1 One or more cryptographic hash codes of the file contents

Usage Requirement:

A "File" Target MUST contain at least one property.

3.4.1.7 Internationalized Domain Name

Type Name Type Definition Description

IDN-Domain-
Name

String (idn-
hostname)

Internationalized Domain Name, [RFC5890],
Section 2.3.2.3.

3.4.1.8 Internationalized Email Address

Type Name Type Definition Description

IDN-Email-Addr String (idn-email) Internationalized email address, [RFC6531]

3.4.1.9 IPv4 Address Range

An IPv4 address range is a CIDR block per "Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan" [RFC4632] and consists of two values,
an IPv4 address and a prefix.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 36 of 59

For example, "192.168.17.0/24" is range of IP addresses with a prefix of 24 (i.e.
192.168.17.0 - 192.168.17.255).

JSON serialization of an IPv4 address range SHALL use the 'dotted/slash' textual
representation of [RFC4632].

CBOR serialization of an IPv4 address range SHALL use a binary representation of the IP
address and the prefix, each in their own field.

Type: IPv4-Net (Array /ipv4-net)

ID Type # Description

1 IPv4-Addr 1 IPv4 address as defined in [RFC0791]

2 Integer 0..1 CIDR prefix-length. If omitted, refers to a single host address.

3.4.1.10 IPv4 Connection

Type: IPv4-Connection (Record) [0..*]

ID Name Type # Description

1 src_addr IPv4-Net 0..1 IPv4 source address range

2 src_port Port 0..1 source service per [RFC6335]

3 dst_addr IPv4-Net 0..1 IPv4 destination address range

4 dst_port Port 0..1 destination service per [RFC6335]

5 protocol L4-Protocol 0..1 layer 4 protocol (e.g., TCP) - see Section 3.4.2.10

Usage Requirement:

An "IPv4-Connection" MUST contain at least one property.

3.4.1.11 IPv6 Address Range

Type: IPv6-Net (Array /ipv6-net)

ID Type # Description

1 IPv6-Addr 1 IPv6 address as defined in [RFC8200]

2 Integer 0..1 prefix-length. If omitted, refers to a single host address.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 37 of 59

3.4.1.12 IPv6 Connection

Type: IPv6-Connection (Record) [0..*]

ID Name Type # Description

1 src_addr IPv6-Net 0..1 IPv6 source address range

2 src_port Port 0..1 source service per [RFC6335]

3 dst_addr IPv6-Net 0..1 IPv6 destination address range

4 dst_port Port 0..1 destination service per [RFC6335]

5 protocol L4-Protocol 0..1 layer 4 protocol (e.g., TCP) - Section 3.4.2.10

Usage Requirement:

An "IPv6-Connection" Target MUST contain at least one property.

3.4.1.13 IRI

Type Name Type Definition Description

IRI String (iri) Internationalized Resource Identifier, [RFC3987].

3.4.1.14 MAC Address

Type
Name

Type
Definition

Description

MAC-
Addr

Binary
(eui)

Media Access Control / Extended Unique Identifier address - EUI-
48 or EUI-64 as defined in [EUI].

3.4.1.15 Process

Type: Process (Map) [0..*]

ID Name Type # Description

1 pid Integer 0..1 Process ID of the process

2 name String 0..1 Name of the process

3 cwd String 0..1 Current working directory of the process

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 38 of 59

4 executable File 0..1 Executable that was executed to start the process

5 parent Process 0..1 Process that spawned this one

6 command_line String 0..1 The full command line invocation used to start this
process, including all arguments

ID Name Type # Description

Usage Requirement:

A "Process" Target MUST contain at least one property.

3.4.1.16 Properties

Type
Name

Type
Definition

Description

Properties ArrayOf(String) A list of names that uniquely identify properties of an
Actuator.

3.4.1.17 URI

Type Name Type Definition Description

URI String (uri) Uniform Resource Identifier, [RFC3986].

3.4.2 Data Types
3.4.2.1 Action-Targets

Type
Name

Type
Definition

Description

Action-
Targets

MapOf(Action,
Targets)

Map of each action supported by this actuator to the list of
targets applicable to that action.

Type Name Type Definition Description

Targets ArrayOf(Target.Enum) [1..*] List of Target fields

3.4.2.2 Date-Time

Type Name Type Definition Description

Date-Time Integer Date and Time

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 39 of 59

Usage Requirements:

Value is the number of milliseconds since 00:00:00 UTC, 1 January 1970

3.4.2.3 Duration

Type Name Type Definition Description

Duration Integer A length of time

Usage Requirements:

Value is a number of milliseconds

3.4.2.4 Feature

Specifies the results to be returned from a query features Command.

Type: Feature (Enumerated)

ID Name Description

1 versions List of OpenC2 Language versions supported by this Actuator

2 profiles List of profiles supported by this Actuator

3 pairs List of supported Actions and applicable Targets

4 rate_limit Maximum number of Commands per minute supported by design or
policy

3.4.2.5 Hashes

Type: Hashes (Map) [0..*]

ID Name Type # Description

1 md5 Binary /x 0..1 MD5 hash as defined in [RFC1321]

2 sha1 Binary /x 0..1 SHA1 hash as defined in [RFC6234]

3 sha256 Binary /x 0..1 SHA256 hash as defined in [RFC6234]

Usage Requirement:

A "Hashes" data type MUST contain at least one key.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 40 of 59

3.4.2.6 Hostname

Type Name Type Definition Description

Hostname String (hostname) Internet host name as specified in [RFC1123]

3.4.2.7 Internationalized Hostname

Type
Name

Type
Definition

Description

IDN-
Hostname

String (idn-
hostname)

Internationalized Internet host name as specified in
[RFC5890], Section 2.3.2.3.

3.4.2.8 IPv4 Address

Type Name Base Type Description

IPv4-Addr Binary /ipv4-addr 32 bit IPv4 address as defined in [RFC0791]

3.4.2.9 IPv6 Address

Type Name Base Type Description

IPv6-Addr Binary /ipv6-addr 128 bit IPv6 address as defined in [RFC8200]

3.4.2.10 L4 Protocol

Value of the protocol (IPv4) or next header (IPv6) field in an IP packet. Any IANA value,
[RFC5237]

Type: L4-Protocol (Enumerated)

ID Name Description

1 icmp Internet Control Message Protocol - [RFC0792]

6 tcp Transmission Control Protocol - [RFC0793]

17 udp User Datagram Protocol - [RFC0768]

132 sctp Stream Control Transmission Protocol - [RFC4960]

3.4.2.11 Message-Type

Identifies the type of Message.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 41 of 59

Type: Message-Type (Enumerated)

ID Name Description

1 command The Message content is an OpenC2 Command

2 response The Message content is an OpenC2 Response

3.4.2.12 Namespace Identifier

Type Name Base Type Description

Nsid String [1..16] A short identifier that refers to a namespace.

3.4.2.13 Payload

Type: Payload (Choice)

ID Name Type # Description

1 bin Binary 1 Specifies the data contained in the artifact

2 url URI 1 MUST be a valid URL that resolves to the un-encoded content

3.4.2.14 Port

Type Name Type Definition Description

Port Integer [0..65535] Transport Protocol Port Number, [RFC6335]

3.4.2.15 Response-Type

Type: Response-Type (Enumerated)

ID Name Description

0 none No response

1 ack Respond when Command received

2 status Respond with progress toward Command completion

3 complete Respond when all aspects of Command completed

3.4.2.16 Version

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 42 of 59

Type Name Type Definition Description

Version String Major.Minor version number

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 43 of 59

4 Mandatory Commands/Responses
The content in this section is normative, except where it is marked non-normative.

A Command consists of an Action/Target pair and associated Specifiers and Arguments.
This section enumerates the allowed Commands, identifies which are required or optional to
implement, and presents the associated responses.

4.1 Implementation of 'query features' Command
The 'query features' Command is REQUIRED for all Producers and Consumers implementing
OpenC2. This section defines the REQUIRED and OPTIONAL aspects of the 'query features'
Command and associated response for Producers and Consumers.

The 'query features' Command is REQUIRED for all Producers. The 'query features'
Command MAY include one or more Features as defined in Section 3.4.2.4. The 'query
features' Command MAY include the "response_requested": "complete"
Argument. The 'query features' Command MUST NOT include any other Argument.

The 'query features' Command is REQUIRED for all Consumers. Consumers that receive and
parse the 'query features':

With any Argument other than "response_requested": "complete"
MUST NOT respond with OK/200.
SHOULD respond with Bad Request/400.
MAY respond with the 500 status code.

With no Target Specifiers MUST respond with response code 200.
With the "versions" Target Specifier MUST respond with status 200 and populate the
versions field with a list of the OpenC2 Language Versions supported by the consumer.
With the "profiles" Target Specifier MUST respond with status 200 and populate the
profiles field with a list of profiles supported by the consumer.
With the "pairs" Target Specifier MUST respond with status 200 and populate the pairs
field with a list of action target pairs that define valid commands supported by the
consumer.
With the "rate_limit" Target Specifier populated:

SHOULD respond with status 200 and populate the rate_limit field with the
maximum number of Commands per minute that the Consumer may support.
MAY respond with status 200 and with the rate_limit field unpopulated.

4.2 Examples of 'query features' Commands and Responses

This section is non-normative.

This sub-section provides examples of 'query features' Commands and Responses. The
examples provided in this section are for illustrative purposes only and are not to be
interpreted as operational examples for actual systems.

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 44 of 59

4.2.1 Example 1

There are no features specified in the 'query features' Command. A simple "OK" Response
Message is returned.

Command:

{
 "action": "query",
 "target": {
 "features": []
 }
}

Response:

{
 "status": 200
}
4.2.2 Example 2

There are several features requested in the 'query features' Command. All requested features
can be returned in a single Response Message.

Command:

{
 "action": "query",
 "target": {
 "features": ["versions", "profiles", "rate_limit"]
 }
}

Response:

{
 "status": 200,
 "results": {
 "versions": ["1.0"],
 "profiles": ["slpf", "x-lock"],
 "rate_limit": 30
 }
}

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 45 of 59

5 Conformance
This content in this section is normative.

5.1 Conformance Clause 1: Command

A conformant Command

5.1-1 MUST be structured in accordance with Section 3.3.1.
5.1-2 MUST include exactly one action property defined in accordance with Section
3.3.1.1.
5.1-3 MUST include exactly one target property defined in accordance with Section
3.3.1.2 or exactly one imported target property defined in accordance with Section
3.1.4.
5.1-4 MUST include zero or one actuator property defined in accordance with
Section 3.3.1.3 or zero or one imported actuator property defined in accordance
with Section 3.1.4.
5.1-5 MUST include zero or one args property defined in accordance with Section
3.3.1.4 or zero or one imported args property defined in accordance with Section
3.1.4.

5.2 Conformance Clause 2: Response

A conformant Response

5.2-1 MUST be structured in accordance with Section 3.3.2.
5.2-2 MUST include exactly one status property defined in accordance with Section
3.3.2.1.

5.3 Conformance Clause 3: Producer
A conformant Producer

5.3-1 MUST issue Commands and process Responses in accordance with Section 4.
5.3-2 MUST implement JSON serialization of generated Commands in accordance with
[RFC7493].
5.3-3 MUST implement JSON serialization of received Responses in accordance with
[RFC7493].

5.4 Conformance Clause 4: Consumer
A conformant Consumer

5.4-1 MUST process Commands and issue Responses in accordance with Section 4.
5.4-2 MUST implement JSON serialization of generated Responses in accordance with
[RFC7493].

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 46 of 59

5.4-3 MUST implement JSON serialization of received Commands in accordance with
[RFC7493].

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 47 of 59

Annex A. Examples
The content in this section is non-normative.

A.1 Example 1
This Command would be used to quarantine a device on the network.

{
 "action": "contain",
 "target": {
 "device": {
 "device_id": "9BCE8431AC106FAA3861C7E771D20E53"
 }
 }
}
A.2 Example 2
This Command blocks a particular connection within the domain. The standard Actuator
profile defines the extended Command Argument, drop_process, and the Actuator
Specifier, asset_id. The Response is a simple acknowledgment that was requested in the
Command.

Command:

{
 "action": "deny",
 "target": {
 "ipv4_connection": {
 "protocol": "tcp",
 "src_addr": "1.2.3.4",
 "src_port": 10996,
 "dst_addr": "198.2.3.4",
 "dst_port": 80
 }
 },
 "args": {
 "start_time": 1534775460000,
 "duration": 500,
 "response_requested": "ack",
 "slpf": {
 "drop_process": "none"
 }
 },

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 48 of 59

 "actuator": {
 "slpf": {
 "asset_id": "30"
 }
 }
}

Response:

{
 "status": 102
}
A.3 Example 3
This is a notional example of a Command issued to a non-standard Actuator. A Producer
sends a 'query properties' Command to request detail about a 'battery'. The Consumer
responses with the battery information extended in the results of the Response.

Command:

{
 "action": "query",
 "target": {
 "properties": ["battery"]
 },
 "actuator": {
 "x-esm": {
 "asset_id": "TGEadsasd"
 }
 }
}

Response:

{
 "status": 200,
 "results": {
 "x-esm": {
 "battery": {
 "capacity": 0.577216,
 "charged_at": 1547506988,
 "status": 12,
 "mode": {
 "output": "high",
 "supported": ["high", "trickle"]

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 49 of 59

 },
 "visible_on_display": true
 },
 "asset_id": "TGEadsasd"
 }
 }
}

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 50 of 59

Annex B. Acronyms
Acronym Definition

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BCP Best Current Practice

CBOR Concise Binary Object Representation

CIDR Classless Inter-Domain Routing

CoAP Constrained Application Protocol

DOI Digital Object Identifier

EUI Extended Unique Identifier

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IACD Integrated Adaptive Cyber Defense

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

ID Identifier

IP Internet Protocol

IPR Intellectual Property Rights

JSON JavaScript Object Notation

MAC Media Access Control

MD5 Message Digest

MQTT Message Queuing Telemetry Transfer

OASIS Organization for the Advancement of Structured Information Standards

OODA Observe-Orient-Decide-Act

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 51 of 59

OpenC2 Open Command and Control

OpenDXL Open Data eXchange Layer

PDF Portable Document Format

RFC Request for Comment

SCTP Stream Control Transmission Protocol

SHA Security Hash Algorithm

SLPF StateLess Packet Filtering

STD Standard

TC Technical Committee

TCP Transmission Control Protocol

UDP User Datagram Control Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

UTC Coordinated Universal Time

UUID Universally Unique IDentifier

XML eXtensibel Markup Language

Acronym Definition

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 52 of 59

Annex C. Design Elements
C.1 Derived Enumerations
It is sometimes useful to reference the fields of a structure definition, for example to list fields
that are usable in a particular context, or to read or update the value of a specific field. An
instance of a reference can be validated against the set of valid references using either an
explicit or a derived Enumerated type. A derived enumeration is created by appending
".Enum" to the type being referenced, and it results in an Enumerated type containing the ID
and Name columns of the referenced type.

This is the design element that defines the "Action-Targets" data type. The "Action-Targets"
data type is a map of each action supported by an actuator to a list of targets implemented for
each action. The list of Actions, defined in Section 3.3.1.1, is appropriately an enumerated list
of possible Actions. The list of Targets, defined in Section 3.3.1.2, is a Choice data structure
where each element is a complex data type of its own. A derived enumeration is used in this
case to signify that the list of Targets for the "Action-Targets" data type should be an
enumerated list of the possible Targets

Definition of "Action-Targets" Data Type: The Targets data type is defined as an array of
"Target" enumerations. The "Target" enumerations are derived from the "Target" data type.

Type
Name

Type
Definition

Description

Action-
Targets

MapOf(Action,
Targets)

Map of each action supported by this actuator to the list of
targets applicable to that action.

Type Name Type Definition Description

Targets ArrayOf(Target.Enum) [1..*] List of Target fields

Example: The "pairs" property is defined as an "Action-Targets" data type.

{
 "status": 200,
 "results": {
 "pairs": {
 "allow": ["ipv6_net", "ipv6_connection"],
 "deny": ["ipv6_net", "ipv6_connection"],
 "query": ["features"],
 "delete": ["slpf:rule_number"],
 "update": ["file"]
 }
 }

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 53 of 59

}

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 54 of 59

Annex D. Revision History
The content in this section is non-normative.

Revision Date Editor Changes Made

v1.0-
wd01

10/31/2017 Romano,
Sparrell

Initial working draft

v1.0-
csd01

11/14/2017 Romano,
Sparrell

approved wd01

v1.0-
wd02

01/12/2018 Romano,
Sparrell

csd01 ballot comments
Targets

v1.0-
wd03

01/31/2018 Romano,
Sparrell

wd02 review comments

v1.0-
csd02

02/14/2018 Romano,
Sparrell

approved wd03

v1.0-
wd04

03/02/2018 Romano,
Sparrell

Property tables
threads (cmd/resp) from use cases
previous comments

v1.0-
wd05

03/21/2018 Romano,
Sparrell

wd04 review comments

v1.0-
csd03

04/03/2018 Romano,
Sparrell

approved wd05

v1.0-
wd06

05/15/2018 Romano,
Sparrell

Finalizing message structure
message=header+body
Review comments
Using word 'arguments' instead of 'options'

v1.0-
csd04

5/31/2018 Romano,
Sparrell

approved wd06

v1.0-
wd07

7/11/2018 Romano,
Sparrell

Continued refinement of details
Review comments
Moved some Actions and Targets to reserved lists

v1.0-
wd08

10/05/2018 Romano,
Sparrell

Continued refinement of details
Review comments

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 55 of 59

v1.0-
wd09

10/17/2018 Romano,
Sparrell

Additional review comments to create wd09 for CSD
approval and release for public review.

v1.0-
wd10

03/04/2019 Romano,
Sparrell

Produce interim working draft.

v1.0-
wd11

03/21/2019 Romano,
Sparrell

Produce interim working draft.

v1.0-
wd12

03/27/2019 Romano,
Sparrell

Produce candidate working draft for next public
review.

v1.0-
wd13

05/14/2019 Romano,
Sparrell

Incorporated comments from CSPRD02.

v1.0-
wd14

05/23/2019 Romano,
Sparrell

Incorporated comments from WD13 ballot.

Revision Date Editor Changes Made

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 56 of 59

Annex E. Acknowledgments
The content in this section is non-normative.

The following individuals have participated in the creation of this specification and are
gratefully acknowledged:

OpenC2 TC Members:

First
Name

Last Name Company

Philippe Alcoy Arbor Networks

Darren Anstee Arbor Networks

Michelle Barry AT&T

Brian Berliner Symantec Corp.

Adam Bradbury EclecticIQ

Joe Brule National Security Agency

Michael Butt NC4

Toby Considine University of North Carolina at Chapel Hill

Trey Darley New Context Services Inc.

David Darnell North American Energy Standards Board

Sudeep Das McAfee

Andrea De Bernardi Moviri SPA

Blake Essing AT&T

Alex Everett University of North Carolina at Chapel Hill

Joyce Fai National Security Agency

Travis Farral Anomali

David Girard Trend Micro

Andy Gray ForeScout

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 57 of 59

John-
Mark

Gurney New Context Services Inc.

Stefan Hagen Individual

David Hamilton AT&T

Nick Humphrey Huntsman Security

Christian Hunt New Context Services Inc.

April Jackson G2

Sridhar Jayanthi Individual

Bret Jordan Symantec Corp.

Jason Keirstead IBM

David Kemp National Security Agency

David Lemire G2

Jason Liu Northrop Grumman

Radu Marian Bank of America

Danny Martinez G2

Lisa Mathews National Security Agency

James Meck FireEye Inc.

Efrain Ortiz Symantec Corp.

Paul Patrick FireEye Inc.

Michael Pepin NC4

Nirmal Rajarathnam ForeScout

Chris Ricard Financial Services Information Sharing and Analysis Center
(FS-ISAC)

Daniel Riedel New Context Services Inc.

First
Name

Last Name Company

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 58 of 59

Jason Romano National Security Agency

Philip Royer Splunk Inc.

Thomas Schreck Siemens AG

Duane Skeen Northrop Grumman

Duncan Sparrell sFractal Consulting LLC

Michael Stair AT&T

Andrew Storms New Context Services Inc.

Gerald Stueve Fornetix

Rodney Sullivan NCI Agency

Allan Thomson LookingGlass

Bill Trost AT&T

Raymon van der
Velde

EclecticIQ

Jyoti Verma Cisco Systems

David Waltermire NIST

Jason Webb LookingGlass

Sean Welsh AT&T

Charles White Fornetix

Sounil Yu Bank of America

First
Name

Last Name Company

Standards Track Work Product

oc2ls-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019 - Page 59 of 59

