JOASIS

OData Version 4.01. Part 1: Protocol
OASIS Standard
23 April 2020

This stage:
https://docs.oasis-open.org/odata/odata/v4.01/os/partl-protocol/odata-v4.01-o0s-partl-protocol.docx
(Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/os/partl-protocol/odata-v4.01-o0s-partl-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/os/partl-protocol/odata-v4.01-os-partl-protocol.pdf

Previous stage:
https://docs.oasis-open.org/odata/odata/v4.01/cs02/partl-protocol/odata-v4.01-cs02-part1l-protocol.docx
(Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/cs02/partl-protocol/odata-v4.01-cs02-partl-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/cs02/partl-protocol/odata-v4.01-cs02-partl-protocol.pdf

Latest stage:

https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-partl-protocol.docx (Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1l-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-partl-protocol.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:

Michael Pizzo (mikep@microsoft.com), Microsoft

Ralf Handl (ralf.handl@sap.com), SAP SE

Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE

Additional artifacts:

This prose specification is one component of a Work Product that also includes:

e OData Version 4.01. Part 1: Protocol (this document). https://docs.oasis-
open.org/odata/odata/v4.01/os/partl-protocol/odata-v4.01-os-partl-protocol.html.

e OData Version 4.01. Part 2: URL Conventions. https://docs.oasis-
open.org/odata/odata/v4.01/os/part2-url-conventions/odata-v4.01-os-part2-url-conventions.html.

¢ ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases
Version 4.01. https://docs.oasis-open.org/odata/odata/v4.01/os/abnf].

Related work:

This specification replaces or supersedes:

e OData Version 4.0 Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl.
OASIS Standard. Latest stage: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-partl-
protocol.html.

This specification is related to:
e OData Vocabularies Version 4.0. Edited by Michael Pizzo, Ralf Handl, and Ram Jeyaraman. Latest
stage: http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html.

odata-v4.01-os-partl-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 1 of 97

https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.docx
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.pdf
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part1-protocol/odata-v4.01-cs02-part1-protocol.docx
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part1-protocol/odata-v4.01-cs02-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part1-protocol/odata-v4.01-cs02-part1-protocol.pdf
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.docx
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/os/part2-url-conventions/odata-v4.01-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/os/part2-url-conventions/odata-v4.01-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html

e OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html.

e OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.

e OData JSON Format Version 4.01. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest
stage: https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html.

e OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl, Hubert Heijkers, Gerald
Krause, Michael Pizzo, and Martin Zurmuehl. Latest stage: http://docs.oasis-open.org/odata/odata-
data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html.

Abstract:

The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in an Entity Data Model
(EDM), to be published and edited by Web clients using simple HTTP messages. This document defines
the core semantics and facilities of the protocol.

Status:

This document was last revised or approved by the membership of OASIS on the above date. The level
of approval is also listed above. Check the “Latest stage” location noted above for possible later revisions
of this document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.)

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/odata/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/odatalipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[OData-Part1]

OData Version 4.01. Part 1: Protocol. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. 23 April
2020. OASIS Standard. https://docs.oasis-open.org/odata/odata/v4.01/os/partl-protocol/odata-v4.01-0s-
partl-protocol.html. Latest stage: https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-partl-
protocol.html.

odata-v4.01-os-partl-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 2 of 97

https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/os/part1-protocol/odata-v4.01-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html

Notices

Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

odata-v4.01-os-partl-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 3 of 97

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

1 T Lo (1o 1o T o PP PRPRT 9
O 1o O = o [T PSPPSR 9
0 R =11 0T 0 o] oo YOS T PP PPU P PP PPPPPN 9
1.2 NOIMALIVE REFEIENCESveiieiieieiee ettt e e st e e e st e e e anb et e e e snbae e e e snbeeeeeanees 9
1.3 TypographiCal CONVENTIONScciiiiiiiiiiiiee ittt e e e st e e st b e e e st e e e e sbn e e e e sbreeeeaa 10

2 L@ YT QT PRSPPI 11

3 (D=1 = 1Y o o = PSP PPRR 12
0 I Y o T] = 11T 1S PP U OUPPPRP 12

4 L= Y 1ot 1Y o T = PRSPPI 14
4.1 Entity-1ds and Entity REFEIENCEScouuiiiiiiiii et 14
4.2 Read URLS aNnd Edit URLSooiiiiiiiiiiiii ettt ettt e e e e e e s e annreeeeeee s 14
4.3 TraNSIENT ENTILIESeeeeeiiie et e et et e e e e e s bbb e et e e e s e st b s e e e e e e e s e annbeneeeeeens 14
4.4 DEfaUlt NAMESPACESeeiiiiiiiieiiieii ettt ettt e e s et e s e b et e e e bt et e e aab b et e e anbbe e e e enbeeeeenbneeeeneee 15

5 A= £ 1T PP 16
N (o] (o ol Y /=T €= o] o 11 To FO OO PSP TP UPTPP PP 16
LAV o o (= IV =T =T 11 o 16

6 EXEENSIDIITY ...t e e neee 18
6.1 Query OPLioN EXIENSIDIIILYc.oiouuiiiiiiiiii ettt e e e e snnneeas 18
6.2 Payload EXtENSIDIILYcccoe e ———————— 18
6.3 ACiON/FUNCLION EXIENSIDIILY ...c..veeiiiiiiiee ettt as 18
6.4 Vocabulary EXIENSIDIIILYcccooeieie e —————— 18
6.5 Header Field EXTENSIDMILYoiuuiiiiiiie et 19
6.6 FOrmMat EXIENSIDIIILYooiiieiiiiiiiiie ettt e et e e saba e e e e nanneeas 19

7 FFOIINALS ...ttt e s e e e bR b nn b e nnn e 20

8 [(= 1o =T g = Lo £SO 21
8.1 COMMON HEAUEBIS. ...ttt ettt e oottt et e e e s e e b bbbttt e e e e e e e ababeeee e e e e e sannbbbneeaeaeaeannes 21

o I o 1= o [@ oY o =0 o B o 4 oY= SO 21

ST WOZ o 1=V (=] g @FoY oN a0 s R ukuh s Yo Yo I8 o e SRS 21

ST IR o (- To (=] g 0T oY oN o=y o ukl =B oL 1 D E= Lo 1= YOS 21
0 I o [T- Vo (= g @ oY o N o=y o B wkl N =8 oL o S P 21
oI T o [=T= o [T O R e RV Ao oo Ko o DU PRSPPRR R 22
8.2 REOUEST HEAUEISo 22
S I o 1= = o (= T 1=y o SO 22
STV o [T- o (o] g Va1 oF ot 0 o ook =T SO 22
STV o [T-To (=] gV aTeT=Y o X oheh 10 s Yo 2 U =Y =SSR 22
I o 1= = o (= g Vo e SO 23
Il o =T o [I e o b o T b 1= B ol ol o P 23
8.2.6 Header Isolation (OData—TISOLlatIion) iiiiieeiiiiieeiiiiiee st e et e e e e s enre e 23
S o T=T-To (ST QO D E R et VoD A VA=Y = Ko) o WP PPR SR 24
I S Il o L=T= o [g T = U PRSOPRR R 24
8.2.8.1 Preference allow-entityreferences (odata.allow-entityreferences)......cnnn.n. 24
8.2.8.2 Preference callback (0data.CallbDack) o iiiieeiieieesireee et e e e e s e e e s 25
8.2.8.3 Preference continue-on-error (0data.ContinuUe—0N=ErTrOr) .oiireerireeeirrreensneeenneeens 26
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 4 of 97

8.2.8.4 Preference include-annotations (odata.include-annotations). ... 26

8.2.8.5 Preference maxpagesize (0data . MaxpPageSiZe) e iiieieeeeeeeaiiieieeae e e s eieeeeeeaaeesaennnneeeeas 27
8.2.8.6 PreferENCe OmMI VA 1 U@ S tuuttiiiiiie ettt e e ettt e e e e e ettt e e e e e s e be e e e e e e e e s annbeeeeeaeeeaannsseeaaaaeeaannnseneens 28
8.2.8.7 Preference return=representation and return=minimalcccccccriiiuiirreeenniiiiiiieeeeeeeeeieeeeeas 28
8.2.8.8 PrefereNCe reSPONA=ASYIIC wiiiiiiiiiiiiiiiiee e e e s ettt e e e e e e ettt e e e e e e et e e e e e e e e s st basaeeaeeesaasbaareeeeeesaaansreeeas 29
8.2.8.9 Preference track-changes (odata.traCk—Changes) ciiiiiiiieieeieiiiiieiee e e e e seeirrre e e e e e e saarreee s 29
S I Ol o (= (] (T o (ol I TP PP 29

8.3 RESPONSE HEAUEIS ...ttt e ettt e e e e e e e st e et e e e s e s et et e e eeeesaansnbaeeeeeeeesannsnraneeeaeeesanns 30
8.3. 1 HEAUE! ASYNCRESULE tiuuttiiiiiieee ittt e e e e e sttt et e e e s s s e s be et eeaeeessannbeeaeeeeaeseaannbeteeeeeeesesanntrseeeaaens 30
RS Il o 1= = o (= b =Y SRR SRPPPI 30
SR RC I = [=T-To [g o Yot= R i i e o KU PSPPI 30
SRS o [oT-To [T g @) D N oo T o o I Y I APPSR 30
ST R T o [=T= o [T Q@) D N o Rt ok oo OO PTTOPRR 31
8.3.6 Header PreferenCe— AP lied et 31
IR T o = T= o =T O N wl e N ol =l 31
8.3 8 HBAU BT VAT Yttt ce et et ———————— 31

9 Common RESPONSE SLAtUS COUEScciie i 32
9.1 SUCCESS RESPONSESoititieiieee e e ittt e e e e ekttt e e e e e s e et e ee e et e e b b e et e e e e e s s abn e e et e e e e e s annnrneeeeeenennes 32
9.1.1 RESPONSE COUE 200 OK.uteeeieieieieieieieieieieseasssssassaaeasaeaaas s s s e s e s s s e s e s e s e aaaa s s aa s e s e s e s e s e ae s e aesaaaaasaaeaeaaaaeas 32
9.1.2 ReSPONSE COUE 201 Created.iiiiiiiiiiiiiiiiieis e e ie et e et ettt r e e a e e e a e a e e naaae e e 32
9.1.3 RESPONSE COUE 202 ACCEPEEA it ittt ii it ie ittt ie et e ettt 32
9.1.4 ResSpoNse Code 204 NO CONTEIT tiiiiiiiieiiiiieeaitiee ettt e e ettt e e s st e e s ribe e e e st e e e s snbre e e s anbeeeeenneee 32
9.1.5 RespoNnse Code 3xx REAITECTION tiiiiitiiiiiiiee it ettt ettt e e e b e e e neee 32
9.1.6 Response Code 304 NOt MOAIFIA ciiiiiiiiiiieiiiiiee ettt et sb e e 32
9.2 ClIENT EFTOr RESPONSESttiiiiitieee ettt ettt ettt e sttt e bb et e s bb et e s bbbt e e s bbbt e e s bbbt e e s bbb e e e s anbbeeesanbneeas 33
9.2.1 ReSpoNSse COde 404 NOT FOUNA tutrtriiiaiiiiitiiiiiteeaaeaiiteteeeae e e e s aasbebeeeaae e s s aanbbeeeeeaeesaaannbrseeeeeens 33
9.2.2 Response Code 405 Method NOT ALLOWEA .. iiiiiieieeeaaaiiirreeeeeeaaaiiiereeeeeeesaannreeeeeeaeas 33
9.2.3 Response Code 406 NOT ACCEPTAD L ittt iiitiiieeee e e e et a e e e s s ree e e e e e e e s sanbrreeeeeeas 33
9.2.4 RESPONSE COUE 410 GO tutiiieiiuiiiee i iiteee e ettt e e sttt e e e sttt e e e s bt e e e rabe e e e e e abe e e e e aabe e e e e aabe e e e e anbeeeeaneee 33
9.2.5 Response Code 412 Precondition Failed . 33
9.2.6 Response Code 424 Failed DEPENAEIICY «iurrireeiriiiirrerreeeeseiantnnerereaessamnnnnereeeessmmmsmsseeeeees 33
9.3 SEIVEI EITOr RESPONSES ...oitieiieieii ittt ettt e et e e e e e s e et e e e et e e et e e e e e sannrneeeeeeneane 33
9.3.1 Response Code 501 NOt IMPLEMENTEA uuriiiiiiiiiiiiiiiiiiiaaeaeaitereeeee e e s e aibreeeeee e e s e sanrrreeeeaeas 33
9.4 Error RESPONSE BOAY ... —————— 34
LS TR oY =TT Y] 34
FO CONEEXE URL ..tttk et e e e bnbnbne 35
O ST VTt TN I T Yo [1= o S 35
10.2 COllECHION Of ENEILIESeteeiiieiii ittt e e e e e e bbb e e e e e e e e e snnbbe e e e e e e e s e annnnnees 35
0TS I =l 11 TP PSPTTP 36
OIS T | =] (o] o I PP RT PRSPPI 36
10.5 Collection of DeriVed ENTILIESuiiiii ettt e e et e e e e e e e ennenees 36
10.6 DEIVEA ENLILY ..eiiiiiiiiieiiieiee ettt ettt e ettt e e e sttt e e e sabe e e e e snbbeeeeanbbeeeeanbeeeeean 37
10.7 Collection of ProjeCted ENLILIESccuii ittt e e e 37
ORI o fo] (= Tox (=To I =l o 1] PRSP PRPT PP 37
10.9 Collection of EXpanded ENLLIEScoiiiiiiieiiiiiee ittt e et e et e e e sbneeeeans 38
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 5 of 97

10.20 EXPANAEA ENLILY.....eiiiiiiieeiiiiiee ettt e st e e st e e e sabb e e e e sbb e e e e sabneeeeabreeeeaa 39

10.11 Collection of Entity REFEIENCEScoveeiiiiiiiiieee e e e e e e e s e e e e e e s e ennnneees 39
10.12 ENLitY REFEIBNCEoiiiiiiiee ettt ettt e et e e e e st et e e s bb et e e s breeeeaas 39
10.13 Property VAlUEoooiiiiieeiiiieee ettt ettt e e st e e e st e e e e st e e e e e sk e e e e e abneeeeanbreeeen 40
10.14 Collection of Complex OFr PriMItIVE TYPESuuiiieeiiiiiiiieiee e e e e ciciiire e e e e s s st e e e e e e s s snnnaeeeeeee e s s nnnnnees 40
10.15 COMPIEX OF PHIMITIVE TYPE...eeiiiiiiieie ittt ettt ettt et e e st e e e ebe e e e sabr e e e s sbreeeesbreeeeaa 40
10.16 OPEration RESUIL.........oeieiiiei e e e e e e s e e e e e e s e st e e e eaeessassnnraeeeeeeessannnenns 40
10.17 Delta Payload RESPONSEcooiiiiiiiiiiitee ittt ettt et e st e e e st e e e e abb e e e e sbr e e e e abbeeeeaabneeeeaa 41
10.18 Item in a Delta Payload RESPONSEccuuiiiiiiie i iiiiieeie e st e e e e s e s e e e e e e s s ennraeee e e e e e s s nnnnnnees 41
IR T 1L =YY o T o TSRS 41
10.20 BCrOSSJOIN RESPONSEeeeiiiiitiie ittt ettt ettt et e ettt s b e e sab e e eabe e e be e e snbe e e sbaeesabee s abbeesabeeeanneennes 42
A B - - WS Y= oY ol =T [1) £ PR 43
11.1 Metadatl REQUESTS. ... eeiiei ittt e et ettt e e et e e e e e st bt e e e sabe e e e e sabb e e e e sbbeeeesbneeeean 43
11.1.1 Service DOCUMENT REQUEST........uuuuuuiriuieieieieieiereineeiererererernrerererererererarereerereerrarerrra. 43
11.1.2 Metadata DOCUMENT REQUEST........cooiiiiiiieiiiiie ettt ettt e e e e s e e e 43
11.2 REQUESTING DALAeeiiiiiiiiieiitiiee ettt e e sttt e e st e e e sab bt e e e sabb e e e e sabb e e e e anbneeeeanbneeeeaa 44
N YY1 =T ¢ T T 1T A @ 1 0 S 44
11.2.2 Requesting INAiviIdUAl ENLILIEScooiiiiiiieiiiiii ettt 45
11.2.3 Requesting the Media Stream of a Media Entity USING SvValUuevuvvieieiiiiininininiiiiinininininn, 45
11.2.4 Requesting INdividual ProPerti€Suuuuuuuuuuuuieieiuieieiuinieinrnierninrnrernrnrerernmen—————————. 45
11.2.4.1 Requesting a Property's Raw Value USING STALUE ..icovciiiiiiiiiiieiiiiee et 46
11.2.5 Specifying Properties t0 REIUMc.uuiiiiiiiieiiiie ettt 46
11.2.5.1 System QUETY OPLON SSELECT uuruiiriiieitiieritiesie ettt ettt e e st e s e e st e eane e e 46
11.2.5.2 System QUETY OPLION SEXPANA . uiciuurieriieieeiiiree it teaatee e e st e e s st e e e abee e e s asbe e e s abr e e e abbeeesanneeeesnreees a7
11.2.5.2. 1 EXPANG OPLONS.....eiiiiiiiiieiiiiee ettt ettt e st e e b e e e s e e e et e e s et e e e nbr e e e enre e e e nnnes 48
11.25.2.1.1 EXPaANd OPLiON S1EVELS ciiueiiiiiriieiiiiiiieiireee s stiee et e e e s et snne e e s e e e e 48

11.2.5.3 System QUETY OPLION SCOMPUTE toiuviiiiiiiiieeiiieee et ee e sttt e e st e s st e e e st er e e s asre e e s sbr e e e abne e e s anneeeesnneees 48
11.2.6 QUETIYING COIECHONSeeiiiiiiiieiitiie ettt ettt e e e s e bt e e e e nbee e e e neee 49
11.2.6.1 System QUETY OPLION S E i L@ r i iiie et e e s s e e s et e e s e e e e snnee s 49
11.2.6.1.1 BUilt-in Filter OPEIatiONS.ueeiiiiieiiitiii et ettt e e e e e e e e st b et e e e e e e s aabneneeaeeeaas 49
11.2.6.1.2 BUIlt-in QUEY FUNCHONSeviiiiiitiie ettt e e e e e s s 50
11.2.6.1.3 PAramMeEter AlIASESeeeiieiiiiiiiiiee ettt ettt e e e e e ettt e e e e e et bbb et e e e e e e aasbbe e e e e e e e s anbnereeaeeeaan 52

11.2.6.2 System QUETY OPLION SOTAETIDY toiiuuiiiiiiiiieeiiiiee ittt e ettt e sttt e sttt e brr e s rsre e e e abr e e e abe et e s anneeeesnneee s 52
11.2.6.3 SYStemM QUETY OPLION ST OD «eeiiurreeeiiriieiiiiiteeitete e e sttt e e st e e st e e e sttt e e sbr e e e s asne e e s asbr e e e abe et e s anneeeesnreeens 53
11.2.6.4 System QUETY OPLION SSKID ciiuureeeiiurereriuireeeitreeeaattrtesatteeesss e e e s asbr e e s aber e e s asre e e s aabr e e e abr et e s anneeeesnreees 53
11.2.6.5 System QUETY OPLION SCOUINT 1.uutiiiiiiieiiiiieeiiiee ettt e e sttt e e st et e e sttt e e asbb e e e s asbe e e e sabr e e e abb e e e sannneeesnneee s 54
11.2.6.6 System QUETY OPLION S SEAT TR ittt ettt ettt ettt e e e s b e e abb e e s b e e e snnreee s 54
11.2.6.7 SErVEr-DIVEN PAGING.....cccuutieiiiiiieiiiit ettt e sttt e e st e e e st et e e st bt e e e anb et e e nanneeesnneee s 55
11.2.6.8 Requesting an Individual Member of an Ordered ColleCHiONccoiiiiiiiiieeiiiiiieee e 55
11.2.7 Requesting Related ENLILIESuviiiiiiiiie ittt 55
11.2.8 Requesting ENtity REFEIENCEScoii it e e e e 56
11.2.9 ReSOIVING &N ENLLY-I0 ...ooiieiiiieiee e 56
11.2.10 Requesting the Number of Items in @ ColleCHONocuiiiiiiiiii e 56
11.2.11 System QUETY OPLION SEOTTMAT .uvviiitriiieiriiiieeiitieeesrittee e s et e e s st e e s s ebee e s snbee e e snbeeeesnnbeeeesnneee 57
11.2.12 System Query OptioN S SChemMAaVE TSI ON ittt iiiiieeiriiie ettt s snbee e e nnbee e e nneee 57
11.3 REQUESEING CRANGESveiieiiiiiee ittt ettt ettt e e sttt e e sabe e e e e snbbe e e e snbbeeeesabteeeesbbeeeeans 58
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 6 of 97

O 0 R B 1Y [= N T T 58

11.3.2 USING DEIA LINKSeviiiiiieie ittt ce e sttt e s e st e e e e e e e s st e e e e e s sannnaba e e e e e e e e s annnnnanneaeeeenanns 59
11.3.3 DEItA PAYIOAASeeiiiiiiieiiieie ettt 60
I B oY = Y [o [o= 11T I PR PERTR 60
11.4.1 Common Data Modification SEMEANTICSeuviiiiiiie i 60
11.4.1.1 Use of ETags for Avoiding Update CONFlICEScuvviiiiiiiiiiiieee e 60
11.4.1.2 Handling of DateTimeOTSEt VaAlUES..........c.uuviiiie ettt e e e e e e e e e e e 60
11.4.1.3 Handling of Properties Not Advertised in Metadatacccuveiieeeiiiiiiiiicee e 61
11.4.1.4 Handling of INtegrity CONSIIAINTScciiiiiiiiiiiieee et e et e e e e e et e e e e e e e s snnbbeeeaaeeeeannneeeaaaaeaan 61
11.4.1.5 Returning Results from Data Modification REQUESES............ccciiiiiiie i 61
11.4.2 Create @n ENTILYcooiiuieeieiiiiie ettt sttt s et s et e s eae e e e e nb et e e e nbr e e e e neee 61
11.4.2.1 Link to Related Entities When Creating an ENtity............cccoiiiiiiiiiiee e 62
11.4.2.2 Create Related Entities When Creating an ENtitycccooiiiiiiiiiieec e 63
11.4.3UPAAE AN ENLIY ...eiiiiiiiiie ittt e e 63
11.4.3.1 Update Related Entities When Updating an ENtity............cooiiieiiiiiieiiieeeee e 64
11.4.4 UPSEIt AN ENTILY ..oeeiiiiiiiie ittt e e e e e 66
R T T 1= (= LT = 1] 66
11.4.6 Modifying Relationships between ENtItieS............uuiuuriiieiiiiiiiiiiiiiiiiieieieieieieinrererenen.. 66
11.4.6.1 Add a Reference to a Collection-Valued Navigation Property.........cccoccveeiiieeeiniiieeeiniiee e 67
11.4.6.2 Remove a Reference t0 @an ENLILYoooiieiiiiiiiee et e et e e e s eesneeeee s 67
11.4.6.3 Change the Reference in a Single-Valued Navigation Propertycccccovoeeeeiiieeennincesniieee s 67
11.4.6.4 Replace all References in a Collection-valued Navigation Propertycccccovvveeeniiiiennieeee e 67
11.4.7 Managing Media ENTItIESuuuuuuueiiieieieieieieiereieieierereinrerernrerererererererareere e 67
11.4.7.1 Create @ MEIa ENTILYcocueeiiiiiiiieeiii ettt et et e s e e e st e s eeeanreee s 67
11.4.7.2 Update a Media ENtity STIEAIMooiiiiiiiiiiiiii ettt e e st e e e e e e aebr e eeeeeeaas 68
11.4.7.3 Delete @ MEIA ENTILYcoueeieiiiiee ettt ettt et e e e st e e e e e e s nre e s 68
11.4.8 Managing Stream PrOPEITIES.ui i ittt e e s bb e e e enbe e e e eeee 68
11.4.8.1 UPAALe SrEAM VAIUEScooiiiiiiiiei ettt e e e e et e e e e e e e e st bt e e e e e e s annbereeaeeeaan 68
11.4.8.2 Delete SIrEAM VAIUEBSeiiiiieiiiiiiiiei ettt ettt e e e e ettt e e e e e st e e e e e e e e s nsbaeteeaeeesannsbeneeaaeaean 69
11.4.9 Managing Values and PropertieS DIr€CHYuuuuuuuuumiriiiiiiiiieieieinieieisisieinrnieninen... 69
11.4.9.1 Update @ PrimitivVe PIOPEITYeeiiiiiiiie ittt ettt e et e e s e s e e e e snneee s 69
11.4.9.2 Set @ Value t0 NUIL ...t e ettt e e e s et e e e e e e s anbbrreeeeeeaan 69
11.4.9.3 Update @ COMPIEX PIOPEITYveeieiiieie ettt ettt e sttt ettt et e et e s s e e s sab et e e abr e e s anneeeeanreee s 69
11.4.9.4 Update a CollECtON PrOPEITYeiiiiiiieiiiiee ittt e e et eesnreee s 70
11.4.10 Managing Members of an Ordered ColleCtiONuuvuiuiuimimiiiiiiiiiieiii .. 70
O I I = o Y o T oY1 7= o £ PSR 70
11.4.12 Update a Collection Of ENLLIEScoouuiiiiiiiiie et 70
11.4.13 Update Members Of @ COHECHIONo.uiiiieeiee et e e e 71
11.4.14 Delete Members of @ COlECHIONouuueeiei e e e e e e e e e eeaaaaas 72
O] o 1T - i o] E- T TR PRPTR P 73
11.5.1 Binding an Operation t0 & RESOUICEcocuuiiiiiiiiiie ettt 73
11.5.2 Applying an Action to Members of a ColleCtioN............ccooiiiiiiiiiiiiie e 73
11.5.3 Advertising Available Operations within a Payload ... 74
0 30 o 1o SO PEERR 74
11.5.4.1 INVOKING @ FUNCHONttt ettt e e e e ettt e e e e e et e et e e e e e e s anbbeeeeaeeeeannbnreeaaeean 74
11.5.4.1.1 INliN€ PArameEter SYNTAXueeeiiuieeeiiiiteeiieieesiiee ettt et e e s e e et b e e s st e e s ba e e e e snbr e e e aneeeesnnnees 75
11.5.4.2 FUNCtion OVerload reSOIULIONuuiiiieiiiiiiiiie e ettt e e e e e e e e e e e e s satbae e e e e e e s ssnbrreeaeeeaan 76
T3 Ve 1 o] o PP PPTPUPPPPPR 76
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 7 of 97

ST A [1Y) (T g o J= T 1AV 1o) o PR PP SRR 76

11.5.5.2 Action OVErload RESOIULIONcoiiiiiiiiiiiiiee ettt ettt e e e s b e e et e e s snneeaesbneee s 77

11.6 ASYNCNIONOUS REQUESESutiiiiiiitiie ettt ettt e st e e e st e e e e st b e e e e sabe e e e e abbeeeeabreeeeaa 78
R = = L (ol TN =T [0 PR 78
11.7.1 BatCh ReQUESE HEAUEISeiieiiiii ettt e e 79
11.7.2 REQUESE DEPENUENCIES ...ttt e e ettt e e s e s e e e e e s e et eeeeeesaastabaeeeeaeaessntnrneeeaaeeenanns 79
11.7.3 Identifying INAiVidUal REQUESTS........couiiiieiiiii et 80
11.7.4 Referencing REtUrNEA ENLILIESuvviiiii it e e s e e e e e st e e e e e e s e s snrnrae e e e e e e e nanns 80
11.7.5 Referencing the ETag Of @n ENLItYccvuiiiiiie i e e e s nrrn e e e e e e 80
11.7.6 Referencing Values from ResSponse BOGIEScocoiiiiiiiiiiiieiiiiiie et 80
11.7.7 Multipart BatCh FOIMAL..........cciviiiiie et e e e e s st e e e e e e s et e e e e e e e e ssnrnrneeeaeeeenanns 80
11.7.7.1 Multipart Batch REQUESE BOY.........eoiiiiiiiiiiiiiiee et e e e e e e et e e e e e e e snete et e e e e e e s annnneeeeaaaaaan 80

11.7.7.2 Referencing NEW ENLILIES.......couuiieiiiie ettt e sttt e e ettt e e s saee e e e st e e e anee e e e snneeaesnaeeeas 82

11.7.7.3 REfEreNCING @N ETA0 ... iiiuieeiiiiiiee ettt ettt et e e s et e et e e et e s e e e e snre e s 83

11.7.7.4 Processing a Multipart BatCh REQUESTcuuiiiiiiiieiiiie et 84

11.7.7.5 Multipart BatCh RESPONSEuuiiieiiiiie ettt ettt et e e ettt e s rae e e e st e e e anee e e s enneeeeanaeeeas 84

11.7.7.6 ASyNchronous BatCh REQUESTESueiiiiiiieiiiieee ittt e e e s 85
Y= o [VA 0 1] T =T = U1 o o S 88
2 U 11 1= 0 o= L1 T o SRR 88
13 CONFOIMANCEeeiieeiiietee ettt oo oottt et e e e e e e bbb e e et e e e e e s e asbbbe e e e e e e e e s aanbbbeeeeeaeeeaannnrnees 89
13.1 OData 4.0 Service ConfOrmMance LEVEIScouiiiiiiiiiiiiiieie et e e e e e s 89
13.1.1 OData 4.0 Minimal ConformanCe LEVEIcooui it 89
13.1.2 OData 4.0 Intermediate Conformance LeVEL.............ueeiiiiiiiiiiii e 90
13.1.3 OData 4.0 Advanced ConformancCe LEVEL..........ooouuuiiiiiie i 91

13.2 OData 4.01 Service ConformanCe LEVEIScooiiiiiiiiiiiiiii e 91
13.2.1 OData 4.01 Minimal ConformManCe LEVEIccooiiiiiiiiie e e e 91
13.2.2 OData 4.01 Intermediate Conformance LEeVEL..............coiiiiiiiiiiiiiie e 93
13.2.3 OData 4.01 Advanced Conformance LEVEL..............uueiiiiie i 93

13.3 Interoperable ODAA CHENESoiuuiiiiiiiiee ittt e e e st e e e aba e e e e sbreeeeaa 93
Appendix A. ACKNOWIEAGMENTS ..o 95
Appendix B. REVISION HISTOTY ...ttt e e et e e 96
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 8 of 97

1 Introduction

The Open Data Protocol (OData) enables the creation of REST-based data services which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines the core
semantics and the behavioral aspects of the protocol.

The [OData-URL] specification defines a set of rules for constructing URLSs to identify the data and
metadata exposed by an OData service as well as a set of reserved URL query options.

The [OData-CSDLJSON] specification defines a JSON representation of the entity data model exposed
by an OData service.

The [OData-CSDLXML] specification defines an XML representation of the entity data model exposed by
an OData service.

The [OData-JSON] document specifies the JSON format of the resource representations that are
exchanged using OData.

1.0 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC'’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

1.1 Terminology

The key words “MUST”, “MUST NOT”", “REQUIRED”, “SHALL", “SHALL NOT”", “SHOULD”, “SHOULD
NOT”, “RECOMMENDED", “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[OData-ABNF] OData ABNF Construction Rules Version 4.01.
See link in "Additional artifacts" section on cover page.

[OData-Aggregation] OData Extension for Data Aggregation Version 4.0.
See link in "Related work" section on cover page.

[OData-CSDLJSON] OData Common Schema Definition Language (CSDL) JSON Representation
Version 4.01. See link in "Related work" section on cover page.

[OData-CSDLXML] OData Common Schema Definition Language (CSDL) XML Representation
Version 4.01. See link in "Related work" section on cover page

[OData-JSON] OData JSON Format Version 4.01.
See link in "Related work" section on cover page.
[OData-URL] OData Version 4.01 Part 2: URL Conventions.
See link in "Additional artifacts" section on cover page.
[OData-VocCap] OData Vocabularies Version 4.0: Capabilities Vocabulary.
See link in "Related work" section on cover page.
[OData-VocCore] OData Vocabularies Version 4.0: Core Vocabulary.
See link in "Related work" section on cover page.
[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types", RFC 2046, November 1996.
https://tools.ietf.org/html/rfc2046.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 9 of 97

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://tools.ietf.org/html/rfc2046

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”,
BCP 14, RFC 2119, March 1997. https://tools.ietf.org/html/rfc2119.

[RFC3987] Duerst, M. and, M. Suignard, “Internationalized Resource Identifiers (IRIs)”,
RFC 3987, January 2005. https://tools.ietf.org/html/rfc3987.

[RFC5646] Phillips, A., Ed., and M. Davis, Ed., “Tags for Identifying Languages”, BCP
47, RFC 5646, September 2009. http://tools.ietf.org/html/rfc5646.

[RFC5789] Dusseault, L., and J. Snell, “Patch Method for HTTP”, RFC 5789, March
2010. http://tools.ietf.org/html/rfc5789.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing”, RFC 7230, June 2014.
https://tools.ietf.org/html/rfc7230.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content”, RFC 7231, June 2014.
https://tools.ietf.org/html/rfc7231.

[RFC7232] Fielding, R., Ed. and J. Reschke, Ed., “Hypertext Transfer Protocol
(HTTP/1.1): Conditional Requests”, RFC 7232, June 2014.
https://tools.ietf.org/html/rfc7232.

[RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240, June
2014 .https://tools.ietf.org/html/rfc7240.
[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617,

September 2015. https://tools.ietf.org/html/rfc7617.

1.3 Typographical Conventions
Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.
Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 10 of 97

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7617

2 Overview

The OData Protocol is an application-level protocol for interacting with data via RESTful interfaces. The
protocol supports the description of data models and the editing and querying of data according to those
models. It provides facilities for:

e Metadata: a machine-readable description of the data model exposed by a particular service.
o Data: sets of data entities and the relationships between them.

e Querying: requesting that the service perform a set of filtering and other transformations to its
data, then return the results.

e Editing: creating, updating, and deleting data.
e Operations: invoking custom logic
e Vocabularies: attaching custom semantics

The OData Protocol is different from other REST-based web service approaches in that it provides a
uniform way to describe both the data and the data model. This improves semantic interoperability
between systems and allows an ecosystem to emerge.

Towards that end, the OData Protocol follows these design principles:

e Prefer mechanisms that work on a variety of data sources. In particular, do not assume a
relational data model.

e Extensibility is important. Services should be able to support extended functionality without
breaking clients unaware of those extensions.

e Follow REST principles.

e ObData should build incrementally. A very basic, compliant service should be easy to build, with
additional work necessary only to support additional capabilities.

e Keep it simple. Address the common cases and provide extensibility where necessary.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 11 of 97

3 Data Model

This section provides a high-level description of the Entity Data Model (EDM): the abstract data model
that is used to describe the data exposed by an OData service. An OData Metadata Document is a
representation of a service's data model exposed for client consumption.

The central concepts in the EDM are entities, relationships, entity sets, actions, and functions.
Entities are instances of entity types (e.g. Customer, Employee, €etc.).

Entity types are named structured types with a key. They define the named properties and relationships
of an entity. Entity types may derive by single inheritance from other entity types.

The key of an entity type is formed from a subset of the primitive properties (e.g. CustomerId, OrderId,
LineId, etc.) of the entity type.

Complex types are keyless named structured types consisting of a set of properties. These are value
types whose instances cannot be referenced outside of their containing entity. Complex types are
commonly used as property values in an entity or as parameters to operations.

Properties declared as part of a structured type's definition are called declared properties. Instances of
structured types may contain additional undeclared dynamic properties. A dynamic property cannot have
the same name as a declared property. Entity or complex types which allow clients to persist additional
undeclared properties are called open types.

Relationships from one entity to another are represented as navigation properties. Navigation properties
are generally defined as part of an entity type, but can also appear on entity instances as undeclared
dynamic navigation properties. Each relationship has a cardinality.

Enumeration types are named primitive types whose values are named constants with underlying integer
values.

Type definitions are named primitive types with fixed facet values such as maximum length or precision.
Type definitions can be used in place of primitive typed properties, for example, within property
definitions.

Entity sets are named collections of entities (e.g. Customers is an entity set containing Customer
entities). An entity's key uniquely identifies the entity within an entity set. If multiple entity sets use the
same entity type, the same combination of key values can appear in more than one entity set and
identifies different entities, one per entity set where this key combination appears. Each of these entities
has a different entity-id. Entity sets provide entry points into the data model.

Operations allow the execution of custom logic on parts of a data model. Functions are operations that do
not have side effects and may support further composition, for example, with additional filter operations,
functions or an action. Actions are operations that allow side effects, such as data modification, and
cannot be further composed in order to avoid non-deterministic behavior. Actions and functions are either
bound to a type, enabling them to be called as members of an instance of that type, or unbound, in which
case they are called as static operations. Action imports and function imports enable unbound actions
and functions to be called from the service root.

Singletons are named entities which can be accessed as direct children of the entity container. A
singleton may also be a member of an entity set.

An OData resource is anything in the model that can be addressed (an entity set, entity, property, or
operation).

Refer to [OData-CSDLJSON] or [OData-CSDLXML] for more information on the OData entity data
model.

3.1 Annotations

Model and instance elements can be decorated with Annotations.

Annotations can be used to specify an individual fact about an element, such as whether it is read-only, or
to define a common concept, such as a person or a movie.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 12 of 97

Applied annotations consist of a term (the namespace-qualified hame of the annotation being applied), a
target (the model or instance element to which the term is applied), and a value. The value may be a
static value, or an expression that may contain a path to one or more properties of an annotated entity.

Annotation terms are defined in metadata and have a name and a type.
A set of related terms in a common namespace comprises a Vocabulary.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 13 of 97

4 Service Model

OData services are defined using a common data model. The service advertises its concrete data model
in a machine-readable form, allowing generic clients to interact with the service in a well-defined way.

An OData service exposes two well-defined resources that describe its data model; a service document
and a metadata document.

The service document lists entity sets, functions, and singletons that can be retrieved. Clients can use the
service document to navigate the model in a hypermedia-driven fashion.

The metadata document describes the types, sets, functions and actions understood by the OData
service. Clients can use the metadata document to understand how to query and interact with entities in
the service.

In addition to these two “fixed” resources, an OData service consists of dynamic resources. The URLSs for
many of these resources can be computed from the information in the metadata document.

See Requesting Data and Data Modification for details.

4.1 Entity-lds and Entity References

Whereas entities within an entity set are uniquely identified by their key values, entities are also uniquely
identified by a durable, opaque, globally unique entity-id. The entity-id MUST be an IRI as defined in
[RFC3987] and MAY be expressed in payloads, headers, and URLs as a relative reference as
appropriate. While the client MUST be prepared to accept any IRI, services MUST use valid URIs in this
version of the specification since there is currently no lossless representation of an IRl in the EntityId
header.

Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL as its
entity-id, but clients cannot assume the entity-id can be used to locate the entity unless the
Core.DereferenceablelIDs term is applied to the entity container, nor can the client assume any
semantics from the structure of the entity-id. The canonical resource Sentity provides a general
mechanism for resolving an entity-id into an entity representation.

Services that use the standard URL conventions for entity-ids annotate their entity container with the term
Core.ConventionallIDs, see [OData-VocCore].

Entity references refer to an entity using the entity's entity-id.

4.2 Read URLs and Edit URLs

The read URL of an entity is the URL that can be used to read the entity.
The edit URL of an entity is the URL that can be used to update or delete the entity.

The edit URL of a property is the edit URL of the entity with appended segment(s) containing the path to
the property.

Services are strongly encouraged to use the canonical URL for an entity as defined in OData-URL for
both the read URL and the edit URL of an entity, with a cast segment to the type of the entity appended to
the canonical URL if the type of the entity is derived from the declared type of the entity set. However,
clients cannot assume this convention and must use the links specified in the payload according to the
appropriate format as the two URLs may be different from one another, or one or both of them may differ
from convention.

4.3 Transient Entities

Transient entities are instances of an entity type that are “calculated on the fly” and only exist within a
single payload. They cannot be reread or updated and consequently possess neither a stable entity-id nor
a read URL or an update URL.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 14 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DereferenceableIDs
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ConventionalIDs

4.4 Default Namespaces

References to actions, functions, and types within a URL typically requires prefixing the name of the
action, function, or type with the namespace or alias in which it is defined. This namespace qualification
enables differentiating between similarly named elements across schema, or between properties and
bound functions, actions, or types with the same name.

Services MAY define one or more default namespaces through the Core.DefaultNamespace term
defined in [OData-VocCore]. Functions, actions and types in a default namespace can be referenced in
URLSs with or without namespace or alias qualification.

Service designers should ensure uniqueness of schema children across all default namespaces, and
should avoid naming bound functions, actions, or derived types with the same name as a structural or
navigation property of the type.

In the case where ambiguity does exist, an unqualified segment appended to a structured value is always
first compared to the list of properties defined on the structured type. If no defined property with a name
matching the unqualified segment exists, or the preceding segment represents a collection or a scalar
value, it is next compared to the names of any bound functions or actions, or derived type names, defined
within any default namespace. If it still does not match, and the preceding segment represents a
structured value, it is interpreted as a dynamic property.

Services MAY disallow dynamic properties on structured values whose names conflict with a bound
action, function, or derived type defined within in a default namespace.

The behavior if name conflicts occur across children of default namespaces is undefined. Generic clients
are encouraged to always qualify action, function, and type names in order to avoid any possible
ambiguity.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 15 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace

5 Versioning

Versioning enables clients and services to evolve independently. OData defines semantics for both
protocol and data model versioning.

5.1 Protocol Versioning

OData requests and responses are versioned according to the OData-Version header.

OData clients include the 0Data-MaxVersion header in requests in order to specify the maximum
acceptable response version. Services respond with the maximum supported version that is less than or
equal to the requested OData-MaxVersion, using decimal comparison. The syntax of the Obata-
Version and OData-MaxVersion header fields is defined in [OData-ABNF].

Services SHOULD advertise supported versions of OData through the Core.ODataVersions term,
defined in [OData-VocCore].

This version of the specification defines OData version values 4.0 and 4. 01. Content that applies only to
one version or another is explicitly called out in the text.

5.2 Model Versioning

The Data Model exposed by an OData Service defines a contract between the OData service and its
clients. Services are allowed to extend their model only to the degree that it does not break existing
clients. Breaking changes, such as removing properties, changing the type of existing properties, adding
or removing key properties, or reordering action or function parameters, require that a new service
version is provided at a different service root URL for the new model, or that the service version its
metadata using the Core. SchemaVersion annotation, defined in [OData-VocCore].

Services that version their metadata MUST support version-specific requests according to the
Sschemaversion system query option. The following Data Model additions are considered safe and do
not require services to version their entry point or schema.

e Adding a property that is nullable or has a default value; if it has the same name as an existing
dynamic property, it must have the same type (or base type) as the existing dynamic property

e Adding a navigation property that is nullable or collection-valued; if it has the same name as an
existing dynamic navigation property, it must have the same type (or base type) as the existing
dynamic navigation property

e Adding a new entity type to the model

e Adding a new complex type to the model

e Adding a new entity set

e Adding a new singleton

¢ Adding an action, a function, an action import, or function import

e Adding an action parameter that is nullable after existing parameters

e Adding an action or function parameter that is annotated with Core .OptionalParameter after
existing parameters

e Adding a type definition or enumeration
e Adding a new term

e Adding any annotation to a model element that does not need to be understood by the client in
order to correctly interact with the service

Clients SHOULD be prepared for services to make such incremental changes to their model. In particular,
clients SHOULD be prepared to receive properties and derived types not previously defined by the
service.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 16 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ODataVersions
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptionalParameter

Services SHOULD NOT change their data model depending on the authenticated user. If the data model
is user or user-group dependent, all changes MUST be safe changes as defined in this section when
comparing the full model to the model visible to users with restricted authorizations.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 17 of 97

6 Extensibility

The OData protocol supports both user- and version-driven extensibility through a combination of
versioning, convention, and explicit extension points.

6.1 Query Option Extensibility

Query options within the request URL can control how a particular request is processed by the service.

OData-defined system query options are optionally prefixed with "s". Services may support additional
custom query options not defined in the OData specification, but they MUST NOT begin with the "$" or
"@" character and MUST NOT conflict with any OData-defined system query options defined in the OData
version supported by the service.

OData services SHOULD NOT require any query options to be specified in a request. Services SHOULD
fail any request that contains query options that they do not understand and MUST fail any request that
contains unsupported OData query options defined in the version of this specification supported by the
service.

In many cases OData services return URLSs to identify resources that are later requested by clients.
Where possible, interoperability is enhanced by providing all identifying information in the path portion of
the URL. However, clients should be prepared for such URLSs to include custom query options and
propagate any such custom query options in future requests to the identified resource.

6.2 Payload Extensibility

OData supports extensibility in the payload, according to the specific format.

Regardless of the format, additional content MUST NOT be present if it needs to be understood by the
receiver in order to correctly interpret the payload according to the specified OData-Version header. Thus,
clients and services MUST be prepared to handle or safely ignore any content not specifically defined in
the version of the payload specified by the OData-Version header.

6.3 Action/Function Extensibility

Actions and Functions extend the set of operations that can be performed on or with a service or
resource. Actions can have side-effects. For example, Actions can be used to modify data or to invoke
custom operations. Functions MUST NOT have side-effects. Functions can be invoked from a URL that
addresses a resource or within an expressionto a sfilter or Sorderby system query option.

Fully qualified action and function names include a namespace or alias prefix. The Edm, odata and geo
namespaces are reserved for the use of this specification.

An OData service MUST fail any request that contains actions or functions that it does not understand.

6.4 Vocabulary Extensibility

The set of annotations defined within a schema comprise a vocabulary. Shared vocabularies provide a
powerful extensibility point for OData.

Metadata annotations can be used to define additional characteristics or capabilities of a metadata
element, such as a service, entity type, property, function, action or parameter. For example, a metadata
annotation could define ranges of valid values for a particular property.

Instance annotations can be used to define additional information associated with a particular result,
entity, property, or error; for example whether a property is read-only for a particular instance.

Where annotations apply across all instances of a type, services are encouraged to specify the
annotation in metadata rather than repeating in each instance of the payload. Where the same annotation
is defined at both the metadata and instance level, the instance-level annotation overrides the one
specified at the metadata level.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 18 of 97

A service MUST NOT require the client to understand custom annotations in order to accurately interpret
a response.

OData defines a Core vocabulary with a set of basic terms describing behavioral aspects along with
terms that can be used in defining other vocabularies; see [OData-VocCore].

6.5 Header Field Extensibility

OData defines semantics around certain HTTP request and response headers. Services that support a
version of OData conform to the processing requirements for the headers defined by this specification for
that version.

Individual services may define custom headers. These headers MUST NOT begin with OData. Custom
headers SHOULD be optional when making requests to the service. A service MUST NOT require the
client to understand custom headers to accurately interpret the response.

6.6 Format Extensibility

An OData service MUST support [OData-JSON] and MAY support additional formats for both request
and response bodies.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 19 of 97

7 Formats

The client MAY request a particular response format through the Accept header, as defined in
[RFC7231], or through the system query option $format.

In the case that both the Accept header and the $format system query option are specified on a
request, the value specified in the $format query option MUST be used.

If the service does not support the requested format, it replies with a 406 Not Acceptable error
response.

Services SHOULD advertise their supported formats in the metadata document by annotating their entity
container with the term Capabilities.SupportedFormats, as defined in [OData-VocCap], listing all
available formats and combinations of supported format parameters.

The media types for the JSON and XML representation of the metadata document are described in
section “Metadata Document Request”.

The format specification [OData-JSON] describes the media type and the format parameters for non-
metadata requests and responses.

For non-metadata requests, if neither the Accept header nor the $format query option are specified,
the service MAY respond to requests in any format.

Client libraries MUST retain the order of objects within an array in JSON responses, and elements in
document order for XML responses, including CSDL documents.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 20 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#SupportedFormats

8 Header Fields

OData defines semantics around the following request and response headers. Additional headers may be
specified, but have no unique semantics defined in OData.

8.1 Common Headers

The following headers are common between OData requests and responses.

8.1.1 Header Content-Type

The format of a non-empty individual request or response body, alone or within a batch, MUST be
specified in the Content-Type header of a request or response. The exception to this is if the body
represents the media stream of a media entity or stream property, in which case the Content-Type
header SHOULD be present.

The specified format MAY include format parameters. Clients MUST be prepared for the service to return
custom format parameters not defined in OData and SHOULD NOT expect that such format parameters
can be ignored. Custom format parameters MUST NOT start with "odata" and services MUST NOT
require generic OData consumers to understand custom format parameters in order to correctly interpret
the payload.

See [OData-JSON] for format-specific details about format parameters within the Content-Type
header.

8.1.2 Header Content-Encoding

As defined in [RFC7231], the Content-Encoding header field is used as a modifier to the media-type
(as indicated in the Content-Type). When present, its value indicates what additional content codings
have been applied to the entity-body.

A service MAY specify a list of acceptable content codings using an annotation with term
Capabilities.AcceptableEncodings, see [OData-VocCap].

If the Content-Encoding header is specified on an individual request or response within a batch, then it
specifies the encoding for that individual request or response. Individual requests or responses that don’t
include the Content-Encoding header inherit the encoding of the overall batch request or response.

8.1.3 Header Content-Language

As defined in [RFC7231], a request or response can include a Content-Language header to indicate
the natural language of the intended audience for the enclosed message body. OData does not add any
additional requirements over HTTP for including Content-Language. OData services can annotate
model elements whose content depends on the content language with the term
Core.IsLanguageDependent, see [OData-VocCore].

If the Content-Language header is specified on an individual request or response within a batch, then it
specifies the language for that individual request or response. Individual requests or responses that don’t
include the Content-Language header inherit the language of the overall batch request or response.

8.1.4 Header Content-Length

As defined in [RFC7230], a request or response SHOULD include a Content-Length header when the
message's length can be determined prior to being transferred. OData does not add any additional
requirements over HTTP for writing Content-Length.

If the Content-Length header is specified on an individual request or response within a batch, then it
specifies the length for that individual request or response.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#AcceptableEncodings
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#IsLanguageDependent

8.1.5 Header OData-Version
OData clients SHOULD use the OData-Version header on a request to specify the version of the
protocol used to generate the request payload.

If present on a request, the service MUST interpret the request payload according to the rules defined in
the specified version of the protocol or fail the request with a 4xx response code.

If not specified in a request, the service MUST assume the request payload is generated using the
minimum of the OData-MaxVersion, if specified, and the maximum version of the protocol that the
service understands.

OData services MUST include the 0Data-Version header on a response to specify the version of the
protocol used to generate the response payload. The client MUST interpret the response payload
according to the rules defined in the specified version of the protocol. Request and response payloads
are independent and may have different OData-Version headers according to the above rules.

For more details, see Versioning.

If the OData-Version header is specified on an individual request or response within a batch, then it
specifies the OData version for that individual request or response. Individual requests or responses that
don’tinclude the 0Data-Version header inherit the OData version of the overall batch request or
response. This OData version does not typically vary within a batch.

8.2 Request Headers

In addition to the Common Headers, the client may specify any combination of the following request
headers.

8.2.1 Header Accept

As defined in [RFC7231], the client MAY specify the set of accepted formats with the Accept Header.
Services MUST reject formats that specify unknown or unsupported format parameters.

If a media type specified in the Accept header includes a charset format parameter and the request
also contains an Accept-Charset header, then the Accept-Charset header MUST be used.

If the media type specified in the Accept header does not include a charset format parameter, then the
Content-Type header of the response MUST NOT contain a charset format parameter.

The service SHOULD NOT add any format parameters to the Content-Type parameter not specified in
the Accept header.

If the Accept header is specified on an individual request within a batch, then it specifies the acceptable
formats for that individual request. Requests within a batch that don’t include the Accept header inherit
the acceptable formats of the overall batch request.

8.2.2 Header Accept-Charset
As defined in [RFC7231], the client MAY specify the set of accepted character sets with the Accept-
Charset header.

If the Accept-Charset header is specified on an individual request within a batch, then it specifies the
acceptable character sets for that individual request. Requests within a batch that don’t include the
Accept-Charset header inherit the acceptable character sets of the overall batch request.

8.2.3 Header Accept-Language

As defined in [RFC7231], the client MAY specify the set of accepted natural languages with the Accept-
Language header.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 22 of 97

If the Accept-Language header is specified on an individual request within a batch, then it specifies the
acceptable languages for that individual request. Requests within a batch that don't include the Accept-
Language header inherit the acceptable languages of the overall batch request.

8.2.4 Header I£-Match

As defined in [RFC7232], a client MAY include an T f-Match header in a request to GET, POST, PUT,
PATCH or DELETE. The value of the I f-Match request header MUST be an ETag value previously
retrieved for the resource, or * to match any value.

If an operation on an existing resource requires an ETag, (see term Core.OptimisticConcurrency in
[OData-VocCore] and property OptimisticConcurrencyControl of type
Capabilities.NavigationPropertyRestriction in [OData-VocCap]) and the client does not
specify an If-Match request header in a Data Modification Request or in an Action Request invoking an
action bound to the resource, the service responds with a 428 Precondition Required and MUST
ensure that no observable change occurs as a result of the request.

If present, the request MUST only be processed if the specified ETag value matches the current ETag
value of the target resource. Services sending ETag headers with weak ETags that only depend on the
representation-independent entity state MUST use the weak comparison function because it is sufficient
to prevent accidental overwrites. This is a deviation from [RFC7232].

If the value does not match the current ETag value of the resource for a Data Modification Request or
Action Request, the service MUST respond with 412 Precondition Failed and MUST ensure that
no observable change occurs as a result of the request. In the case of an upsert, if the addressed entity
does not exist the provided ETag value is considered not to match.

An If-Match header with a value of * in a PUT or PATCH request results in an upsert request being
processed as an update and not an insert.

The 1f-Match header MUST NOT be specified on a batch request, but MAY be specified on individual
requests within the batch.

8.2.5 Header If-None-Match

As defined in [RFC7232], a client MAY include an I f-None-Match header in a request to GET, POST,
PUT, PATCH or DELETE. The value of the Tf-None-Match request header MUST be an ETag value
previously retrieved for the resource, or *.

If present, the request MUST only be processed if the specified ETag value does not match the current
ETag value of the resource, using the weak comparison function (see [RFC7232]). If the value matches
the current ETag value of the resource, then for a GET request, the service SHOULD respond with 304
Not Modified, and for a Data Modification Request or Action Request, the service MUST respond with
412 Precondition Failed and MUST ensure that no observable change occurs as a result of the
request.

An If-None-Match header with a value of * in a PUT or PATCH request results in an upsert request
being processed as an insert and not an update.

The If-None-Match header MUST NOT be specified on a batch request, but MAY be specified on
individual requests within the batch.

8.2.6 Header Isolation (OData-Isolation)
The Isolation header specifies the isolation of the current request from external changes. The only
supported value for this header is snapshot.

If the service doesn’t support Isolation:snapshot and this header was specified on the request, the
service MUST NOT process the request and MUST respond with 412 Precondition Failed.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 23 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptimisticConcurrency
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#NavigationPropertyRestriction

Snapshot isolation guarantees that all data returned for a request, including multiple requests within a
batch or results retrieved across multiple pages, will be consistent as of a single point in time. Only data
modifications made within the request (for example, by a data modification request within the same batch)
are visible. The effect is as if the request generates a "snapshot” of the committed data as it existed at the
start of the request.

The Isolation header may be specified on a single or batch request. If it is specified on a batch then
the value is applied to all statements within the batch.

Next links returned within a snapshot return results within the same snapshot as the initial request; the
client is not required to repeat the header on each individual page request.

The Isolation header has no effect on links other than the next link. Navigation links, read links, and
edit links return the current version of the data.

A service returns 410 Gone or 404 Not Found if a consumer tries to follow a next link referring to a
snapshot that is no longer available.

The syntax of the Isolation header is defined in [OData-ABNF].

A service MAY specify the support for Isolation:snapshot using an annotation with term
Capabilities.IsolationSupported, see [OData-VocCap].

Note: The Isolation header was named OData-Isolation in OData version 4.0. Services that
support the Isolation header SHOULD also support OData-Isolation for OData 4.0 clients and
clients SHOULD use Obata-Isolation for compatibility with OData 4.0 services. If both Isolation
and Obata-Isolation headers are specified in the same request, the value of the Isolation header
SHOULD be used.

8.2.7 Header OData-MaxVersion

Clients SHOULD specify an Obata-MaxVersion request header.

If specified, the service MUST generate a response with the greatest supported ObData-Version less
than or equal to the specified OData-MaxVersion.

If OData-MaxVersion is not specified, then the service SHOULD return responses with the same OData
version over time and interpret the request as having an ObData-MaxVersion equal to the maximum
OData version supported by the service at its initial publication.

If the OData-MaxVersion header is specified on an individual request within a batch, then it specifies
the maximum OData version for that individual request. Individual requests that don't include the OData-
MaxVersion header inherit the maximum OData version of the overall batch request or response. The
maximum OData version does not typically vary within a batch.

For more details, see Versioning.

8.2.8 Header Prefer
The prefer header, as defined in [RFC7240], allows clients to request certain behavior from the service.
The service MUST ignore preference values that are either not supported or not known by the service.

The value of the Prefer header is a comma-separated list of preferences. The following subsections
describe preferences whose meaning in OData is defined by this specification.

In response to a request containing a Prefer header, the service MAY return the Preference-
Applied and vary headers.

8.2.8.1 Preference allow-entityreferences (odata.allow-
entityreferences)

The allow-entityreferences preference indicates that the service is allowed to return entity

references in place of entities that have previously been returned, with at least the properties requested,

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 24 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#IsolationSupported

in the same response (for example, when serializing the expanded results of many-to-many
relationships). The service MUST NOT return entity references in place of requested entities if allow-
entityreferences has not been specified in the request, unless explicitly defined by other rules in
this document. The syntax of the allow-entityreferences preference is defined in [OData-ABNF].

In the case the service applies the allow-entityreferences preference it MUST include a
Preference-Applied response header containing the allow-entityreferences preference to
indicate that entity references MAY be returned in place of entities that have previously been returned.

Ifthe allow-entityreferences preference is specified on an individual request within a batch, then it
specifies the preference for that individual request. Individual requests within a batch that don’t include
the allow-entityreferences preference inherit the preference of the overall batch request.

Note: The allow-entityreferences preference was named odata.allow-entityreferencesin
OData version 4.0. Services that supportthe allow-entityreferences preference SHOULD also
support odata.allow-entityreferences for OData 4.0 clients and clients SHOULD use
odata.allow-entityreferences for compatibility with OData 4.0 services.

8.2.8.2 Preference callback (odata.callback)

For scenarios in which links returned by the service are used by the client to poll for additional
information, the client can specify the cal1back preference to request that the service notify the client
when data is available.

The callback preference can be specified:
¢ when requesting asynchronous processing of a request with the respond-async preference, or
e 0N aGET request to a delta link.

The callback preference MUST include the parameter url whose value is the URL of a callback
endpoint to be invoked by the OData service when data is available. The syntax of the callback
preference is defined in [OData-ABNF].

For HTTP based callbacks, the OData service executes an HTTP GET request against the specified URL.

Services that support callback SHOULD support notifying the client through HTTP. Services can
advertise callback support using the Capabilities.CallbackSupported annotation term defined in
[OData-VocCap].

If the service applies the callback preference it MUST include the callback preference in the
Preference-Applied response header.

When the callback preference is applied to asynchronous requests, the OData service invokes the
callback endpoint once it has finished processing the request. The status monitor resource, returned in
the Location header of the previously returned 202 Accepted response, can then be used to retrieve
the results of the asynchronously executed request.

When the callback preference is specified on a GET request to a delta link and there are no changes
available, the OData service returns a 202 Accepted response with a Location header specifying the
delta link to be used to check for future updates. The OData service then invokes the specified callback
endpoint once new changes become available.

Combining respond-async, callback and track-changes preferences on a GET request to a delta-
link might influence the response in a couple of ways.

e |f the service processes the request synchronously, and no updates are available, then the
response is the same as if the respond-async hadn’t been specified and results in a response
as described above.

o |If the service processes the request asynchronously, then it responds with a 202 Accepted
response specifying the URL to the status monitor resource as it would have with any other
asynchronous request. Once the service has finished processing the asynchronous request to the
delta link resource, if changes are available it invokes the specified callback endpoint. If no

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 25 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#CallbackSupported

changes are available, the service SHOULD wait to notify the client until changes are available.
Once notified, the client uses the status monitor resource from the Location header of the
previously returned 202 Accepted response to retrieve the results. In case no updates were
available after processing the initial request, the result will contain no updates and the client can
use the delta-link contained in the result to retrieve the updates that have since become available.

If the consumer specifies the same URL as callback endpoint in multiple requests, the service MAY
collate them into a single notification once additional data is available for any of the requests. However,
the consumer MUST be prepared to deal with receiving up to as many notifications as it requested.

Example 2: using a HTTP callback endpoint to receive notification

Prefer: callback; url="http://myserver/notfication/token/12345"

If the callback preference is specified on an individual request within a batch, then it specifies the
callback to be used for tracking changes to that individual request. If the callback preference is
specified on a batch, then it specifies the callback to be used for async responses to the batch.

Note: The callback preference was named odata.callback in OData version 4.0. Services that
support the callback preference SHOULD also support odata.callback for OData 4.0 clients and
clients SHOULD use odata.callback for compatibility with OData 4.0 services. If both callback and
odata.callback preferences are specified in the same request, the value of the callback preference
SHOULD be used.

8.2.8.3 Preference continue-on-error (odata.continue-on-error)

The continue-on-error preference on a batch request is used to request whether, upon encountering
a request within the batch that returns an error, the service return the error for that request and continue
processing additional requests within the batch (if specified with an implicit or explicit value of true), or
rather stop further processing (if specified with an explicit value of false). The syntax of the continue-
on-error preference is defined in [OData-ABNF].

The continue-on-error preference can also be used on a delta update, set-based update, or set-
based delete to request that the service continue attempting to process changes after receiving an error.

A service MAY specify support for the continue-on-error preference using an annotation with term
Capabilities.BatchContinueOnErrorSupported, see [OData-VocCap].

The continue-on-error preference SHOULD NOT be applied to individual requests within a batch.

Note: The continue-on-error preference was named odata.continue-on-error in OData
version 4.0. Services that support the continue-on-error preference SHOULD also support
odata.continue-on-error for OData 4.0 clients and clients SHOULD use odata.continue-on-
error for compatibility with OData 4.0 services.

8.2.8.4 Preference include-annotations (odata.include-annotations)

The include-annotations preference in a request for data or metadata is used to specify the set of
annotations the client requests to be included, where applicable, in the response.

The value of the include-annotations preference is a comma-separated list of namespace-qualified
term names or term name patterns to include or exclude, with * as a wildcard for name segments. Term
names and term name patterns can optionally be followed by a hash (#) character and an annotation
qualifier. The full syntax of the include-annotations preference is defined in [OData-ABNF].

The most specific identifier always takes precedence, with an explicit name taking precedence over a
name pattern, and a longer pattern taking precedence over a shorter pattern. If the same identifier value
is requested to both be excluded and included the behavior is undefined; the service MAY return or omit
the specified vocabulary but MUST NOT raise an exception.

Example 3: a Prefer header requesting all annotations within a metadata document to be returned

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 26 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#BatchContinueOnErrorSupported

Prefer: include-annotations="*"

Example 4: a Prefer header requesting that no annotations are returned

Prefer: include-annotations="-*"

Example 5: a Prefer header requesting that all annotations defined under the "display" namespace (recursively) be
returned

Prefer: include-annotations="display.*"

Example 6: a Prefer header requesting that the annotation with the term name subject within the display
namespace be returned

Prefer: include-annotations="display.subject"

Example 7: a Prefer header requesting that all annotations defined under the "display” namespace (recursively)
with the qualifier “tablet” be returned

Prefer: include-annotations="display.*#tablet"

The include-annotations preference is only a hint to the service. The service MAY ignore the
preference and is free to decide whether or not to return annotations not specified in the include-
annotations preference.

In the case that the client has specified the include-annotations preference in the request, the
service SHOULD include a Preference-Applied response header containing the include-
annotations preference to specify the annotations actually included, where applicable, in the response.
This value may differ from the annotations requested in the Prefer header of the request.

If the include-annotations preference is specified on an individual request within a batch, then it
specifies the preference for that individual request. Individual requests within a batch that don’t include
the include-annotations preference inherit the preference of the overall batch request.

Note: The include-annotations preference was named odata.include-annotations in OData
version 4.0. Services that support the include-annotations preference SHOULD also support
odata.include-annotations for OData 4.0 clients and clients SHOULD use odata.include-
annotations for compatibility with OData 4.0 services. If both include-annotations and
odata.include-annotations preferences are specified in the same request, the value of the
include-annotations preference SHOULD be used.

8.2.8.5 Preference maxpagesize (odata.maxpagesize)

The maxpagesize preference is used to request that each collection within the response contain no
more than the number of items specified as the positive integer value of this preference. The syntax of the
maxpagesize preference is defined in [OData-ABNF].

Example 8: a request for customers and their orders would result in a response containing one collection with
customer entities and for every customer a separate collection with order entities. The client could specify
maxpagesize=50 in order to request that each page of results contain a maximum of 50 customers, each with a
maximum of 50 orders.

If a collection within the result contains more than the specified maxpagesize, the collection SHOULD
be a partial set of the results with a next link to the next page of results. The client MAY specify a different
value for this preference with every request following a next link.

In the example given above, the result page should include a next link for the customer collection, if there are more
than 50 customers, and additional next links for all returned orders collections with more than 50 entities.

If the client has specified the maxpagesize preference in the request, and the service limits the number
of items in collections within the response through server-driven paging, the service MAY include a

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 27 of 97

Preference-Applied response header containing the maxpagesize preference and the maximum
page size applied. This value may differ from the value requested by the client.

The maxpagesize preference SHOULD NOT be applied to a batch request, but MAY be applied to
individual requests within a batch.

Note: The maxpagesize preference was named odata.maxpagesize in OData version 4.0. Services
that support the maxpagesize preference SHOULD also support odata.maxpagesize for OData 4.0
clients and clients SHOULD use odata.maxpagesize for compatibility with OData 4.0 services. If both
maxpagesize and odata.maxpagesize preferences are specified in the same request, the value of
the maxpagesize preference SHOULD be used.

8.2.8.6 Preference omit-values

The omit-values preference specifies values that MAY be omitted from a response payload. Valid
values are nulls or defaults.

If nulls is specified, then the service MAY omit properties containing null values from the response, in
which case it MUST specify the Preference-Applied response header with omit-values=nulls.

If defaults is specified, then the service MAY omit properties containing default values from the
response, including nulls for properties that have no other defined default value. Nulls MUST be included
for properties that have a non-null default value defined. If the service omits default values, it MUST
specify the Preference-Applied response header with omit-values=defaults.

Properties with instance annotations are not affected by this preference and MUST be included in the
payload if they would be included without this preference. Clients MUST NOT try to reconstruct a null or
default value for properties for which an instance annotation is present and no property value is present,
for example if the property is omitted due to permissions and has been replaced with the instance
annotation Core.Permissions and a value of None, see [OData-VocCore].

Properties with null or default values MUST be included in delta payloads, if modified.

The response to a POST operation MUST include any properties not set to their default value, and the
response to a PUT/PATCH operation MUST include any properties whose values were changed as part
of the operation.

The omit-values preference does not affect a request payload.

8.2.8.7 Preference return=representation and return=minimal

The return=representation and return=minimal preferences are defined in [RFC7240].

In OData, return=representation Of return=minimal is defined for use with a POST, PUT, or
PATCH Data Modification Request, or with an Action Request. Specifying a preference of
return=representation Or return=minimal in @ GET or DELETE request does not have any effect.

A preference of return=representation or return=minimal is allowed on an individual Data
Modification Request or Action Request within a batch, subject to the same restrictions, but SHOULD
return a 4xx Client Error if specified on the batch request itself.

A preference of return=minimal requests that the service invoke the request but does not return
content in the response. The service MAY apply this preference by returning 204 No Content inwhich
case it MAY include a Preference-Applied response header containing the return=minimal
preference.

A preference of return=representation requests that the service invokes the request and returns the
modified resource. The service MAY apply this preference by returning the representation of the
successfully modified resource in the body of the response, formatted according to the rules specified for
the requested format. In this case the service MAY include a Preference-Applied response header
containing the return=representation preference.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 28 of 97

The return preference SHOULD NOT be applied to a batch request, but MAY be applied to individual
requests within a batch.

8.2.8.8 Preference respond-async

The respond-async preference, as defined in [RFC7240], allows clients to request that the service
process the request asynchronously.

If the client has specified respond-async in the request, the service MAY process the request
asynchronously and return a 202 Accepted response.

The respond-async preference MAY be used for batch requests, in which case it applies to the batch
request as a whole and not to individual requests within the batch request.

In the case that the service applies the respond-async preference it MUST include a Preference-
Applied response header containing the respond-async preference.

A service MAY specify the support for the respond-async preference using an annotation with term
Capabilities.AsynchronousRequestsSupported, see [OData-VocCap].

Example 9: a service receiving the following header might choose to respond
e asynchronously if the synchronous processing of the request will take longer than 10 seconds
e synchronously after 5 seconds
e asynchronously (ignoring the wait preference)

e synchronously after 15 seconds (ignoring respond-async preference and the wait preference)

Prefer: respond-async, wait=10

8.2.8.9 Preference track-changes (odata. track-changes)

The track-changes preference is used to request that the service return a delta link that can
subsequently be used to obtain changes (deltas) to this result. The syntax of the track-changes
preference is defined in [OData-ABNF].

For paged results, the preference MUST be specified on the initial request. Services MUST ignore the
track-changes preference if applied to the next link.

The delta link MUST only be returned on the final page of results in place of the next link.

The service includes a Preference-Applied response header in the first page of the response
containing the track-changes preference to signal that changes are being tracked.

A service MAY specify the support for the t rack-changes preference using an annotation with term
Capabilities.ChangeTracking, see [OData-VocCap].

The track-changes preference SHOULD NOT be applied to a batch request, but MAY be applied to
individual requests within a batch.

Note: The track-changes preference was named odata.track-changes in OData version 4.0.
Services that support the track-changes preference SHOULD also support odata.track-changes
for OData 4.0 clients and clients SHOULD use odata.track-changes for compatibility with OData 4.0
services.

8.2.8.10 Preference wait

The wait preference, as defined in [RFC7240], is used to establish an upper bound on the length of
time, in seconds, the client is prepared to wait for the service to process the request synchronously once
it has been received.

If the respond-async preference is also specified, the client requests that the service respond
asynchronously after the specified length of time.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 29 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#AsynchronousRequestsSupported
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#ChangeTracking

If the respond-async preference has not been specified, the service MAY interpret the wait as a
request to timeout after the specified period of time.

If the wait preference is specified on an individual request within a batch, then it specifies the maximum
amount of time to wait for that individual request. If the wait preference is specified on a batch, then it
specifies the maximum time to wait for the entire batch.

8.3 Response Headers

In addition to the Common Headers, the following response headers have defined meaning in OData.

8.3.1 Header AsyncResult

A 4.01 service MUST include the AsyncResult headerin 200 OK response from a status monitor
resource in order to indicate the final HTTP Response Status Code of an asynchronously executed
request.

The AsyncResult header SHOULD NOT be applied to individual responses within a batch.

8.3.2 Header ETag

A response MAY include an ETag header, see [RFC7232]. Services MUST include this header if they
require an ETag to be specified when modifying the resource.

Services MUST support specifying the value returned in the ETag header in an If-None-Match header
of a subsequent Data Request for the resource. Clients MUST specify the value returned in the ETag
header, or star (*), in an If-Match header of a subsequent Data Modification Request or Action
Request in order to apply optimistic concurrency control in updating, deleting, or invoking an action bound
to the resource.

As OData allows multiple formats for representing the same structured information, services SHOULD
use weak ETags that only depend on the representation-independent entity state. A strong ETag MUST
change whenever the representation of an entity changes, so it has to depend on the Content-Type,
the Content-Encoding, and potentially other characteristics of the response.

An ETag header MAY also be returned on a metadata document request or service document request to
allow the client subsequently to make a conditional request for the metadata or service document. Clients
can also compare the value of the ETag header returned from a metadata document request to the
metadata ETag returned in a response in order to verify the version of the metadata used to generate that
response.

The ETag header SHOULD NOT be included for the overall batch response, but MAY be included in
individual responses within a batch.

8.3.3 Header Location

The Location header MUST be returned in the response from a Create Entity or Create Media Entity
request to specify the edit URL, or for read-only entities the read URL, of the created entity, and in
responses returning 202 Accepted to specify the URL that the client can use to request the status of an
asynchronous request.

The Location header SHOULD NOT be included for the overall batch response, but MAY be included in
individual responses within a batch.

8.3.4 Header OData-EntityId

A response to a create or upsert operation that returns 204 No Content MUST include an OData-
EntityId response header. The value of the header is the entity-id of the entity that was acted on by the
request. The syntax of the OData-EntityId header is defined in [OData-ABNF].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 30 of 97

The Obata-EntityID header SHOULD NOT be included for the overall batch response, but MAY be
included in individual responses within a batch.

8.3.5 Header OData-Error

A response with an in-stream error MAY include an ObData-Error trailing header if the transport protocol
supports trailing headers (e.g. HTTP/1.1 with chunked transfer encoding, or HTTP/2).

The value of this trailing header is a standard OData error response according to the OData response
format, encoded suitably for transport in a header, see e.g. [OData-JSON].

8.3.6 Header Preference-Applied

In a response to a request that specifies a Prefer header, a service MAY include a Preference-
Applied header, as defined in [RFC7240], specifying how individual preferences within the request were
handled.

The value of the Preference-Applied header is a comma-separated list of preferences applied in the
response. For more information on the individual preferences, see the Prefer header.

If the Preference-Applied header is specified on an individual response within a batch, then it
specifies the preferences applied to that individual response. If the Preference-Applied header is
specified on a batch response, then it specifies the preferences applied to the overall batch.

8.3.7 Header Retry-After

A service MAY include a Retry-After header, as defined in [RFC7231],in 202 Accepted and in 3xx
Redirect responses

The Retry-After header specifies the duration of time, in seconds, that the client is asked to wait
before retrying the request or issuing a request to the resource returned as the value of the Location
header.

8.3.8 Header vary

If a response varies depending on the Obata-Version of the response, the service MUST include a
Vary header listing the OData-MaxVersion request header field to allow correct caching of the
response.

If a response varies depending on the applied preferences (allow-entityreferences, include-
annotations, omit-values, return), the service MUST include a vary header listing the Prefer
request header field to allow correct caching of the response.

Alternatively, the server MAY include a vary header with the special value * as defined by [RFC7231],
Section 8.2.1. Note that this will make it impossible for a proxy to cache the response, see [RFC7240].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 31 of 97

9 Common Response Status Codes

An OData service MAY respond to any request using any valid HTTP status code appropriate for the
request. A service SHOULD be as specific as possible in its choice of HTTP status codes.

The following represent the most common success response codes. In some cases, a service MAY
respond with a more specific success code.

9.1 Success Responses

The following response codes represent successful requests.

9.1.1 Response Code 200 OK

A request that does not create a resource returns 200 OK if it is completed successfully and the value of
the resource is not null. In this case, the response body MUST contain the value of the resource
specified in the request URL.

9.1.2 Response Code 201 Created

A Create Entity, Create Media Entity, or Invoke Action request that successfully creates a resource
returns 201 Created. In this case, the response body MUST contain the resource created.

9.1.3 Response Code 202 Accepted

202 Accepted indicates that the Data Service Request has been accepted and has not yet completed
executing asynchronously. The asynchronous handling of requests is defined in the sections on
Asynchronous Requests and Asynchronous Batch Requests..

9.1.4 Response Code 204 No Content

Arequestreturns 204 No Content if the requested resource has the null value, or if the service
applies a return=minimal preference. In this case, the response body MUST be empty.

As defined in [RFC7231], a Data Modification Request that responds with 204 No Content MAY
include an ETag header with a value reflecting the result of the data modification if and only if the client
can reasonably “know” the new representation of the resource without actually receiving it. For a PUT
request this means that the response body of a corresponding 200 OK or 201 Created response would
have been identical to the request body, i.e. no server-side modification of values sent in the request
body, no server-calculated values etc. For a PATCH request this means that the response body of a
corresponding 200 OK or 201 Created response would have consisted of all values sent in the request
body, plus (for values not sent in the request body) server-side values corresponding to the ETag value
sent in the Tf-Match header of the PATCH request, i.e. the previous values “known” to the client.

9.1.5 Response Code 3xx Redirection

As per [RFC7231], a 3xx Redirection indicates that further action needs to be taken by the client in
order to fulfill the request. In this case, the response SHOULD include a Location header, as
appropriate, with the URL from which the result can be obtained; it MAY include a Retry-After header.

9.1.6 Response Code 304 Not Modified

As per [RFC7232], a 304 Not Modified is returned when the client performs a GET request containing
an If-None-Match header and the content has not changed. In this case the response SHOULD NOT
include other headers in order to prevent inconsistencies between cached entity-bodies and updated
headers.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 32 of 97

The service MUST ensure that no observable change has occurred to the state of the service as a result
of any request that returns a 304 Not Modified.

9.2 Client Error Responses

Error codes in the 4xx range indicate a client error, such as a malformed request.

The service MUST ensure that no observable change has occurred to the state of the service as a result
of any request that returns an error status code.

In the case that a response body is defined for the error code, the body of the error is as defined for the
appropriate format.

9.2.1 Response Code 404 Not Found

404 Not Found indicates that the resource specified by the request URL does not exist. The response
body MAY provide additional information.

9.2.2 Response Code 405 Method Not Allowed

405 Method Not Allowed indicates that the resource specified by the request URL does not support
the request method. In this case the response MUST include an A11ow header containing a list of valid
request methods for the requested resource as defined in [RFC7231].

9.2.3 Response Code 406 Not Acceptable

406 Not Acceptable indicates that the resource specified by the request URL does not have a current
representation that would be acceptable for the client according to the request headers Accept,
Accept-Charset, and Accept-Language, and that the service is unwilling to supply a default
representation.

9.2.4 Response Code 410 Gone

410 Gone indicates that the requested resource is no longer available. This can happen if a client has
waited too long to follow a delta link or a status-monitor-resource link, or a next link on a collection that
was requested with snapshot isolation.

9.2.5 Response Code 412 Precondition Failed

As defined in [RFC7232], 412 Precondition Failed indicates that the client has performed a
conditional request and the resource fails the condition. The service MUST ensure that no observable
change occurs as a result of the request.

9.2.6 Response Code 424 Failed Dependency

424 Failed Dependency indicates that a request was not performed due to a failed dependency; for
example, a request within a batch that depended upon a request that failed.

9.3 Server Error Responses

As defined in [RFC7231], error codes in the 5xx range indicate service errors.

9.3.1 Response Code 501 Not Implemented

If the client requests functionality not implemented by the OData Service, the service responds with 501
Not Implemented and SHOULD include a response body describing the functionality not implemented.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 33 of 97

9.4 Error Response Body

The representation of an error response body is format-specific. It consists at least of the following
information:

e code: required non-null, non-empty, language-independent string. Its value is a service-defined
error code. This code serves as a sub-status for the HTTP error code specified in the response.

e message: required non-null, non-empty, language-dependent, human-readable string describing
the error. The Content-Language header MUST contain the language code from [RFC5646]
corresponding to the language in which the value for message is written.

e target: optional nullable, potentially empty string indicating the target of the error, for example,
the name of the property in error.

e details: optional, potentially empty collection of structured instances with code, message, and
target following the rules above.

e innererror: optional structured instance with service-defined content.

Service implementations SHOULD carefully consider which information to include in production
environments to guard against potential security concerns around information disclosure.

9.5 In-Stream Errors

In the case that the service encounters an error after sending a success status to the client, the service
MUST leave the response malformed according to its content-type. Clients MUST treat the entire
response as being in error.

Services MAY include the header OData-Error as a trailing header if supported by the transport
protocol (e.g. HTTP/1.1 with chunked transfer encoding, or HTTP/2).

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 34 of 97

10 Context URL

The context URL describes the content of the payload. It consists of the canonical metadata document
URL and a fragment identifying the relevant portion of the metadata document. The context URL makes
response payloads “self-contained”, allowing a recipient to retrieve metadata, resolve references, and
construct canonical links omitted from response payloads in certain optimized formats.

Request payloads generally do not require context URLs as the type of the payload can generally be
determined from the request URL.

For details on how the context URL is used to describe a payload, see the relevant sections in the
particular format.

The following subsections describe how the context URL is constructed for each category of payload by
providing a context URL template. The context URL template uses the following terms:

e {context-url} is the canonical resource path to the Smetadata document,

e {entity-set} isthe name of an entity set or path to a containment navigation property,
e {entity} isthe canonical URL for an entity,

e {singleton} isthe canonical URL for a singleton entity,

e ({select-1list} is an optional parenthesized comma-separated list of selected properties,
instance annotations, functions, and actions,

e ({property-path} is the path to a structural property of the entity,
e {type-name} is a qualified type name,

e {/type-name} is an optional type-cast segment containing the qualified name of a derived or
implemented type prefixed with a forward slash.

The full grammar for the context URL is defined in [OData-ABNF]. Note that the syntax of the context
URL is independent of whatever URL conventions the service uses for addressing individual entities.

10.1 Service Document
Context URL template:
{context-url}
The context URL of the service document is the metadata document URL of the service.

Example 10: resource URL and corresponding context URL

http://host/service/
http://host/service/Smetadata

10.2 Collection of Entities

Context URL template:
{context-url}#{entity-set}
{context-url}#Collection ({type-name})
If all entities in the collection are members of one entity set, its name is the context URL fragment.

Example 11: resource URL and corresponding context URL

http://host/service/Customers
http://host/service/Smetadata#Customers

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 35 of 97

If the entities are contained, then entity-set is the top-level entity set or singleton followed by the path
to the containment navigation property of the containing entity.

Example 12: resource URL and corresponding context URL for contained entities

http://host/service/Orders (4711) /Items
http://host/service/Smetadata#Orders (4711) /Items

If the entities in the response are not bound to a single entity set, such as from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity collection.

10.3 Entity

Context URL template:
{context-url}#{entity-set}/Sentity
{context-url}#{type-name}

If a response or response part is a single entity of the declared type of an entity set, /Sentity is
appended to the context URL.

Example 13: resource URL and corresponding context URL

http://host/service/Customers (1)
http://host/service/$Smetadata#Customers/Sentity

If the entity is contained, then entity-set is the canonical URL for the containment navigation property
of the containing entity, e.g. Orders(4711)/Items.

Example 14: resource URL and corresponding context URL for contained entity

http://host/service/Orders (4711) /Items (1)
http://host/service/S$metadata#Orders (4711) /Items/Sentity

If the response is not bound to a single entity set, such as an entity returned from a function or action with
no entity set path, a function import or action import with no specified entity set, or a navigation property
with no navigation property binding, the context URL specifies the type of the returned entity.

10.4 Singleton
Context URL template:
{context-url}#{singleton}

If a response or response part is a singleton, its name is the context URL fragment.

Example 15: resource URL and corresponding context URL

http://host/service/MainSupplier
http://host/service/S$metadata#MainSupplier

10.5 Collection of Derived Entities
Context URL template:

{context-url}#{entity-set}{/type-name}
If an entity set consists exclusively of derived entities, a type-cast segment is added to the context URL.

Example 16: resource URL and corresponding context URL

http://host/service/Customers/Model .VipCustomer
http://host/service/$Smetadata#Customers/Model.VipCustomer

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 36 of 97

10.6 Derived Entity

Context URL template:
{context-url}#{entity-set}{/type-name}/Sentity

If a response or response part is a single entity of a type derived from the declared type of an entity set, a
type-cast segment is appended to the entity set name.

Example 17: resource URL and corresponding context URL

http://host/service/Customers (2) /Model.VipCustomer
http://host/service/$Smetadata#Customers/Model .VipCustomer/Sentity

10.7 Collection of Projected Entities

Context URL templates:
{context-url}#{entity-set}{/type-name}{select-1list}

{context-url}#Collection ({type-name}) {select-1list}

If a result contains only a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, instance annotations, navigation properties, functions, and actions is
appended to the context URL representing the collection of entities.

Regardless of how contained structural properties are represented in the request URL (as paths or as
select options) they are represented in the context URL using path syntax, as defined in OData 4.0.

The shortcut * represents the list of all structural properties. Properties defined on types derived from the
declared type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the
qualified name of the derived type as defined in [OData-ABNF].

The list also contains explicitly selected or expanded instance annotations. It is possible to select or
expand only instance annotations, in which case only those selected or expanded annotations appear in
the result. Note that annotations specified only in the include-annotations preference do not appear
in the context URL and do not affect the selected/expanded properties.

Operations in the context URL are represented using the namespace- or alias-qualified name. Function
names suffixed with parentheses represent a specific overload, while function names without parentheses
represent all overloads of the function.

OData 4.01 responses MAY use the shortcut pattern {namespace} . * to represent the list of all bound
actions or functions available for entities in the collection, see system query option $select.

Example 18: resource URL and corresponding context URL

http://host/service/Customers?$select=Address,Orders
http://host/service/$metadata#Customers (Address,Orders)

10.8 Projected Entity

Context URL templates:
{context-url}#{entity-set}{/type-name}{select-list}/Sentity
{context-url}#{singleton}{select-1ist}
{context-url}#{type-name}{select-1ist}

If a single entity contains a subset of properties, the parenthesized comma-separated list of the selected
defined or dynamic properties, instance annotations, navigation properties, functions, and actions is
appended to the {entity-set} after an optional type-cast segment and prior to appending /$entity.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 37 of 97

If the response is not a subset of a single entity set, the {select-1ist} is instead appended to the
{type-name} of the returned entity.

Regardless of how contained structural properties are represented in the request URL (as paths or as
select options) they are represented in the context URL using path syntax, as defined in OData 4.0.

The shortcut * represents the list of all structural properties. Properties defined on types derived from the
type of the entity set (or type specified in the type-cast segment if specified) are prefixed with the qualified
name of the derived type as defined in [OData-ABNF]. Note that expanded properties are automatically
included in the response.

The list also contains explicitly selected or expanded instance annotations. It is possible to select or
expand only instance annotations, in which case only those selected or expanded annotations appear in
the result. Note that annotations specified only in the include-annotations preference do not appear
in the context URL and do not affect the selected/expanded properties.

Operations in the context URL are represented using the namespace- or alias-qualified name. Function
names suffixed with parentheses represent a specific overload, while function names without parentheses
represent all overloads of the function.

OData 4.01 responses MAY use the shortcut pattern {namespace} . * to represent the list of all bound
actions or functions available for the returned entity, see system query option $select.

Example 19: resource URL and corresponding context URL

http://host/service/Customers (1) ?$select=Name, Rating
http://host/service/Smetadata#Customers (Name,Rating) /Sentity

10.9 Collection of Expanded Entities

Context URL template:
{context-url}#{entity-set}{/type-name}{select-1list}
{context-url}#Collection ({type-name}) {select-1list}

For a 4.01 response, if a havigation property is explicitly expanded, then in addition to any non-suffixed
names of any selected properties, navigation properties, functions or actions, the comma-separated list of
properties MUST include the name of the expanded property, suffixed with the parenthesized comma-
separated list of any properties of the expanded navigation property that are selected or expanded. If the
expanded navigation property does not contain a nested $Sselect or $Sexpand, then the expanded
property is suffixed with empty parentheses. If the expansion is recursive for nested children, a plus sign
(+) is infixed between the navigation property name and the opening parenthesis.

For a 4.0 response, the expanded navigation property suffixed with parentheses is omitted from the
select-list if it does not contain a nested Sselect or Sexpand, but MUST still be present, without a
suffix, if it is explicitly selected.

If the context URL includes only expanded navigation properties (i.e., only navigation properties suffixed
with parentheses), then all structural properties are implicitly selected (same as if there were no
properties listed in the select-list).

Navigation properties with expanded references are not represented in the context URL.

Example 20: resource URL and corresponding context URL - select and expand

http://host/service/Customers?S$select=Name&S$Sexpand=Address/Country
http://host/service/S$metadata#Customers (Name, Address/Country ())

Example 21: resource URL and corresponding context URL — expand Sref

http://host/service/Customers?$expand=0Orders/Sref
http://host/service/$Smetadata#Customers

Example 22: resource URL and corresponding context URL — expand with Slevels

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 38 of 97

http://host/service/Employees/Sales.Manager?S$select=DirectReports
&$expand=DirectReports ($select=FirstName, LastName; $levels=4)
http://host/service/Smetadata
#Employees/Sales.Manager (DirectReports,
DirectReports+ (FirstName, LastName))

10.10 Expanded Entity

Context URL template:
{context-url}#{entity-set}{/type-name}{select-list}/Sentity
{context-url}#{singleton}{select-1ist}
{context-url}#{type-name}{select-1ist}

For a 4.01 response, if a navigation property is explicitly expanded, then in addition to the non-suffixed
names of any selected properties, navigation properties, functions or actions, the comma-separated list of
properties MUST include the name of the expanded property, suffixed with the parenthesized comma-
separated list of any properties of the expanded navigation property that are selected or expanded. If the
expanded navigation property does not contain a nested $select or Sexpand, then the expanded
property is suffixed with empty parentheses. If the expansion is recursive for nested children, a plus sign
(+) is infixed between the navigation property name and the opening parenthesis.

For a 4.0 response, the expanded navigation property suffixed with parentheses is omitted from the
select-list if it does not contain a nested $select or $Sexpand, but MUST still be present, without a
suffix, if it is explicitly selected.

If the context URL includes only expanded navigation properties (i.e., only navigation properties suffixed
with parentheses), then all structural properties are implicitly selected (same as if there were no
properties listed in the select-list).

Navigation properties with expanded references are not represented in the context URL.

Example 23: resource URL and corresponding context URL

http://host/service/Employees (1) /Sales.Manager?
Sexpand=DirectReports ($select=FirstName, LastName; $levels=4)
http://host/service/Smetadata
#Employees/Sales.Manager (DirectReports+ (FirstName, LastName)) /Sentity

10.11 Collection of Entity References
Context URL template:
{context-url}#Collection (Sref)

If a response is a collection of entity references, the context URL does not contain the type of the
referenced entities.

Example 24: resource URL and corresponding context URL for a collection of entity references

http://host/service/Customers ('ALFKI') /Orders/Sref
http://host/service/S$metadata#Collection (Sref)

10.12 Entity Reference
Context URL template:

{context-url}#Sref
If a response is a single entity reference, Sref is the context URL fragment.
Example 25: resource URL and corresponding context URL for a single entity reference

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 39 of 97

http://host/service/Orders (10643) /Customer/S$ref
http://host/service/Smetadata#Sref

10.13 Property Value

Context URL templates:
{context-url}l#{entity}/{property-path}{select-1list}
{context-url}#{type-name}{select-1list}

If a response represents an individual property of an entity with a canonical URL, the context URL
specifies the canonical URL of the entity and the path to the structural property of that entity. The path
MUST include cast segments for properties defined on types derived from the expected type of the
previous segment.

If the property value does not contain explicitly or implicitly selected navigation properties or operations,
OData 4.01 responses MAY use the less specific second template.

Example 26: resource URL and corresponding context URL

http://host/service/Customers (1) /Addresses
http://host/service/$Smetadata#Customers (1) /Addresses

10.14 Collection of Complex or Primitive Types

Context URL template:
{context-url}#Collection ({type-name}) {select-1list}

If a response is a collection of complex types or primitive types that do not represent an individual
property of an entity with a canonical URL, the context URL specifies the fully qualified type of the
collection.

Example 27: resource URL and corresponding context URL

http://host/service/TopFiveHobbies ()
http://host/service/Smetadata#Collection (Edm.String)

10.15 Complex or Primitive Type
Context URL template:
{context-url}#{type-name}{select-1list}

If a response is a complex type or primitive type that does not represent an individual property of an entity
with a canonical URL, the context URL specifies the fully qualified type of the result.

Example 28: resource URL and corresponding context URL

http://host/service/MostPopularName ()
http://host/service/S$metadata#Edm.String

10.16 Operation Result

Context URL templates:
{context-url}#{entity-set}{/type-name} {select-1list}
{context-url}#{entity-set}{/type-name}{select-list}/Sentity
{context-url}#{entity}/{property-path}{select-1list}

{context-url}#Collection ({type-name}) {select-1list}

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 40 of 97

{context-url}#{type-name}{select-1ist}

If the response from an action or function is a collection of entities or a single entity that is a member of
an entity set, the context URL identifies the entity set. If the response from an action or function is a
property of a single entity, the context URL identifies the entity and property. Otherwise, the context URL
identifies the type returned by the operation. The context URL will correspond to one of the former
examples.

Example 29: resource URL and corresponding context URL

http://host/service/TopFiveCustomers ()
http://host/service/$metadata#Customers

10.17 Delta Payload Response

Context URL template:
{context-url}#{entity-set}{/type-name}{select-1list}/$delta
{context-url}#{entity}{select-1list}/$delta
{context-url}#{entity}/{property-path}{select-1list}/Sdelta
#Sdelta

The context URL of a delta response is the context URL of the response to the defining query, followed
by /$delta. This includes singletons, single-valued navigation properties, and collection-valued
navigation properties.

If the entities are contained, then {entity-set} is the top-level entity set followed by the path to the
containment navigation property of the containing entity.

Example 30: resource URL and corresponding context URL

http://host/service/Customers?$deltatoken=1234
http://host/service/Smetadata#Customers/$delta

The context URL of an update request body for a collection of entities is simply the fragment #Sdelta.

10.18 Item in a Delta Payload Response

Context URL templates:
{context-url}l#{entity-set}/$SdeletedEntity
{context-url}#{entity-set}/S$link
{context-url}#{entity-set}/SdeletedLink

In addition to new or changed entities which have the canonical context URL for an entity, a delta
response can contain deleted entities, new links, and deleted links. They are identified by the
corresponding context URL fragment. {entity-set} corresponds to the set of the deleted entity, or
source entity for an added or deleted link.

10.19 $all Response

Context URL template:
{context-url}#Collection (Edm.EntityType)

Responses to requests to the virtual collection $al1 (see [OData-URL]) use the built-in abstract entity
type. Each single entity in such a response has its individual context URL that identifies the entity set or
singleton.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 41 of 97

10.20 $crossjoin Response

Context URL template:
{context-url}#Collection (Edm.ComplexType)

Responses to requests to the virtual collections Scrossjoin(...) (see [OData-URL]) use the built-in
abstract complex type. Single instances in these responses do not have a context URL.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 42 of 97

11 Data Service Requests

This chapter describes the semantics of the HTTP verbs GET, POST, PATCH, PUT, and DELETE for OData
resources.

GET requests:

¢ 11.1 Metadata Requests and subsections
¢ 11.2 Requesting Data and subsections

e 11.3 Requesting Changes and subsections
e 11.5.4 Functions and subsections

POST requests:

11.4.2 Create an Entity and subsections
11.4.7.1 Create a Media Entity

11.4.11 Positional Inserts

11.5.5 Actions and subsections

11.7 Batch Requests and subsections

PATCH and PUT requests:

11.4.3 Update an Entity and subsections

11.4.4 Upsert an Entity

11.4.6 Modifying Relationships between Entities and subsections
11.4.7.2 Update a Media Entity Stream

11.4.8.1 Update Stream Values

11.4.9.1 Update a Primitive Property

11.4.9.3 Update a Complex Property

11.4.9.4 Update a Collection Property

11.4.10 Managing Members of an Ordered Collection
11.4.12 Update a Collection of Entities

11.4.13 Update Members of a Collection

DELETE requests:

11.4.5 Delete an Entity

11.4.7.3 Delete a Media Entity

0 Delete Stream Values

11.4.9.2 Set a Value to Null

11.4.14 Delete Members of a Collection

11.1 Metadata Requests

An OData service is a self-describing service that exposes metadata defining the entity sets, singletons,
relationships, entity types, and operations.

11.1.1 Service Document Request

Service documents enable simple hypermedia-driven clients to enumerate and explore the resources
offered by the data service.

OData services MUST support returning a service document from the root URL of the service (the service
root).

The format of the service document is dependent upon the format selected.

11.1.2 Metadata Document Request

An OData metadata document is a representation of the data model that describes the data and
operations exposed by an OData service.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 43 of 97

[OData-CSDLJSON] describes a JSON representation for OData metadata documents and provides a
JSON schema to validate their contents. The media type of the JSON representation of an OData
metadata document is application/json.

[OData-CSDLXML] describes an XML representation for OData metadata documents and provides an
XML schema to validate their contents. The media type of the XML representation of an OData metadata
document is application/xml.

OData services can expose a metadata document that describes the data model exposed by the service.
The metadata document URL MUST be the root URL of the service with smetadata appended. To
retrieve this document the client issues a GET request to the metadata document URL.

If a request for metadata does not specify a format preference (via Accept header or $format) then the
XML representation MUST be returned.

11.2 Requesting Data

OData services support requests for data via HTTP GET requests.

The path of the URL specifies the target of the request (for example; the collection of entities, entity,
navigation property, structural property, or operation). Additional query operators, such as filter, sort,
page, and projection operations are specified through query options.

This section describes the types of data requests defined by OData. For complete details on the syntax
for building requests, see [OData-URL].

OData services are hypermedia driven services that return URLSs to the client. If a client subsequently
requests the advertised resource and the URL has expired, then the service SHOULD respond with 410
Gone. If this is not feasible, the service MUST respond with 404 Not Found.

The format of the returned data is dependent upon the request and the format specified by the client,
either in the Accept header or using the $format query option. If the client specifies neither an Accept
header nor the $Sformat query option, the service is allowed to return the response in any format.

11.2.1 System Query Options

OData defines a number of system query options that allow refining the request. System query options
are prefixed with the dollar ($) character, which is optional in OData 4.01. 4.01 services MUST support
case-insensitive system query option names specified with or without the $ prefix.

Clients that want to work with 4.0 services MUST use lower case names and specify the $ prefix.

The result of the request MUST be as if the system query options were evaluated in the following order.
e Sschemaversion MUST be evaluated first, because it may influence any further processing.
Prior to applying any server-driven paging:
e Sapply — defined in [OData-Aggregation]
e Scompute
e Ssearch
e Sfilter
e Scount
e Sorderby
e S$skip
e Stop
After applying any server-driven paging:
e Sexpand
e Sselect

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 44 of 97

e Sformat

11.2.2 Requesting Individual Entities
To retrieve an individual entity, the client makes a GET request to a URL that identifies the entity, e.g. its
read URL.

The read URL can be obtained from a response payload containing that instance, for example as a
readLink or editLink in an [OData-JSON] payload. In addition, services MAY support conventions for
constructing a read URL using the entity's key value(s), as described in [OData-URL].

The set of structural or navigation properties to return may be specified through $select or $expand
system query options.

Clients MUST be prepared to receive additional properties in an entity or complex type instance that are
not advertised in metadata, even for types not marked as open.

Properties that are not available, for example due to permissions, are not returned. In this case, the
Core.Permissions annotation, defined in [OData-VocCore] MUST be returned for the property with a
value of None.

If no entity exists with the specified request URL, the service responds with 404 Not Found.

11.2.3 Requesting the Media Stream of a Media Entity using $value

A media entity is an entity that represents an out-of-band stream, such as a photograph.

Use a media entity if the out-of-band stream is the main topic of interest and the media entity is just
structured additional information attached to the stream. Use a normal entity with one or more stream
properties if the structured data of the entity is the main topic of interest and the stream data is just
additional information attached to the structured data.

To address the media stream represented by a media entity, clients append /S$value to the resource
path of the media entity URL. Services may redirect from this canonical URL to the source URL of the
media stream.

Appending /$value to an entity that is not a media entity returns 400 Bad Request.

Attempting to retrieve the media stream from a single-valued navigation property referencing a media
entity whose value is null returns 404 Not Found.

11.2.4 Requesting Individual Properties

To retrieve an individual property, the client issues a GET request to the property URL. The property URL
is the entity read URL with "/" and the property name appended.

For complex typed properties, the path can be further extended with the name of an individual property of
the complex type.

See [OData-URL] for details.
If the property is single-valued and has the nul1 value, the service responds with 204 No Content.

If the property is not available, for example due to permissions, the service responds with 404 Not
Found.

Example 31:

GET http://host/service/Products (1) /Name

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 45 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Permissions

11.2.4.1 Requesting a Property's Raw Value using $value

To retrieve the raw value of a primitive type property, the client sends a GET request to the property value
URL. See the [OData-URL] document for details.

The Content-Type of the response is determined using the Accept header and the $format system
guery option.
The default format for Edm.Binary is the format specified by the Core .MediaType annotation of this

property (see [OData-VocCore]) if this annotation is present. If not annotated, the format cannot be
predicted by the client.

The default format for Edm. Geo types is text/plain using the WKT (well-known text) format, see rules
fullCollectionLiteral, fulllineStringLiteral, fullMultiPointLiteral,
fullMultilineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and
fullPolygonLiteral in [OData-ABNF].

The default format for single primitive values except Edm.Binary and the Edm. Geo types is
text/plain. Responses for properties of type Edm. String can use the charset format parameter to
specify the character set used for representing the string value. Responses for the other primitive types
follow the rules booleanvValue, byteValue, dateValue, dateTimeOffsetValue, decimalValue,
doubleValue, durationValue, enumValue, guidValue, intl6Value, int32Value,
int64Value, sbyteValue, singleValue, and timeOfDayValue in [OData-ABNF].

A svalue request for a property that is null resultsina 204 No Content response.

If the property is not available, for example due to permissions, the service responds with 404 Not
Found.

Example 32:

GET http://host/service/Products (1) /Name/$value

11.2.5 Specifying Properties to Return

The $select and Sexpand system query options enable the client to specify the set of structural
properties and navigation properties to include in a response. The service MAY include additional
properties not specified in $select and $expand, including properties not defined in the metadata
document.

11.2.5.1 System Query Option $select

The $select system query option requests that the service return only the properties, dynamic
properties, actions and functions explicitly requested by the client. The service returns the specified
content, if available, along with any available expanded navigation or stream properties, and MAY return
additional information.

The value of the $select query option is a comma-separated list of properties, qualified action names,
qualified function names, the star operator (*), or the star operator prefixed with the namespace or alias
of the schema in order to specify all operations defined in the schema. Only aliases defined in the
metadata document of the service can be used in URLSs.

Example 33: request only the Rating and ReleaseDate for the matching Products

GET http://host/service/Products?$select=Rating,ReleaseDate

It is also possible to request all structural properties, including any dynamic properties, using the star
operator. The star operator SHOULD NOT introduce navigation properties, actions or functions not
otherwise requested.

Example 34:

GET http://host/service/Products?$select=*

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 46 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#MediaType

Properties of related entities can be specified by including the $select query option within the Sexpand.

Example 35:

GET http://host/service/Products?S$expand=Category (Sselect=Name)

The properties specified in $select are represented in addition to any expanded navigation or stream
properties. If a navigation property is specified in Sselect, then the corresponding navigation link is
represented in the response. If the navigation property also appears in an $expand query option, then it
is additionally represented as inline content.

Example 36: for each category, return the CategoryName and the Products navigation link

GET http://host/service/Categories?S$select=CategoryName, Products

It is also possible to request all actions or functions available for each returned entity.
Example 37:

GET http://host/service/Products?$select=DemoService.*

Query options can be applied to a selected property by appending a semicolon-separated list of query
options, enclosed in parentheses, to the property. Allowed system query options are Sselect and
Scompute for complex properties, plus $filter, Ssearch, Scount, Sorderby, $skip, and Stop for
collection-valued properties. A property MUST NOT have select options specified in more than one place
in a request and MUST NOT have both select options and expand options specified.

If the sselect query option is not specified, the service returns the full set of properties or a default set of
properties. The default set of properties MUST include all key properties. Services may change the
default set of properties returned. This includes returning new properties by default and omitting
properties previously returned by default. Clients that rely on specific properties in the response MUST
use sselect with the required properties or with *.

If the service returns less than the full set of properties, either because the client specified a select or
because the service returned a subset of properties in the absence of a select, the context URL MUST
reflect the set of selected properties and projected expanded navigation properties.

11.2.5.2 System Query Option $expand

The $Sexpand system query option indicates the related entities and stream values that MUST be
represented inline. The service MUST return the specified content, and MAY choose to return additional
information.

The value of the Sexpand query option is a comma-separated list of navigation property names, stream
property names, or $value indicating the stream content of a media-entity.

For navigation properties, the navigation property name is optionally followed by a /Sref path segment
or a /Scount path segment, and optionally a parenthesized set of expand options (for filtering, sorting,
selecting, paging, or expanding the related entities).

For a full description of the syntax used when building requests, see [OData-URL].

Example 38: for each customer entity within the Customers entity set the value of all related Orders will be
represented inline

GET http://host/service.svc/Customers?$expand=0rders

Example 39: for each customer entity within the Customers entity set the references to the related Orders will be
represented inline

GET http://host/service.svc/Customers?S$expand=0Orders/Sref

Example 40: for each customer entity within the Customers entity set the media stream representing the customer
photo will be represented inline

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 47 of 97

GET http://host/service.svc/Customers?S$Sexpand=Photo

11.2.5.2.1 Expand Options

The set of expanded entities can be further refined through the application of expand options, expressed
as a semicolon-separated list of system query options, enclosed in parentheses, see [OData-URL].
Allowed system query options are Sfilter, $Sselect, Sorderby, $Sskip, Stop, Scount, $search,
Sexpand, Scompute, and $levels.

Example 41: for each customer entity within the Customers entity set, the value of those related Orders whose
Amount is greater than 100 will be represented inline

GET http://host/service.svc/Customers?S$Sexpand=0rders ($filter=Amount gt 100)

Example 42: for each order within the Orders entity set, the following will be represented inline:

e The Items related to the Orders identified by the resource path section of the URL and the products
related to each order item.

The customer related to each order returned.

GET http://host/service.svc/Orders?S$expand=Items ($Sexpand=Product) ,Customer

Example 43: for each customer entity in the Customers entity set, the value of all related InHouse Staff will be
represented inline if the entity is of type VipCustomer or a subtype of that. For entities that are not of type
VipCustomer, or any of its subtypes, that entity may be returned with no inline representation for the expanded
navigation property InHouseStaff (the service can always send more than requested)

GET
http://host/service.svc/Customers?$expand=SampleModel .VipCustomer/InHouseStaff

11.2.5.2.1.1 Expand Option $levels

The $1evels expand option can be used to specify the number of levels of recursion for a hierarchy in
which the related entity type is the same as, or can be cast to, the source entity type. A $1evels option
with a value of 1 specifies a single expand with no recursion. The same expand options are applied at
each level of the hierarchy.

Services MAY support the symbolic value max in addition to numeric values. In that case they MUST
solve circular dependencies by injecting an entity reference somewhere in the circular dependency.

Clients using slevels=max MUST be prepared to handle entity references in cases were a circular
reference would occur otherwise.

4.01 services that support max SHOULD do so in a case-insensitive manner. Clients that want to work
with 4.0 services MUST use lower case.

Example 44: return each employee from the Employees entity set and, for each employee that is a manager, return
all direct reports, recursively to four levels

GET
http://host/service/Employees?S$Sexpand=Model .Manager/DirectReports ($levels=4)

11.2.5.3 System Query Option $compute

The Scompute system query option allows clients to define computed properties that can be used in a
Sselect orwithina $filter or Sorderby expression.

Computed properties SHOULD be included as dynamic properties in the result and MUST be included if
Sselect is specified with the computed property name, or star (*).

Example 45: compute total price for order items (line breaks only for readability)

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 48 of 97

GET http://host/service/Customers?
$filter=0Orders/any(o:0/TotalPrice gt 100)
&Sexpand=0rders (Scompute=Price mult Qty as TotalPrice

; $select=Name, Price,Qty, TotalPrice)

11.2.6 Querying Collections

OData services support querying collections of entities, complex type instances, and primitive values.

The target collection is specified through a URL, and query operations such as filter, sort, paging, and
projection are specified as system query options optionally prefixed with a dollar ($) character. 4.01
Services MUST support case-insensitive system query option names specified with or without the $
prefix. Clients that want to work with 4.0 services MUST use lower case names and specify the $ prefix.

The same system query option MUST NOT be specified more than once for any resource.

An OData service MAY support some or all of the system query options defined. If a data service does
not support a system query option, it MUST fail any request that contains the unsupported option and
SHOULD return 501 Not Implemented.

11.2.6.1 System Query Option $filter

The s$filter system query option restricts the set of items returned.

Example 46: return all Products whose Price is less than $10.00

GET http://host/service/Products?$filter=Price 1t 10.00

The scount segment may be used withina sfilter expression to limit the items returned based on
the exact count of related entities or items within a collection-valued property.

Example 47: return all Categories with less than 10 products

GET http://host/service/Categories?$filter=Products/$count 1t 10

The value of the $filter option is a Boolean expression as defined in [OData-ABNF].

11.2.6.1.1 Built-in Filter Operations

OData supports a set of built-in filter operations, as described in this section.

4.01 services MUST support case-insensitive operation names. Clients that want to work with 4.0
services MUST use lower case operation names.

For a full description of the syntax used when building requests, see [OData-URL].
Operator Description Example

Comparison Operators

eq Equal Address/City eqg 'Redmond'

ne Not equal Address/City ne 'London'

gt Greater than Price gt 20

ge Greater than or equal Price ge 10

1t Less than Price 1t 20

le Less than or equal Price le 100

has Has flags Style has Sales.Color'Yellow'

in Is a member of Address/City in ('Redmond', 'London')
odata-v4.01-os-part1-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 49 of 97

Operator

Description

Logical Operators

and

or

not

Logical and
Logical or

Logical negation

Arithmetic Operators

add
sub
mul
div
divby

mod

Addition

Subtraction
Multiplication
Division

Decimal Division

Modulo

Example

Price le 200 and Price gt 3.5

Price le 3.5 or Price gt 200

not endswith (Description, 'milk")

Price add 5 gt 10

Price

Price mul 2 gt 2000

Price div 2 gt 4

sub 5 gt 10

Price divby 2 gt 3.5

Price mod 2 eq 0

Grouping Operators

() Precedence grouping

(Price sub 5)

11.2.6.1.2 Built-in Query Functions

OData supports a set of built-in functions that can be used within $f£i1ter operations. The following
table lists the available functions.

4.01 services MUST support case-insensitive built-in function names. Clients that want to work with 4.0
services MUST use lower case names.

gt 10

For a full description of the syntax used when building requests, see [OData-URL].
OData does not define an ISNULL or COALESCE operator. Instead, there is a null literal that can be

used in comparisons.

Function

Example

String and Collection Functions

concat

contains
endswith

indexof

length
startswith
substring
Collection Functions
hassubset

hassubsequence

odata-v4.01-os-part1-protocol
Standards Track Work Product

concat (concat (City, "', "),

Country) eq

'Berlin,

contains (CompanyName, 'freds"')

endswith (CompanyName, 'Futterkiste')

indexof (CompanyName, 'lfreds"')

length (CompanyName) eqg 19

eq 1

startswith (CompanyName,"Alfr’)

substring (CompanyName, 1)

hassubset ([4,1,3],[3,11)

eq

'lfreds Futterkiste'

hassubsequence ([4,1,3,1],([1,1])

Copyright © OASIS Open 2020. All Rights Reserved.

Germany'

23 April 2020
Page 50 of 97

Function

String Functions
matchesPattern
tolower
toupper

trim

Date and Time Functions

day

date
fractionalseconds
hour

maxdatetime
mindatetime
minute

month

now

second

time
totaloffsetminutes
totalseconds
year

Arithmetic Functions
ceiling

floor

round

Type Functions
cast

isof

isof

Geo Functions
geo.distance
geo.lintersects
geo.length

Conditional Functions

odata-v4.01-os-part1-protocol
Standards Track Work Product

Example

matchesPattern (CompanyName, '$5EA. *e$")
tolower (CompanyName) eq 'alfreds futterkiste'
toupper (CompanyName) eq 'ALFREDS FUTTERKISTE'

trim(CompanyName) eq 'Alfreds Futterkiste'

day (StartTime) eq 8

date (StartTime) ne date (EndTime)
second (StartTime) eqg O

hour (StartTime) eq 1

EndTime eq maxdatetime ()

StartTime eq mindatetime ()

minute (StartTime) eqg O

month (BirthDate) eq 12

StartTime ge now ()

second (StartTime) eqg O

time (StartTime) le StartOfDay
totaloffsetminutes (StartTime) eqg 60
totalseconds (duration'PTIM') eqg 60

year (BirthDate) eg 0

ceiling (Freight) eqg 33
floor (Freight) eqg 32

round (Freight) eq 32

cast (ShipCountry,Edm.String)
isof (NorthwindModel.Order)

isof (ShipCountry, Edm.String)

geo.distance (CurrentPosition, TargetPosition)

geo.intersects (Position, TargetArea)

geo.length (DirectRoute)

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 51 of 97

Function Example

case case(X gt 0:1,X 1t 0:-1,true:0)

11.2.6.1.3 Parameter Aliases

Parameter aliases can be used in place of literal values in entity keys, function parameters, or within a
Scompute, $filter or Sorderby expression. Parameters aliases are names beginning with an at sign

(@).
Actual parameter values are specified as query options in the query part of the request URL. The query

option name is the name of the parameter alias, and the query option value is the value to be used for the
specified parameter alias.

Example 48: returns all employees whose Region property matches the string parameter value "WA"

GET http://host/service.svc/Employees?S$filter=Region eq Q@pl&@pl="WA'

Parameter aliases allow the same value to be used multiple times in a request and may be used to
reference primitive, structured, or collection values.

If a parameter alias is not given a value in the query part of the request URL, the value MUST be
assumed to be null. A parameter alias can be used in multiple places within a request URL, but its value
MUST NOT be specified more than once.

Parameter alias values used in /$filter path segments are always passed as expressions (because
that is the expected type of the parameter).

All other parameter alias values are evaluated in the context of the resource identified by the path
segment in which they are assigned and passed as values into the expression. Parameter alias value
assignments MAY be nested within $Sexpand and $select, in which case they are evaluated relative to
the resource context of the Sexpand or $select.

Example 49: returns all employees, expands their manager, and expands all direct reports with the same first name
as the manager, using a parameter alias for $this to pass the manager into the filter on the expanded direct reports

GET
http://host/service.svc/Employees?$expand=Manager (@m=$this; $Sexpand=DirectRepor
ts($filter=@m/FirstName eq FirstName))

11.2.6.2 System Query Option $orderby

The Sorderby System Query option specifies the order in which items are returned from the service.

The value of the Sorderby System Query option contains a comma-separated list of expressions whose
primitive result values are used to sort the items. A special case of such an expression is a property path
terminating on a primitive property. A type cast using the qualified entity type name is required to order by
a property defined on a derived type. Only aliases defined in the metadata document of the service can
be used in URLs.

The expression can include the suffix asc for ascending or desc for descending, separated from the
property name by one or more spaces. If asc or desc is not specified, the service MUST order by the
specified property in ascending order. 4.01 services MUST support case-insensitive values for asc and
desc. Clients that want to work with 4.0 services MUST use lower case values.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 52 of 97

Null values come before non-null values when sorting in ascending order and after non-null values when
sorting in descending order.

Items are sorted by the result values of the first expression, and then items with the same value for the
first expression are sorted by the result value of the second expression, and so on.

The Boolean value false comes before the value true in ascending order.

Services SHOULD order language-dependent strings according to the content-language of the response,
and SHOULD annotate string properties with language-dependent order with the term
Core.IsLanguageDependent, see [OData-VocCore].

Values of type Edm. Stream or any of the Geo types cannot be sorted.

Example 50: return all Products ordered by release date in ascending order, then by rating in descending order

GET http://host/service/Products?$orderby=ReleaseDate asc, Rating desc

Related entities may be ordered by specifying Sorderby within the Sexpand clause.

Example 51: return all Categories, and their Products ordered according to release date and in descending order of
rating

GET http://host/service/Categories?
Sexpand=Products (Sorderby=ReleaseDate asc, Rating desc)

Scount may be used within a Sorderby expression to order the returned items according to the exact
count of related entities or items within a collection-valued property.

Example 52: return all Categories ordered by the number of Products within each category

GET http://host/service/Categories?Sorderby=Products/$count

11.2.6.3 System Query Option $top

The $top system query option specifies a hon-negative integer n that limits the number of items returned
from a collection. The service returns the number of available items up to but not greater than the
specified value n.

Example 53: return only the first five products of the Products entity set

GET http://host/service/Products?$top=5

If no unique ordering is imposed through an Sorderby query option, the service MUST impose a stable
ordering across requests that include Stop.

11.2.6.4 System Query Option $skip

The $skip system query option specifies a non-negative integer n that excludes the first n items of the
queried collection from the result. The service returns items starting at position n+1.

Example 54: return products starting with the 6th product of the Products entity set

GET http://host/service/Products?$skip=5

Where stop and $skip are used together, $skip MUST be applied before $top, regardless of the
order in which they appear in the request.

Example 55: return the third through seventh products of the Products entity set

GET http://host/service/Products?S$top=5&Sskip=2

If no unique ordering is imposed through an $Sorderby query option, the service MUST impose a stable
ordering across requests that include $skip.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 53 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#IsLanguageDependent

11.2.6.5 System Query Option $count

The Scount system query option with a value of t rue specifies that the total count of items within a
collection matching the request be returned along with the result.

Example 56: return, along with the results, the total number of products in the collection

GET http://host/service/Products?S$count=true

The count of related entities can be requested by specifying the $count query option within the
Sexpand clause.

Example 57:

GET http://host/service/Categories?S$expand=Products (Scount=true)

A scount query option with a value of false (or not specified) hints that the service SHOULD NOT
return a count.

The service returns an HTTP Status code of 400 Bad Request if a value other than true or false is
specified.

The Scount system query option ignores any stop, $Sskip, Or Sexpand query options, and returns the
total count of results across all pages including only those results matching any specified $filter and
$search. Clients should be aware that the count returned inline may not exactly equal the actual number
of items returned, due to latency between calculating the count and enumerating the last value or due to
inexact calculations on the service.

How the count is encoded in the response body is dependent upon the selected format.

11.2.6.6 System Query Option $search

The $search system query option restricts the result to include only those items matching the specified
search expression. The definition of what it means to match is dependent upon the implementation.

Example 58: return all Products that match the search term "bike"

GET http://host/service/Products?$search=bike

The search expression can contain phrases, enclosed in double-quotes.

Example 59: return all Products that match the phrase "mountain bike"

GET http://host/service/Products?$search="mountain bike"

The upper-case keyword NOT restricts the set of entities to those that do not match the specified term.

Example 60: return all Products that do not match "clothing"

GET http://host/service/Products?$search=NOT clothing

Multiple terms within a search expression are separated by a space (implicit AND) or the upper-case
keyword AND, indicating that all such terms must be matched.

Example 61: return all Products that match both "mountain™ and "bike"

GET http://host/service/Products?$search=mountain AND bike

The upper-case keyword OR is used to return entities that satisfy either the immediately preceding or
subsequent expression.

Example 62: return all Products that match either "mountain” or "bike"

GET http://host/service/Products?$search=mountain OR bike

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 54 of 97

Parentheses within the search expression group together multiple expressions.

Example 63: return all Products that match either "mountain” or "bike" and do not match clothing

GET http://host/service/Products?$search=(mountain OR bike) AND NOT clothing

The operations within a search expression MUST be evaluated in the following order: grouping operator,
NOT operator, AND operator, OR operator

If both $search and $filter are specified in the same request, only those items satisfying both criteria
are returned.

The value of the $search option is a search expression as defined in [OData-ABNF].

11.2.6.7 Server-Driven Paging

Responses that include only a partial set of the items identified by the request URL MUST contain a link
that allows retrieving the next partial set of items. This link is called a next link; its representation is
format-specific. The final partial set of items MUST NOT contain a next link.

The client can request a maximum page size through the maxpagesize preference. The service may
apply this requested page size or implement a page size different than, or in the absence of, this
preference.

OData clients MUST treat the URL of the next link as opaque, and MUST NOT append system query
options to the URL of a next link. Services may not allow a change of format on requests for subsequent
pages using the next link. Clients therefore SHOULD request the same format on subsequent page
requests using a compatible Accept header. OData services may use the reserved system query option
Sskiptoken when building next links. Its content is opaque, service-specific, and must only follow the
rules for URL query parts.

OData clients MUST NOT use the system query option $skiptoken when constructing requests.

11.2.6.8 Requesting an Individual Member of an Ordered Collection

Individual members of collections of primitive and complex types annotated with the Ordered term (see
[OData-VocCore]) are addressable by appending a segment containing the zero-based ordinal to the
URL of the collection. A negative ordinal indexes from the end of the collection, with -1 representing the
last item in the collection.

Entities are stably addressable using their canonical URL and are not accessible using an ordinal index.

Example 64: the first address in a list of addresses for MainSupplier

GET http://host/service/Suppliers (MainSupplier) /Addresses/0

11.2.7 Requesting Related Entities

To request related entities according to a particular relationship, the client issues a GET request to the
source entity’s request URL, followed by a forward slash and the name of the navigation property
representing the relationship.

If the navigation property does not exist on the entity indicated by the request URL, the service returns
404 Not Found.

If the relationship terminates on a collection, the response MUST be the format-specific representation of
the collection of related entities. If no entities are related, the response is the format-specific
representation of an empty collection.

If the relationship terminates on a single entity, the response MUST be the format-specific representation
of the related single entity. If no entity is related, the service returns 204 No Content.

Example 65: return the supplier of the product with I1D=1 in the Products entity set

GET http://host/service/Products (1) /Supplier

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 55 of 97

11.2.8 Requesting Entity References

To request entity references in place of the actual entities, the client issues a GET request with /$ref
appended to the resource path.

If the resource path does not identify an entity or a collection of entities, the service returns 404 Not
Found.

If the resource path identifies a collection, the response MUST be the format-specific representation of a
collection of entity references pointing to the related entities. If no entities are related, the response is the
format-specific representation of an empty collection. The response MAY contain an ETag header for the
collection whose value changes if the collection of references changes, i.e. a reference is added or
removed.

If the resource path identifies a single existing entity, the response MUST be the format-specific
representation of an entity reference. The response MAY contain an ETag header which represents the
identity of the referenced entity. If the resource path terminates in a single-valued navigation path, the
ETag value changes if the relationship is changed and points to a different OData entity. If the resource
path is the canonical path for a single entity, the returned ETag can never change.

If the resource path terminates on a single entity and no such entity exists, the service returns either 204
No Content or 404 Not Found.

Example 66: collection with an entity reference for each Order related to the Product with D=0

GET http://host/service/Products (0) /Orders/Sref

11.2.9 Resolving an Entity-Id

To resolve an entity-id, e.g. obtained in an entity reference, into a representation of the identified entity,
the client issues a GET request to the Sentity resource located at the URL Sentity relative to the
service root. The entity-id MUST be specified using the system query option $id.

Example 67: return the entity representation for a given entity-id

GET http://host/service/S$Sentity?$id=http://host/service/Products (0)

A type segment following the Sentity resource casts the resource to the specified type. If the identified
entity is not of the specified type, or a type derived from the specified type, the service returns 404 Not
Found.

After applying a type-cast segment to cast to a specific type, the system query options Sselect and
Sexpand can be specified in GET requests to the Sentity resource.

Example 68: return the entity representation for a given entity-id and specify properties to return

GET http://host/service/$entity/Model.Customer
?Sid=http://host/service/Customers ('ALFKI'")
&Sselect=CompanyName, ContactName
&Sexpand=0rders

11.2.10 Requesting the Number of Items in a Collection

To request only the number of items of a collection of entities or items of a collection-valued property, the
client issues a GET request with /$count appended to the resource path of the collection.

On success, the response body MUST contain the exact count of items matching the request after
applying any $filter or Ssearch system query options, formatted as a simple primitive integer value
with media type text/plain. Clients SHOULD NOT combine the system query options stop, $skip,
Sorderby, Sexpand, and $format with the path suffix /Scount. The result of such a request is
undefined.

Example 69: return the number of products in the Products entity set

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 56 of 97

GET http://host/service/Products/S$count

With 4.01 services the /Scount segment MAY be used in combination with the /$filter path segment
to count the items in the filtered collection.

Example 70: return the number of products whose Price is less than $10.00

GET http://host/service/Products/$filter (@foo) /Scount?@foo=Price 1t 10.00

For backwards compatibility, the /$count suffix MAY be used in combination with the $filter system
query option.

Example 71: return the number of products whose Price is less than $10.00

GET http://host/service/Products/S$count?$filter=Price 1t 10.00

The sfilter system query option MUST NOT be used in conjunction with a both a /$count path
segment and a /$filter path segment.

The /$count suffix can also be used in path expressions within system query options, e.g. Sfilter.

Example 72: return all customers with more than five interests

GET http://host/service/Customers?$filter=Interests/S$Scount gt 5

Example 73: return all categories with more than one product over $5.00

GET http://host/service/Categories?
Sfilter=Products/S$filter (Price gt 5.0)/S$count gt 1

11.2.11 System Query Option $format

The $format system query option specifies the media type of the response.

The $format query option, if present in a request, MUST take precedence over the value(s) specified in
the Accept request header.

The value of the Sformat system query option is a valid internet media type, optionally including
parameters.

In addition, format-specific abbreviations may be used, e.g. json for application/json, see [OData-
JSON], but format parameters MUST NOT be appended to the format abbreviations.

Example 74: the request

GET http://host/service/Orders?S$format=application/json;metadata=full

is equivalent to a request with an Accept header using the same media type; it requests the set of Order entities
represented using the JSON media type including full metadata, as defined in [OData-JSON].

Example 75: the request

GET http://host/service/Orders?$format=json

is equivalent to a request with the Accept header setto application/json; it requests the set of Order entities
represented using the JSON media type with minimal metadata, as defined in [OData-JSON].

In metadata document requests, the values application/xml and application/json, along with
their subtypes and parameterized variants, as well as the format-specific abbreviations xm1 and json,
are reserved for this specification.

11.2.12 System Query Option $schemaversion

The $schemaversion system query option MAY be included in any request. For a metadata document
request the value of the $schemaversion system query option addresses a specific schema version.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 57 of 97

For all other request types the value specifies the version of the schema against which the request is
made. The syntax of the $schemaversion system query option is defined in [OData-ABNF].

The value of the $schemaversion system query option MUST be a version of the schema as returned
in the Core. SchemaVersion annotation, defined in [OData-VocCore], of a previous request to the
metadata document, or * in order to specify the current version of the metadata.

If specified, the service MUST process the request according to the specified version of the metadata.

Clients can retrieve the current version of the metadata by making a metadata document request with a
Sschemaversion system query option value of *, and SHOULD include the value from the returned
Core.SchemaVersion annotation in the $schemaversion system query option of subsequent
requests.

If the Sschemaversion system query option is not specified in a request for the metadata document, the
service MUST return a version of the metadata with no breaking changes over time, and the processing
of all other requests that omit the $schemaversion system query option MUST be compatible with that
“unversioned” schema. For more information on breaking changes, see Model Versioning.

If the sschemaversion system query option is specified on an individual request within a batch, then it
specifies the version of the schema to apply to that individual request. Individual requests within a batch
that don’t include the $schemaversion system query option inherit the schema version of the overall
batch request.

If the sschemaversion system query option is specified, but the version of the schema doesn't exist,
the request is answered with a response code 404 Not Found. The response body SHOULD provide
additional information.

11.3 Requesting Changes

Services advertise their change-tracking capabilities by annotating entity sets with the
Capabilities.ChangeTracking term defined in [OData-VocCap].

Any GET request to retrieve one or more entities MAY allow change-tracking.

Clients request that the service track changes to a result by specifying the track-changes preference
on a request. If supported for the request, the service includes a Preference-Applied header in the
response containing the track-changes preference and includes a delta link in a result for a single
entity, and on the last page of results for a collection of entities in place of the next link.

11.3.1 Delta Links

Delta links are opaque, service-generated links that the client uses to retrieve subsequent changes to a
result.

Delta links are based on a defining query that describes the set of results for which changes are being
tracked; for example, the request that generated the results containing the delta link. The delta link
encodes the collection of entities for which changes are being tracked, along with a starting point from
which to track changes. OData services may use the reserved system query option sdeltatoken when
building delta links. Its content is opaque, service-specific, and must only follow the rules for URL query
parts.

If the defining query contains a Sschemaversion system query option, the response MUST be
represented according to that schema version.

If the defining query contains a $filter or $search, the response MUST include only changes to
entities matching the specified criteria. Added entities MUST be returned for entities that were added or
changed and now match the specified criteria, and deleted entities MUST be returned for entities that are
changed to no longer match the criteria of $filter or $search.

The delta link MUST NOT encode any client top or skip value, and SHOULD NOT encode a request for
an inline count.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 58 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#ChangeTracking

If the defining query includes expanded relationships, the delta link MUST return changes, additions, or
deletions to the expanded entities, as well as added or deleted links to expanded entities or nested
collections representing current membership. If the defining query includes expanded references, then
the delta link MUST return changes to the membership in the set of expanded references.

Navigation properties specified in the $select list of a defining query are not used to define the scope or
contents of the items being tracked. Clients can specify /$ref in Sexpand in order to specify interest in
the set of related entities without interest in changes to the content of those related entities.

If an expanded entity becomes orphaned because all paths to the entity as specified in the defining query
have been broken (i.e. due to relationship changes and/or changes or deletions to parent entities) then
the service MUST return the appropriate notifications for the client to determine that the entity has been
orphaned (i.e. the changed relationships and removed parent entities). The client should not assume that
it will receive additional natifications for such an orphaned entity.

Entities are considered changed if any of the structural properties have changed. Changes to related
entities and to streams are not considered a change to the entity containing the stream or navigation
property.

If the defining query contains a projection, the generated delta link SHOULD logically include the same
projection, such that the delta query only includes fields specified in the projection. Services MAY use the
projection to limit the entities returned to those that have changed within the selected fields, but the client
MUST be prepared to receive entities returned whether or not the field that changed was specified in the
projection.

11.3.2 Using Delta Links

The client requests changes by invoking the GET method on the delta link. The client MUST NOT attempt
to append system query options to the delta link. The Accept header MAY be used to specify the desired
response format.

Clients SHOULD specify the same Accept-Language header when querying the delta link as was
specified in the defining query. Services MAY return 406 Not Acceptable if a different Accept-
Language is specified. If a service does support an Accept-Language header it MAY return changes
only visible in that language, or MAY include records that have changes not visible in the requested
language.

The /scount segment can be appended to the path of a delta link in order to get just the number of
changes available. The count includes all added, changed, or deleted entities, as well as added or
deleted links.

The results of a request against the delta link may span multiple pages but MUST be ordered by the
service across all pages in such a way as to guarantee consistency when applied in order to the response
which contained the delta link.

Services SHOULD return only changed entities, but MAY return additional entities matching the defining
query for which the client may not see a change.

In order to continue tracking changes beyond the current set, the client specifies track-changes on the
initial request to the delta link but is not required to repeat it for subsequent pages. The new delta link
appears at the end of the last page of changes in place of the next link and MUST return all changes
subsequent to the last change of the previous delta link.

If no changes have occurred, the response is an empty collection that contains a delta link for subsequent
changes if requested. This delta link MAY be identical to the delta link resulting in the empty collection of
changes.

If the delta link is no longer valid, the service responds with 410 Gone, and SHOULD include the URL for
refetching the entire set in the Location header of the response.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 59 of 97

11.3.3 Delta Payloads

A delta payload represents changes to a known state. A delta payload includes added entities, changed
entities, and deleted entities, as well as a representation of added and removed relationships.

Delta payloads can be requested from the service using a delta link or provided as updates to the service.

11.4 Data Modification

Updatable OData services support Create, Update, and Delete operations for some or all exposed
entities. Additionally, Actions supported by a service can affect the state of the system.

A successfully completed Data Modification Request must not violate the integrity of the data.

The client may request whether content be returned from a Create, Update, or Delete request, or the
invocation of an Action, by specifying the return Prefer header.

11.4.1 Common Data Modification Semantics

Data Modification Requests share the following semantics.

11.4.1.1 Use of ETags for Avoiding Update Conflicts

Each entity has its own ETag value that MUST change when structural properties or links from that entity
have changed. In addition, modifying, adding, or deleting a contained entity MAY change the ETag of the
parent entity.

Collections of entities (including collections of related entities) MAY have their own ETag value whose
semantics is service-specific. It typically changes if entities are added to or removed from the collection,
or if an entity in the collection is changed. The ETag of a collection of related entities reached via a
navigation property MAY differ from the ETag of the entity containing the navigation property.

A Data Modification Request on an existing resource or an Action Request invoking an action bound to an
existing resource MAY require optimistic concurrency control. Services SHOULD announce this via
annotations with the terms Core.OptimisticConcurrency in [OData-VocCore] and
Capabilities.NavigationRestrictions (nested property OptimisticConcurrencyControl)
in [OData-VocCap].

If optimistic concurrency control is required for a resource, the service MUST include an ETag header in a
response to a GET request to the resource, and MAY include the ETag in a format-specific manner in
responses containing that resource.

The presence of an ETag header in a response does not imply in itself that the resource requires
optimistic concurrency control; the ETag may just be used for caching and/or conditional GET requests.

If an ETag value is specified in an If-Match or If-None-Match header of a Data Modification Request
or Action Request, the operation MUST only be invoked if the Tf-Match or If-None-Match condition is
satisfied.

If the client does not specify an I f-Match request header in a Data Modification Request or Action
Request on a resource that requires optimistic concurrency control, the service responds with a 428
Precondition Required and MUST ensure that no observable change occurs as a result of the
request. Clients can attempt to disable optimistic concurrency control by specifying I f£-Match with a
value of *. Services MAY reject such requests.

For requests including an Obata-Version header value of 4. 01, any ETag values specified in the
request body of an update request MUST be * or match the current value for the record being updated.

11.4.1.2 Handling of DateTimeOffset Values

Services SHOULD preserve the offset of Edm. DateTimeOf fset values, if possible. However, where the
underlying storage does not support offset services may be forced to normalize the value to some
common time zone (i.e. UTC) in which case the result would be returned with that time zone offset. If the

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 60 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptimisticConcurrency
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#NavigationRestrictions

service normalizes values, it MUST fail evaluation of the query functions year, month, day, hour, and
time for literal values that are not stated in the time zone of the normalized values.

11.4.1.3 Handling of Properties Not Advertised in Metadata

Clients MUST be prepared to receive additional properties in an entity or complex type instance that are
not advertised in metadata, even for types not marked as open. By using PATCH when updating entities,
clients can ensure that such properties values are not lost if omitted from the update request.

11.4.1.4 Handling of Integrity Constraints

Services may impose cross-entity integrity constraints. Certain referential constraints, such as requiring
an entity to be created with related entities can be satisfied through creating or linking related entities
when creating the entity. Other constraints might require multiple changes to be processed in an all-or-
nothing fashion.

11.4.1.5 Returning Results from Data Modification Requests

Clients can request whether created or modified resources are returned from create, update, and upsert
operations using the return preference header. In the absence of such a header, services SHOULD
return the created or modified content unless the resource is a stream property value.

When returning content other than for an update to a media entity stream, services MUST return the
same content as a subsequent request to retrieve the same resource. For updating media entity streams,
the content of a non-empty response body MUST be the updated media entity.

Requests that return a single instance of a structured type or a collection of structured type instances
MAY specify the system query options Sexpand and Sselect.

Requests that return a collection MAY specify the system query option $filter.

If one or more of these query options are present, this implies a return=representation preference if
no return preference is specified.

If one or more of these query options are present with a return=minimal preference, the service
SHOULD NOT return a representation and MUST include a Preference-Applied header if it does not
return a representation.

If one or more of these query options are present and the service returns a representation, then the
service MUST apply the specified query options. If it cannot apply the specified query options
appropriately, it MUST NOT fail the request solely due to the presence of these query options and instead
MUST return 204 No Content.

11.4.2 Create an Entity

To create an entity in a collection, the client sends a POST request to that collection's URL. The POST
body MUST contain a single valid entity representation.

The entity representation MAY include references to existing entities as well as content for new related
entities, but MUST NOT contain content for existing related entities. The result of the operation is the
entity with relationships to all included references to existing entities as well as all related entities created
inline. If the key properties for an entity include key properties of a directly related entity, those related
entities MUST be included either as references to existing entities or as content for new related entities.

An entity may also be created as the result of an Upsert operation.

If the target URL for the collection is a navigation link, the new entity is automatically linked to the entity
containing the navigation link.

If the target URL terminates in a type cast segment, then the segment MUST specify the type of, or a type
derived from, the type of the collection, and the entity MUST be created as that specified type.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 61 of 97

To create an open entity (an instance of an open type), additional property values beyond those specified
in the metadata MAY be sent in the request body. The service MUST treat these as dynamic properties
and add them to the created instance.

If the entity being created is not an open entity, additional property values beyond those specified in the
metadata SHOULD NOT be sent in the request body. The service MUST fail if unable to persist all
property values specified in the request.

Properties computed by the service (annotated with the term Core.Computed, see [OData-VocCore])
and properties that are tied to properties of the principal entity by a referential constraint, can be omitted
and MUST be ignored if included in the request.

Properties with a defined default value, nullable properties, and collection-valued properties omitted from
the request are set to the default value, null, or an empty collection, respectively.

Upon successful completion, the response MUST contain a Location header that contains the edit URL
or read URL of the created entity.

Upon successful completion the service MUST respond with either 201 Created and a representation
of the created entity, or 204 No Content if the request included a Prefer header with a value of
return=minimal and did not include the system query options $select and Sexpand.

11.4.2.1 Link to Related Entities When Creating an Entity

To create a new entity with links to existing entities in a single request, the client includes references to
the related entities in the request body.
The representation for referencing related entities is format-specific.

Example 76: using the JSON format, 4.0 clients can create a new manager entity with links to two existing employees
by applying the odata.bind annotation to the Di rectReports navigation property

{
"Qodata.type":"#Northwind.Manager",

"ID": 1,
"FirstName": "Pat",
"LastName": "Griswold",

"DirectReports@odata.bind": [
"http://host/service/Employees (5)",
"http://host/service/Employees (6)"

1

}

Example 77: using the JSON format, 4.01 clients can create a new manager entity with links to two existing
employees by including the entity-ids within the Di rectReports navigation property

{
"Qtype":"#Northwind.Manager",

"ID": 1,

"FirstName": "Pat",
"LastName": "Griswold",
"DirectReports": [

{"@id": "Employees (5)"},
{"@id": "Employees(6)"}
]
}

Upon successful completion of the operation, the service creates the requested entity and relates it to the
requested existing entities.

If the target URL for the collection the entity is created in and binding information provided in the POST
body contradicts the implicit binding information provided by the request URL, the request MUST fail, and
the service responds with 400 Bad Request.

Upon failure of the operation, the service MUST NOT create the new entity. In particular, the service
MUST never create an entity in a partially valid state (with the navigation property unset).

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 62 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Computed

11.4.2.2 Create Related Entities When Creating an Entity

A request to create an entity that includes related entities, represented using the appropriate inline
representation, is referred to as a “deep insert”.

Media entities MUST contain the base64url-encoded representation of their media stream as a virtual
property Svalue when nested within a deep insert.

Each included related entity is processed observing the rules for creating an entity as if it was posted
against the original target URL extended with the navigation path to this related entity.

On success, the service MUST create all entities and relate them. If the service responds with 201
Created, the response MUST be expanded to at least the level that was present in the deep-insert
request.

Clients MAY associate an id with individual nested entities in the request by using the Core.ContentID
term defined in [OData-VocCore]. Services that respond with 201 Created SHOULD annotate the
entities in the response using the same Core.ContentID value as specified in the request. Services
SHOULD advertise support for deep inserts, including support for returning the Core.ContentID,
through the Capabilities.DeepInsertSupport term, defined in [OData-VocCap]; services that
advertise support through Capabilities.DeepInsertSupport MUST return the Core.ContentID
for the inserted or updated entities.

The continue-on-error preference is not supported for deep insert operations.
On failure, the service MUST NOT create any of the entities.

11.4.3 Update an Entity

To update an individual entity, the client makes a PATCH or PUT request to a URL that identifies the entity.
Services MAY restrict updates only to requests addressing the edit URL of the entity.

Services SHOULD support PATCH as the preferred means of updating an entity. PATCH provides more
resiliency between clients and services by directly modifying only those values specified by the client.

The semantics of PATCH, as defined in [RFC5789], is to merge the content in the request payload with
the [entity’s] current state, applying the update only to those components specified in the request body.
Collection properties and primitive properties provided in the payload corresponding to updatable
properties MUST replace the value of the corresponding property in the entity or complex type. Missing
properties of the containing entity or complex property, including dynamic properties, MUST NOT be
directly altered unless as a side effect of changes resulting from the provided properties.

Services MAY additionally support PUT but should be aware of the potential for data-loss in round-tripping
properties that the client may not know about in advance, such as open or added properties, or properties
not specified in metadata. Services that support PUT MUST replace all values of structural properties with
those specified in the request body. Missing non-key, updatable structural properties not defined as
dependent properties within a referential constraint MUST be set to their default values. Omitting a non-
nullable property with no service-generated or default value from a PUT request results in a 400 Bad
Request error. Missing dynamic structural properties MUST be removed or set to null.

For requests with an OData-Version header with a value of 4.01 or greater, the media stream of a
media entity can be updated by specifying the base64url-encoded representation of the media stream as
a virtual property $value.

Updating a dependent property that is tied to a key property of the principal entity through a referential
constraint updates the relationship to point to the entity with the specified key value. If there is no such
entity, the update fails.

Updating a principle property that is tied to a dependent entity through a referential constraint on the
dependent entity updates the dependent property.

Key and other properties marked as read-only in metadata (including computed properties), as well as
dependent properties that are not tied to key properties of the principal entity, can be omitted from the
request. If the request contains a value for one of these properties, the service MUST ignore that value

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 63 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#DeepInsertSupport
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#DeepInsertSupport
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID

when applying the update. Services MUST return an error if an insert or update contains a new value for
a property marked as updatable that cannot currently be changed by the user (i.e., given the state of the
object or permissions of the user). The service MAY return success in this case if the specified value
matches the value of the property. Clients SHOULD use PATCH and specify only those properties
intended to be changed.

Entity id and entity type cannot be changed when updating an entity. However, format-specific rules might
in some cases require providing entity id and entity type values in the payload when applying the update.

For requests with an OData-Version header with a value of 4.01 or greater, if the entity
representation in the request body includes an ETag value, the update MUST NOT be performed and
SHOULD return 412 Precondition Failed if the supplied ETag value is not * and does not match
the current ETag value for the entity. ETag values in request bodies MUST be ignored for requests
containing an OData-Version header with a value of 4. 0.

If an update specifies both a binding to a single-valued navigation property and a dependent property that
is tied to a key property of the principal entity according to the same navigation property, then the
dependent property is ignored, and the relationship is updated according to the value specified in the
binding.

If the entity being updated is open, then additional values for properties beyond those specified in the

metadata or returned in a previous request MAY be sent in the request body. The service MUST treat
these as dynamic properties.

If the entity being updated is not open, then additional values for properties beyond those specified in the
metadata or returned in a previous request SHOULD NOT be sent in the request body. The service
MUST fail if it is unable to persist all updatable property values specified in the request.

Upon successful completion the service responds with either 200 0K and a representation of the updated
entity, or 204 No Content. The client may request that the response SHOULD include a body by
specifying a Prefer header with a value of return=representation, or by specifying the system
guery options sselect or sexpand. If the service uses ETags for optimistic concurrency control, the
entities in the response MUST include ETags.

11.4.3.1 Update Related Entities When Updating an Entity

Update requests with an OData-Version header with a value of 4.0 MUST NOT contain related entities
as inline content. Such requests MAY contain binding information for navigation properties. For single-
valued navigation properties this replaces the relationship. For collection-valued navigation properties this
adds to the relationship.

Payloads with an OData-Version header with a value of 4. 01 or greater MAY include nested entities
and entity references that specify the full set of to be related entities, or a nested delta payload
representing the related entities that have been added, removed, or changed. Such a request is referred
to as a “deep update”. If the nested collection is represented identical to an expanded navigation
property, then the set of nested entities and entity references specified in a successful update request
represents the full set of entities to be related according to that relationship and MUST NOT include
added links, deleted links, or deleted entities.

Example 78: using the JSON format, a 4.01 PATCH request can update a manager entity. Following the update, the
manager has three direct reports; two existing employees and one new employee named Suzanne Brown. The
LastName of employee 6 is updated to Smith.

{
"Qtype":"#Northwind.Manager",

"FirstName" : "Patricia",
"DirectReports": [
{
"@id": "Employees(5}"

1
{
"@id": "Employees(6}",

"LastName": "Smith"

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 64 of 97

b

{
"FirstName": "Suzanne",
"LastName": "Brown"

]
}

If the nested collection is represented as a delta annotation on the navigation property, then the collection
contains members to be added or changed and MAY include deleted entities for entities that are no
longer part of the collection, using the delta payload format. If the deleted entity specifies a reason as
deleted, then the entity is both removed from the collection and deleted, otherwise it is removed from
the collection and only deleted if the relationship is contained. Non-key properties of the deleted entity are
ignored. Nested collections MUST NOT contain added or deleted links. If the request contains nested
delta collections, then the PATCH verb must be specified.

If a nested entity has the same id or key fields as an existing entity, the existing entity is updated
according to the semantics of the PUT or PATCH request. Nested entities that have no id or key fields, or
for which the id or key fields do not match existing entities, are treated as inserts. If the nested collection
does not represent a containment relationship and has no navigation property binding, then such entities
MUST include a context URL specifying the entity set in which the new entity is to be created. If any
nested entities contain both id and key fields, they MUST identify the same entity, or the request is
invalid.

Example 79: using the JSON format, a 4.01 PATCH request can specify a nested delta representation to:
e delete employee 3 and remove link to it
e remove the link to employee 4 and do not delete it
e add alink to employee 5
e change the last name of employee 6 and link to it if necessary

e add a new employee named “Suzanne Brown” and link to it

{
"Qtype": "#Northwind.Manager",
"FirstName": "Patricia",
"DirectReports@delta”: [
{
"@removed": {
"reason": "deleted"
b
"@id": "Employees (3)"
b
{

"@removed": {
"reason": "changed"

}y

"@id": "Employees (4)"

by

"@id": "Employees (5)"
bo
{

"@id": "Employees (6)",
"LastName": "Smith"

by

{
"FirstName": "Suzanne",
"LastName": "Brown"

}

]
}
odata-v4.01-os-partl-protocol 23 April 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 65 of 97

Clients MAY associate an id with individual nested entities in the request by using the Core.ContentID
term defined in [OData-VocCore]. Services that respond with 200 OK SHOULD annotate the entities in
the response using the same Core.ContentID value as specified in the request. Services SHOULD
advertise support for deep updates, including support for returning the Core.ContentID, through the
Capabilities.DeepUpdateSupport term, defined in [OData-VocCap].

The continue-on-error preference is not supported for deep update operations.
On failure, the service MUST NOT apply any of the changes specified in the request.

11.4.4 Upsert an Entity

An upsert occurs when the client sends an update request to a valid URL that identifies a single entity
that does not yet exist. In this case the service MUST handle the request as a create entity request or fail
the request altogether.

Upserts are not supported against media entities, single-valued non-containment navigation properties, or
entities whose keys values are generated by the service. Services MUST fail an update request to a URL
that would identify such an entity and the entity does not yet exist.

Singleton entities can be upserted if they are nullable. Services supporting this SHOULD advertise it by
annotating the singleton with the term Capabilities.UpdateRestrictions (nested property
Upsertable with value true) defined in [OData-VocCap].

Key and other non-updatable properties, as well as dependent properties that are not tied to key
properties of the principal entity, MUST be ignored by the service in processing the Upsert request.

To ensure that an update request is not treated as an insert, the client MAY specify an If-Match header
in the update request. The service MUST NOT treat an update request containing an If-Match header
as an insert.

A PUT or PATCH request MUST NOT be treated as an update if an If-None-Match header is specified
with a value of *.

11.4.5 Delete an Entity

To delete an individual entity, the client makes a DELETE request to a URL that identifies the entity.
Services MAY restrict deletes only to requests addressing the edit URL of the entity.

The request body SHOULD be empty. Singleton entities can be deleted if they are nullable. Services
supporting this SHOULD advertise it by annotating the singleton with the term
Capabilities.DeleteRestrictions (nested property Deletable with value true) defined in
[OData-VocCap].

On successful completion of the delete, the response MUST be 204 No Content and contain an empty
body.

Services MUST implicitly remove relations to and from an entity when deleting it; clients need not delete
the relations explicitly.

Services MAY implicitly delete or modify related entities if required by integrity constraints. If integrity
constraints are declared in Smetadata using a ReferentialConstraint element, services MUST
modify affected related entities according to the declared integrity constraints, e.g. by deleting dependent
entities, or setting dependent properties to null or their default value.

One such integrity constraint results from using a navigation property in a key definition of an entity type.
If the related “key” entity is deleted, the dependent entity is also deleted.
11.4.6 Modifying Relationships between Entities

Relationships between entities are represented by navigation properties as described in Data Model. URL
conventions for navigation properties are described in [OData-URL].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 66 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#DeepUpdateSupport

11.4.6.1 Add a Reference to a Collection-Valued Navigation Property

A successful POST request to a navigation property's references collection adds a relationship to an
existing entity. The request body MUST contain a single entity reference that identifies the entity to be
added. See the appropriate format document for details.

On successful completion, the response MUST be 204 No Content and contain an empty body.
Note that if the two entities are already related prior to the request, the request is completed successfully.

11.4.6.2 Remove a Reference to an Entity
A successful DELETE request to the URL that represents a reference to a related entity removes the
relationship to that entity.

In OData 4.0, the entity reference to be removed within a collection-valued navigation property is the URL
that represents the collection of related references, with the reference to be removed identified by the $id
guery option. OData 4.01 services additionally support using the URL that represents the reference of the
collection member to be removed, identified by key, as described in [OData-URL].

For single-valued navigation properties, the $id query option MUST NOT be specified.
The DELETE request MUST NOT violate any integrity constraints in the data model.
On successful completion, the response MUST be 204 No Content and contain an empty body.

11.4.6.3 Change the Reference in a Single-Valued Navigation Property

A successful PUT request to a single-valued navigation property’s reference resource changes the related
entity. The request body MUST contain a single entity reference that identifies the existing entity to be
related. See the appropriate format document for details.

On successful completion, the response MUST be 204 No Content and contain an empty body.

Alternatively, a relationship MAY be updated as part of an update to the source entity by including the
required binding information for the new target entity. This binding information is format-specific, see
[OData-JSON] for details.

If the single-valued navigation property is used in the key definition of an entity type, it cannot be changed
and the request MUST fail with 405 Method Not Allowed or an other appropriate error.

11.4.6.4 Replace all References in a Collection-valued Navigation Property

A successful PUT request to a collection-valued navigation property’s reference resource replaces the set
of related entities. The request body MUST contain a collection of entity references in the same format as
returned by a GET request to the navigation property’s reference resource.

A successful DELETE request to a collection-valued navigation property’s reference resource removes all
related references from the collection.

11.4.7 Managing Media Entities

A media entity MUST have a source URL that can be used to read the media stream, and MAY have a
media edit URL that can be used to write to the media stream.

Because a media entity has both a media stream and standard entity properties special handling is
required.

11.4.7.1 Create a Media Entity

A POST request to a media entity's entity set creates a new media entity. The request body MUST contain
the media value (for example, the photograph) whose media type MUST be specified in a Content-
Type header. The request body is always interpreted as the media value, even if it has the media type of

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 67 of 97

an OData format supported by the service. It is not possible to set the structural properties of the media
entity when creating the media entity.

Upon successful completion, the response MUST contain Location header that contains the edit URL of
the created media entity.

Upon successful completion the service responds with either 201 Created, or 204 No Content if the
request included a Prefer header with a value of return=minimal.

11.4.7.2 Update a Media Entity Stream

A successful PUT request to the media edit URL of a media entity changes the media stream of the entity.

If the entity includes an ETag value for the media stream, the client MUST include an If£-Match header
with the ETag value.

The request body MUST contain the new media value for the entity whose media type MUST be specified
in a Content-Type header.

On success, the service MUST respond with either 204 No Content and an empty body, or 200 OK if
the client specified the preference return=representation, in which case the response body MUST
contain the updated media entity.

11.4.7.3 Delete a Media Entity

A successful DELETE request to the entity's edit URL or to the edit URL of its media stream deletes the
media entity as described in Delete an Entity.

Deleting a media entity also deletes the media associated with the entity.

11.4.8 Managing Stream Properties

An entity may have one or more stream properties. Stream properties are properties of type
Edm.Stream.

The values for stream properties do not usually appear in the entity payload. Instead, the values are
generally read or written through URLSs.

11.4.8.1 Update Stream Values

A successful PUT request to the edit URL of a stream property changes the media stream associated with
that property.

If the stream metadata includes an ETag value, the client SHOULD include an If-Match header with the
ETag value.

The request body MUST contain the new media value for the stream whose media type MUST be
specified in a Content-Type header. It may have a Content-Length of zero to set the stream data to
empty.

Stream properties MAY specify a list of acceptable media types using an annotation with term
Core.AcceptableMediaTypes, see [OData-VocCore].

On success, the service MUST respond with either 204 No Content and an empty body, or 200 OK if
the client specified the preference return=representation, in which case the response body MUST
contain the updated media value for the stream.

Clients MAY change the association between a stream property and a media stream by modifying the edit
URL or read URL of the stream property. Services supporting this SHOULD advertise it by annotating the

stream property with the term Capabilities.MediaLocationUpdateSupported defined in [OData-

VocCapl].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 68 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#AcceptableMediaTypes

11.4.8.2 Delete Stream Values

A successful DELETE request to the edit URL of a stream property attempts to set the property to null and
results in an error if the property is non-nullable.

Attempting to request a stream property whose value is null results in 204 No Content.

11.4.9 Managing Values and Properties Directly

Values and properties can be explicitly addressed with URLs. The edit URL of a property is the edit URL
of the entity appended with the path segment(s) specifying the individual property. The edit URL allows
properties to be individually modified. See [OData-URL] for details on addressing individual properties.

11.4.9.1 Update a Primitive Property

A successful PUT request to the edit URL for a primitive property updates the value of the property. The
message body MUST contain the new value, formatted as a single property according to the specified
format.

A successful PUT request to the edit URL for the raw value of a primitive property updates the property
with the raw value specified in the payload. The payload MUST be formatted as an appropriate content
type for the raw value of the property.

The same rules apply whether this is a regular property or a dynamic property.

Upon successful completion the service responds with either 200 0K or 204 No Content. The client
may request that the response SHOULD include a body by specifying a Prefer header with a value of
return=representation.

Services MUST return an error if the property is not updatable.

11.4.9.2 Set a Value to Null
A successful DELETE request to the edit URL for a structural property, or to the edit URL of the raw value
of a primitive property, sets the property to null. The request body is ignored and should be empty.

A DELETE request to a non-nullable value MUST fail and the service respond with 400 Bad Request or
other appropriate error.

The same rules apply whether the target is the value of a regular property or the value of a dynamic
property. A missing dynamic property is defined to be the same as a dynamic property with value null.
All dynamic properties are nullable.

On success, the service MUST respond with 204 No Content and an empty body.
Services MUST return an error if the property is not updatable.
Updating a primitive property or a complex property with a null value also sets the property to null.

11.4.9.3 Update a Complex Property

A successful PATCH request to the edit URL for a complex typed property updates that property. The
request body MUST contain a single valid representation for the target complex type.

The service MUST directly modify only those properties of the complex type specified in the payload of
the PATCH request.

The service MAY additionally support clients sending a PUT request to a URL that specifies a complex
type. In this case, the service MUST replace the entire complex property with the values specified in the
request body and set all unspecified properties to their default value.

Upon successful completion the service responds with either 200 OK or 204 No Content. The client
may request that the response SHOULD include a body by specifying a Prefer header with a value of
return=representation.

Services MUST return an error if the property is not updatable.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 69 of 97

11.4.9.4 Update a Collection Property

A successful PUT request to the edit URL of a collection property updates that collection. The message
body MUST contain the desired new value, formatted as a collection property according to the specified
format.

The service MUST replace the entire value with the value supplied in the request body.

A successful POST request to the edit URL of a collection property adds an item to the collection. The
body of the request MUST be a single item to be added to the collection. If the collection is ordered, the
item is added to the end of the collection, and $index MAY be used to specify a zero-based ordinal
position to insert the new value, with a negative value indicating an ordinal position from the end of the
collection.

A successful DELETE request to the edit URL of a collection property deletes all items in that collection.
Since collection members have no individual identity, PATCH is not supported for collection properties.

Upon successful completion the service responds with either 200 0K or 204 No Content. The client
may request that the response SHOULD include a body by specifying a Prefer header with a value of
return=representation.

Services MUST return an error if the property is not updatable.

11.4.10 Managing Members of an Ordered Collection

Collections annotated with the Core.Ordered term (see [OData-VocCore]) have a stable order.
Members of an ordered collection of primitive and complex types can be individually updated or deleted
by invoking an update operation against the URL of the collection appended by a segment containing the
zero-based ordinal of the item within the collection. A negative ordinal number indexes from the end of
the collection, with -1 representing the last item in the collection.

Entities can be updated using their edit URL and SHOULD NOT be addressed using an index.

11.4.11 Positional Inserts

Collections of entity, complex, or primitive types annotated with the Core.PositionalInsert term
(see [OData-VocCore]) support inserting items at a specific location via POST requests to the collection
URL using the $index system query option. The value of the $index system query option is the zero-
based ordinal position where the item is to be inserted. The ordinal positions of items within the collection
greater than or equal to the inserted position are increased by one. A negative ordinal number indexes
from the end of the collection, with -1 representing an insert as the last item in the collection.

Example 80: Insert a new email address at the second position

POST /service/Customers ('ALFKI') /EmailAddresses?$index=1
Content-Type: application/json

{

"value": "alfred@futterkiste.de"

}

11.4.12 Update a Collection of Entities

Collections of entities can be updated by submitting a PATCH request to the resource path of the collection.
The body of the request MUST be a delta payload, and the resource path of the collection MUST NOT
contain type cast or filter segments, and MUST NOT contain any system query options that affect the shape
of the result.

Added/changed entities are applied as upserts, and deleted entities as deletions. Non-key properties of
deleted entities are ignored. The top-level collection may include added and deleted links, and related
entities represented inline are updated according to the rules for treating related entities when updating
an entity.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 70 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Ordered
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#PositionalInsert

Clients MAY associate an id with individual nested entities in the request by using the Core.ContentID
term defined in [OData-VocCore]. Services that respond with 200 OK SHOULD annotate the entities in
the response using the same Core.ContentID value as specified in the request.

Services SHOULD advertise support for updating a collection using a delta payload through the
DeltaUpdateSupported property of the Capabilities.UpdateRestrictions term, and SHOULD
advertise support for returning the Core.ContentID through the ContentIDSupported property of
the Capabilities.DeepUpdateSupport term, both defined in [OData-VocCap].

The response, if requested, is a delta payload, in the same structure and order as the request payload,
representing the applied changes.

If the continue-on-error preference has been specified and any errors occur in processing the
changes, then a delta response MUST be returned regardless of the return preference and MUST
contain at least the failed changes. The service represents failed changes in the delta response as
follows:

o Failed deletes in the request MUST be represented in the response as either entities or entity
references, annotated with term Core.DataModificationException, see [OData-VocCore].
If the deleted entity specified a reason of deleted, the value of failedOperation MUST be
delete, otherwise unlink.

e Failed inserts within the request MUST be represented in the response as deleted entities
annotated with term Core.DataModificationException with a failedOperation value of
insert.

e Failed updates within the request SHOULD be annotated in the response with term
Core.DataModificationException with a failedOperation value of update.

e Failed added links within the request MUST represented in the response as deleted links
annotated with term Core.DataModificationException with a failedOperation value of
link.

e Failed deleted links within the request MUST represented in the response as added links
annotated with term Core.DataModificationException with a failedOperation value of
unlink.

e Collections within the request MUST be represented in the response as a collection with the
current values and membership of the collection as it exists in the service after processing the
request.

If an individual change fails due to a failed dependency, it MUST be annotated with term
Core.DataModificationException and SHOULD specify a responseCode of 424 (Failed
Dependency).

Alternatively, the verb PUT can be used, in which case the request body MUST be the representation of a
collection of entities. In this case all entities provided in the request are applied as upserts, and any
entities not provided in the request are deleted. In this case, if the continue-on-error preference has
been specified, and the request returns a success response code, then a response MUST be returned
regardless of the return preference, and MUST contain the full membership and values of the collection
as it exists in the service.

If the continue-on-error preference has not been specified, and the service is unable to apply all of
the changes in the request, then it MUST return an error response and MUST NOT apply any of the
changes specified in the request payload.

11.4.13 Update Members of a Collection

Members of a collection can be updated by submitting a PATCH request to the URL constructed by
appending /$each to the resource path of the collection. The additional path segment expresses that the
request body describes an update to each member of the collection, not an update to the collection itself.

The resource path of the collection MAY contain type-cast or filter segments to subset the collection, see
[OData-URL].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 71 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#UpdateRestrictionsType
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ContentID
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#DeepUpdateSupportType

For primitive-typed collections the body of the request MUST be a primitive value. Each member of the
potentially filtered collection is updated to the specified primitive value.

For collections of structured type, the body of the request MUST be a full or partial representation of an
instance of the collection’s structured type. Each member of the potentially filtered collection is updated
using PATCH semantics. Structured types MAY include nested collections or delta collections, in which

case the semantics described in Update a Collection of Entities applies.

Example 81: change the color of all beige-brown products

PATCH /service/Products/$filter (@bar)/Seach?@bar=Color eq 'beige-brown'
Content-Type: application/json

{

"Color": "taupe"

}

The response, if requested, is a collection payload containing the updated representation of each
member identified by the request. If the update payload includes nested collections or nested delta
collections, then they MUST be included in the response, as described in Update a Collection of Entities.

Clients should note that requesting a response may be expensive for services that could otherwise
efficiently apply updates to a (possibly filtered) collection.

If the continue-on-error preference has been specified, the service MAY continue processing
updates after a failure. In this case, the service MUST return a response containing at least the members
of the collection that failed to update, which MUST be annotated with term
Core.DataModificationException with a failedOperation value of update.

If the continue-on-error preference has not been specified, and the service is unable to update all of
the members identified by the request, then it MUST return an error response and MUST NOT apply any
updates.

11.4.14 Delete Members of a Collection

Members of a collection can be deleted by submitting a DELETE request to the URL constructed by
appending /seach to the resource path of the collection. The additional path segment expresses that the
collection itself is not deleted.

The request resource path of the collection MAY contain type-cast or filter segments to subset the
collection.

Example 82: delete all products older than 3

DELETE /service/Products/Sfilter (Age gt 3)/Seach

If the path identifies a collection of entities and if the service returns a representation, then the response
is a delta response containing a representation of a deleted entity for each deleted member.

If the collection is a collection of entities, then the client MAY specify the continue-on-error
preference, in which case the service MAY continue processing deletes after a failure. In this case, the
service MUST return a response containing at least an entity or entity reference for each entity identified
by the request that failed to delete, which MUST be annotated with term
Core.DataModificationException with a failedOperation value of delete.

Clients should note that requesting a response may be expensive for services that could otherwise
efficiently apply deletes to a (possibly filtered) collection.

If the continue-on-error preference has not been specified, and the service is unable to delete all of
the entities identified by the request, then it MUST return an error response and MUST NOT apply any
changes.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 72 of 97

11.5 Operations

Custom operations (Actions and Functions) allow encapsulating logic for modifying or requesting data
that goes beyond simple CRUD described in the preceding sections of this chapter. See Action,
ActionImport, Function, and FunctionImport in [OData-CSDLJSON] or [OData-CSDLXML].

11.5.1 Binding an Operation to a Resource

Actions and Functions MAY be bound to any type or collection, similar to defining a method in a class in
object-oriented programming. The first parameter of a bound operation is the binding parameter.

The namespace- or alias-qualified name of a bound operation may be appended to any URL that
identifies a resource whose type matches, or is derived from, the type of the binding parameter. The
resource identified by that URL is used as the binding parameter value. Only aliases defined in the
metadata document of the service can be used in URLs.

Example 83: the function MostRecentOrder can be bound to any URL that identifies a SampleModel.Customer

<Function Name="MostRecentOrder" IsBound="true">
<Parameter Name="customer" Type="SampleModel.Customer" />
<ReturnType Type="SampleModel.Order" />

</Function>

Example 84: invoke the MostRecentOrder function with the value of the binding parameter customer being the
entity identified by http://host/service/Customers (6)

GET http://host/service/Customers (6) /SampleModel .MostRecentOrder ()

Example 85: the function Comparison can be bound to any URL that identifies a collection of entities

<Function Name="Comparison" IsBound="true">
<Parameter Name="in" Type="Collection (Edm.EntityType)" />
<ReturnType Type="Diff.Overview" />

</Function>

Example 86: invoke the Comparison function on the set of red products

GET http://host/service/Products/S$filter (Color eq 'Red')/Diff.Comparison ()

11.5.2 Applying an Action to Members of a Collection

A bound operation with a single-valued binding parameter can be applied to each member of a collection
by appending the path segment /$each to the resource path of the collection, followed by a forward
slash and the namespace- or alias-qualified name of the bound operation. In this case the type of the
collection members MUST match or be derived from the type of the binding parameter.

The resource path of the collection MAY contain type-cast or filter segments to subset the collection.

The response is a collection with members that are instances of the result type of the bound operation. If
the bound operation returns a collection, the response is a collection of collections.

Example 87: invoke the MostRecentOrder function on each entity in the entity set Customers

GET http://host/service/Customers/$Seach/SampleModel .MostRecentOrder ()

The client MAY specify the continue-on-error preference, in which case the service MAY continue
processing actions after a failure. In this case, the service MUST, regardless of the return preference,
return a response containing at least the members identified by the request for which the action failed.
Such members MUST be annotated with term Core.DataModificationException with a
failedOperation value of invoke.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 73 of 97

If the continue-on-error preference has not been specified, and the service is unable to invoke the
action against all of the entities identified by the request, then it MUST return an error response and
MUST NOT apply the action to any of the members of the collection.

11.5.3 Advertising Available Operations within a Payload

Services MAY return actions and/or functions bound to a particular entity or entity collection as part of the
representation of the entity or entity collection within the payload. The representation of an action or
function depends on the format.

Example 88: given a GET request to http://host/service/Customers ('ALFKI '), the service might respond
with a Customer that includes the SampleEntities.MostRecentOrder function bound to the entity

{

"Q@context": ...,
"CustomerID": "ALFKI",
"CompanyName": "Alfreds Futterkiste",
"#SampleEntities.MostRecentOrder": {
"title": "Most Recent Order",
"target": "Customers ('ALFKI')/SampleEntities.MostRecentOrder ()"

by

}

An efficient format that assumes client knowledge of metadata may omit actions and functions from the
payload whose target URL can be computed via metadata following standard conventions defined in
[OData-URL].

Services can advertise that a function or action is not available for a particular instance by setting its
value to null.

Example 89: the SampleEntities.MostRecentOrder function is not available for customer ‘ALFKI'

{

"Q@context": ...,
"CustomerID": "ALFKI",
"CompanyName": "Alfreds Futterkiste",

"#SampleEntities.MostRecentOrder": null,

11.5.4 Functions

Functions are operations exposed by an OData service that MUST return data and MUST have no
observable side effects.

11.5.4.1 Invoking a Function

To invoke a function bound to a resource, the client issues a GET request to a function URL. A function
URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified function name to a URL that identifies a resource whose type is the same
as, or derived from, the type of the binding parameter of the function. The value for the binding parameter
is the value of the resource identified by the URL prior to appending the function name, and additional
parameter values are specified using inline parameter syntax. If the function URL is obtained from a
previously returned entity representation, parameter aliases that are identical to the parameter name
preceded by an at (@) sign MUST be used. Clients MUST check if the obtained URL already contains a
query part and appropriately precede the parameters either with an ampersand (&) or a question mark

().
Services MAY additionally support invoking functions using the unqualified function name by defining one
or more default namespaces through the Core.DefaultNamespace term defined in [OData-VocCore].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 74 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace

Functions can be used within sfilter or Sorderby system query options. Such functions can be
bound to a resource, as described above, or called directly by specifying the namespace- (or alias-)
gualified function name. Parameter values for functions within $filter or Sorderby are specified
according to the inline parameter syntax.

To invoke a function through a function import the client issues a GET request to a URL identifying the
function import and passing parameter values using inline parameter syntax. The canonical URL for a
function import is the service root, followed by the name of the function import. Services MAY support
omitting the parentheses when invoking a function import with no parameters, but for maximum
interoperability MUST also support invoking the function import with empty parentheses.

If the function is composable, additional path segments may be appended to the URL that identifies the
composable function (or function import) as appropriate for the type returned by the function (or function
import). The last path segment determines the system query options and HTTP verbs that can be used
with this this URL, e.g. if the last path segment is a multi-valued navigation property, a POST request may
be used to create a new entity in the identified collection.

Example 90: add a new item to the list of items of the shopping cart returned by the composable MyShoppingCart
function import

POST http://host/service/MyShoppingCart () /Items

Parameter values passed to functions MUST be specified either as a URL literal (for primitive values) or
as a JSON formatted OData object (for complex values, or collections of primitive or complex values).
Entity typed values are passed as JSON formatted entities that MAY include a subset of the properties, or
just the entity reference, as appropriate to the function.

If a collection-valued function has no result for a given parameter value combination, the response is the
format-specific representation of an empty collection. If a single-valued function with a nullable return-type
has no result, the service returns 204 No Content.

If a single-valued function with a non-nullable return type has no result, the service returns 4xx. For
functions that return a single entity 404 Not Found is the appropriate response code.

For a composable function the processing is stopped when the function result requires a 4xx response,
and continues otherwise.

Function imports preceded by the Sroot literal MAY be used in the Sfilter or Sorderby system query
options, see [OData-URL].

11.5.4.1.1 Inline Parameter Syntax

Parameter values are specified inline by appending a comma-separated list of parameter values,
enclosed by parenthesis to the function name.

Each parameter value is represented as a name/value pair in the format Name=Value, where Name is the
name of the parameter to the function and value is the parameter value.

Example 91: invoke a Sales.EmployeesByManager function which takes a single ManagerID parameter via the
function import EmployeesByManager

GET http://host/service/EmployeesByManager (ManagerID=3)

Example 92: return all Customers whose City property returns "Western" when passed to the
Sales.SalesRegion function

GET http://host/service/Customers?
Sfilter=Sales.SalesRegion (City=$it/City) eq 'Western'

A parameter alias can be used in place of an inline parameter value. The value for the alias is specified
as a separate query option using the name of the parameter alias.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 75 of 97

Example 93: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager,
passing 3 for the ManagerID parameter

GET http://host/service/EmployeesByManager (ManagerID=@pl) ?@pl=3

Services MAY in addition allow implicit parameter aliases for function imports and for functions that are
the last path segment of the URL. An implicit parameter alias is the parameter name, optionally preceded
by an at (@) sign. When using implicit parameter aliases, parentheses MUST NOT be appended to the
function (import) name. The value for each parameter MUST be specified as a separate query option with
the name of the parameter alias. If a parameter name is identical to a system query option name (without
the optional s prefix), the parameter name MUST be prefixed with an at (@) sign.

Example 94: invoke a Sales.EmployeesByManager function via the function import EmployeesByManager,
passing 3 for the ManagerID parameter using the implicit parameter alias

GET http://host/service/EmployeesByManager?ManagerID=3

Non-binding parameters annotated with the term Core.OptionalParameter defined in [OData-
VocCore] MAY be omitted. If it is annotated and the annotation specifies a DefaultValue, the omitted
parameter is interpreted as having that default value. If omitted and the annotation does not specify a default
value, the service is free on how to interpret the omitted parameter.

11.5.4.2 Function overload resolution

The same function name may be used multiple times within a schema, each with a different set of
parameters. For unbound overloads the combination of the function name and the unordered set of
parameter names MUST identify a particular function overload. For bound overloads the combination of
the function name, the binding parameter type, and the unordered set of names of the non-binding
parameters MUST identify a particular function overload.

All unbound overloads MUST have the same return type. Also, all bound overloads with a given binding
parameter type MUST have the same return type.

If the function is bound and the binding parameter type is part of an inheritance hierarchy, the function
overload is selected based on the type of the URL segment preceding the function name. A type-cast
segment can be used to select a function defined on a particular type in the hierarchy, see [OData-URL].

Non-binding parameters MAY be marked as optional by annotating them with the term
Core.OptionalParameter defined in [OData-VocCore]. All parameters marked as optional MUST
come after any parameters not marked as optional.

A function overload is selected if

o The set of specified parameters exactly matches a function overload, or else
o The set of specified parameters matches a subset of parameters that includes all non-optional
parameters of exactly one function overload.

Services SHOULD avoid ambiguity, i.e. the combination of the function name, the unordered set of non-
optional non-binding parameter names, plus the binding parameter type for bound overloads SHOULD
identify a particular function overload. If there is ambiguity, then services MAY return 400 Bad Request
with an error response body stating that the request was ambiguous.

11.5.5 Actions

Actions are operations exposed by an OData service that MAY have side effects when invoked. Actions
MAY return data but MUST NOT be further composed with additional path segments.

11.5.5.1 Invoking an Action

To invoke an action bound to a resource, the client issues a POST request to an action URL. An action
URL may be obtained from a previously returned entity representation or constructed by appending the
namespace- or alias-qualified action name to a URL that identifies a resource whose type is the same as,
or derives from, the type of the binding parameter of the action. The value for the binding parameter is the

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 76 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptionalParameter
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptionalParameter

resource identified by the URL preceding the action name, and only the non-binding parameter values are
passed in the request body according to the particular format.

Services MAY additionally support invoking actions using the unqualified action name by defining one or
more default namespaces through the Core.DefaultNamespace term defined in [OData-VocCore].

To invoke an action through an action import, the client issues a POST request to a URL identifying the
action import. The canonical URL for an action import is the service root, followed by the name of the
action import. When invoking an action through an action import all parameter values MUST be passed in
the request body according to the particular format.

Non-binding parameters that are nullable or annotated with the term Core.OptionalParameter defined
in [OData-VocCore] MAY be omitted from the request body. If an omitted parameter is not annotated (and
thus nullable), it MUST be interpreted as having the null value. If it is annotated and the annotation
specifies a DefaultValue, the omitted parameter is interpreted as having that default value. If omitted
and the annotation does not specify a default value, the service is free on how to interpret the omitted
parameter. Note: a nullable non-binding parameter is equivalent to being annotated as optional with a
default value of null.

4.01 services MUST support invoking actions with no non-binding parameters and parameterless action
imports both without a request body and with a request body representing no parameters, according to
the particular format. Interoperable clients SHOULD always include a request body, even when invoking
actions with no non-binding parameters and parameterless action imports.

If the action returns results, the client SHOULD use content type negotiation to request the results in the
desired format, otherwise the default content type will be used.

The client can request whether any results from the action be returned using the return Prefer
header.

Actions that create and return a single entity follow the rules for entity creation and return a Location
header that contains the edit URL or read URL of the created entity.

Actions without a return type respond with 204 No Content On success.

To request processing of the action only if the binding parameter value, an entity or collection of entities,
is unmodified, the client includes the T f-Match header with the latest known ETag value for the entity or
collection of entities. The ETag value for a collection as a whole is transported in the ETag header of a
collection response.

Example 95: invoke the SampleEntities.CreateOrder action using /Customers ('ALFKI')as the customer

(or binding parameter). The values 2 for the quantity parameter and BLACKFRIDAY for the discountCode
parameter are passed in the body of the request. Invoke the action only if the customer’s ETag still matches.

POST http://host/service/Customers ('ALFKI') /SampleEntities.CreateOrder
If-Match: W/"MjAxOSOwMy0yMVQxMzowNVo=""

{
"items": [
{ "product": 4001, "quantity": 2 },
{ "product": 7062, "quantity": 1 }
1,
"discountCode": "BLACKFRIDAY"

11.5.5.2 Action Overload Resolution

The same action name may be used multiple times within a schema provided there is at most one
unbound overload, and each bound overload specifies a different binding parameter type.

If the action is bound and the binding parameter type is part of an inheritance hierarchy, the action
overload is selected based on the type of the URL segment preceding the action name. A type-cast
segment can be used to select an action defined on a particular type in the hierarchy, see [OData-URL].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 77 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#OptionalParameter

11.6 Asynchronous Requests

A Prefer header with a respond-async preference allows clients to request that the service process a
Data Service Request asynchronously.

If the client has specified respond-async in the request, the service MAY process the request
asynchronously and return a 202 Accepted response. A service MUST NOT reply to a Data Service
Request with 202 Accepted if the request has not included the respond-async preference.

Responses that return 202 Accepted MUST include a Location header pointing to a status monitor
resource that represents the current state of the asynchronous processing in addition to an optional

Retry-After header indicating the time, in seconds, the client should wait before querying the service
for status. Services MAY include a response body, for example, to provide additional status information.

A GET request to the status monitor resource again returns 202 Accepted response if the
asynchronous processing has not finished. This response MUST again include a Location header and
MAY include a Retry-After header to be used for a subsequent request. The Location header and
optional Retry-After header may or may not contain the same values as returned by the previous
request.

A GET request to the status monitor resource returns 200 OK once the asynchronous processing has
completed. For OData 4.01 and greater responses, or OData 4.0 requests that include an Accept
header that does not specify application/http, the response MUST include the AsyncResult
response header. Any other headers, along with the response body, represent the result of the completed
asynchronous operation. If the GET request to the status monitor includes an OData-MaxVersion
header with a value of 4.0 and no Accept header, or an Accept header that includes
application/http, then the body of the final 200 OK response MUST be represented as an HTTP
message, as described in [RFC7230], which is the full HTTP response to the completed asynchronous
operation.

A DELETE request sent to the status monitor resource requests that the asynchronous processing be
canceled. A 200 OKora204 No Content response indicates that the asynchronous processing has
been successfully canceled. A client can request that the DELETE should be executed asynchronously. A
202 Accepted response indicates that the cancellation is being processed asynchronously; the client
can use the returned Location header (which MUST be different from the status monitor resource of the
initial request) to query for the status of the cancellation. If a delete request is not supported by the
service, the service returns 405 Method Not Allowed.

After a successful DELETE request against the status monitor resource, any subsequent GET requests for
the same status monitor resource returns 404 Not Found.

If an asynchronous request is cancelled for reasons other than the consumers issuing a DELETE request

against the status monitor resource, a GET request to the status monitor resource returns 200 OK with a

response body containing a single HTTP response with a status code in the 5xx Server Error range

indicating that the operation was cancelled.

The service MUST ensure that no observable change has occurred as a result of a canceled request.

If the client waits too long to request the result of the asynchronous processing, the service responds with
a410 Gone 0or 404 Not Found.

The status monitor resource URL MUST differ from any other resource URL.

11.7 Batch Requests

Batch requests allow grouping multiple individual requests into a single HTTP request payload. An
individual request in the context of a batch request is a Metadata Request, Data Request, Data
Modification Request, Action invocation request, or Function invocation request.

Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service, located
at the URL sbatch relative to the service root.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 78 of 97

Individual requests within a batch request are evaluated according to the same semantics used when the
request appears outside the context of a batch request.

A batch request is represented using either the multipart batch format defined in this document or the
JSON batch format defined in [OData-JSON].

11.7.1 Batch Request Headers

A batch request using the multipart batch format MUST contain a Content-Type header specifying a
content type of multipart/mixed and a boundary parameter as defined in [RFC2046].

Example 96: multipart batch request

POST /service/S$batch HTTP/1.1

Host: odata.org

OData-Version: 4.0

Content-Type: multipart/mixed; boundary=batch 36522ad7-fc75-4b56-8c71-
56071383e77b

<Multipart Batch request body>

A batch request using the JSON batch format MUST contain a Content-Type header specifying a
content type of application/json.

Example 97: JSON batch request

POST /service/$batch HTTP/1.1
Host: odata.org
OData-Version: 4.01
Content-Type: application/json

<JSON Batch request body>

Batch requests SHOULD contain the applicable Obata-Version header.

Batch requests SHOULD contain an Accept header specifying the desired batch response format, either
multipart/mixed or application/Json. If no Accept header is provided, services SHOULD
respond with the content type of the request.

If the set of request headers of a batch request are valid the service MUST returna 200 OK HTTP
response code to indicate that the batch request was accepted for processing, but the processing is yet to
be completed. The individual requests within the body of the batch request may subsequently fail or be
malformed; however, this enables batch implementations to stream the results.

If the service receives a batch request with an invalid set of headers it MUST return a 4xx response
code and perform no further processing of the batch request.

11.7.2 Request Dependencies

Requests within a batch may have dependencies on other requests according to the particular batch
format.

In the JSON format, requests may explicitly declare a dependency on other requests that must be
successfully processed before the current request. In addition, requests may be specified as part of an
atomicity group whose members MUST either all succeed, or all fail. If a request fails, then any
dependent requests within the JSON format return 424 Failed Dependency.

In the Multipart format, data modification requests or action invocation requests may be grouped as part
of an atomic change set. Operations outside the change set are executed sequentially, while operations
within the change set may be executed in any order.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 79 of 97

11.7.3 Identifying Individual Requests

Each individual request within a batch request MAY have a request identifier assigned. The request
identifier is case-sensitive, MUST be unique within the batch request, and MUST satisfy the rule
request-id in [OData-ABNF].

The representation of the request identifier is format-specific, as are the rules for which individual
requests require an identifier.

11.7.4 Referencing Returned Entities

Entities created by an insert request can be referenced in the request URL of subsequent requests by
using the request identifier prefixed with a $ character as the first segment of the request URL.

If the s-prefixed request identifier is identical to the name of a top-level system resource (Sbatch,
Scrossjoin, $all, Sentity, Sroot, $id, Smetadata, or other system resources defined according
to the OData-Version of the protocol specified in the request), then the reference to the top-level
system resource is used. This collision can be avoided by e.g. using only numeric request identifiers.

Services MAY also support referencing within request bodies, in which case they SHOULD advertise this
support by specifying the ReferencesInRequestBodiesSupported property in the
Capabilities.BatchSupport term applied to the entity container, see [OData-VocCap].

11.7.5 Referencing the ETag of an Entity

Services MAY support the use of an ETag returned from a previous operation in an If-Match or If-
None-Match header of a subsequent statement. Services SHOULD advertise this support by specifying
the EtagReferencesSupported property inthe Capabilities.BatchSupport annotation term
applied to the entity container, see [OData-VocCap].

The ETag for a previous operation can be referenced by using the request identifier prefixed with a s
character as the unquoted value of the Tf-Match or If-None-Match header.

11.7.6 Referencing Values from Response Bodies

Services MAY support using values from a response body in the query part of the URL or in the request
body of subsequent requests. Value references consist of a $ character, followed by the request identifier
of the preceding request, and optionally followed by a valid OData path.

If the s-prefixed request identifier is identical to the name of a predefined literal for query expressions
($it, Sroot, or other literals defined according to the OData-Version of the protocol specified in the
request), then the predefined literal is used. This collision can be avoided by e.g. using only numeric
request identifiers.

11.7.7 Multipart Batch Format

The multipart batch format is represented as a Multipart Media Type message [RFC2046], a standard
format allowing the representation of multiple parts, each of which may have a different content type.

11.7.7.1 Multipart Batch Request Body

The body of a multipart batch request is made up of a series of individual requests and change sets, each
represented as a distinct body part (i.e. preceded by a boundary delimiter line consisting of two dashes
and the value of the boundary parameter specified in the Content-Type header, and the last body part
followed by a closing boundary delimiter line consisting of two dashes, the boundary, and another two
dashes).

A body part representing an individual request MUST include a Content-Type header with value
application/http.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 80 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#BatchSupport
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#BatchSupport

The contents of a body part representing a change set MUST itself be a multipart document (see
[RFC2046]) with one body part for each operation in the change set. Each body part representing an
operation in the change set MUST specify a Content-1ID header with a request identifier that is unique
within the batch request.

A Content-Transfer-Encoding header with value binary may be included for historic reasons
although this header is not used by HTTP and only needed for transmission via E-Mail. Neither clients nor
services should rely on this header being present.

Preambles and epilogues in the multipart batch request body, as defined in [RFC2046], are valid but are
assigned no meaning and thus MUST be ignored by processors of multipart batch requests.

The request URL of individual requests within a batch request or change set can use one of the following
three formats:

¢ Absolute URI with schema, host, port, and absolute resource path.
Example 98:

GET https://host:1234/path/service/People (1) HTTP/1.1

e Absolute resource path and separate Host header

Example 99:

GET /path/service/People (1) HTTP/1.1
Host: myserver.mydomain.org:1234

¢ Resource path relative to the batch request URI.
Example 100:

GET People(l) HTTP/1.1

Services MUST support all three formats for URLs of individual requests.

URLs must be correctly percent-encoded. For relative URLSs this means that colons in the path part,
especially within key values, MUST be percent-encoded to avoid confusion with the scheme separator.
Colons within the query part, i.e. after the question mark character (?), need not be percent-encoded.

Each body part that represents a single request MUST NOT include:
e authentication orauthorization related HTTP headers
e Expect, From, Max-Forwards, Range, or TE headers

Processors of batch requests MAY choose to disallow additional HTTP constructs in HTTP requests
serialized within body parts. For example, a processor may choose to disallow chunked encoding to be
used by such HTTP requests.

Example 101: a batch request that contains the following individual requests in the order listed
1. A query request
2. A change set that contains the following requests:
e Insert entity (with Content-ID = 1)
e Update entity (with Content-ID = 2)
3. A second query request

Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <> brackets and
OData-Version headers are omitted.

Note also that the two empty lines after the Host header of the GET request are necessary: the first is part of the GET
request header; the second is the empty body of the GET request, followed by a CRLF according to [RFC2046].

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 81 of 97

POST /service/S$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed; boundary=batch 36522ad7-fc75-4b56-8c71-
56071383e77b

Content-Length: ###

--batch 36522ad7-£fc75-4b56-8c71-56071383e77b
Content-Type: application/http

GET /service/Customers ("ALFKI')
Host: host

--batch 36522ad7-£fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed; boundary=changeset 77162fcd-b8da-4lac-a9f8-
9357efbbd

-—changeset 77162fcd-b8da-4lac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 1

POST /service/Customers HTTP/1.1
Host: host

Content-Type: application/json
Content-Length: ###

<JSON representation of a new Customer>
-—changeset 77162fcd-b8da-4lac-a9f8-9357efbbd
Content-Type: application/http

Content-ID: 2

PATCH /service/Customers ('ALFKI') HTTP/1.1
Host: host

Content-Type: application/json

If-Match: xxxxx

Prefer: return=minimal

Content-Length: ##4#

<JSON representation of changes to Customer ALFKI>
-—changeset 77162fcd-b8da-41lac-a9f8-9357efbbd--
-—batch 36522ad7-£fc75-4b56-8c71-56071383e77b
Content-Type: application/http

GET /service/Products HTTP/1.1
Host: host

-—batch 36522ad7-£fc75-4b56-8c71-56071383e77b--

11.7.7.2 Referencing New Entities

Entities created by an Insert request can be referenced in the request URL of subsequent requests within
the same change set. Services MAY also support referencing across change sets, in which case they
SHOULD advertise this support by specifying the ReferencesAcrossChangeSetsSupported
property in the Capabilities.BatchSupport term applied to the entity container, see [OData-
VocCapl].

Example 102: a batch request that contains the following operations in the order listed:

A change set that contains the following requests:

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 82 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#BatchSupport

e Insert a new entity (with Content-ID = 1)

e Insert a second new entity (references request with Content-ID = 1)

POST /service/S$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed; boundary=batch 36522ad7-fc75-4b56-8c71-
56071383e77b

Content-Length: ###

--batch 36522ad7-£fc75-4b56-8c71-56071383e77b
Content-Type: multipart/mixed; boundary=changeset 77162fcd-b8da-4lac-a9f8-
9357efbbd

--changeset 77162fcd-b8da-4lac-a9f8-9357efbbd
Content-Type: application/http
Content-ID: 1

POST /service/Customers HTTP/1.1
Host: host

Content-Type: application/json
Content-Length: ###

<JSON representation of a new Customer entity>
-—changeset 77162fcd-b8da-4lac-a9£f8-9357efbbd
Content-Type: application/http

Content-ID: 2

POST $1/0Orders HITP/1.1

Host: host

Content-Type: application/json
Content-Length: ###

<JSON representation of a new Order>
-—changeset 77162fcd-b8da-41lac-a9£f8-9357efbbd--
--batch 36522ad7-£fc75-4b56-8c71-56071383e77b--

11.7.7.3 Referencing an ETag
Example 103: a batch request that contains the following operations in the order listed:
e Get an Employee (with Content-ID = 1)

e Update the salary only if the employee has not changed

POST /service/S$batch HTTP/1.1

Host: host

OData-Version: 4.0

Content-Type: multipart/mixed; boundary=batch 36522ad7-fc75-4b56-8c71-
56071383e77b

Content-Length: ###

-—batch 36522ad7-fc75-4b56-8c71-56071383e77b
Content-Type: application/http
Content-ID: 1

GET /service/Employees (0) HTTP/1.1
Host: host
Accept: application/json

--batch 36522ad7-£fc75-4b56-8c71-56071383e77b
Content-Type: application/http
Content-ID: 2

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 83 of 97

PATCH /service/Employees (0) HTTP/1.1
Host: host

Content-Type: application/json
Content-Length: ###

If-Match: $1

{
"Salary": 75000

}
--batch 36522ad7-£fc75-4b56-8c71-56071383e77b--

11.7.7.4 Processing a Multipart Batch Request

The service MUST process the individual requests and change sets within a multipart batch request in the
order received. Processing stops on the first error unless the continue-on-error preference is
specified with an explicit or implicit value of true.

All requests in a change set represent a single change unit so a service MUST successfully process and
apply all the requests in the change set or else apply none of them. It is up to the service implementation
to define rollback semantics to undo any requests within a change set that may have been applied before
another request in that same change set failed and thereby apply this all-or-nothing requirement. The
service MAY execute the requests within a change set in any order and MAY return the responses to the
individual requests in any order. If a request specifies a request identifier, the service MUST include the
Content-ID header with the request identifier in the corresponding response so clients can correlate
requests and responses.

11.7.7.5 Multipart Batch Response

A multipart response to a batch request MUST contain a Content-Type header with value
multipart/mixed.

The body of a multipart response to a multipart batch request MUST structurally match one-to-one with
the multipart batch request body, such that the same multipart message structure defined for requests is
used for responses. There are three exceptions to this rule:

¢ When arequest within a change set fails, the change set response is not represented using the
multipart/mixed media type. Instead, a single response, using the application/http
media type, is returned that applies to all requests in the change set and MUST be a valid OData
error response.

e When an error occurs processing a request and the continue-on-error preference is not
specified, or specified with an explicit value of false, processing of the batch is terminated and
the error response is the last part of the multipart response.

e Asynchronously processed batch requests can return interim results and end with a 202
Accepted as the last part of the multipart response. Therefore, the respond-async preference
MUST NOT be applied to individual requests within a batch if the batch response is a multipart
response.

The body of a multipart response to a JSON batch request contains one body part for each processed or
accepted request. The order of the body parts is insignificant as each body part MUST contain the
Content-ID header with the value of the id name/value pair of the corresponding request object.

A response to an operation in a batch MUST be formatted exactly as it would have appeared outside of a
batch as described in the corresponding subsections of chapter Data Service Requests. Relative URLs in
each individual response are relative to the request URL of the corresponding individual request. URLSs in
responses MUST NOT contain $-prefixed request identifiers.

Example 104: referencing the batch request example 101 above, assume all the requests except the final query
request succeed. In this case the response would be

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 84 of 97

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed; boundary=b 243234 25424 ef 892u748

--b 243234 25424 ef 892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Customer entity with key ALFKI>
--b 243234 25424 ef 892u748
Content-Type: multipart/mixed; boundary=cs 12u7hdkin252452345eknd 383673037

-—cs_12u7hdkin252452345eknd 383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/json

Location: http://host/service.svc/Customer ('POIUY')
Content-Length: ###

<JSON representation of the new Customer entity>

-—cs_12u7hdkin252452345eknd 383673037
Content-Type: application/http
Content-ID: 2

HTTP/1.1 204 No Content
Host: host

--cs_12u7hdkin252452345eknd 383673037--
--b 243234 25424 ef 892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: ###

<Error message>
--b 243234 25424 ef 892u748—

11.7.7.6 Asynchronous Batch Requests

Batch requests MAY be executed asynchronously by including the respond-async preference in the
Prefer header. If the service responds with a multipart batch response, it MUST ignore the respond-
async preference for individual requests within a batch.

After successful execution of the batch request the response to the batch request is returned in the body

of a response to an interrogation request against the status monitor resource URL (see Asynchronous
Requests).

A service MAY return interim results to an asynchronously executing batch. It does this by responding
with 200 OK to a GET request to the monitor resource and including a 202 Accepted response as the
last part of the multipart response. The client can use the monitor URL returned in this 202 Accepted
response to continue processing the batch response.

Since a change set is executed atomically, 202 Accepted MUST NOT be returned within a change set.
Example 105: referencing the example 101 above again, assume that

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 85 of 97

HTTP/1.1 202 Accepted
Location: http://service-root/async-monitor-0
Retry-After: ###

When interrogating the monitor URL only the first request in the batch has finished processing and all the remaining
requests are still being processed. Note that the actual multipart batch response itself is contained in an
application/http wrapper as it is a response to a status monitor resource:

HTTP/1.1 200 Ok
Content-Type: application/http

HTTP/1.1 200 Ok

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed; boundary=b 243234 25424 ef 892u748

--b 243234 25424 ef 892u748
Content-Type: application/http

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: ###

<JSON representation of the Customer entity with key ALFKI>
--b 243234 25424 ef 892u748
Content-Type: application/http

HTTP/1.1 202 Accepted

Location: http://service-root/async-monitor
Retry-After: ###

--b 243234 25424 ef 892u748--

After some time the client makes a second request using the returned monitor URL, not explicitly accepting
application/http. The batch is completely processed and the response is the final result.

HTTP/1.1 200 Ok

AsyncResult: 200

OData-Version: 4.0

Content-Length: ####

Content-Type: multipart/mixed; boundary=b 243234 25424 ef 892u748

--b 243234 25424 ef 892u748
Content-Type: multipart/mixed; boundary=cs 12u7hdkin252452345eknd 383673037

-—cs_12u7hdkin252452345eknd 383673037
Content-Type: application/http
Content-ID: 1

HTTP/1.1 201 Created

Content-Type: application/json

Location: http://host/service.svc/Customer ('POIUY')
Content-Length: ##4#

<JSON representation of a new Customer entity>
--cs_12u7hdkin252452345eknd 383673037
Content-Type: application/http

Content-ID: 2

HTTP/1.1 204 No Content
Host: host

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 86 of 97

--cs_12u7hdkin252452345eknd 383673037--
--b 243234 25424 ef 892u748
Content-Type: application/http

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: ###

<Error message>
--b 243234 25424 ef 892u748—

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 87 of 97

12 Security Considerations

This section is provided as a service to the application developers, information providers, and users of
OData version 4.0 giving some references to starting points for securing OData services as specified.
OData is a REST-full multi-format service that depends on other services and thus inherits both sides of
the coin, security enhancements and concerns alike from the latter.

For HTTP relevant security implications please cf. the relevant sections of [RFC7231] (9. Security
Considerations) and for the HTTP PATCH method [RFC5789] (5. Security Considerations) as starting
points.

12.1 Authentication

OData Services requiring authentication SHOULD consider supporting basic authentication as defined in
[RFC7617] over HTTPS for the highest level of interoperability with generic clients. They MAY support
other authentication methods.

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 88 of 97

13 Conformance

OData is designed as a set of conventions that can be layered on top of existing standards to provide
common representations for common functionality. Not all services will support all of the conventions
defined in the protocol; services choose those conventions defined in OData as the representation to
expose that functionality appropriate for their scenarios.

To aid in client/server interoperability, this specification defines multiple levels of conformance for an
OData Service, as well as the minimal requirements for an OData Client to be interoperable across OData
services.

13.1 OData 4.0 Service Conformance Levels

OData 4.0 defines three levels of conformance for an OData Service.

Note: The conformance levels are design to correspond to different service scenarios. For example, a
service that publishes data compliant with one or more of the OData defined formats may comply with the
OData 4.0 Minimal Conformance Level without supporting any additional functionality. A service that
offers more control over the data that the client retrieves may comply with the OData 4.0 Intermediate
Conformance Level. Services that conform to the OData 4.0 Advanced Conformance Level can expect to
interoperate with the most functionality against the broadest range of generic clients.

Services can advertise their level of conformance by annotating their entity container with the term
Capabilities.ConformanceLevel defined in [OData-VocCap].

Note: Services are encouraged to support as much additional functionality beyond their level of
conformance as is appropriate for their intended scenatrio.

13.1.1 OData 4.0 Minimal Conformance Level

In order to conform to the OData 4.0 Minimal conformance level, a service:

1. MUST publish a service document at the service root (section 11.1.1)

2. MUST return data according to the[OData-JSON] format

3. MUST use server-driven paging when returning partial results (section 11.2.6.7) and not use any
other mechanism

4. MUST return the appropriate OData-Version header (section 8.1.5)

5. MUST conform to the semantics the following headers, or fail the request

5.1. Accept (section 8.2.1)

5.2. OData-MaxVersion (section 8.2.7)

MUST follow OData guidelines for extensibility (section 6 and all subsections)

7. MUST successfully parse the request according to [OData-ABNF] for any supported system query

options and either follow the specification or return 501 Not Implemented for any unsupported

functionality (section 9.3.1)

MUST expose only data types defined in [OData-CSDLXML]

9. MUST NOT require clients to understand any metadata or instance annotations (section 6.4), custom
headers (section 6.5), or custom content (section 6.2) in the payload in order to correctly consume
the service

10. MUST NOT violate any OData update semantics (section 11.4 and all subsections)

11. MUST NOT violate any other OData-defined semantics

12. SHOULD support sexpand (section 11.2.5.2)

13. SHOULD publish metadata at Smetadata according to [OData-CSDLXML] and MAY publish
metadata according to [OData-CSDLJSON] (section 11.1.2)

14. MUST support prefixed variants of supported headers and preference values

15. MUST support enumeration and duration literals in URLs with the type prefix

o

®

Additionally, if async operations are supported:

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 89 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#ConformanceLevel

16. MUST return an HTTP message as the final response to an asynchronous request with an Obata-
MaxVersion value of 4.0 and an Accept header including application/http.
17. MAY return the AsyncResult header in the final response to an asynchronous request

To be considered an Updatable OData Service, the service additionally:

18. MUST include edit links (explicitly or implicitly) for all updatable or deletable resources according to
[OData-JSON]

19. MUST support POST of new entities to insertable entity sets (section 11.4.1.5 and 11.4.2.1)

20. MUST support POST of new related entities to updatable navigation properties (section 11.4.2)

21. MUST support POST to Sref to add an existing entity to an updatable related collection (section
11.4.6.1)

22. MUST support PUT to Sref to set an existing single updatable related entity (section 11.4.6.3)

23. MUST support PATCH to all edit URLs for updatable resources (section 11.4.3)

24, MUST support DELETE to all edit URLs for deletable resources (section 11.4.5)

25. MUST support DELETE to sref to remove a reference to an entity from an updatable navigation
property (section 11.4.6.2)

26. MUST support I£-Match header in update/delete of any resources returned with an ETag (section
11.4.1.1)

27. MUST return a Location header with the edit URL or read URL of a created resource (section
11.4.2)

28. MUST include the OData-EntityId header in response to any create or upsert operation that
returns 204 No Content (section 8.3.4)

29. MUST support Upserts (section 11.4.4)

30. SHOULD support PUT and PATCH to an individual primitive (section 11.4.9.1) or complex (section
11.4.9.3) property (respectively)

31. SHOULD support DELETE to set an individual property to null (section 11.4.9.2)

32. SHOULD support deep inserts (section 11.4.2.2)

33. MAY support set-based updates (section 11.4.13) or deletes (section 11.4.14) to members of a
collection

13.1.2 OData 4.0 Intermediate Conformance Level

In order to conform to the OData Intermediate Conformance Level, a service:
1. MUST conform to the OData 4.0 Minimal Conformance Level
2. MUST successfully parse the [OData-ABNF] and either follow the specification or return 501 Not
Implemented for any unsupported functionality (section 9.3.1)
3. MUST support $select (section 11.2.5.1)
4. MUST support casting to a derived type according to [OData-URL] if derived types are present in the
model
5. MUST support $top (section 11.2.6.3)
6. MUST support /svalue on media entities (section 4.12 in [OData-URL]) and individual properties
(section 11.2.4.1)
7. MUST support $filter (section 11.2.6.1)
7.1. MUST support eq, ne filter operations on properties of entities in the requested entity set
(section 11.2.6.1.1)
7.2. MUST support aliases in $filter expressions (section 11.2.6.1.3)
7.3. SHOULD support additional filter operations (section 11.2.6.1.1) and MUST return 501 Not
Implemented for any unsupported filter operations (section 9.3.1)
7.4. SHOULD support the canonical functions (section 11.2.6.1.2) and MUST return 501 Not
Implemented for any unsupported canonical functions (section 9.3.1)
7.5. SHOULD support $filter on expanded entities (section 11.2.5.2.1)
8. SHOULD publish metadata at $metadata according to [OData-CSDLXML] (section 11.1.2)

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 90 of 97

. SHOULD support the [OData-JSON] format

10. SHOULD consider supporting basic authentication as defined in [RFC7617] over HTTPS for the
highest level of interoperability with generic clients

11. SHOULD support the ssearch system query option (section 11.2.6.6)

12. SHOULD support the sskip system query option (section 11.2.6.4)

13. SHOULD support the Scount system query option (section 11.2.6.5)

14. SHOULD support sexpand (section 11.2.5.2)

15. SHOULD support the lambda operators any and a11 on navigation- and collection-valued properties
(section 5.1.1.10 in [OData-URL])

16. SHOULD support the /$count segment on navigation and collection properties (section 11.2.10)

17. SHOULD support sorderby asc and desc on individual properties (section 11.2.6.2)

13.1.3 OData 4.0 Advanced Conformance Level

In order to conform to the OData Advanced Conformance Level, a service:

MUST conform to at least the OData 4.0 Intermediate Conformance Level

MUST publish metadata at Smetadata according to [OData-CSDLXML] (section 11.1.2)

MUST support the [OData-JSON] format

MUST support the /$count segment on navigation and collection properties (section 11.2.10)

MUST support the lambda operators any and al1l on navigation- and collection-valued properties

(section 5.1.1.10 in [OData-URL])

MUST support the Sskip system query option (section 11.2.6.4)

MUST support the Scount system query option (section 11.2.6.5)

MUST support $Sorderby asc and desc on individual properties (section 11.2.6.2)

MUST support $expand (section 11.2.5.2)

9.1. MUST support returning references for expanded properties

9.2. MUST support $filter on expanded collection-valued properties

9.3. MUST support cast segment in expand with derived types

9.4. SHOULD support sorderby asc and desc on expanded collection-valued properties

9.5. SHOULD support scount on expanded collection-valued properties

9.6. SHOULD support $top and $skip on expanded collection-valued properties

9.7. SHOULD support $search on expanded collection-valued properties

9.8. SHOULD support $s1evels for recursive expand (section 11.2.5.2.1.1)

9.9. MAY support Scompute on expanded properties

10. MUST support the $search system query option (section 11.2.6.6)

11. MUST support batch requests according to the multipart format (section 11.7 and all subsections) and
MAY support batch requests according to the JSON Batch format defined in [OData-JSON]

12. MUST support the resource path conventions defined in [OData-URL]

13. SHOULD support asynchronous requests (section 11.6)

14. SHOULD support Delta change tracking (section 11.3)

15. SHOULD support cross-join queries defined in [OData-URL]

16. MAY support the Scompute system query option (section 11.2.5.3)

abrown =

© N

13.2 OData 4.01 Service Conformance Levels

OData services can report conformance to the OData 4.01 specification by including 4 .01 in the list of
supported protocol versions in the Core.ODataVersions annotation, as defined in [OData-VocCore].
As all OData 4.01 compliant services must also be fully OData 4.0 compliant, OData 4.01 services do not
need to separately list 4.0 as a supported version.

13.2.1 OData 4.01 Minimal Conformance Level
In order to conform to the OData 4.01 Minimal Conformance Level, a service:

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 91 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ODataVersions

W =

ok

© ®~N®

10.

11.

12.
13.
14.
15.
16.
17.

MUST conform to the OData 4.0 Minimal Conformance Level

MUST be compliant with version 4.01 of the [OData-JSON] format

MUST return the AsyncResult result header in the final response to an asynchronous request if

asynchronous operations are supported.

MUST support both prefixed and non-prefixed variants of supported headers and preference values

MUST reject a request with an incompatible $schemaversion system query option if a

Core.SchemaVersion annotation is returned in Smetadata

MUST support specifying supported system query options with or without the $ prefix

MUST support case-insensitive query option, operator, and canonical function names

MUST return identifiers in the case they are specified in Smetadata

MUST support both 4.0 and 4.01 syntax in URLs for supported functionality regardless of requested

OData-MaxVersion

a. MUST support casting strings to primitive types in URLs

b. MUST support enumeration and duration literals in URLs with or without the type prefix

c. MUST support invoking parameter-less function imports with or without parentheses

d. MUST support an empty object or no-content for the request body when invoking an action with
no non-binding parameters

e. MUST support invoking functions and actions in a default namespace with or without namespace
qualification

f. MUST support parameter aliases for key values and function parameter values if they allow the
octets 00 (NUL), 2F (forward slash), or 5C (backslash) in string literals

g. SHOULD support implicit aliasing of parameters

h. SHOULD support egq/ne null comparison for navigation properties with a maximum cardinality

of one

SHOULD support the in operator

SHOULD support divby

SHOULD support negative indexes for the substring function

MAY support Key-As-Segment URL convention
a. MUST also support canonical URL conventions (described in [OData-URL]) or include

URLs in payload

m. MAY support the count of a filtered collection in a common expression

n. MAY support equal and non-equal structural comparison

SHOULD publish metadata at Smetadata according to both [OData-CSDLXML] and [OData-

CSDLJSON] (section 11.1.2)

SHOULD NOT have identifiers within a uniqueness scope (e.g. a schema, a structural type, or an

entity container) that differ only by case

SHOULD return the Core.ODataVersions annotation

SHOULD report capabilities through the Capabilities vocabulary

MAY support filtering on annotation values

MAY support $compute system query option

MAY support ssearch for all collections

MAY support 4.01 behavior, including returning 4.01 content and payloads, if the client does not

specify the OData-MaxVersion: 4.0 request header

— X v -

In addition, to be considered an Updatable OData 4.01 Service, the service:

18.
19.

20.
21.
22.
23.
24,
25.
26.

MUST conform to the OData 4.0 Minimal Conformance Level for an Updateable service.

MUST support DELETE to the reference of a collection member to be removed, identified by key
(section 11.4.6.2)

SHOULD support PUT against single entity with nested content

SHOULD support deep updates (section 11.4.3.1) and deep inserts (section 11.4.2.2)

SHOULD support PUT or DELETE to $ref of a collection-valued nav prop

MAY support POST to collections of complex/primitive types

MAY support PATCH and DELETE to a collection

MAY support POST, PATCH and DELETE to a collection URL terminating in a type cast segment
MAY support PATCH to entity sets using the 4.01 delta payload format

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 92 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#SchemaVersion
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ODataVersions

27. MAY support Sselect and Sexpand on data modification requests

13.2.2 OData 4.01 Intermediate Conformance Level

In order to conform to the OData 4.01 Intermediate Conformance Level, a service:
MUST conform to the OData 4.01 Minimal Conformance Level

MUST conform to the OData 4.0 Intermediate Conformance Level

MUST support eq/ne null comparison for navigation properties with a maximum cardinality of one
MUST support the in operator

MUST support the sselect option nested within $Sselect

SHOULD support the count of a filtered collection in a common expression
SHOULD support equal and non-equal structural comparison

SHOULD support scompute system query option

SHOULD support nested query options in $select

10 MAY support nested parameter alias assignments in $select and $Sexpand
11. MAY support filtering a collection using a /$filter path segment

©CENDO A WN =

13.2.3 OData 4.01 Advanced Conformance Level

In order to conform to the OData 4.01 Advanced Conformance Level, a service:

MUST conform to the OData 4.01 Intermediate Conformance Level

MUST conform to the OData 4.0 Advanced Conformance Level

MUST support the count of a filtered/searched collection in a common expression

MUST support $compute system query option

MUST support nested options in $select

5.1. MUST support $filter on selected collection-valued properties

5.2. SHOULD support Sorderby asc and desc on selected collection-valued properties

5.3. SHOULD support the Scount on selected collection-valued properties

5.4. SHOULD support $Stop and $skip on selected collection-valued properties

5.5. SHOULD support $search on selected collection-valued properties

6. MUST publish metadata at $metadata according to [OData-CSDLJSON] (section 11.1.2)

7. MUST support batch requests according both to the multipart format (section 11.7 and all

subsections) and the JSON Batch format defined in [OData-JSON]

SHOULD support filtering a collection using a /sfilter path segment

SHOULD support nested parameter alias assignments in $select and $expand

10. MAY support case-insensitive comparison of identifiers in URLs and request payloads if no exact
match is found, using the same lookup sequence as for default namespaces with a case-insensitive
comparison

abrwnN -~

©®

13.3 Interoperable OData Clients

Interoperable OData clients can expect to work with OData Services that comply with at least the OData
4.0 Minimal Conformance Level and implement the [OData-JSON] format.

To be generally interoperable, OData clients

1. MUST specify the OData-MaxVersion header in requests (section 8.2.7)

2. MUST specify OData-Version (section 8.1.5) and Content-Type (section 8.1.1) in any request
with a payload

MUST be a conforming consumer of OData as defined in [OData-JSON]

MUST follow redirects (section 9.1.5)

MUST correctly handle next links (section 11.2.6.7)

MUST support instances returning properties and navigation properties not specified in metadata
(section 11.2)

MUST generate PATCH requests for updates, if the client supports updates (section 11.4.3)

8. MUST include the $ prefix when specifying OData-defined system query options

o0k w

N

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 93 of 97

9

10.
11.
12.
13.
14.
15.

MUST use case-sensitive query options, operators, and canonical functions
SHOULD support basic authentication as defined in [RFC7617] over HTTPS

MAY request entity references in place of entities previously returned in the response (section 11.2.8)
MAY support deleted entities, link entities, deleted link entities in a delta response (section 11.3)
MAY support asynchronous responses (section 11.6)

MAY support metadata=minimal in a JSON response (see [OData-JSON])

MAY support streaming in a JSON response (see [OData-JSON])

In addition, interoperable OData 4.01 clients

16.

17.
18.
19.
20.

MUST send OData 4.0-compliant payloads to services that don't advertise support for 4.01 or greater
through the Core.0ODataVersions metadata annotation (see [OData-VocCore])

MUST specify identifiers in payloads and URLs in the case they are specified in Smetadata

MUST be prepared to receive any valid 4.01 CSDL

MUST be prepared to receive any valid 4.01 response according to the requested format

SHOULD use capabilities (see [OData-VocCap]) to determine if a 4.01 feature is supported but MAY
attempt syntax and be prepared to handle either 501 Not Implementedor 400 Bad Request

odata-v4.01-os-part1-protocol 23 April 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 94 of 97

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ODataVersions

Appendix A. Acknowledgments

The following individuals were members of the OASIS OData Technical Committee during the creation of
this specification and their contributions are gratefully acknowledged:

Howard Abrams (CA Technologies)

Jay Balunas (Red Hat)

Stephen Berard (Schneider Electric
Industries SAS)

Mark Biamonte (Progress Software)
Matthew Borges (SAP SE)
Edmond Bourne (BlackBerry)
Joseph Boyle (Planetwork, Inc.)
Peter Brown (Individual)

Antonio Campanile (Bank of America)
Pablo Castro (Microsoft)

Axel Conrad (BlackBerry)

Robin Cover (OASIS)

Erik de Voogd (SDL)

Yi Ding (Microsoft)

Diane Downie (Citrix Systems)
Patrick Durusau (Individual)
Andrew Eisenberg (IBM)

Chet Ensign (OASIS)

Davina Erasmus (SDL)

George Ericson (Dell)

Colleen Evans (Microsoft)

Jason Fam (IBM)

Senaka Fernando (WSO2)

Josh Gavant (Microsoft)

Brent Gross (IBM)

Zhun Guo (Individual)

Anila Kumar GVN (CA Technologies)
Stefan Hagen (Individual)

Ralf Handl (SAP SE)

Barbara Hartel (SAP SE)

Hubert Heijkers (IBM)

odata-v4.01-os-part1-protocol
Standards Track Work Product

Ken Baclawski (Northeastern University)

Copyright © OASIS Open 2020. All Rights Reserved.

Jens Husken (SAP SE)

Evan Ireland (SAP SE)

Gershon Janssen (Individual)

Ram Jeyaraman (Microsoft)

Ted Jones (Red Hat)

Diane Jordan (IBM)

Stephan Klevenz (SAP SE)

Gerald Krause (SAP SE)

Nuno Linhares (SDL)

Paul Lipton (CA Technologies)

Susan Malaika (IBM)

Ramanjaneyulu Malisetti (CA Technologies)
Neil McEvoy (iIFOSSF — International Free
and Open Source Solutions Foundation)
Stan Mitranic (CA Technologies)

Dale Moberg (Axway Software)

Graham Moore (BrightstarDB Ltd.)
Farrukh Najmi (Individual)

Shishir Pardikar (Citrix Systems)

Sanjay Patil (SAP SE)

Nuccio Piscopo (iIFOSSF — International Free
and Open Source Solutions Foundation)
Michael Pizzo (Microsoft)

Ramesh Reddy (Red Hat)

Robert Richards (Mashery)

Sumedha Rubasinghe (WS02)

James Snell (IBM)

Jeffrey Turpin (Axway Software)

John Willson (Individual)

John Wilmes (Individual)

Christopher Woodruff (Perficient, Inc.)
Martin Zurmuehl (SAP SE)

23 April 2020
Page 95 of 97

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft 01 | 2016-06-22 | Michael Pizzo Transferred content from OData 4.0 Part | -
Protocol Errata 3

Committee 2016-12-08 | Michael Pizzo Integrated 4.01 features

gpefugiatmn Ralf Handl e Schema Versioning

rait e Preference omit-values

e $compute system query option
¢ Indexing into Ordered Collections
e Deep Update
e Improved referencing in batch requests

Committee 2017-06-20 | Michael Pizzo More 4.01 features

[S)pefmg;atlon Ralf Handl e Set-based operations

raft e JSON Batch format

e CSDL JSON format

Committee 2017-09-28 | Michael Pizzo Incorporated review feedback

[S);r)aef(tzlggatlon Ralf Handl Added nested query options for $select
Added nested parameter alias value
assignments within Sexpand and $Sselect
Simplified implicit parameter aliases for
function (import) calls

Committee 2017-11-13 | Michael Pizzo Incorporated review feedback

[S)E):f?gzclauon Ralf Handl Added deep insert of media entities
Simplified unrelating entities
Function imports in $filter and $Sorderby
Stable order of action and function
parameters

Committee 2017-12-19 | Michael Pizzo Non-Material Changes

Specification 01 Ralf Handl

Committee 2019-06-21 | Michael Pizzo In-stream errors

Specification Ralf Handl URL function matchesPattern

Draft 05)
Delta response for singletons
Content-IDs in deep update
Optional action and function parameters
continue-on-error for operations on
collections

Committee 2019-09-20 | Michael Pizzo No dependencies to async requests within a

Specification Ralf Handl batch request

Draft 06

ETags in update responses

Removed nested sexpand within $select

odata-v4.01-os-part1-protocol

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 96 of 97

Revision

Date

Editor

Changes Made

Committee
Specification 02

2019-11-05 | Michael Pizzo

Ralf Handl

Non-material changes

Candidate OASIS
Specification 01

2020-01-16 | Michael Pizzo

Ralf Handl

Non-material changes

odata-v4.01-os-part1-protocol
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

23 April 2020
Page 97 of 97

