Non-Standards Track Work Product

QOASISOPEN

OASIS Committee Note

OpenC2 Actuator Profile Development Process
Version 1.0

Committee Note 01
17 January 2024

This stage:

https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.md (Authoritative)
https://docs.oasis-open.org/openc2/cn-appdev/vi1.0/cn01/cn-appdev-v1.0-cn01.html

https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.pdf

Previous stage:
N/A

Latest stage:

https://docs.oasis-open.org/openc2/cn-appdev/vi.0/cn-appdev-v1.0.md (Authoritative)
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.html
https://docs.oasis-open.org/openc2/cn-appdev/vi.0/cn-appdev-v1.0.pdf

Technical Commiittee:
OASIS Open Command and Control (OpenC2) TC

Chairs:

Duncan Sparrell (duncan@sfractal.com), sFractal Consulting LLC
Michael Rosa (mjrosa@nsa.gov), National Security Agency

Editors:

David Lemire (david.lemire@hii-tsd.com), National Security Agency
David Kemp (d.kemp@cyber.nsa.gov), National Security Agency

Related work:
This document is related to:

e Open Command and Control (OpenC2) Architecture Specification Version 1.0. Edited by Duncan Sparrell. 30
September 2022. OASIS Committee Specification 01. https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-
v1.0.html.

e Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by Jason Romano and
Duncan Sparrell. 24 November 2019. OASIS Committee Specification 02. https://docs.oasis-
open.org/openc2/oc2Is/v1.0/oc2Is-v1.0.html.

o JSON Abstract Data Notation Version 1.0. Edited by David Kemp. 17 August 2021. OASIS Committee

Specification 01. https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 1 of 19


https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.md
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.html
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.pdf
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.md
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.html
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.pdf
https://www.oasis-open.org/committees/openc2/
mailto:duncan@sfractal.com
https://www.sfractal.com/
mailto:mjrosa@nsa.gov
https://www.nsa.gov/
mailto:david.lemire@hii-tsd.com
http://www.nsa.gov/
mailto:d.kemp@cyber.nsa.gov
https://www.nsa.gov/
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html

Non-Standards Track Work Product

Abstract:

Open Command and Control (OpenC2) is a concise and extensible language to enable machine-to-machine
communications for purposes of command and control of cyber defense components in a manner that is agnostic of the
underlying products, technologies, transport mechanisms or other aspects of the implementation. OpenC2 Actuator
Profiles (APs) specify the subset of the OpenC2 language relevant in the context of specific actuator functions. A profile
refines the meaning of language elements used to perform the actuator function, and often defines additional elements
that are relevant and/or unique to that function. This Committee Note describes the TC'’s process for using the JSON
Abstract Data Notation (JADN) information modeling language in the development of APs, resulting in a rigorous
schema for an AP properly integrated with the base OpenC2 language.

Status:
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

This document was last revised or approved by the OASIS Open Command and Control (OpenC2) TC on the above
date. The level of approval is also listed above. Check the "Latest stage" location noted above for possible later
revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee
(TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical.

TC members should send comments on this document to the TC's email list. Others should send comments to the TC's
public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web

page at https://www.oasis-open.org/committees/openc2/.

Citation format:
When referencing this document the following citation format should be used:
[AP-Dev-v1.0]

OpenC2 Actuator Profile Development Process Version 1.0. Edited by David Lemire and David Kemp. 17 January

2024. OASIS Committee Note 01. https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.html.
Latest stage: https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.html.

Notices
Copyright © OASIS Open 2024. All Rights Reserved.
Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs.

For complete copyright information please see the full Notices section in an Appendix below.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 2 of 19


https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2#technical
https://www.oasis-open.org/committees/openc2/
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-cn01.html
https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-appdev-v1.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

Non-Standards Track Work Product

Table of Contents

1 Introduction

1.1 Purpose

1.2 Glossary
1.2.1 Definitions of terms
1.2.2 Acronyms and abbreviations
1.2.3 Document conventions
1.3 Background
1.3.1 Open Command and Control (OpenC2)
1.3.2 JSON Abstract Data Notation (JADN)
1.3.3 OpenC2 Actuator Profiles
2 AP Development Process Overview
2.1 AP Specification Structure
2.2 Process Steps
3 AP Development Process Walkthrough
3.1 AP Development Initiation
3.2 Develop Use Cases
3.3 Develop Example Messages
3.4 Develop JADN Schema
3.5 Link JADN Schema
3.6 Create Property Tables
3.7 Develop Specification Text
3.8 lterate To Completion
3.9 Develop Final Example Messages from JADN Schema
3.10 Define Conformance Requirements
3.11 Review, Approval, and Publication
Appendix A. Informative References
Appendix B. Acknowledgments

Appendix C. Revision History
Appendix D. Notices

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved.

17 January 2024 - Page 3 of 19



Non-Standards Track Work Product

1 Introduction
This document is non-normative in its entirety.

1.1 Purpose

This OASIS Committee Note (CN) describes a process for developing OpenC2 Actuator Profiles (APs), including the
use of the JSON Abstract Data Notation (JADN) information modeling language in the development of APs. The process
described here results in an AP design and specification that aligns to the relevent use cases and an associated
rigorous JADN schema that binds the AP to the OpenC2 language.

1.2 Glossary

1.2.1 Definitions of terms
¢ Action: The task or activity to be performed (e.g., 'deny').
o Actuator: The Consumer that executes the Command.

¢ Actuator Profile: The document that defines a category of operations performed by an Actuator (e.g., 'Stateless
Packet Filtering').

¢ Argument: A property of a Command that provides additional information on how to perform the Command, such
as date/time, periodicity, duration, etc.

¢ Command: A Message defined by an Action-Target pair that is sent from a Producer and received by a
Consumer.

¢ Consumer: A managed device / application that receives Commands. Note that a single device / application can
have both Consumer and Producer capabilities.

¢ Information Modeling: A process to understand and document the essential information content relevant to a
system, application, or protocol exchange without regard to how that information is represented in actual
implementations.

¢ Message: A content- and transport-independent set of elements conveyed between Consumers and Producers.
¢ Producer: A manager application that sends Commands.
¢ Request: A Message from a Producer to a Consumer used to convey a Command.

¢ Response: A Message from a Consumer to a Producer acknowledging a Command or returning the requested
resources or status to a previously received Command.

¢ Specifier: A property or field that identifies a Target to some level of precision.
¢ Target: The object of the Action, i.e., the Action is performed on the Target (e.g., IP Address).

1.2.2 Acronyms and abbreviations

Acronym Description

AP Actuator Profile

IM Information Modeling
JADN JSON Object Data Notation
JSON JavaScript Object Notation

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 4 of 19



Non-Standards Track Work Product

Acronym Description
LS Language Specification
OASIS Organization for the Advancement of Structured Information Standards

OpenC2 Open Command and Control

TC Technical Committee

UML Unified Modeling Language

1.2.3 Document conventions

¢ Naming conventions
e Font colors and styles
¢ Typographic conventions

1.3 Background

This section provides background information on OpenC2, JADN, and the role of actuator profiles (APs) to provide a
context for the process described in sections 2 and 3.

1.3.1 Open Command and Control (OpenC2)

OpenC2 is a suite of specifications that enables command and control of cyber defense systems and components.
OpenC2 typically uses a request-response paradigm where a Command is encoded by a Producer (managing
application) and transferred to a Consumer (managed device or virtualized function) using a secure transfer protocol,
and the Consumer can respond with status and any requested information. This request / response paradigm is
illustrated in Figure 1-1.

Figure 1-1: OpenC2 Request / Response Paradigm

OpenC2 OpenC2
Producer OpenC2 | OpenC2 Consumer
Command ) Command
J\ OpenC?2 w
Message
Transfer
OpenC2 OpenC2
Response Response

OpenC2 allows the application producing the commands to discover the set of capabilities supported by the managed
devices (i.e., an introspection capability). This capability permits the managing application to adjust its behavior to take
advantage of the features exposed by the managed device. The capability definitions can be easily extended ina
noncentralized manner, allowing standard and non-standard capabilities to be defined with semantic and syntactic rigor.

OpenC2's approach to automating cybersecurity command and control is described in the OpenC2 Architecture
Specification [OpenC2-Arch-v1.0]. The specifics of the OpenC2 language are defined in the OpenC2 Language

Specification [OpenC2-Lang-v1.0].
1.3.2 JSON Abstract Data Notation (JADN)

cn-appdev-v1.0-cn01

Copyright © OASIS Open 2024. All Rights Reserved.

17 January 2024 - Page 5 of 19



Non-Standards Track Work Product

JSON Abstract Data Notation (JADN) is a UML-based information modeling language that defines data structure
independently of data format. Information models are used to define and generate physical data models, validate
information instances, and enable lossless translation across data formats. A JADN specification consists of two parts:
type definitions that comprise the information model, and serialization rules that define how information instances are
represented as data. The information model is itself an information instance that can be serialized and transferred
between applications. The model is documented using a compact and expressive interface definition language, property
tables, or entity relationship diagrams, easing integration with existing design processes and architecture tools.

The OpenC2 TC has published a JADN Specification [JADN-v1.0], and a companion CN describing the use of JADN in
Information Modeling (IM) [IM-JADN-v1.0].

1.3.3 OpenC2 Actuator Profiles

As described in the OpenC2 Architecture Specification, APs serve the purpose of scoping the general purpose
OpenC2 language to the C2 of a particular cyberdefense function:

OpenC2 Actuator Profiles specify the subset of the OpenC2 language relevant in the context of specific actuator
functions. Cyber defense components, devices, systems and/or instances may (in fact are likely to) implement multiple
profiles. A profile refines the meaning of language elements (actions, targets, command arguments, results) used to
perform the actuator function, and often defines additional elements that are relevant and/or unique to that function.

The goal of this CN is to document a well-formed approach to developing APs that takes advantage of the rigor provided
by applying JADN information modeling to the process.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 6 of 19



Non-Standards Track Work Product

2 AP Development Process Overview

This section describes the standard structure of an OpenC2 AP and provides an overview of the development process
that will be detailed in Section 3.

2.1 AP Specification Structure

OpenC2 APs employ a common structure to ensure consistent inclusion of the essential content. As APs are published
as OASIS Specifications, the structure also incorporates standard document elements defined by OASIS. As specified
inthe OpenC2 Language Specification, an AP may extend the OpenC2 language by defining extension targets,
arguments, and specifiers needed to support the function the AP is addressing, but may not define actions beyond those
contained inthe LS.

The focus of the process described in this CN is to identify and refine the specific actions, targets, arguments, specifiers,
and supporting data types needed for the AP, to illustrate their use with example message content, and to formally define
thatin a schema using the JADN information modeling language.

e Body
o 1: Introduction (including Glossary, Acronyms and Abbreviation, Overview, Purpose and Scope)
o 2:OpenC2 Language Binding
s 2.1: OpenC2 Command Components
2.1.1: Actions -- identifies the actions relevant for this AP
2.1.2: Targets - identifies the targets relevant for this AP, including extension targets
2.1.3: Type Definitions -- identifies extension types relevant for this AP targets
2.1.4: Command Arguments
2.1.5: Actuator Specifiers
s 2.2: OpenC2 Response Components
s 2.3: OpenC2 Commands -- defines the valid Action / Target pairs for this AP
s 2.3.x-- describes each valid command and the expected behavior
o 3: Conformance -- defines requirements for claiming conformance to this AP
¢ Annex A: JADN Schema -- identifies the JADN schema files defining the normative schema for this AP. The
schema file(s) are normative, per OASIS conventions, and take precedence over the text in the AP specification.
The schema(s) are linked in an Annex to support potential adoption of the AP as an ITO-T Recommendation
(Annexes are normative in [TU-T Recommendations, Appendices are non-normative).
e Appendices
o Appendix A: References
Appendix B: Safety, Security, and Privacy Considerations
Appendix C: Acknowledgements
Appendix D: Revision History
Appendix E: Message Examples
Appendix F: Notices
¢ Associated schema files (packaged separately, linked from Annex A)

o o o o

[e]

2.2 Process Steps

Figure 2-1 illustrates a process for the development of an Actuator Profile (AP) based on defining use cases,
prototopying messages, and formalizing that material in a JADN information model. The process assumes a degree of
iteration toward completion and its execution does not need to be strictly linear.

Note: inital draft graphic, to be refined as document develops

Figure 2-1: Actuator Profile Development Process

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 7 of 19



Non-Standards Track Work Product

Identify AP Requirements & Scope

'

Obtain TC Approval to Proceed

'

Request Starter Doc & Repo from OASIS

—

Develop Use Case(s)

v

Develop Supporting Examples Messages

O

: + 4

£ | Define JADN Schema(s) Matching Examples <

k]

E

g + 4

b

z Link JADN Schema(s) to Annex A Sl bl
o ' Tooling
o

<

v

Create Property Tables from JADN Schema(s) <

Add Property Tables & Text to Document
Develop Final Example Messages

|

Define Conformance Requirements

v

Review, Update, Finalize, Publish

1. AP Development Initiation: Identify the need, define the scope, receive TC approval, request a starter document,
establish a work environment.

2. Develop AP Content: a development loop for creating the AP,
A) Develop Use Cases: Identify use case(s) for control of cyber defense function for the AP.

B) Develop Example Messages: Develop example messages to implement the defined use case(s), and
capture in the Examples appendix.

C) Develop JADN Schema: Develop the JADN information model specifying the types needed to create and
validate the example messages.

D) Link JADN Schema: Link to the JADN schema file(s) from Annex A.

E) Create Property Tables: Use JADN tooling to generate property tables from the JADN schema.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 8 of 19



Non-Standards Track Work Product
F) Insert Property Tables and Associated Text: Add the property tables for the schema to the body of the AP
specification, and develop corresponding text content.

3. Interate To Completion: As the AP matures the initial use case(s) can be refined and additional use cases can
be defined and integrated as described in Step 2.

4. Develop Final Example Messages from JADN Schema: The example message content included in the AP
should be finalized based on the JADN schema to ensure the messages are valid and conform to the schema.

5. Define Conformance Requirements: All OASIS specifications are required to include conformance
requirements.

6. Review, Approval, and Publication: All OASIS specifications are required to follow the standard approval
process, including public review prior to final TC approval.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 9 of 19


https://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#publicReview
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#committeeSpec

Non-Standards Track Work Product

3 AP Development Process Walkthrough
3.1 AP Development Initiation

The OpenC2 TC follows OASIS processes for the initiation of new work items. The details of the TC's process are
captured in Section 4 of the TC's Documentation Norms. Editors of Actuator Profiles should review the TC's
development process and use of GitHub and other tools.

3.2 Develop Use Cases

A primary activity in developing an AP is to identify the cyber defense function(s) to be invoked and document the
specifics. Use cases are employed to structure this information. An OpenC2 AP use case will typically describe the
following:

¢ The OpenC2 Request (i.e., command)
o The Actuator function to be invoked
o The OpenC2 Action employed to invoke the functions
o The Target of the Action
= A Target can be selected from the targets defined in the OpenC2 Language Specification
s OpenC2 APs can define AP-specific Targets as extensions if a suitable target does not exist in the
base set
o Additional parameters needed for the command
s Parameters can be selected from those defined in the OpenC2 Language Specification
= OpenC2 APs can define AP-specific data types as extensions in order to enumerate all of the
information necessary to completely define the meaning and scope of the command
¢ The Actuator Behavior describing the activities to be performed by the Actuator on receipt of the Request and the
information expected to be returned
¢ The OpenC2 Response
o The data types and structures appropriate for responding to this Request
= Data types can be selected from those defined in the OpenC2 Language Specification
= OpenC2 APs can define AP-specific data types as extensions in order to enumerate all of the
information necessary to completely define the information to be returned in the response

Use case development often uncovers unanticipated needs for additional functions or information types. The quantity of
use cases needed for an AP varies with the complexity of the Actuator being profiled.

3.3 Develop Example Messages

Each use case should be supported by one or more Request / Response pairs that illustrate the message content
needed to carry out the use case. Depending on the level of flexbility allowed by parameters defined for the Request and
range of data types potentially returned in a Reponse, multiple Request / Response pairs may be needed to fully explore
the implementation of a use case.

To provide specificity, example messages should be written out completely. This is typically done by writing JSON code
for each Request and the associated Response, providing example values for the parameters and return data. As with
use cases, the development of example messages often uncovers unanticipated needs for additional functions or
information types, or may lead to the identification of additional use cases.

3.4 Develop JADN Schema

Describing use cases and then developing example messages to implement them are steps toward documenting the
actuator interactions with increasing precision. Developing a JADN schema for the example messages represents the
next step in specificity, defining the information model specifying the content of acuator requests and responses in
precise terms, using a well-defined set of information types.

As a simple example, consider developing an initial use case for an actuator profile for IP packet filtering. At the use
case level, an example use case might state: "the packet filter needs to be able to block traffic from a collection of
network addresses specified as a CIDR block."

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 10 of 19


https://github.com/oasis-tcs/openc2-tc-ops/blob/main/Documentation-Norms.md#4-openc2-tc-work-product-development-process

Non-Standards Track Work Product

To develop example messages, the dimensions of the use case need to be defined in more specific terms:

What is the OpenC2 Action appropriate for blocking traffic?
What OpenC2 Target is used to specify a CIDR block?

What is the OpenC2 syntax for describing a CIDR block?

Should the ability to block include both IPv4 and IPv6 addresses?

Reviewing the needs defined in the use case against the OpenC2 Language Specification provides specifics that help
in creating example messages:

¢ The deny Actionis appropriate for blocking IP traffic
e The ipv4 net and ipv6 net Targets are used to specify CIDR blocks

With the information from the Language Specification, the formulation of an example command in JSON syntax is
straightforward:

NOTE: confirm that the syntax in this example is correct; should the IPv4-Net array use square brackets? [ . . .]

"action": "deny",
"target": {
"ipv4 net": {"1.2.3.0", 24}
}V
}

Having defined the command, the next step is to consider the possible responses from the actuator: what are the
success and failure possibilities in response to this deny command? What information should the actuator provide back
to the command Producer? The OpenC2 response message provides for a numeric status code (based on the HTTP
response code set), an optional human-readable status message, and an optional resullts field that, if used, needs to be
defined in the actuator profile. For this command, a success or failure indication can be provided using the status code
and, perhaps, explanatory information regarding a failure could be defined for the status message. Since itis typical for
packet filters to apply rules based on some priority order, a useful return value might be the rule number assigned to the
new deny setting. This might lead, in turn, to additional use cases, such as the removal of a rule by specfying its number.

Finally, the JADN information model to support the content developed in the example messages should be documented.
In this case, the majority of the model is simply a subset of the OpenC2 Language Specification's JADN model, but an
additional data type must be defined for the rule number information in the response message.

NOTE: insert JADN content here for basic message example

3.5 Link JADN Schema

NOTE: need to look at emails from TC-ADMIN with some guidance details on naming, linking, namespaces, ets.

The JADN Schema is a formal part of the AP and the normative definition of the associated data types and structures.
As discussed in Section 2.1 Annex A is used to establish the linkage between the AP specification document and the
JADN schema file(s). Per OASIS TC Procedures:

¢ All normative definitions must also be provided in separate plain text files;

e Each text file must be referenced from the Work Product; and

¢ Where any definition in these separate files disagrees with the definition found in the specification documentation,
the definition in the separate file prevails.

([OASIS-TC-Proc], Section 2.2.5).

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 11 of 19



Non-Standards Track Work Product

All JADN files that are part of the schema must be named in accordance with OASIS naming conventions (OASIS-
Names), identified in the front matter under Additional Artifacts and Declared JADN Namespaces, listed in Annex A of
the AP specification, and included in the package of files for the AP when submitted to OASIS for approval or
publication.

The OpenC2 convention for APs is to identify the JADN schema (i.e., the JSON data representation in a separate file) as
the normative schema, and present the JIDL version in an Appendix to provide a readily human-readable presentaiton of
the schema in the AP specification document.

3.6 Create Property Tables

To create readable, structured documentation of the types defined for the profile, the JADN schema is processed via
automated tooling to create a property tables representation. These tables are integrated into Sections 2.1 and 2.2 of the
AP document to identify the various data structures and types used in the profile. As described in section 3.1.4 of
[OpenC2-Lang-v1.0], the specification of extensions in an AP to fit the needs of a particular cyberdefense function are
anticipated and supported by the OpenC2 language. These extensions are defined in the profile's JADN schema and
documented in the specification using property tables.

The fields of a property table vary with the needs of the data type being described but will include an appropriate subset
of the following:

ID: aninteger identifier for a field in a compound type

Name: the name of the type or field being defined

Type: the data type for the type or field being defined

#: a field to define the cardinality requirements of type or field being defined
Description: a description of the purpose of the type or field being defined

All of these fields are normative except for the Description field and their meanings are as defined in the [JADN-v1.0]
specification.

3.7 Develop Specification Text

Descriptive text is needed to complement the JADN schema and property tables. The text should provide details (e.g.,
usage requirements) regarding the extensions defined in the AP. Section 2.3.x should walk through the commands
defined in the profile, describing the expected processing associated with each command and any specific requirements
associated with Responses to particular commands. This content is typically organized to present each OpenC2 Action
included in the profile and discuss the handling of each valid target for that action.

3.8 Iterate To Completion

The development of a profile is typically iterative as additional use cases and revised or additional data types are
uncovered. This is also consistent with the TC's "Agile"” document development concept under which content is
developed over time, with frequent publication of Committee Specification Drafts (CSDs) to codify and document TC
acceptance of content developed to-date.

3.9 Develop Final Example Messages from JADN Schema

As described in Section 3.3, developing example OpenC2 Command and Response messages is a useful technique for
clarifying the capabilities needed for the profile. Example messages often identify types needed, which are then codified
in the profile's JADN schema. It is common as the profile content evolves that changes are made to the schema such that
the example messages developed earlier in the process may no longer align with the schema. To ensure consistency
those examples should be validated against the final schema version and, if necessary, updated example messages
produced that are consistent with the final schema.

3.10 Define Conformance Requirements

All OASIS specifications require a conformance section, consisting of conformance clauses. The editor of the profile
must determine how to organize the conformance clauses, which are a logical extension of the conformance clauses
contained in [OpenC2-Lang-v1.0].

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 12 of 19


https://github.com/oasis-tcs/openc2-tc-ops/blob/main/Documentation-Norms.md#32-agile-document-development-concept
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#committeeDraft
https://www.oasis-open.org/policies-guidelines/oasis-defined-terms-2018-05-22/#dConformanceClause

Non-Standards Track Work Product

OASIS has published guidance on developing conformance requirements [OASIS-Conformance].

A primary concern for the editor of a profile is to define logical groupings of conformance clauses against the
requirements of the profile to form "conformance targets", which can serve to organize and simplify the conformance
section of the specification.

3.11 Review, Approval, and Publication

When the Actuator Profile specification is deemed complete, its approval is governed by the [OASIS TC Process]
requirements for public review and approval of a Committee Specification. The OpenC2 TC has documented its

approach to handling public review comments and publishing the approved Committee Specification.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 13 of 19


https://github.com/oasis-tcs/openc2-tc-ops/blob/main/Documentation-Norms.md#45-public-review-comment-handling
https://github.com/oasis-tcs/openc2-tc-ops/blob/main/Documentation-Norms.md#46-cs-approval--publication

Non-Standards Track Work Product

Appendix A. Informative References

This appendix contains the informative references that are used in this document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-
term validity.

(Reference sources: For references to IETF RFCs, use the approved citation formats at:
https://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.ntml.

For references to W3C Recommendations, use the approved citation formats at:
https://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html.
Remove this note before submitting for publication.)

[IM-JADN-v1.0]

Information Modeling with JADN Version 1.0. Edited by David Kemp. 19 April 2023. OASIS Committee Note 01.
https://docs.oasis-open.org/openc2/imjadn/v1.0/cn01/imjadn-v1.0-cn01.html. Latest stage: https://docs.oasis-
open.org/openc?/imjadn/v1.0/imjadn-v1.0.html.

[JADN-v1.0]

JSON Abstract Data Notation Version 1.0. Edited by David Kemp. 17 August 2021. OASIS Committee Specification
01. https://docs.oasis-open.org/openc?/jadn/v1.0/cs01/jadn-v1.0-cs01.html. Latest stage: https://docs.oasis-
open.org/openc?/jadn/v1.0/jadn-v1.0.html.

[OASIS-Conformance]

Guidelines to Writing Conformance Clauses for OASIS Specifications, 01 April 2018, https://docs.oasis-
open.org/templates/TCHandbook/ConformanceGuidelines.html

[OASIS-Names]
OASIS Naming Directives, 13 February 2020, https://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html

[OASIS-TC-Proc]

Technical Committee Process, 01 December 2020, https://www.oasis-open.org/policies-guidelines/tc-process-2017-
05-26/

[OpenC2-Arch-v1.0]

Open Command and Control (OpenC2) Architecture Specification Version 1.0. Edited by Duncan Sparrell. 30
September 2022. OASIS Committee Specification 01. https://docs.oasis-open.org/openc2/oc2arch/iv1.0/cs01/oc2arch-

v1.0-cs01.html. Latest stage: https://docs.oasis-open.org/openc2/oc2arch/vi.0/oc2arch-v1.0.html.
[OpenC2-Lang-v1.0]

Open Command and Control (OpenC2) Language Specification Version 1.0. Edited by Jason Romano and Duncan
Sparrell. 24 November 2019. OASIS Committee Specification 02. https:/docs.oasis-

open.org/openc2/oc2Is/v1.0/cs02/oc2Is-v1.0-cs02.html. Latest version: https://docs.oasis-
open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.

[OpenC2-HTTPS-v1.0]

Specification for Transfer of OpenC2 Messages via HTTPS Version 1.0. Edited by David Lemire. Latest stage:
http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html

[OpenC2-SLPF-v1.0]

Open Command and Control (OpenC?2) Profile for Stateless Packet Filtering Version 1.0. Edited by Joe Brule, Duncan
Sparrell, and Alex Everett. Latest stage: http:/docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 14 of 19


https://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html
https://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html
https://docs.oasis-open.org/openc2/imjadn/v1.0/cn01/imjadn-v1.0-cn01.html
https://docs.oasis-open.org/openc2/imjadn/v1.0/imjadn-v1.0.html
https://docs.oasis-open.org/openc2/jadn/v1.0/cs01/jadn-v1.0-cs01.html
https://docs.oasis-open.org/openc2/jadn/v1.0/jadn-v1.0.html
https://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html
https://docs.oasis-open.org/specGuidelines/ndr/namingDirectives.html
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs02/oc2ls-v1.0-cs02.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html
http://docs.oasis-open.org/openc2/open-impl-https/v1.0/open-impl-https-v1.0.html
http://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpf-v1.0.html

Non-Standards Track Work Product

Appendix B. Acknowledgments

(Note: A Work Product approved by the TC must include a list of people who participated in the development of the Work
Product. This is generally done by collecting the list of names in this appendix. This list shall be initially compiled by the

Chair, and any Member of the TC may add or remove their names from the list by request.

Remove this note before submitting for publication.)

B.1 Special Thanks

Substantial contributions to this document from the following individuals are gratefully acknowledged:

Participant Name, Affiliation or "Individual Member"

B.2 Participants

The following individuals were members of the TC during the creation of this document, and are gratefully acknowledged:

** OASIS Open Command and Control (OpenC2) TC Members:**

FirstName Last Name Company

Stephen Banghart NIST

Michelle Barry AT&T

David Bizeul SEKOIA

Jason Callaway Google Inc.

Marco Caselli Siemens AG

Toby Considine University of North Carolina at Chapel Hill
Shiva Dasari Hewlett Packard Enterprise (HPE)
Alexandre Dulaunoy CIRCL

Blake Essing AT&T

Alex Everett University of North Carolina at Chapel Hill
Jessica Fitzgerald-McKay National Security Agency

Jane Ginn Cyber Threat Intelligence Network, Inc. (CTIN)
Zachary Gorak National Security Agency

Stephanie Hazlewood BM

Tim Hudson Cryptsoft Pty Ltd.

Christian Hunt Cyber Threat Intelligence Network, Inc. (CTIN)
Andras Iklody CIRCL

Ryan Joyce DarkLight, Inc.

Takahiro Kakumaru NEC Corporation

cn-appdev-v1.0-cn01

Copyright © OASIS Open 2024. All Rights Reserved.

17 January 2024 - Page 15 of 19



Non-Standards Track Work Product

FirstName Last Name Company

Jason Keirstead Cyware Labs

David Kemp National Security Agency

Lauri Korts-Parn NEC Corporation

Cheolho Lee NSR

David Lemire National Security Agency

Anthony Librera AT&T

Jason Liu Northrop Grumman

Terry MacDonald Individual

Patrick Maroney AT&T

Vasileios Mavroeidis University of Oslo

Luca Morgese Zangrandi TNO

Ben Ottoman Cyber Threat Intelligence Network, Inc. (CTIN)
Paul Patrick DarkLight, Inc.

Chris Ricard Financial Services Information Sharing and Analysis Center (FS-ISAC)
Daniel Riedel Daniel Riedel / Next Level Assurance LLC (Sole Member LLC)
Christopher | Robinson Cyber Threat Intelligence Network, Inc. (CTIN)
Michael Rosa National Security Agency

Omar Santos Cisco Systems

Aleksandra | Scalco US Department of Defense (DoD)

Randall Sharo US Department of Defense (DoD)

Michael Simonson Cisco Systems

Duane Skeen Northrop Grumman

Calvin Smith Northrop Grumman

Dan Solero AT&T

Ben Sooter Electric Power Research Institute (EPRI)
Duncan Sparrell sFractal Consulting LLC

Michael Stair AT&T

Sam Taghavi Zargar Cisco Systems

Bill Trost AT&T

cn-appdev-v1.0-cn01

Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 16 of 19



Non-Standards Track Work Product

FirstName Last Name Company
Drew Varner NineFX, Inc.
Jyoti Verma Cisco Systems
David Waltermire NIST

Russ Warren BM

Sean Welsh AT&T

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 17 of 19



Non-Standards Track Work Product

Appendix C. Revision History

Revision Editor Changes Made

filename-v1.0-wd01 yyyy-mm-dd Editor Name Initial working draft

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 18 of 19



Non-Standards Track Work Product

Appendix D. Notices
Copyright © OASIS Open 2024. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights
Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this section are included on all such
copies and derivative works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see hitps://www.oasis-
open.org/policies-guidelines/trademark/ for above guidance.

cn-appdev-v1.0-cn01 Copyright © OASIS Open 2024. All Rights Reserved. 17 January 2024 - Page 19 of 19


https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

