

Open Command and Control (OpenC2) Architecture Specification Version
1.0

Committee Specification Draft 0201

20 July 2022

30 September

This stage:

https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-
cs01.md (Authoritative)
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-
cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-
cs01.pdf

Previous stage:

https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-
csd02.md (Authoritative)
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-
csd02.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-
csd02.pdf

Previous stage:

 (Authoritative)
Latest stage:

https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.md
(Authoritative)
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.pdf

Technical Committee:

https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.md
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.md
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.pdf
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.pdf
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.md
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.md
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.pdf
https://docs.oasis-open.org/openc2/oc2arch/v1.0/csd02/oc2arch-v1.0-csd02.pdf
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.md
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.pdf

OASIS Open Command and Control (OpenC2) TC

Chairs:

Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC
Michael Rosa (mjrosa@cyber.nsa.gov), National Security Agency

Editor:

Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Related work:

This specification is related to:

• Open Command and Control (OpenC2) Language Specification
Version 1.0. Edited by Jason Romano and Duncan Sparrell. Latest
stage: https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-
v1.0.html.

Abstract:

Cyberattacks are increasingly sophisticated, less expensive to execute,
dynamic and automated. The provision of cyber defense via statically
configured products operating in isolation is untenable. Standardized
interfaces, protocols and data models will facilitate the integration of the
functional blocks within a system and between systems. Open Command
and Control (OpenC2) is a concise and extensible language to enable
machine-to-machine communications for purposes of command and
control of cyber defense components, subsystems and/or systems in a
manner that is agnostic of the underlying products, technologies, transport
mechanisms or other aspects of the implementation.

This document describes the abstract architecture of OpenC2 to define a
common understanding of the messages and interactions for all bindings
and serializations.

Status:

This document was last revised or approved by the OASIS Open
Command and Control (OpenC2) TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted
above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee
(TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

https://www.oasis-open.org/committees/openc2/
mailto:duncan@sfractal.com
https://www.sfractal.com/
mailto:mjrosa@cyber.nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical

TC members should send comments on this specification to the TC's
email list. Others should send comments to the TC's public comment list,
after subscribing to it by following the instructions at the "Send A
Comment" button on the TC's web page at https://www.oasis-
open.org/committees/openc2/.

This specification is provided under the Non-Assertion Mode of the OASIS
IPR Policy, the mode chosen when the Technical Committee was
established. For information on whether any patents have been disclosed
that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights
section of the TC's web page (https://www.oasis-
open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions)
declared Normative for this Work Product is provided in separate plain text
files. In the event of a discrepancy between any such plain text file and
display content in the Work Product's prose narrative document(s), the
content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and
only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be
used:

[OpenC2-Arch-v1.0]

Open Command and Control (OpenC2) Architecture Specification Version
1.0. Edited by Duncan Sparrell. 20 July30 September 2022. OASIS
Committee Specification Draft 0201. https://docs.oasis-
open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html. Latest stage:
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html.

Notices

Copyright © OASIS Open 2022. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=openc2
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=openc2
https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/policies-guidelines/ipr/#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs.

For complete copyright information please see the full Notices section in
Appendix Gan Appendix below.

Table of Contents

• 1 Introduction
o 1.1 Changes from earlier versions
o 1.2 Goal
o 1.3 Glossary

▪ 1.3.1 Definitions of terms
▪ 1.3.2 Acronyms and abbreviations

• 2 OpenC2 Architecture
o 2.1 Commands
o 2.2 Responses
o 2.3 Design Patterns

▪ 2.3.1 Producers, Consumers, and Devices
▪ 2.3.2 Action-Target Model
▪ 2.3.3 Introspection Model

o 2.4 Implementations
• 3 Conformance

o 3.1 Conformance-Related Definitions
o 3.2 OpenC2 Producer Conformance Clauses
o 3.3 OpenC2 Consumer Conformance Clauses
o 3.4 OpenC2 CAP Conformance Clauses

• Appendix A. References
o A.1 Normative References
o A.2 Informative References

• Appendix B. Safety, Security and Privacy Considerations
o B.1 Overview
o B.2 Threats
o B.3 Security Services
o B.4 Network Topologies

• Appendix C. Acknowledgments
• Appendix D. Revision History
• Appendix E. Examples

o E.1 Application of Actuator Profiles and Transfer
Specifications

o E.2 Actuator Profile Typical Content
o E.3 Transfer Specification Typical Content

• Appendix F. OpenC2 Namespace Registry

https://www.oasis-open.org/

• Appendix G. Notices

1 Introduction

The content in this section is non-normative, except where it is marked
normative.

OpenC2 is a suite of specifications that enables command and control of
cyber defense systems and components. OpenC2 typically uses a
request-response paradigm where a Command is encoded by a Producer
(managing application) and transferred to a Consumer (managed device
or virtualized function) using a secure transfer protocol, and the Consumer
can respond with status and any requested information.

OpenC2 allows the application producing the commands to discover the
set of capabilities supported by the managed devices. These capabilities
permit the managing application to adjust its behavior to take advantage of
the features exposed by the managed device. The capability definitions
can be easily extended in a noncentralized manner, allowing standard and
non-standard capabilities to be defined with semantic and syntactic rigor.

OpenC2 is defined across a family of specifications of several types:

• The OpenC2 Architecture Specification (this document)
describes the fundamental structures of OpenC2 and provides a
blueprint for developing Actuator Profiles and Transfer
Specifications.

• The OpenC2 Language Specification provides the semantics for
the essential elements of the language, the structure for
Commands and Responses, and the schema that defines the
proper syntax for the language elements that represents the
Command or Response. The Language Specification also defines
the mechanisms for extending the OpenC2 language. [OpenC2-
Lang-v1.0]

• OpenC2 Actuator Profiles specify the subset of the OpenC2
language relevant in the context of specific Aactuator functions.
Cyber defense components, devices, systems and/or instances
may (in fact are likely to) implement multiple Actuator profiles.
Actuator profiles extendA profile refines the meaning of language
by defining Specifiers that identifyelements (actions, targets,
command arguments, results) used to perform the Actuator to the
required level of precision. Actuator Profiles may also define
Command Argumentsactuator function, and Targetsoften defines

additional elements that are relevant and/or unique to those
Actuator functionsthat function.

• OpenC2 Transfer Specifications utilize existing protocols and
standards to implement OpenC2 message transfer in specific
environments. These standards are used for communications and
security functions beyond the scope of the language, such as
message transfer encoding, authentication, and end-to-end
transport of OpenC2 Messages.

The OpenC2 language is described in the Language Specification using
an abstract information model that does not specify any particular
message encoding form (i.e., serialization). The most common encoding
of OpenC2 messages is in JSON and the OpenC2 family of specifications
presents examples in JSON format. Other encodings are permitted and
are defined in their respective documents (e.g., a transfer specification).
Similarly, OpenC2 messages can be conveyed using a variety of transfer
mechanisms, using both point-to-point (e.g., HTTPS) and
publish/subscribe (e.g., MQTT) communication models. The selection of
message content encoding is determined by a combination of the
environment where OpenC2 is being applied and the capabilities and
limitations of the chosen transfer specification.

1.1 Changes from earlier versions

• Updated conformance section from preliminary draft and refined
language

• Added example message exchange in JSON format
• Populated revision history and acknowledgements

1.2 Goal

OpenC2 is developing a language for interoperating between functional
elements of cyber defense systems. This language, used in conjunction
with OpenC2 Actuator Profiles and OpenC2 Transfer Specifications,
allows for vendor-agnostic cybertime response to attacks.

The Integrated Adaptive Cyber Defense (IACD) framework defines a
collection of activities, based on the traditional OODA (Observe–Orient–
Decide–Act) Loop [IACD]:

• Sensing: gathering of data regarding system activities
• Sense Making: evaluating data using analytics to understand what's

happening
• Decision Making: determining a course-of-action to respond to

system events
• Acting: Eexecuting the course-of-action

The goal of OpenC2 is to enable coordinated defense in cyber-relevant
time between decoupled blocks that perform cyber defense functions.
OpenC2 focuses on the Acting portion of the IACD framework; the
assumption that underlies the design of OpenC2 is that the
sensing/analytics have been provisioned and the decision to act has been
made. This goal and these assumptions guide the design of OpenC2:

• Technology Agnostic: The OpenC2 language defines a set of
abstract atomic cyber defense actions in a platform- and
implementation-agnostic manner

• Concise: A Command is intended to convey only the essential
information required to describe the action required and can be
represented in a very compact form for communications-
constrained environments

• Abstract: Commands and Responses are defined abstractly and
can be encoded and transferred via multiple schemes as dictated
by the needs of different implementation environments

• Extensible: While OpenC2 defines a core set of Actions and
Targets for cyber defense, the language is expected to evolve with
cyber defense technologies, and permits extensions to
accommodate new cyber defense technologies.

The OpenC2 language assumes that the event has been detected, a
decision to act has been made, the act is warranted, and the initiator and
recipient of the Commands are authenticated and authorized. The
OpenC2 language was designed to be agnostic of the other aspects of
cyber defense implementations that realize these assumptions.

1.3 Glossary

1.3.1 Definitions of terms

This section is normative.

• Action: The task or activity to be performed (e.g., 'deny').
• Actuator: The function performed by the Consumer that executes

the Command.
• Actuator Profile: The document that defines a category of

operations performed by an Actuator (e.g., "'Stateless Packet
Filtering"').

• Argument: A property of a Command that provides additional
information on how to perform the Command, such as date/time,
periodicity, duration, etc.

• Command: A Message defined by an Action-Target pair that is
sent from a Producer and received by a Consumer.

• Consumer: A managed device / application that receives
Commands. Note that a single device / application can have both
Consumer and Producer capabilities.

• Message: A content- and transport-independent set of elements
conveyed between Consumers and Producers.

• Producer: A manager application that sends Commands.
• Request: A Message from a Producer to a Consumer used to

convey a Command.
• Response: A Message from a Consumer to a Producer

acknowledging a Command or returning the requested resources or
status to a previously received Command.

• Specifier: A property or field that identifies a Target or Actuator to
some level of precision.

• Target: The object of the Action, i.e., the Action is performed on the
Target (e.g., IP Address).

1.3.2 Acronyms and abbreviations

Acronym Description

API Application Programming Interface

AP Actuator Profile

ASCII American Standard Code for Information Interchange

BCP Best Current Practice

CBOR Concise Binary Object Representation

CIDR Classless Inter-Domain Routing

CoAP Constrained Application Protocol

COSE CBOR Object Signing and Encryption

DOI Digital Object Identifier

ER Endpoint Response

Acronym Description

EUI Extended Unique Identifier

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IACD Integrated Adaptive Cyber Defense

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

ID Identifier

IP Internet Protocol

IoT Internet of Things

IPR Intellectual Property Rights

JOSE JSON Object Signing and Encryption

JSON JavaScript Object Notation

LS Language Specification

MAC Media Access Control

MQTT Message Queuing Telemetry Transfer

OASIS Organization for the Advancement of Structured Information Standards

OODA Observe-Orient-Decide-Act

Acronym Description

OOBM Out-of-Band Management

OpenC2 Open Command and Control

OpenDXL Open Data eXchange Layer

PDF Portable Document Format

RFC Request for Comment

SCTP Stream Control Transmission Protocol

SHA Securitye Hash Algorithms

SLPF StateLess Packet Filtering

STD Standard

TC Technical Committee

TCP Transmission Control Protocol

UDP User Datagram Control Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

UTC Coordinated Universal Time

UUID Universally Unique IDentifier

VLAN Virtual Local Area Network

Acronym Description

XML eXtensible Markup Language

2 OpenC2 Architecture

OpenC2 is a suite of specifications for Producers and Consumers to
command and execute cyber defense functions. These specifications
include the OpenC2 Language Specification, Actuator Profiles (APs), and
Transfer Specifications. The OpenC2 Language Specification and
Actuator Profile specifications focus on the language content and meaning
at the Producer and Consumer level of Command and Response while the
transfer specifications focus on the protocols for their exchange. The
language is defined abstractly in the Language Specification, permitting
flexibility of message serialization and transfer protocol choices when
implementing OpenC2. Interoperability between specific OpenC2
implementations is dependent on the selection of common serialization
and transfer mechanisms.

In general, there are two types of participants involved in the exchange of
OpenC2 Messages, as depicted in Figure 2-1:

1. Producers: A Producer is an entity that creates and transmits
Commands instructing one or more systems to execute Actions as
specified in the Command. A Producer may receive and process
Responses in conjunction with a Command.

2. Consumers: A Consumer is an entity that receives and may act
upon a Command. A Consumer may create Responses that
provide any information captured or necessary to send back to the
Producer.

Figure 2-1. OpenC2 Message Exchange

The Language Specification defines two distinct content types (i.e.,
payload structures): Command and Response. The following example,
drawn from the AP for Stateless Packet Filtering [SLPF], illustrates the
general structure of OpenC2 Command and Response message
payloads, using the common JSON serialization. The example action
permits ftp data transfers to 3ffe:1900:4545:3::f8ff:fe21:67cf

from any source.

Command:

{

 "action": "allow",

 "target": {

 "ipv6_connection": {

 "protocol": "tcp",

 "dst_addr": "3ffe:1900:4545:3::f8ff:fe21:67cf",

 "src_port": 21

 }

 },

 "actuator": {

 "slpf": {}

 }

}

In this case the Actuator returns a rule number associated with the
allowed interaction.

Response:

{

 "status": 200,

 "results": {

 "slpf": {

 "rule_number": 1234

 }

 }

}

2.1 Commands

Command: An instruction from one system, known as the Producer, to
one or more systems, the Consumer(s), to act on the content of the
Command.

The Command describes an Action to be performed on a Target and may
include information identifying the Actuator or Actuators that are to
execute the Command. A Command can also contain an optional
Command identifier, if necessary. The following list summarizes the main
four components of a Command.

• Action (required): The task or activity to be performed.
• Target (required): The object of the action. The Action is performed

on the Target. Properties of the Target, called Target Specifiers,
further identify the Target to some level of precision, such as one
specific Target, a list of Targets, or a class of Targets.

• Arguments (optional): Provide additional information on how the
command is to be performed, such as date/time, periodicity,
duration, etc.

• Actuator (optional): The Actuator executes the Command. The Actuator will be
defined within the context of an Actuator Profile. Properties of the Actuator, called

Actuator Specifiers, further identify the Actuator to some level of precision, such
as a specific Actuator, a list of Actuators, or a group of Actuators.

• Profile (optional): Specifies the Actuator Profile that defines the
function to be performed by the command.

The Action and Target components are required. A particular Target may
be further refined by the Target type. The Language Specification defines
procedures to extend the set of OpenC2 Targets.

Command Arguments, if present, influence the Command by providing
information such as timing, periodicity, duration, or other details on what is
to be executed. They can also be used to convey the need for
acknowledgment or additional status information about the execution of a
Command.

An Actuator is an implementation of a cyber defense The Profile field, if present,
specifies the profile that defines the function that to be performed. A Consumer
executes the Command. An Actuator Profile is a specification that identifies the subset
of Actions, Targets and other aspects of the OpenC2 language that are required or
optional in the context of a particular Actuator. An Actuator command if it supports the
specified profile, otherwise the command is ignored. The Profile alsofield may extend
the language by defining additional Targets, Arguments, and Actuator Specifiers that
are meaningful and possibly unique to the Actuator.

The Actuator is an optional component of a Command used to clarify
which Consumer(s) are the intended recipient(s). It be omitted and
typically iswill not be included in simplementuations where the
identitiesfunctions of the intended endpointsrecipients are unambiguous
(e.g., defined by the transfer mechanism). OpenC2 also provides for or
when a high-level effects-based Commands, where an intermediate
element receiving the Command has discretion to define derivative
Commandscommand is desired and tactical decisions on how the effect is
achieved is left to the recipient. If Profile is omitted and the recipient
supports multiple profiles, the command will be executed in the context of
each profile that supports the command's combination of action and select
appropriate Actuators to achieve the desired effect. The Actuator
component is usually omitted from an effects-based Commandtarget.

2.2 Responses

Response: Any information sent back to the Producer as a result of the
Command.

The Response is sent from a Consumer, usually back to the Producer,
and is a means to provide information (such as acknowledgment, status,

etc.) regarding the results of executing a Command. At a minimum, a
Response will contain a status code to indicate the result of performing the
Command. Additional status text and response fields optionally provide
more detailed information that is specific to or requested by the
Command.

2.3 Design Patterns

This section describes a number of OpenC2 concepts related to creating
working systems using OpenC2 specifications.

2.3.1 Producers, Consumers, and Devices

This section discusses four representative configurations for an OpenC2
Consumer device:

1. The Consumer implements a single function, and therefore
supports a Actuator Profile (AP).

2. The Consumer implements multiple functions, and therefore
supports multiple APs, which may be all different, all the same, or a
mixture.

3. The Consumer is a manager for a collection of devices, providing
an indirect means for the Producer to use OpenC2 Commands to
influence the operations of those devices. The managed devices in
the collection may or may not be identical, and the interface to them
is not assumed to use OpenC2.

4. The Consumer is a manager for a collection of devices that are
managed using OpenC2, making the device a combined Consumer
/ Producer.

In all of these configurations, "device" is a collective term for the
processing element that is the OpenC2 Consumer. A device could be a
physical or virtual entity in any number of computing environments. The
essential characteristics are that it is a network-accessible, addressable
entity that operates as an OpenC2 Consumer.

In configurations 1 and 2, the Producer has direct, explicit knowledge of
the APs implemented by the Consumer. OpenC2 Commands issued by
the Producer directly affect the operation of the Consumer device.

In configurations 3 and 4, the Producer has knowledge of the capabilities
supported by the Consumer manager, but only indirectly affect the
operation of the managed devices. In configuration 3 there is no
assumption that the interface between the Consumer manager and the
managed devices uses OpenC2 Commands and Responses, whereas in
configuration 4 that interface is explictly OpenC2-based. Implementations

with a mixture of OpenC2- and non-OpenC2-based interactions with the
managed devices are also possible.

2.3.1.1 Single Function Device

Figure 2-2 illustrates the situation with a Producer commanding an
OpenC2 Consumer that implements a single cybersecurity function, and
its corresponding AP.

Figure 2-2. Single Function Device

2.3.1.2 Multiple Function Device

Figure 2-3 illustrates the situation with a Producer commanding an
OpenC2 Consumer that implements multiple cybersecurity functions, and
their corresponding APs. The cybersecurity functions may be all different,
all the same, or a mixture. An example of different functions could be an

end-user computer system with anti-virus (AV), endpoint response (ER)
and packet filtering (PF) capabilities. An example of multiple instances of
the same AP in configuration 2 would be packet filtering functions on
multiple, distinct network interfaces.

Figure 2-3. Multiple Function Device

2.3.1.3 Actuator Manager Device

Figure 2-4 illustrates the situation where the Consumer fronts a set of
managed devices implementing cybersecurity functions. The managed
devices may implement any mixture of cybersecurity functions, and the
Actuator Manager's interface to those devices is not using OpenC2.

Figure 2-4. Actuator Manager Device

2.3.1.4 Intermediate Consumer / Producer Device

Figure 2-5 illustrates the situation where the Consumer fronts a set of
managed devices implementing cybersecurity functions. The managed
devices may implement any mixture of cybersecurity functions, but in this
case the Manager's interface to those devices explicitly does use OpenC2,
making the device an intermediate, combined Consumer / Producer.

Figure 2-5. Actuator Manager Device Using OpenC2

2.3.2 Action-Target Model

The OpenC2 Language Specification defines a standard set of actions
and a baseline collection of targets for those actions. An action-target pair
defines a command, as described in Section 2.1.

The available set of actions for creating OpenC2 commands is limited to
those defined in the Language Specification in order to encourage
commonality and interoperability of implementations. The function of each
action is defined in the Language Specification, and the set of actions can
only be expanded by modifying the Language Specification. Specifically,
the set of OpenC2 actions cannot be expanded by defining new actions in
an Actuator Profile.

In contrast the baseline set of targets in the Language Specification is a
usable set, but is also explicitly extensible. This recognizes the diversity of

cybersecurity functions and the corresponding need for function-specific
targets beyond the general purpose set provided in the Language
Specification.

There are other automation capabilities (e.g, Microsoft Powershell) that
implement a verb-noun model similar to that used by OpenC2. Future
expansions to the OpenC2 action set should take advantage of prior work
from similar capabilities in selecting names for actions. This will encourage
commonality of usage and understanding of verbs in automation systems.

2.3.3 Introspection Model

A common situation in OpenC2 interactions is the need for a Producer to
determine the capabilities of a Consumer in order to scope the range of
commands that can usefully be sent to that Consumer. The approach is
demonstrated in the Language Specification's provision of the "query" :

"features" and "query" : "properties" commands. This

"introspection" capability, defined for OpenC2 as the ability of a Consumer
to inform a Producer of the Consumer's capabilities, enables a degree of
flexible self-configuration of the interactions between Producers and
Consumers.

Any situation where a Consumer may potentially provide a range of
responses to a Producer's command is a candidate to apply the
introspection technique. For example, where a Consumer may return a
response in any of several data formats or serializations, it is appropriate
to consider a two-stage interaction:

• Stage 1: the Producer identifies the information of interest and
queries regarding the Consumer's capabilities to provide that
information. The Consumer responds with a list, possibly prioritized,
of the ways it can supply the required information.

• Stage 2: the Producer selects from among the options provided by
the Consumer and sends a Command specifying the desired
packaging of the information. The Consumer responds with the
required information packaged as specified.

The information provided by the Consumer in stage 1 enables the
Producer to proceed with confidence about the outcome of the interaction
in stage 2.

2.4 Implementations

OpenC2 implementations integrate the OpenC2 specifications described
above with related industry specifications, protocols, and standards.
Figure 2-3 depicts the relationships among the family of OpenC2

specifications, and their relationships to other industry standards and
environment-specific implementations of OpenC2. Note that the layering
of implementation aspects in the diagram is notional, and not intended to
preclude any particular approach to implementing the needed functionality
(for example, the use of an application-layer message signature function
to provide message source authentication and integrity).

Figure 2-3. OpenC2 Documentation and Layering Model

OpenC2 is conceptually partitioned into four layers as described in Table
2-1.

Table 2-1. OpenC2 Protocol Layers

Layer Examples

Function-Specific Content Actuator Profiles
(OpenC2-SLPF-v1.0, ...)

Common Content Language Specification

Layer Examples

Message Transfer Specifications
(OpenC2-HTTPS-v1.0, OpenC2-MQTT-v1.0, ...)

Secure Transport HTTPS, CoAP, MQTT, OpenDXL, ...

• The Secure Transport layer provides a communication path
between the Producer and the Consumer. OpenC2 can be layered
over any standard transport protocol.

• The Message layer provides a transfer- and content-independent
mechanism for conveying Messages. A transfer specification maps
transfer-specific protocol elements to a transfer-independent set of
message elements consisting of content and associated metadata.

• The Common Content layer defines the structure of Commands
and Responses and a set of common language elements used to
construct them.

• The Function-specific Content layer defines the language
elements used to support a particular cyber defense function. An
Actuator profile defines the implementation conformance
requirements for that function. Producers and Consumers will
support one or more profiles.

OpenC2 is intended to be integrated into different systems which will
provide a variety of security services. Appendix B describes the possible
threats that could affect OpenC2 operations and the security services
needed to protect those operations against such threats. Because the
implementation of these services are beyond the scope of this
specification, the review in Appendix B is for reference purposes and to
emphasize the importance of considering security services in the creation
of OpenC2 implementations.

3 Conformance

This section defines the conformance requirements for OpenC2
implementations.

3.1 Conformance-Related Definitions

An OpenC2 Producer is defined per Section 2 of this document.

An OpenC2 Consumer is defined per Section 2 of this document.

The OpenC2 Transfer Specification List is defined as:

• oc2-https
• oc2-mqtt

The OpenC2 Actuator Profile Specification List is defined as:

• slpf

The Actuator Profile List is defined as the list of Actuator Profiles
supported by the Consumer as supplied in the response to the command:

{action:query, target:features, target-

specifier:[profiles]}

as per Section 4.1 of the Language Specification.

A Consumer's Actuator Profile List is composed of two types of profiles:

• Standard Actuator Profiles (SAP), i.e., those on the OpenC2
Actuator Profile Specification List; and

• Custom Actuator Profiles (CAP), i.e., those not on the OpenC2
Actuator Profile Specification List.

3.2 OpenC2 Producer Conformance Clauses

CC 3.2.1 In order to conform to this specification, an OpenC2 Producer
MUST only issue OpenC2 commands conforming to OpenC2 Language
Specification Section 5.1 Conformance Clause 1.

CC 3.2.2 In order to conform to this specification, an OpenC2 Producer
MUST only accept responses conforming to OpenC2 Language
Specification Section 5.2 Conformance Clause 2.

CC 3.2.3 In order to conform to this specification, an OpenC2 Producer
MUST be conformant to OpenC2 Language Specification Section 5.3
Conformance Clause 3.

CC 3.2.4 In order to conform to this specification, an OpenC2 Producer
MUST be conformant with at least one transfer specification in the
OpenC2 Transfer Specification List.

3.3 OpenC2 Consumer Conformance Clauses

CC 3.3.1 In order to conform to this specification, an OpenC2 Consumer
MUST only accept OpenC2 commands conforming to OpenC2 Language
Specification Section 5.1 Conformance Clause 1.

CC 3.3.2 In order to conform to this specification, an OpenC2 Consumer
MUST only return responses conforming to OpenC2 Language
Specification Section 5.2 Conformance Clause 2.

CC 3.3.3 In order to conform to this specification, an OpenC2 Consumer
MUST be conformant to OpenC2 Language Specification Section 5.4
Conformance Clause 4.

CC 3.3.4 In order to conform to this specification, an OpenC2 Consumer
MUST be conformant with at least one transfer specification in the
OpenC2 Transfer Specification List.

CC 3.3.5 In order to conform to this specification, an OpenC2 Consumer
MUST have an OpenC2 Consumer Actuator Profile List with at least one
entry.

CC 3.3.6 In order to conform to this specification, all SAP entries on a
Consumer's OpenC2 Consumer Actuator Profile List MUST conform to the
corresponding OASIS OpenC2 Actuator Profiles.

3.4 OpenC2 CAP Conformance Clauses

CC 3.4.1 In order to conform to this specification, a CAP MUST extend the
functionality covered by a profile on the OpenC2 Actuator Profile
Specification List, and MUST conform with the OpenC2 Actuator Profile
Specification being extended.

For example, if a CAP extends the slpf functionality, the Consumer must
conform to the OASIS OpenC2 SLPF Actuator Profile Specification. Note
if the actuator function is not an extension to an existing function specified
in a published AP, the Consumer implementation fails this conformance
clause. For example, a CAP fails this clause if it is for malware detection,
and there is not a malware detection SAP.

CC 3.4.2 In order to conform to this specification, all CAP entries MUST
extend the functionality of a SAP in a manner consistent with the OpenC2
Language Specification section 3.1.4 requirements for extensions.

Appendix A. References

This appendix contains the normative and informative references that are
used in this document.

While any hyperlinks included in this appendix were valid at the time of
publication, OASIS cannot guarantee their long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of
their content constitutes requirements of this document.

[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version
1.0. Edited by Jason Romano and Duncan Sparrell. Latest stage:
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html

[OpenC2-HTTPS-v1.1]

Specification for Transfer of OpenC2 Messages via HTTPS Version 1.1.
Edited by David Lemire. Latest stage: https://docs.oasis-
open.org/openc2/open-impl-https/v1.1/open-impl-https-v1.1.html

[OpenC2-MQTT-v1.0]

Specification for Transfer of OpenC2 Messages via MQTT Version 1.0.
Edited by David Lemire. Latest stage: https://docs.oasis-
open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html

[OpenC2-SLPF-v1.0]

Open Command and Control (OpenC2) Profile for Stateless Packet
Filtering Version 1.0. Edited by Joe Brule, Duncan Sparrell, and Alex
Everett. Latest stage: https://docs.oasis-
open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-
editor.org/info/rfc2119.

[RFC8174]

https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.1/open-impl-https-v1.1.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.1/open-impl-https-v1.1.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/transf-mqtt-v1.0.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
http://www.rfc-editor.org/info/rfc8174.

A.2 Informative References

[IACD]

M. J. Herring, K. D. Willett, "Active Cyber Defense: A Vision for Real-Time
Cyber Defense," Journal of Information Warfare, vol. 13, Issue 2, p. 80,
April 2014.https://www.semanticscholar.org/paper/Active-Cyber-Defense-
%3A-A-Vision-for-Real-Time-Cyber-Herring-
Willett/7c128468ae42584f282578b86439dbe9e8c904a8.

Willett, Keith D., "Integrated Adaptive Cyberspace Defense: Secure
Orchestration", International Command and Control Research and
Technology Symposium, June 2015
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-
Defense-%3A-Secure-by-
Willett/a22881b8a046e7eab11acf647d530c2a3b03b762.

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003,
https://www.rfc-editor.org/info/rfc3552.

[RFC7515]

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)",
RFC 7515, DOI 10.17487/RFC7515, May 2015, https://www.rfc-
editor.org/info/rfc7515.

[RFC7516]

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516,
DOI 10.17487/RFC7516, May 2015, https://www.rfc-
editor.org/info/rfc7516.

[RFC8152]

Schaad, J., "CBOR Object Signing and Encryption (COSE)", RFC 8152,
DOI 10.17487/RFC8152, July 2017, https://www.rfc-
editor.org/info/rfc8152.

http://www.rfc-editor.org/info/rfc8174
https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8
https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8
https://www.semanticscholar.org/paper/Active-Cyber-Defense-%3A-A-Vision-for-Real-Time-Cyber-Herring-Willett/7c128468ae42584f282578b86439dbe9e8c904a8
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%3A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%3A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762
https://www.semanticscholar.org/paper/Integrated-Adaptive-Cyberspace-Defense-%3A-Secure-by-Willett/a22881b8a046e7eab11acf647d530c2a3b03b762
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152

Appendix B. Safety, Security and Privacy
Considerations

This appendix discusses security concerns related to OpenC2.

B.1 Overview

Cyber defense systems are high-value targets for an attacker since
disabling detection and response capabilities opens the door to allow
further attacks. There would be great value to an attacker to turn off the
sensors, breach the defenses, disable responsive actions, and potentially
use the cyber defense tools to attack the network.

B.2 Threats

There are two threat target areas to address when considering the
security of OpenC2:

1. Threats to and attacks on the user networks/systems being
defended, and

2. Attacks directed at OpenC2 itself.

B.2.1 Threats to the Networks and Systems Being Defended

By providing the C2 for time-critical response actions OpenC2 is an
enabler of improved cyber defense capabilities for user networks and
systems. However, to the extent that OpenC2 traffic and processing share
resources with those user networks and systems, those same threats (and
mitigations) will also be applicable to OpenC2. Even if the OpenC2 traffic
is segregated using logical or cryptographic separation, the underlying
physical resources may still be subject to common attacks (and other
threats) that will affect OpenC2 operations.

B.2.2 Threats to OpenC2 Traffic and Processing

The threats, attacks, vulnerabilities, and impacts to a given OpenC2
implementation should be analyzed with a focus on the goals of the
attacker and the resulting impacts since these will be different from a
standard user analysis. Four categories of threat sources should be
addressed:

• Malicious Adversaries (external or insider) – the primary source of
concern for the security of OpenC2 operations

• Non-malicious Users – mistakes by users, especially privileged
users, can cause major lapses in cyber defense

• Structural Threats – failures of hardware and/or software can affect
network and system integrity or availability, and impede the ability
of OpenC2 mechanisms to operate

• Environmental Threats – disasters and infrastructure failures may
need to addressed and accommodated depending on the mission
needs of the defended networks

B.2.3 Potential Attack Types

Malicious adversaries may use any form of attack, these are some primary
examples.

• Passive Attacks – An attacker may monitor traffic at levels of
sophistication and access ranging from simple traffic analysis (is
there a change in the volume of OpenC2 traffic?) to eavesdropping
on the contents of the messages (if unencrypted) to see what was
detected, what actions are being taken, and the specific targets of
OpenC2 commands. This information will let the attacker know if
their active attacks have been detected and how the system
responds. Their active attacks can then be revised to avoid
detection or to trigger a known response. In the latter case, the
attacker could use knowledge of the response strategy to cause the
system to unnecessarily deny services to users.

• Active Attacks, Externally Initiated – An attacker may try to
manipulate the OpenC2 traffic by deleting, delaying, or replaying
legitimate messages. They may also attempt to modify the contents
of a message or masquerade as an OpenC2 manager and issue
bogus messages.Producer and issue bogus messages. Finally, an
external attacker might be able to compromise a legitimate OpenC2
Producer within an environment; protection of an OpenC2 Producer
should be a priority in any implementation of OpenC2. If any of
these attacks succeed, the attacker can disrupt or disable
responses to other attacks and can cause the defensive capabilities
to impede legitimate operations. Successfully subverting defenses
can allow more intrusive attacks.

• Insider Attacks (Malicious users) – An insider, especially a
privileged user, may be able to more effectively perform any of the
passive and active attacks already mentioned plus can act as a
legitimate user to perform other actions. These actions could
include misconfiguring devices, changing policy rules, issuing
malicious commands from authorized sources, and even turning
systems off.

• Supply Chain or Distribution Attacks - A vendor, transporter,
developer, or installer may modify the software or hardware used
for OpenC2-based functions. The modification may introduce an
exploitable vulnerability, disable a critical function, or cause failure

under specific conditions. Even if the attack is just substitution of a
counterfeit component, the behavior may be different and cause
problems.

B.3 Security Services

This section reviews the applicability of traditional security services to
OpenC2 operations. As OpenC2 specifies a language (as opposed to a
protocol or a system) that is subject to a range of implementations, in a
variety of environments, using a variety of transfer protocols, data
encodings, etc., this discussion does not specify any particular
mechanisms to implement these security services.

Implementations of OpenC2 should apply well-vetted and widely-used
industry standard mechanisms (e.g., as specified by Internet Engineering
Task Force [IETF] Requests for Comment [RFCs]) compatible with other
implementation choices to provide security services. For example:

• JSON-encoded messages could be protected using the techniques
described in the JSON Object Signing and Encryption (JOSE)
family of RFCs, specifically [RFC7515], [RFC7516], and associated
documents.

• CBOR-encoded messages could be protected using the techniques
described in the CBOR Object Signing and Encryption (COSE)
family of RFCs, specifically [RFC8152] and associated documents.

B.3.1 Confidentiality

Confidentiality of OpenC2 message content prevents attackers from
seeing the response actions that result from attacker activities. This
knowledge could aid an attacker in manipulating or circumventing cyber
defenses.

B.3.2 Integrity

Both data and system integrity need to be addressed in OpenC2
implementations. Data integrity is extremely important - the contents of a
C2 message should not be modifiable without detection. Replay and re-
sequencing attacks also need to be addressed. Message integrity must
always be paired with source authentication. System integrity including
software/application integrity is also critical to OpenC2 security. If a
system, including system and application software, is not in a compliant,
stable configuration then its actions cannot be trusted.

B.3.3 Availability

Availability in the context of OpenC2 is focused on the ability of Producers
to send commands to Consumers, and the corresponding ability of
Consumers to receive, execute, and send Responses to those
commands. Assuring availability can be very difficult if the OpenC2
message traffic is carried in-band with the user traffic. Out-of-band
management networks should be used where possible as they provide
isolation of OpenC2 activities from attacks against operational user
networks and can be engineered to provide better support for high
availability. Also, approaches to addressing intermittent connectivity and
actions upon reconnection should be addressed.

B.3.4 Authentication

OpenC2 is envisioned for application in environments where C2 will be
automated as much as possible. In the consequent machine-to-machine
exchanges, the systems involved need to securely authenticate that
authorized systems are involved and not rogue entities. In particular,
actuators receiving and executing OpenC2 commands must be able to
confirm those commands came from a source that can confidently be
authenticated. With the increasing number of Internet-enabled devices,
reliable machine authentication is crucial to allow secure communication in
automated network environments. In any architecture deployment,
consider the appropriate levels and types of authentication for managers
and actuators.

There are also aspects of identity and credential management that need to
be addressed: uniqueness of name space, identification of device type
and instance, provisioning of credentials (typically digital certificates),
means to verify trust chain and current status of credentials, means to
revoke credentials, and session management. There are many challenges
to find the right authentication model that can support a machine-to-
machine communication method depending on the range of device and
network capabilities in the operating environment.

B.3.5 Authorization And Access Control

Coupled with user or device authentication, a requesting entity must have
authorization before tasks are executed on its direction. Authorization is
the process of enforcing policies: determining what types of actions on a
resource or service are permitted for this Producer. Once a Producer has
been authenticated, they may be authorized for different types of actions
depending on the policy assigned. The authorization should be role- or
attribute-based to avoid the problems of maintaining an identity-based
access control list.

The policy rules may include conditional aspects such as time of day or
operational status of network to prevent actions from adversely affecting
missions. In these cases, it is important to determine if the Producer has
knowledge of the conditions and can self-impose the policy rules or
whether the policy needs to be enforced at (or near) the resource.

B.3.6 Accountability

Authentication is also the basis for associating the Producer with the
commands sent, the authorization decision (allow or deny), and the
actions taken. The authenticated identity of the actor along with the action
is captured in the audit logs and provides traceability to the responsible
party.

B.3.7 Non-Repudiation

Non-repudiation may be required if there is a requirement to formally
prove the issuance or receipt of a C2 message, however any non-
repudiation requirement should be evaluated critically due to impacts on
the processing, availability and delays of automated cyber defense
actions. This level of security may not be required in a closed system
where source authentication and logged receipt events are sufficient
evidence of who sent and who received messages. Non-repudiation
implementations may require a third party acting as a notary or signature-
based message authentication resulting in additional costs in terms of
processing, communications, and invoking third-party services for the
commands and responses. A time stamping service will typically also be
required. The third party would timestamp OpenC2 messages and certify
proof of issuance and delivery. This will add dependencies and overhead
to the system.

B.3.8 Auditing

Audit trails are necessary in any secure system but have specific
considerations in machine-to-machine communications. In conjunction
with appropriate tools and procedures, audit trails can provide a means to
help accomplish several security-related objectives, including individual
accountability, reconstruction of events, intrusion detection, and problem
identification. Typical events include:

• Authentication exchange between components (manager, actuator,
and end points)

• Message generated, message sent, message received
• Action taken/allowed or request denied
• Success or failure of any OpenC2 exchange
• Configuration changes

Actions and the results that are invoked using OpenC2 should be
recorded and analyzed for security areas such as forensics, secure
implementation, security architecture of impact changes within the
environment, and completion of such tasks. This type of auditing provides
the essential ingredients for early detection of actions that violate security
policy.

B.3.9 Metrics Collection And Analysis

Collecting metrics will be necessary for a multitude of activities to assess
performance and improve effectiveness of actions within an OpenC2
environment. Implementations should provide the ability to measure
resources a user or system component (e.g., sensors and actuators)
consumes. This could include the amount of system time or quantity of
messages it has sent or received during a session. This can be
accomplished by logging of session statistics and usage information and is
used for trend analysis, resource utilization, performance assessment, and
capacity planning. Overall all of these are important data captures to
improve the configuration and deployment of OpenC2 components and a
verification that operations are working as intended.

B.4 Network Topologies

The available networking architecture, topology, and technology all have
implications for, and may also be constrained by, OpenC2 use and
security. The topology and communications modes supporting OpenC2
traffic will affect the ability and approaches to achieving robustness,
providing redundancy, and meeting responsiveness goals. Ideally,
OpenC2 traffic should be quickly and reliably delivered to all intended
recipients with some guarantee or confirmation of both delivery and action
taken. It will not always be possible to achieve these goals due to
constraints of available or legacy networking and systems,
mobility/connectedness of devices, effects of attacks or outages in the
network, and management/cost factors.

B.4.1 In-Band Cyber Defense C2

If OpenC2 traffic is carried in-band with user and other traffic, then it is
subject to the same threats (plus the threats against cyber defense C2)
and will leverage the same defenses as the other traffic. Besides being
subject to the same external threats as the other traffic, the implementer
also needs to consider:

• Resource contention issues: C2 traffic may be delayed or blocked
by high volumes of user traffic or reductions in network capacity or
connectivity

• Intended cyber defense actions: The same blocking or filtering of
traffic meant to stop an external attacker may affect C2 traffic flow
as well (e.g., external monitoring feeds could be cut off)

• Targeted attacks against cyber defense C2: The attacker may
specifically attempt to single out C2 traffic for intercept,
modification, denial of service, or other attack

B.4.2 Out-Of-Band Cyber Defense C2

Out-of-Band management (OOBM) involves the use of a dedicated
channel for managing network devices. ThisOOBM allows the network
operator to establish trust boundaries inaround accessing the
management function to apply it to network resources. ItDepending on the
specific implementation, OOBM also can be used to ensure management
connectivity (including the ability to determine the status of any network
component) independent of the status of in-band network components.
Out-of-Band Management (OOBM) is a common best practice with
renewed focus based on the evolving threat landscape. There are a range
of potential implementations of OOBM, from an entirely physically-
separated network to approaches that apply logical separation (e.g.,
virtual LANs [VLAN]) on the network backbone to separate management
traffic from ordinary user traffic.

C2 systems are prime objectives of adversaries and OOBM can provide
another layer in the defense-in-depth model. The effectiveness of this
layering or separation depends on how OOBM is implemented and
secured. There should be a much lower attack surface since general
users would not have access to this channel. Also security policies,
generally, will restrict or prohibit connection to the OOBM through access
control lists or other access methods. In practice though, implementations
may have prioritized administrator access (including remote access) and
chosen weaker security. For example, implementers may have left back-
door access in place so that disastrous failures can rapidly be fixed. To
address these types of issues, a security plan should be implemented and
enforced, focusing in these areas, which will enhance the entire security
architecture of the enterprise:

• Definitions of vulnerabilities and risks of out-of-band access for
OpenC2

• Review security architecture for mitigating those risks
• Proper balance between security and the need for timely out-of-

band access during critical events
• Systems of processes, equipment and technologies that provide,

wherever required for OpenC2 integrity, confidentiality, and/or non-
repudiation for out-of-band access.

Appendix C. Acknowledgments

C.1 Special Thanks

Asssistance with this document from the following individuals are
gratefully acknowledged:

• Larry Feldman, HII
• Jerome Czachor, HII
• Kevin Cressman, Praxis Engineering

C.2 Participants

The following individuals have participated in the creation of this
specification and are gratefully acknowledged:

OpenC2 TC Members:

First Name Last Name Company

David Bizeul SEKOIA

Marco Caselli Siemens AG

Toby Considine University of North Carolina at Chapel Hill

Martin Evandt University of Oslo

Alex Everett University of North Carolina at Chapel Hill

Jane Ginn Cyber Threat Intelligence Network, Inc.

John-Mark Gurney Copado

Christian Hunt Copado

Dan Johnson sFractal

First Name Last Name Company

David Kemp National Security Agency

David Lemire National Security Agency

Patrick Maroney AT&T

Vasileios Mavroeidis University of Oslo

Dmitri Raidman Cybeats

Christopher Robinson Cyber Threat Intelligence Network, Inc.

Michael Rosa National Security Agency

Duane Skeen Northrup Grumman

Duncan Sparrell sFractal

Gerald Stueve Fornetix

Drew Varner NineFX, Inc.

Russ Warren IBM

Italics indicates former TC members.

Appendix D. Revision History

Revision Date Editor Changes Made

oc2arch-v1.0-
csprd01.md

2021-
12-21

Duncan
Sparrell

WD01: Capture initial content prior to
reorganization

oc2arch-v1.0-
wd01.md

2021-
12-21

Duncan
Sparrell

WD02: Capture new starter document
prior to adding reorganized content

oc2arch-
v1.0.md

2022-
01-19

Duncan
Sparrell

WD03: Capture reorganized content

oc2arch-v1.0-
wd04.md

2022-
05-04

Duncan
Sparrell

WD04: Nearly complete draft

oc2arch-v1.0-
wd05.md

2022-
05-12

Duncan
Sparrell

WD05: Minor updates for clarity &
readability, presented for CSD approval

oc2arch-v1.0-
wd06.md

2022-
07-13

Duncan
Sparrell

WD06: Updated conformance section,
added example message exchange,
editorial fixes

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

ARCH-101: editorial fixes

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

ARCH-102: clarify LS authority on
Actions in 2.3.2

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

Arch-103: recommend standards-based
approach to security services

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

Arch-104: add Producer takeover to B.2.3

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

ARCH-105: improve OOBM discussion in
B.4.2

Revision Date Editor Changes Made

oc2arch-v1.0-
wd07.md

2022-
09-14

Duncan
Sparrell

WD06: Updates to align with "actuator" to
"profile" change in Language
Specification (forthcoming v2.0)

Appendix E. Examples

E.1 Application of Actuator Profiles and Transfer
Specifications

This example illustrates the application of the various types of OpenC2
specifications. Figure E-1 shows a simple operating environment with five
components:

• A Security Orchestration, Automation, and Response (SOAR)
system that is the OpenC2 Producer in the environment, directing
the operation of OpenC2-enabled cyber defense functions.

• A Publish / Subscribe message broker to support communications
among the other components.

• Three OpenC2 Consumers:
o An IP-Connected camera, illustrative of an Internet of Things

(IoT) Consumer;
o A Laptop, illustrative of a general purpose endpoint

consumer;
o A Firewall, illustrative of a network infrastructure consumer.

Figure E-1: Application of Actuator Profiles and Transfer Specifications

The diagram also shows a collection of OpenC2 specifications, and tags
the components with the specifications relevant to their participation in
OpenC2 exchanges:

• The OpenC2 Language Specification
• A Publish / Subscribe Transfer Specification
• Three Actuator Profiles:

o Endpoint Response (tagged "E")
o Packet Filtering ("P")
o Software Bill of Material (SBOM) Retrieval ("S")

Colored circles on each of the components identify which specifications
are relevant to that component:

• The message broker needs to conform to the publish / subscribe
protocol called out in the Transfer Specification, but does not have
any OpenC2-specific requirements.

• Messaging is defined by a combination of information from the
Language Specification and the Transfer Specification, indicated by
a bi-colored (red/blue) bubble. This function is relevant to all of the
OpenC2 components.

• All IP-connected camera must support the SBOM Retrieval AP.
• The laptop (Endpoint Consumer) must support the SBOM Retrieval

AP and the Endpoint Respose AP.
• The firewall (Infrastructure Consumer) must support the SBOM

Retrieval AP and the Packet Filtering AP.

E.2 Actuator Profile Typical Content

This example provides an overview of the typical structure and content of
an OpenC2 Acuator Profile.

1.0 Introduction

This section provides a brief overview of the cyber defense function
addressed in this AP.

2.0 OpenC2 Language Binding

This section defines the set of Actions, Targets, Arguments, and Actuator
Specifiers that are meaningful in the context of PF and the appropriate
status codes, status texts, and other properties of a Response message.
This section is also where any AP-specific extentions to the language are
defined.

2.1 OpenC2 Command Components

This section identifies the OpenC2 Actions, Targets, Arguments, and
Target and Actuator Specifiers needed for this AP. Depending on the
needs of the AP, extended targets, arguments, and specifiers can be
defined in this section.

2.2 OpenC2 Response Components

This section defines common and unique responses neede for this AP,
and the response status codes that are applicable.

2.3 OpenC2 Commands

This section defines the commands (i.e., Action / Target pairs) used for
the control of the cyber defense function. A matrix is used to identify the
valid pairs:

action 1 action 2 action 3 action 4

target A

valid

target B valid valid

target C

valid valid

A second table links the valid commands to the available arguments, and
links to the subsequent section where this command is discussed in detail.

command
1

command
2

command
3

command
4

command
5

argument
1

section
a.b.c

section
a.b.e

argument
2

section
a.b.c

section
a.b.d

argument
3

section
a.b.c

section
a.b.f

section
a.b.g

Subsequent subsections provide needed details about each command
and its relevant arguments.

3.0 Conformance

This section provides the conformance clauses required in an OASIS
specification. Clauses are grouped into those applicable to Producers
using this AP to generate commands and those applicable to Consumers
receiving and executing those commands.

3.1 Clauses Pertaining to the OpenC2 Producer Conformance Target

• Baseline Producer Clauses
• Specific Producer Clause 1
• Specific Producer Clause 2
• ...
• Specific Producer Clause n

3.2 Clauses Pertaining to the OpenC2 Consumer Conformance
Target

• Baseline Consumer Clauses
• Specific Consumer Clause 1
• Specific Consumer Clause 2
• ...
• Specific Consumer Clause m

Appendix E. Examples

Examples of commands and responses that illustrate the use of this AP
will be found in Appendix E.

E.3 Transfer Specification Typical Content

This example provides an overview of the typical structure and content of
an OpenC2 Transfer Specification.

1.0 Introduction

This section provides a brief introduction to the transfer protocol that is the
focus of this transfer specification.

2.0 Operating Model

This section provides an overview of the approach employed to use the
transfer protocols in support of OpenC2 messaging. A description of how

OpenC2 messages are packaged for transfer in the protocol is needed.
Other content of the section is flexible based on the characteristics of the
protocol in use. For example, a subsection of 2.0 would describe the topic
structure used in a publish / subscribe environment, or which protocol
features are used in a specific way for OpenC2 messaging.

3.0 Protocol Mapping

This section defines specific requirements to use the transfer protocol to
implement the operating model, and provides details as needed to apply
the standard that describe the protocol. Similar to section 2, the structure
of this ection if flexible based on the characteristics of the protocol in use.

4.0 Conformance

This section provides the conformance clauses required in an OASIS
specification. Clauses may or may not be grouped into those applicable to
Producers and those applicable to Consumers receiving and executing
those commands, depending on the nature of the protocol in use.

Appendix E. Examples

Examples of message transfer that illustrate the use of this transfer
specifcation will be found in Appendix E.

Appendix F. OpenC2 Namespace Registry

F.1 Namespace Concepts

A namespace is a set of names used to identify objects. A namespace
ensures that all of a given set of objects can be easily identified and
unambiguously referenced.

All OpenC2 type definitions are contained in a specification, and each
specification is assigned a globally-unique namespace in the form of a
URI. Types in one specification can reference types defined in another
specification using a namespaced name:

name = <namespace identifier> separator <local name>

The XML standard includes namespaces but JSON does not. Because
OpenC2 consists of multiple specifications, it requires a namespacing
mechanism usable with JSON data. OpenC2 has therefore created a

https://en.wikipedia.org/wiki/Namespace

naming approach similar to XML's that can be applied to non-namespaced
data formats such as JSON. For brevity the approach assigns a short
Namespace Identifier (NSID) to each referenced namespace using an
import statement, then uses the NSID as a prefix to each referenced type:

schema:

import: {"ex":

"http://www.example.com/datatypes/v1.2"}

Person = Record

 1 name String

 2 id Integer

 3 email ex:Email-Address // type definition

imported/resolved from another specification

JSON data:

 {"name": "John", "id": 12345, "email":

"john@acme.com"}

Namespacing thus involves four different values:

• Namespace: The unique identifier of a referenced specification:
"http://www.example.com/datatypes/v1.2"

• Type Name: the name of a type defined in a referenced
specification: "Email-Address"

• NSID: a short abbreviation for a Namespace used as a prefix with
an imported type: "ex"

• Field Name: may be serialized as a JSON object property whose
value is an imported type: "email"

This approach uses a resolver to look up all namespaced type definitions
from their defining specifications and incorporates them into a single
schema. Authors can manually copy and paste definitions into a
monolithic specification, but namespace resolution automates that
process, eliminating redundancy and the potential for inconsistency.

A namespace URI is only an identifier. For syntactic reasons it must have
a scheme (http) but it is not a network-accessible resource. Referenced
specifications do not need to be available online and implementations are
not required to do namespace resolution at runtime, although dynamic
namespace resolution may be appropriate for some use cases. URLs for
online schemas should be derived from the namespace using scheme
"https", filename "schema", and the applicable file extension: ".jadn" for

http://www.example.com/datatypes/v1.2

the abstract schema, and ".json", ".xsd", ".cddl", ".proto", etc. for
corresponding concrete schemas.

F.2 Registration Process

OpenC2 TC work product names and shorthands are coordinated with
OASIS TC Administration during initial work product definition.
Namespace URIs are based on the shorthands from this coordination,
omitting the filename and the "docs" domain component, and using "http"
as the scheme component.

• Actuator Profile Name: ap-<function-shorthand> (e.g., "av" for
anti-virus)

• Example Profile URL: https://docs.oasis-open.org/openc2/ap-
av/v1.0/ap-av-v1.0.html

• Example Namespace: http://oasis-open.org/openc2/ap-av/v1.0
• Example Schema URL: https://oasis-open.org/openc2/ap-

av/v1.0/schema.jadn

Custom actuator profile namespaces are chosen by the profile author and
should be chosen to avoid conflict with namespace URIs registered here.
Custom profile authors may register Namespaces under http://oasis-
open.org/openc2/custom but are not required to do so.

Appendix G. Notices

Copyright © OASIS Open 2022. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to
them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified
in any way, including by removing the copyright notice or references to
OASIS, except as needed for the purpose of developing any document or
deliverable produced by an OASIS Technical Committee (in which case
the rules applicable to copyrights, as set forth in the OASIS IPR Policy,
must be followed) or as required to translate it into languages other than
English.

https://docs.oasis-open.org/openc2/ap-av/v1.0/ap-av-v1.0.html
https://docs.oasis-open.org/openc2/ap-av/v1.0/ap-av-v1.0.html
http://oasis-open.org/openc2/ap-av/v1.0
https://oasis-open.org/openc2/ap-av/v1.0/schema.jadn
https://oasis-open.org/openc2/ap-av/v1.0/schema.jadn
http://oasis-open.org/openc2/custom
http://oasis-open.org/openc2/custom
https://www.oasis-open.org/policies-guidelines/ipr

The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in
brackets apply to OASIS Standards Final Deliverable documents
(Committee Specification, Candidate OASIS Standard, OASIS Standard,
or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it
has patent claims that would necessarily be infringed by implementations
of this OASIS Standards Final Deliverable, to notify OASIS TC
Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode
of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is
aware of a claim of ownership of any patent claims that would necessarily
be infringed by implementations of this OASIS Standards Final Deliverable
by a patent holder that is not willing to provide a license to such patent
claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS
may include such claims on its website, but disclaims any obligation to do
so.]

[OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS
Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has
made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced
by an OASIS Technical Committee can be found on the OASIS website.
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this OASIS Standards Final
Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property

rights will at any time be complete, or that any claims in such list are, in
fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and
its official outputs. OASIS welcomes reference to, and implementation and
use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark for above guidance.

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark
https://www.oasis-open.org/policies-guidelines/trademark

