
Specification for JSON Abstract Data Notation (JADN) Version
1.0
Committee Specification Draft 02
16 June 2021

This stage:

https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.md (Authoritative)
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.pdf

Previous stage:

https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.md (Authoritative)
https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.html
https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.pdf

Latest stage:

https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.md (Authoritative)
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.pdf

Technical Committee:

OASIS Open Command and Control (OpenC2) TC

Chairs:

Joe Brule (jmbrule@nsa.gov), National Security Agency
Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC

Editor:

David Kemp (d.kemp@cyber.nsa.gov), National Security Agency

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

JSON schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/schemas/jadn-v1.0.json
JADN schema for JADN documents: https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/schemas/jadn-v1.0.jadn

Abstract:

JSON Abstract Data Notation (JADN) is a UML-based information modeling language that defines data structure independently of data
format. Information models are used to define and generate physical data models, validate information instances, and enable lossless
translation across data formats. A JADN specification consists of two parts: type definitions that comprise the information model, and
serialization rules that define how information instances are represented as data. The information model is itself an information instance
that can be serialized and transferred between applications. The model is documented using a compact and expressive interface definition
language, property tables, or entity relationship diagrams, easing integration with existing design processes and architecture tools.

Status:

This document was last revised or approved by the OASIS Open Command and Control (OpenC2) TC on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of this document. Any other
numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 1 of 47

https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.md
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.pdf
https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.md
https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.html
https://docs.oasis-open.org/openc2/jadn/v1.0/csd01/jadn-v1.0-csd01.pdf
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.md
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:jmbrule@nsa.gov
https://www.nsa.gov/
mailto:duncan@sfractal.com
http://www.sfractal.com/
mailto:d.kemp@cyber.nsa.gov
https://www.nsa.gov/
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/schemas/jadn-v1.0.json
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/schemas/jadn-v1.0.jadn
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical

TC members should send comments on this specification to the TC's email list. Others should send comments to the TC's public comment
list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-
open.org/committees/openc2/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee
was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/openc2/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in
separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose
narrative document(s), the content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] and [RFC8174]
when, and only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be used:

[JADN-v1.0]
JSON Abstract Data Notation Version 1.0. Edited by David Kemp. 16 June 2021.
OASIS Committee Specification Draft 02. https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html. Latest stage:
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 2 of 47

https://www.oasis-open.org/committees/openc2/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/committees/openc2/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/openc2/jadn/v1.0/csd02/jadn-v1.0-csd02.html
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html

Notices
Copyright © OASIS Open 2021. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the
organization and its official outputs.

For complete copyright information please see the Notices section in the Appendix.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 3 of 47

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/

Table of Contents
1 Introduction

1.1 Changes from earlier versions
1.2 Glossary

1.2.1 Definitions of terms
1.2.2 Acronyms and abbreviations

2 Information vs. Data
2.1 Graph Modeling
2.2 Information Modeling
2.3 Information Definition Formats
2.4 Implementation

3 JADN Types
3.1 Type Definitions

3.1.1 Requirements
3.1.2 Name Formats
3.1.3 Upper Bounds
3.1.4 Descriptions

3.2 Options
3.2.1 Type Options
3.2.2 Field Options

3.3 JADN Extensions
3.3.1 Type Definition Within Fields
3.3.2 Field Multiplicity
3.3.3 Derived Enumerations
3.3.4 MapOf With Enumerated Key
3.3.5 Pointers
3.3.6 Links

4 Serialization
4.1 Verbose JSON Serialization
4.2 Compact JSON Serialization:
4.3 Concise JSON Serialization:
4.4 CBOR Serialization

5 Definition Formats
5.1 JADN-IDL Format
5.2 Table Style
5.3 Entity Relationship Diagrams

6 Schema Packages
7 Conformance
Appendix A. References

A.1 Normative References
A.2 Informative References

Appendix B. Safety, Security and Privacy Considerations
Appendix C. Acknowledgments

C.1 Special Thanks
C.2 Participants

Appendix D. Revision History
Appendix E. JSON Schema for JADN Documents
Appendix F. JADN Meta-schema for JADN Documents

F.1 Package
F.2 Type Definitions

Appendix G. JADN Type Definitions From This Document
Appendix H. Notices

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 4 of 47

1 Introduction
RFC 3444, "Information Models and Data Models", notes that the main purpose of an information model is to model objects at a
conceptual level, independent of specific implementations or protocols used to transport the data. RFC 8477, "IoT Semantic
Interoperability Workshop 2016", describes a lack of consistency across Standards Developing Organizations in defining application layer
data, attributing it to the lack of an encoding-independent standardization of the information represented by that data. This document
defines an information modeling language intended to address that gap. JADN is a formal description technique that combines type
constraints from the Unified Modeling Language UML with data abstraction based on information theory and structural organization using
results from graph theory.

As shown in Figure 1, industry has multiple, often conflicting definitions of data modeling terms, including the term "Information
Engineering", which at one time referred to data modeling but is now more closely aligned with information theory and machine learning.

Ackoff's Knowlege Hierarchy defines data as "symbols that are properties of observables" and informally calls information
"descriptions inferred from data".
UML defines DataTypes (simple classifiers where instances are distinguished only by value) and Classes (structured classifiers
where instances have behavior, inheritance, roles, and other complex characteristics).
Traditional data modeling defines conceptual, logical and physical data models without considering information at all.
Information modeling formalizes the relationship between information and data, defining a technology-agnostic information layer that
lies between the logical data model and multiple technology-specific physical data models.

Figure 1: Information Engineering Terminology

UML class models and diagrams are commonly referred to as "Data Models", but they model knowledge of real-world entities using
classes. In contrast, information models model data itself using datatypes. A practical distinction is that class models are undirected
graphs with an unlimited variety of classes and semantic relationships, while information models are directed graphs with a small
predefined set of base datatypes and only two kinds of relationship: "contain" and "reference". Designing an information model from a
class/logical model is largely a matter of assigning the kind and direction of each relationship, establishing identifiers for all referenceable
datatypes, and selecting the kind of each datatype from among the base types defined by an information modeling language. Converting
an information model to a data model means applying serialization rules for each base type that produce physical data in the desired
format.

1.1 Changes from CSD 01
Added serialization style description to Section 2.2.
Removed the Null base type from Table 3.1.
Added default values for type definition elements to Section 3.1.1
Raised the default maximum length for type and field names from 32 to 64 characters (Section 3.1.2).

1.2 Glossary
1.2.1 Definitions of terms

Information: A measure of the entropy (novelty, or "news value") of a message. Information is the minimum data needed to
represent the essential meaning of a message, excluding data that is known a priori and data that does not affect meaning.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 5 of 47

Information Model: An abstract schema that defines the structure and value constraints of information used within and across
applications, irrespective of data format.

Data Model: A concrete schema that defines the structure and value constraints of serialized data. A single information model
corresponds to multiple equivalent data models; two data models are equivalent if they represent the same information.

Graph: A mathematical structure used to model pairwise relationships between objects. An information model is a graph where
nodes are information type definitions and edges are relationships between types.

Package: A container that defines a namespace for the set of types it contains. A type can reference types from another package
using the referenced namespace.

Document: A series of octets described by a data format applied to an information model, or equivalently, by a data model.

Well-formed: A well-formed document follows the syntactic structure of the document's media type.

Valid: An instance is valid if it satisfies the constraints defined in an information model. A document is valid if it is well-formed and
also corresponds to a valid instance.

Data Format: A data format, defined by serialization rules, specifies the media type (XML, JSON, Protobuf, ...), design goals (human
readability, efficiency), and style preferences for documents in that format.

Instance: An instance, or API value, is an item of information that satisfies the structure and value constraints defined by a type.
Types are defined by an information modeling language; JADN built-in types are:

Primitive: Boolean, Binary, Integer, Number, String
Enumeration: Enumerated
Specialization: Choice
Structured: Array, ArrayOf, Map, MapOf, Record

Instance Equality: Two instances are equal if and only if they are of the same type and have the same information value. Formatting
differences, including a document's data format, are insignificant. An IPv4 address serialized as a JSON dotted-quad is equal to an
IPv4 address serialized as a CBOR byte string if and only if they have the same 32 bit value. A Record instance serialized as an
array is equal to a Record instance serialized as a map if and only if they have the same keys and the same value for each key.

Serialization: Serialization, or encoding, converts application information into a document. De-serialization, or decoding, converts a
document into information instances usable by applications.

Description: Description elements are reserved for comments from schema authors to readers or maintainers of the schema, and
are ignored by applications using the schema.

1.2.2 Acronyms and abbreviations

DAG: Directed Acyclic Graph
DM: Data Model
IM: Information Model
UML: Unified Modeling Language

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 6 of 47

2 Information vs. Data
Information is what needs to be communicated between applications, and data is how that information is represented when
communicating. More formally, information is the unexpected data, or entropy, contained in a document. When information is serialized for
transmission in a canonical format, the additional data used for purposes such as text conversion, delimiting, and framing contains no
information because it is known a priori. If the serialization is non-canonical, any additional entropy introduced during serialization (e.g.,
whitespace, leading zeroes, field reordering, case-insensitive capitalization) is discarded on deserialization.

A variable that can take on 2^N different values conveys at most N bits of information. For example, an IPv4 address that can specify 2^32
different addresses is, by definition, a 32 bit value*. But different data may be used to represent that information:

IPv4 dotted-quad contained in a JSON string: "192.168.141.240" (17 bytes / 136 bits).
IPv4 dotted-quad contained in a CBOR string: 0x6F3139322E3136382E3134312E323430 (16 bytes / 128 bits)
Hex value contained in a JSON string: "C0A88DF0" (10 bytes / 80 bits)
CBOR byte string: 0x44c0a88df0 (5 bytes / 40 bits).
IPv4 packet (unadorned RFC791-style serialization): 0xc0a88df0 (4 bytes / 32 bits).

The 13 extra bytes used to format a 4 byte IP address as a dotted quad are useful for display purposes, but provide no information to the
receiving application. Field names and enumerated strings selected from a dozen possibliities convey less than four bits of information,
while the strings themselves may be half a dozen to hundreds of bytes of data. By distinguishing information from data, information
modeling is key to effectively using both binary data formats such as Protobuf and CBOR and text formats such as XML and JSON.

* Note: all references to information assume independent uniformly-distributed values. Non-uniform or correlated data contains less
than one byte of information per data byte, but source coding is beyond the scope of this specification.

2.1 Graph Modeling
A JADN information model is a set of type definitions (Section 3.1). Each field in a structured type may be associated with another model-
defined type, and the set of associations between types forms a directed graph. Each association is either a container or a reference, and
the direction of each edge is toward the contained or referenced type.

The container edges of an information model must be acyclic in order to ensure that:

1. every model has one or more roots,
2. every path from a root to any leaf has finite length, and equivalently
3. every instance has finite nesting depth.

There is no restriction on reference edges, so any container cycles in a model can be broken by converting one or more containers to
references.

Logical models are undirected graphs, and a few results from graph theory are useful when constructing information models from logical
models:

A tree is a connected acyclic undirected graph, where any pair of nodes is connected by exactly one path.
A directed (or rooted) tree is a hierarchy. A directed tree is constructed from an (undirected) tree by selecting one node as root and
assigning all edge directions either toward or away from the root.
A directed acyclic graph (DAG) is a directed graph with no directed cycles, or equivalently a directed graph with a topological
ordering, a sequence of nodes such that every edge is directed from earlier to later in the sequence.
A DAG differs from a directed tree in that nodes may have more than one parent.

A DAG can be refactored into another DAG having the same underlying undirected graph, and two information models with the same
underlying graph correspond to the same logical model.

A DAG can be converted to a directed tree by denormalizing (copying subtrees below multi-parent nodes), and a directed tree can be
converted to a DAG by normalizing (combining identical subtrees). Reuse of common types is an important goal in both design of
information models and analysis of data. However, it is sometimes useful to have a tree-structured representation of a document's
structure. Converting a DAG into a directed tree supports applications such as model queries that are otherwise difficult to implement, tree-
structured content statistics, content transformations, and documentation.

2.2 Information Modeling
Data modeling in the conceptual/logical/physical sense is a top-down process starting with goals and ending with a physical data model.
But in practice "data modeling" is often a bottom-up exercise that begins with a collection of desired data instances and ends with a
concrete schema. That process could be called data-centric design, in contrast with information-centric design which begins with a set of
types that reflect purpose rather than syntax. Because an information model is a graph, information-centric design integrates easily with

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 7 of 47

conceptual and logical models, allowing bottom-up and top-down approaches to meet in the middle.

Data-centric Information-centric

A data definition language defines a
specific data storage and exchange
format.

An information modeling language expresses application needs in terms of desired effects.

Serialization-specific details are built
into applications.

Serialization is a communication function like compression and encryption, provided to
applications.

JSON Schema defines integer as a
value constraint on the JSON number
type.

Distinct Integer and Number types reflect mathematical properties regardless of data
representation.

CDDL types: "While arrays and maps
are only two representation formats,
they are used to specify four loosely-
distinguishable styles of composition".

The five structured types are defined unambiguously in terms of composition characteristics.
Each type can be represented in multiple data formats.

No table composition style exists. Tables are a fundamental way of organizing information. The Record type holds tabular
information that can be represented as either arrays or maps in multiple data formats.

Instance equality is defined at the data
level.

Instance equality is defined in ways meaningful to applications. For example "Optional" and
"Nullable" are different at the data level but applications make no logical distinction between
"not present" and "present with null value". Record data values in array and map formats are
different at the data level but their information instances can be compared for equality.

Data-centric design is often
Anglocentric, embedding English-
language identifiers in protocol data.

Information-centric design encourages definition of natural-language-agnostic protocols while
supporting localized text identifiers within applications.

Information-centric design promotes consensus when faced with conflicting developer preferences. Because information is the "substance"
of a message, separating substance (information) from style (data format) may make it easier to agree on an information model first,
deferring debate on data formats. JADN defines three kinds of information that have alternate representations:

1. Primitive types such as dates and IP addresses: text representation or numeric value (formats)
2. Enumerations: string value or numeric id (Enumerated vocabularies and field identifiers)
3. Table rows: column name or position (Records)

These alternatives can be grouped into distinct serialization styles:

Style: Verbose
repeated name-value pairs

Compact
element / property names-values

Concise
machine-to-machine optimized

Primitives Text Representation Text Representation Integer / Binary / Base64

Enumerations String String Integer

Table Rows Column Name Column Position Column Position

A data format is a serialization style applied to a data language: "Compact JSON", "Concise JSON", "Compact XML", "Verbose CBOR",
etc. JSON and XML Transformations uses the terms "Friendly" for XML and JSON encodings that associate data types directly with
variables and "Unfriendly" for encodings that use repeated variable names in name-value pairs. JADN uses Compact and Verbose
respectively to refer to those styles. The name "Verbose" is intended to be descriptive rather than pejorative, as opposed to "Unfriendly".
An information model allows designers to compare Verbose and Compact styles for usability, and allows data to be validated and
successfully round tripped between a readable JSON style and an actually concise CBOR style.

Reverse-engineering an information model from existing data models allows commonalities and incompatibilities to be identified,
facilitating convergence across multiple specifications with similar goals.

2.3 Information Definition Formats
Google Protocol Buffers (Protobuf) is a typical data definition language. A Protobuf definition looks like:

message Person {

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 8 of 47

 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
}

The corresponding JADN definiton in IDL format (Section 5) is structurally similar:

Person = Record
 1 name String
 2 id Integer
 3 email String optional

Property tables (also Section 5) include the same content:

Type: Person (Record)

ID Name Type # Description

1 name String 1

2 id Integer 1

3 email String 0..1

The normative form of a JADN type definition (Section 3) is JSON data:

["Person", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "id", "Integer", [], ""],
 [3, "email", "String", ["[0"], ""]
]]

IDL or property tables are preferred for use in documentation, but conformance is based on normative JSON data.

2.4 Implementation
Two general approaches can be used to implement IM-based protocol specifications:

1. Translate the IM to a data-format-specific schema language such Relax-NG, JSON Schema, Protobuf, or CDDL, then use format-
specific serialization and validation libraries to process data in the selected format. Applications use data objects specific to each
serialization format.

2. Use the IM directly as a format-independent schema language, using IM serialization and validation libraries to process data without
a separate schema generation step. Applications use the same IM instances regardless of serialization format, making it easy to
bridge from one format to another.

Implementations based on serialization-specific code interoperate with those using an IM serialization library, allowing developers to use
either approach.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 9 of 47

3 JADN Types
An information modeling language's types are defined in terms of the characteristics they provide to applications. JADN's base types are:

Table 3-1. JADN Base Types

Type Definition

Primitive

Binary A sequence of octets. Length is the number of octets.

Boolean An element with one of two values: true or false.

Integer A positive or negative whole number.

Number A real number.

String A sequence of characters, each of which has a Unicode codepoint. Length is the number of characters.

Enumeration

Enumerated A vocabulary of items where each item has an id and a string value

Specialization

Choice A discriminated union: one type selected from a set of named or labeled types.

Structured

Array An ordered list of labeled fields with positionally-defined semantics. Each field has a position, label, and type.

ArrayOf(vtype) A collection of fields with the same semantics. Each field has type vtype. Ordering and uniqueness are specified by a
collection option.

Map An unordered map from a set of specified keys to values with semantics bound to each key. Each key has an id and
name or label, and is mapped to a value type.

MapOf(ktype,
vtype)

An unordered map from a set of keys of the same type to values with the same semantics. Each key has key type
ktype, and is mapped to value type vtype.

Record An ordered map from a list of keys with positions to values with positionally-defined semantics. Each key has a
position and name, and is mapped to a value type. Represents a row in a spreadsheet or database table.

An application that uses JADN types MUST exhibit the behavior specified in Table 3-1. Applications MAY use any programming
language data types or mechanisms that exhibit the required behavior.
An instance of a Map, MapOf, or Record type MUST NOT have more than one occurrence of each key.
An instance of a Map, MapOf, or Record type MUST NOT have a key of the null type.
An instance of a Map, MapOf, or Record type with a key mapped to a null value MUST compare as equal to an otherwise identical
instance without that key.
The length of an Array, ArrayOf or Record instance MUST not include null values after the last non-null value.
Two Array, ArrayOf or Record instances that differ only in the number of trailing nulls MUST compare as equal.

As described in Table 3-1, JADN structured types define if their members are Ordered and/or Unique. They also distinguish between
homogeneous collections where all members have the same type and heterogeneous collections where each member has a specified
type. For homogeneous collections JADN uses the single "ArrayOf" type with a set, unique or unordered option (Section 3.2.1) rather than
defining separate names for each collection type.

Ordered Unique Traditional
Name

JADN
Same Type

JADN
Specified Type

false true Set ArrayOf+set, MapOf Map

true false Sequence ArrayOf Array

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 10 of 47

true true OrderedSet ArrayOf+unique Record

false false Bag ArrayOf+unordered none

Ordered Unique Traditional
Name

JADN
Same Type

JADN
Specified Type

Accessing an element of a collection whose values are neither ordered nor unique returns an arbitrarily-chosen element. Elements of other
collections are deterministically accessed by position, value, or for the Record type either position or value.

3.1 Type Definitions
JADN type definitions have a fixed structure designed to be easily describable, easily processed, stable, and extensible.

Every definition has five elements:

1. TypeName: the name of the type being defined
2. BaseType: the JADN predefined type (Table 3-1) of the type being defined
3. TypeOptions: an array of zero or more TypeOption (Section 3.2.1) applicable to BaseType
4. TypeDescription: a non-normative comment
5. Fields: an array of Item or Field definitions

If BaseType is a Primitive type, ArrayOf, or MapOf, the Fields array MUST be empty:

If BaseType is Enumerated, each item definition in the Fields array MUST have three elements:

1. ItemID: the integer identifier of the item
2. ItemValue: the string value of the item
3. ItemDescription: a non-normative comment

If BaseType is Array, Choice, Map, or Record, each field definition in the Fields array MUST have five elements:

1. FieldID: the integer identifier of the field
2. FieldName: the name or label of the field
3. FieldType: the type of the field, a predefined type or a TypeName with optional Namespace ID prefix NSID:TypeName
4. FieldOptions: an array of zero or more FieldOption (Section 3.2.2) or TypeOption (Section 3.2.1) applicable to the field
5. FieldDescription: a non-normative comment

The elements are serialized in JSON format as:

[TypeName, BaseType, [TypeOption, ...], TypeDescription, []] (primitive)

[TypeName, BaseType, [TypeOption, ...], TypeDescription, [(enumerated)
 [ItemId, ItemValue, ItemDescription],
 ...
]]

[TypeName, BaseType, [TypeOption, ...], TypeDescription, [(structured)
 [FieldID, FieldName, FieldType, [FieldOption, TypeOption, ...], FieldDescription],
 ...
]]

The same type definition structure can be populated with various levels of detail. At the conceptual level, only TypeName is present, along
with FieldType for attributes that reference other model-defined types. At the logical level FieldName is populated for both base and
reference attribute types. In a full information model, all Type and Options elements are defined:

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 11 of 47

3.1.1 Requirements

TypeName MUST NOT be a JADN predefined type
BaseType MUST be a JADN predefined type
FieldID and FieldName values MUST be unique within a type definition.
If BaseType is Array or Record, FieldID MUST be the ordinal position of the field within the type, numbered consecutively starting at
1.
If BaseType is Enumerated, Choice, or Map, FieldID MAY be any nonconflicting integer tag.
FieldType MUST be a Primitive type, ArrayOf, MapOf, or a model-defined type.
If FieldType is a model-defined type, FieldOptions MUST NOT contain any TypeOption.
ItemValue MAY be any string or MAY be constrained to hold a valid FieldName.
If the Derived Enumerations or Pointers extensions are present in type options, the Fields array MUST be empty.
The default value of TypeOptions, Fields, and FieldOptions is the empty Array. The default value of TypeDescription and
FieldDescription is the empty String. When serializing, default values MAY be included or omitted in the serialized document. When
deserializing, default values MUST be available from the API instance if not present in the document.

Including TypeOption values within FieldOptions is an extension (Section 3.3.1).

3.1.2 Name Formats

JADN does not restrict the syntax of TypeName and FieldName, but naming conventions can aid readability of specifications.

JADN specifications MAY override the default name formats by defining one or more of:
The permitted format for TypeName
The permitted format for FieldName
The permitted format for the Namespace Identifier (NSID) used in type references
A "System" character used in tool-generated or specially-processed type names

Schema authors MUST NOT create FieldNames containing the JSON Pointer field separator "/", which is reserved for use in the
Pointers extension
Schema authors SHOULD NOT create TypeNames containing the System character, but schema processing tools MAY do so
Specifications that do not define alternate name formats MUST use the definitions in Figure 3-1 expressed as ABNF and Regular
Expression:

ABNF:
TypeName = UC *63("-" / Sys / UC / LC / DIGIT) ; PascalCase / Train-Case, 1-64 characters
FieldName = LC *63("_" / UC / LC / DIGIT) ; camelCase / snake_case, 1-64 characters
NSID = (UC / LC) *7(UC / LC / DIGIT) ; Namespace ID, length = 1-8 characters
TypeRef = [NSID ":"] TypeName ; Reference to a defined type with optional namespace prefix

Sys = "$" ; 'DOLLAR SIGN', Used in tool-generated type names, e.g., Color$values.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 12 of 47

UC = %x41-5A ; A-Z
LC = %x61-7A ; a-z
DIGIT = %x30-39 ; 0-9

Regular Expression:
TypeName: ^[A-Z][-$A-Za-z0-9]{0,63}$
FieldName: ^[a-z][_A-Za-z0-9]{0,63}$
NSID: ^[A-Za-z][A-Za-z0-9]{0,7}$

Figure 3-1: JADN Default Name Syntax in ABNF and Regular Expression Formats

Specifications MAY use the same syntax for TypeName and FieldName. Using distinct formats may aid understanding but does not affect
the meaning of type definitions.

3.1.3 Upper Bounds

Type definitions for variable-length types may include maximum size limits using the maxv option defined in Section 3.2.1. If an individual
type does not define an explicit limit, it uses the limit shown in the package's $MaxBinary, $MaxString, or $MaxElements configuration
variable (Section 6). If the specification does not define a limit, the definition defaults to the values shown here, which are deliberately
conservative to encourage specification authors to define limits based on application requirements.

JADN specifications SHOULD define size limits on the variable-length types shown in Figure 3-2.
Specifications that do not define alternate size limits SHOULD use the limits shown in Figure 3-2.

Type Name Limit Description
----- ----- ----- -----------
Binary $MaxBinary 255 Maximum number of octets
String $MaxString 255 Maximum number of characters
Array, ArrayOf, $MaxElements 100 Maximum number of items/properties
Map, MapOf, Record

Figure 3-2: JADN Default Size Limits
3.1.4 Descriptions

Description elements (TypeDescription, ItemDescription and FieldDescription) are reserved for comments from schema authors to
readers or maintainers of the schema.

The description value MUST be a string, which MAY be empty.
Implementations MUST NOT present this string to end users.
Tools for editing schemas SHOULD support displaying and editing descriptions.
Implementations MUST NOT take any other action based on the presence, absence, or content of description values.

Description values MAY be used in debug or error output which is intended for developers making use of schemas. Tools that translate
other media types or programming languages to and from a JADN schema MAY choose to convert that media type or programming
language's native comments to or from description values. Implementations MAY strip description values at any point during processing.

3.2 Options
This section defines the mechanism used to support a varied set of information needs within the strictly regular structure of Section 3.1.
New requirements can be accommodated by defining new options without modifying that structure. Type and Field options are classifiers
that, along with the base type, determine whether data values are instances of the defined type.

Each option is a text string that may be included in TypeOptions or FieldOptions, encoded as follows:

The first character is the option ID. Its Unicode codepoint is the numeric value (FieldID) shown in Section 3.2.1 and Section 3.2.2.
The remaining characters are the option value. Boolean options have no additional characters; if the option ID is present the value of
that option is True.

3.2.1 Type Options

Type options apply to the type definition as a whole. The id, vtype, ktype, enum, and pointer options are intrinsic components of the types
to which they apply. Other options specify value constraints on the type.

TypeOption = Choice
 61 id Boolean // '=' Items and Fields are denoted by FieldID rather than FieldName (Section 3.2.1.1)
 42 vtype String // '*' Value type for ArrayOf and MapOf (Section 3.2.1.2)

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 13 of 47

 43 ktype String // '+' Key type for MapOf (Section 3.2.1.3)
 35 enum String // '#' Extension: Enumerated type derived from a specified type (Section 3.3.3)
 62 pointer String // '>' Extension: Enumerated type pointers derived from a specified type (Section 3.3.5)
 47 format String // '/' Semantic validation keyword (Section 3.2.1.5)
 37 pattern String // '%' Regular expression used to validate a String type (Section 3.2.1.6)
 121 minf Number // 'y' Minimum real number value (Section 3.2.1.7)
 122 maxf Number // 'z' Maximum real number value
 123 minv Integer // '{' Minimum integer value, octet or character count, or element count (Section 3.2.1.7)
 125 maxv Integer // '}' Maximum integer value, octet or character count, or element count
 113 unique Boolean // 'q' ArrayOf instance must not contain duplicate values (Section 3.2.1.8)
 115 set Boolean // 's' ArrayOf instance is unordered and unique (Section 3.2.1.9)
 98 unordered Boolean // 'b' ArrayOf instance is unordered (Section 3.2.1.10)
 88 extend Boolean // 'X' Type is extensible; new Items or Fields may be appended (Section 3.2.1.11)
 33 default String // '!' Default value (Section 3.2.1.12)

TypeOptions MUST contain zero or one instance of each TypeOption.
TypeOptions MUST contain only TypeOption instances allowed for BaseType as shown in Table 3-3, plus a default value.
If BaseType is ArrayOf, TypeOptions MUST include the vtype option and MUST NOT include more than one collection option (set,
unique, or unordered).
If BaseType is MapOf, TypeOptions MUST include ktype and vtype options.

Table 3-3. Allowed Options

BaseType Allowed Options

Binary minv, maxv, format

Boolean

Integer minv, maxv, format

Number minf, maxf, format

String minv, maxv, format, pattern

Enumerated id, enum, pointer, extend

Choice id, extend

Array extend, format, minv, maxv

ArrayOf vtype, minv, maxv, unique, set, unordered

Map id, extend, minv, maxv

MapOf vtype, ktype, minv, maxv

Record extend, minv, maxv

3.2.1.1 Field Identifiers

The id option used with Enumerated, Choice, and Map types determines how fields are specified in API instances of these types. If the id
option is absent, API instances use the FieldName string and the type is referred to as "named". If the id option is present, API instances
use the FieldID tag and the type is referred to as "labeled". The Record type is always named and has no id option; the Array type is its
labeled equivalent.

In named types, FieldName is a defined name that is included in the semantics of the type, must be populated in the type definition,
and may appear in serialized data depending on serialization format.
In labeled types, FieldName is a suggested label that is not included in the semantics of the type, may be empty in the type definition,
and never appears in serialized data regardless of data format.

For example an Enumerated list of HTTP status codes could include the field [403, "Forbidden"]. If the type definition does not include an id
option, the API value is "Forbidden" and serialization rules determine whether FieldID or FieldName is used in serialized data. With the id
option the API and serialized values are always the FieldID 403. The label "Forbidden" may be displayed in messages or user interfaces,
as could customized labels such as "NotAllowed", "Verboten", or "Interdit".

3.2.1.2 Value Type

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 14 of 47

The vtype option specifies the type of each field in an ArrayOf or MapOf type. It may be any JADN type or Defined type.

An ArrayOf or MapOf instance MUST be considered invalid if any of its elements is not an instance of vtype.

3.2.1.3 Key Type

The ktype option specifies the type of each key in a MapOf type.

ktype SHOULD be a Defined type, either an enumeration or a type with constraints such as a pattern or semantic valuation keyword
that specify a fixed subset of values that belong to a category.
A MapOf instance MUST be considered invalid if any of its keys is not an instance of ktype.

3.2.1.4 Derived Enumeration

The enum (Section 3.3.3) and pointer (Section 3.3.5) options are extensions that create an Enumerated type derived from a referenced
Array, Choice, Map or Record type.

3.2.1.5 Semantic Validation

The format option value is a semantic validation keyword. Each keyword specifies validation requirements for a fixed subset of values that
are accurately described by authoritative resources. The format option may also affect how values are serialized, see Section 4.

Table 3-4. Semantic Validation Keywords

Keyword Type Requirement

JSON Schema formats String All semantic validation keywords defined in Section 7.3 of JSON Schema.

eui Binary IEEE Extended Unique Identifier (MAC Address), EUI-48 or EUI-64 as specified in EUI

ipv4-addr Binary IPv4 address as specified in RFC 791 Section 3.1

ipv6-addr Binary IPv6 address as specified in RFC 8200 Section 3

ipv4-net Array Binary IPv4 address and Integer prefix length as specified in RFC 4632 Section 3.1

ipv6-net Array Binary IPv6 address and Integer prefix length as specified in RFC 4291 Section 2.3

i8 Integer Signed 8 bit integer, value must be between -128 and 127.

i16 Integer Signed 16 bit integer, value must be between -32768 and 32767.

i32 Integer Signed 32 bit integer, value must be between -2147483648 and 2147483647.

u<n> Integer Unsigned integer or bit field of <n> bits, value must be between 0 and 2^<n> - 1.

3.2.1.6 Pattern

The pattern option specifies a regular expression used to validate a String instance.

The pattern value SHOULD conform to the Pattern grammar of ECMAScript Section 21.2.
A String instance MUST be considered invalid if it does not match the regular expression specified by pattern.

3.2.1.7 Size and Value Constraints

The minv and maxv options specify size or integer value limits. The minf and maxf options specify real number value limits.

For Binary, String, Array, ArrayOf, Map, MapOf, and Record types:
if minv is not present, it defaults to zero.
if maxv is not present or is zero, it defaults to the upper bound specified in Section 3.1.3.
a Binary instance MUST be considered invalid if its number of bytes is less than minv or greater than maxv.
a String instance MUST be considered invalid if its number of characters is less than minv or greater than maxv.
an Array, ArrayOf, Map, MapOf, or Record instance MUST be considered invalid if its number of elements is less than minv or
greater than maxv.

For Integer types:
if minv is present, an instance MUST be considered invalid if its value is less than minv.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 15 of 47

if maxv is present, an instance MUST be considered invalid if its value is greater than maxv.
For Number types:

if minf is present, an instance MUST be considered invalid if its value is less than minf.
if maxf is present, an instance MUST be considered invalid if its value is greater than maxf.

3.2.1.8 Unique Values

The unique option specifies that values in an array must not be repeated.

For the ArrayOf type, if unique is present an instance MUST be considered invalid if it contains duplicate values.

3.2.1.9 Set

The set option specifies that an ArrayOf type is unordered and unique.

For the ArrayOf type, if set is present an instance MUST be considered invalid if it contains duplicate values.

3.2.1.10 Unordered

The unordered option specifies that an ArrayOf type may contain duplicate values and that its values have no defined order. Because
values cannot be selected by value or position, it has the semantics of a "bag" or "urn" from which elements are picked at random.

3.2.1.11 Extension Point

The extend option is an assertion that an Enumerated, Choice, Array, Map or Record type MAY be incomplete and that future versions
MAY add new fields that do not change the definitions of existing fields. This option does not affect the validity of data with respect to a
specific schema, it is an indicator that applications may be able to obtain a newer version of the same package for which the data is valid.
Types without this option assert that the package identifier will be changed if any field is added, modified, or deleted.

3.2.1.12 Default Value

The default option specifies the initial or default value of a field. Applications deserializing a document MUST initialize an unspecified type
with its default value. Serialization behavior is not defined; applications MAY omit or populate fields whose values equal the default.

3.2.2 Field Options

Field options may be specified for each field within a structured type definition.

FieldOption = Choice
 91 minc Integer // '[' Minimum cardinality, default = 1, 0 = optional (Section 3.2.2.1)
 93 maxc Integer // ']' Maximum cardinality, default = 1, 0 = default max, >1 = array
 38 tagid Enumerated // '&' Field containing an explicit tag for this Choice type (Section 3.2.2.2)
 60 dir Boolean // '<' Pointer enumeration treats field as a group of items (Extension: Section 3.3.5)
 75 key Boolean // 'K' Field is a primary key for this type (Extension: Section 3.3.6)
 76 link Boolean // 'L' Field is a foreign key reference to a type instance (Extension: Section 3.3.6)

FieldOptions MUST NOT include more than one of each option.
All TypeOption values (Section 3.2.1) included in FieldOptions are extensions. Each TypeOption MUST apply to FieldType as
defined in Table 3-3.

3.2.2.1 Multiplicity

Cardinality is the number of elements in a group, and multiplicity is the range of allowed cardinalities for that group. The minc and maxc
options specify the minimum and maximum cardinality in a field of an Array, Choice, Map, or Record type:

minc maxc Multiplicity Description Keywords

0 1 0..1 No instances or one instance optional

1 1 1 Exactly one instance required

0 0 0..* Zero or more instances optional, repeated

1 0 1..* At least one instance required, repeated

m n m..n At least m but no more than n instances required, repeated

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 16 of 47

if minc is not present, it defaults to 1.
if maxc is not present, it defaults to the greater of 1 or minc.
if maxc is 0, it defaults to the MaxElements upper bound specified in Section 3.1.3.
if maxc is less than minc, the field definition MUST be considered invalid.

If minc is 0, the field is optional, otherwise it is required.
If maxc is 1 the field is a single element, otherwise it is an array of elements as described in Section 3.3.2.

Within a Choice type minc values of 0 and 1 are equivalent because all fields are optional and exactly one must be present. Values greater
than 1 specify an array of elements.

3.2.2.2 Discriminated Union with Explicit Tag

The Choice type represents a Discriminated Union, a data structure that could take on several different, but fixed, types. By default a
Choice is a Map with exactly one key-value pair, where the key determines the value type. But if the tagid option is present on a Choice
field in an Array or Record container, it indicates that a separate Tag field within that container determines the value type.

The Tag field MUST be an Enumerated type derived from the Choice. It MAY contain a subset of fields from the Choice.

Example:

Product = Choice // Discriminated union
 1 furniture Furniture
 2 appliance Appliance
 3 software Software

Dept = Enumerated // Explicit Tag values derived from the Choice
 1 furniture
 2 appliance
 3 software

Software = String /uri

Stock1 = Record // Discriminated union with intrinsic tag
 1 quantity Integer
 2 product Product // Value = Map with one key/value

Stock2 = Record // Container with explicitly-tagged discriminated union
 1 dept Dept // Tag = one key from Choice
 2 quantity Integer
 3 product Product(TagId[dept]) // Choice specifying an explicit tag field

Example JSON serializations of these types are:

Stock1 - Choice with intrinsic tag:

{
 "quantity": 395,
 "product": {"software": "http://www.example.com/B902D1P0W37"}
}

Stock2 - Choice with explicit tag:

{
 "dept": "software",
 "quantity": 395,
 "product": "http://www.example.com/B902D1P0W37"
}

Intrinsic tags:

When discriminated unions are grouped the distinction between intrinsic and explicit tags becomes more apparent. A collection with
intrinsic tags is simply a Map, which results in what the W3C JSON and XML Transformations Workshop called "Friendly" encodings.

 Hashes = Map{1..*} // Multiple discriminated unions with intrinsic tag is a Map

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 17 of 47

 1 md5 Binary{16..16} /x optional
 2 sha1 Binary{20..20} /x optional
 3 sha256 Binary{32..32} /x optional

Hashes Example:

{
 "sha256": "C9004978CF5ADA526622ACD4EFED005A980058B7B9972B12F9B3A5D0DA46B7D9",
 "md5": "B64CF5EAF07E86D1697D4EEE96A670B6"
}

Explicit tags:

A collection with explicit tags is an array of tag-value pairs. It is more complex to specify, and it results in "UnFriendly" encodings with
repeated tag and value keys. Yet because some specifications are written in this style, the tagid option exists to designate an explicit field
to be used to specify the value type.

 Hashes2 = ArrayOf(HashVal) // Multiple discriminated unions with explicit tags is an Array

 HashVal = Record
 1 algorithm Enumerated(Enum[HashAlg]) // Tag - one key from Choice
 2 value HashAlg(TagId[algorithm]) // Value selected from Choice by 'algorithm' field

 HashAlg = Choice
 1 md5 Binary{16..16} /x
 2 sha1 Binary{20..20} /x
 3 sha256 Binary{32..32} /x

Hashes2 Example:

[
 {
 "algorithm": "md5",
 "value": "B64CF5EAF07E86D1697D4EEE96A670B6"
 },{
 "algorithm": "sha256",
 "value": "C9004978CF5ADA526622ACD4EFED005A980058B7B9972B12F9B3A5D0DA46B7D9"
 }
]

3.3 JADN Extensions
JADN consists of a set of core definition elements, plus several extensions that make type definitions more compact or support the DRY
software design principle. Extensions are syntactic sugar that can be replaced by core definitions without changing their meaning.
Unfolding definitions into core format simplifies the code needed to serialize and validate data and may clarify their meaning, but creates
additional definitions that must be kept in sync.

The following extensions can be converted to core definitions:

Anonymous type definition within a field
Field multiplicity other than required/optional
Derived enumeration
MapOf type with Enumerated key type
Pointers
Links

3.3.1 Type Definition Within Fields

A type without fields (Primitive types, ArrayOf, MapOf) may be defined anonymously within a field of a structure definition. Unfolding
converts all anonymous type definitions to explicit named types and excludes all TypeOption values (Section 3.2.1) from FieldOptions.

Example:

Member = Record

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 18 of 47

 1 name String
 2 email String /email

Unfolding replaces this with:

Member = Record
 1 name String
 2 email Member$email

Member$email = String /email // Tool-generated type definition.

3.3.2 Field Multiplicity

Fields may be defined to have multiple values of the same type. Unfolding converts each field that can have more than one value to a
separate ArrayOf type. The minimum and maximum cardinality (minc and maxc) FieldOptions (Section 3.2.2) are moved from
FieldOptions to the minimum and maximum size (minv and maxv) TypeOptions of the new ArrayOf type, except that if minc is 0 (field is
optional), it remains in FieldOptions and the new ArrayOf type defaults to a minimum size of 1.

Example:

Roster = Record
 1 org_name String
 2 members Member [0..*] // Optional and repeated: minc=0, maxc=0

Unfolding replaces this with:

Roster = Record
 1 org_name String
 2 members Roster$members optional// Optional: minc=0, maxc=1

Roster$members = ArrayOf(Member){1..*} // Tool-generated array: minv=1, maxv=0

If a list with no elements should be represented as an empty array rather than omitted, its type definition must include an explicit ArrayOf
type rather than using the field multiplicity extension:

Roster = Record
 1 org_name String
 2 members Members // members field is required: default minc = 1, maxc = 1

Members = ArrayOf(Member) // Explicitly-defined array: default minv = 0, maxv = 0

3.3.3 Derived Enumerations

An Enumerated type defined with the enum option has fields copied from the type referenced in the option rather than being listed
individually in the definition. Unfolding removes enum from Type Options and adds fields containing FieldID, FieldName, and
FieldDescription from each field of the referenced type.

In JADN-IDL (Section 5.1) the enum option is represented as a function string: "Enum(<referenced-type>)". Within ArrayOf and MapOf
types, the ktype and vtype options may contain an enum option. As an example the IDL value "ArrayOf(Enum(Pixel))" corresponds to the
JADN vtype option "*#Pixel".

Unfolding references an explicit Enumerated type if it exists, otherwise it creates an explicit Enumerated type. It then replaces the type
reference with the name of the explicit Enumerated type.

Example:

Pixel = Map
 1 red Integer
 2 green Integer
 3 blue Integer

Channel = Enumerated(Enum[Pixel]) // Derived Enumerated type

ChannelMask = ArrayOf(Enum[Pixel]) // ArrayOf(derived enumeration)

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 19 of 47

Unfolding replaces the Channel and ChannelMask definitions with:

Channel2 = Enumerated
 1 red
 2 green
 3 blue

ChannelMask2 = ArrayOf(Channel)

3.3.4 MapOf With Enumerated Key

A MapOf type where ktype is Enumerated is equivalent to a Map. Unfolding replaces the MapOf type definition with a Map type with keys
from the Enumerated ktype. This is the complementary operation to derived enumeration. In order to use this extension, each ItemValue of
the Enumerated type must be a valid FieldName.

Example:

Channel3 = Enumerated
 1 red
 2 green
 3 blue

Pixel3 = MapOf(Channel3, Integer)

Unfolding replaces the Pixel MapOf with the explicit Pixel Map shown under Derived Enumerations.

3.3.5 Pointers

Applications may need to model both individual types and collections of types, similar to the way filesystems have files and directories. The
"dir" option (Section 3.2.2) marks a field as a collection of types. The dir option has no effect on the structure or serialization of information;
its sole purpose is to support pathname generation using the Pointer extension.

A recursive filesystem listing contains pathnames of all files in and under the current directory. The Pointer extension (Section 3.2.1)
generates a list of all type definitions in and under the specified type. Unfolding replaces the Pointer extension with an Enumerated type
containing a JSON Pointer pathname for each type. If no fields in the specified type are marked with the "dir" option, the Pointer extension
has the same fields as the Derived Enumeration extension except that IDs are sequential rather than copied from the referenced type.

Example:

Catalog = Record
 1 a TypeA
 2 b/ TypeB

TypeA = Record
 1 x Number
 2 y Number

TypeB = Record
 1 foo String
 2 bar Integer

Paths = Enumerated(Pointer[Catalog])

In this example, Catalog field "a" is a single type and field "b" is designated as a collection by the "dir" option (shown as "b/"). Unfolding
replaces Paths with an Enumerated type containing JSON Pointers to all leaf types in and under Catalog:

Paths2 = Enumerated
 1 a // Item 1
 2 b/foo // Item 2
 3 b/bar // Item 3

This is useful when an application 1) needs a category of types, e.g., "Items", 2) defines these types in multiple locations in a hierarchy, and
3) needs identifiers for each type in the category.

It also allows referencing type definitions across specifications. If TypeB is defined in Specification B, its subtypes can be referenced from

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 20 of 47

Specification A under field name "b". This facilitates distributed development of packages regardless of whether the underlying data format
has native namespace support.

The structure of a "Catalog" instance is not affected by this extension. Although "a/x" is a valid JSON Pointer to a specific value (57.9),
"Catalog" does not define "a" as a dir so "a/x" is not listed in Paths and its value is not considered an "Item":

{
 "a": {"x": 57.9, "y": 4.841}, <-- "a" is Item 1 (TypeA)
 "b": { <-- "b" is a dir or namespace mount point, not an Item.
 "foo": "Elephant", <-- "b/foo" is Item 2 (String)
 "bar": 762 <-- "b/bar" is Item 3 (TypeC)
 }
}

Note that the enum and pointer extensions create shallow dependencies: the referenced types are needed in order to unfold them but
types below the direct references are not.

3.3.6 Links

The container graph of an information model cannot have cycles, meaning that an instance of a type cannot recursively contain other
instances of that type either directly or indirectly through other types. But a type can contain references to itself or to other types without
restriction, as long as the referenced type contains a primary key that identifies instances of that type.

The link extension supports references: the key option designates a field as a primary key, and the link option designates a field as a
foreign key that references an instance of the specified type. The key and link options do not affect serialization or validation of data, but
they MAY be used by applications to perform relationship-aware operations such as checking referential integrity.

As an example, a Person type might include family, friend, and employment relationships:

Person = Record
 1 id Key(Integer)
 2 name String
 3 mother Link(Person)
 4 father Link(Person)
 5 siblings Link(Person) [0..*]
 6 friends Link(Person) [0..*]
 7 employer Link(Organization) optional

Organization = Record
 1 name String
 2 ein Key(String{10..10})

Unfolding creates an explicit type for each key and replaces links with that type. Unfolded types support syntactic validation of individual
instances but do not include an explicit indication of identifier uniqueness or relationships between instances:

Person = Record
 1 id Person$id
 2 name String
 3 mother Person$id
 4 father Person$id
 5 siblings Person$id [0..*]
 6 friends Person$id [0..*]
 7 employer Organization$ein optional

Organization = Record
 1 name String
 2 ein Organization$ein

Person$id = Integer
Organization$ein = String{10..10}

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 21 of 47

4 Serialization
Applications may use any internal information representation that exhibits the characteristics defined in Table 3-1. Serialization rules define
how to represent instances of each type using a specific format. Several serialization formats are defined in this section. In order to be
usable with JADN, serialization formats defined elsewhere must:

Specify an unambiguous serialized representation for each JADN type
Specify how each option applicable to a type affects serialized values
Specify any validation requirements defined for that format

4.1 Verbose JSON Serialization
The following serialization rules represent JADN data types in a human-readable JSON format using name-value encoding for tabular data.

When using JSON serialization, instances of JADN types without a format option listed in this section MUST be serialized as:

JADN Type JSON Serialization Requirement

Binary JSON string containing Base64url encoding of the binary value as defined in Section 5 of RFC 4648.

Boolean JSON true or false

Integer JSON number

Number JSON number

String JSON string

Enumerated JSON string ItemValue

Enumerated
with "id"

JSON integer ItemID

Choice JSON object with one property. Property key is FieldName.

Choice with
"id"

JSON object with one property. Property key is FieldID converted to string.

Array JSON array of values with types specified by FieldType. Omitted optional values are null if before the last specified
value, otherwise omitted.

ArrayOf JSON array of values with type vtype, or JSON null if vtype is null.

Map JSON object. Property keys are FieldNames.

Map with "id" JSON object. Property keys are FieldIDs converted to strings.

MapOf JSON object if ktype is a String type, JSON array if ktype is not a String type, or JSON null if vtype is null. Properties
have key type ktype and value type vtype. MapOf types with non-string keys are serialized as in CBOR: a JSON array of
keys and cooresponding values [key1, value1, key2, value2, ...].

Record JSON object. Property keys are FieldNames.

Format options that affect JSON serialization

When using JSON serialization, instances of JADN types with one of the following format options MUST be serialized as:

Option JADN
Type

JSON Serialization Requirement

x Binary JSON string containing Base16 (hex) encoding of a binary value as defined in RFC 4648 Section 8. Note that the
Base16 alphabet does not include lower-case letters.

ipv4-
addr

Binary JSON string containing a "dotted-quad" as specified in RFC 2673 Section 3.2.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 22 of 47

ipv6-
addr

Binary JSON string containing the text representation of an IPv6 address as specified in RFC 4291 Section 2.2.

ipv4-
net

Array JSON string containing the text representation of an IPv4 address range as specified in RFC 4632 Section 3.1.

ipv6-
net

Array JSON string containing the text representation of an IPv6 address range as specified in RFC 4291 Section 2.3.

Option JADN
Type

JSON Serialization Requirement

Specifications MAY define additional format options for textual representation of Binary, Integer, Number or Array data.

4.2 Compact JSON Serialization:
The following serialization rules represent JADN types in a human-readable JSON format using positional encoding for tabular data.

When using Compact JSON serialization, instances of JADN types MUST be serialized as in section 4.1 except:

JADN
Type

Concise JSON Serialization Requirement

Record JSON array of values with types specified by FieldType. Omitted optional values are null if before the last specified value,
otherwise omitted.

4.3 Concise JSON Serialization:
Concise JSON serialization rules represent JADN data types in a format optimized for minimum size. JSON data in this format may be
used directly for communication or to visualize the content of CBOR-serialized data.

When using Concise JSON serialization, instances of JADN types MUST be serialized as in section 4.1 except:

JADN Type Concise JSON Serialization Requirement

Enumerated JSON integer ItemID

Choice JSON object with one property. Property key is the FieldID converted to string.

Map JSON object. Property keys are FieldIDs converted to strings.

MapOf JSON object if ktype is a String type, JSON array if ktype is not a String type. Members have key type ktype and value
type vtype. MapOf types with non-string keys are serialized as in CBOR: a JSON array of keys and cooresponding
values [key1, value1, key2, value2, ...].

Record JSON array of values with types specified by FieldType. Omitted optional values are null if before the last specified
value, otherwise omitted.

All formats specifying a textual representation for Binary, Integer, Number, or Array types are ignored when using Concise serialization.

4.4 CBOR Serialization
The following serialization rules are used to represent JADN data types in Concise Binary Object Representation (CBOR) format, where
CBOR type #x.y = Major type x, Additional information y.

CBOR type names from Concise Data Definition Language (CDDL) are shown for reference.

When using CBOR serialization, instances of JADN types without a format option listed in this section MUST be serialized as:

JADN Type CBOR Serialization Requirement

Binary bstr: a byte string (#2).

Boolean bool: a Boolean value (False = #7.20, True = #7.21).

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 23 of 47

Integer int: an unsigned integer (#0) or negative integer (#1)

Number float64: IEEE 754 Double-Precision Float (#7.27).

String tstr: a text string (#3).

Enumerated int: an unsigned integer (#0) or negative integer (#1) ItemID.

Choice struct: a map (#5) containing one pair. The first item is a FieldID, the second item has the corresponding FieldType.

Array record: an array of values (#4) with types specified by FieldType. Omitted optional values are null (#7.22) if before the
last specified value, otherwise omitted.

ArrayOf vector: an array of values (#4) of type vtype, or null (#7.22) if vtype is null.

Map struct: a map (#5) of pairs. In each pair the first item is a FieldID, the second item has the corresponding FieldType.

MapOf table: a map (#5) of pairs, or null if vtype is null. In each pair the first item has type ktype, the second item has type
vtype.

Record Same as Array.

JADN Type CBOR Serialization Requirement

Format options that affect CBOR Serialization

When using CBOR serialization, instances of JADN types with one of the following format options MUST be serialized as:

Option JADN Type CBOR Serialization Requirement

f16 Number float16: IEEE 754 Half-Precision Float (#7.25).

f32 Number float32: IEEE 754 Single-Precision Float (#7.26).

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 24 of 47

5 Definition Formats
Section 3.1 defines the normative JSON format of JADN type definitions. Although JSON data is unambiguous, it is not ideal as a
documentation format. This section suggests several more readable ways of describing and documenting information models.

This section is informative

5.1 JADN-IDL Format
JADN Interface Definition Language (IDL) is a textual representation of JADN type definitions. It replicates the structure of Section 3.1 but
combines each type and its options into a single string formatted for readability. The conversion between JSON and JADN-IDL formats is
lossless in both directions, meaning that the IDL described here is unambiguous and complete. But it is not intended to be immutable;
syntactic details may be updated to accommodate new use cases or improve usability without affecting the JADN standard.

The JADN-IDL definition formats are:

Primitive types:

 TypeName = TYPESTRING // TypeDescription

Enumerated type:

 TypeName = TYPESTRING // TypeDescription
 ItemID ItemValue // ItemDescription
 ...

Structured types without the id option:

 TypeName = TYPESTRING // TypeDescription
 FieldID FieldName[/] FIELDSTRING // FieldDescription
 ...

If a field includes the dir FieldOption, the SOLIDUS character (/) as specified in RFC 6901 is appended to FieldName.

Structured types with the id option treat the item/field name as an informative label (see Section 3.2.1.1) and display it in the description
followed by a label terminator ("::"):

 /* Enumerated.ID */
 TypeName = TYPESTRING // TypeDescription
 ItemID // ItemValue:: ItemDescription

 /* Choice.ID, Map.ID */
 TypeName = TYPESTRING // TypeDescription
 FieldID FIELDSTRING // FieldName[/]:: FieldDescription
 ...

Type Options:

TYPESTRING is the value of BaseType or FieldType, followed by string representations of the type options, if applicable to TYPE as
specified in Table 3-3.

TYPEREF is a type name with optional namespace prefix as specified in Section 3.1.2.
FMTNAME is the name of a semantic validation function as specified in Section 3.2.1.5.

 TYPESTRING = TYPE [ID] [FUNC] [RANGEPAT] [FORMAT] [KW] ; TYPE is BaseType or FieldType
 ID = ".ID"
 FUNC = "(" TYPEREF ["," TYPEREF] ")" ; if TYPE is MapOf, ArrayOf
 | "(" FUNCNAME "[" TYPEREF "])" ; if TYPE is Enumerated
 RANGEPAT = "{" NUM [".." NUM] "}"
 | "{pattern=" DQUOTE 1*STR DQUOTE "}" ; if TYPE is String. *STR should be a valid regular
expression
 FORMAT = " /" FMTNAME
 FUNCNAME = "Enum" | "Pointer"
 KW = "unique" | "set" | "unordered" ; if TYPE is ArrayOf

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 25 of 47

 DQUOTE = %x22 ; Double-quote character (")
 STR = %x20-%x7e ; Visible characters plus space

Field Options:

Type and Field options affect the entire line of a field's IDL text:

 FIELDLINE = INT FIELDSTRING
 FIELDSTRING = [FIELDNAME] [DIR] TYPE [MULT | TAGID] [FIELDDESC]
 INT = 1*DIGIT
 DIR = "/"
 TYPE = TYPESTRING
 | "Key(" TYPESTRING ")"
 | "Link(" TYPESTRING ")"
 MULT = "[" INT [".." INT] "]"
 TAGID = "(TagId[" (INT | FIELDNAME) "])"
 FIELDDESC = "//" [FIELDNAME "::"] STR

5.2 Table Style
Some specifications present type definitions in property table form, using varied style conventions. This specification does not define a
normative property table format, but this section shows one example of how JADN definitions may be displayed as property tables.

This style is structurally similar to JADN-IDL and uses its TYPESTRING syntax, but breaks out the MULTIPLICITY field options into a
separate column:

+----------+------------+-----------------+
| TypeName | TYPESTRING | TypeDescription |
+----------+------------+-----------------+

followed by (for structured types without the id option):

+---------+---------------+-------------+--------+------------------+
| FieldID | FieldName[/] | FIELDSTRING | [m..n] | FieldDescription |
+---------+---------------+-------------+--------+------------------+

or (for structured types with the id option):

+---------+-------------+--------+----------------------------------+
| FieldID | FIELDSTRING | [m..n] | FieldName[/]:: FieldDescription |
+---------+-------------+--------+----------------------------------+

Example Markdown Table:

Type: Person (Record)

ID Name Type # Description

1 name String 1

2 id Integer 1

3 email String 0..1

5.3 Entity Relationship Diagrams
Information models extend the Conceptual/Logica/Physical design process. While UML defines a class diagram format that has been
adopted for use in that process, it does not define a datatype diagram format suitable for representing information models. As noted in the
introduction, logical/class models are undirected graphs with semantic relationships while information/datatype models are directed
graphs with two relationship types: contain and reference. Information models may be represented as entity relationship diagrams using
the following conventions:

1. Solid edges represent container relationships, dashed edges represent references.
2. All edges are directed, from container to contained type or from referencing to referenced type.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 26 of 47

Figure 5-1: Logical and Information Entity Relationship Diagrams

The edge type and direction show how instances are serialized, in this case using references from Class to Person. An alternate
information model derived from the same logical model might use references "teaches" and "enrolled_in" from Person to Class.

Figure 5-2 is a GraphViz "dot" file generated from the University information model showing a conceptual level of detail. Dot diagrams may
be viewed at, for example, https://sketchviz.com.

package: http://example.com/uni
exports: ['University']

digraph G {
 graph [fontname=Times, fontsize=12];
 node [fontname=Arial, fontsize=8, shape=box, style=filled, fillcolor=lightskyblue1];
 edge [fontname=Arial, fontsize=7, arrowsize=0.5, labelangle=45.0, labeldistance=0.9];
 bgcolor="transparent";

 n0 [label="University"]
 n0 -> n1 [label="classes", headlabel="1..*", taillabel="1"]
 n0 -> n2 [label="people", headlabel="1..*", taillabel="1"]
 n1 [label="Class"]
 n1 -> n2 [style="dashed", label="teachers", headlabel="1..*", taillabel="1"]
 n1 -> n2 [style="dashed", label="students", headlabel="1..*", taillabel="1"]
 n2 [label="Person"]
}

Figure 5-2: GraphViz Source for University Conceptual ERD

Figure 5-3 is an example instance of the University type serialized in verbose and compact JSON data formats:

{
 "name": "Faber College",
 "classes": [
 {
 "name": "ECE1010",
 "room": "DRGN 105",
 "teachers": ["U-004932"],
 "students": ["U-194325", "U-029437"]
 },
 {
 "name": "ECE1750",
 "room": "FLRS 102",
 "teachers": ["U-004932"],
 "students": ["U-127439", "U-194325", "U-029437"]
 }
],
 "people": [

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 27 of 47

https://sketchviz.com

 {
 "name": "Damien Braun",
 "univ_id": "U-004932",
 "email": "d.braun@faber.edu"
 },
 {
 "name": "Ellie Osborne",
 "univ_id": "U-194325",
 "email": "ellie.osborne@faber.edu"
 },
 {
 "name": "Pierre Cox",
 "univ_id": "U-029437",
 "email": "pc9000@outlook.com"
 },
 {
 "name": "Alden Cantrel",
 "univ_id": "U-127439",
 "email": "alden.cantrel@faber.edu"
 }
]
}

[
 "Faber College",
 [
 ["ECE1010", "DRGN 105", ["U-004932"], ["U-194325", "U-029437"]],
 ["ECE1750", "FLRS 102", ["U-004932"], ["U-127439", "U-194325", "U-029437"]]
],
 [
 ["Damien Braun", "U-004932", "d.braun@faber.edu"],
 ["Ellie Osborne", "U-194325", "ellie.osborne@faber.edu"],
 ["Pierre Cox", "U-029437", "pc9000@outlook.com"],
 ["Alden Cantrel", "U-127439", "alden.cantrel@faber.edu"]
]
]

Figure 5-3: JSON instance of University

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 28 of 47

6 Schema Packages
JADN schemas are organized into packages. A package consists of an optional information section and a list of type definitions:

 Schema = Record // Definition of a JADN package
 1 info Information optional // Information about this package
 2 types Types // Types defined in this package

If the info section is present the package field is required to establish the package's namespace; other fields are optional.

package: A namespace URI that allows type definitions in this package to be unambiguously referenced from other packages. This
is an identifier but not necessarily a locator for accessible resources. The namespace may include major or major.minor versioning
information, such as http://example.com/acme2 or http://example.com/acme/v1.3.
version: Incremental version of this package, a string that compares lexicographically higher than previous versions. The
namespaces field references only package namespaces. Version may be used to determine the most recent definition of a
namespace.
title: A short name for this package.
description: A brief description of purpose or capabilities of this package
comment: Any other information applicable to the package.
copyright: A copyright notice.
license: License for this package. Value is an SPDX licenseId, CC0-1.0 is recommended.
namespaces: Local map of NSIDs (short names) to namespaces. Used within this package to reference types defined in other
packages.
exports: Root types. There are no private type definitions in a package; all types can be referenced using the package's
namespace. Exports allows authors to designate public types and allows schema tools to detect unused types.
config: Values such as name formats and size limits that are customized for this package. See package for the list of configuration
variables.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 29 of 47

http://example.com/acme2
http://example.com/acme/v1.3

7 Conformance
Conformance targets: This document defines two conformance levels for JADN implementations: Core and Extensions.

This document defines several data formats. Conformance claims are made with respect to a specified data format, and conforming
implementations must support at least one data format.

Core JADN
Validate schema packages according to Section 3.1, Section 3.2 and section 6
Validate API values against a schema package
Encode and decode documents according to serialization rules for data format <X> defined in Section Section 4

JADN Extensions
Satisfy all Core requirements
Perform all extension unfolding operations defined in Section 3.3

This document describes information modeling functions but defines no corresponding conformance requirements:

JADN Schema Translator
Translate JADN packages to and from documentation formats (IDL, table, diagram) described in Section 5.

JADN Concrete Schema Generators
Generate format-specific concrete schemas per serialization rules in Section 4.x.

JADN Extensions
Recognize opportunities to fold related types into extensions, i.e., given a core schema package, generate syntactic sugar
where possible.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 30 of 47

Appendix A. References
This appendix contains the normative and informative references that are used in this document. Normative references are specific
(identified by date of publication and/or edition number or version number) and Informative references are either specific or non-specific.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-term validity.

A.1 Normative References
The following documents are referenced in such a way that some or all of their content constitutes requirements of this document.

[ES9]

ECMA International, "ECMAScript 2018 Language Specification", ECMA-262 9th Edition, June 2018, https://www.ecma-
international.org/ecma-262.

[EUI]

"IEEE Registration Authority Guidelines for use of EUI, OUI, and CID", IEEE, August 2017, https://standards.ieee.org/content/dam/ieee-
standards/standards/web/documents/tutorials/eui.pdf.

[JSONSCHEMA]

Wright, A., Andrews, H., Hutton, B., "JSON Schema Validation", Internet-Draft, 16 September 2019, https://tools.ietf.org/html/draft-
handrews-json-schema-validation-02, or for latest drafts: https://json-schema.org/work-in-progress.

[RFC791]

Postel, J., "Internet Protocol", RFC 791, September 1981, http://www.rfc-editor.org/info/rfc791.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
http://www.rfc-editor.org/info/rfc2119.

[RFC2673]

Crawford, M., "Binary Labels in the Domain Name System", RFC 2673, August 1999, https://tools.ietf.org/html/rfc2673.

[RFC4291]

Hinden, R., Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February 2006, http://www.rfc-editor.org/info/rfc4291.

[RFC4632]

Fuller, V., Li, T., "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", RFC 4632, August
2006, http://www.rfc-editor.org/info/rfc4632.

[RFC4648]

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006, http://www.rfc-editor.org/info/rfc4648.

[RFC5234]

Crocker, D., Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC 5234, January 2008, https://tools.ietf.org/html/rfc5234.

[RFC6901]

Bryan, P., Zyp, K., Nottingham, M., "JavaScript Object Notation (JSON) Pointer", RFC 6901, April 2013, https://tools.ietf.org/html/rfc6901

[RFC7049]

Bormann, C., Hoffman, P., "Concise Binary Object Representation (CBOR)", RFC 7049, October 2013, https://tools.ietf.org/html/rfc7049.

[RFC7405]

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC 7405, December 2014, https://tools.ietf.org/html/rfc7405

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 31 of 47

https://www.ecma-international.org/ecma-262
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02
https://json-schema.org/work-in-progress
http://www.rfc-editor.org/info/rfc791
http://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/rfc2673
http://www.rfc-editor.org/info/rfc4291
http://www.rfc-editor.org/info/rfc4632
http://www.rfc-editor.org/info/rfc4648
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7405

http://www.rfc-editor.org/info/rfc8174.

[RFC8200]

Deering, S., Hinden, R., "Internet Protocol, Version 6 (IPv6) Specification", RFC 8200, July 2017, http://www.rfc-editor.org/info/rfc8200.

[RFC8259]

Bray, T., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, December 2017, http://www.rfc-
editor.org/info/rfc8259.

[XMLDATA]

W3C, "XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes", 5 April 2012, https://www.w3.org/TR/xmlschema11-2.

A.2 Informative References
[AVRO]

Apache Software Foundation, "Apache Avro Documentation", https://avro.apache.org/docs/current/.

[BRIDGE]

Thaler, Dave, "IoT Bridge Taxonomy", https://www.iab.org/wp-content/IAB-uploads/2016/03/DThaler-IOTSI.pdf

[DATAMOD]

InfoAdvisors, "What are Conceptual, Logical, and Physical Data Models?", https://www.datamodel.com/index.php/articles/what-are-
conceptual-logical-and-physical-data-models

[DIEK]

Dammann, Olaf, "Data, Information, Evidence, and Knowledge", https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435353/pdf/ojphi-10-
e224.pdf

[DRY]

"Don't Repeat Yourself", https://en.wikipedia.org/wiki/Don%27t_repeat_yourself.

[FDT]

König, H., "Protocol Engineering, Chapter 8", https://link.springer.com/chapter/10.1007%2F978-3-642-29145-6_8

[GRAPH]

Rennau, Hans-Juergen, "Combining graph and tree", XML Prague 2018, https://archive.xmlprague.cz/2018/files/xmlprague-2018-
proceedings.pdf

[GRAPHVIZ]

"Graph Visualization Software", https://graphviz.gitlab.io/

[IE]

Wikipedia, "Information Engineering", https://en.wikipedia.org/wiki/Information_engineering_(field)

[PROTO]

Google Developers, "Protocol Buffers", https://developers.google.com/protocol-buffers/.

[RELAXNG]

OASIS Technical Committee, "RELAX NG", November 2002, https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=relax-ng.

[RFC3444]

Pras, A., Schoenwaelder, J., "On the Difference between Information Models and Data Models", RFC 3444, January 2003,
https://tools.ietf.org/html/rfc3444.

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552,
July 2003, https://www.rfc-editor.org/info/rfc3552.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 32 of 47

http://www.rfc-editor.org/info/rfc8174
http://www.rfc-editor.org/info/rfc8200
http://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/xmlschema11-2
https://avro.apache.org/docs/current/
https://www.iab.org/wp-content/IAB-uploads/2016/03/DThaler-IOTSI.pdf
https://www.datamodel.com/index.php/articles/what-are-conceptual-logical-and-physical-data-models
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435353/pdf/ojphi-10-e224.pdf
https://en.wikipedia.org/wiki/Don%2527t_repeat_yourself
https://link.springer.com/chapter/10.1007%252F978-3-642-29145-6_8
https://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf
https://graphviz.gitlab.io/
https://en.wikipedia.org/wiki/Information_engineering_(field)
https://developers.google.com/protocol-buffers/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=relax-ng
https://tools.ietf.org/html/rfc3444
https://www.rfc-editor.org/info/rfc3552

[RFC7493]

Bray, T., "The I-JSON Message Format", RFC 7493, March 2015, https://tools.ietf.org/html/rfc7493.

[RFC8340]

Bjorklund, M., Berger, L., "YANG Tree Diagrams", RFC 8340, March 2018, https://tools.ietf.org/html/rfc8340.

[RFC8477]

Jimenez, J., Tschofenig, H., Thaler, D., "Report from the Internet of Things (IoT) Semantic Interoperability (IOTSI) Workshop 2016", RFC
8477, October 2018, https://tools.ietf.org/html/rfc8477.

[RFC8610]

Birkholz, H., Vigano, C., Bormann, C., "Concise Data Definition Language", RFC 8610, June 2019, https://tools.ietf.org/html/rfc8610.html.

[THRIFT]

Apache Software Foundation, "Writing a .thrift file", https://thrift-tutorial.readthedocs.io/en/latest/thrift-file.html.

[TRANSFORM]

Boyer, J., et. al., "Experiences with JSON and XML Transformations", October 2011, https://www.w3.org/2011/10/integration-
workshop/s/ExperienceswithJSONandXMLTransformations.v08.pdf

[UML]

"Unified Modeling Language", Version 2.5.1, December 2017, https://www.omg.org/spec/UML/2.5.1/PDF

[UNION]

"Tagged Union", Wikipedia, https://en.wikipedia.org/wiki/Tagged_union.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 33 of 47

https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc8340
https://tools.ietf.org/html/rfc8477
https://tools.ietf.org/html/rfc8610.html
https://thrift-tutorial.readthedocs.io/en/latest/thrift-file.html
https://www.w3.org/2011/10/integration-workshop/s/ExperienceswithJSONandXMLTransformations.v08.pdf
https://www.omg.org/spec/UML/2.5.1/PDF
https://en.wikipedia.org/wiki/Tagged_union

Appendix B. Safety, Security and Privacy Considerations
This document presents a language for expressing the information needs of communicating applications, and rules for generating data
structures to satisfy those needs. As such, it does not inherently introduce security issues, although protocol specifications based on JADN
naturally need security analysis when defined. Such specifications need to follow the guidelines in RFC 3552.

Additional security considerations applicable to JADN-based specifications:

The JADN language could cause confusion in a way that results in security issues. Clarity and unambiguity of this specification could
always be improved through operational experience and developer feedback.
Where a JADN data validator is part of a system, the security of the system benefits from automatic data validation but depends on
both the specificity of the JADN specification and the correctness of the validation implementation. Tightening the specification (e.g.,
by defining upper bounds and other value constraints) and testing the validator against unreasonable data instances can address
both concerns.

Security and bandwidth efficiency are benefits of using an information model. Enumerating strings and map keys defines the information
content of those values, which greatly reduces opportunities for exploitation. A firewall with a security policy of "Allow specific things I
understand plus everything I don't understand" is less secure than a firewall that allows only things that are understood. The "Must-Ignore"
policy of RFC 7493 compromises security by allowing everything that is not understood. Information modeling's "Must-Understand"
approach enhances security and accommodates new protocol elements by adding them to the IM's enumerated lists of things that are
understood. An executable IM format such as JADN provides the agility required to support evolving protocols.

Writers of JADN specifications are strongly encouraged to value simplicity and transparency of the specification. Although JADN makes it
easier to both define and understand complex specifications, complexity that is not essential to satisfying operational requirements is itself
a security concern.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 34 of 47

Appendix C. Acknowledgments
C.1 Special Thanks
The following individuals shared their expertise during creation of this specification and are gratefully acknowledged:

First Name Last Name Company

Carsten Bormann Universität Bremen

Hans-Jürgen Rennau parsQube GmbH

C.2 Participants
The following individuals have participated in the creation of this specification and are gratefully acknowledged:

First Name Last Name Company

Brian Berliner Symantec

Joseph Brule National Security Agency

Toby Considine University of North Carolina

Jason Romano General Dynamics

Duncan Sparrell sFractal Consulting

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 35 of 47

Appendix D. Revision History
Revision Date Editor Changes Made

WD-01 2020-10-18 David Kemp Initial working draft

WD-02 2021-06-16 David Kemp Re-written description, serialization and documentation formats

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 36 of 47

Appendix E. JSON Schema for JADN Documents
A JADN package has the following structure:

{
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "https://oasis-open.org/openc2/jadn/v1.0",
 "description": "Validates structure of a JADN schema, does not check values",
 "type": "object",
 "required": ["types"],
 "additionalProperties": false,
 "properties": {
 "info": {
 "type": "object",
 "required": ["package"],
 "additionalProperties": false,
 "properties": {
 "package": {"type": "string"},
 "version": {"type": "string"},
 "title": {"type": "string"},
 "description": {"type": "string"},
 "comment": {"type": "string"},
 "copyright": {"type": "string"},
 "license": {"type": "string"},
 "namespaces": {"$ref": "#/definitions/Namespaces"},
 "exports": {"$ref": "#/definitions/Exports"},
 "config": {"$ref": "#/definitions/Config"}
 }
 },
 "types": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 2,
 "maxItems": 5,
 "items": [
 {"$ref": "#/definitions/TypeName"},
 {"$ref": "#/definitions/BaseType"},
 {"$ref": "#/definitions/Options"},
 {"$ref": "#/definitions/Description"},
 {"$ref": "#/definitions/Fields"}
]
 }
 }
 },
 "definitions": {
 "Namespaces": {
 "type": "object",
 "propertyNames": {"$ref": "#/definitions/NSID"},
 "patternProperties": {
 "": {
 "type": "string",
 "format": "uri"
 }
 }
 },
 "Exports": {
 "type": "array",
 "items": {"type": "string"}
 },
 "Config": {
 "type": "object",
 "additionalProperties": false,
 "properties": {

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 37 of 47

 "$MaxBinary": {"type": "integer", "minValue": 1},
 "$MaxString": {"type": "integer", "minValue": 1},
 "$MaxElements": {"type": "integer", "minValue": 1},
 "$Sys": {"type": "string", "minLength": 1, "maxLength": 1},
 "$TypeName": {"type": "string", "minLength": 1, "maxLength": 127},
 "$FieldName": {"type": "string", "minLength": 1, "maxLength": 127},
 "$NSID": {"type": "string", "minLength": 1, "maxLength": 127}
 }
 },
 "Fields": {
 "type": "array",
 "items": [
 {"anyOf": [
 {"$ref": "#/definitions/Item"},
 {"$ref": "#/definitions/Field"}
]}
]
 },
 "Item": {
 "type": "array",
 "minItems": 2,
 "maxItems": 3,
 "items": [
 {"type": "integer"},
 {"type": "string"},
 {"$ref": "#/definitions/Description"}
]
 },
 "Field": {
 "type": "array",
 "minItems": 3,
 "maxItems": 5,
 "items": [
 {"type": "integer"},
 {"$ref": "#/definitions/FieldName"},
 {"$ref": "#/definitions/TypeRef"},
 {"$ref": "#/definitions/Options"},
 {"$ref": "#/definitions/Description"}
]
 },
 "NSID": {
 "type": "string"
 },
 "TypeName": {
 "type": "string"
 },
 "TypeRef": {
 "type": "string"
 },
 "FieldName": {
 "type": "string"
 },
 "BaseType": {
 "type": "string",
 "enum": ["Binary", "Boolean", "Integer", "Number", "String",
 "Enumerated", "Choice",
 "Array", "ArrayOf", "Map", "MapOf", "Record"]
 },
 "Options": {
 "type": "array",
 "items": {"type": "string"}
 },
 "Description": {
 "type": "string"
 }
 }

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 38 of 47

}

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 39 of 47

Appendix F. JADN Meta-schema for JADN Documents
A meta-schema is a schema against which other schemas can be validated. The JADN meta-schema validates itself and other JADN
schemas. In order to validate itself, the meta-schema requires a name format change from the JADN default (Section 3.1.2):

FieldName needs to allow configuration variables beginning with '$' and capitalized JADN types

 "config": {
 "$FieldName": "^[$A-Za-z][_A-Za-z0-9]{0,63}$"
 }

F.1 Package
A package is a collection of type definitions along with information about the package.

 title: "JADN Metaschema"
 package: "http://oasis-open.org/jadn/v1.0/schema"
 description: "Syntax of a JSON Abstract Data Notation (JADN) package."
 license: "CC0-1.0"
 exports: ["Schema"]
 config: {"$FieldName": "^[$A-Za-z][_A-Za-z0-9]{0,63}$"}

Schema = Record // Definition of a JADN package
 1 info Information optional // Information about this package
 2 types Types // Types defined in this package

Information = Map // Information about this package
 1 package Namespace // Unique name/version of this package
 2 version String{1..*} optional // Incrementing version within package
 3 title String{1..*} optional // Title
 4 description String{1..*} optional // Description
 5 comment String{1..*} optional // Comment
 6 copyright String{1..*} optional // Copyright notice
 7 license String{1..*} optional // SPDX licenseId (e.g., 'CC0-1.0')
 8 namespaces Namespaces optional // Referenced packages
 9 exports Exports optional // Type defs exported by this package
 10 config Config optional // Configuration variables

Namespaces = MapOf(NSID, Namespace){1..*} // Packages with referenced type defs

Exports = ArrayOf(TypeName){1..*} // Type defs intended to be referenced

Config = Map{1..*} // Config vars override JADN defaults
 1 $MaxBinary Integer{1..*} optional // Schema default max octets
 2 $MaxString Integer{1..*} optional // Schema default max characters
 3 $MaxElements Integer{1..*} optional // Schema default max items/properties
 4 $Sys String{1..1} optional // System character for TypeName
 5 $TypeName String{1..127} optional // TypeName regex
 6 $FieldName String{1..127} optional // FieldName regex
 7 $NSID String{1..127} optional // Namespace Identifier regex

F.2 Type Definitions
The structure of JADN type definitions (Section 3.1) is intended to remain stable, with options providing extensibility.

Types = ArrayOf(Type)
Type = Array
 1 TypeName // type_name::
 2 BaseType // base_type::
 3 Options // type_options::
 4 Description // type_description::
 5 JADN-Type(TagId[base_type]) // fields::

BaseType = Enumerated

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 40 of 47

 1 Binary
 2 Boolean
 3 Integer
 4 Number
 5 String
 6 Enumerated
 7 Choice
 8 Array
 9 ArrayOf
 10 Map
 11 MapOf
 12 Record

JADN-Type = Choice
 1 Binary Empty
 2 Boolean Empty
 3 Integer Empty
 4 Number Empty
 5 String Empty
 6 Enumerated Items
 7 Choice Fields
 8 Array Fields
 9 ArrayOf Empty
 10 Map Fields
 11 MapOf Empty
 12 Record Fields

Empty = Array{0..0}
Items = ArrayOf(Item)
Item = Array
 1 FieldID // item_id::
 2 String // item_value::
 3 Description // item_description::

Fields = ArrayOf(Field)
Field = Array
 1 FieldID // field_id::
 2 FieldName // field_name::
 3 TypeRef // field_type::
 4 Options // field_options::
 5 Description // field_description::

FieldID = Integer{0..*}
Options = ArrayOf(Option){0..10}
Option = String{1..*}
Description = String
Namespace = String /uri // Unique name of a package
NSID = String{pattern="$NSID"} // Default = ^[A-Za-z][A-Za-z0-9]{0,7}$
TypeName = String{pattern="$TypeName"} // Default = ^[A-Z][-$A-Za-z0-9]{0,63}$
FieldName = String{pattern="$FieldName"} // Default = ^[a-z][_A-Za-z0-9]{0,63}$
TypeRef = String // Autogenerated pattern ($NSID ':')? $TypeName

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 41 of 47

Appendix G. JADN Type Definitions From This Document
This appendix contains the JADN type definitions corresponding to all examples in this document.

Section 2.3 Example Definitions:

["Person", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "id", "Integer", [], ""],
 [3, "email", "String", ["[0"], ""]
]]

Section 3.2.2.2 Discriminated Union with Explicit Tag:

[
 ["Product", "Choice", [], "Discriminated union", [
 [1, "furniture", "Furniture", [], ""],
 [2, "appliance", "Appliance", [], ""],
 [3, "software", "Software", [], ""]
]],
 ["Dept", "Enumerated", [], "Explicit Tag values derived from the Choice", [
 [1, "furniture", ""],
 [2, "appliance", ""],
 [3, "software", ""]
]],
 ["Software", "String", ["/uri"], "", []],
 ["Stock1", "Record", [], "Discriminated union with intrinsic tag", [
 [1, "quantity", "Integer", [], ""],
 [2, "product", "Product", [], "Value = Map with one key/value"]
]],
 ["Stock2", "Record", [], "Container with explicitly-tagged discriminated union", [
 [1, "dept", "Dept", [], "Tag = one key from Choice"],
 [2, "quantity", "Integer", [], ""],
 [3, "product", "Product", ["&1"], "Choice specifying an explicit tag field"]
]],
 ["Hashes", "Map", ["{1"], "Multiple discriminated unions with intrinsic tags is a Map", [
 [1, "md5", "Binary", ["/x", "{16", "}16", "[0"], ""],
 [2, "sha1", "Binary", ["/x", "{20", "}20", "[0"], ""],
 [3, "sha256", "Binary", ["/x", "{32", "}32", "[0"], ""]
]],
 ["Hashes2", "ArrayOf", ["*HashVal"], "Multiple discriminated unions with explicit tags is an Array", []],
 ["HashVal", "Record", [], "", [
 [1, "algorithm", "Enumerated", ["#HashAlg"], "Tag - one key from Choice"],
 [2, "value", "HashAlg", ["&1"], "Value selected from Choice by 'algorithm' field"]
]],
 ["HashAlg", "Choice", [], "", [
 [1, "md5", "Binary", ["/x", "{16", "}16"], ""],
 [2, "sha1", "Binary", ["/x", "{20", "}20"], ""],
 [3, "sha256", "Binary", ["/x", "{32", "}32"], ""]
]]
]

Section 3.3.1 Type Definition Within Fields:

[
 ["Member", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "email", "String", ["/email"], ""]
]],
 ["Member2", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "email", "Member2$email", [], ""]
]],
 ["Member2$email", "String", ["/email"], "Tool-generated type definition.", []]

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 42 of 47

]

Section 3.3.2 Field Multiplicity:

[
 ["Roster", "Record", [], "", [
 [1, "org_name", "String", [], ""],
 [2, "members", "Member", ["[0", "]0"], "Optional and repeated: minc=0, maxc=0"]
]],
 ["Roster2", "Record", [], "", [
 [1, "org_name", "String", [], ""],
 [2, "members", "Roster2$members", ["[0"], "Optional: minc=0, maxc=1"]
]],
 ["Roster2$members", "ArrayOf", ["*Member", "{1"], "Tool-generated array: minv=1, maxv=0", []],
 ["Roster3", "Record", [], "", [
 [1, "org_name", "String", [], ""],
 [2, "members", "Members", [], "members field is required: default minc = 1, maxc = 1"]
]],
 ["Members", "ArrayOf", ["*Member"], "Explicitly-defined array: default minv = 0, maxv = 0", []]
]

Section 3.3.3 Derived Enumerations:

[
 ["Channel", "Enumerated", ["#Pixel"], "Derived Enumerated type", []],
 ["ChannelMask", "ArrayOf", ["*#Pixel"], "ArrayOf(derived enumeration)", []],
 ["Channel2", "Enumerated", [], "", [
 [1, "red", ""],
 [2, "green", ""],
 [3, "blue", ""]
]],
 ["ChannelMask2", "ArrayOf", ["*Channel"], "", []]
]

Section 3.3.4 MapOf with Enumerated Key:

Note that the order of elements in TypeOptions and FieldOptions is not significant.

[
 ["Channel3", "Enumerated", [], "", [
 [1, "red", ""],
 [2, "green", ""],
 [3, "blue", ""]
]],
 ["Pixel3", "MapOf", ["+Channel3", "*Integer"], "", []]
]

Section 3.3.5 Pointers:

[
 ["Catalog", "Record", [], "", [
 [1, "a", "TypeA", [], ""],
 [2, "b", "TypeB", ["<"], ""]
]],
 ["TypeA", "Record", [], "", [
 [1, "x", "Number", [], ""],
 [2, "y", "Number", [], ""]
]],
 ["TypeB", "Record", [], "", [
 [1, "foo", "String", [], ""],
 [2, "bar", "Integer", [], ""]
]],
 ["Paths", "Enumerated", [">Catalog"], "", []],
 ["Paths2", "Enumerated", [], "", [

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 43 of 47

 [1, "a", "Item 1"],
 [2, "b/foo", "Item 2"],
 [3, "b/bar", "Item 3"]
]]
]

Section 3.3.6 Links:

[
 ["Person", "Record", [], "", [
 [1, "id", "Integer", ["K"], ""],
 [2, "name", "String", [], ""],
 [3, "mother", "Person", ["L"], ""],
 [4, "father", "Person", ["L"], ""],
 [5, "siblings", "Person", ["[0", "]0", "L"], ""],
 [6, "friends", "Person", ["[0", "]0", "L"], ""],
 [7, "employer", "Organization", ["[0", "L"], ""]
]],
 ["Person", "Record", [], "", [
 [1, "id", "Person$id", [], ""],
 [2, "name", "String", [], ""],
 [3, "mother", "Person$id", [], ""],
 [4, "father", "Person$id", [], ""],
 [5, "siblings", "Person$id", ["[0", "]0"], ""],
 [6, "friends", "Person$id", ["[0", "]0"], ""],
 [7, "employer", "Organization$ein", ["[0"], ""]
]],
 ["Person$id", "Integer", [], "", []],
 ["Organization$ein", "String", ["{10", "}10"], "", []]
]

Section 5.3. Entity Relationship Diagrams:

{
 "info": {
 "package": "http://example.com/uni",
 "exports": ["University"]
 },

 "types": [
 ["University", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "classes", "Class", ["]0"], ""],
 [3, "people", "Person", ["]0"], ""]
]],

 ["Class", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "room", "String", [], ""],
 [3, "teachers", "Person", ["L", "]0"], ""],
 [4, "students", "Person", ["L", "]0"], ""]
]],

 ["Person", "Record", [], "", [
 [1, "name", "String", [], ""],
 [2, "univ_id", "UnivId", ["K"], ""],
 [3, "email", "String", ["/email"], ""]
]],

 ["UnivId", "String", ["%^U-\\d{6}$"], "", []]
]
}

Appendix F. JADN Meta-schema:

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 44 of 47

{
 "info": {
 "title": "JADN Metaschema",
 "package": "http://oasis-open.org/jadn/v1.0/schema",
 "description": "Syntax of a JSON Abstract Data Notation (JADN) package.",
 "license": "CC0-1.0",
 "exports": ["Schema"],
 "config": {
 "$FieldName": "^[$A-Za-z][_A-Za-z0-9]{0,63}$"
 }
 },
 "types": [
 ["Schema", "Record", [], "Definition of a JADN package", [
 [1, "info", "Information", ["[0"], "Information about this package"],
 [2, "types", "Types", [], "Types defined in this package"]
]],
 ["Information", "Map", [], "Information about this package", [
 [1, "package", "Namespace", [], "Unique name/version of this package"],
 [2, "version", "String", ["{1", "[0"], "Incrementing version within package"],
 [3, "title", "String", ["{1", "[0"], "Title"],
 [4, "description", "String", ["{1", "[0"], "Description"],
 [5, "comment", "String", ["{1", "[0"], "Comment"],
 [6, "copyright", "String", ["{1", "[0"], "Copyright notice"],
 [7, "license", "String", ["{1", "[0"], "SPDX licenseId (e.g., 'CC0-1.0')"],
 [8, "namespaces", "Namespaces", ["[0"], "Referenced packages"],
 [9, "exports", "Exports", ["[0"], "Type defs exported by this package"],
 [10, "config", "Config", ["[0"], "Configuration variables"]
]],
 ["Namespaces", "MapOf", ["*Namespace", "+NSID", "{1"], "Packages with referenced type defs", []],
 ["Exports", "ArrayOf", ["*TypeName", "{1"], "Type defs intended to be referenced", []],
 ["Config", "Map", ["{1"], "Config vars override JADN defaults", [
 [1, "$MaxBinary", "Integer", ["{1", "[0"], "Schema default max octets"],
 [2, "$MaxString", "Integer", ["{1", "[0"], "Schema default max characters"],
 [3, "$MaxElements", "Integer", ["{1", "[0"], "Schema default max items/properties"],
 [4, "$Sys", "String", ["{1", "}1", "[0"], "System character for TypeName"],
 [5, "$TypeName", "String", ["{1", "}127", "[0"], "TypeName regex"],
 [6, "$FieldName", "String", ["{1", "}127", "[0"], "FieldName regex"],
 [7, "$NSID", "String", ["{1", "}127", "[0"], "Namespace Identifier regex"]
]],
 ["Types", "ArrayOf", ["*Type"], "", []],
 ["Type", "Array", [], "", [
 [1, "type_name", "TypeName", [], ""],
 [2, "base_type", "BaseType", [], ""],
 [3, "type_options", "Options", [], ""],
 [4, "type_description", "Description", [], ""],
 [5, "fields", "JADN-Type", ["&2"], ""]
]],
 ["BaseType", "Enumerated", [], "", [
 [1, "Binary", ""],
 [2, "Boolean", ""],
 [3, "Integer", ""],
 [4, "Number", ""],
 [5, "String", ""],
 [6, "Enumerated", ""],
 [7, "Choice", ""],
 [8, "Array", ""],
 [9, "ArrayOf", ""],
 [10, "Map", ""],
 [11, "MapOf", ""],
 [12, "Record", ""]
]],
 ["JADN-Type", "Choice", [], "", [
 [1, "Binary", "Empty", [], ""],
 [2, "Boolean", "Empty", [], ""],
 [3, "Integer", "Empty", [], ""],

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 45 of 47

 [4, "Number", "Empty", [], ""],
 [5, "String", "Empty", [], ""],
 [6, "Enumerated", "Items", [], ""],
 [7, "Choice", "Fields", [], ""],
 [8, "Array", "Fields", [], ""],
 [9, "ArrayOf", "Empty", [], ""],
 [10, "Map", "Fields", [], ""],
 [11, "MapOf", "Empty", [], ""],
 [12, "Record", "Fields", [], ""]
]],
 ["Empty", "Array", ["}0"], "", []],
 ["Items", "ArrayOf", ["*Item"], "", []],
 ["Item", "Array", [], "", [
 [1, "item_id", "FieldID", [], ""],
 [2, "item_value", "String", [], ""],
 [3, "item_description", "Description", [], ""]
]],
 ["Fields", "ArrayOf", ["*Field"], "", []],
 ["Field", "Array", [], "", [
 [1, "field_id", "FieldID", [], ""],
 [2, "field_name", "FieldName", [], ""],
 [3, "field_type", "TypeRef", [], ""],
 [4, "field_options", "Options", [], ""],
 [5, "field_description", "Description", [], ""]
]],
 ["FieldID", "Integer", ["{0"], "", []],
 ["Options", "ArrayOf", ["*Option", "}10"], "", []],
 ["Option", "String", ["{1"], "", []],
 ["Description", "String", [], "", []],
 ["Namespace", "String", ["/uri"], "Unique name of a package", []],
 ["NSID", "String", ["%$NSID"], "Default = ^[A-Za-z][A-Za-z0-9]{0,7}$", []],
 ["TypeName", "String", ["%$TypeName"], "Default = ^[A-Z][-$A-Za-z0-9]{0,63}$", []],
 ["FieldName", "String", ["%$FieldName"], "Default = ^[a-z][_A-Za-z0-9]{0,63}$", []],
 ["TypeRef", "String", [], "Autogenerated pattern ($NSID ':')? $TypeName", []]
]
}

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 46 of 47

Appendix H. Notices
Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS
IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document
itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose
of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights,
as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final Deliverable documents
(Committee Specification, Candidate OASIS Standard, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by
implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness
to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced
this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent holder that is not willing to provide a
license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this OASIS
Standards Final Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS
Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or
list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the
organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right
to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Standards Track Work Product

jadn-v1.0-csd02 Copyright © OASIS Open 2021. All Rights Reserved. 16 June 2021 - Page 47 of 47

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

