JOASISOPEN

Open Document Format for Office
Applications (OpenDocument)
Version 1.4. Part 4: Recalculated
Formula (OpenFormula) Format

Committee Specification 01
2 August 2024

This stage:
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-
v1.4-cs01-part4-formula.odt (Authoritative)
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-
v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-
v1.4-cs01-part4-formula.pdf

Previous stage:
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-
v1.4-csd01-part4-formula.odt (Authoritative)
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-
v1.4-csd01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-
v1.4-csd01-part4-formula.pdf

Latest stage:
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.odt
(Authoritative)
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-
formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-vl.4-part4-formula.pdf

Technical Committee:
OASIS Open Document Format for Office Applications (OpenDocument) TC

Chairs:
Patrick Durusau (patrick@durusau.net), Individual
Svante Schubert (svante.schubert@gmail.com), Individual

Editors:

Francis Cave (francis@franciscave.com), Individual

Patrick Durusau (patrick@durusau.net), Individual

Svante Schubert (svante.schubert@gmail.com), Individual

Michael Stahl (michael.stahl@allotropia.de), allotropia software GmbH

Additional artifacts:
This prose specification is one component of a Work Product which includes:

OpenDocument-v1.4-cs01-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 1 of 213

https://www.allotropia.de/
mailto:michael.stahl@allotropia.de
mailto:svante.schubert@gmail.com
mailto:patrick@durusau.net
mailto:francis@franciscave.com
mailto:svante.schubert@gmail.com
mailto:patrick@durusau.net
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=4bf06d41-79ad-4c58-9e8e-018dc7d05da8
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/csd01/part4-formula/OpenDocument-v1.4-csd01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.odt

e Open Document Format for Office Applications (OpenDocument) Version 1.4. Part 1:
Introduction. https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/partl-
introduction/OpenDocument-v1.4-cs01-partl-introduction.html.

* Open Document Format for Office Applications (OpenDocument) Version 1.4. Part 2:
Packages. https://docs.oasis-open.org/office/OpenDocument/vl.4/cs01/part2-packages/
OpenDocument-v1.4-cs01-part2-packages.html.

e Open Document Format for Office Applications (OpenDocument) Version 1.4. Part 3:
OpenDocument Schema.
https://docs.oasis-open.org/office/OpenDocument/vl.4/cs01/part3-schema/
OpenDocument-v1.4-cs01-part3-schema.html.

* Open Document Format for Office Applications (OpenDocument) Version 1.4. Part 4:
Recalculated Formula (OpenFormula) Format. (this part)
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/
OpenDocument-v1.4-cs01-part4-formula.html.

*« XML/RNG schemas and OWL ontologies.
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/schemas/.

Related work:

This specification replaces or supersedes:

e OASIS Open Document Format for Office Applications (OpenDocument) Version 1.3. 27
April 2021. OASIS Standard. Latest stage:
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-
formula.html.

Abstract:
This document is Part 4 of the Open Document Format for Office Applications
(OpenDocument) Version 1.4 specification.

Status:

This document was last revised or approved by the OASIS Open Document Format for Office
Applications (OpenDocument) TC on the above date. The level of approval is also listed
above. Check the "Latest stage" location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://groups.oasis-open.org/communities/tc-community-
home2?CommunityKey=4bf06d41-79ad-4c58-9e8e-018dc7d05da8#technical.

TC members should send comments on this specification to the TC's email list. Others should
send comments to the TC's public comment list at Technical-Committee-Comments@oasis-
open.org.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy,
the mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/office/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative
for this Work Product is provided in separate plain text files. In the event of a discrepancy
between any such plain text file and display content in the Work Product's prose narrative
document(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[OpenDocument-v1.4-part4]

Open Document Format for Office Applications (OpenDocument) Version 1.4. Part 4:
Recalculated Formula (OpenFormula) Format. Edited by Francis Cave, Patrick Durusau,
Svante Schubert and Michael Stahl. 2 August 2024. OASIS Committee Specification 01.
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-
v1.4-cs01-part4-formula.html. Latest stage:
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-
formula.html.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 2 of 213

https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/OpenDocument-v1.4-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://www.oasis-open.org/committees/office/ipr.php
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
mailto:Technical-Committee-Comments@oasis-open.org?subject=Comment%20on%20OpenDocument%20v1.4
mailto:Technical-Committee-Comments@oasis-open.org?subject=Comment%20on%20OpenDocument%20v1.4
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=4bf06d41-79ad-4c58-9e8e-018dc7d05da8#technical
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=4bf06d41-79ad-4c58-9e8e-018dc7d05da8#technical
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.3/OpenDocument-v1.3-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/schemas/
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/schemas/
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/schemas/
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/schemas/
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part4-formula/OpenDocument-v1.4-cs01-part4-formula.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part3-schema/OpenDocument-v1.4-cs01-part3-schema.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part2-packages/OpenDocument-v1.4-cs01-part2-packages.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html
https://docs.oasis-open.org/office/OpenDocument/v1.4/cs01/part1-introduction/OpenDocument-v1.4-cs01-part1-introduction.html

Notices

Copyright © OASIS Open 2024. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at
the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published, and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this section are included on all such copies and derivative
works. However, this document itself may not be modified in any way, including by removing
the copyright notice or references to OASIS, except as needed for the purpose of developing
any document or deliverable produced by an OASIS Technical Committee (in which case the
rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
sSuccessors or assigns.

This document and the information contained herein is provided on an "AS 1S" basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS
Standards Final Deliverable documents (Committee Specification, OASIS Standard, or
Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims
that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
OASIS Standards Final Deliverable by a patent holder that is not willing to provide a license to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS may include such
claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this OASIS Standards Final Deliverable or the extent to which any license under
such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Information on OASIS' procedures with respect to rights in
any document or deliverable produced by an OASIS Technical Committee can be found on
the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users
of this OASIS Standards Final Deliverable, can be obtained from the OASIS TC Administrator.
OASIS makes no representation that any information or list of intellectual property rights will at
any time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes
reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 3 of 213

https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents

R 10T [o 1T o TSR 19
00 R 101 (o To 11T 1o PP PP PPPP PPN 19
1.2 TeIMINOIOQY ... ciiei ittt ettt e e e s sttt e e e s sabbeeeeebbbbbbbbbbbbbbbbee 19
R T [o T 1 O 19
1.4 NOIrMAtVE REFEIENCES. .. .uuiiiiiiiiiiie et e e e e e e e e aeene 19
1.5 NON-NOrmative REFEIENCES........coiiiiiiiieieie e 20

2 EXPressions and EVAIUALOIS.cooiiiiiiiiiiiiiiee ettt e e 21
2285 T T 10 To [T o o T PP 21
2.2 OpenDocument FOrmMula EXPreSSION.occuvriiieiiiiiieee ettt e e 21
2.3 Evaluator CONfOMMANCE.......uuueiiiiiieiee ettt e e e e e e e e s e s e r e e e e e aeaeeeeeanas 21

2.3.1 OpenDocument FOrmula EVAIUALOTueeeiiiiiiiaiiaiiiiiiiieeeeeee e 21
2.3.2 OpenDocument Formula Small Group Evaluator............cccccovevieiiniiiiieeeeeeeeeeeee, 21
2.3.3 OpenDocument Formula Medium Group Evaluator.............cccccceeieriiiiiiiiinneeeneenns 22
2.3.4 OpenDocument Formula Large Group Evaluator.............ccccvveiiiiiiiee i, 23
2.4 Variances (Implementation-defined, Unspecified, and Behavioral Changes).............. 23

3 Formula ProCesSiNg MOGEL...........ueiiiiiiiiiiiee ettt e e 25
I R =T 1T - | PP T PPPPPPPPPPRTPRRN 25
3.2 EXPression EVAIUALION.........oooiiiiiiieeeeeee ettt 25

3.2 1 GEBNEIAL ..ottt 25
3.2.2 EXPression CalCUIAtiON.ueeiiiiiiiiaiii e 25
3.2.3 Operator and FUNCtion EVAlUAtiON............cccoeiiiiiiiiiiiiiiiiiee e 25
3.3 Non-Scalar Evaluation (aka 'Array eXpreSSIiONS")......cccuuuuerreeriiiieeeeeeaiaeieiiieeieeeeeeeeens 26
3.4 Host-Defined BENAVIOIS.cciiiiiiiiiii et e e 28
3.5 When recalCulation OCCUIS.iiiiuiiiiiiie ettt ettt e e e e e e 28
3.6 NUMENICAl MOUEIS........coi it e e e e e e e e s e e e e e e e e et eeeeeeeannnns 29
3.7 BASIC LIMIS..eeiiiiieiiiee ittt ettt a e e 29

L 1Y/ 1T PPN 30
R C 1T T = | PO O PPPPPPPPRRPRR 30
N N (R (5] (] 1o) T T PO PPPPPPPPPPPPPN 30
e N U 4] T PP PPPPPPPPRTTPRR 30

O T 1= 1T - | PSP 30
T I o 1= S 30
e TR T D - | (= RSP PUPPPPPPPPTRP 31
B B -\ (=N 1= T 31
4.3.5 PeICENTAGE. ... oottt e e e ettt ettt bbb e e et e e e e e e aa e aanan 31
4,36 CUIMBICY . .ettteeeieeiieeee ettt et e e e e e e e a e s e e ettt e e e e e e e e e s aa e s e e e e e e e ennna s 31
4.3.7 Logical (NUMDEI)......ueiiiiiiieii e 31
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 4 of 213

A @ T 0]][>t AN 11T o1 31
4.5 LOQICAl (BOOIBAN)....cciiiiitiiiieei ittt e e e e e e e e e e e e e e e e e eaaeas 32
T =1 0 32
A7 EMPLY Cell..eeeeeeiieiee e 32
T = 1= T o = 32
4.9 RETEIENCELISE. ...ttt e e e e e e e e e e e e aaaaa s 32
O T N = OO PP SUPPPPTPTT 33
o I R T =T 0T (0] Y 6 L= TSP 33
g I 1T o 1= - | PSSP 33
A.00.2 SCAIAT...ci it e e e e e e e e e e e 33
I G N B = (=] = 1= o | DO PP TP PPUPPPPN 33
o O A 0 =Y = 1 T o P U 33
N I ST [01 (=T o [T PP PP PP PTPPTPPRPR 33
O ST =>4 (@ [0 4] o= P 33
O O A = - 1) 1 TP URR T 33
o 08 T 11T o] o PP TTPPRTR 35
4.11.9 DAtADASE......ueeiiiiiiiiii et e s 36
o 0 O T = o PP 36
o 0 I R O 11 1= 4 - P TPRTR 36
4.11.12 Sequences (NumberSequence, NumberSequencelList, DateSequence, Logi-
calSequence, and COMPIEXSEQUENCE)......ciiiiieeeeeie e et e e e e e e e e e 36
e T 2SO 37
R TSI (o] A 1R] = 0 SRS 38
R A =T 1T | PSPPSRI 38
I = T TS (o b o] (=11 (o] g SO 38
TR T O o 1) = N[0] = =SS 38
5.4 CONSLANT SENGS. ..etiiiiiiiiiiie ittt e st e e st e e s st e e e s e snnbre e e e e annnbeeeeas 39
5.5 OPBIALOIS.utiiiieeiiiiiiee ettt e e e e e e ettt e e e e e e e s e e e eenn 39
5.6 Functions and FUNCLION Parameters..........coocccuiiiiiiiiiiiieieee e n e e e e e e e e e e 40
5.7 Nonstandard FUNCHON NAMES.........oooiiiiiiiiiiiii it a e 40
5.8 REIBIENCES. ... ettt et e e e e e e e e e e e e e e aaeeenes 41
5.9 REFEIENCE LIST.....uuiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e s e e e e e aaeennes 42
5.10 QUOLEA LADEL ... e e e 42
N 0 A 1T o 1= - | PP P PP T PPP PP 42
5.10.2 Lookup of Defined Labels...........cuuiiiiiiiiii e 42
5.10.3 Automatic LOOKUP Of LAbEIS.......cceieiiiiiiiiiii e 42
5.10.4 IMPHCIt INTEISECHON.uuiiiiiiiieiee e eeebaaan s 43
5.10.5 AUtOMALIC RANGE.......cci ittt eaaanan s 43
5.10.6 AUtOMALIC INEISECHION.utiiiiiiiiiiiieee ettt e e e e eaaaa s 44
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 5 of 213

o0 T VoY T B b o] (= (o 44

5.12 CONSTANT EFTOIS. ...ttt e e e e e et et e et be bbb e e e e e e e e eaaneeaeean 45
B5.13 INHINE AITAYS. ..ttt et e e sttt e e s st b et e e e e e s 46
B5.14 WHITESPACE.eeiiiiiitiii ettt ettt s s 46
6 Standard Operators and FUNCHONS...........coiiiiiiiiiiie i 47
(S I =T 01T | PP PPPPRR PP 47
6.2 Common Template for Functions and OPErators............ooouveeeeeiiiiiiieeeeeeeieeeeeeeeenieiienes 47
6.3 Implicit CONVErSiON OPEIatOrS.coiieiiiiiiiiieie ettt e e e et e e e e e e e e e e e e e e e e eeaaaannas 48
LR I A =T o 1= | SRR 48
6.3.2 CONVEISION 10 SCAIAT......cciiiiiiiiiiiii e 48
6.3.3 IMPlEd INTEISECHION.ccoi ittt e e st eeeee 48
6.3.4 Force to array context (FOrCEAITAY).........ccieiiiiiiiiriieeee e e e e e e 48
6.3.5 Conversion t0 NUMDET ...t 48
6.3.6 CONVEISION 10 INTEQET...cciiiii e e e e e e e e e e e e 49
6.3.7 Conversion to NUMDErSEQUENCE...........uuiiiiiiiieiiaeii e 49
6.3.8 Conversion to NUMberSequeNnCELISt.............coovcciiiiiiiiiieee e 49
6.3.9 CoNnVversion t0 DateSEQUENCE........c.iiii ittt e 49
6.3.10 Conversion to ComMPIEX NUMDET.........uuuiiriiiiieiee e 49
6.3.11 Conversion to COMPIEXSEQUENCE.uuuriiiiriiiieeeeeeee e et rrrrrrrrr e e e e e e e e e e saaa e e 50
6.3.12 CoNVErsioN t0 LOGICALcceiiiiiiiieeiiiiiiee ettt beeeeeee 50
6.3.13 Conversion to LOGICAISEQUENCE..........cccceeeiiii it 50
6.3.14 CONVEISION T0 TEXL....eiiiiiiiiiiiiieeiee et e e e e e e e s s s s s e e e e e e e aeeeesssssennnsnnrenaeeeenennn s 50
6.3.15 Conversion t0 DAatEParam..........c.uueiiiiiiiiiiiee it 51
6.3.16 Conversion to TIMEPAIaM..........ccoiiiiiiiiiiiiie e e e e e e es 51
O] = Lo L= o IO 01T - (0] £ 51
L O A =T o 1= | SRR 51
6.4.2 INFIX OPEIALOT "+ . ittt e ettt e e e s sb e e e e s e nabaeeeeeeanee 51
6.4.3 INTIX OPEIALOT "= ... e ettt e e e st e e e e s st e et e e e e e e eeneeneennnnnnee 51
B.4.4 INTIX OPEIALOT ™.ttt ettt e e sttt e e e s st b e e e eeeeeeeeerennane 51
B.4.5 INFIX OPEIALOT "/ttt e e e e e e e e e e e e e 52
6.4.6 INTIX OPEIALOT "Nttt et e e s st e e e e s b s eenennanee 52
B.4.7 INFIX OPBIALOT "= ...ttt e e e e et r e e e e e e e e e e e e e aas 52
6.4.8 INTIX OPEIALON "S>". . ittt e e e sttt et e ee e e e e eeneenrenneee 52
6.4.9 Infix Operator Ordered Comparison (<", "<=", ">", ">=").....ccccccciiiiiiiiinninis 53
6.4.10 INfIX OPEIALOTN "&".. .. eeeeeeeeiittie ettt e e st e e e s skt e e eeeeeeebnbenneee 53
6.4.11 Infix Operator Reference RaNGE (") ... uuurrririiiieeee et 53
6.4.12 Infix Operator Reference INtersection ("1")........ooor i 54
6.4.13 Infix Operator Reference Concatenation ("~") (aka Union)..........cccccevvveveeeeennnnn. 54
6.4.14 POSHIX OPEIAtOr "Y0".....ceiiiieieeeii ettt e e e e eeaeean s 54
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 6 of 213

6.4.15 PrefiX OPerator "+ ... a e 55

6.4.16 PrefiX OPErator "=".. it 55
6.5 MaALriX FUNCHONS. .. .ccci ittt e e e e s e e et e e e e e e e ae e e e e e s e s ssnnsnnbenbneeeeeeeennnnn 55
B.5. 1 GENEIAL ...ttt e e e e e e e e e e e e e e earaa s 55
6.5.2 MDETERM.....oooiiii ittt e st e e e e s st e e e e e s st e e e e e s assbaeeeaessnrrnnee 55
B.5.3 MINVERSE........c ittt e e e s et e e e e s s tba e e e e e s sstbeeeeeeeeeeeesnnnees 56
B.5.4 IMMULT ...ttt e e e e st e e e e e e et bt e e e e e tbba e e e e e atbareeeaeeeeeaeees 56
B.5.5 IMUNIT ottt e e e e e st e e e e e st r e e e e s tbb e e e e aaaeaaeeeeeeaeeeeeeeees 56
6.5.6 TRANSPOSE..... ..o e e 57
6.6 Bit Operation fFUNCHIONS. ...ttt e e eeean s 57
B.6. 1 GENEIAL ...ttt a e e e e e e e e e e e e araa s 57
LG T = T 7Y NN PRSPPI 57
B.6.3 BITLSHIF T ittt e e e e et e e e e s st baeeaeessstbaaeeessnsbaeeenennees 57
B.6.4 BITOR ...ttt e e e e e e e e e e e a e 58
B.6.5 BITRSHIFT ...ttt ettt e e e et e e e e s ssbaeeeeessntbaeeeeeeeeeeeeeesnnnnees 58
B.6.6 BITXOR. ... ettt e e e st e 58
6.7 Byte-position Xt FUNCHONS. ... 58
B.7.1 GENEIAL....cciiiiiieiie e 58
B.7.2 FINDB....ciii ittt e e e et e e e e sttt e e e e b e e e e e e e e e e e e e e 58
0 T It I PSPPI 59
B.7.4 LENB......ci it a e e e e e e e e e e e e e e 59
B.7.5 MIDB... .o a e a e e e e 59
B.7.6 REPLACEB........ci ittt ettt ettt e e st e e e e st e e e s sbbeeee e e s nnbbenanee 59
I A =€ I PP 59
B.7.8 SEARGCHDB.......ci et e et eeeaeaaae 60
6.8 Complex NUMDEr FUNCHONS.c.uuiiiieiiiiiie e 60
LS 0 A =T 1= | P 60
B.8.2 COMPLEX ... ittt e e e e e sttt e e e et e e e e e eennane 60
B.8.3 IMABS....c e e 60
B.8.4 IMAGINARY ..oeiiii ittt ettt s e e e e sttt e e e e sttt e e e e s atbaeeeeessstaaeeeesansbaeeeeesarrennees 60
6.8.5 IMARGUMENT ...ttt e et e e e skt e e e e e e eeeeeeesnennnnee 60
B.8.6 IMCONIUGATEttiiiieiitiiiee ettt e sttt e e e e ekt e e e e s sstbe e e e e s snstaeeeaessbbaeeeeesasennnees 61
B.8.7 IMCOS. ...ttt 61
B.8.8 IMCOSH.oeiiiiiiiciiie et e e e e et e e e e e e e e e e e e e et e 61
B.8.9 IMCOT ... ettt e e e e e e e e e e e e e e e e e e 61
B.8.10 IIMECSC...ciiiiiiiiiiie ettt ettt e e e e et e e e e a e a e e et et e e et e e aeees 61
LTS 200 I 1 @3 1 PP 62
B.8.12 IMDIV ... ctiiiiee ettt e e et r e e e e e e e e e 62
B.8.13 IIMEXP.... ittt e et e e et e e e e rrae e 62
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 7 of 213

B.8.14 IMLIN. .. .ottt a e e 62

B.8.15 IMLOGILO. .. e i ittt et e ettt e et e e e e e e e e e e e e e e b et ae e e e tran e e e e eeeennan 63
LS 0 G T 111 63
B.8.17 IMPOWER.......cuttttiiiiiii ettt e e e e e e e e e ettt e e e e e ee bbb e e e e e eeeeaaan 63
6.8.18 [IMPRODUCTcitiiieiiii ittt e e e e e e e e e e et eer e e e e e e e e e e s esannnsn e e e e e eennnnnns 63
B.8.19 IMREAL. ...ttt e e e e e e e e e et e e e e eaaa s 63
B.8.20 IIMSIN...eeiiiiiiiiiiee et e e e e e e e s e e e e et e e e e e e et e e e e aaeerrran s 64
B.8.21 IMSINH. ..ttt e e aaa s 64
B.8.22 IIMSEC.... e eeeiiiiiiiee et e et e et e e e e e e e e e e e et aaeeeaaaa s 64
B.8.23 IMSECH. ...t aaa s 64
B.8.24 IMS QR .. eiiiiiiiiieee ettt e e e e et e et e e e e e e e e e e e e aaab e beeaaan s 64
B.8.25 IIMSUB.....eeiiiiiiiiii e e e 65
B.8.26 IIMSUM....oiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e bbbt ba e e eeeabaa s 65
B.8.27 IIMT AN . ittt e e e e e e e e e e bbb e e e e e e e e e e e e e e as 65
6.9 Database FUNCHONS. e e e e eeaeanns 65
LS IS R © 1T o 1= T - | PP 65
6.9.2 DAVERAGE.ttt a e e e e e e e eaeaaas 65
5.9.3 DICOUNT ...ttt ettt ettt e e e e e e e e s e s bbb e e e e et e et e e an e e e e e e e ennea s 66
B.9.4 DCOUNTA. ..o ettt ettt et e e e e e e e s e s bbb bbb e e et e e e e e e e e e e aeaaan e e e eeeeeennnan 66
LTSRS T 0 1 66
B.9.6 DIMAX .ttt ettt e e e ettt e e et a e e e e enbaa s 66
B.9.7 DIMIN . ciiiiiiii et e e e e e e e e s e e et r e e e e e e e e e e e e e e e e e nnnrra i rraararaaaaeaeaaan 66
6.9.8 DPRODUCTciiiiiiie ittt ettt et e e e e e e e s e e e e e e esbbb e e e e eeennaans 67
B.9.9 DSTDEV ..ottt ettt et e e e e e e e e e e e aaaa s 67
6.9.10 DSTDEVP... .ttt ettt e e e e e et e e e e e e e e e e e eenaaas 67
LS 5 I 51 1 PR 67
LS 2 I 1 1 OO P 68
B.9.13 DVARP...ceeeeeeee et 68
6.10 Date and TimMe FUNCLONS.coiiiiiee i e e e s 68
Lo 0 A 1T o 1= - | PRSP PP 68
L0 0 2 I A PP 68
B.10.3 DATEDIF ...ttt e e e e e e e e e e e e e e e e e ea bbb aeeeeeaaas 68
6.10.4 DATEVALUE.ottt e et e e e e e e e e e e e e e e annns 69
B.00.5 DAY ettt e e e e e e e e b — bbbttt e e et e e e et e et e e e e eerra s 69
B.10.6 DAY Sttt e e e e e e e e e bt e e et e e e e e e e e e e e e e e aaeearra s 69
B.10.7 DAY S300......ceetiiieeeaiiiiiiiiet ettt e e e et e e e e e e e e e e e e e e e e eenaaan 70
B.10.8 EDATE . ..ottt ettt e e e e e e e e e e bbb aaeaeeeabaa s 70
6.10.9 EOMONTH. ..ottt ettt e e e e e e e s e e e e e e ee bbb e e e e eeennaaas 71
B.10.10 HOUR...co ittt et e e e e e e e e e e e e e e e e e e e abaaa s 71
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 8 of 213

6.10.11 ISOWEEKNUM.ciiiiiiiiiiii it nnnnnnne 71

6.10.12 MINUTEiiiiiiiiiiiie ettt e e e e sttt e e e s et e e e s ssttaeeaeesstbaeeeeesantaeeeeeseeesennnnes 71
L0 0 T |V [1\ I S 72
6.10.14 NETWORKDAYS.ottt ettt ettt e e e s s e e e e st eeaessntbaeeeeessteesrerarees 72
L0 0 T VL XY 72
B.10.16 SECOND......ccttiiieeeiitiitee sttt e e e sttt e e e e e st e e e e s stbaeeeeesasbbeeeeeeeeeeeeeeeeeessessnnsnees 72
L0 0 A I 11 U 73
6.10.18 TIMEVALUE........ci ittt ettt e et e e e e et e e e e s sbbaaeaeesannee 73
B.10.19 TODAY ..oeiiiieiicteiie ettt et e e e et e e e e e e e e e st —— e e e e et e e et e et ettt aaaraaaaaraaanaa, 73
6.10.20 WEEKDAY ..ottt ettt e e e e sttt e e e s st e e e e s anb bt e e e e e nbbeeeeeeennnrees 73
6.10.21 WEEKNUM......ootiiiiiiiiiie ettt e st e e e st e e e e e st e e e e s staaeeseeeesssssnsenees 74
6.10.22 WORKDAY ...oiiiiiittieite ettt e ettt e e e sttt e e e s atb et eeeesastbeeeeesssbbeeeeeeeeeeeeessessnnnnnes 75
L T2 B 4 1 o PP 75
6.10.24 YEARFRAC. ...ttt ettt e e e st e e e e sttt et e e e e e e eeeeeeeanannnne 75
6.11 EXxternal ACCESS FUNCLIONS.ciiiiiiiiiiiieit ettt e e e e e e e e e e e e aaaaa s 76
L O R 1= =T = | PP 76
B.11.2 DDE.....tiiiieeiiiiiit ettt e e e e e a e e e e e e e et e e e e e e e aaes 76
B.11.3 HYPERLINKootiiitiitiiie ettt e e ettt e e e st e e e e s snbbeeeeeesanees 76
6.12 FINANCIAl FUNCLONS.ciiiiiiiiiiiiie e r e e e e e e e e e e e e e e eeeaaaaees 77
L0 2 O =T o = - | 77
B.12.2 ACCRINT ittt ittt ettt e et e e e ettt e e e st beeeeeesatbbeeeeesanbbaeeeeeansbbeenennnees 77
L2002 T AN @ 0 | [11 S 78
6.12.4 AMORLINCooiiiiiiiiiiie ettt e e s sttt e e e e s sbbe e e e e sasbbeeeneeanees 78
B.12.5 COUPDAYBS.ot e et e e e e e e e aan 79
B.12.6 COUPDAYS. ...ttt ettt e ettt e e e s s bbb e e e e s st beeeeessabbeeeeeesabbennnees 79
6.12.7 COUPDAYSNC. ...ttt ettt e e s et e e e et st e e e e s st e e e e e s atbaeaaessastaeeeaesannees 80
6.12.8 COUPNC Dcoiiiiitiiiie ettt e et e e e s e e e e e e st e e e e e s etbaeeeeesastaeeeaessnsrnnnes 80
6.12.9 COUPNUM......coiiiiiitiiiee ettt e et e e e s st e e e e s stbaaeaeessstaeeeeeeeessesssssssnnees 81
6.12.10 COUPPCD......ciii ittt s e e e e e s et e e e e s et eeaeesstbaeaaeesastassessssnnnes 81
B.12.11 CUMIPMT ..eiiiiiiiiiie ettt e e e e sttt e e e s st e e e e s estbeeaaesssbaeeaeessnsbseeseeseessnnnnnes 82
6.12.12 CUMPRINCo et e e e e e e e e e e e e aa e e e eeaaen 82
02t I = T PRSP 83
B.12.14 DDB...uiiiiiiei ittt — e e e e e e e e e e e e e e e et e e e e aaaaaes 84
B.12.15 DISC...iiiiiiiiiiiiiie ettt a e e e e e e e e e e e e e e e e e aaes 85
6.12.16 DOLLARDE.......cciiiiitiiiie ettt e e e e e a e e s a e e s araaaaaea e 86
6.12.17 DOLLARFR ...ttt ettt e e sttt e e e s st e e e e e s anbbeeeeeeanraneee 86
6.12.18 DURATION. ... i iteitit e ettt ettt e e e e s sttt e e e sttt e ee e e e s astbaeeaesssstaeeaeesssbseeesessesssssnnes 86
B.12.19 EFFECT .. ittt ettt e e et e e e e et e e e e sttt e e e e e nbbeerananae 87
B.12.20 Vit e e e e e e e r e e e e e e e e e e e e e e e e aees 87
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 9 of 213

6.12.21 FVSCHEDULE.......coi it 87

B.12.22 INTRATE. ..ttt ettt ettt e e e e et e e e et e e e eann e eeenan 88
L0t 122 T 1 |V O P 88
B.12.24 IRR. .. e e e et e et et ae bbb e e e e aaaaaaeaaae 88
L0 22 S 1] 1Y PPN 89
6.12.26 MDURATION. ... e e e e e e e e e e e e et e e e eaa e eeenas 89
B.12.27 MIRR. .. e e e e e e bbb e e aaaaaaaees 90
6.12.28 NOMINAL. ...ttt e e et e e e et e e e aa e eenen 90
6.12.29 INPER. ...t ettt e e e e e e e e eeeaa e aee 90
6.12.30 NPV et e e e e eaa e aee 91
6.12.31 ODDFPRICE..... .o 91
6.12.32 ODDFYIELD......cciitiiiiiiiie et enas 92
6.12.33 ODDLPRICE. ...ttt ettt a e e e e eanas 92
6.12.34 ODDLYIELD. ..ottt et 93
6.12.35 PDURATION. ... e e e e e et eeeeas 93
B.12.36 P .ttt e e e e e e e e e e e e e nrb s 93
B.12.37 PP ... e e et e e e e e e aaeeeera e aee 94
B.12.38 PRICKEciiiiiiiiiie ittt e e e e e e e r s 94
6.12.39 PRICEDISC..... .o e e et et e e e e e e e e enas 95
L0t 12 T T o o [N P 95
B.12.41 PV it e e e a e 96
LT I A ¥ N I PPN 96
6.12.43 RECEIVED.......ciiiiite ettt a e e e e 97
B.12.44 RRI .ottt et r b e aaaaaaaaaaaaaes 97
B.12.45 SLIN..ooeiiiiiiiiii ettt e e e e e e e 97
B.12.46 SYD ...ttt e e e e et aeaa e aee 98
L0t 2y A I = | I S 98
6.12.48 TBILLPRICE.... .ot e eeeas 98
6.12.49 TBILLYIELD......cieeetiiiitiieee et e e e e e e e e et e s e e e e e e eeanns 99
B.12.50 VDBt e et e e e aa e e eaa e aae 99
B.12.51 XIRR ... ittt e e et e e e et e aaan 100
B.12.52 XINPV ..ttt e e e e e e et e e e eean 100
B.12.53 YIELD.....oitittieiiiee et et aeaa e eaan 101
6.12.54 YIELDDISC......cceeiiiiiitiiee ettt eeeas 101
6.12.55 YIELDMAT ...ttt e e e e e e e e et e e e be bbb e e e e e e eaa e aeaeas 102
6.13 INfOrmation FUNCLIONS.cocuiiiiieii it 102
B.13. 1 GENEIAL ... eiiiiiieiiiiei et 102
B.13.2 ARE A . e 102
B.13.3 CELL. .t e e e e e e e e eea e aee 102
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 10 of 213

6.13.4 COLUMN......tiiiiiei ettt 104

B.13.5 COLUMNSttt ettt e e e e e e e e e e eaa e eeeens 104
L0016 70 T O 161\ N 104
B.03.7 COUN T A e e e e e e e e e et e e e e ebe b et e e e e e e aaaaaenan 105
6.13.8 COUNTBLANKottt e e e e e e e e e e ee e e e eaa e e e esan e eenens 105
6.13.9 COUNTIF ..ottt e e e e e e e e e e e e eeenaraan e eeeeas 105
B.13.10 COUNTIFS. ..t e e et eeeeaa e e eeens 106
6.13.11 ERROR.TYPE. ... ittt e e e e e e e e e eeeeaeas 106
6.13.12 FORMULA e e e e e e e e ettt e e e et e e e et e eeaens 106
B.13.13 INFO .. i e et e e e e e eeas 106
6.13.14 ISBLANK ... e e e e e e eeas 107
6.13.15 ISERR.. .o e e 107
6.13.16 ISERROR.....oeeeiie e 108
6.13.17 ISEVEN. ... e 108
6.13.18 ISFORMULA. ... ettt e e e eeeas 108
6.13.19 ISLOGICAL....eeiiiiiiitieit ettt 108
B.13.20 1SN A e e e e e aa e eeas 109
B.13.21 ISNONTEXT .. uiitiiiiieiiieiee ettt e e e e e e e b e e e e e eennn e 109
6.13.22 ISNUMBER......coiiitt e e e eeeas 109
L0 I 7072 T 11 15 5 2N 109
B.13.24 ISREF i 110
L0 I 7024 T 1 I PN 110
B.13.26 N.oiiiiiiiiiiiii et e s e e e s 110
B.03. 27 N A et ettt e e e e e e e e e eeeaera e aae 110
6.13.28 NUMBERVALUE........ociiiiiiiiiii et 111
B.13.29 ROV ..ottt e e e e e e e e e e e et e aebe b e e aan e aeean 111
B.13.30 ROV S ... ettt a e e e e e e e e e e e e e e e e a b e e aaeeeeaaan 111
B.13.31 SHEET ...ttt e et e et et e e bbb e e e e e e e e e e e aenan 111
B.13.32 SHEETS.. .ottt e e e e e e e et et e e et e e e e e e e e e e e eeeeeeaeeerannan 112
B.03.33 T Y P E . it eea e e aa e eean 112
B.13.34 VALUE. ...t e e e e et aeaan 113
6.14 LOOKUP FUNCHONS. ...ttt e e e et e e e e e e e e e e eeneeanas 114
B.14.1 GENEIAL ...ueiiiiiiii e 114
6.14.2 ADDRESS......oi e e e e 114
6.14.3 CHOOSE..... .ottt e e b e e eaas 115
6.14.4 GETPIVOTDAT A. . et e e e e e e e e e e e enens 115
6.14.5 HLOOKUP.... oot e et et et et e e e eaa e eeenas 116
B.14.6 INDEX ... it 117
6.14.7 INDIRECT ...ttt e e e e e e e e e eaa e eeeas 117
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 11 of 213

6.14.8 LOOKUP.....cci it 117

B.14.9 MATCH. ...ttt e e e e e e et e et e e e e e e e e e e e e e e e enaaa s 118
6.14.10 MULTIPLE.OPERATIONS.......coi ittt e e e e e e e e e e e 119
L I R]] = PP PEURTRR 120
0 2 Y I 1 | U P 121
6.15 LOQICAl FUNCHONS.eeiiiiiiiiiee ettt e e e e e eaaeanas 121
L T A 1= o 1= - | SRS 121
B.15.2 ANttt et e e e e e e e e e e e e e e e e abb s 121
L T N o I | T 122
L T | TP ORI 122
B.15.5 TFERROR... ..ottt e e e e e e e as 123
B.15.6 TN A ittt e e e e e e e et er e e e e e e e e e e e e s 123
L TR A VL@ TP 123
B.15.8 O Rt e e e e ettt e e e e e abba s 123
B.15.9 TRUE ettt e et e e e e e e e e e e e e e e e e et s 124
B.15.10 XOR. ...ttt ettt e e e e e e e e et e e e e e e e e e e e e e eenba s 124
6.16 Mathematical FUNCHONS.c.uuuiiiiiiiiiiiiee e 124
ST R 1= o =T - | RSP 124
B.16.2 A S . et e e e e e e et e e e e e e e e s 124
L T T O 1 SR 124
B.16.4 ACOSH. ...ttt et e e e e e e e e e e s 125
L0 G T8 T O PP 125
B.16.6 ACOTH. ..ot e e e e e e 125
L0 G TR A] | 125
B.16.8 ASINH. ... et e e e s 126
L0 G T AN I N R 126
L0 G700 0 TN 1Y N 126
B.16.11 ATANH. .t e e e e e e e e e e at e e e e e e e e e e e as 126
B.16.12 BESSELL ..ottt 127
B.16.13 BESSELJ...coiiiiiiiiii ittt e e e e e e e s 127
B.16.14 BESSELK ...ttt e e et aaaaaaaaa s 127
B.16.15 BESSELY ...ttt e e e e e e e e e e as 127
B.16.16 COMBIN. ..ottt e e e e e e ettt e e et e e e e e e eatta e e e e e eeeeann s 128
B.16.17 COMBINA. ...t e et e e e e e e e e e e s e e e e e e anaa s 128
B.16.18 CONVERTttt et e e e e e e e e e s e e s st b e e e e e e eananaeeeas 128
B.16.19 COS ... ittt e e e e e et e et e e e e e e e e e e et e e erba s 135
B.16.20 COSH...eitiiiiiiie ittt ettt e et e e e e et b e e e e e e eba s 136
B.16.21 GO ittt ettt e e e e e e e e e e e e e e e e s 136
B.16.22 COTH. . ittt et e e e e e e e e e e bbb b e e e e e e e e e e e e e e s 136
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 12 of 213

6.16.23 CSC..oiiiiiiiiiii i 136

B.16.24 GO CH. . et aaaaaaaan 137
6.16.25 DEGREES.. ... e 137
B.16.26 DE LT A .. it e et et e et et e e e e e aenan 137
B.06.27 ERF ...ttt e e e e e e et naeaaaaaaaees 137
B.16.28 ERFC ... it e e e et e e e et e e e aa e aeean 138
6.16.29 EUROCONVERT ..ottt e e et eeeaens 138
6.16.30 EVEN. ..o eeas 139
B.06.31 E X P e e e e e e et e et e et e e aaaee 139
B.06.32 FAC T ittt e e e e e e e e e aaean 139
6.16.33 FACTDOUBLE..... .o 140
6.16.34 GAMMA et eenas 140
6.16.35 GAMMALN. ... e e e e e e e e e e e b e e aeas 140
B.16.36 GCD...iiieiiiiiitiii ittt e e et e r e e eee 140
6.16.37 GESTEP ... 141
B.16.38 LCM . iiiiiieiiiiiie ittt ettt e e e e e e e e a e e e nba s 141
B.16.39 LN .. e e e e e e e e e e e e e e e eraaaaee 141
B.16.40 LOG. . iiiiiiiieeiie ittt ettt a e e e e e 141
B.16.41 LOGILO....cciiiiieeiiiiiiiae ettt e e e e e e e et aenn e eenan 142
L0 K 0 2 |V [5 N 142
6.16.43 MULTINOMIAL. ..ottt e e e e e eneas 142
B.16.44 ODD....ceeiiiiiitie ettt a e e e e e te e e e e aarar e aees 142
B.016.45 Pl ettt e et e e e e e e abb s 142
B.16.46 POWER......coiiiiiiii e e e e e e ettt e it aeaan 143
6.16.47 PRODUCTcottiiiiiie ittt r e e e e e e e e e e e e e e e e e ana e 143
6.16.48 QUOTIENT ...ttt e e e e et et e ettt e e e et e e eeaaeeeeens 143
B5.16.49 RADIANS e e e aanan 143
B.16.50 RANDt et — b aaaaaan 144
6.16.51 RANDBETWEEN........cotttttitiiiiieie e e e e e e e e e e e e e e e eeens 144
B.16.52 SEC ... ittt e et e e et aaera e aee 144
6.16.53 SERIESSUM.... oottt e e e e e e e e e araba e eaeas 144
B.16.54 SIGN....eiiiii e e e e e e e eean 145
B.16.55 SIN ...ttt e e e e e e e e e e eeaeaa e aee 145
B.16.56 SINH. ... et e e e e eees 145
B.16.57 SECH. ...t a e e e e e eaan 145
B.16.58 SO RT ...ttt e e e e et e e e e rr e eean 146
6.16.59 SOQRTPL....eeiiieiie ettt e e e e aa e eaas 146
6.16.60 SUBTOTAL...cottiiiititiieie ettt e e e e e et e e e et er e e e e e e e eenaeeeenas 146
B.16.61 SUM. ...ttt e e e e e e e e e ee e aees 147
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 13 of 213

B.16.62 SUMIF ...t 147

B.16.63 SUMIFS. ... e e e e e et et ettt e e et e e e e e eeeas 147
6.16.64 SUMPRODUCTottt s e e e e e e e e e e e e e e eennns 148
B.16.65 SUMSQ... .ot a e et e e e e e aeaan 148
B.16.66 SUMMXZIMY 2....uuieiiiiiii i ettt e e e e e e et e e e et s e e e e e e e et e e eea e eanas 148
B.16.67 SUMMXZPY 2. .ottt a e e e e e e e e e e ra e eaaas 148
B.16.68 SUMMXMY 2.ttt e e et e e ettt e e e e e e e e e et e e et e eaeas 149
B.06.69 T AN . .. e e e e et e e e e e e b e e aaaaaees 149
B.16.70 T ANH. .. et e e e e et e e e e aeaan 149
6.17 ROUNAING FUNCLIONS.ciiiiiiiii ittt e e e e e eenaaan s 149
B.17.1 CEILINGcetttieiie ettt et e e et e e e e e e b e aeaas 149
00 2 1V PP PP TUTPRTRPIN 150
B.17.3 FLOOR. ..t e e et e e e e eaas 150
6.17.4 MROUND......coiiiiiiiieee e e e e et et e et e e e e e e eeennas 150
6.17.5 ROUND.o e e e e e e e et et a e e e e e aeaeeeeean 151
6.17.6 ROUNDDOWN......uuttiiiiiitiiieeaae ettt e e e e e e s e s e e e e enrea e 151
6.17.7 ROUNDUPot e e e e e e eeeas 151
B.17.8 TRUNCttt e e e e e e e e e e e e e e r s 151
6.18 StatistiCal FUNCHONS.coiiiiiiii e 152
B.18.1 GENEIAL ...ciiiiiiiieie ettt 152
6.18.2 AVEDENV e 152
B5.18.3 AVERAGE. ... it a e 152
6.18.4 AVERAGEA..... oot 152
6.18.5 AVERAGEIF..... oo aaas 152
6.18.6 AVERAGEIFS..... oottt 153
B.18.7 BET ADIST ... ittt e e e e e et ettt e e e eaa e aaeas 153
B.18.8 BETAINV ...ttt e e e e e e e e et e e e e et a s e e e e e e e e eeeeeeeeeeennennnnnn 154
6.18.9 BINOM.DIST.RANGE..... .ottt 154
6.18.10 BINOMDIST ...ceieiiiiitiiiiiaaeie e e e e et ee et as e e e e e e e e e e e eeeeeeaetesraaaaaeaeeeeenneeeanns 154
6.18.11 LEGACY .CHIDIST ..ottt ettt e e e e e e e et e e e e eeaans 155
6.18.12 CHISQDIST .. .eiiieiiiiiiitiia ettt e e e e e e et e e e e e et trab s e e e et e e eean e aeanns 155
6.18.13 LEGACY.CHIINV ...t e e 155
6.18.14 CHISQINV ...ttt e e e e e e e e e e e e eeeeeeaeneaens 156
6.18.15 LEGACY.CHITEST ..ottt e et e e e e e e e eanns 156
6.18.16 CONFIDENCE.... ... eaens 156
6.18.17 CORREL....coetiiiiitiiie et e e e e eenas 157
B.18.18 COVAR. ..ottt e e e e e e e e e e e e e e e e aa e aeaan 157
6.18.19 CRITBINOM..... oot e e e e e e eenas 157
6.18.20 DEVSQ.. . ittt et b e e e aa e aeaan 158
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 14 of 213

6.18.21 EXPONDISTooiiiiiiiiieiie ettt 158

B.08.22 F IS T .ttt e e e e e e e eeean 158
65.18.23 LEGACY . FDIST ...ceieiiiiitiiiaee ettt s s e e e e e e e e e e e e e e e ee e eaennnn e e e e e eeennns 159
B.18.24 FINV .o e e e e e et e et et et bbb e e aaaaaees 159
6.18.25 LEGACY . FINV ...ttt e e e e e e e e e e aeaens 159
6.18.26 FISHER... ..ot eaan 160
6.18.27 FISHERINVo e e e e e e et eeeeas 160
6.18.28 FORECAST ...ttt e e e et et e e e e bt e et et e e ea e eaeas 160
6.18.29 FREQUENCYt e e et e e e e e eea e aeaens 161
B.18.30 FTEST .ttt ettt e e e et e e e aa e aeaan 161
6.18.31 GAMMADI ST ..t aaas 161
6.18.32 GAMMAINV e e e e et e e e e e e e eneas 162
B.18.33 GAUS S ... et eaa e aeaan 162
6.18.34 GEOMEAN. ..ottt 162
6.18.35 GROWTH. .. e e e e e eeeas 162
6.18.36 HARMEAN.ttt ettt e e e e e e e e e e e e e enaa s 163
6.18.37 HYPGEOMDIST ...ttt et e e e e e e eaens 163
6.18.38 INTERCEPRT ...t e e e e e 164
B.18.39 KURT .. e ettt s e e e e e e e e e et e e e e e rn e e nnn e eenen 164
B.18.40 LARGE. ... e aaan 165
B.18.41 LINEST ...ttt e e e e e et et e et e e eenas 165
B.18.42 LOGESTiiiiiieitiiiiiiie et e e ettt s e e e e e e e e e e e e e e e e e e et a b e et e e ean e eaaan 167
6.18.43 LOGINV ...ttt ettt 169
6.18.44 LOGNORMDIST .. .ottt e e e e e e e et e e e et eeeeens 170
B.18.45 IMA XK ettt et aa e e e e e a e e n e e e 170
B.18.46 M AKX A e e e e e e e e e e et eaeaan 170
B.18.47 MEDIAN. .. .ottt e e e e e ettt a e e e e ae e e aaaan 170
B.18.48 MIN ... e e e e et e aee 171
B.18.49 MIN A ettt a e e e et e e e e ararn e aaaan 171
B.18.50 MODE..... i e e e e et e e e e e e e e aa e aeean 171
6.18.51 NEGBINOMDIST ...ttt e e e et e e eaens 172
6.18.52 NORMDISTt e e e e e e et e e e e e ae e b e e eeeas 172
6.18.53 NORMINV ...ttt ettt e e e e e e e e e e aeaa e eeeens 172
6.18.54 LEGACY.NORMSDIST .. .ot eeees 173
6.18.55 LEGACY.NORMSINV. .. .ottt aa e eeas 173
6.18.56 PEARSON.ot e eenas 173
6.18.57 PERCENTILE.... .ot e eeas 174
6.18.58 PERCENTRANKt eneas 175
6.18.59 PERMUT ... e e e e e e e e e e e e eeeas 176
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 15 of 213

6.18.60 PERMUTATIONA. ...ttt 176

B.18.61 PHI. . e a e e e e e e e e eeaara e aee 176
B5.18.62 POISSON. ...eiuiuiiiiiei ettt e e e e e e e e et et e e et e e e e e e e e e e e e eeeeee e aeranrnnannn 176
B.18.63 PROB..... e aaeaan 177
6.18.64 QUARTILE. ..ottt e e e e e e e e e e ettt e e e e e e e e e e aeaneeeeens 177
B.18.65 RANK ... e e e e e e e aeaa e aeean 178
B.18.66 RSQ...uuuuuiiiiii ittt e e e e e e e et e et traba e e e e aee 178
B.18.67 SKEW .. .o et eean 179
B.18.68 SKEWP... ..ttt aeaas 179
B.18.69 SLOPKE..... . a e e e e e e aeeas 180
B.18.70 SIMALL. ..ottt e e e e e e e e e e e e eaan 180
6.18.71 STANDARDIZE.......oot i e e e e e e eeeeas 180
B.18.72 STDEV ...ttt a e e e e e e e aeeas 180
B.18.73 STDEVA. .. ettt 181
6.18.74 STDEVP.. .t e e e e e e ee e 181
B.18.75 STDEVPA. ...ttt e e 182
B.18.76 STEY Xttt ettt e e e e e et et ettt et e b et a e e e e e e et e e e e e e e e eenan 182
6.18.77 LEGACY . TDIST ...ttt e e e e 182
B.18.78 TINV .ot e e e e e e et et e e e e e ner e e e e e e aaeens 183
L0t T4 TR I o =1 N | 5 S 183
6.18.80 TRIMMEAN.o e e e e e e enas 184
L0t 70 1 I I = PPN 184
B.18.82 VAR .. ettt ettt e e e e et aa e e e 186
B.18.83 VAR A e e e et e it aaaan 186
B.18.84 VARP ...ttt e e 187
B.18.85 VAR A. ... et e b eean 187
B.18.86 WEIBULL......uuuiiiiiii et a e e e e e e e e e e e et eeeean e eeeens 187
B.08.87 T E ST ..ttt e e it aeaan 188
6.19 Number Representation Conversion FUNCLIONS..........cccvvviiiiiiiiieeee e 188
B.19. 1 GENEIAL......tiiiiie it 188
6.19.2 ARABIC et aeaan 189
B.10.3 BASE. ... e 189
6.19.4 BINZDECo ittt e et eaa e aeaan 189
6.19.5 BINZHEX ... o ittt ettt e e e e e e e e e e e e 190
6.19.6 BINZOCT ... ittt ettt e e e e e e e e et ettt ae et e b et e e e eaa e aeaan 190
6.19.7 DECZBIN. ... it e e e e enas 190
6.19.8 DECZHEX ... ittt e e e eaas 191
B.19.9 DEC 20 CT ... ittt ettt enan 191
6.19.10 DECIMAL. ...ttt e e e e e et et e et e a e e eaa e eeaas 192
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 16 of 213

6.19.11 HEXZBIN. ..o iieiiieiiieiee ettt 192

6.19.12 HEXZDECottt ettt a et 192
B.19.13 HEXZ2O0CTitiiiiie ittt e et e s e e s et e e e s e e e e s st e e e e s e 193
L T © T 172 = 1| P 193
L T LT © T 12 I I PSSP 193
e T T O T 12 o | PP 194
B.19.17 ROMAN. ...t e e aa, 194
B.20 TEXE FUNCHONS. ...ttt ettt e e e e e e e e e e e e e e e e anaans 195
L0 0 A =T o 1= - | SRS 195
B.20.2 ASC .. iiii ittt e e e e ettt e e e e ot a—eeeeeatb—t et ittt ttrbbrrrrrrrrrnrnes 195
B.20.3 CHAR. ..ottt e e e et e e e e e e e e e — e e e e a b —ra e e s ataareeeeaanaas 197
O o I Y SRR 198
ORI O @ 1 198
6.20.6 CONCATENATE. ..ottt ittt ettt e e et e e e st aee e e s e e e e e aas 198
20 A T T I Y = 198
B.20.8 EXACT ..etiiiiieiitiiite ettt ettt sttt e e ettt e e s e b e e e st e e e n e e e e s n s 198
(20 IR T || T PSP 199
B.20.10 FIXED....ciiiiiitiiiiie ittt 199
L2 Tt N 1 TP PPPRPUPPRRRN 199
0 Tt I I = SR 201
B.20.13 LEN. .. tieiieie ittt e e e e e e e et b e e e e e et e aeeeannrrbrrnnans 201
6.20.14 LOWER......ooiii i 202
B.20.15 MID. .. iiiiiiie ittt e et e e e st bt e e e e b e bbb bbb rarnrans 202
6.20.16 PROPER.......iiiiiiiiie ettt 202
6.20.17 REPLAGCE.ttt 203
LI 0TS = 1 = 203
6.20.19 RIGHT ... e e e s e e e s e e e e s s e e e e e e aas 203
6.20.20 SEARCH.ottt 204
6.20.21 SUBSTITUTE.ciii i e e e e e e e e e e aaa e e e ees 204
B.20.22 T aiiii ittt e e e et —— e e et —— e e e e s e tbateaeeaarrraaeeaantrraraaenants 204
O I T I = PSSP 204
L2 0 2 S I = 41 S 205
6.20.25 UNICHAR.ottt e e s e e e s et e e e e s aaaa e e e e e snnnnaaeaeas 205
6.20.26 UNICODE.......ciiiiiiiiiiiee sttt et e e e e e e s et e e e s as 205
O A U | o =l = 205
7 Other Capabilities.......ccuiiiiiiiiii i r e e e e e e e e e s e e s s s ra e e e eeaees 207
A R 1T 01T - | PP UP PRSPPI 207
7.2 INliNE CONSLANT AITAYS....ccceiiiie i ettt e e e e e e e e e e s e e e e e e e e e ae e e e e e s saaaia e e e eeeenennan s 207
7.3 INliN@ NON-CONSLANT AITAYS. ...eiiiiieeeiei ittt eeenannnas 207
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 17 of 213

A =T L < T 207

8 NON-POMADIE FEALUIES.eiiiiiiiiiiie ettt e e e 208
S 1= o1 = | OO PP PP 208
8.2 DISHINCE LOGICALceiiteieeeei ittt et e e e e e e e e e e eaeeeas 208

Appendix A. Changes From Previous Specification Versions (Non Normative).................. 209
A.1. Changes from “Open Document Format for Office Applications (OpenDocument) vlzé9

OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 18 of 213

1 Introduction

1.1 Introduction

This document is part of the Open Document Format for Office Applications (OpenDocument)
Version 1.3 specification. It defines a formula language for OpenDocument documents, which
is also called OpenFormula.

OpenFormula is a specification of an open format for exchanging recalculated formulas
between office applications, in particular, formulas in spreadsheet documents. OpenFormula
defines data types, syntax, and semantics for recalculated formulas, including predefined
functions and operations.

OpenFormula is intended to be a supporting document to the Open Document Format for
Office Applications (OpenDocument) format, particularly for defining its attributes
table:formula and text: formula. It can also be used in other circumstances where a
simple, easy-to-read infix text notation is desired for exchanging recalculated formulas.

Note: Using OpenFormula allows document creators to change the office application they
use, exchange formulas with others (who may use a different application), and access
formulas far in the future, with confidence that the recalculated formulas in their documents will
produce equivalent results if given equivalent inputs.

1.2 Terminology

All text is normative unless otherwise labeled.
Within the normative text of this specification, the terms "shall", "shall not", "should", "should

not", "may" and “need not” are to be interpreted as described in Annex H of [ISO/IEC
Directives].

1.3 Purpose

OpenFormula defines:

1. datatypes

2. syntax

3. semantics
for recalculated formulas. 3.5
OpenFormula also defines functions.
OpenFormula does not define:

1. auser interface

2. ageneral notation for mathematical expressions

1.4 Normative References

[CharModel] Martin J. Durst, et. al., Character Model for the World Wide Web 1.0:
Fundamentals, http://www.w3.0rg/TR/2005/REC-charmod-20050215/, W3C, 2005.

[ISO/IEC Directives] ISO/IEC Directives, Part 2 (Fifth Edition) Rules for the structure and
drafting of International Standards, International Organization for Standardization and
International Electrotechnical Commission, 2004.

[1SO4217]ISO 4217:2008 Codes for the representation of currencies and funds, International
Organization for Standardization and International Electrotechnical Commission, 2008.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 19 of 213

http://www.w3.org/TR/2005/REC-charmod-20050215/

[1SO8601] ISO 8601:2019 ISO 8601:2019 Date and time — Representations for information
interchange — Part 1: Basic rules, International Organization for Standardization, 2019.

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource ldentifier (URI):
Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt, IETF, 2005.

[RFC3987] M. Duerst, M. Suignard, Internationalized Resource Identifiers (IRIs),
http://www.ietf.org/rfc/rfc3987.txt, IETF, 2005.

[UNICODE] The Unicode Consortium. The Unicode Standard, Version 5.2.0, defined by: The
Unicode Standard, Version 5.2 (Mountain View, CA, The Unicode Consortium, 2009. ISBN
978-1-936213-00-9). (http://www.unicode.org/versions/Unicode5.2.0/).

[UTR15] Mark Davis, Martin Dirst, Unicode Normalization Forms, Unicode Technical Report
#15, http://www.unicode.org/reports/trl5/tr15-25.html, 2005.

[XML1.0] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau ,
Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.0rg/TR/2006/REC-
xml-20060816/, W3C, 2006.

1.5 Non-Normative References

[JISX0201] The Unicode Consortium., JIS X 0201 (1976) to Unicode 1.1 Table, 1994,
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0201.TXT.

[JISX0208] The Unicode Consortium., JIS X 0208 (1990) to Unicode, 1994,
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT.

[UAX11] Asmus Freytag, East Asian Width, Unicode Standard Annex #11,
http://www.unicode.org/reports/tr11/tr11-19.html, 2009.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 20 of 213

http://www.unicode.org/reports/tr11/tr11-19.html
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0201.TXT
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.unicode.org/reports/tr15/tr15-25.html
http://www.unicode.org/versions/Unicode5.2.0/
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt

2 Expressions and Evaluators

2.1 Introduction

The OpenDocument specification defines conformance for formula expressions and
evaluators. For evaluators, there are three groups of features that an evaluator may support.
This chapter defines the basic requirements for the individual conformance targets.

2.2 OpenDocument Formula Expression

An OpenDocument formula expression shall adhere to the expression syntax defined in
chapter 5. It may use subsets or supersets of OpenFormula.

2.3 Evaluator Conformance

2.3.1 OpenDocument Formula Evaluator

An OpenDocument Formula Evaluator is a program that can parse and recalculate
OpenDocument formula expressions, and that meets the following additional requirements:

A) It may implement subsets or supersets of this specification.

B) It shall conform to one of: (C16) OpenDocument Formula Small Group Evaluator, (C17)
OpenDocument Formula Medium Group Evaluator or (C18) OpenDocument Formula Large
Group Evaluator

C) It may implement additional functions beyond those defined in this specification. It may
further implement additional formula syntax, additional operations, additional optional
parameters for functions, or may consider function parameters to be optional when they are
required by this specification.

D) Applications should clearly document their extensions in their user documentation, both
online and paper, in a manner so users would be likely to be aware when they are using a
non-standard extension.

Note 1: An expression may reference a function not defined by this
specification by hame, or depend on implementation-defined behavior, or on
semantics not guaranteed by this specification. Reference to or dependence
upon functions or behavior not defined by this standard may impair the
interoperability of the resulting expression(s).

Note 2: This specification defines formulas in terms of a canonical text
representation used for exchange. If formulas are contained in XML attributes
some characters shall be escaped as required by the XML specification (e.g.,
the character & shall be escaped in XML attributes using notations such as
&). All string and character literals references by this specification are in
the value space defined by [UNICODE] thus, “A” is U+0041, “Z" is U+005A,
and the range of characters “A-Z” is the range U+0041 through U+005A
inclusive.

2.3.2 OpenDocument Formula Small Group Evaluator

An OpenDocument Formula Small Group Evaluator is an OpenDocument Formula Evaluator
that meets the following additional requirements:

A) It shall implement at least the limits defined in the “Basic Limits” section. 3.7

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 21 of 213

B) It shall implement the syntax defined in these sections on syntax: Criteria 4.11.11; Basic
Expressions 5.2; Constant Numbers 5.3; Constant Strings 5.4; Operators 5.5; Functions and
Function Parameters 5.6; Nonstandard Function Names 5.7; References 5.8; Simple Named
Expressions ; Errors 5.12; Whitespace 5.14.

C) It shall implement all implicit conversions for the types it implements, at least Text 6.3.14,
Conversion to Number 6.3.5, Reference , Conversion to Logical 6.3.12, and when an
expression returns an Error.

D) It shall implement the following operators (which are all the operators except reference
union (~)): Infix Operator Ordered Comparison (<", "<=", ">", ">=") 6.4.9; Infix Operator "&”
6.4.10; Infix Operator "+” 6.4.2; Infix Operator "-” 6.4.3; Infix Operator "*" 6.4.4; Infix Operator
"I" 6.4.5; Infix Operator "*" 6.4.6; Infix Operator "=" 6.4.7; Infix Operator "<>" 6.4.8; Postfix
Operator “%” 6.4.14; Prefix Operator “+" 6.4.15; Prefix Operator “-” 6.4.16; Infix Operator
Reference Intersection ("!") 6.4.12; Infix Operator Range (":") 6.4.11.

E) It shall implement at least the following functions as defined in this specification: ABS 6.16.2
; ACOS 6.16.3 ; AND 6.15.2 ; ASIN 6.16.7 ; ATAN 6.16.9 ; ATAN2 6.16.10 ; AVERAGE 6.18.3
; AVERAGEIF 6.18.5 ; CHOOSE 6.14.3 ; COLUMNS 6.13.5 ; COS 6.16.19 ; COUNT 6.13.6 ;
COUNTA 6.13.7 ; COUNTBLANK 6.13.8 ; COUNTIF 6.13.9 ; DATE 6.10.2 ; DAVERAGE 6.9.2
; DAY 6.10.5 ; DCOUNT 6.9.3 ; DCOUNTA 6.9.4 ; DDB 6.12.14 ; DEGREES 6.16.25 ; DGET
6.9.5; DMAX 6.9.6 ; DMIN 6.9.7 ; DPRODUCT 6.9.8 ; DSTDEV 6.9.9 ; DSTDEVP 6.9.10 ;
DSUM 6.9.11 ; DVAR 6.9.12 ; DVARP 6.9.13 ; EVEN 6.16.30 ; EXACT 6.20.8 ; EXP 6.16.31 ;
FACT 6.16.32 ; FALSE 6.15.3 ; FIND 6.20.9 ; FV 6.12.20 ; HLOOKUP 6.14.5 ; HOUR 6.10.11
;IF6.15.4 ; INDEX 6.14.6 ; INT 6.17.2 ; IRR 6.12.24 ; ISBLANK 6.13.14 ; ISERR 6.13.15 ;
ISERROR 6.13.16 ; ISLOGICAL 6.13.19 ; ISNA 6.13.20 ; ISNONTEXT 6.13.21 ; ISNUMBER
6.13.22 ; ISTEXT 6.13.25 ; LEFT 6.20.12 ; LEN 6.20.13 ; LN 6.16.39 ; LOG 6.16.40 ; LOG10
6.16.41 ; LOWER 6.20.14 ; MATCH 6.14.9 ; MAX 6.18.45 ; MID 6.20.15 ; MIN 6.18.48 ;
MINUTE 6.10.13 ; MOD 6.16.42 ; MONTH 6.10.14 ; N 6.13.26 ; NA 6.13.27 ; NOT 6.15.7 ;
NOW 6.10.16 ; NPER 6.12.29 ; NPV 6.12.30 ; ODD 6.16.44 ; OR 6.15.8 ; P1 6.16.45 ; PMT
6.12.36 ; POWER 6.16.46 ; PRODUCT 6.16.47 ; PROPER 6.20.16 ; PV 6.12.41 ; RADIANS
6.16.49 ; RATE 6.12.42 ; REPLACE 6.20.17 ; REPT 6.20.18 ; RIGHT 6.20.19 ; ROUND 6.17.5
; ROWS 6.13.30 ; SECOND 6.10.17 ; SIN 6.16.55 ; SLN 6.12.45 ; SQRT 6.16.58 ; STDEV
6.18.72 ; STDEVP 6.18.74 ; SUBSTITUTE 6.20.21 ; SUM 6.16.61 ; SUMIF 6.16.62 ; SYD
6.12.46 ; T 6.20.22 ; TAN 6.16.69 ; TIME 6.10.18 ; TODAY 6.10.20 ; TRIM 6.20.24 ; TRUE
6.15.9 ; TRUNC 6.17.8 ; UPPER 6.20.27 ; VALUE 6.13.34 ; VAR 6.18.82 ; VARP 6.18.84 ;
VLOOKUP 6.14.12 ; WEEKDAY 6.10.21 ; YEAR 6.10.24

F) It need not evaluate references that contain more than one area.

G) It need not implement inline arrays 5.13, complex numbers 4.4, and the reference union
operator 6.4.13.

Note: This specification does not mandate a user interface for international characters, so a
resource-constrained application may choose to not show the traditional glyph (e.g., it may
show the [UNICODE] numeric code instead).

2.3.3 OpenDocument Formula Medium Group Evaluator

An OpenDocument Formula Medium Group Evaluator is an OpenDocument Small Group
Formula Evaluator that meets the following additional requirements:

A) It shall implement the following functions as defined in this specification: ACCRINT 6.12.2 ;
ACCRINTM 6.12.3 ; ACOSH 6.16.4 ; ACOT 6.16.5; ACOTH 6.16.6 ; ADDRESS 6.14.2 ;
ASINH 6.16.8 ; ATANH 6.16.11 ; AVEDEV 6.18.2 ; BESSELI 6.16.12 ; BESSELJ 6.16.13 ;
BESSELK 6.16.14 ; BESSELY 6.16.15 ; BETADIST 6.18.7 ; BETAINV 6.18.8 ; BINOMDIST
6.18.10 ; CEILING 6.17.1 ; CHAR 6.20.3 ; CLEAN 6.20.4 ; CODE 6.20.5 ; COLUMN 6.13.4 ;
COMBIN 6.16.16 ; CONCATENATE 6.20.6 ; CONFIDENCE 6.18.16 ; CONVERT 6.16.18 ;
CORREL 6.18.17 ; COSH 6.16.20 ; COT 6.16.21 ; COTH 6.16.22 ; COUPDAYBS 6.12.5;
COUPDAYS 6.12.6 ; COUPDAYSNC 6.12.7 ; COUPNCD 6.12.7 ; COUPNUM 6.12.9 ;
COUPPCD 6.12.10 ; COVAR 6.18.18 ; CRITBINOM 6.18.19 ; CUMIPMT 6.12.11 ;
CUMPRINC 6.12.12 ; DATEVALUE 6.10.4 ; DAYS360 6.10.7 ; DB 6.12.13 ; DEVSQ 6.18.20 ;
DISC 6.12.15 ; DOLLARDE 6.12.16 ; DOLLARFR 6.12.17 ; DURATION 6.12.18 ; EFFECT

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 22 of 213

6.12.19 ; EOMONTH 6.10.10 ; ERF 6.16.27 ; ERFC 6.16.28 ; EXPONDIST 6.18.21 ; FISHER
6.18.26 ; FISHERINV 6.18.27 ; FIXED 6.20.10 ; FLOOR 6.17.3 ; FORECAST 6.18.28 ; FTEST
6.18.30 ; GAMMADIST 6.18.31 ; GAMMAINV 6.18.32 ; GAMMALN 6.16.35 ; GCD 6.16.36 ;
GEOMEAN 6.18.34 ; HARMEAN 6.18.36 ; HYPGEOMDIST 6.18.37 ; INTERCEPT 6.18.38 ;
INTRATE 6.12.22 ; ISEVEN 6.13.17 ; ISODD 6.13.23 ; ISOWEEKNUM 6.10.12 ; KURT
6.18.39 ; LARGE 6.18.40 ; LCM 6.16.38 ; LEGACY.CHIDIST 6.18.11 ; LEGACY.CHIINV
6.18.13 ; LEGACY.CHITEST 6.18.15 ; LEGACY.FDIST 6.18.23 ; LEGACY.FINV 6.18.25 ;
LEGACY.NORMSDIST 6.18.54 ; LEGACY.NORMSINV 6.18.55 ; LEGACY.TDIST 6.18.77 ;
LINEST 6.18.41 ; LOGEST 6.18.42 ; LOGINV 6.18.43 ; LOGNORMDIST 6.18.44 ; LOOKUP
6.14.8 ; MDURATION 6.12.26 ; MEDIAN 6.18.47 ; MINVERSE 6.5.3 ; MIRR 6.12.27 ; MMULT
6.5.4 ; MODE 6.18.50 ; MROUND 6.17.4 ; MULTINOMIAL 6.16.43 ; NEGBINOMDIST 6.18.51
; NETWORKDAYS 6.10.15 ; NOMINAL 6.12.28 ; ODDFPRICE 6.12.31 ; ODDFYIELD 6.12.32
; ODDLPRICE 6.12.33 ; ODDLYIELD 6.12.34 ; OFFSET 6.14.11 ; PEARSON 6.18.56 ;
PERCENTILE 6.18.57 ; PERCENTRANK 6.18.58 ; PERMUT 6.18.59 ; POISSON 6.18.62 ;
PRICE 6.12.38 ; PRICEMAT 6.12.40 ; PROB 6.18.63 ; QUARTILE 6.18.64 ; QUOTIENT
6.16.48 ; RAND 6.16.50 ; RANDBETWEEN 6.16.51 ; RANK 6.18.65 ; RECEIVED 6.12.43 ;
ROMAN 6.19.17 ; ROUNDDOWN 6.17.6 ; ROUNDUP 6.17.7 ; ROW 6.13.29 ; RSQ 6.18.66 ;
SERIESSUM 6.16.53 ; SIGN 6.16.54 ; SINH 6.16.56 ; SKEW 6.18.67 ; SKEWP 6.18.68 ;
SLOPE 6.18.69 ; SMALL 6.18.70 ; SQRTPI 6.16.59 ; STANDARDIZE 6.18.71 ; STDEVA
6.18.73 ; STDEVPA 6.18.75 ; STEYX 6.18.76 ; SUBTOTAL 6.16.60 ; SUMPRODUCT 6.16.64
; SUMSQ 6.16.65 ; SUMX2MY2 6.16.66 ; SUMX2PY2 6.16.67 ; SUMXMY2 6.16.68 ; TANH
6.16.70 ; TBILLEQ 6.12.47 ; TBILLPRICE 6.12.48 ; TBILLYIELD 6.12.49 ; TIMEVALUE
6.10.19 ; TINV 6.18.78 ; TRANSPOSE 6.5.6 ; TREND 6.18.79 ; TRIMMEAN 6.18.80 ; TTEST
6.18.81; TYPE 6.13.33 ; VARA 6.18.83 ; VDB 6.12.50 ; WEEKNUM 6.10.22 ; WEIBULL
6.18.86 ; WORKDAY 6.10.23 ; XIRR 6.12.51 ; XNPV 6.12.52 ; YEARFRAC 6.10.25 ; YIELD
6.12.53 ; YIELDDISC 6.12.54 ; YIELDMAT 6.12.55 ; ZTEST 6.18.87

B) It shall implement the Infix Operator Reference Union ("~") 6.4.13
C) It shall evaluate references with more than one area.

2.3.4 OpenDocument Formula Large Group Evaluator

An OpenDocument Formula Large Group Evaluator is an OpenDocument Medium Group
Formula Evaluator that meets the following additional requirements:

A) It shall implement the syntax defined in these sections on syntax: Inline Arrays 5.13;
Automatic Intersection 5.10.6; External Named Expressions 5.11.

B) It shall implement the complex number type as discussed in the section on Complex
Number 4.4, array formulas, and Sheet-local Named Expressions.

It shall implement the following functions as defined in this specification: AMORLINC 6.12.4 ;
ARABIC 6.19.2 ; AREAS 6.13.2 ; ASC 6.20.2 ; AVERAGEA 6.18.4 ; AVERAGEIFS 6.18.6 ;
BASE 6.19.3 ; BIN2DEC 6.19.4 ; BIN2HEX 6.19.5 ; BIN2OCT 6.19.6 ; BINOM.DIST.RANGE
6.18.9 ; BITAND 6.6.2 ; BITLSHIFT 6.6.3 ; BITOR 6.6.4 ; BITRSHIFT 6.6.5 ; BITXOR 6.6.6 ;
CHISQDIST 6.18.12 ; CHISQINV 6.18.14 ; COMBINA 6.16.17 ; COMPLEX 6.8.2 ; COUNTIFS
6.13.10 ; CSC 6.16.23 ; 6.16.23CSCH 6.16.24 ; DATEDIF 6.10.3 ; DAYS 6.10.6 ; DDE 6.11.2;
DEC2BIN 6.19.7 ; DEC2HEX 6.19.8 ; DEC20CT 6.19.9 ; DECIMAL 6.19.10 ; DELTA 6.16.26 ;
EDATE 6.10.9 ; ERROR.TYPE 6.13.11; EUROCONVERT 6.16.29 ; FACTDOUBLE 6.16.33 ;
FDIST 6.18.22 ; FINDB 6.7.2 ; FINV 6.18.24 ; FORMULA 6.13.12 ; FREQUENCY 6.18.29 ;
FVSCHEDULE 6.12.21 ; GAMMA 6.16.34 ; GAUSS 6.18.33 ; GESTEP 6.16.37 ;
GETPIVOTDATA 6.14.4 ; GROWTH 6.18.35 ; HEX2BIN 6.19.11 ; HEX2DEC 6.19.12 ;
HEX2O0CT 6.19.13 ; HYPERLINK 6.11.3 ; IFERROR 6.15.5 ; IFNA 6.15.6 ; IMABS 6.8.3 ;
IMAGINARY 6.8.4 ; IMARGUMENT 6.8.5 ; IMCONJUGATE 6.8.6 ; IMCOS 6.8.7 ; IMCOT
6.8.9 ; IMCSC 6.8.10 ; IMCSCH 6.8.11 ; IMDIV 6.8.12 ; IMEXP 6.8.13 ; IMLN 6.8.14 ;
IMLOG10 6.8.15 ; IMLOG2 6.8.16 ; IMPOWER 6.8.17 ; IMPRODUCT 6.8.18 ; IMREAL 6.8.19
; IMSEC 6.8.22 ; IMSECH 6.8.23 ; IMSIN 6.8.20 ; IMSQRT 6.8.24 ; IMSUB 6.8.25 ; IMSUM
6.8.26 ; IMTAN 6.8.27; INDIRECT 6.14.7 ; INFO 6.13.13 ; IPMT 6.12.23 ; ISFORMULA
6.13.18 ; ISPMT 6.12.25 ; ISREF 6.13.24 ; JIS 6.20.11 ; LEFTB 6.7.3 ; LENB 6.7.4 ; MAXA
6.18.46 ; MDETERM 6.5.2 ; MULTIPLE.OPERATIONS 6.14.10 ; MUNIT 6.5.5 ; MIDB 6.7.5 ;
MINA 6.18.49 ; NORMDIST 6.18.52 ; NORMINV 6.18.53 ; NUMBERVALUE 6.13.28 ;

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 23 of 213

OCT2BIN 6.19.14 ; OCT2DEC 6.19.15 ; OCT2HEX 6.19.16 ; PDURATION 6.12.35;
PERMUTATIONA 6.18.60 ; PHI 6.18.61 ; PPMT 6.12.37 ; PRICEDISC 6.12.39 ; REPLACEB
6.7.6 ; RIGHTB 6.7.7 ; RRI 6.12.44 ; SEARCH 6.20.20 ; SEARCHB 6.7.8 ; SEC 6.16.52 ;
SECH 6.16.57 ; SHEET 6.13.31 ; SHEETS 6.13.32 ; SUMIFS 6.16.63 ; TEXT 6.20.23;
UNICHAR 6.20.25 ; UNICODE 6.20.26 ; VARPA 6.18.85 ; XOR 6.15.10

Note: The following functions are documented by this specification, but not included even in
the Large group:CELL 6.13.3 ; DOLLAR 6.20.7

2.4 Variances (Implementation-defined, Unspecified, and
Behavioral Changes)

Applications should document all implementation-defined variances from this standard in a
manner that enables application users to obtain the information.

In a few cases a specific approach is required (e.g., string indexes begin at one), which may
vary in the user interfaces of different implementations.

Note 1: In practice, for nearly all documents the differences are irrelevant.
The primary variances and differences from OpenFormula and some existing
applications are:

e Some conversions between types are not required to be automatic. In particular,
applications may, but need not, perform automatic conversion of text in a cell when it is to
be used as a number.

* There need not be a distinguishable Logical type. Applications may have a Logical type
distinct from Number and Text (see Distinct Logical 8.2), but Logical values may also be
represented by the Number type using the values 1 (TRUE) and O (FALSE). This means
that functions that take number sequences (such as SUM) may but need not include true
and false values in the sequence.

« Applications vary on the set of Errors they support. In this specification the only
distinguished Error is #N/A; all other errors are simply errors, allowing applications to
choose the Error set that best meets their needs.

* Inthis specification, string index positions start from 1. Users of applications with string
index positions starting from 0 shall add and subtract 1 on import/export of this format, as
appropriate.

« Database criteria match patterns (such as the pattern matching language for text) have
historically varied: Some support glob syntax (e.g., a*b is a, followed by 0 or more
characters, followed by b), while others support traditional regular expression syntax (e.g.,
a*b is zero or more a’s, followed by b). This specification supports both pattern languages.

Note 2: Interoperability is improved by the use of the DATE 6.10.2 and TIME
6.10.18 functions or the textual [ISO8601] date representation because dates
in that format do not rely upon epoch or locale-specific settings.

In an OpenDocument file, calculation settings impact formula recalculation, which can be the
same or different from a particular application's defaults. These include whether or not text
comparisons are case-sensitive, or if search criteria apply to the whole cell.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 24 of 213

3 Formula Processing Model

3.1 General

This section describes the basic formula processing model: how expressions are calculated,
when recalculation occurs, and limits on formulas.

3.2 Expression Evaluation

3.2.1 General

OpenFormula defines rules for the evaluation of expressions as well as the functions and
operators that appear in expressions.

3.2.2 Expression Calculation
Expressions in OpenFormula shall be evaluated by application of the following rules:

1) If an expression consists of a constant Number (5.3), a constant String (5.4), a
Reference (5.8), constant Error (per section 5.12), the value of that type is returned.

2) If an expression consists of one or more operations, apply the operators in order of
precedence and associativity as defined by Table 1 in 5.5 (Operators). Precedence of
operators may be altered by the use of "(" (LEFT PARENTHESES, U+0028) and ")"
(RIGHT PARENTHESES, U+0029) to group operators. Evaluate the operator as
described in Operator and Function Evaluation, 3.2.3.

3) If an expression consists of a function call (5.6, 5.7), evaluate the function as described
in Operator and Function Evaluation, 3.2.3.

4) If an expression consists of a named expression (5.11), the result of evaluating the
named expression is returned.

5) If an expression consists of a QuotedLabel (5.10), Automaticlntersection (5.10.6), or
Array (5.13), its value is returned. Expression Syntax 5

Once evaluation has completed:

1. If the result is a Reference and a single non-reference value is needed, it is converted to
the referenced value, using the rules of Non-Scalar Evaluation, 3.3, 1.2.

2. If the result an Array, for the display area, apply the rules of Non-Scalar Evaluation, 3.3,
1.1.

3.2.3 Operator and Function Evaluation

Operators and functions in OpenFormula shall be evaluated according to their definitions by
applying the following rules:

1. The value of all expression arguments are computed. Exceptions to computation of all
arguments are noted in a function's specification.

Note: The practice of computing all argument expressions is known as
"eager" evaluation. The IF function is an example of a function that does
not require computation of all arguments.

2. If an argument expression evaluates to Error, calculation of the operator or function may
short-circuit and return the Error if the function does not suppress error propagation as
noted in the function's specification.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 25 of 213

3. If an operator or function is passed a value of incorrect type, call the appropriate implicit
conversion function to convert the value to the correct type. If conversion is not possible,
generate an Error.

4. The function or operation is called with its argument expressions' results, and the result of
the function or operation is the evaluation of the expression.

3.3 Non-Scalar Evaluation (aka 'Array expressions’)
Non-scalar values passed as arguments to functions are evaluated by intersection or iteration.

1) Evaluation as an implicit intersection of the argument with the expression's evaluation
position.

1.1) Inline Arrays
Element (0;0) of the array is used in place of the array.

Note 1:

=ABS({-3;-4}) => ABS(-3) /I row vector
=ABS({-3]-4}) => ABS(-3) /I column vector
=ABS({-3;-4]-6;-8}) => ABS(-3) /I matrix
={1,2;3|4;5;6} =1 /I simple display

1.2) References

1.2.1) If the target reference is a row-vector (Nx1), use the value at the
intersection of the evaluation position's column and the reference's row.

Note 2:
in cell B2 : =ABS(A1:C1) => ABS(B1)
If there is no intersection the result is #N/A or a more specific Error value.

Note 3: in cell D4 : =ABS(A1:C1) => #N/A or a more specific Error value.

1.2.2) If the target reference is a column-vector (1xM), the value at the
intersection of the evaluation position's row and the reference's column.

Note 4:
in cell B2 : =ABS(A1:A3) => ABS(A2)
in cell D4 : =ABS(A1:A3) => #N/A or a more specific Error value.

2) Matrix evaluation.

If an expression is being evaluated in a cell flagged as a being part of a 'Matrix'
(OpenDocument Part 3, 19.683 table:number-matrix-columns-spanned):

2.1) The portion of a non-scalar result to be displayed need not be co-extensive with a
specified display area. The portion of the non-scalar result to be displayed is
determined by:

2.1.1) If the position to be displayed exists in the result, display that position.

2.1.2) If the non-scalar result is 1 column wide, subsequent columns in the display
area display the value in the first column. This applies to
- scalars '3’
- singletons '{3}'
- column vectors '{1]2|3}'

2.1.3) If the non-scalar result is 1 row high, subsequent rows in the display area
use the value of the first row. This applies to
- scalars '3’
- singletons {3}
- row vectors '{1;2;3}'

2.1.4) If none of the other rules apply #N/A

Note 5:
in matrix A1:B3 with ={1;2|3;4|5;6} : cell B2 contains 4. [Rule 2.1.1]
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 26 of 213

in matrix A1:B3 with ={1|3|5} : cell B2 contains 3. [Rule 2.1.1
for row, and Rule 2.1.2 column]

in matrix A1:B3 with ={2;4} : cell B2 contains 4. [Rule 2.1.3
for row, and Rule 2.1.1 column]

in matrix A1:C4 with ={1,2|3;4|5;6} : cell C1,A4 contain #N/A. [Rule
2.1.4]

Note 6: if a value is not requested it is not displayed

in matrix A1:B2 with ={1;2|3;4|5;6} : the value '6' is not displayed

because B3 is not part of the display matrix.

2.2) Calculations with non-scalar inputs are a generalization of (2.1).

When evaluating a formula in 'matrix' mode, and a non-scalar value is passed to a
function argument that expects a scalar, the function is evaluated multiple times,
iterating over the non-scalar input(s) and putting the function result into a matrix at
the position corresponding to the input. Unary/Binary operators, other than range
and union, follow the rules for scalar functions when passed non-scalar values.

Inline arrays and references are interchangeable.

2.2.1) Functions returning arrays are not eligible for implicit iteration. When
evaluated in 'matrix' mode the {0;0}th element is used.

Note 7:
e.g. =SUM(INDIRECT({"A1";"A2")) would produce the value in A1 when
evaluated in array mode.

2.2.2) The result matrix is rectangular, sized with the maximum number of rows
and columns from all non-scalar arguments.

Note 8:
={1;2}+{3;4;5} => {4;6;#NI/A}
={1}+{1;2} =>{2;3}

2.2.3) The result matrix is populated by extracting the corresponding value from
each of the non-scalar arguments based on the following rules, and
evaluating the function with that set of arguments.

2.2.3.1) If the argument data is a singleton array or a scalar the value is
repeated for each evaluation.

Note 9:
=1+{1,2;314,5,6} =>{2;34|5,6;7}
= {1} + {1;2;3|4;5;6} =>{2;3;4/5;6;7}
2.2.3.2) If the argument data is 1 column wide the value in the corresponding
row is used to evaluate all columns in the result matrix.

Note 10:
= {1]2} + {10;20|30;40} =>{11;21|32;42}

2.2.3.3) If the argument data is 1 row height the value in the corresponding
column is used to evaluate all rows in the result matrix.

Note 11:
={1,2} + {10;20|30;40} =>{11,22|31;42}

2.2.3.4) If one argument data is 1 column wide and another argument data is
1 row height the value of the corresponding row respectively column is
used to evaluate all elements in the result matrix.

Note 12:
={1;2} + {10]20} =>{11;12|21;22}

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 27 of 213

2.2.3.5) If an argument is a 2d matrix the argument value in the position
corresponding to the current output position is used if it is within range of
the supplied argument, otherwise #N/A is used in the calculation.

Note 13:
=MID("abcd";{1;2};{1;2;3}) =>{"a";"bc";#N/A}

3.4 Host-Defined Behaviors

A Formula Evaluator operates in an execution environment (a "host"). The behavior of the
Formula Evaluator is parametrized by host-defined properties and functions.

The following properties are host-defined:

1. HOST-CASE-SENSITIVE: if true, text comparisons are case-sensitive. This influences the
operators =, <>, <, <=, >, and >=, as well as database query functions that use them. Note
that the EXACT function is always case-sensitive, regardless of this calculation setting.

2. HOST-PRECISION-AS-SHOWN: If true, calculations are performed using rounded values
of those displayed; otherwise, calculations are performed using the precision of the
underlying numeric representation.

Note: This does not impose a particular numeric model. Since implementations may use
binary representations, this rounding may be inexact for decimal values.

3. HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL If true, the specified search
criteria shall apply to the entire cell contents if it is a text match using = or <>; if not, only a
subpart of the cell content needs to match the text.

4. HOST-AUTOMATIC-FIND-LABELS: if true, row and column labels are automatically found.

5. HOST-USE-REGULAR-EXPRESSIONS: If true, regular expressions are used for character
string comparisons and when searching.

6. HOST-USE-WILDCARDS: If true, wildcards question mark '?" and asterisk *' are used for
character-string comparisons and when searching. Wildcards may be escaped with a tilde
'~' character.

7. HOST-NULL-YEAR: This defines how to convert a two-digit year into a four-digit year.
Each two-digit year value is interpreted as a year that equals or follows this year.

8. HOST-NULL-DATE: Defines the beginning of the epoch; a numeric date of 0 equals this
date.

9. HOST-LOCALE: The locale to be used for locale-dependent operations, such as
conversion of text to dates, or text to numbers.

10. HOST-ITERATION-STATUS: If enabled, iterative calculations of cyclic references are
performed.

11. HOST-ITERATION-MAXIMUM-DIFFERENCE: If iterative calculations of cyclic references
are enabled, the maximum absolute difference between calculation steps that all involved
formula cells must yield for the iteration to end and yield a result.

12. HOST-ITERATION-STEPS: If iterative calculations of cyclic references are enabled, the
maximum number of steps iterations that are performed if the results are not within HOST-
ITERATION-MAXIMUM-DIFFERENCE.

The function HOST-REFERENCE-RESOLVER(Reference) is implementation-defined. This
function takes as input a Unicode string containing a Reference according to section 4.8 and
returns a resolved value.

3.5 When recalculation occurs

Implementations of OpenFormula typically recalculate formulas when its information is
needed. Typical implementations will note what values a formula depends on, and when those
dependent values are changed and the formula's results are displayed, it will re-execute the
formulas that depend on them to produce the new results (choosing the formulas in the right
order based on their dependencies). Implementations may recalculate when a value changes

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 28 of 213

(this is termed automatic recalculation) or on user command (this is termed manual
recalculation).

Some functions' dependencies are difficult to determine and/or should be recalculated more
frequently. These include functions that return today's date or time, random number generator
functions (such as RAND 6.16.50), or ones that indirectly determine the cells to act on. Many
implementations always recalculate formulas including such functions whenever a
recalculation occurs. Functions that are always recalculated whenever a recalculation occurs
are termed volatile functions. Functions that are often volatile functions include CELL 6.13.3,
HYPERLINK 6.11.3, INDIRECT 6.14.7, INFO 6.13.13, NOW 6.10.16, OFFSET 6.14.11, RAND
6.16.50 and TODAY 6.10.20. Functions that depend on the cell position of the formula they
are contained in or the position of a cell they reference need to be recalculated whenever that
cell is moved, such functions are COLUMN 6.13.4, ROW 6.13.29 and SHEET 6.13.31. In
addition, formulas may indicate that they should always be recalculated during a recalculation
process by including a forced recalculation marker, as described in the syntax below.

3.6 Numerical Models

This specification does not, by itself, specify a numerical implementation model, though it does
imply some minimal levels of accuracy for most functions. For example, an application cannot
say that it implements the infix operator “/” as specified in this document if it implements
integer-only arithmetic.

3.7 Basic Limits
Evaluators which claim to support “basic limits” shall support at least the following limits:

1. formulas up to at least 1024 characters long, as measured when in OpenDocument

interchange format not counting the square brackets around cell addresses, or the “.
in a cell address when the sheet name is omitted.

2. atleast 30 parameters per function when the function prototype permits a list of
parameters.

permit strings of ASCII characters of up to 32,767 (2*15-1) characters.
support at least 7 nesting levels of functions.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 29 of 213

4 Types

4.1 General

All values defined by OpenFormula have a type. OpenFormula defines Text 4.2, Number 4.3,
Complex Number 4.4, Logical 4.5, Error 4.6, Reference 4.8, ReferencelList 4.9 and Array 4.10

types.

4.2 Text (String)

A Text value (also called a string value) is a Character string as specified in [CharModel].
A text value of length zero is termed the empty string.
Index positions in a text value begin at 1.

Whether or not Unicode Normalization [UTR15] is performed on formulas, formula results or
user inputs is implementation-defined. Some functions defined in OpenFormula are labeled as
"normalization-sensitive", meaning that the results of the formula evaluation may differ
depending on whether normalization occurs, and which normalization form is used. Mixing
operands of different normalization forms in the same calculation is undefined.

4.3 Number

4.3.1 General

A number is a numeric value.

Numbers shall be able to represent fractional values (they shall not be limited to only integers).
Evaluators may implement Number with a fixed or with a variable bit length. A cell with a
constant numeric value has the Number type.

Implementations typically support many subtypes of Number, including Date, Time, DateTime,
Percentage, fixed-point arithmetic, and arithmetic supporting arbitrarily long integers, and
determine the display format from this.

Note: This specification does not require that specific subtypes be
distinguishable from each other, or that the subtype be tracked, but in practice
most implementations do such tracking because requiring users to manually
format every cell appropriately becomes tedious very quickly. Automatically
determining the most likely subtype is especially important for a good user
interface when generating OpenDocument format, since some subtypes (such
as date, time, and currency) are stored in a different manner depending on
their subtype. Thus, this specification identifies some common subtypes and
identifies those subtypes where relevant in some function definitions, as an
aid to implementing good user interfaces. Many applications vary in the
subtype produced when combining subtypes (e.g., what is the result when
percentages are multiplied together), so unless otherwise noted these are
unspecified. Typical implementations try to heuristically determine the "right"
format for a cell when a formula is first created, based on the operations in the
formula. Users can then override this format, so as a result the heuristics are
not important for data exchange (and thus outside the scope of this
specification).

All such Number subtypes shall yield TRUE for the ISNUMBER 6.13.22 function.

4.3.2 Time
Time is a subtype of Number.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 30 of 213

Time is represented as a fraction of a day.

4.3.3 Date

Date is a subtype of Number.
Date is represented by an integer value.

A serial date is the expression of a date as the number of days elapsed from a start date
called the epoch.

Evaluators shall support all dates from 1904-01-01 through 9999-12-31 (inclusive) in
calculations, should support dates from 1899-12-30 through 9999-12-31 (inclusive) and may
support a wider date range.

Note 1: Using expressions that assume serial numbers are based on a
particular epoch may cause interoperability issues.

Evaluators shall support positive serial numbers. Evaluators may support negative serial
numbers to represent dates before an epoch.

Note 2: It is implementation-defined if the year 1900 is treated as a leap year.

Note 3: Evaluators that treat 1900 as a non-leap year can use the epoch date
1899-12-30 to compensate for serial numbers that originate from evaluators
that treat 1900 as a leap year and use 1899-12-31 as an epoch date.

4.3.4 DateTime

DateTime is a subtype of Number. It is a Date plus Time.

4.3.5 Percentage

A percentage is a subtype of Number that may be displayed by multiplying the number by 100
and adding the sign “%" or with other formatting depending upon the number format assigned
to the cell where it appears.

4.3.6 Currency

A currency is a subtype of Number that may appear with or without a currency symbol or with
other formatting depending upon the number format assigned to the cell where it appears.

4.3.7 Logical (Number)

Applications may have a Logical type distinct from both Number and Text (see Logical (Bool-
ean)4.5 Logical (Boolean)), but Logical values may also be represented by the Number type
using the values 1 (True) and O (False). (see 8.2 Distinct Logical for details)

4.4 Complex Number

A complex number (sometimes also called an imaginary humber) is a pair of real numbers
including a real part and an imaginary part. In mathematics, complex numbers are often
written as x + iy, where x (the real part) and y (the imaginary part) are real numbers and / is

V=1 . A complex number can also be written as re®® = rcos(8) + irsin(8), where r is the
modulus of the complex number (a real number) and 0 is the argument or phase (a real
number representing an angle in radians).

A complex number may, but need not be, represented as a Number or Text. The results of the
functions ISNUMBER() 6.13.22 and ISTEXT() 6.13.25 are implementation-defined when
applied to a complex number.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 31 of 213

Functions and operators that accept complex numbers shall accept Text values as complex
numbers (Conversion to Complex Number 6.3.10), as well as Numbers that are not complex
numbers.

Note 1: IMSUM("3i";4) will produce the same result as COMPLEX(4;3).

Note 2: Expression authors should be aware that use of functions that are not
defined by OpenFormula as accepting complex numbers as input may impair
interoperability.

Equality can be tested using IMSUB to compute the difference, use IMABS to find the absolute
difference, and then ensure the absolute difference is smaller than or equal to some
nonnegative value (for exact equality, compare for equality with 0).

4.5 Logical (Boolean)

Applications may have a Logical type distinct from both Number and Text, but Logical values
may also be represented by the Number type using the values 1 (True) and O (False) (see
4.3.7 Logical (Number)). (see 8.2 Distinct Logical for details)

4.6 Error

An Error is one of a set of possible error values. Implementations may have many different
error values (see 5.12), but one error value in particular is distinct: #N/A, the result of the NA()
function. Users may choose to enter some data values as #N/A, so that this error value
propagates to any other formula that uses it, and may test for this using the function ISNA().

Functions and operators that receive one or more error values as an input shall produce one
of those input error values as their result, except when the formula or operator is specifically
defined to do otherwise.

In an OpenDocument document, if an error value is the result of a cell computation it shall be
stored as if it was a string. That is, the office:value-type (OpenDocument Part 3,
19.389) of an error value is string; if the computed value is stored, it is stored in the attribute
office:string-value (OpenDocument Part 3, 19.383).

Note: This does not change an Error into a string type (since the Error will be restored on
recalculation); this enables applications which cannot recalculate values to display the error
information.

4.7 Empty Cell

An empty cell is neither zero nor the empty string, and an empty cell can be distinguished from
cells containing values (including zero and the empty string). An empty cell is not the same as
an Error, in particular, it is distinguishable from the Error #N/A (not available).

4.8 Reference
A cell position is the location of a single cell at the intersection of a column and a row.

A cell strip consists of cell positions in the same row and in one or more contiguous columns.

A cell rectangle consists of cell positions in the same cell strips of one or more contiguous
rows.

A cell cuboid consists of cell positions in the same cell rectangles of one or more contiguous
sheets.

A reference is the smallest cuboid that (1) contains specifically-identified cell positions and/or
specifically-identified complete columns/rows such that (2) removal of any cell positions either
violates condition (1) or does not leave a cuboid.

Cell positions in a cell cuboid/rectangle/strip can resolve to empty cells (section 4.7).

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 32 of 213

The definitions of specific operations and functions that allow references as operands and
parameters stipulate any particular limitations there are on forms of references and how empty
cells, when permitted, are interpreted.

4.9 ReferencelList

A reference list contains 1 or more references, in order. A reference list can be passed as an
argument to functions where passing one reference results in an identical computation as an
arbitrary sequence of single references occupying the identical cell range.

Note 1: For example, SUM([.A1:.B2]) is identical to
SUM([.A1]~[.B2]~[.A2]~[.B1]), but COLUMNS([.A1:.B2)), resulting in 2
columns, is not identical to COLUMNS([.A1]~[.B2]~[.A2]~[.B1]), where
iterating over the reference list would result in 4 columns.

A reference list cannot be converted to an array.

Note 2: For example, in array context {ABS([.A1]~[.B2]~[.A2]~[.B1])} is an
invalid expression, whereas {ABS([.A1:.B2])} is not.

Passing a reference list where a function does not expect one shall generate an Error.
Passing a reference list in array iteration context to a function expecting a scalar value shall
generate an Error.

4.10 Array

An array is a set of rows each with the same number of columns that contain one or more
values. There is a maximum of one value per intersection of row and column. The intersection
of a row and column may contain no value.

4.11 Pseudotypes

4.11.1 General

Many functions require a type or a set of types with special properties, and/or process them
specially. For example, a "Database" requires headers that are the field names. These
specialized types are called pseudotypes.

4.11.2 Scalar

A Scalar value is a value that has a single value. A reference to more than one cell is not a

scalar (by itself), and is converted to one as described below. An array with more than one

element is not a scalar. The types Number (including a complex number), Logical, and Text
are scalars.

4.11.3 DateParam

A DateParam is a value that is either a Number (interpreted as a serial number; 4.3.3) or Text;
text is automatically converted to a date value. 6.3.15

4.11.4 TimeParam

A TimeParam is a value that is either a Number (interpreted as a serial number; 4.3.2) or Text;
text is automatically converted to a time value (fraction of a day). 6.3.16

4.11.5 Integer

An integer is a subtype of Number that has no fractional value. An integer X is equal to INT(X).
Division of one integer by another integer may produce a non-integer.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 33 of 213

4.11.6 TextOrNumber

TextOrNumber is a value that is either a Number or Text.

4.11.7 Basis

4.11.7.1 General
A basis is a subtype of Integer that specifies the day-count convention to be used in a
calculation.

This standard defines five day-count conventions, corresponding to widely used current and
historical accounting conventions. Each of these five bases defines two things:

1. How to calculate the number of days between two dates, datel and date2.

2. How to calculate the number of days in each year between two dates, datel and
date2.

Historically day-count bases used the naming convention x/y, which indicated that the
convention assumed x days per month and y days per year. These names are given for
reference purposes.

Date Basis Historical Name Day Count Days in Year
0 US (NASD) 30/360 Procedure A, 4.11.7.3 | Procedure D, 4.11.7.6
1 Actual/Actual Procedure B, 4.11.7.4 | Procedure E, 4.11.7.7
2 Actual/360 Procedure B, 4.11.7.4 | Procedure D, 4.11.7.6
3 Actual/365 Procedure B, 4.11.7.4 | Procedure F, 4.11.7.8
4 European 30/360 Procedure C, 4.11.7.5 | Procedure D, 4.11.7.6

4.11.7.2 Procedural Notation
The day-count procedures are expressed using notations defined as:

« day(date) returns the day of the month for the given date value, an integer from 1 to

* month(date) returns the month of a given date value, an integer from 1-12
* year(date) returns the year of the given date value

* truncate(date) truncates any fractional (hours, minutes, seconds) of a date value and
returns the whole date portion.

* Binary comparison operators datel>date2 and datel == date2

* is-leap-year(year) returns true if year is a leap year, otherwise false.

Note: Some of the day count procedures use intermediate results that contain
counter-factual dates, such as February 30"™. This is not an error. The above
functions work on such dates as well, e.g., day(February 30") == 30.

4.11.7.3 Procedure A
1. truncate(datel), truncate(date?2)

If datel==date2 return O

If datel> date2, then swap the values of datel and date2.

If day(date1)==31 then subtract 1 day from datel

If day(date1)==30 and day(date2)==31 then subtract 1 day from date2

o M DN

2 August 2024
Page 34 of 213

OpenDocument-v1.4-csO1-part4-formula
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved.

6. If both datel and date2 are the last day of February, change date2 to the 30th of the
month.

If datel is the last day of February, change it to the 30th of the month.

Return (year(date2)*360 + month(date2)*30 + day(date2)) - (year(date1)*360 +
month(date1)*30 + day(datel)).

4.11.7.4 Procedure B
1. truncate(datel), truncate(date?2)

2. If datel> date2, then swap the values of datel and date2.

3. Return the actual numbers of days between datel and date2, inclusive of datel, but not
inclusive of date2.

4.11.7.5 Procedure C
truncate(datel), truncate(date2)

If datel==date2 return O

If datel> date2, then swap the values of datel and date2.
If day(date1)==31 then subtract 1 from datel

If day(date2)==31 then subtract 1 from date 2

Return (year(date2)*360 + month(date2)*30 + day(date2)) - (year(date1)*360 +
month(date1)*30 + day(datel)).

S o

4.11.7.6 Procedure D
1. Return 360

4.11.7.7 Procedure E
Evaluate A: year(datel) != year(date2)

Evaluate B: year(date2)!=year(datel)+1

Evaluate C: month(datel) < month(date2)

Evaluate D: month(datel) == month(date2)

Evaluate E: day(datel) < day(date2)

Evaluate F: (A and B) or (A and C) or (A and D and E)

If F is true then return the average of the number of days in each year between datel and
date2, inclusive.

N o g > w Db Y

8. Otherwise, if A and is-leap-year(year(datel)) then return 366

9. Otherwise, if a February 29 occurs between datel and date2 then return 366
10. Otherwise, if date2 is a February 29, then return 366

11. Otherwise return 365

4.11.7.8 Procedure F
1. Return 365

4.11.8 Criterion

A criterion is a single cell Reference, Number or Text. It is used in comparisons with cell
contents.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 35 of 213

A reference to an empty cell is interpreted as the numeric value 0.
A matching expression can be:
* A Number or Logical value. A matching cell content equals the Number or Logical value.

* Avalue beginning with a comparator (<, <=, >, >=) 6.4.9 or an infix operator (=, <>). =
6.4.7,<>6.4.8

For =, if the value is empty it matches empty cells. Empty cell 4.7, = 6.4.7
For <>, if the value is empty it matches non-empty cells. <> 6.4.8

For <>, if the value is not empty it matches any cell content except the value, including
empty cells.

Note: "=0" does not match empty cells.

For = and <>, if the value is not empty and can not be interpreted as a Number type or
one of its subtypes and the host-defined property HOST-SEARCH-CRITERIA-MUST-
APPLY-TO-WHOLE-CELL is true, comparison is against the entire cell contents, if false,
comparison is against any subpart of the field that matches the criteria. For = and <>, if
the value is not empty and can not be interpreted as a Number type or one of its subtypes
3.4 applies.

e Other Text value. If the host-defined property HOST-SEARCH-CRITERIA-MUST-APPLY-
TO-WHOLE-CELL is true, the comparison is against the entire cell contents, if false,
comparison is against any subpart of the field that matches the criteria.

4.11.9 Database

A database is a rectangular organized set of data. Any database has a set of one or more
fields that determine the structure of the database. A database has a set of zero or more
records with data, and each record contains data for every field (though that field may be
empty).

Evaluators shall support the use of ranges as databases if they support any database
functions. The first row of a range is interpreted as a set of field names.

Note: Field names of type Text and unique without regard to case enhance
the interoperability of data. It is also a common expectation that rows following
the first row of data are data records that correspond to field names in the first
row.

A single cell containing text can be used as a database; if it is, it is a database with a single
field and no data records.

4.11.10 Field

A field is a value that selects a field in a database; it is also called a field selector. If the field
selector is Text, it selects the field in the database with the same name.

Evaluators should match the database field name case-insensitively.

If a field selector is a Number, it is a positive integer and used to select the fields. Fields are
numbered from left to right beginning with the number 1.

All functions that accept a field parameter shall, when evaluated, return an Error if the selected
field does not exist.

4.11.11 Criteria

A criteria is a rectangular set of values, with at least one column and two rows, that selects
matching records from a database. The first row lists fields against which expressions will be
matched. 4.11.10 Rows after the first row contain fields with expressions for matching against
database records.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 36 of 213

For a record to be selected from a database, all of the expressions in a criteria row shall
match.

A reference to an empty cell is interpreted as the numeric value 0.
* Expressions are matched as per 4.11.8 Criterion.

4.11.12 Sequences (NumberSequence, NumberSequenceList,
DateSequence, LogicalSequence, and ComplexSequence)

Some functions accept a sequence, i.e., a value that is to be treated as a sequential series of
values. The following are sequences: NumberSequence, NumberSequencelList,
DateSequence, LogicalSequence, and ComplexSequence.

When evaluating a function that accepts a sequence, the evaluator shall follow the rules for
that sequence as defined in section 6.3. When processing a ReferencelList, the references are
processed in order (first, second if any, and so on). In a cuboid, the first sheet is first
processed, followed by later sheets (if any) in order. Inside a sheet, it is implementation-
defined as to whether the values are processed row-at-a-time or column-at-a-time, but it shall
be one of these two processing orders. If processing row-at-a-time, the sequence shall be
produced by processing each row in turn, from smallest to largest column value (e.g., Al, B1,
C1). If processing column-at-a-time, the sequence shall be produced by processing each
column at a time, from the smallest to the largest row value (e.g., Al, A2, A3).

4.11.13 Any

Any represents a value of any type defined in this standard, including Error values.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 37 of 213

5 Expression Syntax

5.1 General

The OpenFormula syntax is defined using the BNF notation of the XML specification, chapter
6 [XML1.0]. Each syntax rule is defined using "::=".

Note: Formulas are typically embedded inside an XML document. When this occurs,
characters (such as "<", ">", ", and "&") shall be escaped, as described in section 2.4 of the
XML specification [XML1.0]. In particular, the less-than symbol "<" is typically represented as
“<”, the double-quote symbol as “"”, and the ampersand symbol as “&”

(alternatively, a numeric character reference can be used).

5.2 Basic Expressions

Formulas may start with a '=' (EQUALS SIGN, U+003D), which if present may be followed by
a “forced recalculate” marker '=' (EQUALS SIGN, U+003D), followed by an expression. If the
second '=' (EQUALS SIGN, U+003D) is present, this formula is a "forced recalculation”
formula. If a formula is marked as a "forced recalculation" formula, then it should be
recalculated whenever one of its predecessors it depends on changes.

Expressed as a grammar in BNF notation, a formula is specified:

Formula ::= Intro? Expression
Intro ::= '=' ForceRecalc?
ForceRecalc ::= '='

The primary component of a formula is an Expression. Formulas are composed of
Expressions, which may in turn be composed from other Expressions.
Expression ::=
Whitespace* (
Number |
String |
Array |
PrefixOp Expression |
Expression PostfixOp |
Expression InfixOp Expression |
'(' Expression ")' |
FunctionName '(' ParameterList ')' |
Reference |
QuotedLabel |
AutomaticIntersection |
NamedExpression |
Error
) Whitespace*
SlngleQUOted 0 o= min ([/\I] | IIIIII)+ min

5.3 Constant Numbers
Constant numbers are written using "' (FULL STOP, U+002E) dot as the decimal separator.

Optional "E" or "e" denotes scientific notation. Syntactically, negative numbers are positive
numbers with a prefix "-" (HYPHEN-MINUS, U+002D) operator. A constant number is of type

Number.

Number ::= StandardNumber |
"' [0-9]+ ([eE] [-+]? [0-9]+)?
StandardNumber ::= [0-9]+ ('.' [0-9]+)? ([eE] [-+]? [0-9]+)?
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 38 of 213

Evaluators should be able to read the Number format, which accepts a decimal fraction that
starts with decimal point ." (FULL STOP, U+002E), without a leading zero. Evaluators shall
write numbers only using the StandardNumber format, which requires a leading digit, and
shall not write numbers with a leading '.' (FULL STOP, U+002E).

5.4 Constant Strings

Constant strings are surrounded by double-quote characters (QUOTATION MARK, U+0022);
a literal double-quote character "™ (QUOTATION MARK, U+0022) as string content is escaped
by duplicating it. A constant string is of type Text.

String = rma ([A"#XOO] | IIIIII)* rma

5.5 Operators

Operators are functions with one or more parameters.

Prefixop ::= '+' | '-'

Postfix0Op ::= '%'

InfixOp ::= ArithmeticOp | ComparisonOp | StringOp | ReferenceOp
ArithmeticOp ::= '+' | '-' | "*' | '"/' | 'A!

ComparisonOp ::= '=' | '<>'" | '<' | '>' | '<=' | !'>=!

StringOp ::= '&'

There are three predefined reference operators: reference intersection, reference
concatenation, and range. The result of these operators may be a 3-dimensional range, with
front-upper-left and back-lower-right corners, or even a list of such ranges in the case of cell

concatenation.

ReferenceOp ::= IntersectionOp | ReferenceConcatenationOp |

RangeOp
IntersectionOp ::= '

ReferenceConcatenationOp

RangeOp ::= ':'

Table 1 - Operators defines the associativity and precedence of operators, from highest to

lowest precedence.

Table 1 - Operators

Associativity | Operator(s) Comments
left Range.
left | Reference intersection ([.A1:.C4]![.B1:.B5] is [.B1:.B4]). Dis-
' played as the space character in some implementations.
Reference union.
left - Note: Displayed as the function parameter separator in some im-
plementations.
right ‘. Prefix unary operators, e.g., -5 or -[.Al]. Note that these have a
9 ' different precedence than add and subtract.
Postfix unary operator % (divide by 100). Note that this is legal
left % : g
with expressions (e.g., [.B1]%).
left A Power (2 A 3 is 8).
left */ Multiply, divide.
left .. Binary operations add, subtract. Note that unary (prefix) + and -
' have a different precedence.
left & Binary operation string concatenation. Note that unary (prefix) +
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. Page 39 of 213

and - have a different precedence. Note that "&" shall be es-
caped when included in an XML document

=, <>, <, <=, | Comparison operators equal to, not equal to, less than, less than

left > >= or equal to, greater than, greater than or equal to

Note 1: Prefix “-” has a higher precedence than “*", “\" is left-associative, and reference
intersection has a higher precedence than reference union.

Note 2: Prefix “+” and “-“ are defined to be right-associative. However, note that typical
applications which implement at most the operators defined in this specification (as specified)
may implement them as left-associative, because the calculated results will be identical.

Note 3: Precedence can be overridden by using parentheses, so "=2+3*4" computes to 14 but
"=(2+3)*4" computes 20. Implementations should retain "unnecessary" parentheses and white
space, since these are added by people to improve readability.

5.6 Functions and Function Parameters

Functions are called by name, followed by parentheses surrounding a list of parameters.
Parameters are separated using the semicolon ';' (SEMICOLON, U+003B) character:
FunctionName ::= LetterXML (LetterXML | DigitXML |
' | '.'" | CombiningCharXML)*

Where LetterXML, DigitXML, and CombiningCharXML are Letter, Digit, and CombiningChar as
they are defined in [XML1.0].

Function names are case-insensitive.

Function calls shall be given a parameter list, though it may be empty. An empty list of
parameters is considered a call with 0 parameters, not a call with one parameter that happens
to be empty. TRUE() is syntactically a function call with 0 parameters. It is syntactically
legitimate to provide empty parameters, though functions need not accept empty parameters
unless otherwise noted:
ParameterList ::= /* empty */ |
Parameter (Separator EmptyOrParameter)* |
Separator EmptyOrParameter /* First param empty */
(Separator EmptyOrParameter)*

EmptyOrParameter ::= /* empty */ Whitespace* | Parameter
Parameter ::= Expression
Separator ::= ';'

5.7 Nonstandard Function Names

When writing a document using function(s) not defined in this specification, an evaluator shall
include a prefix in such function names to identify the original definer of the function's
semantics. When the origin of a function cannot be determined, producers may omit a prefix.
Producers may use the prefix to differentiate between different definition types. Evaluators that
do not support a function should compute its result as some Error value other than #N/A.

Note: Examples of implementation-defined functions include extension
functions included with an implementation, user-defined functions written by
users, and 3rd party functions distributed in libraries.

Note: Examples of such names include COM.MICROSOFT.CUBEMEMBER,
ORG.OPENOFFICE.STYLE, ORG.GNUMERIC.RANDRAYLEIGH, and
COM.LOTUS.V98.FOO.

Evaluators should avoid defining evaluator-unique functions beginning with a top-level domain
name followed by a period. Evaluators should avoid defining application functions beginning
with “NET.”, “COM.”, “ORG.", or a country code followed by a period.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 40 of 213

Evaluators that do not support a function should compute its result as some Error value other
than #N/A.

5.8 References
References refer to a specific cell or set of cells. The syntax for a constant reference:

Reference ::= '[' (Source? RangeAddress) | ReferenceError ']'
RangeAddress ::=

SheetLocatorOrEmpty '.' Column Row (':"' '.' Column Row)? |
SheetLocatorOrEmpty '.' Column ':' '.' Column |
SheetLocatorOrEmpty '.' Row ':' '.' Row |

SheetLocator '.' Column Row ':' SheetLocator '.' Column Row |
SheetLocator '.' Column ':' SheetLocator '.' Column |
SheetLocator '.' Row ':' SheetLocator '.' Row
SheetLocatorOrEmpty ::= SheetLocator | /* empty */
SheetLocator ::= SheetName ('.' SubtableCell)*

SheetName ::= QuotedSheetName | '$'? [A\]\. #$']+
QuotedSheetName ::= '$'? SingleQuoted

SubtableCell ::= (Column Row) | QuotedSheetName
ReferenceError ::= "#REF!"

Column ::= '$'? [A-Z]+

Row ::= '$'? [1-9] [0-9]*

Source : :: min IRI min II#II

CellAddress ::= SheetLocatorOrEmpty '.' Column Row /* Not used

directly */
References always begin with [' (LEFT SQUARE BRACKET, U+005B); this disambiguates
cell addresses from function names and named expressions. SheetNames include single-
guote"” (APOSTROPHE, U+0027) characters by doubling them and having the entire name
surrounded by single-quotes. Column labels shall be in uppercase. The syntax supports
whole-row and whole-column references. A reference is of type Reference.

A ReferenceError provides information that a formula evaluates to an Error because of a
particular reference having been invalidated by actions that occurred after the formula was
validly created.

Columns are named by a sequence of one or more uppercase letters A-Z (U+0041 through
U+005A). Columns are named A, B, C, ... X, Y, Z, AA, AB, AC, ... AY, AZ, BA, BB, BC, ... ZX,
ZY, ZZ, AAA, AAB, AAC, AAZ, ABA, ABB, and so on.

If a RangeAddress does not contain a Column element or does not contain a Row element, it
specifies a cell rectangle (4.8 Reference). If it contains Row elements, the cell rectangle starts
on the first column and ends on the last column the evaluator supports. If it contains Column
elements, the cell rectangle starts on the first row and ends on the last row the evaluator
supports.

If in a RangeAddress the first part (left of ;' colon) contains a SheetLocator and the
second part (right of ":' colon) does not contain a SheetLocator, the second part inherits the
SheetLocator from the first part.

If a RangeAddress contains two different SheetLocators, it specifies a cell cuboid (4.8
Reference).

If a RangeAddress contains no SheetLocator, the current sheet local to the position where
the expression is evaluated is referred.

A reference with an explicit row or column value beyond the capabilities of an evaluator shall
be computed as an Error, and not as a reference.

Note that references can include a single embedded “:” separator. Evaluators should use
references with embedded “.” separators inside the [..] markers, instead of the general-
purpose “:” operator, when saving files, and, where there is a choice of cells to join, evaluators

should choose the leftmost pair.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 41 of 213

The optional Source expresses that the reference is to sheets and/or cells in a different
location (possibly in a same-document fragment) from that for the formula in which the
reference occurs. The optional Source is also used for locating Named Expressions (section
5.11).

The IRI portion of Source shall be an IRI reference [RFC3987] conforming to the general
syntax IRI-reference rule (section 2.2 of [RFC3987]) after each pair of consecutive single-
guote characters (APOSTROPHE, U+0027) is replaced by one single single-quote character.

Note: The escaping of single-quotes as paired single-quotes is because the
IRl is enclosed in single quote characters of the Source.

Resolution of the [RFC3987] IRI reference is host-defined behavior. 3.4

5.9 Reference List

A reference list is the result of the Infix Operator Reference Concatenation 6.4.13 '~', the
syntax is:
ReferencelList ::= Reference (Whitespace* ReferenceConcatenationOp

Whitespace* Reference)*

A reference list can be passed as an argument to functions expecting a reference parameter
where passing one reference results in an identical computation as an arbitrary sequence of
single references occupying the identical cell range. A reference list cannot be converted to
an array.

5.10 Quoted Label

5.10.1 General

A quoted label is Text contained in a table as cell content, either literally or as a formula result.
QuotedLabel ::= SingleQuoted

A quoted label identifies a column or a row, depending on the label range in which its text
appears.

5.10.2 Lookup of Defined Labels

For a QuotedLabel, first the cells defined in column label ranges (cell ranges of the
table:label-cell-range-address attribute (OpenDocument Part 3, 19.660) in the
elements <table:label-range> (OpenDocument Part 3, 9.4.9) with attribute
table:orientation (OpenDocument Part 3, 19.690.4) set to column) are searched for
the string content of QuotedLabel (without the quotes). If found, the corresponding column's
range of the data cell range of the table:data-cell-range-address attribute
(OpenDocument Part 3, 19.612) is taken as a reference. If not found, the cells defined in row
label ranges (attribute table:orientation setto row) are searched and if found the
corresponding row's range of the data cell range is taken. Label ranges of the current
formula's sheet take precedence over label ranges of other sheets if a name occurs in both.

5.10.3 Automatic Lookup of Labels

For a QuotedLabel where no defined label is found, an automatic lookup is performed on the
sheet where the formula cell resides, if that document setting is enabled (HOST-AUTOMATIC-
FIND-LABELS value true).

Matches to the upper left of the formula cell are preferred over other matches, followed by
matches with a smaller distance. The following algorithm is used:

Cells on the same sheet as the formula cell are examined column-wise from left to right
whether they contain the text of QuotedLabel (without the quotes). If more than one cell
match, the distance and direction from the formula cell's position is taken into account. The
distance is calculated by Distance= ColumnDifference*ColumnDifference+

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 42 of 213

RowDifference*Row Difference using an idealized layout of square cells. For the
direction, during the run two independent match positions are remembered each time Distance
is smaller than a previous Distance: Match2 for positions right of and/or below the formula
position (FormulaColumn < MatchColumn || FormulaRow < MatchRow), Match1 for all others
(not right of and not below). Matchl also holds the very first match, in case there is only one
match or all matches are somewhere below or right of the formula cell. After having found the
smallest distances the conditions are:

1. If Matchl has the smallest distance, that match is taken.
2. Else, Match2 (right and/or below) has the smallest or an equal distance:

2.1 A match to the upper left (FormulaColumn >= Match1Column && FormulaRow >=
Match1Row) takes precedence over matches to other directions.

2.2 Else, if there is no match to the upper left:

2.2.1 If Match1 is somewhere right of the formula cell (FormulaColumn <
Match1Column) it was the first match found in column-wise lookup.

2.2.1.1 If Match2 is above the formula cell (FormulaRow >= Match2Row) it is
to the upper right of the formula cell and either nearer than Match1 or
Matchl is below. Matchz2 is taken.

2.2.1.2 Else Match2 is below the formula cell and Match1 is taken.

2.2.2 Else (Matchl not right of the formula cell => two matches below or below
and right) the match with the smallest distance is taken.

If the resulting cell is below or above another cell containing Text a row label is assumed, else
a column label is assumed.

Note: Use of automatically looked up column or row labels in expressions
impairs interoperability.

5.10.4 Implicit Intersection

For the reference resulting from a single QuotedLabel an implicit intersection is generated if
the operator or function with which it is used expects a scalar value. The intersection is
generated with the current formula's cell position, thus for a column label an intersection is
generated with the formula cell's row, for a row label with the formula cell's column.

5.10.5 Automatic Range

When passed as a non-scalar argument (e.g. Array or NumberSequence) to a function, an
automatically-looked-up column or row label (not defined label range) is converted to an
automatic range reference that is adjusted each time the formula is interpreted. The range is
generated from the column below a column label, or the row to the right of a row label,
constructed by encompassing contiguous non-empty cells. An empty cell interrupts
contiguousness, one empty cell directly below a column label cell or to the right of a row label
cell is ignored.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 43 of 213

Example:

Table 2 - Automatic Range

Row Data Expression Result Comment

1 Label =SUM('Label’) 3 Empty cell in row 2 is
skipped (two empty cells

2 in row 2 and 3 would not

3 1 be skipped and would stop
the automatic range),

4 2 empty cell in row 5 stops
the automatic range.

5

6 8

7

8 32

If any cell content is entered in row 5 the range is regenerated as follows:

Table 3 - Automatic Range

Row Data Expression Result Comment
1 Label =SUM('Label’) 15 Empty cell inrow 2 is
skipped, empty cell in row
2 7 stops the automatic
3 1 range.
4 2
5 4
6 8
7
8 32

5.10.6 Automatic Intersection

An automatic intersection may be used to identify the intersection of two quoted labels. Note
that this is different from the IntersectionOp, which takes two references instead of two
labels:
AutomaticIntersection ::= QuotedLabel Whitespace* '!!' Whitespace*
QuotedLabel

In an automatic intersection, one of the labels identifies a row, the other a column; they may
be in either order. Each QuotedLabel is looked up as defined above under "Lookup of
Defined Labels" and "Automatic Lookup of Labels". If two data cell ranges are found, the
intersection of the column'’s data cell range and the row's data cell range is generated. If the
intersection result is not exactly one cell, an Error is generated.

5.11 Named Expressions
A NamedExpression references another expression, possibly in a completely different
spreadsheet or any other type of document that can be imported into a spreadsheet.

NamedExpression ::= SimpleNamedExpression |
SheetLocalNamedExpression | ExternalNamedExpression

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 44 of 213

SimpleNamedExpression ::= Identifier |

'$$' (Identifier | SingleQuoted)
SheetLocalNamedExpression ::=

QuotedSheetName '.' SimpleNamedExpression
ExternalNamedExpression ::=

Source (SimpleNamedExpression | SheetLocalNamedExpression)

Evaluators supporting named expressions shall support Simple Named Expressions that are
global to all the sheets in a (spreadsheet) document in the current document. This is a named
expression without a Source, QuotedSheetName, or SubtableCell. The type of a named
expression is the type of the value that the named expression returns.

Named expressions are case-consistent, meaning that matching is done case-insensitive and
identifiers can not differ ONLY in their case. Evaluators should write identifiers with identical
case in all locations.

Evaluators may support Sheet-local Named Expressions that are local (attached) to individual
sheets. In that case, a non-empty QuotedSheetName can be used to reference a sheet-
specific named expression. The most specific named expression for a given expression is
used. If the QuotedsheetName is empty, the search for the named expression begins with
the current sheet, then up through the container(s) of the sheet (the same is true if the
QuotedSheetName rule fragment is not included at all). If there is a non-empty
QuotedSheetName, search begins with that named sheet, then up through its container(s) for
the given name.

Note: There is no syntax for referencing a named expression without first looking at the
current sheet's named expressions; where this is a problem, a user can define a blank sheet
and reference that sheet as the starting location for finding the named expression.

If a sheetname is not empty, it shall be quoted using the single-quote character
(APOSTROPHE, U+0027). While both Source and QuotedSheetName can begin with the
single-quote character, they are distinguished: after the closing single-quote character, a non-
empty source shall have the '# (NUMBER SIGN, U+0023) character as the next non-
whitespace character; a non-empty sheetname shall be followed by the ' (FULL STOP,
U+002E) character as the next non-whitespace character.

Expressions should limit the names of their identifiers to only ((JUNICODE]) letters,
underscores, and digits, not including patterns that look like cell references or the words True
or False.

Identifier ::= (LetterXML
(LetterXML | DigitXML | '_' | CombiningCharXML)*)
- ([A-Za-z]+[0-9]+)
- ([Tt][Rr][Uu][Ee]) - ([FFf][Aa][Ll][Ss][Ee])

5.12 Constant Errors

Evaluators shall support the Error named #N/A. Evaluators may support other Errors.
Evaluators may allow entry of errors directly, parse them and recognize them as Errors.
Functions shall propagate Errors unless stated otherwise.

Error names shall have the following syntax:
Error ::= "#' [A-Z0-9]+ ([!'?1 | ('/" ([A-Z] | ([0-9]1 ['21))))
Specific Errors are indicated by their corresponding names.

Table 4 is a list of Errors that are used by several existing implementations.

Table 4 - Possible Other Constant Error Names

Name Comments

Attempt to divide by zero, including division by an empty cell. ERROR.TYPE of 2

#DIV/O! 6.13.11

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 45 of 213

#NAME? | Unrecognized/deleted name. ERROR.TYPE of 5.

Not available. ISNA() applied to this value will return TRUE. Lookup functions which

ANIA failed, and NA(), return this value. ERROR.TYPE of 7.

#NULL! |Intersection of ranges produced zero cells. ERROR.TYPE of 1.

Failed to meet domain constraints (e.g., input was too large or too small). ERROR.-

|
#ANUML b of 6.

#REF! Reference to invalid cell (e.g., beyond the application’s abilities). ERROR.TYPE of 4.

#VALUE! | Parameter is wrong type. ERROR.TYPE of 3.

Evaluators may implement other Errors.

An unknown Error name shall be mapped into an Error supported by the evaluator when read
(e.g., the application's equivalent of #NAME?), though an evaluator may warn the user if this
has or will take place. It is desirable to preserve the original specific Error name when writing
an Error back out, where possible, but for Errors other than #N/A evaluators may write a
different Error for a formula than they did when reading it. Whitespace shall not be included in
an Error name.

Evaluators should use a human-comprehensible name, not a numeric id, for Error names they
write.

5.13 Inline Arrays

Inline arrays are enclosed with curly braces. Inside, they contain one or more rows, with each
row separated by a row separator:

Array ::= '{' MatrixRow (RowSeparator MatrixRow)* '}'
MatrixRow ::= Expression (';' Expression)*
RowSeparator ::= '|'

Evaluators that support inline arrays shall accept a matrix with one or more rows, each with
one or more columns, with the same number of columns in each row, with constant values for
each expression. Evaluators that do not support inline arrays, or cannot support a particular
use permitted by this syntax, should compute an Error value for such arrays. An inline array is
of type Array.

Note: Expression authors should be aware that use of Expression other
than constant Number or constant String may impair interoperability.

5.14 Whitespace
Whitespace ::= #x20 | #x09 | #x0a | #xo0d

For calculation purposes, whitespace is ignored unless it is inside the contents of string
constants or text surrounded by single quotes. Evaluators shall ignore any whitespace
characters before and/or after any operators, constant numbers, constant strings, constant
errors, inline arrays, parentheses used for controlling precedence, and the closing parenthesis
of a function call. Whitespace shall be ignored following the initial equal sign(s). Whitespace
shall be ignored just before a function name, but whitespace shall not separate a function
name from its initial opening parenthesis. Whitespace shall not be used in the interior of a
terminating grammar rule (a rule that references no other rule other than character sets,
internally or externally-defined), unless specifically permitted by the terminating grammar rule,
since these rules define the lexical properties of a component. Evaluators shall not write
formulas with whitespace embedded in any unquoted identifier, constant Number, or constant
Error. Evaluators shall treat SPACE (U+0020), CHARACTER TABULATION (U+0009), LINE
FEED (U+000A), and CARRIAGE RETURN (U+000D) as whitespace characters.

An embedded line break shall be represented by a single LINE FEED character (U+000A), not
by a carriage return-linefeed pair. When embedded in an XML attribute the linefeed character
is represented as “
".

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 46 of 213

Evaluators should retain whitespace entered by the original formula creator and use it when
saving or presenting the formula, and should not add additional whitespace unless directed to
do so during the process of editing a formula.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 47 of 213

6 Standard Operators and Functions

6.1 General

OpenFormula defines commonly used operators and functions.

Function names ignore case. Evaluators should write function names in all uppercase letters
when writing OpenFormula formulas.

Unless otherwise noted, if any value being provided is an Error, the result is an Error; if more
than one Error is provided, one of them is returned (evaluators should return the leftmost Error
result).

6.2 Common Template for Functions and Operators
For every function or operator, the following are defined in this specification:

Name: The function/operator name.
Summary: One sentence briefly describing the function or operator.
Syntax:

— Parameter names are shown in order, with each parameter prefixed by the type or
pseudotype of that parameter. If the type has multiple names separated by “|", then
any of those types are permitted.

— A{...}indicates a list of zero or more parameters, separated by the function
parameter separator character.

- A{...}followed by a superscripted + indicates a list of one or more parameters,
separated by the function parameter separator character.

— Components surrounded by [...] are optional. Optional components may be omitted.

— An optional parameter followed by the = symbol has the default value given after the
equal sign.

— Parameters are separated with a semicolon (*;"), as per the OpenFormula expression
syntax 5.6.

When a function is given a value of a different type, the parameters are first converted
using the implicit conversion rules before the function operates on its parameters.

Evaluators may extend functions by permitting fewer or additional parameters, which
documents may use. Extended functions may result in a lack of interoperability.

Returns: Return type (e.g., Number, Text, Logical, Reference).

Constraints: A description of constraints, in addition to the constraints imposed by the
parameter types. If there are no additional constraints beyond those imposed by the
parameter types, this is "None". If a constraint is not met, the function/operator shall return
an Error unless otherwise noted.

Semantics: This text describes what the function/operator does.

If a parameter is a pseudotype, but the provided value fails to meet the requirements for
that type, the behavior is implementation-defined.

Note: Functions and operators are defined by mathematical formulas or
by an OpenFormula formula. Formulas define the correct result, and not
the algorithm for calculation. Since computing systems have limited

precision and range of numbers, some functions cannot or should not be

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 48 of 213

naively implemented as their formulas suggest. This specification defines
the mathematically correct answer, and allows implementors to choose
the best algorithm that will meet that definition.

* Comment: Explanatory comment.

* See also A list of related operators and functions.

The implicit conversion operators omit many of these items, e.g., the syntax (since there is
none).

6.3 Implicit Conversion Operators

6.3.1 General

Any given function or operand takes O or more parameters, and each of those parameters has
an expected type. The expected type can be one of the base types, identified above. It can
also be of some conversion type that controls conversion, e.g., Any means that no conversion
is done (it can be of any type); NumberSequence causes a conversion to an ordered
sequence of zero or more numbers. If the passed-in type does not match the expected type,
an attempt is made to automatically convert the value to the expected type. An Error is
returned if the type cannot be converted (this can never happen if the expected type is Any).
Unless otherwise noted, any conversion operation applied to a value of type Error returns the
same value.

6.3.2 Conversion to Scalar
To convert to a scalar, if the value is of type:

¢ Number, Logical, or Text, return the value.
« reference to a single cell: obtain the value of the referenced cell, and return that value.

« reference to more than one cell: do an implied intersection, 6.3.3, to determine which
single cell to use, then handle as a reference to a single cell.

6.3.3 Implied intersection

In some cases a reference to a single cell is needed, but a reference to multiple cells is
provided. In this case an "implied intersection” is performed. To perform an implied
intersection:

e Compute the union of cells contained in the current row and current column of the formula
being computed.

* Intersect this with the provided reference to multiple cells
« Ifasingle cell is referenced; return it; otherwise, return an Error.

6.3.4 Force to array context (ForceArray)

A ForceArray attribute forces calculation of the argument's expression into non-scalar array
mode. This means that no implied intersection is performed, instead where a reference to a
single cell is expected and multiple cells are provided, iteration over the multiple cells is
performed and results are stored in an array that is passed on.

See also Non-Scalar Evaluation 3.3

6.3.5 Conversion to Number
If the expected type is Number, then if the value is of type:

* Number, return it.
e Logical, return O if FALSE, 1 if TRUE.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 49 of 213

e Text: The specific conversion is implementation-defined; an evaluator may return 0, an
Error value, or the results of its attempt to convert the Text value to a Number (and fall
back to 0 or Error if it fails to do so). Evaluators may apply VALUE 6.13.34 or some other
function to do this conversion, should they choose to do so. Conversion depends on the
actual locale the application runs in, especially if group or decimal separators are involved.

* Reference: If the reference covers more than one cell, do an implied intersection to
determine which cell to use. Then obtain the value of the single cell and perform the rules
as above. If the calculation setting “precision-as-shown” is true, then convert the number
to the closest possible representation of the displayed number. If the cell is empty (blank),
use 0 (zero) as the value. Evaluators may choose to convert references to Text in a
different manner than they handle converting embedded Text to a Number.

6.3.6 Conversion to Integer

If the expected type is Integer for a function or operator, apply the “Conversion to Number”
operation. 6.3.5 Then, if the result is a Number but not an integer, apply the specific
conversion from Number to integer specified by that particular function/operator. If the function
or operator does not specify any particular conversion operation, then the conversion from a
non-integer Number into an integer is implementation-defined.

Many different conversions from a non-integer number into an integer are possible. The
conversion direction may be towards negative infinity, towards positive infinity, towards zero,
away from zero, towards the nearest even number, or towards the nearest odd number. A
conversion can select the nearest integer, the nearest even or odd integer, or the “next”
integer in the given direction if it is not already an integer. If a conversion selects the nearest
integer, a direction is still needed (for when a value is halfway between two integers). In this
specification, this conversion is referred to as “rounding” or “truncation”; these terms by
themselves do not specify any specific operation.

If a function specifies its rounding operation using a series of capital letters, the function
defined in this specification for that function is used to do the conversion to integer. Common
such functions are:

* INT, which if given non-integer rounds down to the next integer towards negative infinity,
regardless of whether or not it is the closest integer.

* ROUND, which if given non-integer rounds to the nearest integer. If the input number is
halfway between integers, it rounds away from zero.

* TRUNC, which if given non-integer rounds towards zero, regardless of whether or not that
integer is the closest integer.

6.3.7 Conversion to NumberSequence
If the expected type is NumberSequence, then if value is of type:

* Number, Text, or Logical, handle as Conversion to Number 6.3.5 (creating a sequence of
length 1).

« reference, create a sequence of numbers from the values of the referenced cells that only
includes the values of type Number or Error. Thus, Empty cells and Text that could be
converted into a value are not included in a number sequence. If the Logical type is a
distinguished type from the Number type, it should not be included in the sequence of
numbers; if the Logical type is not a distinguished type, then such values will (of course)
be included in the number sequence.

6.3.8 Conversion to NumberSequenceList

Identical to Conversion to NumberSequence 6.3.7, with the addition that instead of a
Reference also a Referencelist is accepted as argument. Each Reference in the list is
converted to a NumberSequence in the order of occurrence.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 50 of 213

6.3.9 Conversion to DateSequence

Identical to Conversion to NumberSequence 6.3.7 except that each element in the list
represents a serial date value of subtype Date.

6.3.10 Conversion to Complex Number

An evaluator may accept complex numbers as Text, Number, or a different distinguishable
type.

If the value is:

* Number that is not complex, use the Number with O as the imaginary part.

* Text, attempt to convert to complex number using VALUE 6.13.34. If it is a number that is
not complex, use it. If the text matches one of these patterns, accept it:

([+-]1°?Number [+-])?Number[ij]
[+-]?Number[i]]
* Logical, convert to Number and then handle as Number.

« reference: Convert to Scalar 6.3.2, then use the rules above. If the reference is to an
empty cell, consider it equal to 0.

6.3.11 Conversion to ComplexSequence
If the expected type is ComplexSequence, then if value is of type:

* Number, Text, or Logical, handle as Conversion to Complex Number (creating a
sequence of length 1).

* Reference, create a sequence of complex numbers from the values of the referenced cells
that only includes the values of type Number, Text, and Error. Empty cells are not included
in a complex number sequence. If the Logical type is a distinguished type from the
Number type, it should not be included in the sequence of numbers; if the Logical type is
not a distinguished type, then such values will (of course) be included in the number
sequence.

6.3.12 Conversion to Logical
If the expected type is Logical, then if value is of type:
* Number, return TRUE for nonzero and FALSE for 0.

* Text: The specific conversion is implementation-defined; an evaluator may return FALSE,
an Error value, or the results of its attempt to convert the Text value (ignoring case) to a
Logical value (and fall back to FALSE or Error if it fails to do so). Conversion depends on
the actual locale the evaluator runs in.

e Logical, return it.

* Reference, convert to scalar and then perform as above. If the reference is to an empty
cell, consider it FALSE.

6.3.13 Conversion to LogicalSequence
If the expected type is LogicalSequence, then if value is of type:
* Number or Logical, handle as Conversion to Logical (creating a sequence of length 1).

* Reference, create a sequence of logical values from the values of the referenced cells
that only includes the values of type Logical and Error. If the Logical type is not a
distinguished type, then include values of type Number, converting each to a Logical value
as described in Conversion to Logical. Empty cells are not included in a LogicalSequence.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 51 of 213

6.3.14 Conversion to Text
If the expected type is Text, then if value is of type:

Number, transform into Text (with no whitespace).
Text, return it.
Logical, return "TRUE" if it is true and "FALSE" if it is false.

Reference: perform conversion to scalar. If the referenced cell is empty, treat as an empty
string (a text value with length 0). Then perform as above.

6.3.15 Conversion to DateParam
If the expected type is the pseudotype DateParam, then if value is of type:

Number, return it.

Text, pass to DATEVALUE 6.10.4, and if non-Error, return it. If DATEVALUE would return
an Error, an evaluator may attempt to convert to a Number in other ways (such as by
calling VALUE 6.13.34); this is implementation-defined. If the evaluator cannot convert to
Number, it returns an Error.

Logical, the result is implementation-defined, either a Number or Error

Reference: perform conversion to scalar, then perform as above. If the cell is empty,
return 0.

6.3.16 Conversion to TimeParam
If the expected type is the pseudotype TimeParam, then if value is of type:

Number, return it.

Text, pass to TIMEVALUE 6.10.19, and if non-Error, return it. If TIMEVALUE would return
an Error, an evaluator may attempt to convert to a Number in other ways (such as by
calling VALUE 6.13.34); this is implementation-defined. If the evaluator cannot convert to
Number, it returns an Error.

Logical, the result is implementation-defined, either a Number or Error

Reference: perform conversion to scalar, then perform as above. If the cell is empty,
return O.

6.4 Standard Operators

6.4.1 General

The functions defined under standard operators differ from other functions only by their
frequency of use. That frequency of use has lead to the colloquial terminology, standard
operators.

6.4.2 Infix Operator "+"
Summary: Add two numbers.

Syntax: Number Left + Number Right

Returns: Number

Constraints: None

Semantics: Adds numbers together.

See also Infix Operator "-" 6.4.3, Prefix Operator "+" 6.4.15

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 52 of 213

6.4.3 Infix Operator "-"

Summary: Subtract the second number from the first.
Syntax: Number Left - Number Right

Returns: Number

Constraints: None

Semantics: Subtracts one number from another number.
See also Infix Operator "+" 6.4.2, Prefix Operator "-" 6.4.16

6.4.4 Infix Operator "*"
Summary: Multiply two numbers.

Syntax: Number Left * Number Right

Returns: Number

Constraints: None

Semantics: Multiplies numbers together.

See also Infix Operator "+" 6.4.2, Infix Operator "/" 6.4.5

6.4.5 Infix Operator "/"

Summary: Divide the first number by the second.

Syntax: Number Left | Number Right

Returns: Number

Constraints: None

Semantics: Divides numbers. Dividing by zero returns an Error.
See also Infix Operator "-" 6.4.3, Infix Operator "*" 6.4.4

6.4.6 Infix Operator "A"
Summary: Exponentiation (Power).

Syntax: Number Left » Number Right
Returns: Number

Constraints: NOT(AND(Left=0; Right=0)); Evaluators may evaluate expressions where
OR(Left '= 0; Right '= 0) evaluates to a non-Error value.

Semantics: Returns POWER(Left, Right).
See also Infix Operator "*" 6.4.4, AND 6.15.2, NOT 6.15.7, POWER 6.16.46

6.4.7 Infix Operator "="
Summary: Report if two values are equal
Syntax: Scalar Left = Scalar Right
Returns: Logical

Constraints: None

Semantics: Returns TRUE if two values are equal. If the values differ in type, return FALSE. If
the values are both Number, return TRUE if they are considered equal, else return FALSE. If
they are both Text, return TRUE if the two values match, else return FALSE. For Text values,
if the calculation setting HOST-CASE-SENSITIVE iS false, text is compared but characters
differencing only in case are considered equal. If they are both Logicals, return TRUE if they

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 53 of 213

are identical, else return FALSE. Error values cannot be compared to a constant Error value to
determine if that is the same Error value.

Evaluators may approximate and test equality of two numeric values with an accuracy of the
magnitude of the given values scaled by the number of available bits in the mantissa, ignoring
some least significant bits and thus providing compensation for not exactly representable
values.

The result of “1=TRUE()" is FALSE for evaluators that implement a distinct Logical type and
TRUE if they don't.

See also Infix Operator "<>" 6.4.8

6.4.8 Infix Operator "<>"
Summary: Report if two values are not equal

Syntax: Any Left <> Any Right
Returns: Logical
Constraints: None

Semantics: Returns NOT(Left = Right) if Left and Right are not Error. For Text values, if the
calculation setting HOST-CASE-SENSITIVE is false, text is compared but characters
differencing only in case are considered equal.

If either Left and Right are an Error, the result is an Error; this operator cannot be used to
determine if two Errors are the same kind of Error.

Note: In some user interfaces the infix operator “<>" is displayed (or accepted) as “!I=" or “#”.
See also Infix Operator "=" 6.4.7, NOT 6.15.7

6.4.9 Infix Operator Ordered Comparison ("<", "<=", ">" ">z=")
Summary: Report if two values have the given order

Syntax: Scalar Left op Scalar Right

where op is one of: "<", "<=", ">" or ">="
Returns: Logical
Constraints: None

Semantics: Returns TRUE if the two values are less than, less than or equal, greater than, or
greater than or equal (respectively). If both Left and Right are Numbers, compare them as
numbers. If both Left and Right are Text, compare them as text; if the calculation setting
HOST-CASE-SENSITIVE is false, text is compared but characters are compared ignoring
case. If the values are both Logical, convert both to Number and then compare as Number.

These functions return one of TRUE, FALSE, or an Error if Left and Right have different
types, but it is implementation-defined which of these results will be returned when the types
differ.

See also Infix Operator "<>" 6.4.8, Infix Operator "=" 6.4.7

6.4.10 Infix Operator "&"

Summary: Concatenate two strings.

Syntax: Text Left & Text Right

Returns: Text

Constraints: None

Semantics: Concatenates two text (string) values.

Note: The infix operator “&” is equivalent to CONCATENATE(Left,Righft).

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 54 of 213

See also Infix Operator "+" 6.4.2, CONCATENATE 6.20.6

6.4.11 Infix Operator Reference Range (":")

Summary: Computes an inclusive range given two references
Syntax: Reference Left : Reference Right

Returns: Reference

Constraints: None

Semantics: Takes two references and computes the range, that is, a reference to the
smallest 3-dimensional cube of cells that include both Left and Right including the cells on
sheets positioned between Left and Right. Left and Right need not be a single cell. For an
expression such as [.B4:.B5]:[.C5] the resulting range is B4:C5. In case Left and/or Right
involve a reference list (result of operator reference union), the range is computed and
extended for each element of the list(s).

Note: For example, (a,b,c,d denoting one reference each) (a~b):(c~d)
computes a:b:c:d determining the outermost front-top-left and rear-bottom-
right corners.

Left and Right may also be defined names or the result of a function returning a reference,
such as INDIRECT.

See also Infix Operator Reference Union 6.4.13, Infix Operator Reference Intersection 6.4.12,
INDIRECT 6.14.7

6.4.12 Infix Operator Reference Intersection ("!")
Summary: Compute the intersection of two references

Syntax: Reference Left! Reference Right
Returns: Reference
Constraints: None

Semantics: Takes two references and computes the intersection - a reference to the
intersection of cells in both Left and Right. If there are no cells in common, returns an Error.

If Left or Right are not of type Reference or ReferencelList, an Error shall be returned.

If Left and/or Right are reference lists (result of infix operator reference concatenation), the
intersection is computed for each combination of Left and Right, producing a reference list of
intersections.

Note 1: For example (a,b,c,d denoting one reference each):
(a~b)!(c~d) will compute (alc)~(a!d)~(b!c)~(b!d)

If for a resulting intersection there are no cells in common, the element is ignored and omitted
from the result list. If for all intersections there are no cells in common and the result list is
empty, an Error is returned.

Note 2: Intersection is notated as "!" in OpenFormula format, but as a space character in
some user interfaces.

See also Infix Operator Reference Union 6.4.13

6.4.13 Infix Operator Reference Concatenation ("~") (aka Union)
Summary: Concatenate two references

Syntax: Reference Left ~ Reference Right
Returns: ReferencelList
Constraints: None

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 55 of 213

Semantics: Takes two references and computes the "cell union”, which is a concatenation of
the reference Left followed by the reference Right. This is not the same as a union in set
theory; duplicate references to cells are not removed. The resulting reference will have the
number of areas, as reported by AREAS, as AREAS(Left)+AREAS(Right).

Note: Concatenation is notated as "~" in OpenFormula format, but as a comma or “+” in some
user interfaces.

If Left or Right are not of type Reference or ReferencelList, an Error shall be returned.
Test Cases:

See also Infix Operator Reference Range 6.4.11, Infix Operator Reference Intersection
6.4.12, AREAS 6.13.2

6.4.14 Postfix Operator "%"
Summary: Divide the operand by 100

Syntax: Number Left %

Returns: Number

Constraints: None

Semantics: Computes Left/ 100.

See also Prefix Operator "-" 6.4.16, Prefix Operator "+" 6.4.15

6.4.15 Prefix Operator "+"
Summary: No operation; returns its one argument.

Syntax: + Any Right
Returns: Any
Constraints: None

Semantics: Returns the value given to it. Note that this does not convert a value to the
Number type. In fact, it does no conversion at all of a Number, Logical, or Text value - it
returns the same Number, Logical, or Text value (respectively). The "+" applied to a reference
may return the reference, or an Error.

See also Infix Operator "+" 6.4.2

6.4.16 Prefix Operator "-"

Summary: Negate its one argument.
Syntax: - Number Right

Returns: Number

Constraints: None

Semantics: Computes O - Right.
See also Infix Operator "-" 6.4.3

6.5 Matrix Functions

6.5.1 General

Matrix functions operate on matrices.
A matrix with M rows and N columns is defined by

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 56 of 213

ay a, ... Qan

—| a a oo a
Ay =| 921 22 A

A1 Ayo - Ay

The dimension subscript may be omitted, if the context allows it, i.e. 4,,,,=A4 . Matrices are

represented by upper-case letters. The elements of a matrix are denoted by the corresponding
lower case letter and subscripts, which defines the row and column number.

Square matrices have the same number of rows and columns, i.e. M =N .

6.5.2 MDETERM

Summary: Calculates the determinant of a matrix.
Syntax: MDETERM(ForceArray Array A)
Returns: Number

Constraints: Only square matrices are allowed.

Semantics: Returns the determinant of matrix A. The determinant is defined by

N
det(ANXN) :z Sgn<P)H aip,
P =

where P denotes a permutation of the numbers 1, 2, ..., n and sgn(P) is the sign of the
permutation, which is +1 for an even amount of permutations (i.e., permutations that can be
written as the composition of an even number of transpositions), -1 otherwise. A transposition
on 1, ..., nis apermutation of 1, ..., n with exactly (n - 2) numbers fixed.

See also MINVERSE 6.5.3

6.5.3 MINVERSE

Summary: Returns the inverse of a matrix.
Syntax: MINVERSE(ForceArray Array A))
Returns: Array

Constraints: Only square matrices are allowed.

Semantics: Calculates the inverse 4~ of matrix A. The matrix A multiplied with its inverse
A7 results in the unity matrix of the same dimension as A:

-1 _ -1 _
ANXNANXN_ANXNANXN_ NXN
Invertible matrices have a non-zero determinant. If the matrix is not invertible, this function
should return an Error value.
See also MDETERM 6.5.2

6.5.4 MMULT

Summary: Multiplies the matrices A and B.

Syntax: MMULT(ForceArray Array A ; ForceArray Array B))
Returns: Array

Constraints: COLUMNS(A) = ROWS(B)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 57 of 213

Semantics: Returns the matrix product of the two matrices. The elements ¢, of the

resulting matrix C,, v =4y xx Bxxy , are defined by:

K
cmn:Z amkbkn
k=1

See also COLUMNS 6.13.5, ROWS 6.13.30

6.5.5 MUNIT

Summary: Creates a unit matrix of a specified dimension N.
Syntax: MUNIT(/Integer N)

Returns: Array

Constraints: The dimension has to be greater than zero.

Semantics: Creates the unit matrix (identity matrix) of dimension N.

1 0 ... 0
01 ...0
Lyyn= Do
00 ... 1

6.5.6 TRANSPOSE

Summary: Returns the transpose of a matrix.
Syntax: TRANSPOSE(Array A)

Returns: Array

Constraints: None

Semantics: Returns the transpose A" of a matrix A, i.e. rows and columns of the matrix are

exchanged.
a, A, ... a4,
ATMXN: a4y Ao
Ay doy --- Qyn|Nxm

6.6 Bit operation functions

6.6.1 General

Evaluators shall support unsigned integer values and results of at least 48 bits (values from 0
to 2"48-1 inclusive). Operations that receive or result in a value that cannot be represented

within 48 bits are implementation-defined.

6.6.2 BITAND

Summary: Returns bitwise “and” of its parameters
Syntax: BITAND(Integer X ; Integer Y')

Returns: Number

Constraints: X=0,Y=0

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 58 of 213

Semantics: Returns bitwise “and” of its parameters. In the result, each bit position is 1 if and
only if all parameters' bits at that position are also 1; else it is 0.

See also BITOR 6.6.4, BITXOR 6.6.6, AND 6.15.2

6.6.3 BITLSHIFT
Summary: Returns left shift of value X by N bits (*<<”

Syntax: BITLSHIFT(Integer X ; Integer N)

Returns: Number

Constraints: X =0

Semantics: Returns left shift of value X by N bit positions:
e If N<O, return BITRSHIFT(X,-N)

e ifN=0,return X

« if N>0,return X*2"N

See also BITAND 6.6.2, BITXOR 6.6.6, BITRSHIFT 6.6.5

6.6.4 BITOR

Summary: Returns bitwise “or” of its parameters
Syntax: BITOR(Integer X ; Integer Y')

Returns: Number

Constraints: X=0, Y20

Semantics: Returns bitwise “or” of its parameters. In the result, each bit position is 1 if any of
its parameters' bits at that position are also 1; else it is O.

See also BITAND 6.6.2, BITXOR 6.6.6, AND 6.15.2

6.6.5 BITRSHIFT
Summary: Returns right shift of value X by N bits (*>>"

Syntax: BITRSHIFT(Integer X ; Integer N')

Returns: Number

Constraints: X=0

Semantics: Returns right shift of value X by N bit positions:

e If N<O, return BITLSHIFT(X,-N)

e ifN=0,return X

e ifN>0,return INT(X/ 2"N)

See also BITAND 6.6.2, BITXOR 6.6.6, BITLSHIFT 6.6.3, INT 6.17.2

6.6.6 BITXOR

Summary: Returns bitwise “exclusive or” of its parameters
Syntax: BITXOR(Integer X ; Integer Y')

Returns: Number

Constraints: X=0, Y=0

Semantics: Returns bitwise “exclusive or” (xor) of its parameters. In the result, each bit
position is 1 if one or the other parameters' bits at that position are 1; else it is 0.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 59 of 213

See also BITAND 6.6.2, BITOR 6.6.4, OR 6.15.8

6.7 Byte-position text functions

6.7.1 General

Byte-position text functions are like their equivalent ordinary text functions, but manipulate
byte positions rather than a count of the number of characters. Byte positions are integers
that may depend on the specific text representation used by the implementation. Byte
positions are by definition implementation-dependent and reliance upon them reduces
interoperability.

The pseudotypes ByteLength and BytePosition are Integers, but their exact meanings and
values are not further defined by this specification.

6.7.2 FINDB

Summary: Returns the starting position of a given text, using byte positions.
Syntax: FINDB(Text Search ; Text T [; BytePosition Start])

Returns: BytePosition

Semantics: The same as FIND, but using byte positions.

See also FIND 6.20.9, LEFTB 6.7.3, RIGHTB 6.7.7

6.7.3 LEFTB

Summary: Returns a selected number of text characters from the left, using a byte position.
Syntax: LEFTB(Text T [; ByteLength Length])

Returns: Text

Semantics: As LEFT, but using a byte position.

See also LEFT 6.20.12, RIGHT 6.20.19, RIGHTB 6.7.7

6.7.4 LENB

Summary: Returns the length of given text in units compatible with byte positions
Syntax: LENB(Text T)

Returns: BytelLength

Constraints: None.

Semantics: As LEN, but compatible with byte position values.

See also LEN 6.20.13, LEFTB 6.7.3, RIGHTB 6.7.7

6.7.5 MIDB

Summary: Returns extracted text, given an original text, starting position using a byte
position, and length.

Syntax: MIDB(Text T ; BytePosition Start ; ByteLength Length)
Returns: Text

Constraints: Length = 0.

Semantics: As MID, but using byte positions.

See also MID 6.20.15, LEFTB 6.7.3, RIGHTB 6.7.7, REPLACEB 6.7.6

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 60 of 213

6.7.6 REPLACEB

Summary: Returns text where an old text is replaced with a new text, using byte positions.
Syntax: REPLACEB(Text T ; BytePosition Start ; ByteLength Len ; Text New)

Returns: Text

Semantics: As REPLACE, but using byte positions.

See also REPLACE 6.20.17, LEFTB 6.7.3, RIGHTB 6.7.7, MIDB 6.7.5, SUBSTITUTE 6.20.21

6.7.7 RIGHTB

Summary: Returns a selected number of text characters from the right, using byte position.
Syntax: RIGHTB(Text T [; ByteLength Length])

Returns: Text

Semantics: As RIGHT, but using byte positions.

See also RIGHT 6.20.19, LEFTB 6.7.3

6.7.8 SEARCHB

Summary: Returns the starting position of a given text, using byte positions.
Syntax: SEARCHB(Text Search ; Text T [; BytePosition Start])

Returns: BytePosition

Semantics: As SEARCH, but using byte positions.

See also SEARCH 6.20.20, EXACT 6.20.8, FIND 6.20.9, FINDB 6.7.2

6.8 Complex Number Functions

6.8.1 General

Functions for complex numbers.

6.8.2 COMPLEX

Summary: Creates a complex number from a given real coefficient and imaginary coefficient.
Syntax: COMPLEX(Number Real ; Number Imaginary [; Text Suffix])

Returns: Complex

Constraints: None

Semantics: Constructs a complex number from the given coefficients. The third parameter

Suffix is optional, and should be either “i” or “j". Upper case “I” or “J” are not accepted for the
suffix parameter.

6.8.3 IMABS

Summary: Returns the absolute value of a complex number.

Syntax: IMABS(Complex X')

Returns: Number

Constraints: None

Semantics: If X =a + bi or X = a + bj, the absolute value = \/m ; if X =r(cos@ + ising),
the absolute value =r.

See also IMARGUMENT 6.8.5

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 61 of 213

6.8.4 IMAGINARY

Summary: Returns the imaginary coefficient of a complex number.
Syntax: IMAGINARY(Complex X')

Returns: Number

Constraints: None

Semantics: If X =a + bi or X = a + bj, then the imaginary coefficient is b.
See also IMREAL 6.8.19

6.8.5 IMARGUMENT

Summary: Returns the complex argument of a complex number.
Syntax: IMARGUMENT(Complex X')

Returns: Number

Constraints: None

Semantics: If X = a + bi = r(cose + ising), a or b is not 0 and -1t < @ < 11, then the complex
argument is @. @ is expressed by radians. If X = 0, then IMARGUMENT(X) is implementation-

defined and either 0 or an error.
See also IMABS 6.8.3

6.8.6 IMCONJUGATE

Summary: Returns the complex conjugate of a complex number.
Syntax: IMCONJUGATE(Complex X)

Returns: Complex

Constraints: None

Semantics: If X = a + bi, then the complex conjugate is a - bi.

6.8.7 IMCOS

Summary: Returns the cosine of a complex number.

Syntax: IMCOS(Complex X)

Returns: Complex

Constraints: None

Semantics: If X = a + bi, then cos(X) = cos(a)cosh(b) - sin(a)sinh(b)i.
See also IMSIN 6.8.20

6.8.8 IMCOSH

Summary: Returns the hyperbolic cosine of a complex number.
Syntax: IMCOSH(Complex N)

Returns: Complex

Constraints: None

Semantics: If N = a + bi, then cosh(N) = cosh(a)cos(b) + sinh(a)sin(b)i.

6.8.9 IMCOT

Summary: Returns the cotangent of a complex number.

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 62 of 213

Syntax: IMCOT(Complex N)
Returns: Complex
Constraints: None

Semantics: Equivalent to the following (except N is computed only once):

IMDIV(IMCOS(N);IMSIN(N))
See also IMCOS 6.8.7, IMDIV 6.8.12, IMSIN 6.8.20, IMTAN 6.8.27

6.8.10 IMCSC

Summary: Returns the cosecant of a complex number.

Syntax: IMCSC(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following:
IMDIV(Z;IMSIN(N))

See also IMDIV 6.8.12, IMSIN 6.8.20

6.8.11 IMCSCH

Summary: Returns the hyperbolic cosecant of a complex number.

Syntax: IMCSCH(Complex N)

Returns: Complex

Constraints: None

Semantics: Computes the hyperbolic cosecant. This is equivalent to:
IMDIV(1;IMSINH(N))

See also IMSINH 6.8.21, CSCH 6.16.24

6.8.12 IMDIV

Summary: Divides the first number by the second.
Syntax: IMDIV(Complex X ; Complex Y')
Returns: Complex
Constraints: None
Semantics: Given X =a + bi and Y = c + di, return the quotient
(ac+bd)+(bc—ad)i
(+d°)

Division by zero returns an Error.
See also IMDIV 6.8.12

6.8.13 IMEXP

Summary: Returns the exponent of e and a complex number.
Syntax: IMEXP(Complex X))

Returns: Complex

Constraints: None

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 63 of 213

Semantics: If X = a + bi, the resultis €“(cos b+isinb) .
See also IMLN 6.8.14

6.8.14 IMLN

Summary: Returns the natural logarithm of a complex number.
Syntax: IMLN(Complex X)

Returns: Complex

Constraints: X # 0

Semantics: COMPLEX(LN(IMABS(X)); IMARGUMENT(X)) .

See also COMPLEX 6.8.2, IMABS 6.8.3, IMARGUMENT 6.8.5, IMEXP 6.8.13 , IMLOG10
6.8.15, LN 6.16.39

6.8.15 IMLOG10

Summary: Returns the common logarithm of a complex number.

Syntax: IMLOG10(Complex X)

Returns: Complex

Constraints: X# 0

Semantics: IMLOG10(X) is IMDIV(IMLN(X);COMPLEX(LN(10);0)) .

See also COMPLEX 6.8.2, IMDIV 6.8.12, IMLN 6.8.14 , IMPOWER 6.8.17, LN 6.16.39

6.8.16 IMLOG2

Summary: Returns the binary logarithm of a complex number.

Syntax: IMLOG2(Complex X)

Returns: Complex

Constraints: X # 0

Semantics: IMLOG2(X) is IMDIV(IMLN(X); COMPLEX(LN(2);0)) .

See also COMPLEX 6.8.2, IMDIV 6.8.12, IMLN 6.8.14 , IMPOWER 6.8.17, LN 6.16.39

6.8.17 IMPOWER

Summary: Returns the complex number X raised to the Yth power.

Syntax: IMPOWER(Complex X ; Complex Y) or IMPOWER(Complex X ; Number Y)
Returns: Complex

Constraints: X# 0

Semantics: IMPOWER(X;Y) is IMEXP(IMPRODUCT(Y; IMLN(X)))

An evaluator implementing this function shall permit any Number Y but may also allow any
Complex Y.

See also IMEXP 6.8.13, IMLN 6.8.14, IMPOWER 6.8.17, IMPRODUCT 6.8.18

6.8.18 IMPRODUCT

Summary: Returns the product of complex numbers.
Syntax: IMPRODUCT({ ComplexSequence N}")
Returns: Complex

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 64 of 213

Constraints: None

Semantics: Multiply the complex numbers together. Given two complex numbers X = a + bi
and
Y =c¢ +di, the product X * Y = (ac - bd) + (ad + bc)i

See also IMDIV 6.8.12

6.8.19 IMREAL

Summary: Returns the real coefficient of a complex number.
Syntax: IMREAL(Complex N)

Returns: Number

Constraints: None

Semantics: If N=a + bi or N = a + bj, then the real coefficient is a.
See also IMAGINARY 6.8.4

6.8.20 IMSIN

Summary: Returns the sine of a complex number.

Syntax: IMSIN(Complex N)

Returns: Complex

Constraints: None

Semantics: If N = a + bi, then sin(N) = sin(a)cosh(b) + cos(a)sinh(b)i.
See also IMCOS 6.8.7

6.8.21 IMSINH

Summary: Returns the hyperbolic sine of a complex number.
Syntax: IMSINH(Complex N)

Returns: Complex

Constraints: None

Semantics: If N = a + bi, then sinh(N) = sinh(a)cos(b) + cosh(a)sin(b)i.

6.8.22 IMSEC

Summary: Returns the secant of a complex number.

Syntax: IMSEC(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following:
IMDIV(L;IMCOS(N))

See also IMCOS 6.8.7, IMDIV 6.8.12

6.8.23 IMSECH

Summary: Returns the hyperbolic secant of a complex number.
Syntax: IMSECH(Complex N)
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 65 of 213

Constraints: None

Semantics: Computes the hyperbolic secant. This is equivalent to:
IMDIV(1;IMCOSH(N))

See also IMCOSH 6.8.8, IMDIV 6.8.12, SECH 6.16.57

6.8.24 IMSQRT

Summary: Returns the square root of a complex number.
Syntax: IMSQRT(Complex N)

Returns: Complex

Constraints: None

Semantics: If N =0 + 0i, then IMSQRT(N) = 0. Otherwise IMSQRT(N) is
SQRT(IMABS(N)) * sin(IMARGUMENT(N) / 2) + SQRT(IMABS(N)) * cos(IMARGUMENT(N) /
2)i.

See also IMABS 6.8.3, IMARGUMENT 6.8.5, IMPOWER 6.8.17, SQRT 6.16.58

6.8.25 IMSUB

Summary: Subtracts the second complex number from the first.
Syntax: IMSUB(Complex X ; Complex Y)

Returns: Complex

Constraints: None

Semantics: Subtract complex number Y from X.

See also IMSUM 6.8.26

6.8.26 IMSUM

Summary: Sums (add) a set of complex numbers, including all numbers in ranges.
Syntax: IMSUM({ ComplexSequence N }")

Returns: Complex

Constraints: None

Semantics: Adds complex numbers together. Text that cannot be converted to a complex
number is ignored.

It is implementation-defined what happens if this function is given zero parameters; an
evaluator may either produce an Error or the Number O if it is given zero parameters.

See also IMSUB 6.8.25

6.8.27 IMTAN

Summary: Returns the tangent of a complex number

Syntax: IMTAN(Complex N)

Returns: Complex

Constraints: None

Semantics: Equivalent to the following (except N is computed only once):
IMDIV(IMSIN(N);IMCOS(N))

See also IMDIV 6.8.12, IMSIN 6.8.20, IMCOS 6.8.7, IMCOT 6.8.25

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 66 of 213

6.9 Database Functions

6.9.1 General
Database functions use the variables, Database 4.11.9, Field 4.11.10, and Criteria 4.11.11.

The results of database functions may change when the values of the HOST-USE-REGULAR-
EXPRESSIONS or HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-
TO-WHOLE-CELL properties change. 3.4

6.9.2 DAVERAGE

Summary: Finds the average of values in a given field from the records (rows) in a database
that match a search criteria.

Syntax: DAVERAGE(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform AVERAGE on data records in database D field F that match criteria C.
See also AVERAGE 6.18.3, COUNT 6.13.6, DSUM 6.9.11, DCOUNT 6.9.3, SUM 6.16.61

6.9.3 DCOUNT

Summary: Counts the number of records (rows) in a database that match a search criteria
and contain numerical values.

Syntax: DCOUNT(Database D ; [Field F] ; Criteria C)
Returns: Number
Constraints: None

Semantics: Perform COUNT on data records in database D field F that match criteria C. If the
Field argument is omitted, DCOUNT returns the count of all records that satisfy Criteria C.

See also COUNT 6.13.6, COUNTA 6.13.7, DCOUNTA 6.9.4, DSUM 6.9.11

6.9.4 DCOUNTA

Summary: Counts the number of records (rows) in a database that match a search criteria
and contain values (as COUNTA).

Syntax: DCOUNTA(Database D ; [Field F] ; Criteria C)
Returns: Number
Constraints: None

Semantics: Perform COUNTA on data records in database D field F that match criteria C. If
the Field argument is omitted, DCOUNTA returns the count of all records that satisfy criteria
C.

See also COUNT 6.13.6, COUNTA 6.13.7, DCOUNT 6.9.3, DSUM 6.9.11

6.9.5 DGET

Summary: Gets the single value in the field from the single record (row) in a database that
matches a search criteria.

Syntax: DGET(Database D ; Field F ; Criteria C)
Returns: Number
Constraints: None

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 67 of 213

Semantics: Extracts the value in field F of the one data record in database D that matches
criteria C. If no records match, or more than one matches, it returns an Error.

See also DMAX 6.9.6, DMIN 6.9.7, DSUM 6.9.11

6.9.6 DMAX

Summary: Finds the maximum value in a given field from the records (rows) in a database
that match a search criteria.

Syntax: DMAX(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform MAX on only the data records in database D field F that match criteria C.
See also MAX 6.18.45, DMIN 6.9.7, MIN 6.18.48

6.9.7 DMIN

Summary: Finds the minimum value in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DMIN(Database D ; Field F; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform MIN on only the data records in database D field F that match criteria C.
See also MIN 6.18.48, DMAX 6.9.6, MAX 6.18.45

6.9.8 DPRODUCT

Summary: Finds the product of values in a given field from the records (rows) in a database
that match a search criteria.

Syntax: DPRODUCT(Database D ; Field F; Criteria C)

Returns: Number

Constraints: None

Semantics: Multiply together only the data records in database D field F that match criteria C.
See also SUM 6.16.61, DSUM 6.9.11

6.9.9 DSTDEV

Summary: Finds the sample standard deviation in a given field from the records (rows) in a
database that match a search criteria.

Syntax: DSTDEV(Database D ; Field F; Criteria C)
Returns: Number
Constraints: None

Semantics: Perform STDEV on only the data records in database D field F that match criteria
C.

See also STDEV 6.18.72, DSTDEVP 6.9.10

6.9.10 DSTDEVP

Summary: Finds the population standard deviation in a given field from the records (rows) in a
database that match a search criteria.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 68 of 213

Syntax: DSTDEVP(Database D ; Field F ; Criteria C)
Returns: Number
Constraints: None

Semantics: Perform STDEVP on only the data records in database D field F that match
criteria C.

See also STDEVP 6.18.74, DSTDEV 6.9.9

6.9.11 DSUM

Summary: Finds the sum of values in a given field from the records (rows) in a database that
match a search criteria.

Syntax: DSUM(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform SUM on only the data records in database D field F that match criteria C.
See also SUM 6.16.61, DMIN 6.9.7, DMAX 6.9.6

6.9.12 DVAR

Summary: Finds the sample variance in a given field from the records (rows) in a database
that match a search criteria.

Syntax: DVAR(Database D ; Field F ; Criteria C)

Returns: Number

Constraints: None

Semantics: Perform VAR on only the data records in database D field F that match criteria C.
See also VAR 6.18.82, DVARP 6.9.13

6.9.13 DVARP

Summary: Finds the population variance in a given field from the records (rows) in a
database that match a search criteria.

Syntax: DVARP(Database D ; Field F ; Criteria C)
Returns: Number
Constraints: None

Semantics: Perform VARP on only the data records in database D field F that match criteria
C.

See also VARP 6.18.84, DVAR 6.9.12

6.10 Date and Time Functions
6.10.1 General
6.10.2 DATE

Summary: Constructs a date from year, month, and day of month.
Syntax: DATE(Integer Year ; Integer Month ; Integer Day)
Returns: Date

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 69 of 213

Constraints: 1904 < Year < 9956; 1 < Month < 12; 1 < Day < 31; Evaluators may evaluate
expressions that do no meet this constraint.

Semantics: This computes the date's serial number given Year, Month, and Day of the
Gregorian calendar. Fractional values are truncated. Month > 12 and Day > days of Month
will roll over the date, computing the result by adding months and days as necessary. The
value of the serial number depends on the current epoch.

See also TIME 6.10.18, DATEVALUE 6.10.4

6.10.3 DATEDIF

Summary: Returns the difference in years, months, or days of two date numbers.
Syntax: DATEDIF(DateParam StartDate ; DateParam EndDate ; Text Format)
Returns: Number

Constraints: None

Semantics: Compute difference of StartDate and EndDate, in the units given by Format.

The Format is a code from the following table, entered as text, that specifies the format you
want the result of DATEDIF to have.

Table 5 - DATEDIF

Format Returns the number of

y Years

m Months. If there is not a complete
month between the dates, 0 will be
returned.

d Days

md Days, ignoring months and years

ym Months, ignoring years

yd Days, ignoring years

See also DAYS360 6.10.7, DAYS 6.10.6, Infix Operator “-” 6.4.3

6.10.4 DATEVALUE

Summary: Returns the date serial number from given text.
Syntax: DATEVALUE(Text D)

Returns: Date

Constraints: None

Semantics: This computes the serial number of the text string D, using the current locale.
This function shall accept ISO date format (YYYY-MM-DD), which is locale-independent. It is
semantically equal to VALUE(Date), if Date has a date format, since text matching a date
format is automatically converted to a serial number when used as a Number. If the text of D
has a combined date and time format, e.g. YYYY-MM-DD HH:MM:SS, the integer part of the
date serial number is returned. If the text of D does not have a date or time format, an
evaluator may return an Error. See VALUE for more information on date formats. The value of
the serial number depends on the current epoch.

See also TIME 6.10.18, DATE 6.10.2, TIMEVALUE 6.10.19, VALUE 6.13.34

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 70 of 213

6.10.5 DAY

Summary: Returns the day from a date.
Syntax: DAY(DateParam D)

Returns: Number

Constraints: None

Semantics: Returns the day portion of D.
See also MONTH 6.10.14, YEAR 6.10.24

6.10.6 DAYS

Summary: Returns the number of days between two dates
Syntax: DAYS(DateParam EndDate ; DateParam StartDate)
Returns: Number

Constraints: None

Semantics: Returns the number of days between two dates. If StartDate and EndDate are
Numbers, this is EndDate — StartDate. If they are both Text, this is DATEVALUE(EndDate) —
DATEVALUE(StartDate).

See also DATEDIF 6.10.3, DATEVALUE 6.10.4, DAYS360 6.10.7, MONTH 6.10.14, YEAR
6.10.24, Infix Operator “-" 6.4.3

6.10.7 DAYS360

Summary: Returns the number of days between two dates using the 360-day year

Syntax: DAYS360(DateParam StartDate ; DateParam EndDate [; Logical Method = FALSE
1)

Returns: Number
Constraints: None

Semantics: If Method is FALSE, it uses the National Association of Securities Dealers
(NASD) method, also known as the U.S. method. If Method is TRUE, the European method is
used.

The US/NASD method (30US/360):
1. Truncate date values, set sign = 1.
2. |If StartDate's day-of-month is 31, it is changed to 30.
3. Otherwise, if StartDate's day-of-month is the last day of February, it is changed to 30.
4

If EndDate's day-of-month is 31 and StartDate's day-of-month is 30 (after having
applied a change for #2 or #3, if necessary), EndDate's day-of-month is changed to
30.

Note 1: This calculation is slightly different from Basis 0 (4.11.7 Basis). Dates are
never swapped.

The European method (30E/360):
1. Truncate date values, set sign = 1.
2. |If StartDate is after EndDate then swap dates and set sign = -1.
3. If StartDate's day-of-month is 31, it is changed to 30.
4. If EndDate's day-of-month is 31, it is changed to 30.

Note 2: Days in February are never changed.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 71 of 213

Note 3: This calculation is identical to Basis 4 (4.11.7 Basis)

For both methods the value then returned is
sign * ((EndDate.year * 360 + EndDate.month * 30 + EndDate.day) — (StartDate.year * 360 +
StartDate.month * 30 + StartDate.day))

See also DAYS 6.10.6, DATEDIF 6.10.3

6.10.8 EASTERSUNDAY

Summary: Returns the date of Easter Sunday in the Gregorian Calendar in Year if given,
otherwise returns the date of the next Easter Sunday on or after TODAY(().

Note: The use of the Gregorian calendar was introduced in different locations
at different times.

Syntax: EASTERSUNDAY([Integer Year])
Returns: Date
Constraints: 1583 < Year < 9956

Semantics: Given an integer value for Year in the allowed range, the Easter Sunday date is
calculated according to the following algorithm:

Al = INT(Year/100)

A2 = Year-19*INT (Year/19)

A3 = INT((A1l-17)/25)

A4 = MOD(A1-INT(A1/4)-INT((AL1-A3)/3)+19*A2+15;30)

A5 = A4-INT (A4/28)* (1-INT (A4/28) *INT (29/ (A4+1))*INT ((21-A2)/11))
A6 = MOD(Year+INT (Year/4)+A5+2-A1+INT (A1l/4);7)

A7 = A5-A6

month = 3+INT((A7+40)/44)
day = A7+28-31*INT (month/4)

The resulting date is: DATE(Year; month; day).

If Year is not given, the above calculation is performed for the current and the next year, and
the smaller of the two dates that is not less than TODAY() is returned.

6.10.9 EDATE

Summary: Returns the serial number of a given date when MonthAdd months is added
Syntax: EDATE(DateParam StartDate ; Number MonthAdd)

Returns: Number

Constraints: None

Semantics: First truncate StartDate and MonthAdd, then add MonthAdd number of months.
MonthAdd can be positive, negative, or 0; if zero, the number representing StartDate (in the
current epoch) is returned.

If after adding the given number of months, the day of month in the new month is larger than
the number of days in the given month, the day of month is adjusted to the last day of the new
month. Then the serial number of that date is returned.

See also DAYS 6.10.6, DATEDIF 6.10.3, EOMONTH 6.10.10

6.10.10 EOMONTH

Summary: Returns the serial number of the end of a month, given date plus MonthAdd
months

Syntax: EOMONTH(DateParam StartDate ; Integer MonthAdd
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 72 of 213

Constraints: None

Semantics: First truncate StartDate and MonthAdd, then add MonthAdd number of months.
MonthAdd can be positive, negative, or 0. Then return the serial number representing the end
of that month. Due to the semantics of this function, the value of DAY (StartDate) is irrelevant.

See also DAY 6.10.5, EDATE 6.10.9

6.10.11 HOUR

Summary: Extracts the hour (0 through 23) from a time.
Syntax: HOUR(TimeParam T)

Returns: Number

Constraints: None

Semantics: Extract from T the hour value, 0 through 23, as per a 24-hour clock. This is equal
to:

DayFraction = (T - INT(T))
Hour = INT(DayFraction * 24)
See also MONTH 6.10.14, DAY 6.10.5, MINUTE 6.10.13, SECOND 6.10.17, INT 6.17.2

6.10.12 ISOWEEKNUM

Summary: Determines the ISO week number of the year for a given date.
Syntax: ISOWEEKNUM(DateParam D)

Returns: Number

Constraints: None

Semantics: Returns the ordinal number of the [ISO8601] calendar week in the year for the
given date D. ISO 8601 defines the calendar week as a time interval of seven calendar days
starting with a Monday, and the first calendar week of a year as the one that includes the first
Thursday of that year.

See also DAY 6.10.5, MONTH 6.10.14, YEAR 6.10.24, WEEKDAY 6.10.21, WEEKNUM
6.10.22

6.10.13 MINUTE

Summary: Extracts the minute (0 through 59) from a time.

Syntax: MINUTE(TimeParam T)

Returns: Number

Constraints: None

Semantics: Extract from T the minute value, O through 59, as per a clock. This is equal to:
Second = MOD(ROUND(T * 86400) ; 60)

Minute = (MOD(ROUND(T * 86400) ; 3600) - Second) / 60

DayFraction = (T - INT(T))

HourFraction = (DayFraction * 24 - INT(DayFraction * 24))

Minute = INT(HourFraction * 60)

See also MONTH 6.10.14, DAY 6.10.5, HOUR 6.10.11, SECOND 6.10.17, INT 6.17.2

6.10.14 MONTH

Summary: Extracts the month from a date.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 73 of 213

Syntax: MONTH(DateParam Date)

Returns: Number

Constraints: None

Semantics: Takes Date and returns the month portion.
See also YEAR 6.10.24, DAY 6.10.5

6.10.15 NETWORKDAYS

Summary: Returns the whole number of work days between two dates.

Syntax: NETWORKDAYS(DateParam Date1 ; DateParam Date2 [; [DateSequence
Holidays | [; LogicalSequence Workdays]])

Returns: Number
Constraints: None
Semantics: Returns the whole number of work days between two dates.

Work days are defined as non-weekend, non-holiday days. By default, weekends are
Saturdays and Sundays and there are no holidays.

The optional 3" parameter Holidays can be used to specify a list of dates to be treated as
holidays. Note that this parameter can be omitted as an empty parameter (two consecutive ;;
semicolons) to be able to pass the set of Workdays without Holidays.

The optional 4th parameter Workdays can be used to specify a different definition for the
standard work week by passing in a list of numbers which define which days of the week are
workdays (indicated by 0) or not (indicated by non-zero) in order Sunday,
Monday,...,Saturday. So, the default definition of the work week excludes Saturday and
Sunday and is: {1,0;0;0;0;0;1}. To define the work week as excluding Friday and Saturday, the
third parameter would be: {0;0;0;0;0;1;1}.

6.10.16 NOW

Summary: Returns the serial number of the current date and time.
Syntax: NOW()

Returns: DateTime

Constraints: None

Semantics: This returns the current day and time serial number, using the current locale. If
you want only the serial number of the current day, use TODAY 6.10.20.

See also DATE 6.10.2, TIME 6.10.18, TODAY 6.10.20

6.10.17 SECOND

Summary: Extracts the second (the integer 0 through 59) from a time. This function presumes
that leap seconds never exist.

Syntax: SECOND(TimeParam T)
Returns: Number
Constraints: None

Semantics: Extract from T the second value, 0 through 59, as per a clock, after first rounding
to the nearest second. Note that this returns an integer, without a fractional part. Note also that
this rounds to the nearest second, instead of returning the integer part of the seconds. This is
equal to:

Second = MOD(ROUND(T * 86400) ; 60)
DayFraction = (T - INT(T))

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 74 of 213

HourFraction = (DayFraction * 24 - INT(DayFraction * 24))

MinuteFraction = (HourFraction * 60 - INT(HourFraction * 60))

Second = ROUND(MinuteFraction * 60)

See also MONTH 6.10.14, DAY 6.10.5, HOUR 6.10.11, MINUTE 6.10.13, INT 6.17.2

6.10.18 TIME

Summary: Constructs a time value from hours, minutes, and seconds.
Syntax: TIME(Number Hours ; Number Minutes ; Number Seconds)
Returns: Time

Constraints: None. Evaluators may first perform INT() on the hour, minute, and second
before doing the calculation.

Semantics: Returns the fraction of the day consumed by the given time, i.e.:
((Hours * 60 * 60) + (Minutes * 60) + Seconds) / (24 * 60 * 60)
Time is a subtype of Number, where a time value of 1 = 1 day = 24 hours.

Hours, Minutes, and Seconds may be any number (they shall not be limited to the ranges
0..24, 0..59, or 0..60 respectively).

See also DATE 6.10.2, INT 6.17.2

6.10.19 TIMEVALUE

Summary: Returns a time serial number from given text.
Syntax: TIMEVALUE(Text T)

Returns: Time

Constraints: None

Semantics: This computes the serial number of the text string T, which is a time, using the
current locale. This function shall accept ISO time format (HH:MM:SS), which is locale-
independent. If the text of T has a combined date and time format, e.g. YYYY-MM-DD
HH:MM:SS, the fractional part of the date serial number is returned. If the text of T does not
have a time format, an evaluator may attempt to convert the number another way (e.g., using
VALUE), or it may return an Error (this is implementation-dependent).

See also TIME 6.10.18, DATE 6.10.2, DATEVALUE 6.10.4, VALUE 6.13.34

6.10.20 TODAY

Summary: Returns the serial number of today.
Syntax: TODAY()

Returns: Date

Constraints: None

Semantics: This returns the current day's serial number, using current locale. This only
returns the date, not the datetime value. For the specific time of day as well, use NOW
6.10.16.

See also TIME 6.10.18, NOW 6.10.16

6.10.21 WEEKDAY

Summary: Extracts the day of the week from a date; if text, uses current locale to convert to a
date.

Syntax: WEEKDAY(DateParam D [; Integer Type =11])

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 75 of 213

Returns: Number

Constraints: None

Semantics: Returns the day of the week from a date D, as a number from 0 through 7. The
exact meaning depends on the value of Type:

1.

When Type is 1, Sunday is the first day of the week, with value 1; Saturday has value
7.

. When Type is 2, Monday is the first day of the week, with value 1; Sunday has value

7.
When Type is 3, Monday is the first day of the week, with value 0; Sunday has value
6.

When Type is 11, Monday is the first day of the week, with value 1; Sunday has value
7.

When Type is 12, Tuesday is the first day of the week, with value 1; Monday has
value 7.

When Type is 13, Wednesday is the first day of the week, with value 1; Tuesday has
value 7.

. When Type is 14, Thursday is the first day of the week, with value 1; Wednesday has

value 7.

When Type is 15, Friday is the first day of the week, with value 1; Thursday has value
7.

When Type is 16, Saturday is the first day of the week, with value 1; Friday has value
7.

10. When Type is 17, Sunday is the first day of the week, with value 1; Saturday has

value 7.

Table 6 - WEEKDAY

Weekday 1 2 3 (11|12 (13|14 | 15| 16 | 17
Type

Sunday 1 7 6 7 6 5 4 3 2 1

Monday 2 110 (1|7 |6 |5]4]|3]2

Tuesday 3 2 1 2 1 7 6 5 4 3

Wednesday | 4 | 3 2 | 3| 2 1 7|6 |5 | 4

Thursday 5 4 3 4 3 2 1 7 6 5

Friday | 6 | 5| 4 |5 | 4| 3| 2|1 7|6

Saturday | 7 | 6 | 5 | 6 | 5 | 4 | 3| 2 |1 |7

See also DAY 6.10.5, MONTH 6.10.14, YEAR 6.10.24

6.10.22 WEEKNUM

Summary: Determines the week number of the year for a given date.
Syntax: WEEKNUM(DateParam D [; Number Mode =11])

OpenDocument-v1.4-csO1-part4-formula

2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 76 of 213

Returns: Number
Constraints: 1 < Mode < 2, or 11 < Mode < 17, or Mode = 21, or Mode = 150
Semantics: Returns the number of the week in the year for the given date.

For Mode ={1, 2, 11, 12, ..., 17} the week containing January 1 is the first week of the year,
and is numbered week 1. The week starts on {Sunday, Monday, Monday, Tuesday, ...,
Sunday}.

Mode 21 and Mode 150 are both [ISO8601], the week starts on Monday and the week
containing the first Thursday of the year is the first week of the year, and is numbered week 1.

See also DAY 6.10.5, MONTH 6.10.14, YEAR 6.10.24, WEEKDAY 6.10.21, ISOWEEKNUM
6.10.12

6.10.23 WORKDAY

Summary: Returns the date serial number which is a specified number of work days before or
after an input date.

Syntax: WORKDAY(DateParam Date ; Number Offset [; [DateSequence Holidays || ;
LogicalSequence Workdays]])

Returns: DateTime
Constraints: None

Semantics: Returns the date serial number for the day that is offset from the input Date
parameter by the number of work days specified in the Offset parameter. If Offset is negative,
the offset will return a date prior to Date. If Offset is positive, a date later Date is returned. If
Offset is zero, then Date is returned.

Work days are defined as hon-weekend, non-holiday days. By default, weekends are
Saturdays and Sundays and there are no holidays.

The optional 3" parameter Holidays can be used to specify a list of dates to be treated as
holidays. Note that this parameter can be omitted as an empty parameter (two consecutive ;;
semicolons) to be able to pass the set of Workdays without Holidays.

The optional 4th parameter Workdays can be used to specify a different definition for the
standard work week by passing in a list of numbers which define which days of the week are
workdays (indicated by 0) or not (indicated by non-zero) in order Sunday,
Monday,...,Saturday. If all seven numbers in Workdays are non-zero and Offset is also non-
zero, WORKDAY returns an error.

Note: The default definition of the work week that excludes Saturday and Sunday and is:
{1;0;0;0;0;0;1}. To define the workweek as excluding Friday and Saturday, the third parameter
would be: {0;0;0;0;0;1;1}.

6.10.24 YEAR

Summary: Extracts the year from a date given in the current locale of the evaluator.
Syntax: YEAR(DateParam D)

Returns: Number

Constraints: None

Semantics: Parses a date-formatted string in the current locale's format and returns the year
portion.

If a year is given as a two-digit number, as in "05-21-15", then the year returned is either 1915
or 2015, depending upon the break point in the calculation context. In an OpenDocument
document, this break point is determined by HOST-NULL-YEAR.

Evaluators shall support extracting the year from a date beginning in 1900. Three-digit year
numbers precede adoption of the Gregorian calendar, and may return either an Error or the

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 77 of 213

year number. Four-digit year numbers preceding 1582 (inception of the Gregorian Calendar)
may return either an Error or the year number. Four-digit year numbers following 1582 should
return the year number.

See also MONTH 6.10.14, DAY 6.10.5, VALUE 6.13.34

6.10.25 YEARFRAC

Summary: Extracts the number of years (including fractional part) between two dates
Syntax: YEARFRAC(DateParam StartDate ; DateParam EndDate [; Basis B=01])
Returns: Number

Constraints: None

Semantics: Computes the fraction of the number of years between a StartDate and
EndDate.

B indicates the day-count convention to use in the calculation. 4.11.7
See also DATEDIF 6.10.3

6.11 External Access Functions

6.11.1 General

OpenFormula defines two functions, DDE and HYPERLINK, for accessing external data.

6.11.2 DDE

Summary: Returns data from a DDE request

Syntax: DDE(Text Server ; Text Topic ; Text Item [; Integer Mode =01])
Returns: Number|Text

Constraints: None

Semantics: Performs a DDE request and returns its result. The request invokes the service
Server on the topic named as Topic, requesting that it reply with the information on Item.

Evaluators may choose to not perform this function on every recalculation, but instead cache
an answer and require a separate action to re-perform these requests. Evaluators shall
perform this request on initial load when their security policies permit it.

Mode is an optional parameter that determines how the results are returned:

Table 7 - DDE

Mode Effect

0 or missing Data converted to number using VALUE in the number style's locale of the
default table cell style

1 Data converted to number using VALUE in the English-US (en_US) locale

2 Data retrieved as text (not converted to number)

In an OpenDocument spreadsheet document the default table cell style is specified with
table:default-cell-style-name. ItS number :number-style specified by
style:data-style-name specifies the locale to use in the conversion.

The DDE function is non-portable because it depends on availability of external programs
(server parameter) and their interpretation of the topic and item parameters.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 78 of 213

6.11.3 HYPERLINK

Summary: Creation of a hyperlink involving an evaluated expression.
Syntax: HYPERLINK(Text IRI [; Text|Number FunctionResult])
Returns: Text or Number

Constraints: None

Semantics: The default for the second argument is the value of the first argument. The
second argument value is returned.

In addition, hosting environments may interpret expressions containing HYPERLINK function
calls as calling for an implementation-dependent creation of a hypertext link based on the
expression containing the HYPERLINK function calls.

6.12 Financial Functions

6.12.1 General

The financial functions are defined for use in financial calculations.

An annuity is a recurring series of payments. A "simple annuity" is one where equal payments
are made at equal intervals, and the compounding of interest occurs at those same intervals.
The time between payments is called the "payment interval”. Where payments are made at
the end of the payment interval, it is called an "ordinary annuity". Where payments are made
at the beginning of the payment interval, it is called an "annuity due". Periods are nhumbered
starting at 1.

Financial functions defined in this standard use a cash flow sign convention where outgoing
cash flows are negative and incoming cash flows are positive.

6.12.2 ACCRINT

Summary: Calculates the accrued interest for securities with periodic interest payments.

Syntax: ACCRINT(DateParam Issue ; DateParam First ; DateParam Settlement ; Number
Coupon ; Number Par ; Integer Frequency [; Basis B =0 [; Logical CalcMethod =
TRUE]])

Returns: Currency
Constraints: Issue < First < Settlement ; Coupon > 0; Par > 0

Frequency is one of the following values:

Table 8 - ACCRINT

Frequency |Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly
12 Monthly

Semantics: Calculates the accrued interest for securities with periodic interest payments.
ACCRINT supports short, standard, and long Coupon periods.

If CalcMethod is TRUE (the default) then ACCRINT returns the sum of the accrued interest in
each coupon period from issue date until settlement date. If CalcMethod is FALSE then
ACCRINT returns the sum of the accrued interest in each coupon period from first interest
date until settlement date. For each coupon period, the interest is Par * Coupon *
YEARFRAC (start-of-period;end-of-period; B)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 79 of 213

* Issue: The security's issue or dated date.

* First. The security's first interest date.

« Settlement. The security's settlement date.

e Coupon: The security's annual coupon rate.

* Par: The security's par value, that is, the principal to be paid at maturity.
e Frequency: The number of coupon payments per year.

* B:Indicates the day-count convention to use in the calculation. 4.11.7

* CalcMethod: A logical value that specifies how to treat the case where Settlement >
First.

See also ACCRINTM 6.12.3, YEARFRAC 6.10.25

6.12.3 ACCRINTM

Summary: Calculates the accrued interest for securities that pay at maturity.

Syntax: ACCRINT(DateParam Issue ; DateParam Settlement ; Number Coupon ; Number
Par[; BasisB=01])

Returns: Currency

Constraints: Coupon > 0; Par > 0

Semantics: Calculates the accrued interest for securities that pay at maturity.
* Issue: The security's issue or dated date.

* Settlement: The security's maturity date.

* Coupon: The security's annual coupon rate.

e Par. The security's par value, that is, the principal to be paid at maturity.

* B: Indicates the day-count convention to use in the calculation. 4.11.7
See also ACCRINT 6.12.2

6.12.4 AMORLINC

Summary: Calculates the amortization value for the French accounting system using linear
depreciation (I'amortissement linéaire comptable) .

Syntax: AMORLINC(Number Cost ; DateParam PurchaseDate ; DateParam
FirstPeriodEndDate ; Number Salvage ; Integer Period ; Number Rate [; Basis B=01])

Returns: Currency

Constraints: Cost > 0; PurchaseDate < FirstPeriodEndDate; Salvage = 0; Period = 0O;
Rate >0

Semantics: Calculates the amortization value for the French accounting system using linear
depreciation.

e Cost: The value of the asset at the date of aquisition.

* PurchaseDate: The date of aquisition.

* FirstPeriodEndDate: The end date of the first depreciation period.

« Salvage: The value of the asset at the end of the depreciation life time.
e Period: Which period the depreciation should be calculated for.

* Rate: The rate of depreciation.

B: Indicates the day-count convention to use in the calculation. 4.11.7

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 80 of 213

When Period = 0:
AMORLINC = Cost-Rate-YEARFRAC (PurchaseDate , FirstPeriodEndDate , Basis)
For full periods, where Period > 0, the depreciation is Cost * Rate

= Cost— Salvage
"~ Cost-Rate

For the last period, possibly a partial period: the depreciation = Cost - Salvage - accumulated-
depreciation, where accumulated-depreciation is the sum of the depreciation in period 0 plus
any full period depreciations.

AMORLINC =Cost- Rate

When Period > depreciated life of the asset, i.e., when Period > (Cost - Salvage) / (Cost *
Rate) then the depreciation is 0.

AMORLINC=0

Note: The behavior of this function is implementation-defined in cases where
PurchaseDate = FirstPeriodEndDate.

See also DB 6.12.13, DDB 6.12.14, YEARFRAC 6.10.25

6.12.5 COUPDAYBS

Summary: Calculates the number of days between the beginning of the coupon period that
contains the settlement date and the settlement date.

Syntax: COUPDAYBS(DateParam Settlement ; DateParam Maturity ; Integer Frequency | ;
BasisB=0])

Returns: Number
Constraints: Settlement < Maturity

Frequency is one of the following values:

Table 9 - COUPDAYBS

Frequency |Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculate the number of days from the beginning of the coupon period to the
settlement date.

« Settlement. The settlement date.

* Maturity: The maturity date.

* Frequency: The number of coupon payments per year.

* B: Indicates the day-count convention to use in the calculation. 4.11.7

See also COUPDAYS 6.12.6 , COUPDAYSNC 6.12.7 , COUPNCD 6.12.7 , COUPNUM
6.12.9, COUPPCD 6.12.10

6.12.6 COUPDAYS

Summary: Calculates the number of days in a coupon period that contains the settlement
date.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 81 of 213

Syntax: COUPDAYS(DateParam Settlement ; DateParam Maturity ; Integer Frequency | ;
BasisB=0])

Returns: Number
Constraints: Settlement < Maturity
Frequency is one of the following values:

Table 10 - COUPDAYS

Frequency |Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculates the number of days in the coupon period containing the settlement
date.

« Settlement. The settlement date.

e Maturity: The maturity date.

* Frequency: The number of coupon payments per year.

* B:Indicates the day-count convention to use in the calculation. 4.11.7

See also COUPDAYBS 6.12.5, COUPDAYSNC 6.12.7 , COUPNCD 6.12.7 , COUPNUM
6.12.9, COUPPCD 6.12.10

6.12.7 COUPDAYSNC

Summary: Calculates the number of days between a settlement date and the next coupon
date.

Syntax: COUPDAYNC(DateParam Settlement ; DateParam Maturity ; Integer Frequency
[; BasisB=01])

Returns: Number
Constraints: Settlement < Maturity

Frequency is one of the following values:

Table 11 - COUPDAYSNC

Frequency Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculates the number of days between the settlement date and the next coupon
date.

* Settlement: The settlement date.

* Maturity: The maturity date.

e Frequency:. The number of coupon payments per year.

* B: Indicates the day-count convention to use in the calculation. 4.11.7

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 82 of 213

See also COUPDAYBS 6.12.5, COUPDAYS 6.12.6 , COUPNCD 6.12.7 , COUPNUM 6.12.9 ,
COUPPCD 6.12.10

6.12.8 COUPNCD

Summary: Calculates the next coupon date following a settlement.

Syntax: COUPNCD(DateParam Settlement ; DateParam Maturity ; Integer Frequency | ;
BasisB=01])

Returns: Date
Constraints: Settlement < Maturity

Frequency is the number of coupon payments per year. Frequency is one of the following
values:

Table 12 - COUPNCD

Frequency Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculates the next coupon date after the Settlement date based on the Maturity
(expiration) date of the asset, the Frequency of coupon payments and the day-count B.

B indicates the day-count convention to use in the calculation. 4.11.7
See also: COUPDAYSNC 6.12.7

6.12.9 COUPNUM

Summary: Calculates the number of outstanding coupons between settlement and maturity
dates.

Syntax: COUPNUM(DateParam Settlement ; DateParam Maturity ; Integer Frequency [;
BasisB=0])

Returns: Number

Constraints: Frequency is the number of coupon payments per year. Frequency is one of
the following values:

Table 13 - COUPNUM

Frequency |Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculates the number of coupons in the interval between the Settlement and the
Maturity (expiration) date of the asset, the Frequency of coupon payments and the day-count

B indicates the day-count convention to use in the calculation. 4.11.7

See also COUPDAYBS 6.12.5, COUPDAYS 6.12.6, COUPDAYSNC 6.12.7, COUPNCD
6.12.7, COUPPCD 6.12.10

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 83 of 213

6.12.10 COUPPCD

Summary: Calculates the next coupon date prior a settlement.

Syntax: COUPPCD(DateParam Settlement ; DateParam Maturity ; Integer Frequency [;
BasisB=01])

Returns: Date
Constraints: Settlement < Maturity

Frequency is the number of coupon payments per year. Frequency is one of the following
values:

Table 14 - COUPPCD

Frequency |Frequency of coupon payments
1 Annual
2 Semiannual
4 Quarterly

Semantics: Calculates the next coupon date prior to the Settlement date based on the
Maturity (expiration) date of the asset, the Frequency of coupon payments and the day-count

B indicates the day-count convention to use in the calculation. 4.11.7

See also COUPDAYBS 6.12.5, COUPDAYS 6.12.6, COUPDAYSNC 6.12.7, COUPNCD
6.12.7, COUPNUM 6.12.9

6.12.11 CUMIPMT

Summary: Calculates a cumulative interest payment.

Syntax: CUMIPMT(Number Rate ; Number Periods ; Number Value ; Integer Start ; Integer
End ; Integer Type)

Returns: Currency
Constraints: Rate > 0; Value > 0; 1 < Start < End < Periods

Type is one of the following values:

Table 15 - CUMIPMT

Type Maturity date

0 due at the end

1 due at the beginning

Semantics: Calculates the cumulative interest payment.

* Rate: The interest rate per period.

* Periods: The number of periods.

e Value: The current value of the loan.

* Start. The starting period.

e End: The end period.

e Type: The maturity date, the beginning or the end of a period.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 84 of 213

End

CUMIPMT = z IPMT (Rate, p, Periods , Value , 0, Type)

p==Start

See also IPMT 6.12.23, CUMPRINC 6.12.12

6.12.12 CUMPRINC

Summary: Calculates a cumulative principal payment.

Syntax: CUMPRINC(Number Rate ; Number Periods ; Number Value ; Integer Start ;
Integer End ; Integer Type)

Returns: Currency

Constraints: Type is one of the following values:

Table 16 - CUMPRINC

Type Maturity date

0 due at the end

1 due at the beginning

Type Maturity date

0 due at the end

1 due at the beginning

Semantics: Calculates the cumulative principal payment.
* Rate: The interest rate per period.

* Periods: The number of periods.

* Value: The current value of the loan.

* Start. The starting period.

e End: The end period.

e Type: The maturity date, the beginning or the end of a period.
End

CUMPRINC=). PPMT (Rate, p, Periods, Value, 0, Type)

p=Start

See also PPMT 6.12.37 , CUMIPMT 6.12.11

6.12.13 DB
Summary: Compute the depreciation allowance of an asset.

Syntax: DB(Number Cost ; Number Salvage ; Integer LifeTime ; Number Period [; Number
Month =121])

Returns: Currency
Constraints: Cost > 0, Salvage = 0, LifeTime > 0; Period > 0; 0 < Month < 13

Semantics: Calculate the depreciation allowance of an asset with an initial value of Cost, an
expected useful LifeTime, and a final Salvage value at a specified Period of time, using the
fixed-declining balance method. The parameters are:

e Cost: the total amount paid for the asset.
« Salvage: the salvage value at the end of the LifeTime.

« LifeTime: the number of periods that the depreciation will occur over. A positive integer.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 85 of 213

e Period: the time period for which you want to find the depreciation allowance, in the same
units as LifeTime.

* Month: (optional) the number of months in the first year of depreciation, assumed to be
12, if not specified. If a value is specified for Month, LifeTime and Period are assumed to
be measured in years.

The rate is calculated as follows:

Salvage \+——
rateZI— 8 LifeTime
Cost
and is rounded to 3 decimals.
For the first period the residual value is
Month
12

valuelzCost(1—- -rate)

For all periods, where Period < LifeTime, the residual value is calculated by
ValuePeriod =ValuePeriod—l (1 - mte)

If Month was specified, the residual value for the period after LifeTime becomes

_ Month
value ;e 1 =value pyp,e | 1—| 1— ‘rate

12
The depreciation allowance for the first period is
DB,=Cost—value,
For all other periods the allowance is calculated by

DB

For all periods, where Period > LifeTime + 1 — INT(Month / 12), the depreciation allowance is
zero.

See also DDB 6.12.14, SLN 6.12.45, INT 6.17.2

=value —value

period period period—1

6.12.14 DDB

Summary: Compute the amount of depreciation at a given period of time.

Syntax: DDB(Number Cost ; Number Salvage ; Number LifeTime ; Number Period [;
Number DeclinationFactor=21])

Returns: Currency

Constraints: Cost = 0, Salvage = 0, Salvage < Cost, 1 < Period < LifeTime,
DeclinationFactor > 0

Semantics: Compute the amount of depreciation of an asset at a given period of time. The
parameters are:

e Cost: the total amount paid for the asset.

« Salvage: the salvage value at the end of the LifeTime

* LifeTime: the number of periods that the depreciation will occur over.
* Period: the period for which a depreciation value is specified.

* DeclinationFactor. the method of calculating depreciation, the rate at which the balance
declines. Defaults to 2. If 2, double-declining balance is used.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 86 of 213

To calculate depreciation, DDB uses a fixed rate. When DeclinationFactor = 2 this is the
double-declining-balance method (because it is double the straight-line rate that would
depreciate the asset to zero). The rate is given by:

DeclinationFactor
LifeTime

The depreciation each period is calculated as

rate=

depreciation_of period = MIN(book_value_at_start_of period * rate;
book_value_at_start_of period - Salvage)
Thus the asset depreciates at rate until the book value is Salvage value.

Period—1

BookValueAtStartOfPeriod p,,,,, = Cost — Z DepreciationOfPeriod

i=1
To allow also non-integer Period values this algorithm may be used:

_ DeclinationFactor
~ LifeTime
if rate > 1 then
{

rate=1

if Period =1then
oldValue=Cost

rate

else
oldValue=0

endif
¥
else
{ .

oldValue=Cost-(1 _’,,ate>Perzod—1
}
endif |
newValue=Cost-(1—rate)”"

if newValue < Salvage then
DDB =oldValue — Salvage

else
DDB =oldValue — newValue
endif
if DDB<0then
DDB=0
endif

If Period is an Integer number, the relation between DDB and VDB is:

DDB(Cost; Salvage ; LifeTime ; Period ; DeclinationFactor)

equals

VDB(Cost; Salvage ; LifeTime ; Period - 1 ; Period ; DeclinationFactor ; TRUE)

See also SLN 6.12.45, VDB 6.12.50, MIN 6.18.48

6.12.15 DISC

Summary: Returns the discount rate of a security.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 87 of 213

Syntax: DISC(DateParam Settlement ; DateParam Maturity ; Number Price ; Number
Redemption [; BasisB=0])

Returns: Percentage

Constraints: Settlement < Maturity

Semantics: Calculates the discount rate of a security.

* Settlement. The settlement date of the security.

* Maturity: The maturity date.

e Price: The price of the security.

*« Redemption: The redemption value of the security.

* B:Indicates the day-count convention to use in the calculation. 4.11.7
Redemption— Price

Redemption
YEARFRAC (Settlement , Maturity , B)

See also YEARFRAC 6.10.25

DISC=

6.12.16 DOLLARDE

Summary: Converts a fractional dollar representation into a decimal representation.
Syntax: DOLLARDE(Number Fractional ; Integer Denominator)

Returns: Number

Constraints: Denominator > 0

Semantics: Converts a fractional dollar representation into a decimal representation.
* Fractional: Decimal fraction.

* Denominator: The denominator of the fraction.

)+ Fractional — TRUNC (Fractional)

DOLLARDE =TRUNC (Fractional :
Denominator

See also DOLLARFR 6.12.17 , TRUNC 6.17.8

6.12.17 DOLLARFR

Summary: Converts a decimal dollar representation into a fractional representation.
Syntax: DOLLARFR(Number Decimal ; Integer Denominator)

Returns: Number

Constraints: Denominator > 0

Semantics: Converts a decimal dollar representation into a fractional representation.
e Decimal: A decimal number.

* Denominator. The denominator of the fraction.

DOLLARFR=TRUNC (Decimal) +(Decimal —TRUNC (Decimal))-Denominator
See also DOLLARDE 6.12.16, TRUNC 6.17.8

6.12.18 DURATION

Summary: Returns the Macaulay duration of a fixed interest security in years

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 88 of 213

Syntax: DURATION(Date Settlement ; Date Maturity ; Number Coupon ; Number Yield ;
Number Frequency [; BasisB=01])

Returns: Number

Constraints: Yield =0, Coupon = 0, Settlement < Maturity, Frequency =1, 2, 4
Semantics: Computes the Macaulay duration, given:

« Settlement: the date of purchase of the security

* Maturity: the date when the security matures

¢ Coupon: the annual nominal rate of interest

« Yield: the annual yield of the security

* Frequency: number of interest payments per year

* B: Indicates the day-count convention to use in the calculation. 4.11.7

See also MDURATION 6.12.26

6.12.19 EFFECT

Summary: Returns the net annual interest rate for a nominal interest rate.
Syntax: EFFECT(Number Rate ; Integer Payments)

Returns: Number

Constraints: Rate = 0; Payments >0

Semantics: Nominal interest refers to the amount of interest due at the end of a calculation
period. Effective interest increases with the number of payments made. In other words,
interest is often paid in installments (for example, monthly or quarterly) before the end of the
calculation period.

* Rate: The interest rate per period.

e Payments: The number of payments per period.

Rate)Payments
__nare 1

EFFECT = (1+
Payments

See also NOMINAL 6.12.28

6.12.20 FV

Summary: Compute the future value (FV) of an investment.

Syntax: FV(Number Rate ; Number Nper ; Number Payment [; [Number Pv=0][;
Number PayType=01]])

Returns: Currency

Constraints: None.

Semantics: Computes the future value of an investment. The parameters are:
* Rate: the interest rate per period.

¢ Nper: the total number of payment periods.

* Payment: the payment made in each period.

* Pv: the present value; default is 0.

* PayType: the type of payment, defaults to 0. It is O if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

See PV 6.12.41 for the equation this solves.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 89 of 213

See also PV 6.12.41, NPER 6.12.29, PMT 6.12.36, RATE 6.12.42

6.12.21 FVSCHEDULE

Summary: Returns the accumulated value given starting capital and a series of interest rates.
Syntax: FVSCHEDULE(Number Principal ; NumberSequence Schedule)

Returns: Currency

Constraints: None.

Semantics: Returns the accumulated value given starting capital and a series of interest
rates, as follows:

N
Principle-| | (1+Schedule[i])

i=1

See also PV 6.12.41, NPER 6.12.29, PMT 6.12.36, RATE 6.12.42

6.12.22 INTRATE

Summary: Computes the interest rate of a fully vested security.

Syntax: INTRATE(Date Settlement ; Date Maturity ; Number Investment ; Number
Redemption [; Basis Basis=01])

Returns: Number
Constraints: Settlement < Maturity

Semantics: Calculates the annual interest rate that results when an item is purchased at the
investment price and sold at the redemption price. No interest is paid on the investment. The
parameters are:

* Settlement: the date of purchase of the security.
e Maturity: the date on which the security is sold.
* Investment. the purchase price.
* Redemption: the selling price.
* Basis: indicates the day-count convention to use in the calculation. 4.11.7
The return value for this function is:
Redemption— Investment

Investment
YEARFRAC (Settlement ; Maturity ; B)

See also RECEIVED 6.12.43, YEARFRAC 6.10.25

INTRATE =

6.12.23 IPMT

Summary: Returns the amount of an annuity payment going towards interest.

Syntax: IPMT(Number Rate ; Number Period ; Number Nper ; Number PV [; Number FV =
O[; Number Type=01]])

Returns: Currency
Constraints: None.

Semantics: Computes the interest portion of an amortized payment for a constant interest
rate and regular payments. The interest payment is the interest rate multiplied by the balance
at the beginning of the period. The parameters are:

* Rate: The periodic interest rate.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 90 of 213

e Period: The period for which the interest payment is computed.

* Nper: The total number of periods for which the payments are made

e PV: The present value (e.g. The initial loan amount).

e FV: The future value (optional) at the end of the periods. Zero if omitted.

* Type: the due date for the payments (optional). Zero if omitted. If Type is 1, then
payments are made at the beginning of each period. If Type is 0, then payments are
made at the end of each period.

See also PPMT 6.12.37, PMT 6.12.36

6.12.24 IRR

Summary: Compute the internal rate of return for a series of cash flows.
Syntax: IRR(NumberSequence Values [; Number Guess =0.11])
Returns: Percentage

Constraints: None.

Semantics: Compute the internal rate of return for a series of cash flows.

If provided, Guess is an estimate of the interest rate to start the iterative computation. If
omitted, the value 0.1 (10%) is assumed.

The result of IRR is the rate at which the NPV() function will return zero with the given values.

There is no closed form for IRR. Evaluators may return an approximate solution using an
iterative method, in which case the Guess parameter may be used to initialize the iteration. If
the evaluator is unable to converge on a solution given a particular Guess, it may return an
Error.

See also NPV 6.12.30, RATE 6.12.42

6.12.25 ISPMT

Summary: Compute the interest payment of an amortized loan for a given period.
Syntax: ISPMT(Number Rate ; Number Period ; Number Nper ; Number Pv)
Returns: Currency

Constraints: None.

Semantics: Computes the interest payment of an amortized loan for a given period. The
parameters are:

* Rate: the interest rate per period.

e Period: the period for which the interest is computed

* Nper: the total number of payment periods.

e Pv: the amount of the investment

See also PV 6.12.41, FV 6.12.20, NPER 6.12.29, PMT 6.12.36, RATE 6.12.42

6.12.26 MDURATION

Summary: Returns the modified Macaulay duration of a fixed interest security in years.

Syntax: MDURATION(Date Settlement ; Date Maturity ; Number Coupon ; Number Yield ;
Number Frequency [; BasisB=01])

Returns: Number
Constraints: Yield = 0, Coupon = 0, Settlement < Maturity, Frequency =1, 2, 4
Semantics: Computes the modified Macaulay duration, given:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 91 of 213

« Settlement: the date of purchase of the security

* Maturity: the date when the security matures

e Coupon: the annual nominal rate of interest

* Yield: the annual yield of the security

* Frequency: number of interest payments per year

* B:Indicates the day-count convention to use in the calculation. 4.11.7
The modified duration is computed as follows:

duration=DURATION (Settlement , Maturity , Coupon, Yield, Frequency , B)
MDURATION = —duration

N Yield
Frequency

See also DURATION 6.12.18

6.12.27 MIRR

Summary: Returns the modified internal rate of return (IRR) of a series of periodic
investments.

Syntax: MIRR(Array Values ; Number Investment ; Number ReinvestRate)
Returns: Percentage
Constraints: Values shall contain at least one positive value and at least one negative value.

Semantics: Values is a series of periodic income (positive values) and payments (negative
values) at regular intervals (Text and Empty cells are ignored). Investment is the rate of
interest of the payments (negative values); ReinvestRate is the rate of interest of the
reinvestment (positive values).

Computes the modified internal rate of return, which is:

n\ [
— NPV (ReinvestRate, Values>0)*(1+ ReinvestRate) (n —1)
NPV (Investment ; Values <0)*(1+ Investment

-1

where N is the number of incomes and payments in Values (total).
See also IRR 6.12.24, NPV 6.12.30

6.12.28 NOMINAL

Summary: Compute the annual nominal interest rate.

Syntax: NOMINAL(Number EffectiveRate ; Integer CompoundingPeriods)
Returns: Number

Constraints: EffectiveRate > 0 , CompoundingPeriods > 0

Semantics: Returns the annual nominal interest rate based on the effective rate and the
number of compounding periods in one year. The parameters are:

« EffectiveRate: effective rate
« CompoundingPeriods: the compounding periods per year

Suppose that P is the present value, m is the compounding periods per year, the future value
after one year is

P*(. NOMINAL)
m

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 92 of 213

The mapping between nominal rate and effective rate is

NOM[NAL) "

EFFECTZ(1+
m

See also EFFECT 6.12.19

6.12.29 NPER

Summary: Compute the number of payment periods for an investment.

Syntax: NPER(Number Rate ; Number Payment ; Number Pv [; [Number Fv =0] [;
Number PayType =0]])

Returns: Number
Constraints: None.

Semantics: Computes the number of payment periods for an investment. The parameters
are:

* Rate: the constant interest rate.

e Payment. the payment made in each period.
* Pv: the present value of the investment.

* Fv: the future value; default is O.

* PayType: the type of payment, defaults to O. It is O if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

If Rate is 0, then NPER solves this equation:
Pv = — Fv—(Payment * NPER)

If Rate is non-zero, then NPER solves this equation:

VPER Payment-(1+ Rate- PaymentType)-((1+ Rate)""™ — 1)

0= Pv-(1+Rat
vl ate Rate

+ Fy

Evaluators claiming to support the “Medium” or “Large” set shall support negative rates;
evaluators only claiming to support the “Small” set need not.

See also FV 6.12.20, RATE 6.12.42, PMT 6.12.36, PV 6.12.41

6.12.30 NPV

Summary: Compute the net present value (NPV) for a series of periodic cash flows.
Syntax: NPV(Number Rate ; { NumberSequenceList Values }*)

Returns: Currency

Constraints: None.

Semantics: Computes the net present value for a series of periodic cash flows with the
discount rate Rate. Values should be positive if they are received as income, and negative if
the amounts are paid as outgo. Because the result is affected by the order of values,
evaluators shall evaluate arguments in the order given and range reference and array
arguments row-wise starting from top left.

If N is the number of values in Values, the formula for NPV is:
N

NPV =) ———
,Zf (1+Rate)l

See also FV 6.12.20, IRR 6.12.24, NPER 6.12.29, PMT 6.12.36, PV 6.12.41, XNPV 6.12.52

Values,

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 93 of 213

6.12.31 ODDFPRICE

Summary: Compute the value of a security per 100 currency units of face value. The security
has an irregular first interest date.

Syntax: ODDFPRICE(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
DateParam First ; Number Rate ; Number Yield ; Number Redemption ; Number Frequency
[;BasisB=01])

Returns: Number

Constraints: Rate, Yield, and Redemption should be greater than O.
Semantics: The parameters are

« Settlement. the settlement/purchase date of the security

e Maturity. the maturity/expiry date of the security

e Issue: the issue date of the security

* First the first coupon date of the security

* Rate: the interest rate of the security

« Yield: the annual yield of the security

* Redemption: the redemption value per 100 currency units face value

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly.

* B:indicates the day-count convention to use in the calculation. 4.11.7
See also ODDLPRICE 6.12.33 , ODDFYIELD 6.12.32

6.12.32 ODDFYIELD

Summary: Compute the yield of a security per 100 currency units of face value. The security
has an irregular first interest date.

Syntax: ODDFYIELD(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
DateParam First ; Number Rate ; Number Price ; Number Redemption ; Number Frequency
[;BasisB=0])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0. Maturity > First >
Settlement > Issue.

Semantics: The parameters are

« Settlement. the settlement/purchase date of the security

e Maturity: the maturity/expiry date of the security

* Issue: the issue date of the security

* First. the first coupon date of the security

* Rate: the interest rate of the security

* Price: the price of the security

* Redemption: the redemption value per 100 currency units face value

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly.

* B:indicates the day-count convention to use in the calculation. 4.11.7
See also ODDLYIELD 6.12.34 , ODDFPRICE 6.12.31

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 94 of 213

6.12.33 ODDLPRICE

Summary: Compute the value of a security per 100 currency units of face value. The security
has an irregular last interest date.

Syntax: ODDLPRICE(DateParam Settlement ; DateParam Maturity ; DateParam Last ;
Number Rate ; Number AnnualYield ; Number Redemption ; Number Frequency | ; Basis B

=0])
Returns: Number

Constraints: Rate, AnnualYield, and Redemption should be greater than 0. The Maturity
date should be greater than the Settlement date, and the Settlement should be greater than
the last interest date.

Semantics: The parameters are

« Settlement. the settlement/purchase date of the security

e Maturity: the maturity/expiry date of the security

* Last: the last interest date of the security

* Rate: the interest rate of the security

e AnnualYield: the annual yield of the security

* Redemption: the redemption value per 100 currency units face value

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly

* B:indicates the day-count convention to use in the calculation. 4.11.7
See also ODDFPRICE 6.12.31

6.12.34 ODDLYIELD

Summary: Compute the yield of a security which has an irregular last interest date.

Syntax: ODDLYIELD(DateParam Settlement ; DateParam Maturity ; DateParam Last ;
Number Rate ; Number Price ; Number Redemption ; Number Frequency [; BasisB=01])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0.
Semantics: The parameters are

« Settlement. the settlement/purchase date of the security

e Maturity. the maturity/expiry date of the security

* Last: the last interest date of the security

* Rate: the interest rate of the security

* Price: the price of the security

* Redemption: the redemption value per 100 currency units face value

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly.

* B:indicates the day-count convention to use in the calculation. 4.11.7
See also ODDLPRICE 6.12.33 , ODDFYIELD 6.12.32

6.12.35 PDURATION

Summary: Returns the number of periods required by an investment to realize a specified
value.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 95 of 213

Syntax: PDURATION(Number Rate ; Number CurrentValue ; Number SpecifiedValue)
Returns: Number
Constraints: Rate > 0; CurrentValue > 0; SpecifiedValue > 0

Semantics: Calculates the number of periods for attaining a certain value SpecifiedValue,
starting from CurrentValue and using the interest rate Rate.

* Rate: The interest rate per period.
e CurrentValue: The current value of the investment.
« SpecifiedValue: The value, that should be reached.

log (SpecifiedValue)—log(CurrentValue)
log(Rate+1)

PDURATION =

See also DURATION 6.12.18

6.12.36 PMT

Summary: Compute the payment made each period for an investment.

Syntax: PMT(Number Rate ; Integer Nper ; Number Pv [; [Number Fv =0][; Number
PayType=0]])

Returns: Currency

Constraints: Nper >0

Semantics: Computes the payment made each period for an investment. The parameters
are:

* Rate: the interest rate per period.

* Nper: the total number of payment periods.

* Pv: the present value of the investment.

e Fv: the future value of the investment; default is 0.

* PayType: the type of payment, defaults to 0. It is 0 if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

If Rate is 0, the following equation is solved:
Pv = —Fv—(PMT % Nper)
If Rate is nonzero, then PMT solves this equation:
Noer PMT -(1+ Rate - PayType)-((1 4 Rate)" —1)
Rate
See also FV 6.12.20, NPER 6.12.29, PV 6.12.41, RATE 6.12.42

+Fv

0 = Pv-(1+Rate)

6.12.37 PPMT

Summary: Calculate the payment for a given period on the principal for an investment at a
given interest rate and constant payments.

Syntax: PPMT(Number Rate ; Integer Period ; Integer Nper ; Number Present [; Number
Future =0 [; Number Type=01]])

Returns: Number

Constraints: Rate and Present should be greater than 0. 0 < Period < Nper.
Semantics: The parameters are:

* Rate: the interest rate.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 96 of 213

e Period: the given period that the payment returned is for.

* Nper: the total number of periods.

e Present: the present value.

* Future: optional, the future value specified after Nper periods. The default value is 0.

« Type: optional, 0 or 1, respectively for payment at the end or at the beginning of a period.
The default value is 0.

See also PMT 6.12.36

6.12.38 PRICE

Summary: Calculates a quoted price for an interest paying security, per 100 currency units of
face value.

Syntax: PRICE(DateParam Settlement ; DateParam Maturity ; Number Rate ; Number
AnnualYield ; Number Redemption ; Number Frequency [; Basis Bas =0])

Returns: Number

Constraints: Rate, AnnualYield, and Redemption should be greater than 0; Frequency =1,
2o0r4.

Semantics: If A is the number of days from the Settlement date to next coupon date, B is the
number of days of the coupon period that the Settlement is in, C is the number of coupons
between Settlement date and Redemption date, D is the number of days from beginning of
coupon period to Settlement date, then PRICE is calculated as

100 *Rate
PRICE = Redemption _ i Frequency T Rate *2
(1 +— Yield C-1+p 4o (1+ Yield =1+ Frequency B
Frequency Frequency

The parameters are:

* Settlement: the settlement/purchase date of the security.
e Maturity: the maturity/expiry date of the security.

* Rate: the interest rate of the security.

* AnnualYield: a measure of the annual yield of a security (compounded at each interest
payment).

* Redemption: the redemption value per 100 currency units face value.

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly.

* Bas: indicates the day-count convention to use in the calculation. 4.11.7
See also PRICEDISC 6.12.39, PRICEMAT 6.12.40

6.12.39 PRICEDISC

Summary: Calculate the price of a security with a discount per 100 currency units of face
value.

Syntax: PRICEDISC(DateParam Settlement ; DateParam Maturity ; Number Discount ;
Number Redemption [; Basis B=01])

Returns: Number
Constraints: Discount and Redemption should be greater than 0.

Semantics: The parameters are:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 97 of 213

« Settlement. the settlement/purchase date of the security.

e Maturity. the maturity/expiry date of the security.

* Discount. the discount rate of the security.

* Redemption: the redemption value per 100 currency units face value.
* B:indicates the day-count convention to use in the calculation. 4.11.7
See also PRICE 6.12.38, PRICEMAT 6.12.40, YIELDDISC 6.12.54

6.12.40 PRICEMAT

Summary: Calculate the price per 100 currency units of face value of the security that pays
interest on the maturity date.

Syntax: PRICEMAT(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
Number Rate ; Number AnnualYield [; Basis B=0])

Returns: Number

Constraints: Settlement < Maturity, Rate = 0, AnnualYield = 0
Semantics: The parameters are:

« Settlement. the settlement/purchase date of the security.

e Maturity. the maturity/expiry date of the security.

* Issue: the issue date of the security.

* Rate: the interest rate of the security.

e AnnualYield: the annual yield of the security.

* B:indicates the day-count convention to use in the calculation. 4.11.7
If both, Rate and AnnualYield, are 0, the return value is 100.
See also PRICEDISC 6.12.39, PRICEMAT 6.12.40

6.12.41 PV

Summary: Compute the present value (PV) of an investment.

Syntax: PV(Number Rate ; Number Nper ; Number Payment [;[Number Fv =01][;
Number PayType=01]])

Returns: Currency

Constraints: None.

Semantics: Computes the present value of an investment. The parameters are:
* Rate: the interest rate per period.

* Nper: the total number of payment periods.

* Payment. the payment made in each period.

e Fv: the future value; default is 0.

* PayType: the type of payment, defaults to 0. It is O if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

If Rate is 0, then:
PV = — Fv—(Payment* Nper)

If Rate is nonzero, then PV solves this equation:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 98 of 213

Nper 1)

e Payment-(1+ Rate-PayType)-((1+ Rate)
Rate
See also FV 6.12.20, NPER 6.12.29, PMT 6.12.36, RATE 6.12.42

0 = PV-(1+ Rate +Fv

6.12.42 RATE

Summary: Compute the interest rate per period of an investment.

Syntax: RATE(Number Nper ; Number Payment ; Number Pv [;[Number Fv =01][;[
Number PayType =0] [; Number Guess =0.1]1]])

Returns: Percentage

Constraints: If Nper is 0 or less than 0, the result is an Error.

Semantics: Computes the interest rate of an investment. The parameters are:
* Nper: the total number of payment periods.

* Payment: the payment made in each period.

e Pv: the present value of the investment.

* Fv: the future value; default is O.

* PayType: the type of payment, defaults to 0. It is O if payments are due at the end of the
period; 1 if they are due at the beginning of the period.

¢ Guess: An estimate of the interest rate to start the iterative computation. If omitted, 0.1
(10%) is assumed.

RATE solves this equation:
0 = Fv+Pv-(1+Rate
Payment-(1+ Rate- PayType)-((l +Rate|"™ -1)
Rate
See also FV 6.12.20, NPER 6.12.29, PMT 6.12.36, PV 6.12.41

)Nper

6.12.43 RECEIVED

Summary: Calculates the amount received at maturity for a zero coupon bond.

Syntax: RECEIVED(DateParam Settlement ; DateParam Maturity ; Number Investment ;
Number Discount [; BasisB=01])

Returns: Number
Constraints: Investment and Discount should be greater than 0, Settlement < Maturity
Semantics: The parameters are:
Settlement. the settlement/purchase date of the security
e Maturity. the maturity/expiry date of the security
* Investment. the amount of investment in the security
* Discount. the discount rate of the security
* B:indicates the day-count convention to use in the calculation. 4.11.7
The returned value is:
Investment
1— Discount-YEARFRAC (Settlement ; Maturity ; B)
See also YEARFRAC 6.10.25

RECEIVED =

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 99 of 213

6.12.44 RRI

Summary: Returns an equivalent interest rate when an investment increases in value.
Syntax: RRI(Number Nper ; Number Pv ; Number Fv')

Returns: Percentage

Constraints: Nper >0

Semantics: Returns the interest rate given Nper (the number of periods), Pv (present value),
and Fv (future value), calculated as follows:

Fv
Pv

See also FV 6.12.20, NPER 6.12.29, PMT 6.12.36, PV 6.12.41, RATE 6.12.42

(1/Nper)

-1

6.12.45 SLN

Summary: Compute the amount of depreciation at a given period of time using the straight-
line depreciation method.

Syntax: DDB(Number Cost ; Number Salvage ; Number LifeTime)
Returns: Currency
Constraints: None.

Semantics: Compute the amount of depreciation of an asset at a given period of time using
straight-line depreciation. The parameters are:

¢ Cost: the total amount paid for the asset.

* Salvage: the salvage value at the end of the LifeTime (often 0)

« LifeTime: the number of periods that the depreciation will occur over. A positive integer.
For alternative methods to compute depreciation, see DDB 6.12.14.

6.12.46 SYD

Summary: Compute the amount of depreciation at a given period of time using the Sum-of-
the-Years'-Digits method.

Syntax: SYD(Number Cost ; Number Salvage ; Number LifeTime ; Number Period)
Returns: Currency
Constraints: None.

Semantics: Compute the amount of depreciation of an asset at a given period of time using
the Sum-of-the-Years'-Digits method. The parameters are:

e Cost: the total amount paid for the asset.
« Salvage: the salvage value at the end of the LifeTime (often 0).
* LifeTime: the number of periods that the depreciation will occur over. A positive integer.
* Period: the period for which the depreciation value is specified.
(Cost — Salvage)-(LifeTime+ 1— Period)-2
(LifeTime+1)- LifeTime
For other methods of computing depreciation, see DDB 6.12.14.
See also SLN 6.12.45

SYD=

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 100 of 213

6.12.47 TBILLEQ

Summary: Compute the bond-equivalent yield for a treasury bill.
Syntax: TBILLEQ(DateParam Settlement ; DateParam Maturity ; Number Discount)
Returns: Number

Constraints: The maturity date should be less than one year beyond settlement date.
Discount is any positive value.

Semantics: The parameters are defined as:

« Settlement. the settlement/purchase date of the treasury bill.
e Maturity: the maturity/expiry date of the treasury bill.

* Discount. the discount rate of the treasury bill.

TBILLEQ is calculated as

365-rate
360—(rate- DSM)

where DSM is the number of days between settlement and maturity computed according to
the 360 days per year basis (basis 2, 4.11.7)

See also TBILLPRICE 6.12.48, TBILLYIELD 6.12.49

TBILLEQ=

6.12.48 TBILLPRICE

Summary: Compute the price per 100 face value for a treasury bill.
Syntax: TBILLPRICE(DateParam Settlement ; DateParam Maturity ; Number Discount)
Returns: Number

Constraints: The maturity date should be less than one year beyond settlement. Discount is
any positive value.

Semantics: The parameters are:

* Settlement: the settlement/purchase date of the treasury bill.
e Maturity: the maturity/expiry date of the treasury bill.

* Discount. the discount rate of the treasury bill.

See also TBILLEQ 6.12.47, TBILLYIELD 6.12.49

6.12.49 TBILLYIELD

Summary: Compute the yield for a treasury bill.
Syntax: TBILLYIELD(DateParam Settlement ; DateParam Maturity ; Number Price)
Returns: Number

Constraints: The maturity date should be less than one year beyond settlement. Price is any
positive value.

Semantics: The parameters are:

* Settlement. the settlement/purchase date of the treasury bill.
e Maturity: the maturity/expiry date of the treasury bill.

* Price: the price of the treasury bill per 100 face value

See also TBILLEQ 6.12.47, TBILLPRICE 6.12.48

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 101 of 213

6.12.50 VDB

Summary: Calculates the depreciation allowance of an asset with an initial value, an expected
useful life, and a final value of salvage for a period specified, using the variable-rate declining
balance method..

Syntax: VDB(Number Cost ; Number Salvage ; Number LifeTime ; Number StartPeriod ;
Number EndPeriod [; Number DepreciationFactor = 2 [; Logical NoSwitch = FALSE]])

Returns: Number

Constraints: Salvage < Cost, LifeTime > 0, 0 < StartPeriod < LifeTime, StartPeriod <
EndPeriod < LifeTime, DepreciationFactor = 0

Semantics: The parameters are:
* Costis the amount paid for the asset. Cost can be any value greater than Salvage.
« Salvage is the value of the asset at the end of its life. Salvage can be any value.

« LifeTime is the number of periods the asset takes to depreciate to its salvage value.
LifeTime can be any value greater than 0.

e StartPeriod is the point in the asset's life when you want to begin calculating depreciation.
StartPeriod can be any value greater than or equal to 0, but cannot be greater than
LifeTime.

« EndPeriod is the point in the asset's life when you want to stop calculating depreciation.
EndPeriod can be any value greater than StartPeriod.

« StartPeriod and EndPeriod correspond to the asset's life, relative to the fiscal period. For
example, if you want to find the first year's depreciation of an asset purchased at the
beginning of the second quarter of a fiscal year, StartPeriod would be 0 and EndPeriod
would be 0.75 (1 minus 0.25 of a year).

VDB allows for the use of an initialPeriod option to calculate depreciation for the period the
asset is placed in service. VDB uses the fractional part of StartPeriod and EndPeriod to
determine the initialPeriod option. If both StartPeriod and EndPeriod have fractional parts,
then VDB uses the fractional part of StartPeriod.

DepreciationFactor is an optional argument that specifies the percentage of straight-line
depreciation you want to use as the depreciation rate. If you omit this argument, VDB uses 2,
which is the double-declining balance rate. DepreciationFactor can be any value greater than
or equal to 0; commonly used rates are 1.25, 1.50, 1.75, and 2.

NoSwitch is an optional argument that you include if you do not want VDB to switch to
straight-line depreciation for the remaining useful life. Normally, declining-balance switches to
such a straight-line calculation when it is greater than the declining-balance calculation.

If NoSwitch is FALSE or omitted, VDB automatically switches to straight-line depreciation
when that is greater than declining-balance depreciation. If NoSwitch is TRUE, VDB never
switches to straight-line depreciation.

See also DDB 6.12.14, SLN 6.12.45

6.12.51 XIRR

Summary: Compute the internal rate of return for a non-periodic series of cash flows.
Syntax: XIRR(NumberSequence Values ; DateSequence Dates [; Number Guess =0.1])
Returns: Number

Constraints: The size of Values and Dates are equal. Values contains at least one positive
and one negative cash flow.

Semantics: Compute the internal rate of return for a series of cash flows which is not
necessarily periodic. The parameters are:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 102 of 213

e Values: a series of cash flows. The first cash-flow amount is a negative number that
represents the investment. The later cash flows are discounted based on the annual
discount rate and the timing of the flow. The series of cash flow should contain at least
one positive and one negative value.

* Dates: a series of dates that corresponds to values. The first date indicates the start of the
cash flows. The range of Values and Dates shall be the same size.

* Guess: If provided, Guess is an estimate of the interest rate to start the iterative
computation. If omitted, the value 0.1 (10%) is assumed. The result of XIRR is the rate at
which the XNPV() function will return zero with the given cash flows. There is no closed
form for XIRR. Implementations may return an approximate solution using an iterative
method, in which case the Guess parameter may be used to initialize the iteration. If the
implementation is unable to converge on a solution given a particular Guess, it may return
an error.

See also IRR 6.12.24, XNPV 6.12.52

6.12.52 XNPV

Summary: Compute the net present value of a series of cash flows.

Syntax: XNPV(Number Rate ; Reference|Array Values ; Reference|Array Dates)
Returns: Number

Constraints:

Number of elements in Values equals number of elements in Dates.

All elements of Values are of type Number.

All elements of Dates are of type Number.

All elements of Dates = Dates[1]

Semantics: Compute the net present value for a series of cash flows which is not necessarily
periodic. The parameters are:

* Rate: discount rate. The value should be greater than -1.

* Values: a series of cash flows. The first cash-flow amount is a negative number that
represents the investment. The later cash flows are discounted based on the annual
discount rate and the timing of the flow. The series of cash flow should contain at least
one positive and one negative value.

* Dates: a series of dates that corresponds to values. The first date indicates the start of the
cash flows. If the dimensions of the Values and Dates arrays differ, evaluators shall
match value and date pairs row-wise starting from top left.

With N being the number of elements in Values and Dates each, the formula is:

Values,

Dates,— Dates
365

N
XNPV =7,

i=1

(1+Rate)
See also NPV 6.12.30

6.12.53 YIELD

Summary: Calculate the yield of a bond.

Syntax: YIELD(DateParam Settlement ; DateParam Maturity ; Number Rate ; Number
Price ; Number Redemption ; Number Frequency [; Basis B=01])

Returns: Number

Constraints: Rate, Price, and Redemption should be greater than 0.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 103 of 213

Semantics: The parameters are:

« Settlement. the settlement/purchase date of the bond.

e Maturity: the maturity/expiry date of the bond.

* Rate: the interest rate of the bond.

e Price: the price of the bond per 100 currency units face value.

* Redemption: the redemption value of the bond per 100 currency units face value.

* Frequency: the number of interest payments per year. 1 = annual; 2 = semiannual; 4 =
quarterly.

* B:indicates the day-count convention to use in the calculation. 4.11.7
See also PRICE 6.12.38, YIELDDISC 6.12.54, YIELDMAT 6.12.55

6.12.54 YIELDDISC

Summary: Calculate the yield of a discounted security per 100 currency units of face value.

Syntax: YIELDDISC(DateParam Settlement ; DateParam Maturity ; Number Price ;
Number Redemption [; Basis B=01])

Returns: Number
Constraints: Price and Redemption should be greater than 0.
Semantics: The parameters are:
« Settlement. the settlement/purchase date of the security.
e Maturity: the maturity/expiry date of the security.
* Price: the price of the security per 100 currency units face value.
* Redemption: the redemption value per 100 currency units face value.
* B:indicates the day-count convention to use in the calculation. 4.11.7
The return value is
Redemption
Price ~1
YEARFRAC (Settlement ; Maturity ; Basis)

See also PRICEDISC 6.12.39, YEARFRAC 6.10.25

YIELDDISC =

6.12.55 YIELDMAT

Summary: Calculate the yield of the security that pays interest on the maturity date.

Syntax: YIELDMAT(DateParam Settlement ; DateParam Maturity ; DateParam Issue ;
Number Rate ; Number Price [; BasisB=01])

Returns: Number

Constraints: Rate and Price should be greater than O.

Semantics: The parameters are:

* Settlement: the settlement/purchase date of the security.

e Maturity: the maturity/expiry date of the security.

* Issue: the issue date of the security.

* Rate: the interest rate of the security.

* Price: the price of the security per 100 currency units face value.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 104 of 213

* B:indicates the day-count convention to use in the calculation. 4.11.7

See also PRICE 6.12.38,

YIELD 6.12.53, YIELDDISC 6.12.54

6.13 Information Functions

6.13.1 General

Information functions provide information about a data value, the spreadsheet, or underlying
environment, including special functions for converting between data types.

6.13.2 AREAS

Summary: Returns the number of areas in a given list of references.
Syntax: AREAS(ReferencelList R)

Returns: Number
Constraints: None

Semantics: Returns the number of areas in the reference list R.

See also Infix Operator Reference Concatenation 6.4.13, INDEX 6.14.6

6.13.3 CELL

Summary: Returns information about position, formatting or contents in a reference.
Syntax: CELL(Text Info_Type [; Reference R1])
Returns: Information about position, formatting properties or content

Constraints: None

Semantics: The parameters are

* Info_Type: the text string which specifies the type of information. Please refer to Table 17

- CELL.

¢ R:if Ris areference to a cell, it is the cell whose information will be returned; if R is a

reference to a range,
current cell is used.

the top-left cell in the range is the selected one; if R is omitted, the

Table 17 - CELL

Info_Type Comment
COoL Returns the column number of the cell.
ROW Returns the row number of the cell.
SHEET Returns the sheet number of the cell.
Returns the absolute address of the cell. The sheet name is in-
cluded if given in the reference and does not reference the same
ADDRESS sheet as the sheet the expression is evaluated upon. For an exter-
nal reference a Source as specified in the syntax rules for Refer-
ences 5.8 is included.
Returns the file name of the file that contains the cell as an IRI. If
FILENAME the file is newly created and has not yet been saved, the file name
is empty text “".
CONTENTS Returns the contents of the cell, without formatting properties.
COLOR Returns 1 if color formatting is set for negative value in this cell; oth-
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. Page 105 of 213

erwise returns 0

FORMAT

Returns a text string which shows the number format of the cell.
,(comma) = number with thousands separator

F = number without thousands separator

C = currency format

S = exponential representation

P = percentage

To indicate the number of decimal places after the decimal separa-
tor, a number is given right after the above characters.

D1 = MMM-D-YY, MM-D-YY and similar formats
D2 = DD-MM

D3 = MM-YY

D4 = DD-MM-YYYY HH:MM:SS

D5 = MM-DD

D6 = HH:MM:SS AM/PM

D7 = HH:MM AM/PM

D8 = HH:MM:SS

D9 = HH:MM

G = All other formats

- (Minus) at the end = negative humbers in the cell have color set-
ting

() (brackets) at the end = this cell has the format settings with
parentheses for positive or all values

TYPE

Returns the text value corresponding to the type of content in the
cell:

“b” : blank or empty cell content
“I": label or text cell content

“v" : number value cell content

WIDTH

Returns the column width of the cell.
The unit is the width of one zero (0) character in default font size.

PROTECT

Returns the protection status of the cell:
1 = cell is protected
0 = cell is unprotected

PARENTHESES

Returns 1 if the cell has the format settings with parentheses for
positive or all values, otherwise returns 0

PREFIX

Returns single character text strings corresponding to the alignment
of the cell.

“» (APOSTROPHE, U+0027) = left alignment
" (QUOTATION MARK, U+0022) = right alignment
“* (CIRCUMFLEX ACCENT, U+005E) = centered alignment

OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved. Page 106 of 213

“" (REVERSE SOLIDUS, U+005C) = filled alignment

otherwise, returns empty string ™.

6.13.4 COLUMN

Summary: Returns the column number(s) of a reference.
Syntax: COLUMN([Reference R])

Returns: Number

Constraints: AREAS(R) =1

Semantics: Returns the column number of a reference, where “A” is 1, “B” is 2, and so on. If
no parameter is given, the current cell is used. If a reference has multiple columns, an array of
numbers is returned with all of the columns in the reference.

See also AREAS 6.13.2, ROW 6.13.29, SHEET 6.13.31

6.13.5 COLUMNS

Summary: Returns the number of columns in a given range.
Syntax: COLUMNS(Reference|Array R)

Returns: Number

Constraints: None

Semantics: Returns the number of columns in the range or array specified. The result is not
dependent on the cell content in the range.

See also ROWS 6.13.30

6.13.6 COUNT

Summary: Count the number of Numbers provided.
Syntax: COUNT({ NumberSequenceList N }*)
Returns: Number

Constraints: One or more parameters.

Semantics: Counts the numbers in the list N. Only numbers in references are counted; all
other types are ignored. This function does not propagate Error values. It is implementation-
defined what happens if O parameters are passed, but it should be an Error or O.

See also COUNTA 6.13.7

6.13.7 COUNTA

Summary: Count the number of non-empty values.
Syntax: COUNTA({ Any AnyValue }")

Returns: Number

Constraints: None.

Semantics: Counts the number of non-blank values. A value is non-blank if it contains any
content of any type, including an Error. In a reference, every cell that is not empty is included
in the count. An empty string value (") is not considered blank. Errors contained in a range
are considered a non-blank value for purposes of the count. Constant expressions or formulas
are allowed; these are evaluated and if they produce an Error value the Error value is counted
as one non-blank value. It is implementation-defined what happens if 0 parameters are
passed, but it should be an Error or 0.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 107 of 213

See also COUNT 6.13.6, ISBLANK 6.13.14

6.13.8 COUNTBLANK

Summary: Count the number of blank cells.
Syntax: COUNTBLANK(ReferenceList R)
Returns: Number

Constraints: None.

Semantics: Counts the number of blank cells in R. A cell is blank if the cell is empty for
purposes of COUNTBLANK. If ISBLANK(R) is TRUE, then it is blank. A cell with numeric
value zero ('0") is not blank. It is implementation-defined whether or not a cell returning the
empty string (") is considered blank; because of this, there is a (potential) subtle difference
between COUNTBLANK and ISBLANK.

Evaluators shall support one Reference as a parameter and may support a ReferencelList as a
parameter.

See also COUNT 6.13.6, COUNTA 6.13.7, COUNTIF 6.13.9, ISBLANK 6.13.14

6.13.9 COUNTIF

Summary: Count the number of cells in a range that meet a criteria.
Syntax: COUNTIF(ReferenceList R ; Criterion C)

Returns: Number

Constraints: Does not accept constant values as the reference parameter.

Semantics: Counts the number of cells in the reference range R that meet the Criterion C
(4.11.8).

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also COUNT 6.13.6, COUNTA 6.13.7, COUNTBLANK 6.13.8, COUNTIFS 6.13.10,
SUMIF 6.16.62, Infix Operator "=" 6.4.7, Infix Operator "<>" 6.4.8, Infix Operator Ordered
Comparison (<", "<=", ">" ">=") 6.4.9

6.13.10 COUNTIFS

Summary: Count the number of cells that meet multiple criteria in multiple ranges.
Syntax: COUNTIFS(Reference R1 ; Criterion C1[; Reference R2 ; Criterion C2]...)
Returns: Number

Constraints: Does not accept constant values as the reference parameter.

Semantics: Counts the number of cells that meet the Criterion C17 in the reference range R1
and the Criterion C2 in the reference range R2, and so on (4.11.8). All reference ranges shall
have the same dimension and size, else an Error is returned. A logical AND is applied
between each array result of each selection; an entry is counted only if the same position in
each array is the result of a Criterion match.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also AVERAGEIFS 6.18.6, COUNT 6.13.6, COUNTA 6.13.7, COUNTBLANK 6.13.8,
COUNTIF 6.13.9, SUMIF 6.16.62, SUMIFS 6.16.63, Infix Operator "=" 6.4.7, Infix Operator
"<>" 6.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 6.4.9

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 108 of 213

6.13.11 ERROR.TYPE

Summary: Returns Number representing the specific Error type.
Syntax: ERROR.TYPE(Error E)

Returns: Number

Constraints: None.

Semantics: Returns a number representing what kind of Error has occurred. This function
does not propagate Error values. Receiving a non-Error value returns an Error. In particular,
ERROR.TYPE(NA()) returns 7, and ERROR.TYPE applied to a non-Error returns an Error.

See also NA 6.13.27

6.13.12 FORMULA

Summary: Returns formula at given reference as text.
Syntax: FORMULA(Reference X)

Returns: String

Constraints: Reference X shall contain a formula.

Semantics: Returns the formula in reference X as a string. The specific syntax of this
returned string is implementation-defined. This function is intended to aid debugging by
simplifying display of formulas in other cells. This function does not propagate Error values.

See also ISFORMULA 6.13.18

6.13.13 INFO

Summary: Returns information about the environment.

Syntax: INFO(Text Category)

Returns: Any (see below)

Constraints: Category shall be valid.

Semantics: Returns information about the environment in the given category.
Evaluators shall support at least the following categories:

Table 18 - INFO

Category Meaning Type

"directory" Current directory. This shall be formatted so file Text
names can be appended to the result (e.g., on
POSIX and Windows systems it shall end with the
separator “/” or “\" respectively).

"memavail” Amount of memory “available”, in bytes. On many Number
modern (virtual memory) systems this value is not
really available, but a system should return O if it is
known that there is no more memory available, and
greater than 0 otherwise

"memused" Amount of memory used, in bytes, by the data Number
"numfile” Number of active worksheets in files Number
"osversion" Operating system version Text
"origin” The top leftmost visible cell's absolute reference pre- | Text

fixed with “$A:”. In locales where cells are ordered

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 109 of 213

right-to-left, the top rightmost visible cell is used in-
stead.

"recalc" Current recalculation mode. If the locale is English, | Text
this is either "Automatic” or "Manual" (the exact text
depends on the locale)

"release” The version of the implementation. Text
"system” The type of the operating system. Text
"totmem" Total memory available in bytes, including the mem- | Number

ory already used.

Evaluators may support other categories.
See also CELL 6.13.3

6.13.14 ISBLANK

Summary: Return TRUE if the referenced cell is blank, else return FALSE.
Syntax: ISBLANK(Scalar X)

Returns: Logical

Constraints: None

Semantics: If Xis of type Number, Text, or Logical, return FALSE. If Xis a reference to a cell,
examine the cell; if it is blank (has no value), return TRUE, but if it has a value, return FALSE.
A cell with the empty string is not considered blank. This function does not propagate Error
values, but returns FALSE in such cases.

See also ISNUMBER 6.13.22, ISTEXT 6.13.25

6.13.15 ISERR
Summary: Return TRUE if the parameter has type Error and is not #N/A, else return FALSE.

Syntax: ISERR(Scalar X')
Returns: Logical
Constraints: None

Semantics: If Xis of type Error, and ISNA(X) is not true, returns TRUE. Otherwise it returns
FALSE. Note that this function returns FALSE if given #N/A; if this is not desired, use
ISERROR 6.13.16. This function does not propagate Error values.

ISERR(X) is the same as:
IF(ISNA(X),FALSE(),ISERROR(X))

See also ERROR.TYPE 6.13.11, ISERROR 6.13.16, ISNA 6.13.20, ISNUMBER 6.13.22,
ISTEXT 6.13.25, NA 6.13.27

6.13.16 ISERROR
Summary: Return TRUE if the parameter has type Error, else return FALSE.

Syntax: ISERROR(Scalar X)
Returns: Logical
Constraints: None

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 110 of 213

Semantics: If Xis of type Error, returns TRUE, else returns FALSE. Note that this function
returns TRUE if given #N/A; if this is not desired, use ISERR 6.13.15. This function does not
propagate Error values.

See also ERROR.TYPE 6.13.11, ISERR 6.13.15, ISNA 6.13.20, ISNUMBER 6.13.22, ISTEXT
6.13.25, NA 6.13.27

6.13.17 ISEVEN

Summary: Return TRUE if the value is even, else return FALSE.
Syntax: ISEVEN(Number X)

Returns: Logical

Constraints: None

Semantics: First, compute X1 = TRUNC(X). Then, if X1 is even (a division by 2 has a
remainder of 0), return TRUE, else return FALSE. The result is implementation-defined if given
a Logical value; an evaluator may return either an Error or the result of converting the Logical
value to a Number (per Conversion to Number 6.3.5).

See also ISODD 6.13.23, TRUNC 6.17.8

6.13.18 ISFORMULA

Summary: Return TRUE if the reference refers to a formula, else return FALSE.
Syntax: ISFORMULA(Reference X')

Returns: Logical

Constraints: None

Semantics: If X refers to a cell whose value is computed by a formula, return TRUE, else
return FALSE. A formula itself may compute a constant; in that case it will still return TRUE
since it is still a formula. Passing a non-reference, or a reference to more than one cell, is
implementation-defined. This function does not propagate Error values.

See also ISTEXT 6.13.25, ISNUMBER 6.13.22

6.13.19 ISLOGICAL
Summary: Return TRUE if the parameter has type Logical, else return FALSE.

Syntax: ISLOGICAL(Scalar X')
Returns: Logical
Constraints: None

Semantics: If Xis of type Logical, returns TRUE, else FALSE. Evaluators that do not have a
distinct Logical type will return the same value ISNUMBER(X) would return. This function does
not propagate Error values, but returns FALSE in such cases.

See also ISTEXT 6.13.25, ISNUMBER 6.13.22

6.13.20 ISNA
Summary: Return TRUE if the parameter has type Error and is #N/A, else return FALSE.

Syntax: ISERR(Scalar X)
Returns: Logical
Constraints: None

Semantics: If Xis #N/A, return TRUE, else return FALSE. Note that if X is a reference, the
value being referenced is considered. This function does not propagate Error values.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 111 of 213

See also ERROR.TYPE 6.13.11, ISERROR 6.13.16, ISERR 6.13.15, ISNUMBER 6.13.22,
ISTEXT 6.13.25, NA 6.13.27

6.13.21 ISNONTEXT
Summary: Return TRUE if the parameter does not have type Text, else return FALSE.

Syntax: ISNONTEXT(Scalar X')
Returns: Logical
Constraints: None

Semantics: If Xis of type Text, ISNONTEXT returns FALSE, else TRUE. If X is a reference, it
examines what X references. References to empty cells are not considered text, so for
reference to an empty cell ISNONTEXT will return TRUE. Empty Cell 4.7 This function does
not propagate Error values, but returns TRUE in such cases.

ISNONTEXT(X) is equivalent to NOT(ISTEXT(X))
See also ISNUMBER 6.13.22, ISLOGICAL 6.13.19, ISTEXT 6.13.25, NOT 6.15.7

6.13.22 ISNUMBER
Summary: Return TRUE if the parameter has type Number, else return FALSE.

Syntax: ISNUMBER(Scalar X')
Returns: Logical
Constraints: None

Semantics: If Xis of type Number, returns TRUE, else FALSE. Evaluators need not have a
distinguished Logical type; in such evaluators, ISNUMBER(TRUE()) is TRUE. This function
does not propagate Error values, but returns FALSE in such cases.

See also ISTEXT 6.13.25, ISLOGICAL 6.13.19

6.13.23 ISODD

Summary: Return TRUE if the value is even, else return FALSE.
Syntax: ISODD(Number X)

Returns: Logical

Constraints: None

Semantics: First, compute X1 = TRUNC(X). Then, if X1 is odd (a division by 2 has a
remainder of 1), return TRUE, else return FALSE. The result is implementation-defined if given
a Logical value; an evaluator may return either an Error or the result of converting the Logical
value to a Number (per Conversion to Number 6.3.5).

See also ISEVEN 6.13.17, TRUNC 6.17.8

6.13.24 ISREF

Summary: Return TRUE if the parameter is of type reference, else return FALSE.
Syntax: ISREF(Any X)

Returns: Logical

Constraints: None

Semantics: If Xis of type Reference or ReferencelList, return TRUE, else return FALSE. Note
that unlike nearly all other functions, when given a reference this function does not then
examine the value being referenced. Some functions and operators return references, and
thus ISREF will return TRUE when given their results. X may be a ReferencelList, in which
case ISREF returns TRUE. This function does not propagate Error values.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 112 of 213

See also ISNUMBER 6.13.22, ISTEXT 6.13.25

6.13.25 ISTEXT
Summary: Return TRUE if the parameter has type Text, else return FALSE.

ISTEXT(X) is equivalent to NOT(ISNONTEXT(X)).
Syntax: ISTEXT(Scalar X')

Returns: Logical

Constraints: None

Semantics: If Xis of type Text, returns TRUE, else FALSE. References to empty cells are
NOT considered Text. If Xis a reference, examines what X references. References to empty
cells are NOT considered Text, so a reference to an empty cell will return FALSE. Empty Cell
4.7 This function does not propagate Error values, but returns FALSE in such cases.

See also ISNONTEXT 6.13.21, ISNUMBER 6.13.22, ISLOGICAL 6.13.19

6.13.26 N

Summary: Return the number of a value.
Syntax: N(Any X)

Returns: Number

Constraints: None

Semantics: If Xis a Reference, it is first dereferenced to a scalar. Then its type is examined.
If it is of type Number, it is returned. If it is of type Logical, 1 is returned if TRUE else O is
returned. It is implementation-defined what happens if it is provided a Text value.

See also T 6.20.22, VALUE 6.13.34

6.13.27 NA

Summary: Return the constant Error value #N/A.

Syntax: NA()

Returns: Error

Constraints: Shall have 0 parameters

Semantics: This function takes no arguments and returns the Error #N/A.
See also ERROR.TYPE 6.13.11, ISERROR 6.13.16

6.13.28 NUMBERVALUE

Summary: Convert text to number, in a locale-independent way.
Syntax: NUMBERVALUE(Text X[; Text DecimalSeparator [; Text GroupSeparator]])
Returns: Number

Constraints: LEN(DecimalSeparator) = 1, DecimalSeparator shall not appear in
GroupSeparator

Semantics: Converts given Text value X into Number. If X is a Reference, it is first
dereferenced.

X is transformed according to the following rules:

1. Starting from the beginning, remove all occurrences of the group separator before any
decimal separator

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 113 of 213

2. Starting from the beginning, replace the first occurrence in the text of the decimal separator
character with the FULL STOP (U+002E) character

3. Remove all whitespace characters (5.14).

4. If the first character of the resulting string is a period FULL STOP (U+002E) then prepend a
zero

5. If the string ends in one or more instances of PERCENT SIGN (U+0025) , remove the
percent sign(s)

If percent signs were removed in step 5, divide the value of the returned number by 100 for
each percent sign removed. If the resulting string is a valid xsd:float, then return the number
corresponding to that string, according to the definition provided in XML Schema, Part 2,
Section 3.2.4.

If the string is not a valid xsd:float then return an error.
See also N 6.13.26, T 6.20.22, DATEVALUE 6.10.4, TIMEVALUE 6.10.19, VALUE 6.13.34

6.13.29 ROW

Summary: Returns the row number(s) of a reference.
Syntax: ROW([Reference R])

Returns: Number

Constraints: AREAS(R) =1

Semantics: Returns the row number of a reference. If no parameter is given, the current cell
is used. If a reference has multiple rows, an array of numbers is returned with all of the rows in
the reference.

See also AREAS 6.13.2, COLUMN 6.13.4, SHEET 6.13.31

6.13.30 ROWS

Summary: Returns the number of rows in a given range.

Syntax: ROWS(Reference|Array R)

Returns: Number

Constraints: None

Semantics: The result is not dependent on the cell content in the range.
See also COLUMNS 6.13.5

6.13.31 SHEET

Summary: Returns the sheet number of the reference or the string representing a sheet
name.

Syntax: SHEET([Text|Reference R1])

Returns: Number = 1

Constraints: R shall not contain a Source Location (5.8 References)

Semantics: Returns the 1-based sheet number of the given reference or sheet name.
Hidden sheets are not excluded from the sheet count.

If no parameter is given, the result is the sheet number of the sheet containing the formula.
If a Reference is given it is not dereferenced.

If the reference encompasses more than one sheet, the result is the number of the first sheet
in the range.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 114 of 213

If a reference does not contain a sheet reference, the result is the sheet number of the sheet
containing the formula.

If the function is not evaluated within a table cell, an error is returned.
See also COLUMN 6.13.4, ROW 6.13.29, SHEETS 6.13.32

6.13.32 SHEETS

Summary: Returns the number of sheets in a reference or current document.
Syntax: SHEETS([Reference R1])

Returns: Number = 1

Constraints: R shall not contain a Source Location (5.8 References)
Semantics: Returns the number of sheets in the given reference.

If no parameter is given, the number of sheets in the document is returned.
Hidden sheets are not excluded from the sheet count.

See also COLUMNS 6.13.5, ROWS 6.13.30, SHEET 6.13.31

6.13.33 TYPE

Summary: Returns a number indicating the type of the provided value.
Syntax: TYPE(Any Value)

Returns: Number

Constraints: None

Semantics: Returns a number indicating the type of the value given:

Table 19 - TYPE

Value's Type TYPE Return
Number 1
Text 2
Logical 4
Error 16
Array 64

If a Reference is provided, the reference is first dereferenced, and any formulas are evaluated.
This function does not propagate Error values.

Note: Reliance on the return of 4 for TYPE will impair the interoperability of a
document containing an expression that relies on that value.

See also ERROR.TYPE 6.13.11

6.13.34 VALUE

Summary: Convert text to number.
Syntax: VALUE(Text X)
Returns: Number

Constraints: None

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 115 of 213

Semantics: Converts given text value X into Number. If Xis a Reference, it is first
dereferenced. It is implementation-defined what happens if VALUE is given neither a Text
value nor a Reference to a Text value. If the Text has a date, time, or datetime format, it is
converted into a serial Number. In many cases the conversion of a date or datetime format is
locale-dependent.

If the supplied text X cannot be converted into a Number, an Error is returned.

Regardless of the current locale, an evaluator shall accept numbers matching this regular
expression (which does not include a decimal point character) and convert it into a Number. If
the value ends in %, it shall divide the number by 100:

[+-]2

[0-9]1+ ([eE] [+-]12[0-9]+)7?) %2

VALUE shall accept text representations of numbers in the current locale. In the en_US locale,
an evaluator shall accept decimal numbers matching this regular expression and convert it
into a Number (the leading “$” is ignored; commas are ignored if they match the rule of a
thousands separator; if the value ends in %, it shall divide the number by 100):

[+=12\$2 ([0-91+(, [0-91{3})*) 2 (\.[0-9]1+)2 (([eE] [+-12[0-91+) |%)?

Evaluators shall accept fractional values matching the regular expression:

[+-17?

[0-97+ \

[0-9]1+/[1-9][0-9]7

A leading minus sign shall be interpreted as identifying a negative number for the entire value.
There is a space between the integer and the fractional portion; values between 0 and 1 can
be represented by using 0 for the integer part.

Evaluators shall support time values in at least the HH:MM and HH:MM:SS formats, where HH
is a 1-2 digit value from 0 to 23, MM is a one- or two-digit value from 0 to 59, and SS is a one-
or two-digit value from 0 to 59. The hour may be one or two digits when it is less than 10.
VALUE converts time values into Numbers ranging from 0 to 1, which is percentage of day
that has elapsed by that time. Thus, VALUE("2:00") is the same as 2/24. Evaluators should
accept times with fractional seconds as well when expressed in the form HH:MM:SS.ssss...

Evaluators shall accept textual dates in [ISO8601] format (YYYY-MM-DD), converting them
into serial numbers based on the current epoch. Evaluators shall, when running in the en_US
locale, accept the format MM/DD/YYYY .

In addition, in locale en_US, evaluators shall support the following formats (where YYYY is a
4-digit year, YY a 2-digit year, MM a numerical month, DD a numerical day, mmm a 3-
character abbreviated alphabetical name, and mmmmm a full name):

Table 20 - VALUE

Format Example Comment
l\\(/l\l;/l\ﬁD/ 5/21/2006 LOCALE-DEPENDENT,; Long year format with slashes.
MM/DD/YY |5/21/06 LOCALE-DEPENDENT; Short year format with slashes
MM-DD- 5-21-2006 LOCALE-DEPENDENT; Long year format with dashes (short year
YYYY may be supported, but it may also be used for years less than 100 .
mmm DD, Oct 29, LOCALE-DEPENDENT,; Short alphabetic month day, year.
YYYY 2006 Note: mmm depends on the locale's language.
Sovu™™ 20 Oct 2006 |LOCALE-DEPENDENT; Short alphabetic day month year
mmmmm DD, | October 29,) .
YYYY 2006 LOCALE-DEPENDENT; Long alphabetic month day, year

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

2 August 2024

Copyright © OASIS Open 2024. All Rights Reserved. Page 116 of 213

DD mmmmm |29 October
YYYY 2006

Evaluators should support other locales. Many conversions will vary by locale, including the
decimal point (comma or period), names of months, date formats (MM/DD vs. DD/MM), and
so on. Dates in particular vary by locale.

LOCALE-DEPENDENT; Long alphabetic day month year

Evaluators shall support the datetime format, which is a date followed by a time, using either
the space character or the literal “T” character as the separator (the “T” is from 1SO 8601).
Evaluators shall support at least the ISO date format in a datetime format; they may support
other date formats in a datetime format as well. Formats such as “YYYY-MM-DD HH:MM” and
“YYYY-MM-DDTHH:MM:SS” (where “T” is the literal character T) shall be accepted. The result
of accepting a datetime format shall be a representation of that specific time (without removing
either the date or the time of day, unlike DATEVALUE or TIMEVALUE).

Evaluators may accept other formats that will convert to numbers, and those conversions may
be locale-dependent, as long as they do not conflict with the above. Where no conversion is
determined, an Error is returned.

See also N 6.13.26, T 6.20.22, DATEVALUE 6.10.4, TIMEVALUE 6.10.19, NUMBERVALUE
6.13.28

6.14 Lookup Functions

6.14.1 General

These functions look up information. Note that IF() 6.15.4 can be considered a trivial lookup
function, but it is listed as a logical function instead.

6.14.2 ADDRESS

Summary: Returns a cell address (reference) as text.

Syntax: ADDRESS(Integer Row ; Integer Column [; Integer Abs =1 [; Logical A1Style =
TRUE [; Text Sheet]]])

Returns: Text

Constraints: Row = 1, Column =1, 1 < Abs < 4; A1Style = TRUE. Evaluators may evaluate
expressions that do not meet the constraint A7Style = TRUE.

Semantics: Returns a cell address (reference) as text. The text does not include the
surrounding [...] of a reference. If a Sheet name is given, the sheet name in the text returned
is followed by a “.” and the column/row reference if A1Style is TRUE, or a “!” and the
column/row reference if A1Style is FALSE; otherwise no “.” respectively “I" is included.
Columns are identified using uppercase letters. The value of Abs determines if the column
and/or row is absolute or relative. The value of A71Style determines if Al reference style or

R1C1 reference style is used.

Table 21 - ADDRESS

Abs Meaning A1Style = TRUE A1Style = FALSE
1 fully absolute $AS1 R1C1
2 row absolute, column relative | A$1 R1C[1]
3 row relative, column absolute | $A1 R[1]C1
4 fully relative Al R[1]C[1]

Note that the INDIRECT function accepts this format.
See also INDIRECT 6.14.7

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 117 of 213

6.14.3 CHOOSE

Summary: Uses an index to return a value from a list of values.
Syntax: CHOOSE(Integer Index ; { Any Value }")
Returns: Any

Constraints: Returns an Error if Index < 1 or if there is no corresponding value in the list of
Values.

Semantics: Uses Index to determine which value, from a list of values, to return. If Index is 1,
CHOQOSE returns the first Value; if Index is 2, CHOOSE returns the second value, and so on.

Note that the Values may be formula expressions. Expression paths of parameters other than

the one chosen are not calculated or evaluated for side effects.

See also IF 6.15.4

6.14.4 GETPIVOTDATA

6.14.4.1 General
Summary: Return a value from a data pilot table.

Note: This function has two syntaxes. The first of these is the preferred syntax, while the
second, alternative syntax is provided for compatibility reasons.

6.14.4.2 Preferred Syntax

Syntax: GETPIVOTDATA(Text DataField ; Reference Table { ; Text FieldName ; Scalar
Member})

Note: This version of the syntax is distinguished by the parameter Table being the second
parameter.

Returns: Any
Semantics: Returns a single result from the calculation of a data pilot table.

The data pilot table is selected by Table, which is a reference to a cell or cell range that's
within a data pilot table or contains a data pilot table. If the cell range contains several data
pilot tables, the last one in the order of <table:data-pilot-table> elements
(OpenDocument, Part 3, 9.6.3) in the file is used.

DataField selects one of the data pilot table's data fields. It can be the name of the source
column, or the given name of the data field (such as “Sum of Sales”).

If no FieldName/Member pairs are given, the grand total is returned. Otherwise, each pair
adds a constraint that the result shall satisfy. FieldName is the name of a field from the data
pilot table. Member is the name of a member (item) from that field. If a member is a number,
Member can alternatively be its numerical value.

If the data pilot table contains only a single result value that fulfills all of the constraints, or a
subtotal result that summarizes all matching values, that result is returned. If there is no
matching result, or several ones without a subtotal for them, an Error is returned. These
conditions apply to results that are included in the data pilot table. If the source data contains
entries that are hidden by settings of the data pilot table, they are ignored. The order of the
FieldName/Member pairs is not significant. Field and member names are case-insensitive.

If no constraint for a page field is given, the field's selected value is implicitly used. If a
constraint for a page field is given, it shall match the field's selected value, or an Error is
returned.

Subtotal values from the data pilot table are only used if they use the function “auto” (except
when specified in the constraint, see below).

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 118 of 213

6.14.4.3 Alternative Syntax
Syntax: GETPIVOTDATA(Reference Table ; Text Constraints)

Note: This version of the syntax is distinguished by the parameter Table being the first
parameter.

Returns: Any
Semantics: Returns a single result from the calculation of a data pilot table.
Table has the same meaning as in the preferred syntax.

Constraints is a space-separated list. Entries can be quoted (single quotes). One of the
entries can be the data field name. The data field name can be left out if the data pilot table
contains only one data field, otherwise it shall be present. Each of the other entries specifies a
constraint in the form FieldName[Member] (with literal characters “[* (LEFT SQUARE
BRACKET, U+005B) and “]" (RIGHT SQUARE BRACKET U+005D)), or only Member if the
member name is unique within all fields that are used in the data pilot table. A function name
can be added in the form FieldName[Member,;Function], which will cause the constraint to
match only subtotal values which use that function. The possible function names are the same
asinthe table: function attribute of the <table:data-pilot-subtotal> element
(OpenDocument, Part 3, 19.647.4), case-insensitive.

6.14.5 HLOOKUP

Summary: Look for a matching value in the first row of the given table, and return the value of
the indicated row.

Syntax: HLOOKUP(Any Lookup ; ForceArray Reference|Array DataSource ; Integer Row [;
Logical RangeLookup = TRUE])

Returns: Any

Constraints: Row = 1; Searched portion of DataSource shall not include Logical values.
Evaluators may evaluate expressions that do not meet the constraint that the searched portion
of a DataSource not include Logical values.

Semantics:

If RangeLookup is omitted or TRUE or not 0, the first row of DataSource is assumed to be
sorted in ascending order, with smaller numbers before larger ones, smaller text values before
larger ones (e.g., "A" before "B", and "B" before "BA"), and FALSE before TRUE. If the types
are mixed, Numbers are sorted before Text, and Text before Logicals; evaluators without a
separate Logical type may include a Logical as a Number. The lookup will try to match an
entry of value Lookup. If none is found the largest entry less than Lookup is taken as a
match. From a sequence of identical values < Lookup the last entry is taken. If there is no
data less than or equal to Lookup, the #N/A Error is returned. If Lookup is of type Text and
the value found is of type Number, the #N/A Error is returned. If DataSource is not sorted, the
result is undetermined and implementation-dependent.

If RangeLookup is FALSE or 0, DataSource does not need to be sorted and an exact match
is searched. Each value in the first row of DataSource is examined in order (starting at the
left) until its value matches Lookup.

Both methods, if there is a match, return the corresponding value in row Row, relative to the
DataSource, where the topmost row in DataSource is 1.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also INDEX 6.14.6, MATCH 6.14.9, OFFSET 6.14.11, VLOOKUP 6.14.12

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 119 of 213

6.14.6 INDEX

Summary: Returns a value using a row and column index value (and optionally an area
index).

Syntax: INDEX(ReferencelList|Array DataSource ; [Integer Row] [; [Integer Column][;
Integer AreaNumber =11)

Returns: Any

Constraints: Row = 0, Column 2 0,
1 < AreaNumber < number of references in DataSource if that is a ReferencelList, else
AreaNumber =1

Semantics:

Given a DataSource, returns the value at the given Row and Column (starting numbering at
1, relative to the top-left of the DataSource) of the given area AreaNumber. If AreaNumber is
not given, it defaults to 1 (the first and possibly only area). This function is essentially a two-
dimensional version of CHOOSE, which does not accept range parameters.

If Row is omitted or an empty parameter (two consecutive ;; semicolons) or 0, an entire
column of the given area AreaNumber in DataSource is returned. If Column is omitted or an
empty parameter (two consecutive ;; semicolons) or 0, an entire row of the given area
AreaNumber in DataSource is returned. If both, Row and Column, are omitted or empty or
0, the entire given area AreaNumber is returned.

If Row or Column have a value greater than the dimension of the corresponding given area
AreaNumber, an Error is returned.

See also AREAS 6.13.2, CHOOSE 6.14.3

6.14.7 INDIRECT

Summary: Return a reference given a string representation of a reference.
Syntax: INDIRECT(Text Ref[; Logical A1=TRUE])

Returns: Reference

Constraints: Ref is valid reference

Semantics: Given text for a reference (such as “A3"), returns a reference. If A1 is False, it is
interpreted as an R1C1 reference style. For interoperability, if the Ref text includes a sheet
name, evaluators should be able to parse both, the “.” dot and the “I” exclamation mark, as the
sheet name separator. If evaluators support the A7 = FALSE case of the ADDRESS 6.14.2
function and include the “I” exclamation mark as the sheet name separator, evaluators shall
correctly parse that in the A7 = FALSE case of this INDIRECT function. Evaluators shall
correctly parse the “.” dot as the sheet name separator in the A1 = TRUE case.

See also ADDRESS 6.14.2

6.14.8 LOOKUP

Summary: Look for criterion in an already-sorted array, and return a corresponding result.

Syntax: LOOKUP(Any Find ; ForceArray Reference|Array Searched [; ForceArray
Reference|Array Results |)

Returns: Any

Constraints: The searched portion of Searched shall be sorted in ascending order; if
provided, Results shall have the same length as Searched. The searched portion of
Searched shall not include Logical values. Evaluators may evaluate expressions that do not
meet the constraint that the searched portion of a Searched not include Logical values.

Semantics: This function searches for Find in a row or column of the previously-sorted array
Searched and returns a corresponding value. The match is the largest value in the
row/column of Searched that is less than or equal to Find (so an exact match is always

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 120 of 213

preferred over inexact ones). From a sequence of identical values < Find the last entry is
taken. If Find is smaller than the smallest value in the first row or column (depending on the
array dimensions), LOOKUP returns the #N/A Error. If Find is of type Text and the value
found is of type Number, the #N/A Error is returned.

The searched portion of Searched shall be sorted in ascending order, and so that values of
type Number precede values of type Text if both types are included (e.g., -2, 0, 2, “A”, “B").

There are two major uses for this function; the 3-parameter version (vector) and the 2-
parameter version (non-vector array).

Note: Interoperability is improved by use of HLOOKUP or VLOOKUP in
expressions over LOOKUP.

When given two parameters, Searched is first examined:

« If Searched is square or is taller than it is wide (more rows than columns), LOOKUP
searches in the first column (similar to VLOOKUP), and returns the corresponding value in
the last column.

* If Searched covers an area that is wider than it is tall (more columns than rows),
LOOKUP searches in the first row (similar to HLOOKUP), and returns the corresponding
value in the last row.

When given 3 parameters, Results shall be a vector (either a row or a column) or an Error is
raised. The function determines the index of the match in the first column respectively row of
Searched, and returns the value in Results with the same index.

Searched is first examined:

* If Searched is square or is taller than it is wide (more rows than columns), LOOKUP
searches in the first column (similar to VLOOKUP).

* If Searched covers an area that is wider than it is tall (more columns than rows),
LOOKUP searches in the first row (similar to HLOOKUP).

The lengths of the search vector and the result vector do not need to be identical. When the
match position falls outside the length of the result vector, an Error is returned if the result
vector is given as an array object. If it is a cell range, it gets automatically extended to the
length of the searched vector, but in the direction of the result vector. If just a single cell
reference was passed, a column vector is generated. If the cell range cannot be extended due
to the sheet's size limit, then the #N/A Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also HLOOKUP 6.14.5, INDEX 6.14.6, MATCH 6.14.9, OFFSET 6.14.11, VLOOKUP
6.14.12

6.14.9 MATCH

Summary: Finds a Search item in a sequence, and returns its position (starting from 1).

Syntax: MATCH(Scalar Search ; ForceArray Reference|Array SearchRegion [; Integer
MatchType=11])

Returns: Any

Constraints: -1 < MatchType < 1; The searched portion of SearchRegion shall not include
Logical values. Evaluators may evaluate expressions that do not meet the constraint that the
searched portion of a SearchRegion not include Logical values.

SearchRegion shall be a vector (a single row or column)

Semantics:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 121 of 213

* MatchType = -1 finds the smallest value that is greater than or equal to Search in a
SearchRegion where values are sorted in descending order. From a sequence of
identical values = Search the last value is taken. If no value = Search exists, the #N/A
Error is returned. If Search is of type Number and the value found is of type Text, the
#N/A Error is returned.

*« MatchType = 0 finds the first value that is equal to Search. Values in SearchRegion do
not need to be sorted. If no value equal to Search exists, the #N/A Error is returned.

*« MatchType = 1 or omitted finds the largest value that is less than or equal to Search in a
SearchRegion where values are sorted in ascending order. From a sequence of identical
values < Search the last value is taken. If no value < Search exists, the #N/A Error is
returned. If Search is of type Text and the value found is of type Number, the #N/A Error
is returned.

If a match is found, MATCH returns the relative position (starting from 1). For Text the
comparison is case-insensitive. MatchType determines the type of search; if MatchType is O,
the SearchRegion shall be considered unsorted, and the first match is returned. If
MatchType is 1, the SearchRegion may be assumed to be sorted in ascending order, with
smaller Numbers before larger ones, smaller Text values before larger ones (e.g., "A" before
"B", and "B" before "BA"), and FALSE before TRUE. If the types are mixed, Numbers are
sorted before Text, and Text before Logicals; evaluators without a separate Logical type may
include a Logical as a Number. If MatchType is -1, then SearchRegion may be assumed to
be sorted in descending order (the opposite of the above). If MatchType is 1 or -1, evaluators
may use binary search or other technigues so that they do not need to examine every value in
linear order. MatchType defaults to 1.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also HLOOKUP 6.14.5, OFFSET 6.14.11, VLOOKUP 6.14.12

6.14.10 MULTIPLE.OPERATIONS

Summary: Executes a formula expression while substituting a row reference and a column
reference.

Syntax: MULTIPLE.OPERATIONS(Reference FormulaCell ; Reference RowCell ;
Reference RowReplacement [; Reference ColumnCell ; Reference
ColumnReplacement])

Returns: Any

Semantics:

* FormulaCell: reference to the cell that contains the formula expression to calculate.
* RowcCell: reference that is to be replaced by RowReplacement.

* RowReplacement. reference that replaces RowCell.

e ColumnCell: reference that is to be replaced by ColumnReplacement.

e ColumnReplacement. reference that replaces ColumnCell.

MULTIPLE.OPERATIONS executes the formula expression pointed to by FormulaCell and all
formula expressions it depends on while replacing all references to RowCell with references
to RowReplacement respectively all references to ColumnCell with references to
ColumnReplacement.

If calls to MULTIPLE.OPERATIONS are encountered in dependencies, replacements of target
cells shall occur in queued order, with each replacement using the result of the previous
replacement.

Note: The function may be used to create tables of expressions that depend
on two input parameters.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 122 of 213

Example: FormulaCell is B5, RowCell is B3, ColumnCell is B2
Table 22 - MULTIPLE.OPERATIONS

col B col C

col_ D

col_E

col_F

row_2 |1

1

2

3

row_3 |1 1

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C3;B2;D$2
)

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C3;$B%$2;E$2
)

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C3;B2;F$2
)

row_4 |=B2+B3 2

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C4;B2;D$2
)

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C4;B2;E$2
)

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C4;B2;F$2
)

row_5 |=B2*B3+B4 |3

=MULTIPLE.OP-

ERATIONS(B5;%
B$3;$C5;B2;D$2
)

=MULTIPLE.OP-

ERATIONS(B5;$
B$3;$C5;B2;E$2
)

=MULTIPLE.OP-

ERATIONS(B5;%
B$3;$C5;B2;F$2
)

=MULTIPLE.OP-

ERATIONS($B%$5;$
B$3;$C6;B2;D$2
)

=MULTIPLE.OP-

ERATIONS($B%5;$
B$3;$C6;B2;E$2
)

=MULTIPLE.OP-

ERATIONS(B5;%
B$3;$C6;B2;F$2
)

Result:

Table 23 - MULTIPLE.OPERATIONS

col_B |col_C |col_D |col_E |col_F
row_ 2 |1 1 2 3
row 3 |1 1 3 5 7
row_ 4 |2 2 5 8 11
row 5 |3 3 7 11 15
4 9 14 19

Note that although only cell B5 is passed as the FormulaCell parameter, also the references
to B2 and B3 of the formula in cell B4 are replaced, because B5 depends on B4.

6.14.11 OFFSET

Summary: Modifies a reference's position and dimension.

Syntax: OFFSET(Reference R ; Integer RowOffset ; Integer ColumnOffset [; [Integer
NewHeight][; [Integer NewWidth]]1])

Returns: Reference

Constraints: NewWidth > 0; NewHeight > 0
The modified reference shall be in a valid range, starting from column/row one to the

maximum column/row.

Semantics: Shifts reference by RowOffset rows and by ColumnOffset columns. Optionally,
the dimension can be set to NewWidth and/or NewHeight, if omitted the width/height of the
original reference is taken. Note that NewHeight may be empty (two consecutive
semicolons ;;) followed by a given NewWidth argument. Returns the modified reference.

See also COLUMN 6.13.4, COLUMNS 6.13.5, ROW 6.13.29, ROWS 6.13.30

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 123 of 213

6.14.12 VLOOKUP

Summary: Look for a matching value in the first column of the given table, and return the
value of the indicated column.

Syntax: VLOOKUP(Any Lookup ; ForceArray Reference|Array DataSource ; Integer
Column [; Logical RangeLookup = TRUE()])

Returns: Any

Constraints: Column = 1; The searched portion of DataSource shall not include Logical
values. Evaluators may evaluate expressions that do not meet the constraint that the
searched portion of a DataSource not include Logical values.

Semantics:

If RangeLookup is omitted or TRUE or not 0, the first column of DataSource is assumed to
be sorted in ascending order, with smaller Numbers before larger ones, smaller Text values
before larger ones (e.g., "A" before "B", and "B" before "BA"), and FALSE before TRUE. If the
types are mixed, Numbers are sorted before Text, and Text before Logicals; evaluators
without a separate Logical type may include a Logical as a Number. The lookup will try to
match an entry of value Lookup. From a sequence of identical values < Lookup the last entry
is taken. If none is found the largest entry less than Lookup is taken as a match. If there is no
data less than or equal to Lookup, the #N/A Error is returned. If Lookup is of type Text and
the value found is of type Number, the #N/A Error is returned. If DataSource is not sorted, the
result is undetermined and implementation-dependent.

If RangeLookup is FALSE or 0, DataSource does not need to be sorted and an exact match
is searched. Each value in the first column of DataSource is examined in order (starting at the
top) until its value matches Lookup. If no value matches, the #N/A Error is returned.

Both methods, if there is a match, return the corresponding value in column Column, relative
to the DataSource, where the leftmost column in DataSource is 1.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also HLOOKUP 6.14.5, INDEX 6.14.6, MATCH 6.14.9, OFFSET 6.14.11

6.15 Logical Functions

6.15.1 General

The logical functions are: TRUE() and FALSE(); the functions that compute Logical values
NOT(), AND(), and OR(); and the conditional function IF(). The OpenDocument specification
mentions "logical operators"; these are another name for the logical functions.

Note that because of Error values, any logical function that accepts parameters can actually
produce TRUE, FALSE, or an Error value instead of TRUE or FALSE.

These are not bitwise operations, e.g., AND(12;10) produces TRUE, not 8. See the bit
operation functions for bitwise operations.

6.15.2 AND

Summary: Compute logical AND of all parameters.
Syntax: AND({ Logical|NumberSequencelList L }")
Returns: Logical

Constraints: Shall have 1 or more parameters

Semantics: Computes the logical AND of the parameters. If all parameters are TRUE, returns
TRUE; if any are FALSE, returns FALSE. When given one parameter, this has the effect of

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 124 of 213

converting that one parameter into a Logical value. When given zero parameters, evaluators
may return a Logical value or an Error.

Also in array context a logical AND of all arguments is computed, range or array parameters
are not evaluated as a matrix and no array is returned. This behavior is consistent with
functions like SUM. To compute a logical AND of arrays per element use the * operator in
array context.

See also OR 6.15.8, IF 6.15.4

6.15.3 FALSE

Summary: Returns constant FALSE.

Syntax: FALSE()

Returns: Logical

Constraints: Shall have 0 parameters

Semantics: Returns logical constant FALSE. This may be a Number or a distinct type.
See also TRUE 6.15.9, IF 6.15.4

6.15.4 IF

Summary: Return one of two values, depending on a condition.
Syntax: IF(Logical Condition [; [Any IfTrue][;[Any IfFalse]]])
Returns: Any

Constraints: None.

Semantics: Computes Condition. If it is TRUE, it returns IfTrue, else it returns IfFalse. This
function only evaluates IfTrue, or IfFalse, and never both; that is to say, it short-circuits.

Seven versions are possible:
One parameter:
a) IF(Condition)
Two parameters:
b) IF(Condition;)
c) IF(Condition;IfTrue)
Three parameters:
d) IF(Condition;;)
e) |F(Condition;;IfFalse)
f) IF(Condition;IfTrue;)
0) IF(Condition;IfTrue;lfFalse)

If there is only 1 parameter (case a), IfTrue is considered to be TRUE and IfFalse is
considered to be FALSE. Thus the 1 parameter version converts Condition into a Logical
value.

If there are 2 parameters (cases b and c), IfFalse is considered to be FALSE. If there are 2
parameters and the second parameter is null (semicolon but no IfTrue, case b), IfTrue is
considered to be 0.

If there are 3 parameters but the second parameter is null (two consecutive ;; semicolons,
cases d and e), IfTrue is considered to be 0.

If there are 3 parameters but the third parameter is null (semicolon but no IfFalse, cases d
and f), IfFalse is considered to be 0.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 125 of 213

See also AND 6.15.2, OR 6.15.8

6.15.5 IFERROR

Summary: Return X unless it is an Error, in which case return an alternative value.
Syntax: IFERROR(Any X ; Any Alternative)

Returns: Any

Constraints: None.

Semantics: Computes X. If ISERROR(X) is TRUE, return Alternative, else return X.

Note: This is semantically equivalent to IF(ISERROR(X); Alternative; X),
except that X is only computed once.

See also IF 6.15.4, ISERROR 6.13.16

6.15.6 IFNA

Summary: Return X unless it is #N/A, in which case return an alternative value.
Syntax: IFNA(Any X ; Any Alternative)

Returns: Any

Constraints: None.

Semantics: Computes X. If ISNA(X) is TRUE, return Alternative, else return X.

Note: This is semantically equivalent to IF(ISNA(X); Alternative; X), except
that X is only computed once.

See also IF 6.15.4, ISNA 6.13.20

6.15.7 NOT
Summary: Compute logical NOT.

Syntax: NOT(Logical L)
Returns: Logical
Constraints: Shall have 1 parameter.

Semantics: Computes the logical NOT. If given TRUE, returns FALSE; if given FALSE,
returns TRUE.

See also AND 6.15.2, IF 6.15.4

6.15.8 OR

Summary: Compute logical OR of all parameters.
Syntax: OR({ Logical|[NumberSequenceList L }")
Returns: Logical

Constraints: Shall have 1 or more parameters

Semantics: Computes the logical OR of the parameters. If all parameters are FALSE, it shall
return FALSE; if any are TRUE, it shall returns TRUE. When given one parameter, this has the
effect of converting that one parameter into a Logical value. When given zero parameters,
evaluators may return a Logical value or an Error.

Also in array context a logical OR of all arguments is computed, range or array parameters are
not evaluated as a matrix and no array is returned. This behavior is consistent with functions
like SUM. To compute a logical OR of arrays per element use the + operator in array context.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 126 of 213

See also AND 6.15.2, IF 6.15.4

6.15.9 TRUE

Summary: Returns constant TRUE
Syntax: TRUE()

Returns: Logical

Constraints: Shall have 0 parameters

Semantics: Returns logical constant TRUE. The result of this function may but need not be
equal to 1 when compared using “=". It always has the value of 1 if used in a context requiring
Number (because of the automatic conversions), so if ISNUMBER(TRUE()) is TRUE, then it
shall have the value 1.

See also FALSE 6.15.3, IF 6.15.4, ISNUMBER 6.13.22

6.15.10 XOR

Summary: Compute a logical XOR of all parameters.
Syntax: XOR({ Logical L }*)

Returns: Logical

Constraints: Shall have 1 or more parameters.

Semantics: Computes the logical XOR of the parameters such that the result is an addition
modulo 2. If an even number of parameters is TRUE it returns FALSE, if an odd number of
parameters is TRUE it returns TRUE. When given one parameter, this has the effect of
converting that one parameter into a Logical value.

See also AND 6.15.2, OR 6.15.8

6.16 Mathematical Functions

6.16.1 General

This section describes functions for various mathematical functions, including trigopnometric
functions like SIN 6.16.55). Note that the constraint text presumes that a value of type Number
is a real number (no imaginary component). Unless noted otherwise, all angle measurements
are in radians.

6.16.2 ABS

Summary: Return the absolute (nonnegative) value.
Syntax: ABS(Number N')

Returns: Number

Constraints: None

Semantics: If N <0, returns -N, otherwise returns N.
See also Prefix Operator “-" 6.4.16

6.16.3 ACOS

Summary: Returns the principal value of the arc cosine of a number. The angle is returned in
radians.

Syntax: ACOS(Number N)
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 127 of 213

Constraints: -1.0<N<1.0.

Semantics: Computes the arc cosine of a number, in radians.

1 3 1-3 5 1-3-5
ACOS (N)=Z—| N+— N+ No4—22
() 2 2-3 2-4-5 2:4-6-7
Returns a principal value 0 < result < .

See also COS 6.16.19, RADIANS 6.16.49, DEGREES 6.16.25

N'+..

6.16.4 ACOSH

Summary: Return the principal value of the inverse hyperbolic cosine.
Syntax: ACOSH(Number N)

Returns: Number

Constraints: N> 1

Semantics: Computes the principal value of the inverse hyperbolic cosine.
ACOSH (N)=In(N +VN°—1)
See also COSH 6.16.20, ASINH 6.16.8

6.16.5 ACOT

Summary: Return the principal value of the arc cotangent of a number. The angle is returned
in radians.

Syntax: ACOT(Number N)

Returns: Number

Semantics: Computes the arc cotangent of a number, in radians.

Returns a principal value 0 < result < 1.

See also COT 6.16.21, ATAN 6.16.9, TAN 6.16.69, RADIANS 6.16.49, DEGREES 6.16.25

6.16.6 ACOTH

Summary: Return the hyperbolic arc cotangent
Syntax: ACOTH(Number N)

Returns: Number

Constraints: ABS(N) > 1

Semantics: Computes the hyperbolic arc cotangent. The hyperbolic arc cotangent is an
analog of the ordinary (circular) arc cotangent.

ACOTH(N):%ln(;ill)

See also COSH 6.16.20, ASINH 6.16.8

6.16.7 ASIN

Summary: Return the principal value of the arc sine of a number. The angle is returned in
radians.

Syntax: ASIN(Number N')
Returns: Number
Constraints: -1 < N<1.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 128 of 213

Semantics: Computes the arc sine of a number, in radians.

_ L ;0 1-3 s 1:3:5
ASIN (N)=N+52 N+ 5= N 4=
Returns a principal value -11/2 < result < 11/2.

See also SIN 6.16.55, RADIANS 6.16.49, DEGREES 6.16.25

N'+...

6.16.8 ASINH

Summary: Return the principal value of the inverse hyperbolic sine
Syntax: ASINH(Number N')

Returns: Number

Constraints: None

Semantics: Computes the principal value of the inverse hyperbolic sine.
ASINH (N)=In (N +VN*+1)
See also SINH 6.16.56, ACOSH 6.16.4

6.16.9 ATAN

Summary: Return the principal value of the arc tangent of a number. The angle is returned in
radians.

Syntax: ATAN(Number N)

Returns: Number

Semantics: Computes the arc tangent of a number, in radians.

Returns a principal value -11/2 < result < 11/2.

See also ATAN2 6.16.10, TAN 6.16.69, RADIANS 6.16.49, DEGREES 6.16.25

6.16.10 ATAN2

Summary: Returns the principal value of the arc tangent given a coordinate of two numbers.
The angle is returned in radians.

Syntax: ATAN2(Number x ; Number y)

Returns: Number

Constraints: x#0ory #0

Semantics: Computes the arc tangent of two numbers (the x and y coordinates of a point), in
radians. This is similar to ATAN(y/x), but the signs of the two numbers are taken into account
so that the result covers the full range from -1 to +1. ATANZ2(0;0) is implementation-defined,
evaluators may return O or an Error.

Returns a principal value -1 < result < Tr.
See also ATAN 6.16.9, TAN 6.16.69, RADIANS 6.16.49, DEGREES 6.16.25

6.16.11 ATANH

Summary: Return the principal value of the inverse hyperbolic tangent
Syntax: ATANH(Number N')

Returns: Number

Constraints: -1<N<1

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 129 of 213

Semantics: Computes the principal value of the inverse hyperbolic tangent.

ATANH (N) :%m(llt%)

See also COSH 6.16.20, SINH 6.16.56, ASINH 6.16.8, ACOSH 6.16.4, ATAN 6.16.9, ATAN2
6.16.10, FISHER 6.18.26

6.16.12 BESSELI

Summary: Returns the modified Bessel function of integer order In(X).
Syntax: BESSELI(Number X ; Number N)
Returns: Number

Constraints: N = 0, INT(N) = N; Evaluators may evaluate expressions where N = 0 returns a
non-error value.

Semantics: Computes the modified Bessel function of integer order In(X). N is also known as
the order.

See also BESSELJ 6.16.13, BESSELK 6.16.14, BESSELY 6.16.15, INT 6.17.2

6.16.13 BESSELJ

Summary: Returns the Bessel function of integer order Jn(X) (cylinder function)
Syntax: BESSELJ(Number X ; Number N)
Returns: Number

Constraints: N = 0, INT(N) = N; Evaluators may evaluate expressions where N = 0 returns a
non-error value.

Semantics: Computes the Bessel function of integer order Jn(X). N is also known as the
order.

See also BESSELI 6.16.12, BESSELK 6.16.14, BESSELY 6.16.15, INT 6.17.2

6.16.14 BESSELK

Summary: Returns the modified Bessel function of integer order Kn(x).
Syntax: BESSELK(Number X ; Number N')
Returns: Number

Constraints: X # 0, N2 0, INT(N) = N; Evaluators may evaluate expressions where N= 0
returns a non-error value.

Semantics: Computes the Bessel function of integer order Kn(x). N is also known as the
order.

See also BESSELI 6.16.12, BESSELJ 6.16.13, BESSELY 6.16.15, INT 6.17.2

6.16.15 BESSELY

Summary: Returns the Bessel function of integer order Yn(X), also known as the Neumann
function.

Syntax: BESSELY(Number X ; Number N)

Returns: Number

Constraints: X # 0, N = 0, INT(N) = N; Evaluators may evaluate expressions where N = 0
returns a non-error value.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 130 of 213

Semantics: Computes Bessel function of integer order Yn(X), also known as the Neumann
function. N is also known as the order.

See also BESSELI 6.16.12, BESSELJ 6.16.13, BESSELK 6.16.14, INT 6.17.2

6.16.16 COMBIN

Summary: Returns the number of different R-length sets that can be selected from N items.
Syntax: COMBIN(Integer N ; Integer R)

Returns: Number

Constraints: N0, R=20, R<N

Semantics: COMBIN returns the binomial coefficient, which is the number of different R-
length sets that can be selected from N items. Since they are sets, order in the sets is not
relevant. The parameters are truncated (using INT) before use. For example, if a jar contains
five marbles, each one a distinct color, the number of different three-marble groups
COMBIN(5;3) = 10. The result is

N| _ PERMUT _ N!

R R! "~ RI(N-R)!
Note that if order is important, use PERMUT instead.
See also INT 6.17.2, PERMUT 6.18.59

6.16.17 COMBINA

Summary: Returns the number of combinations with repetitions.
Syntax: COMBINA(Integer N ; Integer M)
Returns: Number

Constraints: N=0, M =0, N = M; Evaluators may evaluate expressions where N>0, M= 0
returns a non-error value.

Semantics: Returns the number of possible combinations of M objects out of N possible
ones, with repetitions allowed. Actual arguments that are not integers are truncated (using
INT) before use. The result is

N+M-1
N-1
See also COMBIN 6.16.16

6.16.18 CONVERT

Summary: Returns a number converted from one unit system into another.

Syntax: CONVERT(Number N ; Text From ; Text Into)

Returns: Number

Constraints: From and Into shall be legal units, and shall be in the same unit group.

Semantics: Returns the number converted from the unit identified by From into the unit
identified by Into. A unit is a unit symbol , optionally preceded by a unit prefix (either a decimal
prefix or a binary prefix, as specified in Table 25 - Decimal Prefixes for use in CONVERT and
Table 26 - Binary prefixes for use in CONVERT respectively). Units (including both the unit
symbol and the optional unit prefix) are case-sensitive.

Evaluators claiming to implement this function shall support at least the following unit symbols
(with conversions between them and other units in the same group):

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 131 of 213

Table 24 - Unit names

Unit group Unit symbol Description
International acre (using international feet), exactly
"uk_acre" 4046.8564224 m?; normally not used for U.S. land ar-
eas
nus acre" U.S. survey/statute acre (using U.S. survey/statute
- feet), exactly 4046+13525426/15499969 m 2
"ang2" or . 10
"angA2" * Square angstrom (an Angstrom is exactly 10*°m)
"ar" * are, 100 m? (not abbreviated as “a”)
"£t2" or "£t~2" | Square international feet (1 foot is exactly 0.3048 m)
"ha" hectare, 10000 m?
"in2" or "in”2" | Square international inches (1 inch is exactly 2.54 cm)
"ly2" or "1ly~2" |Square light-year (where year=365.25 days)
Area
"m2" Of "mA2" * Square meters
"Morgen" Morgen, 2500 m?
"mi2" or "mi~2" | Square international miles
"Nmi2" or : : - e
e s Ao Square nautical miles (1 nautical mile is 1852 m)
Nmi*2
"Pica2" or
"Pica”2" or "pi- . . . L .
: Square Pica Point (one Pica point is 1/72 inch)
capt2" or "pi-
capt*2”
"pica2" or) o .
Square Pica (one Pica is 1/6 inch)
llpica/\2"
"yd2" or "yd~2" |Square international yards (1 yard is 0.9144 m)
Distance |"ang" * Angstrom, exactly 10"°m
(Length) . . :
"ell" Ell, exactly 45 international inches
nEpn International Foot, exactly 0.3048 m and also exactly
12 international inches.
"in" International Inch, exactly 2.54 cm.
nlgn * Light-year, (299792458 m/s) (3600 s/hr) (24 hr/day)
b (365.25 day)
"m" * Meter
"mi" International Mile, exactly 1609.344 m and exactly 5280

international feet. This is not a U.S. survey/statute mile
(see “survey_mi”) nor a nautical mile (see “Nmi”), but
this is the mile normally used in the U.S. customary

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

2 August 2024

Copyright © OASIS Open 2024. All Rights Reserved. Page 132 of 213

Unit group Unit symbol Description

system
International nautical mile, exactly 1852 m. Note that

"Nmi" this is not the obsolete U.S. nautical mile nor the Admi-
ralty mile.
Distance from sun to a point having heliocentric paral-

"parsec" or "pc" |lax of one second (used for stellar distance), AU/

* tan(1/3600 degree) where an AU is exactly
149,597,870.691 kilometers. *

"Pica" or "pi- . . .

capt” Pica point (1/72 inch)

"pica" Pica (1/6 inch)
U.S. survey "mile, aka U.S. statute mile, exactly

"survey mi" 6336000/3937 m; used in some U.S. maps. This is not
the mile (see “mi”) normally used in the U.S.

nyg" International yard, exactly 0.9144 m and exactly 3 inter-

¥ national feet.

"BTU" ("btu") International Table British Thermal Unit
Thermodynamic calorie, 4.184 J. This is not a dietary

"e" ¥ Calorie (kilocalorie). For high accuracy, use Joule, due
to the many conflicting definitions of calorie.
International Table (IT) calorie, 4.1868 J. This is not a

"cal" * dietary Calorie (kilocalorie). For high accuracy, use
Joule, due to the many conflicting definitions of calorie.

Energy nan * El‘g

"ev" ("ev") * Electron volt (eV preferred)

"£1b" Foot-pound (international foot, avoirdupois pound)

"HPh" ("hh") Horsepower-hour (HPh preferred)

"gn ok Joule

"Wh" ("Wh") * Watt'hour

lldynll (ndyn) * Dyne

"N"* Newton

Force
(Weight) "lbf" Pound force (see “Ibm” for pound mass)
"oond" * Pond, gravitational force on a mass of one gram,
P 9.80665E-3 N.
Information |"bit" * T bit

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 133 of 213

Unit group Unit symbol Description
"byte" * T byte = 8 bits
Magnetic | 92" " Gauss
Flux Density | wqun « Tesla
lvglv * Gram
ngrain" Grain, 1/7000 international pound mass (avoirdupois)
g (U.S. usage).
A\ cwt")
("shweight") U.S. (short) hundredweight, 100 Ibm
liﬂ;;:w‘: or Imperial hundredweight, aka long hundredweight; 112
("hweight") lbm
"1bm" International pound mass (avoirdupois), exactly
453.59237 g (see “Ibf” for pound force)
Mass "stone" 14 international pound mass (avoirdupois)
2000 international pound mass (avoirdupois) (U.S. us-
"ton" age). Note that there are many other measures also
called “ton”; in particular, this is not a metric ton (tonne).
Ounce mass (avoirdupois), exactly 1/16 of an interna-
"ozm" tional pound mass (avoirdupois) (see “o0z” for fluid
ounce)
"sg" Slug; 32.174 international pound mass (avoirdupois)
"u" ¥ U (atomic mass unit)
"uk_ton" or Imperial ton, aka “long ton”, "deadweight ton", or
"LTON" ("brton") | "weight ton". 2240 Ibm.
Mechanical horsepower aka Imperial horsepower. 550
"HP" ("h") foot-pounds per second. The unit “h” is deprecated and
should be replaced with “HP”.
Pferdestarke (German “horse strength”, close but not
Power identical to “HP”), the amount of power to lift a mass of
"PS" 75 kilograms in one second against the earth gravita-
tion between a distance of one meter, approximately
735.49875 W.
"W" (nwn) * Watt
("at™) * Note: "at" has been implemented inconsistently to
Pressure mean either Standard atmosphere or Technical atmos-

phere and is now deprecated. Use either "atm" or

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 134 of 213

Unit group Unit symbol Description

"SI_at".

"atm" * Standard atmosphere = 1.0132510E+5 Pa

"mmHg" * mm of Mercury
Pascal

npam * Note: “P” or “p” in user input as abbreviations for Pas-
cal may be accepted by implementations, but should be
stored as “Pa”..

nogiM Pounds per square inch, using avoirdupois pounds and

P international inches.
"SI_at"* Technical atmosphere = 9.8066510E+4 Pa
np " Torr, exactly 101325/760 Pa (this is close but not equal
orr

to mmHg)

"admkn" Admiralty knot, exactly 6080 international feet/hour.
Knot, exactly one Nautical mile per hour or exactly

"kn" 1852/3600 m/s. Note that this is not an Admiralty knot
(“admkn”).

Speed "m/h" or "m/hr" * | Meters per hour

*m/s or "m/sec Meters per second

"mph" Miles per hour (international miles)

"C" ("cel") degrees Celsius

"F" ("fah") degrees Fahrenheit

Temperature |"K" ("kel") * Kelvin

"Rank" degrees Rankine

"Reau" degrees Réaumur; °C = °Ré - 5/4.

"day" or "d" Day (exactly 24 hours)

"hr" Hour (exactly 60 minutes)

"mn" Of "min" Minute (exactly 60 seconds)

Time

llsecll or llsll *

Second (“s” is the official abbreviation of this Sl base
unit, while “sec” is a widely-recognized abbreviation in
the CONVERT function) *

llyrll

Year (exactly 365.25 days, for purposes of this func-
tion)

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 135 of 213

Unit group Unit symbol Description
Volume ,,angi’ Oi Cubic angstrom
ang”3

U.S. oil barrel, exactly 42 U.S. customary gallons (lig-

"barrel" uid). Note that many other units are also called barrels
(e.g., a beer barrel in the U.K. is 36 Imperial gallons)

"bushel" U.S. bushel (not Imperial bushel), interpreted as vol-
ume

"cup" Cup (U.S. customary liquid measure)

llft3" or "ftA3"

Cubic international feet

llgal A\

Gallon (U.S. customary liquid measure), 3.785411784
liters.

"GRT" (n regton")

Gross Registered Ton, 100 cubic (international) feet

A\ in3 A\ Or A\ in/\3 A\

Cubic international inch

nin or"L" ("].t")

*

Liter

"ly3" or lvly/\3lv

Cubic light-year

lvm3lv or lva3lv *

Cubic meter

llmi3ll or llmiA3ll

Cubic international mile

"MTON" Measurement ton aka “freight ton”, 40 cubic feet

Eﬁi‘;’or Cubic nautical mile

- Fluid ounce (U.S. customary liquid measure; see “ozm”
for ounce mass)

"Pica3" or

"Pica”*3"

s " Cubic Pica Point (one Pica point is 1/72 inch)

picapt3" or

"Picaptl\3"

"pica3" or o o)
Cubic Pica (one Pica is 1/6 inch)

"picaA3"

llptll or "uS_Pt"

U.S. Pint (liquid measure)

"qt"

Quart (U.S. customary liquid measure). This is
0.946352946 liters, and thus not the same as the U.S.
dry quart (1.101220 liters), nor is this the same as the
Imperial quart (as used in the U.K. and Canada, which
is 1.1365225 liters exactly)

nw tbsll

Tablespoon (U.S. customary, traditional meaning). This
shall be 0.5 U.S. fluid ounce, not 15mL (common in
U.S.) or 20mL (common in Australia).

A\ tSP"

Teaspoon (U.S. customary, traditional meaning), 1/6

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 136 of 213

Unit group Unit symbol Description

fluid ounce in U.S. customary measure. This is not the
1/8 Imperial fl. oz. per Imperial units nor the modern
teaspoon of 5 mL currently used in the U.S.; see “tspm”

"tspm" Modern teaspoon, 5mL

"uk_gal" U.K. / Imperial gallon, 4.546009 liters.
"uk_pt" U.K. / Imperial pint,1/8 of a UK gallon.
"uk_gt" U.K. / Imperial quart,1/4 of a UK gallon.

"yd3" or "yd*3" | Cubic international yard

If a conversion factor (as listed above) is not exact, an implementation may use a more
accurate conversion factor instead.

Implementation-defined unit names should contain a 'FULL STOP' (U+002E) character.

Evaluators shall support decimal prefixes for unit symbols marked with * and binary prefixes
for unit symbols marked with . Evaluators should not support prefixes for other unit symbols.

The unit symbols in parentheses are deprecated unit symbols; evaluators shall support these
unit symbols.

Evaluators should use internationally-standardized unit name abbreviations for such additions
where possible. Evaluators may support the obsolete symbols “p” and “P” as unit names for
Pascals.

For purposes of this function, a year is exactly 365.25 days long.

Evaluators claiming to support this function shall permit the unit decimal prefixes specified in
Table 25 - Decimal Prefixes for use in CONVERT to be prepended to any unit symbol marked
with * in Table 24 - Unit names. Adding a unit prefix indicates multiplication of the (scalar) unit
by the given prefix value; for example km indicates kilometres, and km2 or km”2 indicate
square kilometres.

Table 25 - Decimal Prefixes for use in CONVERT

Unit Prefix Description Prefix Value
"y yotta 1E+24
"z" Zetta 1E+21
"E" exa 1E+18
"p" peta 1E+15
"T" tera 1E+12
"G" giga 1E+09
™" mega 1E+06
"k" kilo 1E+03
"h" hecto 1E+02
deka (
"da" or"e" Note: “e” is not a 1E+01
standard Sl prefix

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 137 of 213

Unit Prefix Description Prefix Value
nd" deci 1E-01
"e" centi 1E-02
"m" milli 1E-03

micro
g Note: this is “u”, 1E-06

not the standard

Sl
"n" nano 1E-09
"p" pico 1E-12
"E" femto 1E-15
"a" atto 1E-18
"z" zepto 1E-21
"y" yocto 1E-24

Note: The prefix “e” for 10 * is nonstandard and included for backward compatibility with
legacy applications and documents.

The unit names marked with 1 in Table 24 - Unit names (see the Information Unit group) shall
also support the following binary prefixes per IEC 60027-2;

Table 26 - Binary prefixes for use in CONVERT

. rgrg’ﬁg" it pescription Prefix Value Derived from
"yi" yobi 2"80 =1 208 925 819 614 629 174 706 176 yotta

"zi" zebi 270 =1180 591 620 717 411 303 424 zetta

"Ei" exbi 2760 =1 152 921 504 606 846 976 exa

"Pi" pebi 2750 =1 125 899 906 842 624 peta

"TiM tebi 2"0=1099 511 627 776 tera

"Gi" gibi 2730 = 1 073 741 824 giga

"Mi" mebi 27"20=1048 576 mega

"Ki" kibi 2710 =1024 kilo

In the case where there is a naming conflict (a unit name with a prefix is the same as an
unprefixed name), the unprefixed name shall take precedence.

Evaluators may implement this conversion by first converting to some Sl unit (e.g., meter and
kilogram), and then convert again to the final unit.

See also EUROCONVERT 6.16.29

6.16.19 COS

Summary: Return the cosine of an angle specified in radians.
Syntax: COS(Number N)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 138 of 213

Returns: Number
Constraints: None

Semantics: Computes the cosine of an angle specified in radians.
N? N* N°

See also ACOS 6.16.3, RADIANS 6.16.49, DEGREES 6.16.25

6.16.20 COSH

Summary: Return the hyperbolic cosine of the given hyperbolic angle.
Syntax: COSH(Number N')

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic cosine of a hyperbolic angle. The hyperbolic cosine is
an analog of the ordinary (circular) cosine. The points (cosh t, sinh t) define the right half of the
equilateral hyperbola, just as the points (cos t, sin t) define the points of a circle.

B eNte N

2
See also ACOSH 6.16.4, SINH 6.16.56, TANH 6.16.70

COSH(N)

6.16.21 COT

Summary: Return the cotangent of an angle specified in radians.
Syntax: COT(Number N)

Returns: Number

Constraints: None

Semantics: Computes the cotangent of an angle specified in radians.
COT(x) =1/ TAN(X)

See also ACOT 6.16.5, TAN 6.16.69, RADIANS 6.16.49, DEGREES 6.16.25, SIN 6.16.55,
C0S 6.16.19

6.16.22 COTH

Summary: Return the hyperbolic cotangent of the given hyperbolic angle.
Syntax: COTH(Number N)

Returns: Number

Constraints: N# 0

Semantics: Computes the hyperbolic cotangent of a hyperbolic angle. The hyperbolic
cotangent is an analog of the ordinary (circular) cotangent.

1 _cosh(N) _ eV+e™
N

th(N)= = =
coth(N) tanh(N) sinh(N) e¥—e

See also ACOSH 6.16.4, COSH 6.16.20, SINH 6.16.56, TANH 6.16.70

6.16.23 CSC

Summary: Return the cosecant of an angle specified in radians.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 139 of 213

Syntax: CSC(Number N)

Returns: Number

Constraints: None

Semantics: Computes the cosecant cosine of an angle specified in radians. Equivalent to:
1/ SIN(N)

See also SIN 6.16.55

6.16.24 CSCH

Summary: Return the hyperbolic cosecant of the given angle specified in radians.

Syntax: CSCH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic cosecant of a hyperbolic angle. This is equivalent to:
1/ SINH(N)

See also SINH 6.16.56

6.16.25 DEGREES

Summary: Convert radians to degrees.
Syntax: DEGREES(Number N')
Returns: Number

Constraints: None

Semantics: Converts a number in radians into a number in degrees. DEGREES(N) is equal to
N* 180/ .

See also RADIANS 6.16.49, Pl 6.16.45

6.16.26 DELTA

Summary: Report if two numbers are equal, returns 1 if they are equal.
Syntax: DELTA(Number X[; Number Y=01])

Returns: Number

Constraints: None

Semantics: If Xand Y are equal, return 1, else 0. Y'is set to 0 if omitted.
See also Infix operator “=" 6.4.7

6.16.27 ERF

Summary: Calculates the error function.

Syntax: ERF(Number Z0 [; Number Z211])

Returns: Number

Constraints: None

Semantics: With a single argument, returns the error function of Z0:

_ 2 Z 0 7
ERF(ZO)——\ﬁ(JT—ij e dt

With two arguments, returns

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 140 of 213

] _ 2 Z 1 P
ERF(20;Z1) =17 [, e dr
See also ERFC 6.16.28

6.16.28 ERFC

Summary: Calculates the complementary error function.

Syntax: ERFC(Number Z)

Returns: Number

Constraints: None

Semantics: returns the complementary error function of Z: ERFC(Z) = 1 — ERF(2)
See also ERF 6.16.27

6.16.29 EUROCONVERT

Summary: Converts a Number, representing a value in one European currency, to an
equivalent value in another European currency, according to the fixed conversion rates
defined by the Council of the European Union.

Syntax: EUROCONVERT(Number N ; Text From ; Text To [; Logical FullPrecision =
FALSE [; Integer TriangulationPrecision]])

Returns: Currency

Constraints: From and To shall be known to the evaluator. TriangulationPrecision shall be
> 3, if not omitted.

If an evaluator does not support the parameters FullPrecision and TriangulationPrecision,
FullPrecision should be assumed to be false.

Semantics: Returns the given money value of a conversion from From currency into To
currency. Both From and To shall be the official [ISO4217] abbreviation for the given
currency; note that these are in upper case, but the function accepts lower case or mixed case
as well. If From and To are equal currencies, the value N is returned, no precision or
triangulation is applied.

The function shall use the rates of exchange as set by the European Commission, as follows:

Table 27 - EUROCONVERT

From To Rate Currency Decimals
"EUR" |"ATS" 13.7603 Austrian Schilling 2
"EUR" |"BEF" 40.3399 Belgian Franc 0
"EUR" |"DEM" |1.95583 German Mark 2
"EUR" |"ESP" 166.386 Spanish Peseta 0
"EUR" |"FIM" 5.94573 Finnish Markka 2
"EUR" |"FRF" 6.55957 French Franc 2
"EUR" |"IEP" 0.787564 Irish Pound 2
"EUR" |["ITL" 1936.27 Italian Lira 0
"EUR" |"LUF" 40.3399 Luxembourg Franc |0
"EUR" |"NLG" 2.20371 Dutch Guilder 2
OpenDocument-v1.4-cs01-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 141 of 213

From To Rate Currency Decimals

"EUR" |"PTE" 200.482 Portuguese Escudo
"EUR" |"GRD" |340.750 Greek Drachma
"EUR" |"SIT" 239.640 Slovenian Tolar

‘EUR” |“MTL” 0.429300 Maltese Lira

“EUR” |“CYP” 0.585274 Cypriot Pound
"EUR" |"SKK" 30.1260 Slovak Koruna

2
2
2
2
2
2

As new member countries adopt the Euro, new conversion rates will become active and
evaluators may add them using the respective [ISO4217] codes and fixed rates as defined by
the European Council, on the basis of a European Commission proposal.

Note:

The European Commission's Euro entry page is http://ec.europa.eu/euro/

The conversion rates and triangulation rules are available at
http://ec.europa.eu/economy_finance/euro/adoption/conversion/index_en.htm with links to the
European Council Regulation legal documents at the http://eur-lex.europa.eu/ European Union
law database server.

If FullPrecision is omitted or FALSE, the result is rounded according to the decimals of the
To currency. If FullPrecision is TRUE the result is not rounded.

If TriangulationPrecision is given and = 3, the intermediate result of a triangular conversion
(currencyl,EUR,currency?) is rounded to that precision. If TriangulationPrecision is omitted,
the intermediate result is not rounded. Also if To currency is “EUR”, TriangulationPrecision
precision is used as if triangulation was needed and conversion from EUR to EUR was
applied.

See also CONVERT

6.16.30 EVEN

Summary: Rounds a number up to the nearest even integer. Rounding is away from zero.
Syntax: EVEN(Number N)

Returns: Number

Constraints: None

Semantics: Returns the even integer whose sign is the same as N's and whose absolute
value is greater than or equal to the absolute value of N.

See also ODD 6.16.44

6.16.31 EXP

Summary: Returns e raised by the given number.
Syntax: EXP(Number X))

Returns: Number

Constraints: None

Semantics: Computes

See also LOG 6.16.40, LN 6.16.39

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 142 of 213

http://eur-lex.europa.eu/
http://ec.europa.eu/economy_finance/euro/adoption/conversion/index_en.htm
http://ec.europa.eu/euro/

6.16.32 FACT

Summary: Return factorial (!).

Syntax: FACT(Integer F)

Returns: Number

Constraints: F=0

Semantics: Return the factorial
F!=F(F—1)(F=2)..1

F(O) = F(1) = 1.

See also Infix Operator "*" 6.4.4, GAMMA 6.16.34

6.16.33 FACTDOUBLE

Summary: Returns double factorial (!!).
Syntax: FACTDOUBLE(Integer F)
Returns: Number
Constraints: F=0
Semantics: Return
F!=F(F-2)(F—4)-..1

Double factorial is computed by multiplying every other number in the 1..N range, with N
always being included.

See also Infix Operator "*" 6.4.4, GAMMA 6.16.34, FACT 6.16.32

6.16.34 GAMMA

Summary: Return gamma function value.
Syntax: GAMMA(Number N)

Returns: Number

Constraints: N # 0 and N not a negative integer.
Semantics: Return

TN) = [V et
0
with F(N + 1) = N * (N). Note that for non-negative integers N, (N + 1) = N! = FACT(N). Note

that GAMMA can accept non-integers.
See also FACT 6.16.32

6.16.35 GAMMALN

Summary: Returns the natural logarithm of the GAMMA function.
Syntax: GAMMALN(Number X')

Returns: Number

Constraints: For each X, X>0

Semantics: Returns the same value as LN(GAMMA(X))

See also GAMMA 6.16.34, FACT 6.16.32

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 143 of 213

6.16.36 GCD

Summary: Returns the greatest common divisor (GCD)

Syntax: GCD({ NumberSequencelList X}")

Returns: Number

Constraints: For all ain X: INT(a) =2 0 and for at least one ain X: INT(a) > 0

Semantics: Return the largest integer N such that for every a in X: INT(a) is a multiple of N.

Note: If for all a in X: INT(a) = 0 the return value is implementation-defined but is either an
Error or 0.

See also LCM 6.16.38, INT 6.17.2

6.16.37 GESTEP

Summary: Returns 1 if a number is greater than or equal to another number, else returns 0.
Syntax: GESTEP(Number X[; Number Step=01])
Returns: Number

Semantics: Number X is tested against number Step. If greater or equal 1 is returned, else 0.
The second parameter is assumed 0 if omitted. If one of the parameters is not a Number, the
function results in an Error.

6.16.38 LCM

Summary: Returns the least common multiplier
Syntax: LCM({ NumberSequencelList X }*)
Returns: Number

Constraints: For all in X: INT(X) = X, X=0

Semantics: Return the smallest integer that is the multiple of the given values. Each value
has INT applied to it first. Note that if given two numbers, ABS(a * b) = LCM(a;b) * GCD(a;b).

See also GCD 6.16.36, INT 6.17.2

6.16.39 LN

Summary: Return the natural logarithm of a number.

Syntax: LN(Number X')

Returns: Number

Constraints: X>0

Semantics: Computes the natural logarithm (base e) of the given number.

3 5
IN(x)=2| 2Ll fa=t L by
x+1 3\ x+1 5\ x+1

See also LOG 6.16.40, LOG10 6.16.41, POWER 6.16.46, EXP 6.16.31

6.16.40 LOG

Summary: Return the logarithm of a number in a specified base.
Syntax: LOG(Number N [; Number Base =101])
Returns: Number

Constraints: N> 0

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 144 of 213

Semantics: Computes the logarithm of a number in the specified base. Note that if the base is
not specified, the logarithm base 10 is returned.

See also LOG10 6.16.41, LN 6.16.39, POWER 6.16.46, EXP 6.16.31

6.16.41 LOG10

Summary: Return the base 10 logarithm of a number.

Syntax: LOG10(Number N)

Returns: Number

Constraints: N> 0

Semantics: Computes the base 10 logarithm of a number.

See also LOG 6.16.40, LN 6.16.39, POWER 6.16.46, EXP 6.16.31

6.16.42 MOD

Summary: Return the remainder when one number is divided by another number.
Syntax: MOD(Number A ; Number B))

Returns: Number

Constraints: B!=0

Semantics: Computes the remainder of A / B. The remainder has the same sign as B.
See also Infix Operator "/* 6.4.5, QUOTIENT 6.16.48

6.16.43 MULTINOMIAL

Summary: Returns the multinomial for the given values.
Syntax: MULTINOMIAL({ NumberSequence A }")
Returns: Number

Constraints: None

Semantics: Returns the multinomial of the sequence A = (a4, az, ..., a»). Multinomial is defined
as FACT(a; + a; +...+ a,) / (FACT(a1) * FACT(ay) *...* FACT(an))

See also FACT 6.16.32

6.16.44 ODD

Summary: Rounds a number up to the nearest odd integer, where "up" means "away from 0".
Syntax: ODD(Number N)

Returns: Number

Constraints: None

Semantics: Returns the odd integer whose sign is the same as N's and whose absolute value
is greater than or equal to the absolute value of N. In other words, any "rounding" is away from
zero. By definition, ODD(0) is 1.

See also EVEN 6.16.30

6.16.45 PI

Summary: Return the approximate value of .
Syntax: PI()
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 145 of 213

Constraints: None.

Semantics: This function takes no arguments and returns the (approximate) value of 1 (pi).
Evaluators should use the closest possible numerical representation that is possible in their
representation of numbers.

See also SIN 6.16.55, COS 6.16.19

6.16.46 POWER

Summary: Return the value of one number raised to the power of another number.
Syntax: POWER(Number A ; Number B))

Returns: Number

Constraints: None

Semantics: Computes A raised to the power B.

« POWER(0,0) is implementation-defined, but shall be one of 0,1, or an Error.

« POWER(0,B), where B < 0, shall return an Error.

* POWER(A,B), where A <0 and INT(B) != B, is implementation-defined.

See also LOG 6.16.40, LOG10 6.16.41, LN 6.16.39, EXP 6.16.31

6.16.47 PRODUCT

Summary: Multiply the set of numbers, including all numbers inside ranges.
Syntax: PRODUCT({ NumberSequenceList N}*)

Returns: Number

Constraints: None

Semantics: Returns the product of the Numbers (and only the Numbers, i.e., not Text inside
ranges).

See also SUM 6.16.61

6.16.48 QUOTIENT

Summary: Return the integer portion of a division.
Syntax: QUOTIENT(Number A ; Number B')
Returns: Number

Constraints: B# 0

Semantics: Return the integer portion of a division.
See also MOD 6.16.42

6.16.49 RADIANS

Summary: Convert degrees to radians.
Syntax: RADIANS(Number N)
Returns: Number

Constraints: None

Semantics: Converts a number in degrees into a number in radians. RADIANS(N) is equal to
N *PI() / 180.

See also DEGREES 6.16.25, Pl 6.16.45

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 146 of 213

6.16.50 RAND

Summary: Return a random number between 0 (inclusive) and 1 (exclusive).
Syntax: RAND()
Returns: Number

Semantics: This function takes no arguments and returns a random number between 0
(inclusive) and 1 (exclusive). Note that unlike most functions, this function will typically return
different values when called each time with the same (empty set of) parameters.

See also RANDBETWEEN 6.16.51

6.16.51 RANDBETWEEN

Summary: Return a random integer number between A and B.
Syntax: RANDBETWEEN(Integer A ; Integer B)

Returns: Integer

Constraints: A<B

Semantics: The function returns a random integer number between A and B inclusive. Note
that unlike most functions, this function will often return different values when called each time
with the same parameters.

See also RAND 6.16.50

6.16.52 SEC

Summary: Return the secant of an angle specified in radians.

Syntax: SEC(Number N)

Returns: Number

Constraints: None

Semantics: Computes the secant cosine of an angle specified in radians. Equivalent to:
1/ COS(N)

See also SIN 6.16.55

6.16.53 SERIESSUM

Summary: Returns the sum of a power series.

Syntax: SERIESSUM(Number X ; Number N ; Number M ; Array Coefficients)
e X the independent variable of the power series.

e N: the initial power to which Xis to be raised.

e M: the increment by which to increase N for each term in the series.

e Coefficients: a set of coefficients by which each successive power of the variable X is
multiplied.

Returns: Number

Constraints:

All elements of Coefficients are of type Number.

X # 0 if any of the exponents, which are generated from N and M, are negative.
Semantics: Returns a sum of powers of the number X.

With C being the number of coefficients the function is computed as:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 147 of 213

C
SERIESSUM :Z Coeﬁficienti.X (N +(i-1)M)
i=1

exponent>0)

If X =0 and all of the exponents are non-negative then 0" shall be setto 1 and 0(
shall be set to 0.

6.16.54 SIGN

Summary: Return the sign of a number.

Syntax: SIGN(Number N)

Returns: Number

Constraints: None

Semantics: If N <0, returns -1; if N > 0, returns +1; if N =0, returns O.
See also ABS 6.16.2

6.16.55 SIN

Summary: Return the sine of an angle specified in radians.
Syntax: SIN(Number N)

Returns: Number

Constraints: None

Semantics: Computes the sine of an angle specified in radians.

N N° N’

See also ASIN 6.16.7, RADIANS 6.16.49, DEGREES 6.16.25

6.16.56 SINH

Summary: Return the hyperbolic sine of the given hyperbolic angle.
Syntax: SINH(Number N')

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic sine of a hyperbolic angle. The hyperbolic sine is an
analog of the ordinary (circular) sine. The points (cosh t, sinh t) define the right half of the
equilateral hyperbola, just as the points (cos t, sin t) define the points of a circle.

eV —e™
2

See also ASINH 6.16.8, COSH 6.16.20, TANH 6.16.70

SINH (N)=

6.16.57 SECH

Summary: Return the hyperbolic secant of the given angle specified in radians.
Syntax: SECH(Number N')

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic secant of a hyperbolic angle. This is equivalent to:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 148 of 213

1/ COSH(N)
See also SINH 6.16.56, COSH 6.16.20, CSCH 6.16.24

6.16.58 SQRT

Summary: Return the square root of a number.
Syntax: SQRT(Number N')

Returns: Number

Constraints: N=0

Semantics: Returns the square root of a non-negative number. This function shall produce an
Error if given a negative number; for producing complex numbers, see IMSQRT.

See also POWER 6.16.46, IMSQRT 6.8.24, SQRTPI 6.16.59

6.16.59 SQRTPI

Summary: Return the square root of a number multiplied by 1 (pi).
Syntax: SQRTPI(Number N')

Returns: Number

Constraints: N> 0

Semantics: Returns the square root of a non-negative number after it was first multiplied by
m, that is, SQRT(N * PI()). This function shall produce an Error if given a negative number; for
producing complex numbers, see IMSQRT.

See also POWER 6.16.46, SQRT 6.16.58, Pl 6.16.45, IMSQRT 6.8.24

6.16.60 SUBTOTAL

Summary: Evaluates a function on a range.

Syntax: SUBTOTAL(Integer Function ; NumberSequence Sequence)
Returns: Number

Constraints: None

Semantics: Computes a given function on a number sequence. The function is denoted by
the first parameter: The difference from standard functions is that all members of the
sequence are excluded which:

¢ include a call to SUBTOTAL in their formula

e areinarow thatis hiddenby a table:visibility="filter” attribute of the
<table:table-row> element (OpenDocument, Part 3, 19.754).

e areinarow thatis hidden by a table:visibility="collapse” attribute of the
<table:table-row> element if the function ID is one of 101...111.

Table 28 - SUBTOTAL

Function Exclude hidden by filter Exclude hidden by filter or
collapsed

AVERAGE 1 101

COUNT 2 102

COUNTA 3 103

MAX 4 104

OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 149 of 213

MIN 5 105
PRODUCT 6 106
STDEV 7 107
STDEVP 8 108
SUM 9 109
VAR 10 110
VARP 11 111

See also SUM 6.16.61, AVERAGE 6.18.3

6.16.61 SUM

Summary: Sum (add) the set of numbers, including all numbers in ranges.

Syntax: SUM({ NumberSequenceList N}*)

Returns: Number

Constraints: N = {}; Evaluators may evaluate expressions that do not meet this constraint.
Semantics: Adds Numbers (and only Numbers) together (see the text on conversions).
See also AVERAGE 6.18.3

6.16.62 SUMIF

Summary: Sum the values of cells in a range that meet a criteria.

Syntax: SUMIF(Referencelist|Reference R ; Criterion C [; Reference S])
Returns: Number

Constraints: Does not accept constant values as the range parameter.

Semantics: Sums the values of type Number in the range R or S that meet the Criterion C
(4.11.8).

If S is not given, R may be a reference list. If S is given, R shall not be a reference list with
more than 1 references and an Error be generated if it was.

If the optional range S is included, then the values of S starting from the top left cell and
matching the geometry of R (same number of rows and columns) are summed if the
corresponding value in R meets the Criterion. The actual range S is not considered. If the
resulting range exceeds the sheet bounds, column numbers larger than the maximum column
and row humbers larger than the maximum row are silently ignored, no Error is generated for
this case.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also COUNTIF 6.13.9, SUM 6.16.61, Infix Operator "=" 6.4.7, Infix Operator "<>" 6.4.8,
Infix Operator Ordered Comparison (<", "<=", ">" ">=") 6.4.9

6.16.63 SUMIFS

Summary: Sum the values of cells in a range that meet multiple criteria in multiple ranges.

Syntax: SUMIFS(Reference R ; Reference R1 ; Criterion C1[; Reference R2 ; Criterion
C2]...)

Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 150 of 213

Constraints: Does not accept constant values as the reference parameter.

Semantics: Sums the value of cells in range R that meet the Criterion C17 in the reference
range R1 and the Criterion C2 in the reference range R2, and so on (4.11.8). All reference
ranges shall have the same dimension and size, else an Error is returned. A logical AND is
applied between each array result of each selection; an entry is counted only if the same
position in each array is the result of a criteria match.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also AVERAGEIFS 6.18.6, COUNTIFS 6.13.10, SUMIF 6.16.62, Infix Operator "=" 6.4.7,
Infix Operator "<>" 6.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 6.4.9

6.16.64 SUMPRODUCT

Summary: Returns the sum of the products of the matrix elements.
Syntax: SUMPRODUCT({ ForceArray Array A }")

Returns: Number

Constraints: All matrices shall have the same dimensions.

Semantics: Multiplies the corresponding elements of all matrices and returns the sum of
them.

M
SUMPRODUCT (4,, A,,..., A)=>. > [Tac .

m=1n=1\ k=1

where a, , ~denotes an element of the matrix AK .

6.16.65 SUMSQ

Summary: Sum (add) the set of squares of numbers, including all numbers in ranges
Syntax: SUMSQ({ NumberSequence N }*)

Returns: Number

Constraints: N != {}; Evaluators may evaluate expressions that do not meet this constraint.

Semantics: Adds squares of Numbers (and only Numbers) together. See the text on
conversions.

6.16.66 SUMX2MY2

Summary: Returns the sum of the difference between the squares of the matrices A and B.
Syntax: SUMX2MY2(ForceArray Array A ; ForceArray Array B))

Returns: Number

Constraints: Both matrices shall have the same dimensions.

Semantics: Sums up the differences of the corresponding elements squares for two matrices.

M N
SUMX2MY2(4,B)=Y. >, ~P2,]

m=1 n=1

6.16.67 SUMX2PY2

Summary: Returns the total sum of the squares of the matrices A and B.
Syntax: SUMX2PY2(ForceArray Array A ; ForceArray Array B))

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 151 of 213

Returns: Number
Constraints: Both matrices shall have the same dimensions.
Semantics: Sums up the squares of each element of the two matrices.

M N
SUMX2PY2(4,B)=Y. 2" [, +b,)

m=1n=1

6.16.68 SUMXMY2

Summary: Returns the sum of the squares of the differences between matrix A and B.
Syntax: SUMXMY2(ForceArray Array A ; ForceArray Array B))

Returns: Number

Constraints: Both matrices shall have the same dimensions.

Semantics: Sums up the squares of the differences of the corresponding elements for two
matrices.

M N

SUMXMY2(A,B)=Y. Y (a,,~b,,|"

m=1 n=1

6.16.69 TAN

Summary: Return the tangent of an angle specified in radians
Syntax: TAN(Number N')

Returns: Number

Constraints: None

Semantics: Computes the tangent of an angle specified in radians.
TAN(X) = SIN(x) / COS(x)

See also ATAN 6.16.9, ATAN2 6.16.10, RADIANS 6.16.49, DEGREES 6.16.25, SIN 6.16.55,
C0OS 6.16.19, COT 6.16.21

6.16.70 TANH

Summary: Return the hyperbolic tangent of the given hyperbolic angle
Syntax: TANH(Number N)

Returns: Number

Constraints: None

Semantics: Computes the hyperbolic tangent of a hyperbolic angle. The hyperbolic tangent is
an analog of the ordinary (circular) tangent. The points (cosh t, sinh t) define the right half of
the equilateral hyperbola, just as the points (cos t, sin t) define the points of a circle.

_SINH(N) _eV—e™
" COSH(N) eY4e ™™
See also ATANH 6.16.11, SINH 6.16.56, COSH 6.16.20, FISHERINV 6.18.27

TANH (N)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 152 of 213

6.17 Rounding Functions

6.17.1 CEILING

Summary: Round a number N up to the nearest multiple of the second parameter,
significance.

Syntax: CEILING(Number N [; [Number Significance | [; Number Mode]])
Returns: Number
Constraints: Both N and Significance shall be numeric and have the same sign if not 0.

Semantics: Rounds a number up to a multiple of the second number. If Significance is
omitted or an empty parameter (two consecutive ;; semicolons) it is assumed to be -1 if N is
negative and +1 if N is non-negative, making the function act like the normal mathematical
ceiling function if Mode is not given or zero. If Mode is given and not equal to zero, the
absolute value of N is rounded away from zero to a multiple of the absolute value of
Significance and then the sign applied . If Mode is omitted or zero, rounding is toward
positive infinity; the number is rounded to the smallest multiple of significance that is equal-to
or greater than N. If any of the two parameters N or Significance is zero, the result is zero.

Note: Many application user interfaces have a CEILING function with only two parameters,
and somewhat different semantics than given here (e.g., they operate as if there was a non-
zero Mode value). These CEILING functions are inconsistent with the standard mathematical
definition of CEILING.

See also FLOOR 6.17.3, INT 6.17.2

6.17.2 INT

Summary: Rounds a number down to the nearest integer.
Syntax: INT(Number N')

Returns: Number

Constraints: None

Semantics: Returns the nearest integer whose value is less than or equal to N. Rounding is
towards negative infinity.

See also ROUND 6.17.5, TRUNC 6.17.8

6.17.3 FLOOR

Summary: Round a number N down to the nearest multiple of the second parameter,
significance.

Syntax: FLOOR(Number N [; [Number Significance] [; Number Mode]])
Returns: Number
Constraints: Both N and Significance shall be numeric and have the same sign.

Semantics: Rounds a number down to a multiple of the second number. If Significance is
omitted or an empty parameter (two consecutive ;; semicolons) it is assumed to be -1 if N is
negative and +1 if N is non-negative, making the function act like the normal mathematical
floor function if Mode is not given or zero. If Mode is given and not equal to zero, the absolute
value of N is rounded toward zero to a multiple of the absolute value of Significance and then
the sign applied . Otherwise, it rounds toward negative infinity, and the result is the largest
multiple of Significance that is less than or equal to N. If any of the two parameters N or
Significance is zero, the result is zero.

Note: Many application user interfaces have a FLOOR function with only two parameters, and
somewhat different semantics than given here (e.g., they operate as if there was a non-zero
Mode value). These FLOOR functions are inconsistent with the standard mathematical
definition of FLOOR.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 153 of 213

See also CEILING 6.17.1, INT 6.17.2

6.17.4 MROUND

Summary: Rounds the number to given multiple.
Syntax: MROUND(Number A ; Number B))
Returns: Number

Constraints: None

Semantics: Returns the number X, for which the following holds: X/B = INT(X / B) (B divides
X), and for any other Y with the same property, ABS(Y — A) 2 ABS(X - A). In case that two
such X exist, the greater one is the result. In less formal language, this function rounds the
number A to multiples of B.

See also ABS 6.16.2, INT 6.17.2, ROUND 6.17.5

6.17.5 ROUND

Summary: Rounds the value X to the nearest multiple of the power of 10 specified by Digits.
Syntax: ROUND(Number X[; Number Digits =01])

Returns: Number

Constraints: None

Semantics: Round number X to the precision specified by Digits. The number X is rounded

to the nearest power of 10 given by 10 ~Digits. If Digits is zero, or absent, round to the
nearest decimal integer. If Digits is non-negative, round to the specified number of decimal
places. If Digits is negative, round to the left of the decimal point by -Digits places. If X is
halfway between the two nearest values, the result shall round away from zero. Note that if X
is a Number, and Digits < 0, the results will always be an integer (without a fractional
component).

See also TRUNC 6.17.8, INT 6.17.2

6.17.6 ROUNDDOWN

Summary: Rounds the value X towards zero to the number of digits specified by Digits.
Syntax: ROUNDDOWN(Number X [; Integer Digits =01])

Returns: Number

Constraints: None

Semantics: Round X towards zero, to the precision specified by Digits. The number returned

is a multiple of 107P/9its |f Djgits is zero, or absent, round to the largest decimal integer
whose absolute value is smaller or equal to the absolute value of X. If Digits is positive, round
towards zero to the specified number of decimal places. If Digits is negative, round towards
zero to the left of the decimal point by -Digits places.

See also TRUNC 6.17.8, INT 6.17.2, ROUND 6.17.5, ROUNDUP 6.17.7

6.17.7 ROUNDUP

Summary: Rounds the value X away from zero to the number of digits specified by Digits
Syntax: ROUNDUP(Number X [; Integer Digits =01])

Returns: Number

Constraints: None

Semantics: Round X away from zero, to the precision specified by Digits. The number
returned is a multiple of 107P/9its_|f Djgits is zero, or absent, round to the smallest decimal

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 154 of 213

integer whose absolute value is larger or equal to the absolute value of X. If Digits is positive,
round away from zero to the specified number of decimal places. If Digits is negative, round
away from zero to the left of the decimal point by -Digits places.

See also TRUNC 6.17.8, INT 6.17.2, ROUND 6.17.5, ROUNDDOWN 6.17.6

6.17.8 TRUNC

Summary: Truncate a number to a specified number of digits.
Syntax: TRUNC(Number A ; Integer B')

Returns: Number

Constraints: None

Semantics: Truncate number A to the number of digits specified by B. If B is zero, or absent,
truncate to an integer. If B is positive, truncate to the specified number of decimal places. If B
is negative, truncate to the left of the decimal point.

See also ROUND 6.17.5, INT 6.17.2

6.18 Statistical Functions

6.18.1 General

The following are statistical functions (functions that report information on a set of numbers).
Some functions that could also be considered statistical functions, such as SUM, are listed
elsewhere.

6.18.2 AVEDEV

Summary: Calculates the average of the absolute deviations of the values in list.

Syntax: AVEDEV({ NumberSequenceList N}")

Returns: Number

Constraints: None.

Semantics: For a list N containing n numbers x; to x,, with average x, AVEDEV(N) is equal to:
%; I(xi_f)l

See also SUM 6.16.61, AVERAGE 6.18.3

6.18.3 AVERAGE

Summary: Average the set of numbers

Syntax: AVERAGE({ NumberSequence N}*)

Returns: Number

Constraints: At least one Number included. Returns an Error if no Numbers provided.
Semantics: Computes SUM(N) / COUNT(N).

See also SUM 6.16.61, COUNT 6.13.6

6.18.4 AVERAGEA

Summary: Average values, including values of type Text and Logical.
Syntax: AVERAGEA({Any N}")

Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 155 of 213

Constraints: At least one value included. Returns an Error if no value provided.

Semantics: A variant of the AVERAGE function that includes values of type Text and Logical.
Text values are treated as number 0. Logical TRUE is treated as 1 and FALSE is treated as 0.
Empty cells are not included. Any N may be of type ReferencelList.

See also AVERAGE 6.18.3

6.18.5 AVERAGEIF

Summary: Average the values of cells in a range that meet a criteria.
Syntax: AVERAGEIF(Reference R ; Criterion C [; Reference A1)
Returns: Number

Constraints: Does not accept constant values as reference parameters.

Semantics: If reference A is omitted, averages the values of cells in the reference range R
that meet the Criterion C (4.11.8). If reference A is given, averages the values of cells of a
range that is constructed using the top left cell of reference A and applying the dimensions,
shape and size, of reference R. If no cell in range R matches the Criterion C, an Error is
returned. If no Numbers are in the range to be averaged, an Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also AVERAGEIFS 6.18.6, COUNTIF 6.13.9, SUMIF 6.16.62, Infix Operator "=" 6.4.7,
Infix Operator "<>" 6.4.8, Infix Operator Ordered Comparison ("<", "<=", ">", ">=") 6.4.9

6.18.6 AVERAGEIFS

Summary: Average the values of cells that meet multiple criteria in multiple ranges.

Syntax: AVERAGEIFS(Reference A ; Reference R1 ; Criterion C1 [; Reference R2
Criterion C2]...)

Returns: Number
Constraints: Does not accept constant values as reference parameters.

Semantics: Averages the values of cells in the reference range A that meet the Criterion C1
in the reference range R1 and the Criterion C2 in the reference range R2, and so on (4.11.8).
All reference ranges shall have the same dimension and size, else an Error is returned. A
logical AND is applied between each array result of each selection; a cell of reference range A
is evaluated only if the same position in each array is the result of a Criterion match. If no
numbers are in the result set to be averaged, an Error is returned.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS or HOST-SEARCH-CRITERIA-MUST-APPLY-TO-WHOLE-CELL
properties. 3.4

See also AVERAGEIF 6.18.5, COUNTIFS 6.13.10, SUMIFS 6.16.63, Infix Operator "=" 6.4.7,
Infix Operator "<>" 6.4.8, Infix Operator Ordered Comparison (<", "<=", ">", ">=") 6.4.9

6.18.7 BETADIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the beta distribution.

Syntax: BETADIST(Number x ; Number a ; Number B[; Numbera=0][; Numberb=1];
Logical Cumulative = TRUE]]])

Returns: Number

Constraints: a>0,8>0,a<b,
If a <1, then the density function has a pole at x = a.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 156 of 213

If B < 1, then the density function has a pole at x = b.
In both cases, if x = a respectively x = b and Cumulative = FALSE, an Error is returned.

Semantics: If Cumulative is FALSE, BETADIST returns 0 if x < a or x > b and the value
a—1 B—1
x—a) '(1_x—a) 1
b-a b-a b—-a
otherwise.
If Cumulative is TRUE, BETADIST returns 0 if x < a, 1 if x > b, and the value

oa—1 B—1
t—a t—a 1
(1= .
b—a) (b—a) b—a dt

I'(x+B)
I'(e)T(B)

x T(x+B)
“T ()T (B)

otherwise.

Note: With substitution

the term can be written as

% F(O(+B) oa—1 B—1
_— .z (l—z dz
o Ferpy 02
See also BETAINV 6.18.8

6.18.8 BETAINV
Summary: returns the inverse of BETADIST(X;a;8;A;B; TRUE()).

Syntax: BETAINV(Number P ; Number a ; Number B[; Number A=0[; NumberB=11]])
Returns: Number
Constraints: 0<P<1,a>0,8>0,A<B

Semantics: BETAINV returns the unique number x in the closed interval from A to B such
that BETADIST(x;a;8;A;B) = P.

See also BETADIST 6.18.7

6.18.9 BINOM.DIST.RANGE

Summary: Returns the probability of a trial result using binomial distribution.
Syntax: BINOM.DIST.RANGE(Integer N ; Number P ; Integer S [; Integer S21])
Returns: Number

Constraints: 0<P<1,0<S<8S2s<N

Semantics: Let N be a total number of independent trials, and P be a probability of success
for each trial. This function returns the probability that the number of successful trials shall be
exactly S. If the optional parameter S2 is provided, this function returns the probability that the
number of successful trials shall lie between S and S2 inclusive.

This function is computed as follows:

If S2 is not given, let S2 = S. Then the function returns the value of
S2

Z(]Z)Pk(l—P)N_k

k=S

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 157 of 213

See also BINOMDIST 6.18.10

6.18.10 BINOMDIST

Summary: Returns the binomial distribution.

Syntax: BINOMDIST(Integer S ; Integer N ; Number P ; Logical Cumulative)
Returns: Number

Constraints: 0 P<1;0<S<N

Semantics: If Cumulative is FALSE, this function returns the same result as
BINOM.DIST.RANGE(N;P;S). If Cumulative is TRUE, it is equivalent to calling
BINOM.DIST.RANGE(N;P;0;S).

See also BINOM.DIST.RANGE 6.18.9

6.18.11 LEGACY.CHIDIST
Summary: returns the right-tail probability for the x2-distribution.

Syntax: LEGACY.CHIDIST(Number X ; Number DegreesOfFreedom)
Returns: Number
Constraints: DegreesOfFreedom is a positive integer.

Semantics: In the following n is DegreesOfFreedom. LEGACY.CHIDIST returns 1 for X< 0
and the value

n_, _t
o tZ e 2
I ————adt
2°T(n/2)
for X> 0.

See also CHISQDIST 6.18.12, LEGACY.CHITEST 6.18.15

6.18.12 CHISQDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the x2-distribution.

Syntax: CHISQDIST(Number X ; Number DegreesOfFreedom [; Logical Cumulative =
TRUE])

Returns: Number

Constraints: DegreesOfFreedom is a positive integer.

Semantics: In the following n is DegreesOfFreedom.

If Cumulative is FALSE, CHISQDIST returns O for X < 0 and the value

n, _X
X% e ?
n
2°T(n/2)
for X> 0.
If Cumulative is TRUE, CHISQDIST returns 0 for X < 0 and the value
n, ot
X 2 2
f e’ 4
0 n
2°T(n/2)
OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 158 of 213

for X> 0.
See also LEGACY.CHIDIST 6.18.11

6.18.13 LEGACY.CHIINV
Summary: returns the inverse of LEGACY.CHIDIST(x; DegreesOfFreedom).

Syntax: LEGACY.CHIINV(Number P ; Number DegreesOfFreedom)
Returns: Number
Constraints: DegreesOfFreedom is a positive integerand 0 < P< 1.

Semantics: LEGACY.CHIINV returns the uniqgue number x such that LEGACY.CHIDIST(x;
DegreesOfFreedom) = P.

See also LEGACY.CHIDIST 6.18.11

6.18.14 CHISQINV
Summary: returns the inverse of CHISQDIST(x; DegreesOfFreedom; TRUE()).

Syntax: CHISQINV(Number P ; Number DegreesOfFreedom)
Returns: Number
Constraints: DegreesOfFreedom is a positive integerand0< P < 1.

Semantics: CHISQINV returns the unique number x = 0 such that CHISQDIST(x;
DegreesOfFreedom;TRUE()) = P.

See also CHISQDIST 6.18.12

6.18.15 LEGACY.CHITEST

Summary: Returns some Chi square goodness-for-fit test.
Syntax: LEGACY.CHITEST(ForceArray Array A ; ForceArray Array E))
Returns: Number

Constraints:

ROWS(A) = ROWS(E)
COLUMNS(A) = COLUMNS(E)
COLUMNS(A) * ROWS(A) > 1

Semantics:

For an empty element or an element of type Text or Boolean in A the element at the
corresponding position of E is ignored, and vice versa.

¢ A actual observation data.
e E: expected values.
First a Chi square statistic is calculated:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 159 of 213

with

r = number of rows
¢ = number of columns
A;= element of actual data

E ;= element of expected values
Then LEGACY.CHIDIST is called with the Chi-square value and a degree of freedom (df):
if r>1and c>1
df =(r—1)-(c—1)
else
df =r-c—-1

LEGACY.CHITEST = LEGACY.CHIDIST (y°; df)
See also COLUMNS 6.13.5, ROWS 6.13.30, LEGACY.CHIDIST 6.18.11

6.18.16 CONFIDENCE

Summary: Returns the confidence interval for a population mean.

Syntax: CONFIDENCE(Number Alpha ; Number Stddev ; Number Size)
Returns: Number

Constraints: 0 < Alpha < 1; Stddev > 0, Size =2 1

Semantics: Calling this function is equivalent to calling
NORMINV(1 - Alpha/ 2; 0; 1) * Stddev /| SQRT (Size)

See also NORMINV 6.18.53, SQRT 6.16.58

6.18.17 CORREL

Summary: Calculates the correlation coefficient of values in N1 and N2.
Syntax: CORREL(ForceArray Array N1 ; ForceArray Array N2)
Returns: Number

Constraints: COLUMNS(N7) = COLUMNS(N2), ROWS(N1) = ROWS(N2), both sequences
shall contain at least one number at corresponding positions each.

Semantics: Has the same value as COVAR(N17;N2) / STDEVP(N1) * (STDEVP(N2)). The
CORREL function actually is identical to the PEARSON function.

For an empty element or an element of type Text or Boolean in N1 the element at the
corresponding position of N2 is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30, COVAR 6.18.18, STDEVP 6.18.74, PEARSON
6.18.56

6.18.18 COVAR

Summary: Calculates covariance of two cell ranges.
Syntax: COVAR(ForceArray Array N1 ; ForceArray Array N2)
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 160 of 213

Constraints: COLUMNS(N7) = COLUMNS(N2), ROWS(N7) = ROWS(N2), both sequences
shall contain at least one number at corresponding positions each.

Semantics: returns

v 2 - NT-N2)

aeN1,beN?2

where N1 s the result of calling AVERAGE(N1), and N2 js the result of calling
AVERAGE(N2), and N is the number of terms in the sum.

For an empty element or an element of type Text or Boolean in N1 the element at the
corresponding position of N2 is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30, AVERAGE 6.18.3

6.18.19 CRITBINOM

Summary: Returns the smallest value for which the cumulative binomial distribution is greater
than or equal to a criterion value.

Syntax: CRITBINOM(Number Trials ; Number SP ; Number Alpha)
Returns: Number

Constraints: Trials 20,0<SP<1,0< Alpha<1

Semantics:

* Trials: the total number of trials.

* SP: the probability of success for one trial.

* Alpha: the threshold probability to be reached or exceeded.

6.18.20 DEVSQ

Summary: Calculates sum of squares of deviations.
Syntax: DEVSQ({ NumberSequence N}*)
Returns: Number

Semantics: returns

> (x—a)

XEN

where a is the result of calling AVERAGE(N).

6.18.21 EXPONDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the exponential distribution.

Syntax: EXPONDIST(Number X ; Number A [; Logical Cumulative = TRUE |)
Returns: Number

Constraints: A>0

Semantics: If Cumulative is FALSE, EXPONDIST returns 0 if X < 0 and the value

otherwise.
If Cumulative is TRUE, EXPONDIST returns 0 if X < 0 and the value

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 161 of 213

X
J, re*dt=1-e*

otherwise.

6.18.22 FDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the F-distribution.

Syntax: FDIST(Number X ; Number R, ; Number R, [; Logical Cumulative = TRUE])
Returns: Number

Constraints: R; and R; are positive integers

Semantics:

* R:: the degrees of freedom in the numerator of the F distribution.

* Ry the degrees of freedom in the denominator of the F distribution.

If Cumulative is FALSE, FDIST returns 0 if X < 0, an Error if the numerator degrees of
freedom R, = 1 and X = 0, and the value

R,+R, (R, \&
F(#) Z1]2 R,
2 R, x ?
-R1 R2 R R1+R2
MN——) (= 1+—1x]| 2
(5T R,
otherwise.
If the numerator degrees of freedom R; = 1, then the density function has a pole at X = 0, the
R,
271 o
subterm X =0 is not defined.
If Cumulative is TRUE, FDIST returns 0 if X < 0 and the value
R,+R, (R, \&
F(g) Z1]2 R,
2 R2 J‘X t 2 t
R R 0 R R1+R2
r(=5)r(=%) 1+ 2¢t| 2
2 2 ,

otherwise.
See also LEGACY.FDIST 6.18.23

6.18.23 LEGACY.FDIST

Summary: returns the area of the right tail of the probability density function for the F-
distribution.

Syntax: LEGACY.FDIST(Number X ; Number R, ; Number R:)
Returns: Number

Constraints: R; and R; are positive integers

Semantics:

LEGACY.FDIST returns Error if x < 0 and the value

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 162 of 213

r(r1+r2) r, % g
2 T'2 © t771
r(rl)r(rz) J‘X rl T‘l;-rz t

otherwise.
Note that the latter is (1-FDIST(X; r1; r2; TRUE())).
See also FDIST 6.18.22

6.18.24 FINV
Summary: returns the inverse of FDIST(X;R1;R;; TRUE()).

Syntax: FINV(Number P ; Number R, ; Number R;)

Returns: Number

Constraints: 0 < P <1, R, and R; are positive integers

Semantics: FINV returns the unique non-negative number x such that FDIST(x;R:;R;) = P.
See also FDIST 6.18.22, LEGACY.FDIST 6.18.23, LEGACY.FINV 6.18.25

6.18.25 LEGACY.FINV
Summary: returns the inverse of LEGACY.FDIST(X;R:;R>).

Syntax: LEGACY.FINV(Number P ; Number R, ; Number R,)
Returns: Number
Constraints: 0 < P <1, R, and R; are positive integers

Semantics: LEGACY.FINV returns the unique non-negative number x such that
LEGACY.FDIST(x;R:;R;) = P.

See also FDIST 6.18.22, LEGACY.FDIST 6.18.23, FINV 6.18.24

6.18.26 FISHER

Summary: returns the Fisher transformation.
Syntax: FISHER(Number R)

Returns: Number

Constraints: -1<R<1

Semantics: Returns the Fisher transformation with a sample correlation R. This function
computes

1 1+R
y i)

where In is the natural logarithm function.
FISHER is a synonym for ATANH.
See also ATANH 6.16.11

6.18.27 FISHERINV

Summary: returns the inverse Fisher transformation.
Syntax: FISHERINV(Number R)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 163 of 213

Returns: Number

Constraints: none

Semantics: Returns the inverse Fisher transformation. This function computes
e’f—1
el

FISHERINV is a synonym for TANH.

See also TANH 6.16.70

6.18.28 FORECAST

Summary: Extrapolates future values based on existing x and y values.

Syntax: FORECAST(Number Value ; ForceArray Array Data_Y ; ForceArray Array Data_X)
Returns: Number

Constraints: COLUMNS(Data_Y) = COLUMNS(Data_X), ROWS(Data_Y) = ROWS(Data_X)
Semantics:

* Value: the x-value, for which the y-value on the linear regression is to be returned.

« Data_Y: the array or range of known y-values.

* Data_X: the array or range of known x-values.

For an empty element or an element of type Text or Boolean in Data_Y the element at the
corresponding position of Data_X is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30

6.18.29 FREQUENCY

Summary: Categorizes values into intervals and counts the number of values in each interval.
Syntax: FREQUENCY(NumberSequencelist Data ; NumberSequencelist Bins)
Returns: Array

Constraints: Values in Bins shall be sorted in ascending order and Bins shall be a column
vector. Evaluators may accept unsorted values in bins.

Semantics: Counts the number of values for each interval given by the border values in Bins

The values in Bins determine the upper boundaries of the intervals. The intervals include the
upper boundarie. The returned array is a column vector and has one more element than Bins
; the last element represents the number of all elements greater than the last value in Bins . If
Bins is empty, all values in Data are counted. The values in the result array are ordered
matching the original order of Bins . If the values in Bins are not sorted in ascending order,
they are sorted internally to form category intervals and the counts of Data values are
"unsorted" to the original order of Bins. If Data is empty, the value of all elements in the
returned array is 0.

Data: The data, that should be categorized and counted according to the given intervals.
Bins: The upper boundaries determining the intervals the values in data should be grouped

by.

6.18.30 FTEST

Summary: Calculates the probability of an F-test.

Syntax: FTEST(ForceArray NumberSequence Data_1 ; ForceArray NumberSequence
Data_2)

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 164 of 213

Returns: Number

Constraints: Data_1 and Data_2 shall both contain at least 2 numbers and shall both have
nonzero variances

Semantics:

Calculates a two-sided P-value to decide, whether the difference in the variances of the two
data sets are significant enough to reject the hypothesise, that both sets come from normally
distributed populations with the same variances.

Suppose the data set Data_1 is a sample of size n; from a normal distribution and has the
sample variance 512 , and the data set Data_2 is a sample of size N, from a normal

. . . . 2
distribution and has the sample variance s, .

2 2
Get the value P, as the area of the right tail beyond S; /s, of the F-distribution with
numerator degrees of freedom n;—1 and denominator degrees of freedom n,—1 .

FTEST returns twice the minimum of the values P.; and 1—P; .See also TTEST 6.18.81

6.18.31 GAMMADIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the Gamma distribution.

Syntax: GAMMADIST(Number X ; Number a ; Number B[; Logical Cumulative = TRUE])
Returns: Number
Constraints: a>0,8>0
Semantics: If Cumulative is FALSE, GAMMADIST returns 0 if X < 0 and the value

1 1 5
otherwise.
If Cumulative is TRUE(), GAMMADIST returns 0 if X < 0 and the value

t
J.: /))(X%M'ta_l'e ﬁdt

otherwise.
See also GAMMA 6.16.34, GAMMAINYV 6.18.32

6.18.32 GAMMAINV
Summary: returns the inverse of GAMMADIST(X;a;B8; TRUE).

Syntax: GAMMAINV(Number P ; Number a ; Number B)

Returns: Number

Constraints: 0<P<1,a>0,8>0

Semantics: GAMMAINYV returns the unique number X = 0 such that GAMMAINV(X;a;8) = P.
See also GAMMADIST 6.18.31

6.18.33 GAUSS

Summary: Returns 0.5 less than the standard normal cumulative distribution
Syntax: GAUSS(Number X')

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 165 of 213

Returns: Number
Semantics: Returns NORMDIST(X;0;1;TRUE())-0.5
See also NORMDIST 6.18.52

6.18.34 GEOMEAN

Summary: returns the geometric mean of a sequence

Syntax: GEOMEAN({ NumberSequenceList N }*)

Returns: Number

Semantics: Returns the geometric mean of a given sequence. That means
(H a)l/n
aeN

where n is a result of calling COUNT(N).

See also COUNT 6.13.6

6.18.35 GROWTH

Summary: Returns predicted values based on an exponential regression.

Syntax: GROWTH(Array KnownY [; [Array KnownX] [; [Array NewX] [; Logical Const =
TRUE]]])

Returns: Array

Constraints: (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) =
ROWS(KnownX)) or (COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX)
and COLUMNS(KnownX) = COLUMNS(NewX)) or (COLUMNS(KnownY) =
COLUMNS(KnownX) and ROWS(KnownY) = 1 and ROWS(KnownX) = ROWS(NewX))

Semantics:
*« KnownY: The set of known y-values to be used to determine the regression equation

* KnownX: The set of known x-values to be used to determine the regression equation. If
omitted or an empty parameter, it is set to the sequence 1,2,3,...,k , where

k = ROWS(KnownY) - COLUMNS(KnownY)

*« NewX: The set of x-values for which predicted y-values are to be calculated. If omitted or
an empty parameter, it is set to KnownX.

Const. If set to FALSE, the model constant a is equal to 0.

LOGEST(KnownY ; KnownX; Const, FALSE) either returns an error or an array with 1 row
and n+1 columns. If it returns an error then so does GROWTH. If it returns an array, we call

the entries in that array bybyyseesbisa

Let Z;; denote the entry in the ith row and jth column of NewX.

If COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = ROWS(KnownX),
then GROWTH returns an array with ROWS(NewX) rows and COLUMNS(NewX) column,

such that the entry in its ith row and jth columnis aXb;" .

Otherwise, if COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX) and
COLUMNS(KnownX) = COLUMNS(NewX), then GROWTH returns an array with

n
ROWS(NewX) rows and 1 column, such that the entry in the ith row is a XH bjz"f .
j=1

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 166 of 213

Otherwise, if COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = 1 and
ROWS(KnownX) = ROWS(NewX), then GROWTH returns an array with 1 row and

n
COLUMNS(NewX) columns, such that the entry in the jth column is a XH bl.z” .
i=1

See also COLUMNS 6.13.5, ROWS 6.13.30, LOGEST 6.18.42, TREND 6.18.79

6.18.36 HARMEAN

Summary: returns the harmonic mean of a sequence

Syntax: HARMEAN({ NumberSequenceList N }*)

Returns: Number

Semantics: Returns the harmonic mean of a given sequence. That means
n

y L

i=1 d;

where a;,a,,...,a, are the numbers of the sequence N and n is a result of calling COUNT(N).
See also COUNT 6.13.6

6.18.37 HYPGEOMDIST

Summary: The hypergeometric distribution returns the number of successes in a sequence of
n draws from a finite population without replacement.

Syntax: HYPGEOMDIST(Integer X ; Integer T ; Integer M ; Integer N [; Logical Cumulative
= FALSE])

Returns: Number

Constraints: 0< X<T=<N,0<M<N
Semantics:

¢ X:the number of successes in T trials

e T: the number of trials

e M: the number of successes in the population
¢ N: the total population

e Cumulative : a Logical parameter.

If Cumulative is FALSE, return the probability of exactly X successes. If Cumulative is
TRUE, return the probability of at most X successes. If omitted, FALSE is assumed.

If Cumulative is FALSE, HYPGEOMDIST returns
M\\[N—M
XI\T—-X
N
T
If Cumulative is TRUE, HYPGEOMDIST returns
M\(N—-M
i i)\ T—i
i=0 N
T

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 167 of 213

Note:

(x):() for y>x
y

6.18.38 INTERCEPT

Summary: Returns the y-intercept of the linear regression line for the given data.

Syntax: INTERCEPT(ForceArray Array Data_Y ; ForceArray Array Data_X)

Returns: Number

Constraints: COLUMNS(Data_X) = COLUMNS(Data_Y), ROWS(Data_X) = ROWS(Data_Y)
Semantics:

INTERCEPT returns the intercept (a) calculated as described in 6.18.41 for the function call
LINEST(Data_Y,Data_X,FALSE()).

For an empty element or an element of type Text or Boolean in Data_Y the element at the
corresponding position of Data_X is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30

6.18.39 KURT

Summary: Return the kurtosis (“peakedness”) of a data set.
Syntax: KURT({ NumberSequencelList X }")

Returns: Number

Constraints: COUNT(X) = 4, STDEV(X) # 0

Semantics:

Kurtosis characterizes the relative peakedness or flatness of a distribution compared with the
normal distribution. Positive kurtosis indicates a relatively peaked distribution (compared to the
normal distribution), while negative kurtosis indicates a relatively flat distribution.

nntl) & 1=\ 31y
(n—l)(n—2)(n—3)1;(s) (n—=2)(n-3)

kurtosis =

where s is the sample standard deviation, and n is the number of numbers.
See also STDEV 6.18.72

6.18.40 LARGE

Summary: Finds the nth largest value in a list.
Syntax: LARGE(NumberSequenceList List ; Number|Array N)
Returns: Number or Array

Constraints: ROUNDUP(N;0) = N. If the resulting N is <1 or larger than the size of List, Error
is returned

Semantics: If N is an array of numbers, an array of largest values is returned.
See also SMALL 6.18.70, ROUNDUP 6.17.7

6.18.41 LINEST

Summary: Returns the parameters of the (simple or multiple) linear regression equation for
the given data and, optionally, statistics on this regression.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 168 of 213

Syntax: LINEST(ForceArray Array KnownY [; [ForceArray Array KnownX] [; Logical
Const = TRUE [; Logical Stats = FALSE]]])

Returns: Array

Constraints: (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) =
ROWS(KnownX)) or (COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX))
or (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = 1)

Semantics:
* KnownY: The set of y-values for the equation

*« KnownX: The set of x-values for the equation. If omitted or an empty parameter, it is set
to the sequence 1,2,3,...,k , where k = ROWS(KnownY) - COLUMNS(KnownY).

Const: If set to FALSE, the model constant a is equal to 0.

« Stats: If FALSE, only the regression coefficient is to be calculated. If set to TRUE, the
result will include other statistical data.

If any of the entries in KnownY and KnownX do not convert to Number, LINEST returns an
error.

The result created by LINEST if STATS is TRUE is given in Table 29 - LINEST. If STATS is
FALSE it is just the first row of Table 29 - LINEST. The empty cells in this table are returned
as empty or as containing an error.

Table 29 - LINEST

bn bn-l R bl a
Sp Sh,, Sp, Sq
R? Se
F df
Ssreg SSresid

If COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = ROWS(KnownX)
then n = 1, k = ROWS(KnownY) - COLUMNS(KnownY), the entries of KnownX in column

major order are denoted with X,,, X,,,-.., X;, and the entries of KnownY in column major
order are denoted with Y1, Y5,..+, Yy .

Otherwise but if COLUMNS(KnownY) = 1, then n = COLUMNS(KnownX), k =
ROWS(KnownY), the entry in the jth column and ith row of KnownX is denoted X;; and the
entry in the ith row of KnownY is denoted Y;.

Otherwise but if ROWS(KnownY) = 1, then n = ROWS(KnownX), k = COLUMNS(KnownY),
the entry in the jth column and ith row of KnownXis denoted X;; and the entry in the jth
column of KnownY is denoted Y, .

If Constis TRUE and k < n + 1, LINEST returns an error. Similarly, if Constis FALSE and k <
n, LINEST returns an error.

We denote

and

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 169 of 213

and define the following matrices:

’ I x, ... x,, Xy e Xy,
1
—|". 1 x, ... x _ X X
Y=: |and X=| 72 27| for Const being TRUE, and X =|"!? 2
Ve o .
I x,, ... x,, Xy oo Xp,

for Const being FALSE().

Let X" denote the transpose of X, see TRANSPOSE 6.5.6. Then the matrix product x"X

is a square matrix. If X" X is not invertible, then LINEST shall either return an error or
calculate a result as described below.

It X"-X is invertible, then (XT-X)fl-XT-Y is a matrix B with a single column. If Const is

a
TRUE, the entries of B are denoted B = b‘l ; if Const is FALSE, the entries of B are denoted
bn
b,
B= : landa=0.
b

n

These a,b,,...,b, are the values returned by LINEST in the first row of its result array in the
order given in Table 29 - LINEST.

The statistics in the 2" to 5" rows of Table 29 - LINEST are as follows:
If Constis TRUE:
df =k—n—1

k n

n) k 5
55resid=Z((a+Z bjxij)_yi) Ssreg:Z((a"'zbjxij)_y) SGZSe\/CT1
j=1 i=1 J

i=1 j=1

and
sb,=sevdi+1

where d; is the element in the ith row and ith column of

_ 2_ re;
(XT'X)],S: SS esi , R_k - 2and _M.
‘ df Z (yz_y) SS}‘esid/df

If Constis FALSE:

n k n 9

k
2

_ SSresidZZ((zbjxij)_yi) SSreg:Z(ijxij) Sb:Se\]CZ'
df =k—n_ =1 j=1 i=1 j=1 ’

where d; is the element in the ith row and ith column of

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 170 of 213

ss,,
(XT'X)_l B SS R’= g SSmg/n

resid

, = , k and F=————— .
Se df Z y,z SSreSid/df
i=1

In this case s is undefined and is returned as either 0, blank or an error.

a

If XX is not invertible, then the columns of X are linearly dependent. In this case an
evaluator shall return an error or select any maximal linearly independent subset of these
columns that if Const is TRUE includes the first column and perform the above calculations

with that subset. In the latter case the coefficients b, of omitted columns are returned as 0.

See also COLUMNS 6.13.5, ROWS 6.13.30

6.18.42 LOGEST

Summary: Returns the parameters of an exponential regression equation for the given data
obtained by linearizing this intrinsically linear response function and returns, optionally,
statistics on this regression.

Syntax: LOGEST(ForceArray Array KnownY [; [ForceArray Array KnownX] [; Logical
Const = TRUE [; Logical Stats = FALSE]]])

Returns: Array

Constraints: (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) =
ROWS(KnownX)) or (COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX))
or (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = 1)

Semantics:
* KnownY: The set of y-values for the equation

* KnownX: The set of x-values for the equation. If omitted or an empty parameter, it is set
to the sequence 1,2,3,...,k, where k = ROWS(KnownY) - COLUMNS(KnownY).

Const: If set to FALSE, the model constant a is equal to O.

« Stats: If FALSE, only the regression coefficient is to be calculated. If set to TRUE, the
result will include other statistical data.

If any of the entries in KnownY and KnownX do not convert to Number or if any of the entries
in KnownY is negative, LOGEST returns an error.

The result created by LOGEST if STATS is TRUE is given in Table 30 - LOGEST. If STATS is
FALSE it is just the first row of Table 30 - LOGEST. The empty cells in this table are returned
as empty or as containing an error.

Table 30 - LOGEST

b, b, b, a
e e T e e
Sb, Sb,., S, | Sa
2
R S,
F df
SSreg Ssresid

If COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = ROWS(KnownX)
then n =1, k = ROWS(KnownY) - COLUMNS(KnownY), the entries of KnownX in column

major order are denoted with X,,, X, ,...,X;, and the entries of KnownY in column major
order are denoted with ¥, Y5,.-+, Vi .

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 171 of 213

Otherwise but if COLUMNS(KnownY) = 1, then n = COLUMNS(KnownX), k =
ROWS(KnownY), the entry in the jth column and ith row of KnownXis denoted X;; and the

entry in the ith row of KnownY is denoted Y;.

Otherwise but if ROWS(KnownY) = 1, then n = ROWS(KnownX), k = COLUMNS(KnownY),
the entry in the jth column and ith row of KnownXis denoted X;; and the entry in the jth

column of KnownY is denoted Y .

If Constis TRUE and k< n + 1, LOGEST returns an error. Similarly, if Const is FALSE and k
< n, LOGEST returns an error.

We denote

and

and define the following matrices:

I x,, ... xy,
in(y) Lo
Y= and X=[72 2n | for Const being TRUE, and
In(y,) _—
1 X, Xien
X11 X1n
X
X=|"1? 2n | for Const being FALSE().
xkl xkn

Let X' denote the transpose of X, see TRANSPOSE 6.5.6. Then the matrix product X'X

is a square matrix. If X" X is not invertible, then LOGEST shall either return an error or
calculate a result as described below.

If X" X is invertible, then (XT'X)_l'XTY is a matrix B with a single column. If Const is

a
b
TRUE, the entries of B are denoted B= _1 ; if Const is FALSE, the entries of B are denoted
b}’[
bl
B=|:|anda=0.
b

n

Then e“,ebl,..., e” are the values returned by LOGEST in the first row of its result array in
the order given in Table 1 - Operators.

The statistics in the 2" to 5" rows of Table 1 - Operators are as follows:

If Constis TRUE():

df =k—n—1

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 172 of 213

Sp, =S8N d s
where d, is the element in the ith row and ith column of

MW
SS R’= n S8,/ 1

resid k

, = , and F=—X
T\ > (In(y,)—In(y)) SS,dl df

J=1

(x"-x)™

If Const is FALSE:

n

a 2 k 2
SSresid:Z((Z ijij)_ln(yi)> SSreg:Z(zbjxij> Sb':SE\}dl-
j=1 i=1

df =k—n j=1 =1
where d; is the element in the ith row and ith column of

SS...
(XT'X>_1 — SSI‘esid 2: . SS /l’l

L5 = , k and F=—"—
Se df Z yk 2 SSlewd/df

In this case s, is undefined and is returned as either 0, blank or an error.

If X"-X is not invertible, then the columns of X are linearly dependent. In this case an
evaluator shall return an error or select any maximal linearly independent subset of these
columns that if Const is TRUE includes the first column and perform the above calculations

with that subset. In the latter case the coefficients e” of omitted columns are returned as 1.
See also COLUMNS 6.13.5, ROWS 6.13.30

6.18.43 LOGINV
Summary: returns the inverse of LOGNORMDIST(x; Mean;StandardDeviation, TRUE()).

Syntax: LOGINV(Number P [; Number Mean = 0O [; Number StandardDeviation=11]])
Returns: Number
Constraints: StandardDeviation >0and 0<P< 1.

Semantics: LOGINV returns the unique number x such that
LOGNORMDIST(x;Mean;StandardDeviation;TRUE()) = P

See also LOGNORMDIST 6.18.44

6.18.44 LOGNORMDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the lognormal distribution with the mean and standard deviation given.

Syntax: LOGNORMDIST(Number X[; Number g =0 [; Number o= 1] ; Logical
Cumulative =TRUE]]])

Returns: Number
Constraints: o> 0; X > 0 if Cumulative is FALSE
Semantics: If Cumulative is FALSE, LOGNORMDIST returns the value

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 173 of 213

1 ll’l(X)flu 2
77'(led)
e’
X\V2mxo

If Cumulative is TRUE, LOGNORMDIST returns the value

1 In(t)—u 2
e L lnlt)-u,
° t\270

dt

if X> 0 and O otherwise.

6.18.45 MAX

Summary: Return the maximum from a set of numbers.
Syntax: MAX({ NumberSequenceList N }")

Returns: Number

Constraints: None.

Semantics: Returns the value of the maximum number in the list passed in. Non-numbers are
ignored. Note that if Logical types are a distinct type, they are not included.

See also MAXA 6.18.46, MIN 6.18.48

6.18.46 MAXA

Summary: Return the maximum from a set of values, including values of type Text and
Logical.

Syntax: MAXA({Any N}")
Returns: Number
Constraints: None.

Semantics: A variation of the MAX function that includes values of type Text and Logical. Text
values are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0.
Empty cells are not included. Any N may be of type ReferencelList.

See also MAX 6.18.45, MIN 6.18.48, MINA 6.18.49

6.18.47 MEDIAN

Summary: Returns the median (middle) value in the list.
Syntax: MEDIAN({ NumberSequenceList X }*)
Returns: Number

Semantics:

MEDIAN logically ranks the numbers (lowest to highest). If given an odd number of values,
MEDIAN returns the middle value. If given an even number of values, MEDIAN returns the
arithmetic average of the two middle values.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 174 of 213

n=isthecount of the ranked numbersequence

forn=even

6.18.48 MIN

Summary: Return the minimum from a set of numbers.
Syntax: MIN({ NumberSequenceList N}*)

Returns: Number

Constraints: None.

Semantics: Returns the value of the minimum number in the list passed in. Returns zero if no
numbers are provided in the list. What happens when MIN is provided O parameters is
implementation-defined, but MIN() with no parameters should return 0.

See also MAX 6.18.45, MINA 6.18.49

6.18.49 MINA

Summary: Return the minimum from a set of values, including values of type Text and
Logical.

Syntax: MINA({ Any N}*)
Returns: Number
Constraints: None.

Semantics: A variation of the MIN function that includes values of type Text and Logical. Text
values are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0.
Empty cells are not included. What happens when MINA is provided O parameters is
implementation-defined. Any N may be of type ReferencelList.

See also MIN 6.18.48, MAXA 6.18.46

6.18.50 MODE

Summary: Returns the most common value in a data set.
Syntax: MODE({ ForceArray NumberSequence N }")

Semantics: Returns the most common value in a data set. If there are more than one values

with the same largest frequency, returns the smallest value. If the number sequence does no

contain at least two equal values, the MODE is not defined, as no most common value can be
found, and an Error is returned.

6.18.51 NEGBINOMDIST

Summary: Returns the negative binomial distribution.
Syntax: NEGBINOMDIST(Integer X ; Integer R ; Number Prob)
* X: The number of failures.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 175 of 213

* R: The threshold number of successes.

e Prob: The probability of a success.

Returns: Number

Constraints:

e If(X+R-1)<0, NEGBINOMDIST returns an Error.

* If Prob<0 or Prob > 1, NEGBINOMDIST returns an Error.
Semantics:

NEGBINOMDIST returns the probability that there will be X failures before the R-th success,
when the constant probability of a success is Prob.

Note: This function is similar to the binomial distribution, except that the
number of successes is fixed, and the number of trials is variable. Like the
binomial, trials are assumed to be independent.

Py prob (X):(X;IEII)ProbR(l—Prob)X

X+R—-1
R-1

) is a binomial coefficient

6.18.52 NORMDIST

Summary: returns the value of the probability density function or the cumulative distribution
function for the normal distribution with the mean and standard deviation given.

Syntax: NORMDIST(Number X ; Number Mean ; Number StandardDeviation [; Logical
Cumulative = TRUE()])

Returns: Number
Constraints: StandardDeviation > 0.
Semantics: In the following p is Mean and ¢ is StandardDeviation.

If Cumulative is FALSE, NORMDIST returns the value
LX)

- o
e 2

V2o

If Cumulative is TRUE, NORMDIST returns the value

=0y

_1
X 2

= o
See also LEGACY.NORMSDIST 6.18.54

6.18.53 NORMINV
Summary: returns the inverse of NORMDIST(x; Mean;StandardDeviation, TRUE()).

Syntax: NORMINV(Number P ; Number Mean ; Number StandardDeviation)
Returns: Number
Constraints: StandardDeviation>0and 0 <P < 1.

Semantics: NORMINV returns the unique number x such that
NORMDIST(x; Mean;StandardDeviation;TRUE()) = P.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 176 of 213

See also NORMDIST 6.18.52

6.18.54 LEGACY.NORMSDIST

Summary: returns the value of the cumulative distribution function for the standard normal
distribution.

Syntax: LEGACY.NORMSDIST(Number X)
Returns: Number
Constraints: None

Semantics: LEGACY.NORMSDIST returns the value

1.
—=t
2

Jo. =
N2

This is exactly NORMDIST(X;0;1; TRUE()).
See also NORMDIST 6.18.52, LEGACY.NORMSINV 6.18.55

dt

6.18.55 LEGACY.NORMSINV
Summary: returns the inverse of LEGACY.NORMSDIST(X).

Syntax: LEGACY.NORMSINV(Number P)

Returns: Number

Constraints: 0 < P< 1.

Semantics: LEGACY.NORMSINV returns NORMINV (P).
See also NORMINV 6.18.53, LEGACY.NORMSDIST 6.18.54

6.18.56 PEARSON

Summary: PEARSON returns the Pearson correlation coefficient of two data sets

Syntax: PEARSON(ForceArray Array IndependentValues ; ForceArray Array
DependentValues)

Returns: Number

Constraints: COLUMNS(/IndependentValues) = COLUMNS(DependentValues),
ROWS(IndependentValues) = ROWS(DependentValues), both sequences shall contain at
least one number at corresponding positions each.

Semantics:

* IndependentValues: represents the array of the first data set. (X-Values)

« DependentValues: represents the array of the second data set. (Y-Values)
N
. (x,—%)(y;—¥)

i=1

\/é (xi—i)zi (yi=y)

i=1

r=

X,y aretheaveragesof the given x, y data

For an empty element or an element of type Text or Boolean in IndependentValues the
element at the corresponding position of DependentValues is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 177 of 213

6.18.57 PERCENTILE

Summary: Calculates the x-th sample percentile among the values in range.
Syntax: PERCENTILE(NumberSequencelist Data ; Number X')

Returns: Number

Constraints:

« COUNT(Data) >0

e 0=X=1

* Semantics:

« Data: The array or range of values to get the percentile from.

1
* X The percentile value between 0 and 1, inclusive. If Xis not a multiple of 1

PERCENTILE interpolates to obtain the value between two data points.

Returns the X-th sample percentile of data values in Data. A percentile returns the scale value
for a data series which goes from the smallest (Alpha = 0) to the largest value (Alpha = 1) of a
data series. For Alpha = 25%, the percentile means the first quartile; Alpha = 50% is the
MEDIAN.

Step 1:
Sort the list of numbers given by array Data .

Step 2:
Calculate the ranking {1,...,n/, split into integer and decimal part

r=1+X-n—-1)=I+D

with

X = the percentile you want to find

n = the count of values

I = the integer part of the ranking = |r|

D = the decimal part of the ranking = r —|r|

Step 3:
Interpolate between the necessary two numbers

PERCENTILE=Y,+D-(Y,,,—Y,)

with Y, being the data point ranked at position I

See also COUNT 6.13.6, MAX 6.18.45, MAX 6.18.45, MEDIAN 6.18.47, MIN 6.18.48,
PERCENTRANK 6.18.58, QUARTILE 6.18.64, RANK 6.18.65

6.18.58 PERCENTRANK

Summary: Returns the percentage rank of a value in a sample.

Syntax: PERCENTRANK(NumberSequencelList Data ; Number X [; Integer Significance =
31)

Returns: Number
Constraints:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 178 of 213

e COUNT(Data) >0

* MIN(Data) < X < MAX(Data)

* INT(Significance) = Significance; Significance = 1
Semantics:

« Data: the array or range of data with numeric values.
« X the value whose rank is to be determined.

* Significance: an optional value that identifies the number of significant digits for the
returned percentage value. If omitted, a value of 3 is used (0.xxx).

Returns the rank of a value in a data set Data as a percentage of the data set, a value
between 0 and 1, inclusive. This function can be used to evaluate the relative standing of a
value within a data set.

For COUNT(Data) > 1, PERCENTRANK returns r / (COUNT(Data) -1), where r is the rank of
X in Data. The rank of the lowest number in Data is 0, and of the next lowest number 1, and
so on. If X'is not in Data, it is assigned a fractional rank proportionately between the rank of
the numbers on either side. Specifically, if Xlies betweenYandZ=Y + 1 (Y < X< Z)with Y
being the largest number smaller than X and Z the smallest number larger than X, and where
Y has rank ry, the rank of X is calculated as

X—-Y
Z-Y

In the special case where COUNT(Data) = 1, the only valid value for X'is the single value in
Data, in which case PERCENTRANK returns 1.

See also COUNT 6.13.6, INT 6.17.2, MAX 6.18.45, MIN 6.18.48, PERCENTILE 6.18.57,
RANK 6.18.65

x=ry+

6.18.59 PERMUT

Summary: returns the number of permutations of k objects taken from n objects.
Syntax: PERMUT(Integer N ; Integer K)

Returns: Number

Constraints: N20; K20; N2 K

Semantics: PERMUT returns

(N—K]!

6.18.60 PERMUTATIONA

Summary: Returns the number of permutations for a given number of objects (repetition
allowed).

Syntax: PERMUTATIONA(Integer Total ; Integer Chosen)
Returns: Number
Constraints: Total = 0, Chosen =0

Semantics: Given Total number of objects, return the number of permutations containing
Chosen number of objects, with repetition permitted. The result is 1 if Total = 0 and Chosen
= 0, otherwise the result is

PERMUTATIONA = Total <"

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 179 of 213

6.18.61 PHI

Summary: Returns the values of the density function for a standard normal distribution.
Syntax: PHI(Number N')

Returns: Number

Semantics: PHI(N) is a synonym for NORMDIST(N,0,1,FALSE()).

See also NORMDIST 6.18.52

6.18.62 POISSON

Summary: returns the probability or the cumulative distribution function for the Poisson
distribution

Syntax: POISSON(Integer X ; Number A [; Logical Cumulative = TRUE])
Returns: Number
Constraints: A>0,Xz=0
Semantics: If Cumulative is FALSE, POISSON returns the value
e X!
[X!
If Cumulative is TRUE, POISSON returns the value

k=0 k]

6.18.63 PROB

Summary: Returns the probability that a discrete random variable lies between two limits.

Syntax: PROB(ForceArray Array Data ; ForceArray Array Probability ; Number Start [;
Number End])

Returns: Number

Constraints:

e The sum of the probabilities in Probability shall equal 1.
* Allvalues in Probability shall be >0 and < 1.

¢ COUNT(Data) = COUNT(Probability)

Semantics:

« Data: the array or range of data in the sample (the Number values in this array or range
are referred to below as d, d,...,d).

* Probability: the array or range of the corresponding probabilities (the Number values in
this array or range are referred to below as p, p, ..., p,).

« Start the start value (lower bound) of the interval whose probabilities are to be summed.

* End: (optional) the end value (upper bound) of the interval whose probabilities are to be
summed. If omitted, End = Start is used.

Suppose that I(x, a, b) denotes the indicator function thatis 1 if ¢ <x <b and 0 otherwise.
Then PROB returns

n

D> (I(d,, Start, End)X p,)

i=1

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 180 of 213

i.e. the sum of all probabilities p; whose corresponding data value d, satisfies
Start <d,<End . Note thatif End <Start then PROB returns 0 since in this case
1(d,, Start, End)=0 for all i.

See also COUNT 6.13.6

6.18.64 QUARTILE

Summary: Returns a quartile of a set of data points.

Syntax: QUARTILE(NumberSequence Data ; Integer Quart)

Returns: Number

Constraints:

e COUNT(Data) >0

e 0<Quart<4

Semantics:

« Data: The cell range or data array of numeric values.

* Quart. The number of the quartile to return.
If Quart = 0, the minimum value is returned, which is equivalent to the MIN() function.
If Quart = 1, the value of the 25th percentile is returned.

If Quart = 2, the value of the 50th percentile is returned, which is equivalent to the
MEDIAN() function.

If Quart = 3, the value of the 75th percentile is returned.
If Quart = 4, the maximum value is returned, which is equivalent to the MAX() function.

Based on the statistical rank of the data points in Data, QUARTILE returns the percentile
value indicated by Quart. The percentile is calculated as Quart divided by 4. An algorithm to
calculate the percentile for a set of data points is given in the definition of PERCENTILE.

See also COUNT 6.13.6, MAX 6.18.45, MEDIAN 6.18.47, MIN 6.18.48, PERCENTILE
6.18.57, PERCENTRANK 6.18.58, RANK 6.18.65

6.18.65 RANK

Summary: Returns the rank of a number in a list of numbers.

Syntax: RANK(Number Value ; NumberSequencelList Data [; Number Order=01])
Returns: Number

Constraints: Value shall exist in Data.

Semantics: The RANK function returns the rank of a value within a list.

e Value: the number for which to determine the rank.

* Data: numbers used to determine the ranking.

e Order. specifies how to rank the numbers:
If 0 or omitted, Data is ranked in descending order.
If not 0, Data is ranked in ascending order.

If a number in Data occurs more than once it is given the same rank, but increments the rank
for subsequent different numbers. If Value does not exist in Data an Error is returned.

6.18.66 RSQ

Summary: Returns the square of the Pearson product moment correlation coefficient.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 181 of 213

Syntax: RSQ(ForceArray Array ArrayY ; ForceArray Array ArrayX)

Returns: Number

Constraints:

The arguments shall be either numbers or names, arrays, or references that contain numbers.

If an array or reference argument contains Text, Logical values, or empty cells, those values
are ignored; however, cells with the value zero are included.

If ArrayY and ArrayX are empty or have a different number of data points, then #N/A is
returned.

COLUMNS(ArrayY) = COLUMNS(ArrayX), ROWS(ArrayY) = ROWS(ArrayX)Semantics:
The r-squared value can be interpreted as the proportion of the variance in y attributable to
the variance in x.

N N
Z Z ycalc

The result of the RSQ function is the same as PEARSON * PEARSON.

For an empty element or an element of type Text or Boolean in ArrayY the element at the
corresponding position of ArrayXis ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30, PEARSON 6.18.56

6.18.67 SKEW

Summary: Estimates the skewness of a distribution using a sample set of numbers.
Syntax: SKEW({ NumberSequenceList Sample }")

Returns: Number

Constraints: The sequence shall contain three numbers at least.

Semantics: Estimates the skewness of a distribution using a sample set of numbers.

Given the expectation value X and the standard deviation estimate s , the skewness
becomes

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 182 of 213

See also SKEWP 6.18.68

6.18.68 SKEWP

Summary: Calculates the skewness of a distribution using the population of a random
variable.

Syntax: SKEWP({ NumberSequence Population }*)
Returns: Number
Constraints: The sequence shall contain three numbers at least.

Semantics: Calculates the skewness of a distribution using the population, i.e. the possible
outcomes, of a random variable.

Given the expectation value X and the standard deviation o,the skewness becomes

1l X% ’
=l

(o2

See also SKEW 6.18.67

6.18.69 SLOPE

Summary: Calculates the slope of the linear regression line.
Syntax: SLOPE(ForceArray Array Y ; ForceArray Array X)
Returns: Number

Constraints: COLUMNS(Y) = COLUMNS(X), ROWS(Y) = ROWS(X), both sequences shall
contain at least one number at corresponding positions each.

Semantics: Calculates the slope of the linear regression line.

g(xi_)_c)(yi_y>
S (x-v)

i=1

a=

For an empty element or an element of type Text or Boolean in Y the element at the
corresponding position of X is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30, INTERCEPT 6.18.38, STEYX 6.18.76

6.18.70 SMALL

Summary: Finds the nth smallest value in a list.
Syntax: SMALL(NumberSequencelist List ; Integer|Array N)
Returns: Number or Array

Constraints: ROUNDDOWN(N;0) = N, effectively being INT(N) = N for positive numbers. If
the resulting N is <1 or larger than the size of List, Error is returned.

Semantics: If N is an array of numbers, an array of smallest values is returned.
See also INT 6.17.2, LARGE 6.18.40, ROUNDDOWN 6.17.6

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 183 of 213

6.18.71 STANDARDIZE

Summary: Calculates a normalized value of a random variable.

Syntax: STANDARDIZE(Number Value ; Number Mean ; Number Sigma)
Returns: Number

Constraints: Sigma >0

Semantics: Calculates a normalized value of a random variable.

Value —Mean)

STANDARDIZE= (_
Sigma

See also GAUSS 6.18.33

6.18.72 STDEV

Summary: Compute the sample standard deviation of a set of numbers.
Syntax: STDEV({ NumberSequenceList N}")
Returns: Number

Constraints: At least two numbers shall be included. Returns an Error if less than two
Numbers are provided.

Semantics: Computes the sample standard deviation s, where

Note that s is not the same as the standard deviation of the set, o, which uses n rather than n
-1.

See also STDEVP 6.18.74, AVERAGE 6.18.3

6.18.73 STDEVA

Summary: Calculate the standard deviation using a sample set of values, including values of
type Text and Logical.

Syntax: STDEVA({ Any Sample }*)
Returns: Number
Constraints: COUNTA(Sample) > 1.

Semantics: Unlike the STDEV function, includes values of type Text and Logical. Text values
are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0. Empty
cells are not included.

The handling of string constants as parameters is implementation-defined. Either, string
constants are converted to numbers, if possible and otherwise, they are treated as 0, or string
constants are always treated as 0.

Suppose the resulting sequence of values is xi, Xz, ..., X». Then let

1 n
X=—) X
nz‘ !
STDEVA returns

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 184 of 213

N s

n—1=4

i=1
See also COUNTA 6.13.7, STDEV 6.18.72

6.18.74 STDEVP

Summary: Calculates the standard deviation using the population of a random variable,
including values of type Text and Logical.

Syntax: STDEVP({ NumberSequence N }")

Returns: Number

Constraints: COUNT(N) = 1.

Semantics: Computes the standard deviation of the set g, where

Uzzlz (x,—x)
ni=

Note that o is not the same as the sample standard deviation, s, which uses n — 1 rather than
n.

See also COUNT 6.13.6, STDEV 6.18.72, AVERAGE 6.18.3

6.18.75 STDEVPA

Summary: Calculates the standard deviation using the population of a random variable,
including values of type Text and Logical.

Syntax: STDEVPA({ Any Sample }")
Returns: Number
Constraints: COUNTA(Sample) = 1.

Semantics: Unlike the STDEV function, includes values of type Text and Logical. Text values
are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0. Empty
cells are not included.

Given the expectation value ¥ the standard deviation becomes

Uzzlz (x,—x)
n =1

In the sequence, only Numbers and Logical types are considered; cells with Text are
converted to 0O; other types are ignored. If Logical types are a distinct type, they are still
included, with TRUE considered 1 and FALSE considered 0. Any Sample may be of type
ReferencelList.

The handling of string constants as parameters is implementation-defined. Either, string
constants are converted to numbers, if possible and otherwise, they are treated as zero, or
string constants are always treated as zero.

See also COUNTA 6.13.7, STDEVP 6.18.74

6.18.76 STEYX

Summary: Calculates the standard error of the predicted y value for each x in the regression.
Syntax: STEYX(ForceArray Array MeasuredY ; ForceArray Array X))
Returns: Number

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 185 of 213

Constraints: COLUMNS(MeasuredY) = COLUMNS(X), ROWS(MeasuredY) = ROWS(X),
both sequences shall contain at least three numbers at corresponding positions each.

Semantics: Calculates the standard error of the predicted y value for each x in the regression.

(nz Xy, x,; yi)2

L]

For an empty element or an element of type Text or Boolean in MeasuredY the element at the
corresponding position of X is ignored, and vice versa.

See also COLUMNS 6.13.5, ROWS 6.13.30, INTERCEPT 6.18.38, SLOPE 6.18.69

_ 1 2_ 2_
STEYX = o n;yi (Z y,.)

6.18.77 LEGACY.TDIST

Summary: Returns the area to the tail or tails of the probability density function of the t-
distribution.

Syntax: LEGACY.TDIST(Number X ; Integer Df ; Integer Tails)
Returns: Number

Constraints: X= 0, Df= 1, Tails =1 or 2

Semantics: Then LEGACY.TDIST returns

Tails-| f(c)dt

where
Df+1
” F(f;) (2)_(Df+l)
flt)= 1+— 2
\/anF(DTf) br

Note that Df denotes the degrees of freedom of the t-distribution and I' is the Gamma function.

See also GAMMA 6.16.34, BETADIST 6.18.7, BINOMDIST 6.18.10, CHISQDIST 6.18.12, EX-
PONDIST 6.18.21, FDIST 6.18.22, GAMMADIST 6.18.31, GAUSS 6.18.33, HYPGEOMDIST
6.18.37, LOGNORMDIST 6.18.44, NEGBINOMDIST 6.18.51, NORMDIST 6.18.52, POISSON
6.18.62, WEIBULL 6.18.86

6.18.78 TINV

Summary: Calculates the inverse of the two-tailed t-distribution.
Syntax: TINV(Number Probability ; Integer DegreeOfFreedom)
Returns: Number

Constraints: 0 < Probability < 1, DegreeOfFreedom = 1
Semantics: Calculates the inverse of the two-tailed t-distribution.
See also LEGACY.TDIST 6.18.77

6.18.79 TREND

Summary: Returns predicted values based on a simple or multiple linear regression.

Syntax: TREND(Array KnownY [; [Array KnownX [;[Array NewX] [; Logical Const =
TRUE]]])

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 186 of 213

Returns: Array

Constraints: (COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) =
ROWS(KnownX)) or (COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX)
and COLUMNS(KnownX) = COLUMNS(NewX)) or (COLUMNS(KnownY) =
COLUMNS(KnownX) and ROWS(KnownY) = 1 and ROWS(KnownX) = ROWS(NewX))

Semantics:
KnownY: The set of known y-values to be used to determine the regression equation

KnownX: The set of known x-values to be used to determine the regression equation. If
omitted or an empty parameter, it is set to the sequence 1,2,3,...,k, where k =
ROWS(KnownY) - COLUMNS(KnownY).

NewX: The set of x-values for which predicted y-values are to be calculated. If omitted or an
empty parameter, it is set to KnownX.

Const: If set to FALSE, the model constant a is equal to 0.

LINEST(KnownY;, KnownX; Const, FALSE()) either returns an error an array with 1 row and
n + 1 columns. If it returns an error then so does TREND. If it returns an array, we call the

entries in thatarray b,,b,_,,...,b,,a.
Let z;; denote the entry in the ith row and jth column of NewX.

If COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = ROWS(KnownX),
then TREND returns an array with ROWS(NewX) rows and COLUMNS(NewX) column, such

that the entry in its ith row and jth column is a+b1-zij .

Otherwise, if COLUMNS(KnownY) = 1 and ROWS(KnownY) = ROWS(KnownX) and
COLUMNS(KnownX) = COLUMNS(NewX), then TREND returns an array with ROWS(NewX)

n
rows and 1 column, such that the entry in the ith row is a+z bj-zij .
j=1
Otherwise, if COLUMNS(KnownY) = COLUMNS(KnownX) and ROWS(KnownY) = 1 and
ROWS(KnownX) = ROWS(NewX), then TREND returns an array with 1 row and
n
COLUMNS(NewX) columns, such that the entry in the jth column is a+z bi-zij .
i=1

See also COLUMNS 6.13.5, ROWS 6.13.30, INTERCEPT 6.18.38, LINEST 6.18.41, SLOPE
6.18.69, STEYX 6.18.76

6.18.80 TRIMMEAN

Summary: Returns the mean of a data set, ignoring a proportion of high and low values.
Syntax: TRIMMEAN(NumberSequencelList DataSet ; Number CutOffFraction)
Returns: Number
Constraints: 0 < CutOffFraction < 1
Semantics: Returns the mean of a data set, ignoring a proportion of high and low values.
Let n denote the number of elements in the data set and let

SortedDataSet |, SortedDataSet, , SortedDataSet , ..., SortedDataSet ,

be the values in the data set sorted in ascending order. Moreover let

n-CutOffFraction
2

CutOff =INT

Then TRIMMEAN returns the value

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 187 of 213

n—CutOff

1
_ z SortedDataSet,
n—2-CutOff i=CutOff +1 l

See also AVERAGE 6.18.3 , GEOMEAN 6.18.34 , HARMEAN 6.18.36

6.18.81 TTEST

Summary: Calculates the p-value of a 2-sample t-test.
Syntax: TTEST(ForceArray Array X ; ForceArray Array Y ; Integer Tails ; Integer Type)
Returns: Number

Constraints: COUNT(X) > 1, COUNT(Y) > 1, Tails =1 or 2, Type = 1,2, or 3,
(COUNT(X) = COUNT(Y) or Type # 1)

COLUMNS(X) = COLUMNS(Y), ROWS(X) = ROWS(Y)

Semantics: Let Xi, X;, ..., X, be the numbers in the sequence X and Y3, Y>, ..., Yn be the
numbers in the sequence Y. Then

— 1 n
X:HZilei
and
_ 1 m
Y=—>,Y,
Moreover let
2 _ 1 n _7\2
SX_n—l lzl(Xi X)
2_# m Ay
SY_m_l Zi:l(Yl Y)
and
df +1
r S\ (1)
flx, df)= 2 1+
’ B d
\/lfrdflﬂ c;l y

where I is the Gamma function.

(1) Iftype =1, TTEST calculates the p-value for a paired-sample comparison of means
test. Note that in this case due to the above constraints n = m. With

Sor= e 2 (K= ¥)~(X-T))
and

X-Y
Ry s

2
QSX—Y

1=

TTEST returns
Tails-fjo f(x,n—1)dx

(2) If Type =2, TTEST calculates the p-value of a comparison of means for independent
samples from populations with equal variance. With

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 188 of 213

TTEST returns
tails-ftw f(x,n+m—2)dx

(3) If Type = 3, TTEST calculates the p-value of a comparison of means for independent
samples from populations with not necessarily equal variances. With

v 2 2 2 2
(X))
(n=1) " (m—1)

TTEST returns

talls~ft f(x,v)dx
For an empty element or an element of type Text or Boolean in X the element at the
corresponding position of Y is ignored, and vice versa.

See also COLUMNS 6.13.5, COUNT 6.13.6, ROWS 6.13.30, FTEST 6.18.30,
LEGACY.TDIST 6.18.77, ZTEST 6.18.87

6.18.82 VAR

Summary: Compute the sample variance of a set of numbers.
Syntax: VAR({ NumberSequence N}*)
Returns: Number

Constraints: At least two numbers shall be included. Returns an Error if less than two
Numbers are provided.

Semantics: Computes the sample variance s2, where

SR U PR
$=—— 3 (v x) =

n—1i5

(Z xf)—n ¥’

i=1

Note that s2 is not the same as the variance of the set, 2, which uses n rather than n - 1.
See also VARP 6.18.84, STDEV 6.18.72, AVERAGE 6.18.3

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 189 of 213

6.18.83 VARA

Summary: Estimates the variance using a sample set of values, including values of type Text
and Logical.

Syntax: VARA({ Any Sample }")
Returns: Number
Constraints: The sequence shall contain two numbers at least.

Semantics: Unlike the VAR function, includes values of type Text and Logical. Text values
are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0. Empty
cells are not included.

Given the expectation value X the estimated variance becomes

si= ! Z(xi—)_c)zz ! (fo)—n?cz
n—1\\i5

n—173
In the sequence, only Numbers and Logical types are considered; cells with Text are
converted to 0; other types are ignored. If Logical types are a distinct type, they are still
included, with TRUE considered 1 and FALSE considered 0. Any Sample may be of type
ReferencelList.

The handling of string constants as parameters is implementation-defined. Either, string
constants are converted to numbers, if possible and otherwise, they are treated as zero, or
string constants are always treated as zero.

See also VAR 6.18.82

6.18.84 VARP

Summary: Compute the variance of the set for a set of numbers.
Syntax: VARP({ NumberSequence N}*)

Returns: Number

Constraints: COUNT(N) = 1

Semantics: Computes the variance of the set g2, where

Uzzlz (x,-—?c)ZZ% (Z xiz)—ny_c2
i=1

n =i

Note that o2 is not the same as the sample variance, s2, which uses n - 1 rather than n.
If only one number is provided, returns 0.
See also COUNT 6.13.6, VAR 6.18.82, STDEVP 6.18.74, AVERAGE 6.18.3

6.18.85 VARPA

Summary: Calculates the variance using the population of the distribution, including values of
type Text and Logical.

Syntax: VARPA({ Any Sample }")
Returns: Number
Constraints: COUNTA(Sample) = 1.

Semantics: Unlike the VARP function, includes values of type Text and Logical. Text values
are treated as number 0. Logical TRUE is treated as 1, and FALSE is treated as 0. Empty
cells are not included.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 190 of 213

Given the expectation value X the variance becomes

Gzzlz (xi—y_c)ZZ% (Z xiz)—n)_c2
i=1

n =

In the sequence, only Numbers and Logical types are considered; cells with Text are
converted to 0; other types are ignored. If Logical types are a distinct type, they are still
included, with TRUE considered 1 and FALSE considered 0. Any Sample may be of type
ReferencelList.

The handling of string constants as parameters is implementation-defined. Either, string
constants are converted to numbers, if possible and otherwise, they are treated as zero, or
string constants are always treated as zero.

See also COUNTA 6.13.7, VARP 6.18.84

6.18.86 WEIBULL

Summary: Calculates the Weibull distribution.

Syntax: WEIBULL(Number Value ; Number Shape ; Number Scale ; Logical Cumulative)
Returns: Number

Constraints: Value = 0; Shape > 0; Scale > 0

Semantics: Calculates the Weibull distribution at the position Value.

If Cumulative is FALSE, the probability density function is calculated:

M M Shape—le_(%)w
Scale \ Scale

If Cumulative is TRUE, the cumulative distribution function is calculated:

7(Value)Shm
Scale

1—

See also BETADIST 6.18.7, BINOMDIST 6.18.10, CHISQDIST 6.18.12, EXPONDIST
6.18.21, FDIST 6.18.22, GAMMADIST 6.18.31, GAUSS 6.18.33, HYPGEOMDIST 6.18.37,
LOGNORMDIST 6.18.44, NEGBINOMDIST 6.18.51, NORMDIST 6.18.52, POISSON 6.18.62,
LEGACY.TDIST 6.18.77

6.18.87 ZTEST

Summary: Calculates the probability of observing a sample mean as large or larger than the
mean of the given sample for samples drawn from a normal distribution.

Syntax: ZTEST(NumberSequenceList Sample ; Number Mean [; Number Sigma])
Returns: Number
Constraints: The sequence Sample shall contain at least two numbers.

Semantics: Calculates the probability of observing a sample mean as large or larger than the
mean of the given Sample for samples drawn from a normal distribution with the given mean
Mean and the given standard deviation Sigma. If Sigma is omitted, it is estimated from
Sample, using STDEV. With Sample being the mean of Sample and

Sample — M —
= Sample—Mean
Sigma
ZTEST returns

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 191 of 213

P(zSZ)Zﬁfeédx

See also FTEST 6.18.30, TTEST 6.18.81

6.19 Number Representation Conversion Functions

6.19.1 General

These functions convert between different representations of numbers, such as between
different bases and Roman numerals.

The base conversion functions xxx2BIN (such as DEC2BIN), xxx20CT, and xxx2HEX
functions return Text, while the xxx2DEC functions return Number. All of the xxx2yyy functions
accept either Text or Number, though a Number is interpreted as the digits when printed in
base 10. These are intended to support relatively small numbers, and have a somewhat
convoluted interface and semantics, as described in their specifications. General base
conversion capabilities are provided by BASE and DECIMAL.

As an argument for the HEX2xxx functions, a hexadecimal number is any string consisting
solely of the characters "0","1" to "9", "a" to "f* and "A" to "F". The hexadecimal output of an
xxx2HEX function shall be a string consisting solely of the characters "0","1" to "9" (U+0030
through U+0039), "a" to "f* (U+0061 through U+0066) and "A" to "F" (U+0041 through
U+0046), and should be a string consisting solely of the characters "0","1" to "9" and "A" to
"F". In both cases, the 40th bit (from the right) is considered a sign bit.

6.19.2 ARABIC

Summary: Convert Roman numerals to Number.

Syntax: ARABIC(Text X)

Returns: Number

Constraints: X shall contain Roman numerals, or an empty string.

Semantics: Converts the Roman numeral to Number. This is the reverse of ROMAN; see
ROMAN for the values of individual Roman numeral symbols. A Roman symbol to the left of a
larger symbol (directly or indirectly) reduces the final value by the symbol amount, otherwise, it
increases the final amount by the symbol's amount. Case is ignored.

The characters accepted are U+004D "M", U+0044 "D", U+0043 "C", U+004C "L", U+0058
"X', U+0056 "V", U+0049 "I", U+006D "m", U+0064 "d", U+0063 "c", U+006C "I", U+0078 "X",
U+0076 "v", U+0069 "i" .

The following identity shall hold: ARABIC(ROMAN(X; any)) = x, when ROMAN(X; any) is not
an Error.

If X'is an empty string, O is returned.
See also Infix Operator "&" 6.4.10, ROMAN 6.19.17

6.19.3 BASE

Summary: Converts a number into a text representation with the given base.
Syntax: BASE(Integer X ; Integer Radix [; Integer MinimumLength |)
Returns: Text

Constraints: X = 0, 2 < Radix < 36, MinimumLength = 0

Semantics: Converts number X into text that represents the value of X in base Radix. The
symbols 0-9 (U+0030 through U+0039), then upper case A-Z (U+0041 through U+005A) are
used as digits. Thus, BASE(45745;36) returns “ZAP”.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 192 of 213

If MinimumLength is not supplied, the generated text uses the smallest number of characters
(i.e., it does not add leading 0s). If MinimumLength is supplied, and the resulting text would
normally be smaller than MinimumLength, leading Os are added to produce text exactly
MinimumLength characters long. If the text is longer than the MinimumLength argument,
the MinimumLength parameter is ignored.

See also DECIMAL 6.19.10

6.19.4 BIN2DEC

Summary: Converts a binary (base 2) number (up to 10 digits) to its decimal equivalent
Syntax: BIN2DEC(TextOrNumber X')
Returns: Number

Constraints: X shall contain only binary digits (no space or other characters), and shall
contain at least one binary digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into decimal equivalent, with the topmost 10" digit
being the sign bit (using a two's-complement representation). If given Text, the text is
considered a binary number representation. If given a Number, the digits of the number when
printed as base 10 are considered the digits of the equivalently-represented binary number. It
is implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as
a Number.

If any digits are 2 through 9, an evaluator shall return an Error. It is implementation-defined
what happens if an evaluator is given an empty string; evaluators may return an Error or 0 in
such cases.

See also INT 6.17.2

6.19.5 BIN2HEX

Summary: Converts a binary (base 2) number (10" bit is sign) to its hexadecimal equivalent
Syntax: BIN2HEX(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only binary digits (no space or other characters), and shall
contain at least one binary digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into hexadecimal (base 16) equivalent. For input
value X, the topmost 10" digit is considered the sign bit (using a two's-complement
representation). If given Text, the text is considered a binary number representation. If given a
Number, the digits of the number when printed as base 10 are considered the digits of the
equivalently-represented binary number. It is implementation-defined what happens if given a
Logical value; an evaluator may produce an Error, or it may convert the Logical to Number
(per “Convert to Number”) and then process as a Number.

If any digits in X are 2 through 9, an evaluator shall return an Error. It is implementation-
defined what happens if an evaluator is given an empty string; evaluators may return an Error
or 0 in such cases.

The resulting value is a hexadecimal value, up to 10 hexadecimal digits, with the topmost bit
(40™ bit) being the sign bit and in two's-complement form. The digits A through F are in
uppercase. If the input has its 10" bit on, the Digits argument is ignored; otherwise, the Digits
indicates the number of digits in the output, with leading O digits added as necessary to bring it
up to that number of digits. If there are more digits required than the Digits parameter
specifies, the results are implementation-defined.

See also INT 6.17.2

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 193 of 213

6.19.6 BIN20OCT

Summary: Converts a binary (base 2) number (10" bit is sign) to its octal (base 8) equivalent
Syntax: BIN2OCT(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only binary digits (no space or other characters), and shall
contain at least one binary digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where the digits in X are only 0 or 1, no more than 10 digits.

Semantics: Converts given binary number into octal (base 8) equivalent. For input value X,
the topmost 10™ digit is considered the sign bit (using a two's-complement representation). If
given Text, the text is considered a binary number representation. If given a Number, the
digits of the number when printed as base 10 are considered the digits of the equivalently-
represented binary number. It is implementation-defined what happens if given a Logical
value; an evaluator may produce an Error, or it may convert the Logical to Number (per
“Convert to Number”) and then process as a Number.

If any digits in X are 2 through 9, an evaluator shall return an Error. It is implementation-
defined what happens if an evaluator is given an empty string; evaluators may return an Error
or 0 in such cases.

The resulting value is an octal value, up to 10 octal digits, with the topmost bit (30" bit) being
the sign bit and in two's-complement form. If the input has its 10™ bit on, the Digits argument
is ignored; otherwise, the Digits indicates the number of digits in the output, with leading O
digits added as necessary to bring it up to that number of digits. If there are more digits than
specified by the Digits parameter, its results are implementation-defined.

See also INT 6.17.2

6.19.7 DEC2BIN

Summary: Converts a decimal number to base 2 (whose 10" bit is sign)
Syntax: DEC2BIN(TextOrNumber X [; Number Digits |)
Returns: Text

Constraints: X shall contain only decimal digits (no space or other characters), and shall
contain at least one decimal digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where -512 < X' < 511.

Semantics: Converts given number into binary (base 2) equivalent. If given Text, the text is
considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as
a Number.

The resulting value is a binary value, up to 10 digits, with the topmaost bit (10" bit) being the
sign bit and in two's-complement form. If the input is negative, the Digits argument is ignored;
otherwise, the Digits indicates the number of digits in the output, with leading 0 digits added
as necessary to bring it up to that number of digits. If there are more digits than specified by
the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.8 DEC2HEX

Summary: Converts a decimal number to base 16 (whose 40" bit is sign)
Syntax: DEC2HEX(TextOrNumber X [; Number Digits])
Returns: Text

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 194 of 213

Constraints: X shall contain only decimal digits (no space or other characters), and shall
contain at least one decimal digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where -2¥< X < 2%-1,

Semantics: Converts given number into hexadecimal (base 16) equivalent. If given Text, the
text is considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as
a Number.

The resulting value is a hexadecimal value, up to 10 digits, with the topmost bit (40™ bit) being
the sign bit and in two's-complement form. If the input is negative, the Digits argument is
ignored; otherwise, the Digits indicates the number of digits in the output, with leading O digits
added as necessary to bring it up to that number of digits. If there are more digits than
specified by the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.9 DEC20CT

Summary: Converts a decimal number to base 8 (whose 30" bit is sign)
Syntax: DEC20CT(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only decimal digits (no space or other characters), and shall
contain at least one decimal digit. When considered as a Number, INT(X) = X. Evaluators may
evaluate expressions where -22< X < 2%°-1,

Semantics: Converts given number into octal (base 8) equivalent. If given Text, the text is
considered a decimal number representation, and may have a leading minus sign. It is
implementation-defined what happens if given a Logical value; an evaluator may produce an
Error, or it may convert the Logical to Number (per “Convert to Number”) and then process as
a Number.

The resulting value is a octal value, up to 10 digits, with the topmost bit (30" bit) being the sign
bit and in two's-complement form. If the input is negative, the Digits argument is ignored;
otherwise, the Digits indicates the number of digits in the output, with leading 0 digits added
as necessary to bring it up to that number of digits. If there are more digits than specified by
the Digits parameter, the results are implementation-defined.

See also INT 6.17.2, OCT2DEC 6.19.15

6.19.10 DECIMAL

Summary: Converts text representing a number in a given base into a base 10 number.
Syntax: DECIMAL(Text X ; Integer Radix)

Returns: Number

Constraints: 2 < Radix < 36

Semantics: Converts text X in base Radix to a Number. Uppercase letters (U+0041 through
U+005A) and lowercase letters (U+0061 through U+007A) are both accepted as equivalent if
Radix > 10. Thus, DECIMAL("zap";36) and DECIMAL("ZAP";36) both compute 45745.

An Error is returned if X has characters that do not belong in base Radix. However, leading
spaces and tabs in X are always ignored. If Radix is 16, a leading regular expression “0?[Xx]"
is ignored, as is a trailing letter H or h. If Radix is 2, the letter b or B at the end is ignored (if
present).

See also BASE 6.19.3

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 195 of 213

6.19.11 HEX2BIN

Summary: Converts a hexadecimal number (40™ bit is sign) to base 2 (whose 10" bit is sign)
Syntax: HEX2BIN(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only hexadecimal digits (no space or other characters), and shall
contain at least one hexadecimal digit. When considered as a Number, INT(X) = X. Evaluators
may evaluate expressions where Xis considered in base 10, -512 < X < 511.

Semantics: Converts given hexadecimal number into binary (base 2) equivalent. If given
Text, the text is considered a hexadecimal number representation; if its 40™ bit is 1, it is
considered a negative number. It is implementation-defined what happens if given a Logical
value; an evaluator may produce an Error, or it may convert the Logical to Number (per
“Convert to Number”) and then process as a Number.

The resulting value is a binary value, up to 10 digits, with the topmost bit (10" bit) being the
sign bit and in two's-complement form. If the input is negative (40" bit is 1), the Digits
argument is ignored; otherwise, the Digits indicates the number of digits in the output, with
leading 0 digits added as necessary to bring it up to that number of digits. If there are more
digits than specified by the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.12 HEX2DEC

Summary: Converts a hexadecimal number (40™ bit is sign) to decimal
Syntax: HEX2DEC(TextOrNumber X')
Returns: Number

Constraints: X shall contain only hexadecimal digits (no space or other characters), and shall
contain at least one hexadecimal digit. When considered as a Number, INT(X) = X. Evaluators
may evaluate expressions where X shall have 1 though 10 (inclusive) hexadecimal digits.

Semantics: Converts given hexadecimal number into decimal equivalent. If given Text, the
text is considered a hexadecimal number representation. If X's 40" bit is 1, it is considered a
negative number. It is implementation-defined what happens if given a Logical value; an
evaluator may produce an Error, or it may convert the Logical to Number (per “Convert to
Number”) and then process as a Number.

The resulting value is a decimal number.
See also INT 6.17.2

6.19.13 HEX20CT

Summary: Converts a hexadecimal number (40™ bit is sign) to base 8 (whose 30" bit is sign)
Syntax: HEX2OCT(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain hexadecimal digits (no spaces or other characters), and shall
contain at least one hexadecimal digit. When considered as Number, INT(X) = X. Evaluators
may evaluate expressions where X has 1 to 10 (inclusive) hexadecimal digits, base 10 value
of Xis-2¥ < X<2%-1.

Semantics: Converts given hexadecimal number into octal (base 8) equivalent. If given Text,
the text is considered a hexadecimal number representation; if its 40" bit is 1, it is considered
a negative number. It is implementation-defined what happens if given a Logical value; an
evaluator may produce an Error, or it may convert the Logical to Number (per “Convert to
Number”) and then process as a Number.

The resulting value is an octal value, up to 10 digits, with the topmost bit (10™ bit) being the
sign bit and in two's-complement form. If the input is negative (40" bit is 1), the Digits

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 196 of 213

argument is ignored; otherwise, the Digits indicates the number of digits in the output, with
leading 0 digits added as necessary to bring it up to that number of digits. If there are more
digits than specified by the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.14 OCT2BIN

Summary: Converts an octal number (30™ bit is sign) to base 2 (whose 10™ bit is sign)
Syntax: OCT2BIN(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only octal digits (no space or other characters), and shall contain
at least one octal digit. When considered as a Number, INT(X) = X. Evaluators may evaluate
expressions where X is considered in base 10, -512 < X< 511.

Semantics: Converts given octal (base 8) number into binary (base 2) equivalent. If given
Text, the text is considered an octal number representation; if its 30" bit is 1, it is considered a
negative number. It is implementation-defined what happens if given a Logical value; an
evaluator may produce an Error, or it may convert the Logical to Number (per “Convert to
Number”) and then process as a Number.

The resulting value is a binary value, up to 10 digits, with the topmost bit (10" bit) being the
sign bit and in two's-complement form. If the input is negative (30" bit is 1), the Digits
argument is ignored; otherwise, the Digits indicates the number of digits in the output, with
leading 0 digits added as necessary to bring it up to that number of digits. If there are more
digits than specified by the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.15 OCT2DEC
Syntax: OCT2DEC(TextOrNumber X')

Summary: Converts an octal number (30" bit is sign) to decimal
Returns: Number

Constraints: X shall contain only octal digits (no space or other characters), and shall contain
at least one octal digit. When considered as a Number, INT(X) = X. Evaluators may evaluate
expressions where X shall have 1 though 10 (inclusive) octal digits.

Semantics: Converts given octal number into decimal equivalent. If given Text, the text is
considered a octal number representation. If X's 30" bit is 1, it is considered a negative
number. It is implementation-defined what happens if given a Logical value; an evaluator may
produce an Error, or it may convert the Logical to Number (per “Convert to Number”) and then
process as a Number.

The resulting value is a decimal number.
See also INT 6.17.2

6.19.16 OCT2HEX

Summary: Converts an octal number (30" bit is sign) to hexadecimal (whose 40™ bit is sign)
Syntax: OCT2HEX(TextOrNumber X [; Number Digits])
Returns: Text

Constraints: X shall contain only octal digits (no space or other characters), and shall contain
at least one octal digit. When considered as a Number, INT(X) = X. Evaluators may evaluate
expressions where X shall have 1 to 10 (inclusive) octal digits.

Semantics: Converts given octal (base 8) number into hexadecimal (base 16) equivalent. If
given Text, the text is considered an octal number representation; if its 30" bit is 1, it is

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 197 of 213

considered a negative number. It is implementation-defined what happens if given a Logical
value; an evaluator may produce an Error, or it may convert the Logical to Number (per
“Convert to Number”) and then process as a Number.

The resulting value is a hexadecimal value, up to 10 digits, with the topmost bit (40™ bit) being
the sign bit and in two's-complement form. If the input is negative (30" bit is 1), the Digits
argument is ignored; otherwise, the Digits indicates the number of digits in the output, with
leading 0 digits added as necessary to bring it up to that number of digits. If there are more
digits than specified by the Digits parameter, the results are implementation-defined.

See also INT 6.17.2

6.19.17 ROMAN

Summary: Convert to Roman numerals

Syntax: ROMAN(Integer N [; Integer Format=01])

Returns: Text

Constraints: N =0, N <4000, 0 < Format < 4, ISLOGICAL(1) or NOT(ISLOGICAL(Format))

Semantics: Return the Roman numeral representation of N. Format specifies the level of
conciseness, and defaults to 0, the classic representation, with larger numbers requiring
increasing conciseness.

To support legacy documents, evaluators with Logical types that are distinct from Number
may accept the format parameter as a scalar, and accept TRUE specifying format 0, and
FALSE specifying format 4.

The following identity shall hold: ARABIC(ROMAN(x; any)) = x, when ROMAN(x; any) is not
an Error.

If Nis 0, an empty string is returned.

Table 31 - ROMAN lists the values of individual roman numerals; roman numerals that
precede (directly or indirectly) a larger-valued roman number subtract their value from the final
value.

Table 31 - ROMAN

Roman Nu- Value Unicode
meral Code Point
| 1 uU+0049
\Y 5 U+0056
X 10 U+0058
L 50 U+004C
C 100 U+0043
D 500 uU+0044
M 1000 U+004D

Evaluators that accept 0 as a value of N should return the string “0”. Evaluators that accept
negative values of N should include a negative sign (“-") as the first character.

The Format levels are:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 198 of 213

Table 32 - ROMAN

Format Meaning

0 Only subtract powers of 10, not L or V, and only if the next
or omitted | number is not more than 10 times greater. A number

(or TRUE) |following the larger one shall be smaller than the
subtracted number. Also known as classic.

1 Powers of 10, and L and V may be subtracted, only if the
next number is not more than 10 times greater. A number
following the larger one shall be smaller than the sub-
tracted number.

2 Powers of 10 and L, but not V, may be subtracted, also if
the next number is more than 10 times greater. A number
following the larger one shall be smaller than the sub-
tracted number.

3 Powers of 10, and L and V may be subtracted, also if the
next number is more than 10 times greater. A number fol-
lowing the larger one shall be smaller than the subtracted
number.

4 Produce the fewest Roman digits possible. Also known as
(or FALSE) | simplified.

See also Infix Operator "&" 6.4.10, ISLOGICAL 6.13.19, ARABIC 6.19.2

6.20 Text Functions
6.20.1 General
6.20.2 ASC

Summary: Converts full-width to half-width ASCII and katakana characters.
Syntax: ASC(Text T)

Returns: Text

Constraints: None

Semantics: Conversion is done for full-width ASCII and [UNICODE] katakana characters,
some characters are converted in a special way, see table below. Other characters are copied
from T to the result. This is the complementary function to JIS.

The percent sign % in the conversion table below denotes the modulo operation. A followed
by means that a character is converted to two consecutive characters.

Table 33 - ASC

From Unicode Character (c) To Unicode Character Comment

U+30al < ¢ < U+30aa (c - Ox30a2) / 2 + 0xff71 katakana a-o

if c%2==0

U+30al < c < U+30aa (c - 0x30al) / 2 + 0xff67 katakana small a-o

if c%2==1

U+30ab < ¢ < U+30c¢2 (c - Ox30ab) / 2 + 0xff76 katakana ka-chi

if c%2==1

OpenDocument-v1.4-csO1-part4-formula 2 August 2024

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 199 of 213

From Unicode Character (c)

To Unicode Character

Comment

U+30ab < ¢ < U+30c2
if c%2==0

(c - Ox30ac) / 2 + 0xff76
followed by 0xff9e

katakana ga-dhi

U+30c3

Oxffef

katakana small tsu

U+30c4 < ¢ < U+30c9
if %2==0

(c - 0x30c4) / 2 + Oxff82

katakana tsu-to

U+30c4 < ¢ < U+30c9
if c%2==1

(c - 0x30c5) / 2 + 0xff82
followed by 0xff9e

katakana du-do

U+30ca < ¢ £ U+30ce

¢ - 0x30ca + 0xff85

katakana na-no

U+30cf < ¢ < U+30dd
if %3==0

(c - 0x30cf) / 3 + Oxff8a

katakana ha-ho

U+30cf < ¢ £ U+30dd

(c - 0x30d0) / 3 + Oxff8a

katakana ba-bo

if c%3==1 followed by 0xff9e
U+30cf < ¢ < U+30dd (c - 0x30d1) / 3 + Oxff8a katakana pa-po
if c%3==2 followed by 0xffof

U+30de < ¢ £ U+30e2

c - 0x30de + Oxff8f

katakana ma-mo

U+30e3 = ¢ = U+30e8
if %2==0

(c - 0x30e4) / 2 + Oxff94)

katakana ya-yo

U+30e3 < ¢ < U+30e8
if c%2==1

(c - Ox30e3) / 2 + Oxffec

katakana small ya-yo

U+30e9 < ¢ < U+30ed

€ - 0x30e9 + Oxff97

katakana ra-ro

U+30ef U+ffoc katakana wa
U+30f2 U+ff66 katakana wo
U+30f3 U+ffod katakana nn

U+ff01 <= ¢ <= U+ff5e

c - 0xff01 + 0x0021

ASCII characters

U+2015 U+ff70 HORIZONTAL BAR =>
HALFWIDTH KATAKANA-HI-
RAGANA PROLONGED
SOUND MARK

u+2018 U+0060 LEFT SINGLE QUOTATION
MARK => GRAVE ACCENT

U+2019 u+0027 RIGHT SINGLE QUOTATION
MARK => APOSTROPHE

U+201d U+0022 RIGHT DOUBLE QUOTA-
TION MARK => QUOTATION
MARK

U+3001 U+ff64 IDEOGRAPHIC COMMA

U+3002 U+ff6l IDEOGRAPHIC FULL STOP

U+300c U+ff62 LEFT CORNER BRACKET

u+300d U+ff63 RIGHT CORNER BRACKET

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 200 of 213

From Unicode Character (c) To Unicode Character Comment

U+309b U+ff9e KATAKANA-HIRAGANA
VOICED SOUND MARK

U+309c U+ffof KATAKANA-HIRAGANA
SEMI-VOICED SOUND
MARK

U+30fb U+ff65 KATAKANA MIDDLE DOT

U+30fc U+ff70 KATAKANA-HIRAGANA
PROLONGED SOUND
MARK

U+ffe5 U+005c FULLWIDTH YEN SIGN =>
REVERSE SOLIDUS "\"

Note 1: The "\" (REVERSE SOLIDUS, U+005C) is a specialty that gets
displayed as a Yen sign with some Japanese fonts, which is a legacy of
code-page 932.

Note 2: For references regarding halfwidth and fullwidth characters see [UAX11] and the
Halfwidth and Fullwidth Code Chart of [UNICODE].

Note 3: For information about the mapping of JIS X 0201 and JIS X 0208 to Unicode
characters see [JISX0201] and [JISX0208].

See also JIS 6.20.11

6.20.3 CHAR

Summary: Return character represented by the given numeric value

Syntax: CHAR(Number N)

Returns: Text

Constraints: N < 127; Evaluators may evaluate expressions where N = 1, N < 255,
Semantics:

Returns character represented by the given numeric value.

Evaluators should return an Error if N > 255.

Evaluators should implement CHAR such that CODE(CHAR(N)) returns Nforany 1 < N <
255.

Note 1: Beyond 127, some evaluators return a character from a system-
specific code page, while others return the [UNICODE] character. Most
evaluators do not allow values greater than 255.

Note 2: Where interoperability is a concern, expressions should use the
UNICHAR function. 6.20.25

See also CODE 6.20.5, UNICHAR 6.20.25, UNICODE 6.20.26

6.20.4 CLEAN

Summary: Remove all non-printable characters from the string and return the result.
Syntax: CLEAN(Text T)

Returns: Text

Semantics:

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 201 of 213

Removes all non-printable characters from the string T and returns the resulting string.
Evaluators should remove each particular character from the string, if and only if the character
belongs to [UNICODE] class Cc (Other - Control), or to Unicode class Cn (Other - Not
Assigned). The resulting string shall contain all printable characters from the original string, in
the same order. The space character is considered a printable character.

6.20.5 CODE

Summary: Return numeric value corresponding to the first character of the text value.
Syntax: CODE(Text T)

Returns: Number

Constraints: code point < 127. Evaluators may evaluate expressions where Length(T) > 0.
Semantics:

Returns a numeric value which represents the first letter of the given text T.

Behavior for code points = 128 is implementation-defined. Evaluators may use the underlying
system's code page. Evaluators should implement CODE such that CODE(CHAR(N)) returns
N for 1 < N < 255,

Note: Where interoperability is a concern, expressions should use the
UNICODE function. 6.20.26

See also CHAR 6.20.3, UNICHAR 6.20.25, UNICODE 6.20.26

6.20.6 CONCATENATE

Summary: Concatenate the text strings

Syntax: CONCATENATE({ Text T}*)

Returns: Text

Constraints: None

Semantics: Concatenate each text value, in order, into a single text result.
See also Infix Operator "&" 6.4.10

6.20.7 DOLLAR

Summary: Convert the parameters to Text formatted as currency.
Syntax: DOLLAR(Number N [; Integer D)

Returns: Text

Constraints: None

Semantics: Returns the value formatted as a currency, using locale-specific data. D is the
number of decimal places used in the result string, a negative D rounds number N. If D is
omitted, locale information may be used to determine the currency's decimal places, or a
value of 2 shall be assumed.

6.20.8 EXACT

Summary: Report if two text values are equal using a case-sensitive comparison .
Syntax: EXACT(Text T1; Text T2)

Returns: Logical

Constraints: None

Semantics: Converts both sides to Text, and then returns TRUE if the two text values are
equal, including case, otherwise it returns FALSE.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 202 of 213

See also FIND 6.20.9, SEARCH 6.20.20, Infix Operator "<>" 6.4.8, Infix Operator "=" 6.4.7

6.20.9 FIND

Summary: Return the starting position of a given text.
Syntax: FIND(Text Search ; Text T [; Integer Start=11])
Returns: Number

Constraints: Start>1

Semantics: Returns the character position where Search is first found in T, when the search
is started from character position Start. The match is case-sensitive, and no wildcards or other
instructions are considered in Search. Returns an Error if text not found.

See also EXACT 6.20.8, SEARCH 6.20.20

6.20.10 FIXED

Summary: Round the number to a specified number of decimals and format the result as a
text.

Syntax: FIXED(Number N[; Integer D = 2 [; Logical OmitSeparators = FALSE]])
Returns: Text
Constraints: None

Semantics: Rounds value N to D decimal places (after the decimal point) and returns the
result formatted as text, using locale-specific settings. If D is negative, the number is rounded
to ABS(D) places to the left from the decimal point. If the optional parameter OmitSeparators
is TRUE, then group separators are omitted from the resulting string. Group separators are
included in the absence of this parameter. If D is a fraction, it is rounded towards 0 as an
integer (ignoring what is the closest integer).

See also ABS 6.16.2

6.20.11 JIS

Summary: Converts half-width to full-width ASCII and katakana characters.
Syntax: JIS(Text T)

Returns: Text

Constraints: None

Semantics: Conversion is done for half-width ASCII and [UNICODE] katakana characters,
some characters are converted in a special way, see table below. Other characters are copied
from T to the result. This is the complementary function to ASC.

A followed by means that there are two consecutive characters to convert from.

Table 34 - JIS

From Unicode Character (c) To Unicode Character Comment

U+0022 0x201d QUOTATION MARK =>
RIGHT DOUBLE QUOTA-
TION MARK

This is an exception to the
ASCII range that follows be-
low.

U+005c Oxffe5 REVERSE SOLIDUS "\" =>
FULLWIDTH YEN SIGN

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 203 of 213

From Unicode Character (c)

To Unicode Character

Comment

(code-page 932 legacy, for
details see ASC function)
This is an exception to the
ASCII range that follows be-
low.

U+0060

0x2018

GRAVE ACCENT => LEFT
SINGLE QUOTATION MARK
This is an exception to the
ASCII range that follows be-
low.

u+0027

0x2019

APOSTROPHE => RIGHT
SINGLE QUOTATION MARK
This is an exception to the
ASCII range that follows be-
low.

U+0021 = ¢ == U+007e

c - 0x0021 + Oxffo1l

ASCII characters

U+{f66

0x30f2

katakana wo

U+ff67 < ¢ < U+ff6b

(c - Oxff67) * 2 + 0x30al

katakana small a-o

U+fféc < ¢ < U+ff6e

(c - Oxfféc) * 2 + 0x30e3

katakana small ya-yo

U+ffof

0x30c3

katakana small tsu

U+ff71 < ¢ < U+Hff75

(c - OXff71) * 2 + 0x30a2

katakana a-o

U+ff76 < ¢ < U+ffgl
followed by U+ff9e

(c - Oxff76) * 2 + Ox30ac

katakana ga-dsu

U+ff76 < ¢ < U+{f81
not followed by U+ff9e

(c - Oxff76) * 2 + 0x30ab

katakana ka-chi

U+{f82 < ¢ < U+ff84
followed by U+ff9e

(c - Oxff82) * 2 + 0x30cC5

katakana du-do

U+{f82 < ¢ < U+ff84
not followed by U+ff9e

(c - Oxff82) * 2 + 0x30c4

katakana tsu-to

U+ff85 < ¢ < U+{f89

c - Oxff85 + 0x30ca

katakana na-no

U+ff8a < ¢ < U+ff8e
followed by U+ff9e

(c - Oxff8a) * 3 + 0x30d0

katakana ba-bo

U+ff8a < ¢ < U+ff8e
followed by U+ffof

(c - Oxff8a) * 3 + 0x30d1

katakana pa-po

U+ff8a < ¢ < U+ff8e
neither followed by U+ff9e nor
U+ffof

(c - Oxff8a) * 3 + Ox30cf

katakana ha-ho

U+ff8f < ¢ < U+ff93

¢ - Oxff8f + 0x30de

katakana ma-mo

U+ff94 < ¢ < U+ff96

(c - Oxffo4) * 2 + 0x30e4

katakana ya-yo

U+ff97 < ¢ < U+ff9b

C - Oxff97 + Ox30e9

katakana ra-ro

U+ffoc

U+30ef

katakana wa

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product

Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 204 of 213

From Unicode Character (c) To Unicode Character Comment

U+ffod U+30f3 katakana nn

U+ff9e U+309b HALFWIDTH KATAKANA
VOICED SOUND MARK =>
FULLWIDTH

U+ffof U+309c HALFWIDTH KATAKANA

SEMI-VOICED SOUND
MARK => FULLWIDTH

U+ff70 U+30fc HALFWIDTH KATAKANA-HI-
RAGANA PROLONGED
SOUND MARK => FULL-
WIDTH

U+ff61 U+3002 HALFWIDTH IDEOGRAPHIC
FULL STOP => FULLWIDTH

U+ff62 U+300c HALFWIDTH LEFT CORNER
BRACKET => FULLWIDTH

U+ff63 uU+300d HALFWIDTH RIGHT COR-
NER BRACKET => FULL-
WIDTH

U+ff64 U+3001 HALFWIDTH IDEOGRAPHIC
COMMA => FULLWIDTH

U+ff65 U+30fb HALFWIDTH KATAKANA
MIDDLE DOT => FULL-
WIDTH

Note 1: For references regarding halfwidth and fullwidth characters see [UAX11] and the
Halfwidth and Fullwidth Code Chart of [UNICODE].

Note 2: For information about the mapping of JIS X 0201 and JIS X 0208 to Unicode
characters see [JISX0201] and [JISX0208].

See also ASC 6.20.2

6.20.12 LEFT

Summary: Return a selected number of text characters from the left.
Syntax: LEFT(Text T [; Integer Length])

Returns: Text

Constraints: Length =0

Semantics: Returns the INT(Length) number of characters of text T, starting from the left. If
Length is omitted, it defaults to 1; otherwise, it computes Length = INT(Length). If T has
fewer than Length characters, it returns T. This means that if T is an empty string (which has
length 0) or the parameter Length is 0, LEFT() will always return an empty string. Note that if
Length < 0, an Error is returned. This function shall return the same string as MID(T; 1;
Length).

The results of this function may be normalization-sensitive. 4.2
See also INT 6.17.2, LEN 6.20.13, MID 6.20.15, RIGHT 6.20.19

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 205 of 213

6.20.13 LEN

Summary: Return the length, in characters, of given text
Syntax: LEN(Text T)

Returns: Integer

Constraints: None.

Semantics: Computes number of characters (not the number of bytes) in T. If T is of type
Number, it is automatically converted to Text, including a fractional part and decimal separator
if necessary.

The results of this function may be normalization-sensitive. 4.2
See also TEXT 6.20.23, ISTEXT 6.13.25, LEFT 6.20.12, MID 6.20.15, RIGHT 6.20.19

6.20.14 LOWER

Summary: Return input string, but with all uppercase letters converted to lowercase letters.
Syntax: LOWER(Text T)

Returns: Text

Constraints: None

Semantics: Return input string, but with all uppercase letters converted to lowercase letters,
as defined by §3.13 Default Case Algorithms, §4.2 Case-Normative and §5.18 Case Mappings
of [UNICODE]. As with most functions, it is side-effect free (it does not modify the source
values). All Evaluators shall convert A-Z to a-z.

Note: As this function can be locale aware, results may be unexpected in certain cases. For
example in a Turkish locale an upper case "I without dot" (LATIN CAPITAL LETTER |,
U+0049) is converted to a lower case "i without dot" (LATIN SMALL LETTER DOTLESS |,
U+0131).

See also UPPER 6.20.27, PROPER 6.20.16

6.20.15 MID

Summary: Returns extracted text, given an original text, starting position, and length.
Syntax: MID(Text T ; Integer Start ; Integer Length)

Returns: Text

Constraints: Start > 1, Length = 0.

Semantics: Returns the characters from T, starting at character position Start, for up to
Length characters. For the integer conversions, Start = INT(Start), and Length =
INT(Length). If there are less than Length characters starting at start, it returns as many
characters as it can beginning with Start. In particular, if Start > LEN(T), it returns the empty
string (""). If Start < O, it returns an Error. If Start = 0, and Length = 0, it returns the empty
string. Note that MID(T;1;Length) produces the same results as LEFT(T;Length).

The results of this function may be normalization-sensitive. 4.2

See also INT 6.17.2, LEFT 6.20.12, LEN 6.20.13, RIGHT 6.20.19, REPLACE 6.20.17,
SUBSTITUTE 6.20.21

6.20.16 PROPER

Summary: Return the input string with the first letter of each word converted to an uppercase
letter and the rest of the letters in the word converted to lowercase.

Syntax: PROPER(Text T)
Returns: Text

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 206 of 213

Constraints: None
Semantics: Return input string, but modified as follows:

® If the first character is a letter, it is converted to its uppercase equivalent; otherwise,
the original character is returned

® If aletter is preceded by a non-letter, it is converted to its uppercase equivalent
® If aletter is preceded by a letter, it is converted to its lowercase equivalent.
Evaluators shall implement this for at least the Latin letters A-Z and a-z.
As with most functions, it is side-effect free, that is, it does not modify the source values.
See also LOWER 6.20.14, UPPER 6.20.27

6.20.17 REPLACE

Summary: Returns text where an old text is substituted with a new text.
Syntax: REPLACE(Text T ; Number Start ; Number Count ; Text New)
Returns: Text

Constraints: Start=> 1.

Semantics: Returns text T, but remove the characters starting at character position Start for
Count characters, and instead replace them with New. Character positions defined by Start
begin at 1 (for the leftmost character). If Count=0, the text New is inserted before character
position Start, and all the text before and after Start is retained. If Start > length of text T
(TLen) then Start is set to TLen. If Count > TLen - Start then Count is set to TLen - Start.

REPLACE(T;Start,Len;New) is the same as LEFT(T;Start - 1) & New & MID(T; Start + Len;
LEN(T)))
See also LEFT 6.20.12, LEN 6.20.13, MID 6.20.15, RIGHT 6.20.19, SUBSTITUTE 6.20.21

6.20.18 REPT

Summary: Return text repeated Count times.
Syntax: T(Text T ; Integer Count)

Returns: Text

Constraints: Count =0

Semantics: Returns text T repeated Count number of times; if Count is zero, an empty string
is returned. If Count < 0, the result is Error.

See also LEFT 6.20.12, MID 6.20.15, RIGHT 6.20.19, SUBSTITUTE 6.20.21

6.20.19 RIGHT

Summary: Return a selected number of text characters from the right.
Syntax: RIGHT(Text T [; Integer Length])

Returns: Text

Constraints: Length =0

Semantics: Returns the Length number of characters of text T, starting from the right. If
Length is omitted, it defaults to 1; otherwise, it computes Length = INT(Length). If T has
fewer than Length characters, it returns T (unchanged). This means that if T is an empty
string (which has length 0) or the parameter Length is 0, RIGHT() will always return an empty
string. Note that if Length < 0, an Error is returned.

The results of this function may be normalization-sensitive. 4.2
See also INT 6.17.2, LEFT 6.20.12, LEN 6.20.13, MID 6.20.15

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 207 of 213

6.20.20 SEARCH

Summary: Return the starting position of a given text.

Syntax: SEARCH(Text Search ; Text T [; Integer Start=11])
Returns: Integer

Constraints: Start=1

Semantics: Returns the character position where Search is first found in T, when the search
is started from character position Start. The match is not case-sensitive. Start is 1 if omitted.
Returns an Error if text not found.

The values returned may vary depending upon the HOST-USE-REGULAR-EXPRESSIONS or
HOST-USE-WILDCARDS properties. 3.4

See also EXACT 6.20.8, FIND 6.20.9

6.20.21 SUBSTITUTE

Summary: Returns text where an old text is substituted with a new text.
Syntax: SUBSTITUTE(Text T ; Text Old ; Text New [; Integer Which 1)
Returns: Text

Constraints: Which = 1 (when provided)

Semantics: Returns text T, but with text Old replaced by text New (when searching from the
left). If Which is omitted, every occurrence of OId is replaced with New; if Which is provided,
only that occurrence of Old is replaced by New (starting the count from 1). If there is no
match, or if Old has length 0, the value of T is returned. Note that Old and New may have
different lengths. If Which is present and Which < 1, returns Error.

See also LEFT 6.20.12, LEN 6.20.13, MID 6.20.15, REPLACE 6.20.17, RIGHT 6.20.19

6.20.22 T

Summary: Return the text (if Text), else return O-length Text value
Syntax: T(Any X)

Returns: Text

Constraints: None

Semantics: The type of (a dereferenced) X is examined; if it is of type Text, it is returned, else
an empty string (Text value of zero length) is returned. This is not a type-conversion function;
T(5) produces an empty string, not "5".

See also N 6.13.26

6.20.23 TEXT

Summary: Return the value converted to a text.
Syntax: TEXT(Scalar X ; Text FormatCode)
Returns: Text

Constraints: The FormatCode is a sequence of characters with an implementation-defined
meaning.

Semantics: Converts the value X to a Text according to the rules of a number format code
passed as FormatCode and returns it.

See also N 6.13.26, T 6.20.22

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 208 of 213

6.20.24 TRIM

Summary: Remove leading and trailing spaces, and replace all internal multiple spaces with a
single space.

Syntax: TRIM(Text T)
Returns: Text
Constraints: None.

Semantics: Takes T and removes all leading and trailing space. Any other sequence of 2 or
more spaces is replaced with a single space.

A space is one or more, HORIZONTAL TABULATION (U+0009), LINE FEED (U+000A),
CARRIAGE RETURN (U+000D) or SPACE (U+0020) characters.

See also LEFT 6.20.12, RIGHT 6.20.19

6.20.25 UNICHAR

Summary: Return the character represented by the given numeric value according to the
[UNICODE] Standard.

Syntax: UNICHAR(Integer N')
Returns: Text
Constraints: N =0, N< 1114111 (U+10FFFF)

Semantics: Returns the character having the given numeric value as [UNICODE] code point.
Evaluators shall support values between 1 and OxFFFF. Evaluators should allow N to be any
[UNICODE] code point of type Graphic, Format or Control. Evaluators should implement
UNICHAR such that UNICODE(UNICHAR(N)) returns N for any [UNICODE] code point N of
type Graphic, Format or Control.

See also UNICODE 6.20.26

6.20.26 UNICODE

Summary: Return the [UNICODE] code point corresponding to the first character of the text
value.

Syntax: UNICODE(Text T)
Returns: Number
Constraints: Length(T) > 0.

Semantics: Returns the numeric value of the [UNICODE] code point of the first character of
the given text T.

The results of this function may be normalization-sensitive. 4.2
See also UNICHAR 6.20.25

6.20.27 UPPER

Summary: Return input string, but with all lowercase letters converted to uppercase letters.
Syntax: UPPER(Text T)

Returns: Text

Constraints: None

Semantics: Return input string, but with all lowercase letters converted to uppercase letters,
as defined by §3.13 Default Case Algorithms, §4.2 Case-Normative and §5.18 Case Mappings
of [UNICODE]. As with most functions, it is side-effect free (it does not modify the source
values). All Evaluators shall convert a-z to A-Z.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 209 of 213

Note: As this function can be locale aware, results may be unexpected in certain cases, for
example in a Turkish locale a lower case "i with dot" (LATIN SMALL LETTER [) U+0069 is
converted to an upper case "l with dot" (LATIN CAPITAL LETTER | WITH DOT ABOVE,

U+0130).
See also LOWER 6.20.14, PROPER 6.20.16

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 210 of 213

7 Other Capabilities

7.1 General

Evaluators may implement capabilities in addition to the functions they support. The following
sections describe some specific additional capabilities; evaluators may implement them, and
documents may require them (though such documents need not be correctly recalculated on
applications which do not implement them). Documents that depend on these other
capabilities can still be considered “portable documents”, but only if these additional
capabilities are clearly noted (since not all applications implement these additional
capabilities).

7.2 Inline constant arrays

Evaluators claiming to implement “Inline constant arrays” shall support inline arrays with one
matrix, with one or more rows, and one or more columns. Such evaluators shall support these
2-dimensional arrays as long as the number of expressions in each row is identical; evaluators
may but need not support arrays with a different number of expressions in each row. They
shall support at least the following syntactic rules in the Expression values for the inline array:

* Number, optionally preceded with the prefix “-” operator (for negative numbers)

« Text
e Logical constants TRUE and FALSE
 Error

7.3 Inline non-constant arrays

Evaluators claiming to implement “Inline non-constant arrays” shall support the full Expression
syntax in each component of an array (and not just constants).

7.4 Year 1583

Evaluators claiming to implement “Year 1583” can calculate dates correctly starting from the
January 1 of the (ISO) year 1583. This means that the evaluator correctly determines that
1900 was not a leap year, and can handle year values for dates back to at least 1583.

These calculations use the ISO (Gregorian) calendar, that is, the calculations use the usual
rules for the ISO (Gregorian) calendar, regardless of locale. This calendar began official use in
some locales in 1582, but other locales used other calendars (such as the Julian calendar)
and switched to the Gregorian calendar at different times in history, if they switched at all.
Evaluators may choose to support dates even earlier than this; such evaluators may use a
proleptic Gregorian system (continuing the dates backwards as if the calendar existed in those
dates), but the use of such a system is implementation-defined. Note that the ISO (Gregorian)
calendar has never been and is still not currently in universal use .

Correct date calculations in this calendar system require that leap years be handled correctly.
In this calendar system, leap years include 29 days in February (which otherwise has 28
days), for 366 total days in a leap year. In general, all years evenly divisible by 4 are leap
years. However, years that are divisible by 100 shall also be divisible by 400 to be a leap year;
otherwise, they are common (non-leap) years.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 211 of 213

8 Non-portable Features

8.1 General

Expressions may depend upon features that are not implemented by all evaluators. This
section identifies and defines some features not commonly implemented to enable
expressions to indicate their reliance on these features.

8.2 Distinct Logical

Applications may have a Logical type distinct from both Number and Text (see 4.5 Logical
(Boolean)), but Logical values may also be represented by the Number type using the values
1 (True) and O (False) (see 4.3.7 Logical (Number)).

In this standard, TRUE represents the logical value (true) and FALSE represents the logical
value (false), independent of the concrete representation used by an evaluator.

For an evaluator that represents Logical values using the Number type with values 1 (TRUE)
and 0 (FALSE): the implicit conversion operator “Convert to Logical” 6.3.12, when a Number is
passed as a condition, 0 is considered FALSE and all other numeric values are considered
TRUE.

An evaluator that has a Logical type distinct from both Number and Text shall have the
following properties:

* ISNUMBER() applied to a Logical value (constant or calculated) will return FALSE, and
ISLOGICAL() applied to a Number will be FALSE, either directly or via a reference.

*« TRUE will not be equal to 1, and FALSE will not be equal to 0, when they are compared
using “=",

¢ Ina NumberSequence (such as when using SUM), Logical values are skipped when
inside a range, but are included and automatically converted to a Number if provided as
the NumberSequence itself.

OpenDocument-v1.4-csO1-part4-formula 2 August 2024
Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved. Page 212 of 213

Appendix A Changes from “Open Document

Format for Office Applications

(OpenDocument) v1.3”

This appendix describes changes that are related to Part 4 of this specification.

The following is a list of major features that have been added or changed. For minor features

please see the lists of new and changed elements and attributes.

The following descriptions have changed:
Year 1583 7.4 Office-4112

The following function is new:
EASTERSUNDAY 6.10.8 Office-2164

The definitions of the following functions changed:

CONVERT 6.16.18 (Table 24) Office-3851
COUNTA 6.13.7 Office-4113
INDEX 6.14.6 Office-4143
ISBLANK 6.13.14 Office-4001
ISFORMULA 6.13.18 Office-4001
ISLOGICAL 6.13.19 Office-4001
ISNONTEXT 6.13.21 Office-4001
ISNUMBER 6.13.22 Office-4001
ISREF 6.13.24 Office-4001
ISTEXT 6.13.25 Office-4001
NPER 6.12.29 Office-3915

PMT 6.12.36 Office-3915

OpenDocument-v1.4-csO1-part4-formula

Standards Track Work Product Copyright © OASIS Open 2024. All Rights Reserved.

2 August 2024
Page 213 of 213

https://issues.oasis-open.org/browse/OFFICE-3915
https://issues.oasis-open.org/browse/OFFICE-3915
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4001
https://issues.oasis-open.org/browse/OFFICE-4143
https://issues.oasis-open.org/browse/OFFICE-4113
https://issues.oasis-open.org/browse/OFFICE-3851
https://issues.oasis-open.org/browse/OFFICE-2164
https://issues.oasis-open.org/browse/OFFICE-4112

	1 Introduction
	1.1 Introduction
	1.2 Terminology
	1.3 Purpose
	1.4 Normative References
	1.5 Non-Normative References

	2 Expressions and Evaluators
	2.1 Introduction
	2.2 OpenDocument Formula Expression
	2.3 Evaluator Conformance
	2.3.1 OpenDocument Formula Evaluator
	2.3.2 OpenDocument Formula Small Group Evaluator
	2.3.3 OpenDocument Formula Medium Group Evaluator
	2.3.4 OpenDocument Formula Large Group Evaluator

	2.4 Variances (Implementation-defined, Unspecified, and Behavioral Changes)

	3 Formula Processing Model
	3.1 General
	3.2 Expression Evaluation
	3.2.1 General
	3.2.2 Expression Calculation
	3.2.3 Operator and Function Evaluation

	3.3 Non-Scalar Evaluation (aka 'Array expressions')
	3.4 Host-Defined Behaviors
	3.5 When recalculation occurs
	3.6 Numerical Models
	3.7 Basic Limits

	4 Types
	4.1 General
	4.2 Text (String)
	4.3 Number
	4.3.1 General
	4.3.2 Time
	4.3.3 Date
	4.3.4 DateTime
	4.3.5 Percentage
	4.3.6 Currency
	4.3.7 Logical (Number)

	4.4 Complex Number
	4.5 Logical (Boolean)
	4.6 Error
	4.7 Empty Cell
	4.8 Reference
	4.9 ReferenceList
	4.10 Array
	4.11 Pseudotypes
	4.11.1 General
	4.11.2 Scalar
	4.11.3 DateParam
	4.11.4 TimeParam
	4.11.5 Integer
	4.11.6 TextOrNumber
	4.11.7 Basis
	4.11.7.1 General
	4.11.7.2 Procedural Notation
	4.11.7.3 Procedure A
	4.11.7.4 Procedure B
	4.11.7.5 Procedure C
	4.11.7.6 Procedure D
	4.11.7.7 Procedure E
	4.11.7.8 Procedure F

	4.11.8 Criterion
	4.11.9 Database
	4.11.10 Field
	4.11.11 Criteria
	4.11.12 Sequences (NumberSequence, NumberSequenceList, DateSequence, LogicalSequence, and ComplexSequence)
	4.11.13 Any

	5 Expression Syntax
	5.1 General
	5.2 Basic Expressions
	5.3 Constant Numbers
	5.4 Constant Strings
	5.5 Operators
	5.6 Functions and Function Parameters
	5.7 Nonstandard Function Names
	5.8 References
	5.9 Reference List
	5.10 Quoted Label
	5.10.1 General
	5.10.2 Lookup of Defined Labels
	5.10.3 Automatic Lookup of Labels
	5.10.4 Implicit Intersection
	5.10.5 Automatic Range
	5.10.6 Automatic Intersection

	5.11 Named Expressions
	5.12 Constant Errors
	5.13 Inline Arrays
	5.14 Whitespace

	6 Standard Operators and Functions
	6.1 General
	6.2 Common Template for Functions and Operators
	6.3 Implicit Conversion Operators
	6.3.1 General
	6.3.2 Conversion to Scalar
	6.3.3 Implied intersection
	6.3.4 Force to array context (ForceArray)
	6.3.5 Conversion to Number
	6.3.6 Conversion to Integer
	6.3.7 Conversion to NumberSequence
	6.3.8 Conversion to NumberSequenceList
	6.3.9 Conversion to DateSequence
	6.3.10 Conversion to Complex Number
	6.3.11 Conversion to ComplexSequence
	6.3.12 Conversion to Logical
	6.3.13 Conversion to LogicalSequence
	6.3.14 Conversion to Text
	6.3.15 Conversion to DateParam
	6.3.16 Conversion to TimeParam

	6.4 Standard Operators
	6.4.1 General
	6.4.2 Infix Operator "+"
	6.4.3 Infix Operator "-"
	6.4.4 Infix Operator "*"
	6.4.5 Infix Operator "/"
	6.4.6 Infix Operator "^"
	6.4.7 Infix Operator "="
	6.4.8 Infix Operator "<>"
	6.4.9 Infix Operator Ordered Comparison ("<", "<=", ">", ">=")
	6.4.10 Infix Operator "&"
	6.4.11 Infix Operator Reference Range (":")
	6.4.12 Infix Operator Reference Intersection ("!")
	6.4.13 Infix Operator Reference Concatenation ("~") (aka Union)
	6.4.14 Postfix Operator "%"
	6.4.15 Prefix Operator "+"
	6.4.16 Prefix Operator "-"

	6.5 Matrix Functions
	6.5.1 General
	6.5.2 MDETERM
	6.5.3 MINVERSE
	6.5.4 MMULT
	6.5.5 MUNIT
	6.5.6 TRANSPOSE

	6.6 Bit operation functions
	6.6.1 General
	6.6.2 BITAND
	6.6.3 BITLSHIFT
	6.6.4 BITOR
	6.6.5 BITRSHIFT
	6.6.6 BITXOR

	6.7 Byte-position text functions
	6.7.1 General
	6.7.2 FINDB
	6.7.3 LEFTB
	6.7.4 LENB
	6.7.5 MIDB
	6.7.6 REPLACEB
	6.7.7 RIGHTB
	6.7.8 SEARCHB

	6.8 Complex Number Functions
	6.8.1 General
	6.8.2 COMPLEX
	6.8.3 IMABS
	6.8.4 IMAGINARY
	6.8.5 IMARGUMENT
	6.8.6 IMCONJUGATE
	6.8.7 IMCOS
	6.8.8 IMCOSH
	6.8.9 IMCOT
	6.8.10 IMCSC
	6.8.11 IMCSCH
	6.8.12 IMDIV
	6.8.13 IMEXP
	6.8.14 IMLN
	6.8.15 IMLOG10
	6.8.16 IMLOG2
	6.8.17 IMPOWER
	6.8.18 IMPRODUCT
	6.8.19 IMREAL
	6.8.20 IMSIN
	6.8.21 IMSINH
	6.8.22 IMSEC
	6.8.23 IMSECH
	6.8.24 IMSQRT
	6.8.25 IMSUB
	6.8.26 IMSUM
	6.8.27 IMTAN

	6.9 Database Functions
	6.9.1 General
	6.9.2 DAVERAGE
	6.9.3 DCOUNT
	6.9.4 DCOUNTA
	6.9.5 DGET
	6.9.6 DMAX
	6.9.7 DMIN
	6.9.8 DPRODUCT
	6.9.9 DSTDEV
	6.9.10 DSTDEVP
	6.9.11 DSUM
	6.9.12 DVAR
	6.9.13 DVARP

	6.10 Date and Time Functions
	6.10.1 General
	6.10.2 DATE
	6.10.3 DATEDIF
	6.10.4 DATEVALUE
	6.10.5 DAY
	6.10.6 DAYS
	6.10.7 DAYS360
	6.10.8 EASTERSUNDAY
	6.10.9 EDATE
	6.10.10 EOMONTH
	6.10.11 HOUR
	6.10.12 ISOWEEKNUM
	6.10.13 MINUTE
	6.10.14 MONTH
	6.10.15 NETWORKDAYS
	6.10.16 NOW
	6.10.17 SECOND
	6.10.18 TIME
	6.10.19 TIMEVALUE
	6.10.20 TODAY
	6.10.21 WEEKDAY
	6.10.22 WEEKNUM
	6.10.23 WORKDAY
	6.10.24 YEAR
	6.10.25 YEARFRAC

	6.11 External Access Functions
	6.11.1 General
	6.11.2 DDE
	6.11.3 HYPERLINK

	6.12 Financial Functions
	6.12.1 General
	6.12.2 ACCRINT
	6.12.3 ACCRINTM
	6.12.4 AMORLINC
	6.12.5 COUPDAYBS
	6.12.6 COUPDAYS
	6.12.7 COUPDAYSNC
	6.12.8 COUPNCD
	6.12.9 COUPNUM
	6.12.10 COUPPCD
	6.12.11 CUMIPMT
	6.12.12 CUMPRINC
	6.12.13 DB
	6.12.14 DDB
	6.12.15 DISC
	6.12.16 DOLLARDE
	6.12.17 DOLLARFR
	6.12.18 DURATION
	6.12.19 EFFECT
	6.12.20 FV
	6.12.21 FVSCHEDULE
	6.12.22 INTRATE
	6.12.23 IPMT
	6.12.24 IRR
	6.12.25 ISPMT
	6.12.26 MDURATION
	6.12.27 MIRR
	6.12.28 NOMINAL
	6.12.29 NPER
	6.12.30 NPV
	6.12.31 ODDFPRICE
	6.12.32 ODDFYIELD
	6.12.33 ODDLPRICE
	6.12.34 ODDLYIELD
	6.12.35 PDURATION
	6.12.36 PMT
	6.12.37 PPMT
	6.12.38 PRICE
	6.12.39 PRICEDISC
	6.12.40 PRICEMAT
	6.12.41 PV
	6.12.42 RATE
	6.12.43 RECEIVED
	6.12.44 RRI
	6.12.45 SLN
	6.12.46 SYD
	6.12.47 TBILLEQ
	6.12.48 TBILLPRICE
	6.12.49 TBILLYIELD
	6.12.50 VDB
	6.12.51 XIRR
	6.12.52 XNPV
	6.12.53 YIELD
	6.12.54 YIELDDISC
	6.12.55 YIELDMAT

	6.13 Information Functions
	6.13.1 General
	6.13.2 AREAS
	6.13.3 CELL
	6.13.4 COLUMN
	6.13.5 COLUMNS
	6.13.6 COUNT
	6.13.7 COUNTA
	6.13.8 COUNTBLANK
	6.13.9 COUNTIF
	6.13.10 COUNTIFS
	6.13.11 ERROR.TYPE
	6.13.12 FORMULA
	6.13.13 INFO
	6.13.14 ISBLANK
	6.13.15 ISERR
	6.13.16 ISERROR
	6.13.17 ISEVEN
	6.13.18 ISFORMULA
	6.13.19 ISLOGICAL
	6.13.20 ISNA
	6.13.21 ISNONTEXT
	6.13.22 ISNUMBER
	6.13.23 ISODD
	6.13.24 ISREF
	6.13.25 ISTEXT
	6.13.26 N
	6.13.27 NA
	6.13.28 NUMBERVALUE
	6.13.29 ROW
	6.13.30 ROWS
	6.13.31 SHEET
	6.13.32 SHEETS
	6.13.33 TYPE
	6.13.34 VALUE

	6.14 Lookup Functions
	6.14.1 General
	6.14.2 ADDRESS
	6.14.3 CHOOSE
	6.14.4 GETPIVOTDATA
	6.14.4.1 General
	6.14.4.2 Preferred Syntax
	6.14.4.3 Alternative Syntax

	6.14.5 HLOOKUP
	6.14.6 INDEX
	6.14.7 INDIRECT
	6.14.8 LOOKUP
	6.14.9 MATCH
	6.14.10 MULTIPLE.OPERATIONS
	6.14.11 OFFSET
	6.14.12 VLOOKUP

	6.15 Logical Functions
	6.15.1 General
	6.15.2 AND
	6.15.3 FALSE
	6.15.4 IF
	6.15.5 IFERROR
	6.15.6 IFNA
	6.15.7 NOT
	6.15.8 OR
	6.15.9 TRUE
	6.15.10 XOR

	6.16 Mathematical Functions
	6.16.1 General
	6.16.2 ABS
	6.16.3 ACOS
	6.16.4 ACOSH
	6.16.5 ACOT
	6.16.6 ACOTH
	6.16.7 ASIN
	6.16.8 ASINH
	6.16.9 ATAN
	6.16.10 ATAN2
	6.16.11 ATANH
	6.16.12 BESSELI
	6.16.13 BESSELJ
	6.16.14 BESSELK
	6.16.15 BESSELY
	6.16.16 COMBIN
	6.16.17 COMBINA
	6.16.18 CONVERT
	6.16.19 COS
	6.16.20 COSH
	6.16.21 COT
	6.16.22 COTH
	6.16.23 CSC
	6.16.24 CSCH
	6.16.25 DEGREES
	6.16.26 DELTA
	6.16.27 ERF
	6.16.28 ERFC
	6.16.29 EUROCONVERT
	6.16.30 EVEN
	6.16.31 EXP
	6.16.32 FACT
	6.16.33 FACTDOUBLE
	6.16.34 GAMMA
	6.16.35 GAMMALN
	6.16.36 GCD
	6.16.37 GESTEP
	6.16.38 LCM
	6.16.39 LN
	6.16.40 LOG
	6.16.41 LOG10
	6.16.42 MOD
	6.16.43 MULTINOMIAL
	6.16.44 ODD
	6.16.45 PI
	6.16.46 POWER
	6.16.47 PRODUCT
	6.16.48 QUOTIENT
	6.16.49 RADIANS
	6.16.50 RAND
	6.16.51 RANDBETWEEN
	6.16.52 SEC
	6.16.53 SERIESSUM
	6.16.54 SIGN
	6.16.55 SIN
	6.16.56 SINH
	6.16.57 SECH
	6.16.58 SQRT
	6.16.59 SQRTPI
	6.16.60 SUBTOTAL
	6.16.61 SUM
	6.16.62 SUMIF
	6.16.63 SUMIFS
	6.16.64 SUMPRODUCT
	6.16.65 SUMSQ
	6.16.66 SUMX2MY2
	6.16.67 SUMX2PY2
	6.16.68 SUMXMY2
	6.16.69 TAN
	6.16.70 TANH

	6.17 Rounding Functions
	6.17.1 CEILING
	6.17.2 INT
	6.17.3 FLOOR
	6.17.4 MROUND
	6.17.5 ROUND
	6.17.6 ROUNDDOWN
	6.17.7 ROUNDUP
	6.17.8 TRUNC

	6.18 Statistical Functions
	6.18.1 General
	6.18.2 AVEDEV
	6.18.3 AVERAGE
	6.18.4 AVERAGEA
	6.18.5 AVERAGEIF
	6.18.6 AVERAGEIFS
	6.18.7 BETADIST
	6.18.8 BETAINV
	6.18.9 BINOM.DIST.RANGE
	6.18.10 BINOMDIST
	6.18.11 LEGACY.CHIDIST
	6.18.12 CHISQDIST
	6.18.13 LEGACY.CHIINV
	6.18.14 CHISQINV
	6.18.15 LEGACY.CHITEST
	6.18.16 CONFIDENCE
	6.18.17 CORREL
	6.18.18 COVAR
	6.18.19 CRITBINOM
	6.18.20 DEVSQ
	6.18.21 EXPONDIST
	6.18.22 FDIST
	6.18.23 LEGACY.FDIST
	6.18.24 FINV
	6.18.25 LEGACY.FINV
	6.18.26 FISHER
	6.18.27 FISHERINV
	6.18.28 FORECAST
	6.18.29 FREQUENCY
	6.18.30 FTEST
	6.18.31 GAMMADIST
	6.18.32 GAMMAINV
	6.18.33 GAUSS
	6.18.34 GEOMEAN
	6.18.35 GROWTH
	6.18.36 HARMEAN
	6.18.37 HYPGEOMDIST
	6.18.38 INTERCEPT
	6.18.39 KURT
	6.18.40 LARGE
	6.18.41 LINEST
	6.18.42 LOGEST
	6.18.43 LOGINV
	6.18.44 LOGNORMDIST
	6.18.45 MAX
	6.18.46 MAXA
	6.18.47 MEDIAN
	6.18.48 MIN
	6.18.49 MINA
	6.18.50 MODE
	6.18.51 NEGBINOMDIST
	6.18.52 NORMDIST
	6.18.53 NORMINV
	6.18.54 LEGACY.NORMSDIST
	6.18.55 LEGACY.NORMSINV
	6.18.56 PEARSON
	6.18.57 PERCENTILE
	6.18.58 PERCENTRANK
	6.18.59 PERMUT
	6.18.60 PERMUTATIONA
	6.18.61 PHI
	6.18.62 POISSON
	6.18.63 PROB
	6.18.64 QUARTILE
	6.18.65 RANK
	6.18.66 RSQ
	6.18.67 SKEW
	6.18.68 SKEWP
	6.18.69 SLOPE
	6.18.70 SMALL
	6.18.71 STANDARDIZE
	6.18.72 STDEV
	6.18.73 STDEVA
	6.18.74 STDEVP
	6.18.75 STDEVPA
	6.18.76 STEYX
	6.18.77 LEGACY.TDIST
	6.18.78 TINV
	6.18.79 TREND
	6.18.80 TRIMMEAN
	6.18.81 TTEST
	6.18.82 VAR
	6.18.83 VARA
	6.18.84 VARP
	6.18.85 VARPA
	6.18.86 WEIBULL
	6.18.87 ZTEST

	6.19 Number Representation Conversion Functions
	6.19.1 General
	6.19.2 ARABIC
	6.19.3 BASE
	6.19.4 BIN2DEC
	6.19.5 BIN2HEX
	6.19.6 BIN2OCT
	6.19.7 DEC2BIN
	6.19.8 DEC2HEX
	6.19.9 DEC2OCT
	6.19.10 DECIMAL
	6.19.11 HEX2BIN
	6.19.12 HEX2DEC
	6.19.13 HEX2OCT
	6.19.14 OCT2BIN
	6.19.15 OCT2DEC
	6.19.16 OCT2HEX
	6.19.17 ROMAN

	6.20 Text Functions
	6.20.1 General
	6.20.2 ASC
	6.20.3 CHAR
	6.20.4 CLEAN
	6.20.5 CODE
	6.20.6 CONCATENATE
	6.20.7 DOLLAR
	6.20.8 EXACT
	6.20.9 FIND
	6.20.10 FIXED
	6.20.11 JIS
	6.20.12 LEFT
	6.20.13 LEN
	6.20.14 LOWER
	6.20.15 MID
	6.20.16 PROPER
	6.20.17 REPLACE
	6.20.18 REPT
	6.20.19 RIGHT
	6.20.20 SEARCH
	6.20.21 SUBSTITUTE
	6.20.22 T
	6.20.23 TEXT
	6.20.24 TRIM
	6.20.25 UNICHAR
	6.20.26 UNICODE
	6.20.27 UPPER

	7 Other Capabilities
	7.1 General
	7.2 Inline constant arrays
	7.3 Inline non-constant arrays
	7.4 Year 1583

	8 Non-portable Features
	8.1 General
	8.2 Distinct Logical

