
odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 1 of 55

OData Version 4.01. Part 2: URL
Conventions

Candidate OASIS Standard 01

28 January 2020

This stage:
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-
conventions.docx (Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-
conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-
conventions.pdf

Previous stage:
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-
conventions.docx (Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-
conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-
conventions.pdf

Latest stage:
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.docx (Authoritative)
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.pdf

Technical Committee:
OASIS Open Data Protocol (OData) TC

Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:
Michael Pizzo (mikep@microsoft.com), Microsoft
Ralf Handl (ralf.handl@sap.com), SAP SE
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

• OData Version 4.01. Part 1: Protocol. https://docs.oasis-open.org/odata/odata/v4.01/cos01/part1-
protocol/odata-v4.01-cos01-part1-protocol.html.

• OData Version 4.01. Part 2: URL Conventions (this document). https://docs.oasis-
open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-
conventions.html.

• ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases
Version 4.01. https://docs.oasis-open.org/odata/odata/v4.01/cos01/abnf/.

Related work:
This specification replaces or supersedes:

https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.docx
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.docx
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.pdf
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.pdf
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.docx
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.docx
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.pdf
https://docs.oasis-open.org/odata/odata/v4.01/cs02/part2-url-conventions/odata-v4.01-cs02-part2-url-conventions.pdf
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.docx
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:mikep@microsoft.com
http://www.microsoft.com/
mailto:ralf.handl@sap.com
http://www.sap.com/
mailto:martin.zurmuehl@sap.com
http://www.sap.com/
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part1-protocol/odata-v4.01-cos01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part1-protocol/odata-v4.01-cos01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/abnf/

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 2 of 55

• OData Version 4.0 Part 2: URL Conventions. Edited by Michael Pizzo, Ralf Handl, and Martin
Zurmuehl. OASIS Standard. Latest stage: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-
part2-url-conventions.html.

This specification is related to:

• OData Vocabularies Version 4.0. Edited by Michael Pizzo, Ralf Handl, and Ram Jeyaraman. Latest
stage: http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html.

• OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html.

• OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Edited by
Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-
open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.

• OData JSON Format Version 4.01. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest
stage: https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html.

• OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl, Hubert Heijkers, Gerald
Krause, Michael Pizzo, and Martin Zurmuehl. Latest stage: http://docs.oasis-open.org/odata/odata-
data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html.

Abstract:
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines a set of
recommended (but not required) rules for constructing URLs to identify the data and metadata exposed
by an OData service as well as a set of reserved URL query string operators.

Status:
This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above
date. The level of approval is also listed above. Check the “Latest stage” location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=odata#technical.)

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/odata/.

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[OData-Part2]

OData Version 4.01. Part 2: URL Conventions. Edited by Michael Pizzo, Ralf Handl, and Martin
Zurmuehl. 28 January 2020. Candidate OASIS Standard 01. https://docs.oasis-
open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html.
Latest stage: https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html.

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=odata
https://www.oasis-open.org/committees/odata/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/cos01/part2-url-conventions/odata-v4.01-cos01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 3 of 55

Notices

Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 4 of 55

Table of Contents

1 Introduction ... 7

1.0 IPR Policy ... 7

1.1 Terminology .. 7

1.2 Normative References .. 7

1.3 Typographical Conventions .. 8

2 URL Components ... 9

2.1 URL Parsing.. 9

2.2 URL Syntax ... 9

3 Service Root URL ... 11

4 Resource Path .. 12

4.1 Addressing the Model for a Service .. 12

4.2 Addressing the Batch Endpoint for a Service ... 12

4.3 Addressing Entities ... 12

4.3.1 Canonical URL .. 14

4.3.2 Canonical URL for Contained Entities ... 15

4.3.3 URLs for Related Entities with Referential Constraints ... 15

4.3.4 Resolving an Entity-Id ... 15

4.3.5 Alternate Keys ... 16

4.3.6 Key-as-Segment Convention .. 16

4.4 Addressing References between Entities ... 17

4.5 Addressing Operations ... 17

4.5.1 Addressing Actions .. 17

4.5.2 Addressing Functions .. 18

4.6 Addressing a Property .. 18

4.7 Addressing a Property Value .. 18

4.8 Addressing the Count of a Collection ... 18

4.9 Addressing a Member within an Entity Collection .. 19

4.10 Addressing a Member of an Ordered Collection .. 19

4.11 Addressing Derived Types.. 19

4.12 Addressing a Subset of a Collection ... 20

4.13 Addressing Each Member of a Collection .. 21

4.14 Addressing the Media Stream of a Media Entity .. 21

4.15 Addressing the Cross Join of Entity Sets ... 21

4.16 Addressing All Entities in a Service .. 22

4.17 Passing Query Options in the Request Body ... 22

5 Query Options .. 24

5.1 System Query Options .. 24

5.1.1 Common Expression Syntax ... 24
5.1.1.1 Logical Operators ... 24

5.1.1.1.1 Equals .. 25
5.1.1.1.2 Not Equals.. 25
5.1.1.1.3 Greater Than .. 25
5.1.1.1.4 Greater Than or Equal ... 25
5.1.1.1.5 Less Than .. 26

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 5 of 55

5.1.1.1.6 Less Than or Equal .. 26
5.1.1.1.7 And ... 26
5.1.1.1.8 Or ... 26
5.1.1.1.9 Not ... 26
5.1.1.1.10 Has ... 26
5.1.1.1.11 In .. 26
5.1.1.1.12 Logical Operator Examples .. 26

5.1.1.2 Arithmetic Operators .. 27
5.1.1.2.1 Addition .. 27
5.1.1.2.2 Subtraction ... 28
5.1.1.2.3 Negation ... 28
5.1.1.2.4 Multiplication .. 28
5.1.1.2.5 Division... 28
5.1.1.2.6 Modulo ... 29
5.1.1.2.7 Arithmetic Operator Examples ... 29

5.1.1.3 Grouping .. 29
5.1.1.4 Canonical Functions .. 29
5.1.1.5 String and Collection Functions ... 30

5.1.1.5.1 concat ... 30

5.1.1.5.2 contains ... 30

5.1.1.5.3 endswith ... 30

5.1.1.5.4 indexof ... 31

5.1.1.5.5 length ... 31

5.1.1.5.6 startswith .. 31

5.1.1.5.7 substring ... 32

5.1.1.6 Collection Functions ... 32
5.1.1.6.1 hassubset ... 32

5.1.1.6.2 hassubsequence .. 33

5.1.1.7 String Functions ... 33
5.1.1.7.1 matchesPattern .. 33

5.1.1.7.2 tolower ... 33

5.1.1.7.3 toupper ... 34

5.1.1.7.4 trim ... 34

5.1.1.8 Date and Time Functions ... 34
5.1.1.8.1 date ... 34

5.1.1.8.2 day ... 34

5.1.1.8.3 fractionalseconds ... 35

5.1.1.8.4 hour ... 35

5.1.1.8.5 maxdatetime .. 35

5.1.1.8.6 mindatetime .. 35

5.1.1.8.7 minute ... 35

5.1.1.8.8 month ... 36

5.1.1.8.9 now ... 36

5.1.1.8.10 second ... 36

5.1.1.8.11 time ... 36

5.1.1.8.12 totaloffsetminutes ... 37

5.1.1.8.13 totalseconds .. 37

5.1.1.8.14 year ... 37

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 6 of 55

5.1.1.9 Arithmetic Functions .. 37
5.1.1.9.1 ceiling ... 37

5.1.1.9.2 floor ... 37

5.1.1.9.3 round ... 38

5.1.1.10 Type Functions .. 38
5.1.1.10.1 cast ... 38

5.1.1.10.2 isof ... 39

5.1.1.11 Geo Functions.. 39
5.1.1.11.1 geo.distance .. 39

5.1.1.11.2 geo.intersects .. 39

5.1.1.11.3 geo.length .. 40

5.1.1.12 Conditional Functions .. 40
5.1.1.12.1 case ... 40

5.1.1.13 Lambda Operators ... 40
5.1.1.13.1 any ... 41

5.1.1.13.2 all ... 41

5.1.1.14 Literals ... 41
5.1.1.14.1 Primitive Literals ... 41
5.1.1.14.2 Complex and Collection Literals ... 42
5.1.1.14.3 null ... 42

5.1.1.14.4 $it ... 42

5.1.1.14.5 $root ... 43

5.1.1.14.6 $this ... 43

5.1.1.15 Path Expressions ... 43
5.1.1.16 Annotation Values in Expressions.. 44
5.1.1.17 Operator Precedence ... 44
5.1.1.18 Numeric Promotion .. 45

5.1.2 System Query Option $filter .. 46

5.1.3 System Query Option $expand .. 46

5.1.4 System Query Option $select .. 48

5.1.5 System Query Option $orderby .. 50

5.1.6 System Query Options $top and $skip .. 50

5.1.7 System Query Option $count .. 50

5.1.8 System Query Option $search .. 50

5.1.8.1 Search Expressions ... 50

5.1.9 System Query Option $format .. 51

5.1.10 System Query Option $compute .. 51

5.1.11 System Query Option $index .. 51

5.1.12 System Query Option $schemaversion ... 52

5.2 Custom Query Options ... 52

5.3 Parameter Aliases .. 52

6 Conformance .. 53

Appendix A. Acknowledgments ... 54

Appendix B. Revision History .. 55

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 7 of 55

1 Introduction
The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages. This specification defines a set of
recommended (but not required) rules for constructing URLs to identify the data and metadata exposed
by an OData service as well as a set of reserved URL query string operators, which if accepted by an
OData service, MUST be implemented as required by this document.

The [OData-JSON] document specifies the format of the resource representations that are exchanged
using OData and the [OData-Protocol] document describes the actions that can be performed on the
URLs (optionally constructed following the conventions defined in this document) embedded in those
representations.

Services are encouraged to follow the URL construction conventions defined in this specification when
possible as consistency promotes an ecosystem of reusable client components and libraries.

1.0 IPR Policy

This specification is provided under the RF on RAND Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/odata/ipr.php).

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[ECMAScript] ECMAScript 2016 Language Specification, 7th Edition, June 2016. Standard
ECMA-262. http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[OData-ABNF] OData ABNF Construction Rules Version 4.01.
See the link in "Additional artifacts" section on cover page.

[OData-CSDLJSON] OData Common Schema Definition Language (CSDL) JSON Representation
Version 4.01). See link in "Related work" section on cover page.

[OData-CSDLXML] OData Common Schema Definition Language (CSDL) XML Representation
Version 4.01. See link in "Related work" section on cover page

[OData-JSON] OData JSON Format Version 4.01.
See link in "Related work" section on cover page.

[OData-Protocol] OData Version 4.01 Part 1: Protocol.
See link in "Additional artifacts" section on cover page.

[OData-VocCap] OData Vocabularies Version 4.0: Capabilities Vocabulary.
See link in "Related work" section on cover page.

[OData-VocCore] OData Vocabularies Version 4.0: Core Vocabulary.
See link in "Related work" section on cover page.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”,
BCP 14, RFC 2119, March 1997. https://tools.ietf.org/html/rfc2119.

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/committees/odata/ipr.php
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://tools.ietf.org/html/rfc2119

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 8 of 55

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax”, STD 66, RFC 3986, January 2005.
https://tools.ietf.org/html/rfc3986.

[XML-Schema-2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, D.
Peterson, S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, P. V. Biron,
A. Malhotra, Editors, W3C Recommendation, 5 April 2012,
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.
Latest version available at http://www.w3.org/TR/xmlschema11-2/.

1.3 Typographical Conventions

Keywords defined by this specification use this monospaced font.

Normative source code uses this paragraph style.

Some sections of this specification are illustrated with non-normative examples.

Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only.

All other text is normative unless otherwise labeled.

https://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 9 of 55

2 URL Components
A URL used by an OData service has at most three significant parts: the service root URL, the resource
path, and query options. Additional URL constructs (such as a fragment) can be present in a URL used
by an OData service; however, this specification applies no further meaning to such additional constructs.

Example 2: OData URL broken down into its component parts:

http://host:port/path/SampleService.svc/Categories(1)/Products?$top=2&$orderby=Name

______________________________________/____________________/ __________________/

 | | |

 service root URL resource path query options

Mandated and suggested content of these three significant URL components used by an OData service
are covered in sequence in the three following chapters.

2.1 URL Parsing

OData follows the URI syntax rules defined in [RFC3986] and in addition assigns special meaning to
several of the sub-delimiters defined by [RFC3986], so special care has to be taken regarding parsing
and percent-decoding.

[RFC3986] defines three steps for URL processing that MUST be performed before percent-decoding:

• Split undecoded URL into components scheme, hier-part, query, and fragment

• Split undecoded hier-part into authority and path

• Split undecoded path into path segments

After applying these steps defined by RFC3986 the following steps MUST be performed:

• Split undecoded query at "&" into query options, and each query option at the first "=" into query

option name and query option value

• Percent-decode path segments, query option names, and query option values exactly once

• Interpret path segments, query option names, and query option values according to OData rules

2.2 URL Syntax

The OData syntax rules for URLs are defined in this document and the [OData-ABNF]. Note that the
ABNF is not expressive enough to define what a correct OData URL is in every imaginable use case. This
specification document defines additional rules that a correct OData URL MUST fulfill. In case of doubt on
what makes an OData URL correct the rules defined in this specification document take precedence.
Note also that the rules in [OData-ABNF] assume that URLs and URL parts have been percent-encoding
normalized as described in section 6.2.2.2 of [RFC3986] before applying the grammar to them, i.e. all
characters in the unreserved set (see rule unreserved in [OData-ABNF]) are plain literals and not

percent-encoded. For characters outside of the unreserved set that are significant to OData the ABNF
rules explicitly state whether the percent-encoded representation is treated identical to the plain literal
representation. This is done to make the input strings in the ABNF test cases more readable.

For example, one of these rules is that single quotes within string literals are represented as two
consecutive single quotes.

Example 3: valid OData URLs:

http://host/service/People('O''Neil')

http://host/service/People(%27O%27%27Neil%27)

http://host/service/People%28%27O%27%27Neil%27%29

http://host/service/Categories('Smartphone%2FTablet')

Example 4: invalid OData URLs:

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 10 of 55

http://host/service/People('O'Neil')

http://host/service/People('O%27Neil')

http://host/service/Categories('Smartphone/Tablet')

The first and second examples are invalid because a single quote in a string literal must be represented
as two consecutive single quotes. The third example is invalid because forward slashes are interpreted as
path segment separators and Categories('Smartphone is not a valid OData path segment, nor is

Tablet').

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 11 of 55

3 Service Root URL
The service root URL identifies the root of an OData service. A GET request to this URL returns the

format-specific service document, see [OData-JSON].

The service root URL MUST terminate in a forward slash.

The service document enables simple hypermedia-driven clients to enumerate and explore the resources
published by the OData service.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 12 of 55

4 Resource Path
The rules for resource path construction as defined in this section are optional. OData services SHOULD
follow the subsequently described URL path construction rules and are indeed encouraged to do so; as
such consistency promotes a rich ecosystem of reusable client components and libraries.

Services that do not follow the resource path conventions for entity container children are strongly
encouraged to document their resource paths by annotating entity container children with the term
Core.ResourcePath defined in [OData-VocCore]. The annotation value is the URL of the annotated

resource and may be relative to xml:base (if present), otherwise the request URL.

Resources exposed by an OData service are addressable by corresponding resource path URL
components to enable interaction of the client with that resource aspect.

To illustrate the concept, some examples for resources might be: customers, a single customer, orders
related to a single customer, and so forth. Examples of addressable aspects of these resources as
exposed by the data model might be: collections of entities, a single entity, properties, links, operations,
and so on.

An OData service MAY respond with 301 Moved Permanently or 307 Temporary Redirect from

the canonical URL to the actual URL.

4.1 Addressing the Model for a Service

OData services expose their entity model according to [OData-CSDLJSON] or [OData-CSDLXML] at the
metadata URL, formed by appending $metadata to the service root URL.

Example 5: Metadata document URL

http://host/service/$metadata

OData clients may request a particular format for metadata either through the Accept header or by using
the $format system query option.

Example 6: Metadata document URL with specified format

http://host/service/$metadata?$format=json

4.2 Addressing the Batch Endpoint for a Service

OData services that support batch requests expose a batch URL formed by appending $batch to the

service root URL.

Example 7: batch URL

http://host/service/$batch

4.3 Addressing Entities

The basic rules for addressing a collection (of entities), a single entity within a collection, a singleton, as
well as a property of an entity are covered in the resourcePath syntax rule in [OData-ABNF].

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#ResourcePath

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 13 of 55

Below is a (non-normative) snippet from [OData-ABNF]:

resourcePath = entitySetName [collectionNavigation]

 / singleton [singleNavigation]

 / actionImportCall

 / entityColFunctionImportCall [collectionNavigation]

 / entityFunctionImportCall [singleNavigation]

 / complexColFunctionImportCall [collectionPath]

 / complexFunctionImportCall [complexPath]

 / primitiveColFunctionImportCall [collectionPath]

 / primitiveFunctionImportCall [singlePath]

 / functionImportCallNoParens

 / crossjoin

 / '$all' ["/" qualifiedEntityTypeName]

Since OData has a uniform composable URL syntax and associated rules there are many ways to
address a collection of entities, including, but not limited to:

• Via an entity set (see rule entitySetName in [OData-ABNF])

Example 8:

http://host/service/Products

• By navigating a collection-valued navigation property (see rule: entityColNavigationProperty)

• By invoking a function that returns a collection of entities (see rule: entityColFunctionCall)

Example 9: function with parameters in resource path

http://host/service/ProductsByCategoryId(categoryId=2)

Example 10: function with parameters as query options

http://host/service/ProductsByColor(color=@color)?@color='red'

• By invoking an action that returns a collection of entities (see rule: actionCall)

Likewise there are many ways to address a single entity.

Sometimes a single entity can be accessed directly, for example by:

• Invoking a function that returns a single entity (see rule: entityFunctionCall)

• Invoking an action that returns a single entity (see rule: actionCall)

• Addressing a singleton

Example 11:

http://host/service/BestProductEverCreated

Often however a single entity is accessed by composing more path segments to a resourcePath that

identifies a collection of entities, for example by:

• Using an entity key to select a single entity (see rules: collectionNavigation and

keyPredicate)

Example 12:

http://host/service/Categories(1)

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 14 of 55

• Invoking an action bound to a collection of entities that returns a single entity (see rule:
boundOperation)

• Invoking an function bound to a collection of entities that returns a single entity (see rule:
boundOperation)

Example 13:

http://host/service/Products/Model.MostExpensive()

These rules are recursive, so it is possible to address a single entity via another single entity, a collection
via a single entity and even a collection via a collection; examples include, but are not limited to:

• By following a navigation from a single entity to another related entity (see rule:
entityNavigationProperty)

Example 14:

http://host/service/Products(1)/Supplier

• By invoking a function bound to a single entity that returns a single entity (see rule:
boundOperation)

Example 15:

http://host/service/Products(1)/Model.MostRecentOrder()

• By invoking an action bound to a single entity that returns a single entity (see rule:
boundOperation)

• By following a navigation from a single entity to a related collection of entities (see rule:
entityColNavigationProperty)

Example 16:

http://host/service/Categories(1)/Products

• By invoking a function bound to a single entity that returns a collection of entities (see rule:
boundOperation)

Example 17:

http://host/service/Categories(1)/Model.TopTenProducts()

• By invoking an action bound to a single entity that returns a collection of entities (see rule:
boundOperation)

• By invoking a function bound to a collection of entities that returns a collection of entities (see rule:
boundOperation)

Example 18:

http://host/service/Categories(1)/Products/Model.AllOrders()

• By invoking an action bound to a collection of entities that returns a collection of entities (see rule:
boundOperation)

Finally it is possible to compose path segments onto a resource path that identifies a primitive, complex
instance, collection of primitives or collection of complex instances and bind an action or function that
returns an entity or collections of entities.

4.3.1 Canonical URL

For OData services conformant with the addressing conventions in this section, the canonical form of an
absolute URL identifying a non-contained entity is formed by adding a single path segment to the service
root URL. The path segment is made up of the name of the entity set associated with the entity followed

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 15 of 55

by the key predicate identifying the entity within the collection. No type-cast segment is added to the
canonical URL, even if the entity is an instance of a type derived from the declared entity type of its entity
set.

The canonical key predicate for single-part keys consists only of the key property value without the key
property name. For multi-part keys the key properties appear in the same order they appear in the key
definition in the service metadata.

Example 19: Non-canonical URL

http://host/service/Categories(ID=1)/Products(ID=1)

Example 20: Canonical URL for previous example:

http://host/service/Products(1)

4.3.2 Canonical URL for Contained Entities

For contained entities (i.e. related via a containment navigation property, see [OData-CSDLJSON] or
[OData-CSDLXML]) the canonical URL is the canonical URL of the containing entity followed by:

• A type-cast segment if the navigation property is defined on a type derived from the entity type
declared for the entity set,

• A path segment for the containment navigation property, and

• If the navigation property returns a collection, a key predicate that uniquely identifies the entity in
that collection.

If the containment navigation property is defined on a complex type used within an ordered collection, the
canonical URL of the containing entity is the canonical URL for the collection of complex types followed
by a segment containing the zero-based ordinal of the complex typed instance within the collection.

4.3.3 URLs for Related Entities with Referential Constraints

If a navigation property leading to a related entity type has a partner navigation property that specifies a
referential constraint, then those key properties of the related entity that take part in the referential
constraint MAY be omitted from URLs.

Example 21: full key predicate of related entity

https://host/service/Orders(1)/Items(OrderID=1,ItemNo=2)

Example 22: shortened key predicate of related entity

https://host/service/Orders(1)/Items(2)

The two above examples are equivalent if the navigation property Items from Order to OrderItem has a partner

navigation property from OrderItem to Order with a referential constraint tying the value of the OrderID key

property of the OrderItem to the value of the ID key property of the Order.

The shorter form that does not specify the constrained key parts redundantly is preferred. If the value of
the constrained key is redundantly specified, then it MUST match the principal key value.

4.3.4 Resolving an Entity-Id

To resolve an entity-id into a representation of the identified entity, the client issues a GET request to the

$entity resource located at the URL $entity relative to the service root URL. The entity-id MUST be

specified using the system query option $id. The entity-id may be expressed as an absolute IRI or

relative to the request root URL.

Example 23: request the entity representation for an entity-id

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 16 of 55

http://host/service/$entity?$id=Products(0)

The semantics of $entity are covered in the [OData-Protocol] document.

4.3.5 Alternate Keys

In addition to the canonical (primary) key an entity set or entity type can specify one or more alternate
keys with the Core.AlternateKeys term (see [OData-VocCore]). Entities can be addressed via an

alternate key using the same parentheses-style convention as for the canonical key, with one difference:
single-part alternate keys MUST specify the key property name to unambiguously determine the alternate
key.

Example 24: the same employee identified via the alternate key SSN, the canonical (primary) key ID using the non-
canonical long form with specified key property name, and the canonical short form without key property name

http://host/service/Employees(SSN='123-45-6789')

http://host/service/Employees(ID='A1245')

http://host/service/Employees('A1245')

4.3.6 Key-as-Segment Convention

Services MAY support an alternate convention for addressing entities by appending a segment containing
the unquoted key value to the URL of the collection containing the entity. Forward-slashes in key value
segments MUST be percent-encoded; single quotes within key value segments are treated as part of the
key value and do not need to be doubled or percent encoded.

Example 25: valid OData URLs:

http://host/service/Employees/A1245

http://host/service/People/O'Neil

http://host/service/People/O%27Neil

http://host/service/Categories/Smartphone%2FTablet

For multi-part keys, the entity MUST be addressed by multiple segments applied, one for each key value,
in the order they appear in the metadata description of the entity key.

Example 26: multi-part key predicate, parentheses-style and key-as-segment

https://host/service/OrderItems(OrderID=1,ItemNo=2)

https://host/service/OrderItems/1/2

If a navigation property leading to a related entity type has a partner navigation property that specifies a
referential constraint, then those key properties of the related entity that take part in the referential
constraint MUST be omitted from URLs using key-as-segment convention.

Example 27: key predicate of related entity – no key segments for key properties of related entity with a referential
constraint to preceding key segments

https://host/service/Orders/1/Items/2

The above example assumes that the navigation property Items from Order to OrderItem has a partner

navigation property from OrderItem to Order with a referential constraint tying the value of the OrderID key

property of the OrderItem to the value of the ID key property of the Order.

Because representing key values as segments could be ambiguous with other URL construction
conventions, services that support key-as segment MUST implement the following precedence rules:

If a segment following an entity collection:

1. matches a defined OData segment (starting with “$”), treat it as such
2. matches a qualified bound function, bound action, or type name, treat it as such
3. matches an unqualified bound function, bound action, or type name defined in a default

namespace (see [OData-Protocol]) treat it as such
4. treat as a key value

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#AlternateKeys

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 17 of 55

For maximum interoperability, services that support the key-as-segment convention SHOULD also
support the canonical parentheses-style convention for addressing an entity within a collection, otherwise
they MUST specify the URL for each returned entity in a response, as specified by the particular format.

Note: the key-as-segment convention can only be used with the canonical (primary) key and cannot be
used with alternate keys as the key property names are not present in the keys and an alternative key
cannot be determined.

4.4 Addressing References between Entities

OData services are based on a data model that supports relationships as first class constructs. For
example, an OData service could expose a collection of Products entities each of which are related to a
Category entity.

References between entities are addressable in OData just like entities themselves are (as described
above) by appending a navigation property name followed by /$ref to the entity URL.

Example 28: URL addressing the references between Categories(1) and Products

http://host/service/Categories(1)/Products/$ref

Resource paths addressing a single related entity reference can be used in DELETE requests to unrelate

two entities. In OData 4.01, this includes resource paths that identify an individual entity reference within
a related collection by key. In OData 4.0, resource paths addressing a collection of references MUST be
followed by the system query option $id in order to identify a single entity reference within the collection

to be removed. The entity-id specified by $id may be expressed absolute or relative to the request URL.

For details see [OData-Protocol].

Example 29: three ways of unrelating Categories(1) and Products(0); the second option is supported only in

OData 4.01

DELETE http://host/service/Categories(1)/Products/$ref?$id=../../Products(0)

DELETE http://host/service/Categories(1)/Products(0)/$ref

DELETE http://host/service/Products(0)/Category/$ref

4.5 Addressing Operations

The semantic rules for addressing and invoking actions and functions are defined in the [OData-
Protocol] document.

Services MAY additionally support the use of the unqualified name of an action or function in a URL by
defining one or more default namespaces through the Core.DefaultNamespace term defined in

[OData-VocCore]. For more information on default namespaces, see Default Namespaces in [OData-
Protocol].

4.5.1 Addressing Actions

The grammar for addressing and invoking actions is defined by the following syntax grammar rules in
[OData-ABNF]:

• The actionImportCall syntax rule defines the grammar in the resourcePath for addressing

and invoking an action import directly from the service root.

• The boundActionCall syntax rule defines the grammar in the resourcePath for addressing

and invoking an action that is appended to a resourcePath that identifies some resources that

can be used as the binding parameter value when invoking the action.

• The boundOperation syntax rule (which encompasses the boundActionCall syntax rule),

when used by the resourcePath syntax rule, illustrates how a boundActionCall can be

appended to a resourcePath.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 18 of 55

4.5.2 Addressing Functions

The grammar for addressing and invoking functions is defined by a number syntax grammar rules in
[OData-ABNF], in particular:

• The function import call syntax rules complexFunctionImportCall,

complexColFunctionImportCall, entityFunctionImportCall,

entityColFunctionImportCall, primitiveFunctionImportCall, and

primitiveColFunctionImportCall define the grammar in the resourcePath for

addressing and providing parameters for a function import directly from the service root.

• The bound function call syntax rules boundComplexFunctionCall,

boundComplexColFunctionCall, boundEntityFunctionCall,

boundEntityColFunctionCall, boundPrimitiveFunctionCall and

boundPrimitiveColFunctionCall define the grammar in the resourcePath for addressing

and providing parameters for a function that is appended to a resourcePath that identifies

some resources that can be used as the binding parameter value when invoking the function.

• The boundOperation syntax rule (which encompasses the bound function call syntax rules),

when used by the resourcePath syntax rule, illustrates how a bound function call can be

appended to a resourcePath.

• The functionExpr and boundFunctionExpr syntax rules as used by the filter and

orderby syntax rules define the grammar for invoking functions to help filter and order resources

identified by the resourcePath of the URL.

• The aliasAndValue syntax rule defines the grammar for providing function parameter values

using Parameter Alias Syntax, see [OData-Protocol].

4.6 Addressing a Property

To address an entity property clients append a path segment containing the property name to the URL of
the entity. If the property has a complex type value, properties of that value can be addressed by further
property name composition.

4.7 Addressing a Property Value

To address the raw value of a primitive property, clients append the path segment /$value to the

property URL.

Properties of type Edm.Stream already return the raw value of the media stream and do not support

appending the /$value segment.

4.8 Addressing the Count of a Collection

To address the raw value of the number of items in a collection, clients append /$count to the resource

path of the URL identifying the entity set or collection.

The /$count path suffix identifies the integer count of records in the collection and SHOULD NOT be

combined with the system query options $top, $skip, $orderby, $expand, and $format. The count

MUST NOT be affected by $top, $skip, $orderby, or $expand.

The count is calculated after applying any /$filter path segments, or $filter or $search system

query options to the collection.

Example 30: the number of related entities

http://host/service/Categories(1)/Products/$count

Example 31: the number of entities in an entity set

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 19 of 55

http://host/service/Products/$count

Example 32: entity count in a $filter expression. Note that the spaces around gt are for readability of the example

only; in real URLs they must be percent-encoded as %20.

http://host/service/Categories?$filter=Products/$count gt 0

Example 33: count of a filtered collection in a $filter expression; returns all Categories containing more than two

products whose price is greater than 5.00.

http://host/service/Categories?$filter=Products/$count($filter=Price gt 5.00)

gt 2

 Example 34: entity count in an $orderby expression

http://host/service/Categories?$orderby=Products/$count

4.9 Addressing a Member within an Entity Collection

Collections of entities are modeled as entity sets, collection-valued navigation properties, or operation
results.

For entity sets, results of operations associated with an entity set through an EntitySet or

EntitySetPath declaration, or collection-valued navigation properties with a

NavigationPropertyBinding or ContainsTarget=true specification, members of the collection

can be addressed by convention by appending the parenthesized key to the URL specifying the collection
of entities, or by using the key-as-segment convention if supported by the service.

For collection-valued navigation properties with navigation property bindings that end in a type-cast
segment, a type-cast segment MUST be appended to the collection URL before appending the key
segment.

Note: entity sets or collection-valued navigation properties annotated with term
Capabilities.IndexableByKey defined in [OData-VocCap] and a value of false do not support

addressing their members by key.

4.10 Addressing a Member of an Ordered Collection

Collections can be annotated as ordered using the Core.Ordered term (see [OData-VocCore]).

Individual items within an ordered collection of primitive or complex types can be addressed by appending
a segment containing the zero-based ordinal to the URL of the collection. A negative ordinal number
indexes from the end of the collection, with -1 representing the last item in the collection. Services MUST

NOT specify a negative index when returning the address of a member of an ordered collection.

Entity types are stably addressable using their canonical URL and SHOULD NOT be accessed or
accessible using an index.

Example 35: the first address in a list of addresses for MainSupplier

http://host/service/MainSupplier/Addresses/0

4.11 Addressing Derived Types

Any resource path or path expression identifying a collection of entities or complex type instances can be
appended with a path segment containing the qualified name of a type derived from the declared type of
the collection. The result will be restricted to instances of the derived type and may be empty.

Any resource path or path expression identifying a single entity or complex type instance can be
appended with a path segment containing the qualified name of a type derived from the declared type of
the identified resource. If used in a resource path and the identified resource is not an instance of the

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#IndexableByKey
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Ordered

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 20 of 55

derived type, the request will result in a 404 Not Found response. If used in a path expression that is

part of a Boolean expression, the type cast will evaluate to null.

Services MAY additionally support the use of the unqualified name of a derived type in a URL by defining
one or more default namespaces through the Core.DefaultNamespace term defined in [OData-

VocCore]. For more information on default namespaces, see Default Namespaces in [OData-Protocol].

Services MAY also support treating an instance as a type outside of the type hierarchy using the same
syntax and semantics as when addressing a derived type. In this case, the set and values of properties of
the addressed type may be different than the properties of the source type. The set of such possible
target types outside of the type hierarchy SHOULD be called out using the Core.MayImplement

annotation term, defined in [OData-VocCore].

Example 36: entity set restricted to VipCustomer instances

http://host/service/Customers/Model.VipCustomer

Example 37: entity restricted to a VipCustomer instance, resulting in 404 Not Found if the customer with key 1 is

not a VipCustomer

http://host/service/Customers/Model.VipCustomer(1)

http://host/service/Customers(1)/Model.VipCustomer

Example 38: cast the complex property Address to its derived type DetailedAddress, then get a property of the

derived type

http://host/service/Customers(1)/Address/Model.DetailedAddress/Location

Example 39: filter expression with type cast; will evaluate to null for all non-VipCustomer instances and thus

return only instances of VipCustomer

http://host/service/Customers?$filter=Model.VipCustomer/PercentageOfVipPromoti

onProductsOrdered gt 80

Example 40: expand the single related Customer only if it is an instance of Model.VipCustomer. For to-many

relationships only Model.VipCustomer instances would be inlined,

http://host/service/Orders?$expand=Customer/Model.VipCustomer

4.12 Addressing a Subset of a Collection

Any resource path or path expression identifying a collection can be appended with a filter path segment
consisting of /$filter followed by parentheses containing a parameter alias or a filter expression

following the filter syntax rule in [OData-ABNF]. If the parentheses contain a parameter alias, a filter

expression MUST be assigned to the parameter alias in the query part of the request URL. If the filter
path segment appears in the resource path and the parentheses contain a filter expression, that
expression MUST NOT use forward slashes.

The collection will be restricted to instances matching the filter expression assigned to the parameter alias
and may be empty.

The /$filter path segment MAY occur multiple times and it MAY be combined with the $filter

system query option.

Example 41: red products that cost less than 10 – combining path segment and system query option

GET Products/$filter(@foo)?@foo=Price lt 10&$filter=Color eq 'red'

Example 42: red products that cost less than 10 – combine two path segments

GET Products/$filter(@p)/$filter(@c)?@p=Price lt 10&@c=Color eq 'red'

Example 43: categories with less than ten products older than three

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#MayImplement

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 55

GET Categories?$filter=Products/$filter(Age gt 3)/$count lt 10

Note that the /$filter path segment filters the “input” to the operation, and the $filter system query

option filters the result of the operation, so the two can be used interchangeably only for GET operations.

For a PATCH operation, the /$filter path segment is evaluated on the items before the modification

and determines which items are to be modified, whereas the $filter system query option is evaluated

after the modification and determines which of the modified items are part of the response.

The /$filter path segment MAY be followed by a path segment identifying a bound action or bound

function applicable to the collection.

Example 44: invoke the Special.Cluster action on all products older than 3

POST /service/Products/$filter(@foo)/Special.Cluster?@foo=Age gt 3

4.13 Addressing Each Member of a Collection

To apply a PATCH or DELETE request to each member of a collection, clients append the path segment

/$each to a resource path identifying a collection.

To apply a bound action or function to each member of a collection, clients append the path segment
/$each followed by a path segment identifying the bound action or function. The response is a collection

of instances of the result type of the bound operation. If the bound operation returns a collection, the
response is a collection of collections. System query options applied to the response can use $it to

reference an item in the outermost collection, followed by /any, /all, or /$count.

The resource path of the collection preceding /$each MAY contain type-cast or filter path segments to

subset the collection.

4.14 Addressing the Media Stream of a Media Entity

To address the media stream represented by a media entity, clients append /$value to the resource

path of the media entity URL. Services may redirect from this canonical URL to the source URL of the
media stream.

Example 45: request the media stream for the picture with the key value Sunset4321299432:

http://host/service/Pictures('Sunset4321299432')/$value

4.15 Addressing the Cross Join of Entity Sets

In addition to querying related entities through navigation properties defined in the entity model of a
service, the cross join operator allows querying across unrelated entity sets.

The cross join is addressed by appending the path segment $crossjoin to the service root URL,

followed by the parenthesized comma-separated list of joined entity sets. It returns the Cartesian product
of all the specified entity sets, represented as a collection of instances of a virtual complex type. Each
instance consists of one non-nullable, single-valued navigation property per joined entity set. Each such
navigation property is named identical to the corresponding entity set, with a target type equal to the
declared entity type of the corresponding entity set.

The $filter and $orderby query options can be specified using properties of the entities in the

selected entity sets, prepended with the entity set as the navigation property name.

The $expand query option can be specified using the names of the selected entity sets as navigation

property names. If a selected entity set is not expanded, it MUST be represented using the read URL of
the related entity as a navigation link in the complex type instance.

The $count, $skip, and $top query options can also be used with no special semantics.

Example 46: if Sales had a structural property ProductID instead of a navigation property Product, a “cross join”

between Sales and Products could be addressed

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 22 of 55

http://host/service/$crossjoin(Products,Sales)?$filter=Products/ID eq

Sales/ProductID

and would result in

{

"@odata.context":"http://host/service/$metadata#Collection(Edm.ComplexType)",

 "value":[

 {

 "Products@odata.navigationLink":"Products(0)",

 "Sales@odata.navigationLink":"Sales(42)",

 },

 {

 "Products@odata.navigationLink":"Products(0)",

 "Sales@odata.navigationLink":"Sales(57)",

 },

 ...

 {

 "Products@odata.navigationLink":"Products(99)",

 "Sales@odata.navigationLink":"Sales(21)",

 }

]

}

4.16 Addressing All Entities in a Service

The symbolic resource $all, located at the service root, identifies the collection of all entities in a

service, i.e. the union of all entity sets plus all singletons.

This symbolic resource is of type Collection(Edm.EntityType) and allows the $search system

query option plus all other query options applicable to collections of entities.

The $all resource can be appended with a path segment containing the qualified name of an entity type

in order to restrict the collections to entities of that type. Query options such as $select, $filter,

$expand, and $orderby can be applied to this restricted set according to the specified type.

Example 47: all entities in a service that somehow match red

http://host/service/$all?$search=red

Example 48: all Customer entities in a service whose name contains red

http://host/service/$all/Model.Customer?$filter=contains(Name,'red')

4.17 Passing Query Options in the Request Body

The query options part of an OData URL can be quite long, potentially exceeding the maximum length of
URLs supported by components involved in transmitting or processing the request. One way to avoid this
is wrapping the request in a batch request, which has the penalty of needing to construct a well-formed
batch request body.

An easier alternative for GET requests is to append /$query to the resource path of the URL, use the

POST verb instead of GET, and pass the query options part of the URL in the request body.

Requests to paths ending in /$query MUST use the POST verb. Query options specified in the request

body and query options specified in the request URL are processed together.

The request body MUST use the content-type text/plain. It contains the query portion of the URL and

MUST use the same percent-encoding as in URLs (especially: no spaces, tabs, or line breaks allowed)
and MUST follow the syntax rules described in chapter Query Options.

Example 49: passing a filter condition in the request body

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 23 of 55

POST http://host/service/People/$query

Content-Type: text/plain

$filter=[FirstName,LastName]%20in%20[["John","Doe"],["Jane","Smith"]]

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 24 of 55

5 Query Options
The query options part of an OData URL specifies three types of information: system query options,
custom query options, and parameter aliases. All OData services MUST follow the query string parsing
and construction rules defined in this section and its subsections.

5.1 System Query Options

System query options are query string parameters that control the amount and order of the data returned
for the resource identified by the URL. The names of all system query options are optionally prefixed with
a dollar ($) character. 4.01 Services MUST support case-insensitive system query option names specified

with or without the $ prefix. Clients that want to work with 4.0 services MUST use lower case names and

specify the $ prefix.

For GET, PATCH, and PUT requests the following rules apply:

• Resource paths identifying a single entity, a complex type instance, a collection of entities, or a
collection of complex type instances allow $compute, $expand and $select.

• Resource paths identifying a collection allow $filter, $search, $count, $orderby, $skip, and

$top.

• Resource paths ending in /$count allow $filter and $search.

• Resource paths not ending in /$count or /$batch allow $format.

For POST requests to an action URL the return type of the action determines the applicable system query

options that a service MAY support, following the same rules as GET requests.

POST requests to an entity set follow the same rules as GET requests that return a single entity.

System query options SHOULD NOT be applied to a DELETE request.

An OData service may support some or all of the system query options defined. If a data service does not
support a system query option, it MUST reject any request that contains the unsupported option.

The same system query option, irrespective of casing or whether or not it is prefixed with a $, MUST NOT

be specified more than once for any resource.

The semantics of all system query options are defined in the [OData-Protocol] document.

The grammar and syntax rules for system query options are defined in [OData-ABNF].

Dynamic properties can be used in the same way as declared properties. If they are not defined on an
instance, they evaluate to null.

5.1.1 Common Expression Syntax

The following operators, functions, and literals can be used in $filter, $orderby, and $compute

expressions.

The [OData-ABNF] commonExpr syntax rule defines the formal grammar of common expressions.

5.1.1.1 Logical Operators

OData defines a set of logical operators that evaluate to true or false (i.e. a boolCommonExpr as defined

in [OData-ABNF]). Logical operators are typically used to filter a collection of resources.

The syntax rules for the logical operators are defined in [OData-ABNF]. 4.01 Services MUST support
case-insensitive operator names. Clients that want to work with 4.0 services MUST use lower case
operator names.

The six comparison operators can be used with all primitive values except Edm.Binary, Edm.Stream,

and the Edm.Geo types. Edm.Binary, Edm.Stream, and the Edm.Geo types can only be compared to

the null value using the eq and ne operators.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 25 of 55

When applied to operands of numeric types, numeric promotion rules are applied.

The eq, ne, and in operators can be used with collection-valued operands, and the eq and ne operators

can be used with structured operands.

5.1.1.1.1 Equals

The eq operator returns true if the left operand is equal to the right operand, otherwise it returns false.

When applied to operands of entity types, the eq operator returns true if both operands represent the

same entity, or both operands represent null.

When applied to operands of complex types, the eq operator returns true if both operands have the same

structure and same values, or both operands represent null.

When applied to ordered collections, the eq operator returns true if both operands have the same

cardinality and each member of the left operand is equal to the corresponding member of the right
operand.

For services that support comparing unordered collections, the eq operator returns true if both operands

are equal after applying the same ordering on both collections.

Each of the special values null, -INF, and INF is equal to itself, and only to itself.

The special value NaN is not equal to anything, even to itself.

5.1.1.1.2 Not Equals

The ne operator returns true if the left operand is not equal to the right operand, otherwise it returns false.

When applied to operands of entity types, the ne operator returns true if the two operands do not

represent the same entity.

When applied to operands of complex types, the ne operator returns true if the operands do not have the

same structure and same values.

When applied to ordered collections, the ne operator returns true if both operands do not have the same

cardinality or any member of the left operand is not equal to the corresponding member of the right
operand.

For services that support comparing unordered collections, the ne operator returns true if both operands

do not have the same cardinality or do not contain the same members, in any order.

Each of the special values null, -INF, and INF is not equal to any value but itself.

The special value NaN is not equal to anything, even to itself.

The null value is not equal to any value but itself.

5.1.1.1.3 Greater Than

The gt operator returns true if the left operand is greater than the right operand, otherwise it returns false.

The special value INF is greater than any number, and any number is greater than -INF.

The Boolean value true is greater than false.

Services SHOULD order language-dependent strings according to the content-language of the response,
and SHOULD annotate string properties with language-dependent order with the term
Core.IsLanguageDependent, see [OData-VocCore].

If any operand is null, the operator returns false.

5.1.1.1.4 Greater Than or Equal

The ge operator returns true if the left operand is greater than or equal to the right operand, otherwise it

returns false.

See rules for gt and eq for details.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#IsLanguageDependent

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 26 of 55

5.1.1.1.5 Less Than

The lt operator returns true if the left operand is less than the right operand, otherwise it returns false.

The special value -INF is less than any number, and any number is less than INF.

The Boolean value false is less than true.

Services SHOULD order language-dependent strings according to the content-language of the response,
and SHOULD annotate string properties with language-dependent order with the term
Core.IsLanguageDependent, see [OData-VocCore].

If any operand is null, the operator returns false.

5.1.1.1.6 Less Than or Equal

The le operator returns true if the left operand is less than or equal to the right operand, otherwise it

returns false.

See rules for lt and eq for details.

5.1.1.1.7 And

The and operator returns true if both the left and right operands evaluate to true, otherwise it returns

false.

The null value is treated as unknown, so if one operand evaluates to null and the other operand to

false, the and operator returns false. All other combinations with null return null.

5.1.1.1.8 Or

The or operator returns false if both the left and right operands both evaluate to false, otherwise it returns

true.

The null value is treated as unknown, so if one operand evaluates to null and the other operand to

true, the or operator returns true. All other combinations with null return null.

5.1.1.1.9 Not

The not operator returns true if the operand returns false, otherwise it returns false.

The null value is treated as unknown, so not null returns null.

5.1.1.1.10 Has

The has operator returns true if the right operand is an enumeration value whose flag(s) are set on the

left operand.

The null value is treated as unknown, so if one operand evaluates to null, the has operator returns

null.

5.1.1.1.11 In

The in operator returns true if the left operand is a member of the right operand. The right operand

MUST be either a comma-separated list of primitive values, enclosed in parentheses, or a single
expression that resolves to a collection.

5.1.1.1.12 Logical Operator Examples

The following examples illustrate the use and semantics of each of the logical operators.

Example 50: all products with a Name equal to 'Milk'

http://host/service/Products?$filter=Name eq 'Milk'

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#IsLanguageDependent

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 27 of 55

Example 51: all products with a Name not equal to 'Milk'

http://host/service/Products?$filter=Name ne 'Milk'

Example 52: all products with a Name greater than 'Milk':

http://host/service/Products?$filter=Name gt 'Milk'

Example 53: all products with a Name greater than or equal to 'Milk':

http://host/service/Products?$filter=Name ge 'Milk'

Example 54: all products with a Name less than 'Milk':

http://host/service/Products?$filter=Name lt 'Milk'

Example 55: all products with a Name less than or equal to 'Milk':

http://host/service/Products?$filter=Name le 'Milk'

Example 56: all products with the Name 'Milk' that also have a Price less than 2.55:

http://host/service/Products?$filter=Name eq 'Milk' and Price lt 2.55

Example 57: all products that either have the Name 'Milk' or have a Price less than 2.55:

http://host/service/Products?$filter=Name eq 'Milk' or Price lt 2.55

Example 58: all products that do not have a Name that ends with 'ilk':

http://host/service/Products?$filter=not endswith(Name,'ilk')

Example 59: all products whose style value includes Yellow:

http://host/service/Products?$filter=style has Sales.Pattern'Yellow'

Example 60: all products whose name value is ‘Milk’ or ‘Cheese’:

http://host/service/Products?$filter=Name in ('Milk', 'Cheese')

5.1.1.2 Arithmetic Operators

OData defines a set of arithmetic operators that require operands that evaluate to numeric types.
Arithmetic operators are typically used to filter a collection of resources. However, services MAY allow
using arithmetic operators with the $orderby system query option.

If an operand of an arithmetic operator is null, the result is null.

The syntax rules for the arithmetic operators are defined in [OData-ABNF]. 4.01 Services MUST support
case-insensitive operator names. Clients that want to work with 4.0 services MUST use lower case
operator names.

5.1.1.2.1 Addition

The add operator adds the left and right numeric operands.

For operands of type Edm.Decimal the scale of the result is scaleof(A add B) = max(scaleof(A),

scaleof(B)), or variable if any operand has variable scale.

The add operator is also valid for the following time-related operands:

• DateTimeOffset add Duration results in a DateTimeOffset

• Duration add Duration results in a Duration

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 28 of 55

• Date add Duration results in a Date

The rules for time-related operands are defined in [XML-Schema-2], section E.3.3. Specifically, for
adding a duration to a date:

• Convert date to datetime (in any timezone) with a zero time component

• Add/subtract duration

• Convert to date by removing the time and timezone components

Thus, today plus a positive duration smaller than one day is today; today minus a positive duration
smaller than one day is yesterday.

5.1.1.2.2 Subtraction

The sub operator subtracts the right numeric operand from the left numeric operand.

For operands of type Edm.Decimal the scale of the result is scaleof(A sub B) = max(scaleof(A),

scaleof(B)), or variable if any operand has variable scale.

The sub operator is also valid for the following time-related operands:

• DateTimeOffset sub Duration results in a DateTimeOffset

• Duration sub Duration results in a Duration

• DateTimeOffset sub DateTimeOffset results in a Duration

• Date sub Duration results in a Date

• Date sub Date results in a Duration

The rules for time-related operands are defined in [XML-Schema-2], section E.3.3. Specifically for
subtracting a duration from a date see the preceding section.

5.1.1.2.3 Negation

The negation operator, represented by a minus (-) sign, changes the sign of its numeric or Duration

operand.

5.1.1.2.4 Multiplication

The mul operator multiplies the left and right numeric operands. The mul operator is also valid for

multiplying a Duration value with a numeric value.

For operands of type Edm.Decimal the scale of the result is scaleof(A mul B) = scaleof(A) + scaleof(B),

floating if any operand has floating scale, or else variable if any operand has variable scale.

5.1.1.2.5 Division

The div and divby operators divide the left numeric operand by the right numeric operand. They are

also valid for dividing a Duration value by a numeric value.

If the left operand is of type Edm.Decimal with floating scale, Edm.Double, or Edm.Single, then

positive div zero returns INF, negative div zero returns -INF, and zero div zero returns NaN. For all

other types the request fails.

For operands of type Edm.Decimal the result is computed with maximal decimal scale. If any operand

has floating scale, the result has floating scale, else if any operand has variable scale, the result has
variable scale. Otherwise the resulting scale is service-specific, and clients can use cast to force the

result to a specific scale.

The div and divby operators differ in their handling of integers. If both operands to div are of an

integer type, the result is an integer representing the whole number of times the right operator fits into the
left operator. The divby operator, on the other hand, promotes both operands to decimal before

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 29 of 55

computing the result, may yield a fractional result, and does not fail for divby zero, returning -INF, INF,

or NaN depending on the sign of the left operand.

5.1.1.2.6 Modulo

The mod operator returns the remainder when the left numeric operand is divided by the right numeric

operand. The sign of the result is the same as the sign of the left operand. If the right operand is zero,
the request fails.

For operands of type Edm.Decimal the scale of the result is scaleof(A mod B) = max(scaleof(A),

scaleof(B)), or variable if any operand has variable scale.

5.1.1.2.7 Arithmetic Operator Examples

The following examples illustrate the use and semantics of each of the Arithmetic operators.

Example 61: all products with a Price of 2.55:

http://host/service/Products?$filter=Price add 2.45 eq 5.00

Example 62: all products with a Price of 2.55:

http://host/service/Products?$filter=Price sub 0.55 eq 2.00

Example 63: all products with a Price of 2.55:

http://host/service/Products?$filter=Price mul 2.0 eq 5.10

Example 64: all products with a Price of 2.55:

http://host/service/Products?$filter=Price div 2.55 eq 1

Example 65: all products with an integer Rating value of 4 or 5:

http://host/service/Products?$filter=Rating div 2 eq 2

Example 66: all products with an integer Rating value of 5:

http://host/service/Products?$filter=Rating divby 2 eq 2.5

Example 67: all products with a Rating exactly divisible by 5:

http://host/service/Products?$filter=Rating mod 5 eq 0

5.1.1.3 Grouping

The Grouping operator (open and close parenthesis “()”) controls the evaluation order of an

expression. The Grouping operator returns the expression grouped inside the parenthesis.

Example 68: all products because 9 mod 3 is 0

http://host/service/Products?$filter=(4 add 5) mod (4 sub 1) eq 0

5.1.1.4 Canonical Functions

In addition to operators, a set of functions is also defined for use with the $compute, $filter or

$orderby system query options, or in parameter alias values. The following sections describe the

available functions. Note: ISNULL or COALESCE operators are not defined. Instead, OData defines a
null literal that can be used in comparisons.

If a parameter of a canonical function is null, the function returns null.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 30 of 55

The syntax rules for all functions are defined in [OData-ABNF]. 4.01 Services MUST support case-
insensitive canonical function names. Clients that want to work with 4.0 services MUST use lower case
canonical function names.

5.1.1.5 String and Collection Functions

5.1.1.5.1 concat

The concat function has three overloads, with the following signatures:

Edm.String concat(Edm.String,Edm.String)

Collection concat(Collection,Collection)

OrderedCollection concat(OrderedCollection,OrderedCollection)

The concat function with string parameter values returns a string that appends the second parameter

string value to the first.

The concat function with collection parameter values returns a collection that appends all items of the
second collection to the first. If both collections are ordered, the result is also ordered.

The concatMethodCallExpr syntax rule defines how the concat function is invoked.

Example 69: all customers from Berlin, Germany

http://host/service/Customers?$filter=concat(concat(City,', '),Country) eq

'Berlin, Germany'

5.1.1.5.2 contains

The contains function has two overloads, with the following signatures:

Edm.Boolean contains(Edm.String,Edm.String)

Edm.Boolean contains(OrderedCollection,OrderedCollection)

The contains function with string parameter values returns true if the second string is a substring of the

first string, otherwise it returns false. String comparison is case-sensitive, case-insensitive comparison
can be achieved in combination with tolower or toupper.

The contains function with ordered collection parameter values returns true if the first collection can be

transformed into the second collection by removing zero or more items from the beginning or the end of
the first collection.

The containsMethodCallExpr syntax rule defines how the contains function is invoked.

Example 70: all customers with a CompanyName that contains 'Alfreds'

http://host/service/Customers?$filter=contains(CompanyName,'Alfreds')

5.1.1.5.3 endswith

The endswith function has two overloads, with the following signatures:

Edm.Boolean endswith(Edm.String,Edm.String)

Edm.Boolean endswith(OrderedCollection,OrderedCollection)

The endswith function with string parameter values returns true if the first string ends with the second

string, otherwise it returns false. String comparison is case-sensitive, case-insensitive comparison can be
achieved in combination with tolower or toupper.

The endswith function with ordered collection parameter values returns true if the first collection can be

transformed into the second collection by removing zero or more items from the beginning of the first
collection.

The endsWithMethodCallExpr syntax rule defines how the endswith function is invoked.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 31 of 55

Example 71: all customers with a CompanyName that ends with 'Futterkiste'

http://host/service/Customers?$filter=endswith(CompanyName,'Futterkiste')

5.1.1.5.4 indexof

The indexof function has two overloads, with the following signatures:

Edm.Int32 indexof(Edm.String,Edm.String)

Edm.Int32 indexof(OrderedCollection,OrderedCollection)

The indexof function with string parameter values returns the zero-based character position of the first

occurrence of the second string in the first string, or -1 if the first string does not contain the second string.
String comparison is case-sensitive, case-insensitive comparison can be achieved in combination with
tolower or toupper.

The indexof function with ordered collection parameter values returns the zero-based index of the first

occurrence of the second collection in the first collection, or -1 if the first collection does not contain the
second collection.

The indexOfMethodCallExpr syntax rule defines how the indexof function is invoked.

Example 72: all customers with a CompanyName containing 'lfreds' starting at the second character

http://host/service/Customers?$filter=indexof(CompanyName,'lfreds') eq 1

5.1.1.5.5 length

The length function has two overloads, with the following signatures:

Edm.Int32 length(Edm.String)

Edm.Int32 length(Collection)

The length function with a string parameter value returns the number of characters in the string.

The length function with a collection parameter value returns the number of itens in the collection.

The lengthMethodCallExpr syntax rule defines how the length function is invoked.

Example 73: all customers with a CompanyName that is 19 characters long

http://host/service/Customers?$filter=length(CompanyName) eq 19

5.1.1.5.6 startswith

The startswith function has two overloads, with the following signatures:

Edm.Boolean startswith(Edm.String,Edm.String)

Edm.Boolean startswith(Collection,Collection)

The startswith function with string parameter values returns true if the first string starts with the

second string, otherwise it returns false. String comparison is case-sensitive, case-insensitive comparison
can be achieved in combination with tolower or toupper.

The startswith function with ordered collection parameter values returns true if the first collection can

be transformed into the second collection by removing zero or more items from the end of the first
collection.

The startsWithMethodCallExpr syntax rule defines how the startswith function is invoked.

Example 74: all customers with a CompanyName that starts with 'Alfr'

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 32 of 55

http://host/service/Customers?$filter=startswith(CompanyName,'Alfr')

5.1.1.5.7 substring

The substring function has four overloads, with the following signatures:

Edm.String substring(Edm.String,Edm.Int32)

Edm.String substring(Edm.String,Edm.Int32,Edm.Int32)

OrderedCollection substring(OrderedCollection,Edm.Int32)

OrderedCollection substring(OrderedCollection,Edm.Int32,Edm.Int32)

The two-argument substring function with string parameter values returns a substring of the first

parameter string value, starting at the Nth character and finishing at the last character (where N is the
second parameter integer value). The three-argument substring function with string parameter values

returns a substring of the first parameter string value identified by selecting up to M characters starting at
the Nth character (where N is the second parameter integer value and M is the third parameter integer
value).

The two-argument substring function with ordered collection parameter values returns an ordered

collection consisting of all items of the first collection starting at the Nth item and finishing at the last item.
The three-argument substring function with ordered collection parameter values returns an ordered

collection consisting of up to M items of the first collection starting at the Nth item (where N is the second
parameter integer value and M is the third parameter integer value).

The start index N is zero-based.

If the start index N is larger than the length of the string/collection, an empty string/collection is returned.

If the length M is larger than the length of the remaining string/collection starting at the Nth character/item,
as many characters/items as are available are returned.

A negative length M is a bad request.

A negative start index N, if supported, returns a string/collection starting N characters/items before the
end of the string/collection.

The substringMethodCallExpr syntax rule defines how the substring function is invoked.

Example 75: all customers with a CompanyName of 'lfreds Futterkiste' once the first character has been

removed

http://host/service/Customers?$filter=substring(CompanyName,1) eq 'lfreds

Futterkiste'

Example 76: all customers with a CompanyName that has 'lf' as the second and third characters, e.g, 'Alfreds

Futterkiste'

http://host/service/Customers?$filter=substring(CompanyName,1,2) eq 'lf'

5.1.1.6 Collection Functions

5.1.1.6.1 hassubset

The hassubset function has the following signature:

Edm.Boolean hassubset(Collection, Collection)

The hassubset function returns true if the first collection can be transformed into the second collection

by reordering and/or removing zero or more items. The hasSubsetMethodCallExpr syntax rule

defines how the hassubset function is invoked.

Example 77: hassubset expressions that return true

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 33 of 55

hassubset([4,1,3],[4,1,3])

hassubset([4,1,3],[1,3,4])

hassubset([4,1,3],[3,1])

hassubset([4,1,3],[4,3])

hassubset([4,1,3,1],[1,1])

Example 78: hassubset expression that returns false: 1 appears only once in the left operand

hassubset([1,2],[1,1,2])

5.1.1.6.2 hassubsequence

The hassubsequence function has the following signature:

Edm.Boolean hassubsequence(OrderedCollection,OrderedCollection)

The hassubsequence function returns true if the first collection can be transformed into the second

collection by removing zero or more items. The hasSubsequenceMethodCallExpr syntax rule defines

how the hassubsequence function is invoked.

Example 79: hassubsequence expressions that return true

hassubsequence([4,1,3],[4,1,3])

hassubsequence([4,1,3],[4,1])

hassubsequence([4,1,3],[4,3])

hassubsequence([4,1,3,1],[1,1])

Example 80: hassubsequence expressions that return false

hassubsequence([4,1,3],[1,3,4])

hassubsequence([4,1,3],[3,1])

hassubsequence([1,2],[1,1,2])

5.1.1.7 String Functions

5.1.1.7.1 matchesPattern

The matchesPattern function has the following signature:

Edm.Boolean matchesPattern(Edm.String,Edm.String)

The second parameter MUST evaluate to a string containing an [ECMAScript] (JavaScript) regular
expression. The matchesPattern function returns true if the first parameter evaluates to a string

matching that regular expression, using syntax and semantics of [ECMAScript] regular expressions,
otherwise it returns false.

Example 81: all customers with a CompanyName that match the (percent-encoded) regular expression ^A.*e$

http://host/service/Customers?$filter=matchesPattern(CompanyName,'%5EA.*e$')

5.1.1.7.2 tolower

The tolower function has the following signature:

Edm.String tolower(Edm.String)

The tolower function returns the input parameter string value with all uppercase characters converted to

lowercase according to Unicode rules. The toLowerMethodCallExpr syntax rule defines how the

tolower function is invoked.

Example 82: all customers with a CompanyName that equals 'alfreds futterkiste' once any uppercase

characters have been converted to lowercase

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 34 of 55

http://host/service/Customers?$filter=tolower(CompanyName) eq 'alfreds

futterkiste'

5.1.1.7.3 toupper

The toupper function has the following signature:

Edm.String toupper(Edm.String)

The toupper function returns the input parameter string value with all lowercase characters converted to

uppercase according to Unicode rules. The toUpperMethodCallExpr syntax rule defines how the

toupper function is invoked.

Example 83: all customers with a CompanyName that equals 'ALFREDS FUTTERKISTE' once any lowercase

characters have been converted to uppercase

http://host/service/Customers?$filter=toupper(CompanyName) eq 'ALFREDS

FUTTERKISTE'

5.1.1.7.4 trim

The trim function has the following signature:

Edm.String trim(Edm.String)

The trim function returns the input parameter string value with all leading and trailing whitespace

characters, according to Unicode rules, removed. The trimMethodCallExpr syntax rule defines how

the trim function is invoked.

Example 84: all customers with a CompanyName without leading or trailing whitespace characters

http://host/service/Customers?$filter=trim(CompanyName) eq CompanyName

5.1.1.8 Date and Time Functions

5.1.1.8.1 date

The date function has the following signature:

Edm.Date date(Edm.DateTimeOffset)

The date function returns the date part of the DateTimeOffset parameter value, evaluated in the time

zone of the DateTimeOffset parameter value.

5.1.1.8.2 day

The day function has the following signatures:

Edm.Int32 day(Edm.Date)

Edm.Int32 day(Edm.DateTimeOffset)

The day function returns the day component Date or DateTimeOffset parameter value, evaluated in

the time zone of the DateTimeOffset parameter value. The dayMethodCallExpr syntax rule defines

how the day function is invoked.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize

the values to some common time zone (i.e. UTC) MUST fail evaluation of the day function for literal

Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 85: all employees born on the 8th day of a month

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 35 of 55

http://host/service/Employees?$filter=day(BirthDate) eq 8

5.1.1.8.3 fractionalseconds

The fractionalseconds function has the following signatures:

Edm.Decimal fractionalseconds(Edm.DateTimeOffset)

Edm.Decimal fractionalseconds(Edm.TimeOfDay)

The fractionalseconds function returns the fractional seconds component of the DateTimeOffset

or TimeOfDay parameter value as a non-negative decimal value less than 1. The

fractionalsecondsMethodCallExpr syntax rule defines how the fractionalseconds function is

invoked.

Example 86: all employees born less than 100 milliseconds after a full second of any minute of any hour on any day

http://host/service/Employees?$filter=fractionalseconds(BirthDate) lt 0.1

5.1.1.8.4 hour

The hour function has the following signatures:

Edm.Int32 hour(Edm.DateTimeOffset)

Edm.Int32 hour(Edm.TimeOfDay)

The hour function returns the hour component (0 to 23) of the DateTimeOffset or TimeOfDay

parameter value, evaluated in the time zone of the DateTimeOffset parameter value. The

hourMethodCallExpr syntax rule defines how the hour function is invoked.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize

the values to some common time zone (i.e. UTC) MUST fail evaluation of the hour function for literal

Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 87: all employees born in hour 4, between 04:00 (inclusive) and 05:00 (exclusive)

http://host/service/Employees?$filter=hour(BirthDate) eq 4

5.1.1.8.5 maxdatetime

The maxdatetime function has the following signature:

Edm.DateTimeOffset maxdatetime()

The maxdatetime function returns the latest possible point in time as a DateTimeOffset value.

5.1.1.8.6 mindatetime

The mindatetime function has the following signature:

Edm.DateTimeOffset mindatetime()

The mindatetime function returns the earliest possible point in time as a DateTimeOffset value.

5.1.1.8.7 minute

The minute function has the following signatures:

Edm.Int32 minute(Edm.DateTimeOffset)

Edm.Int32 minute(Edm.TimeOfDay)

The minute function returns the minute component (0 to 59) of the DateTimeOffset or TimeOfDay

parameter value, evaluated in the time zone of the DateTimeOffset parameter value. The

minuteMethodCallExpr syntax rule defines how the minute function is invoked.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 36 of 55

Example 88: all employees born in minute 40 of any hour on any day

http://host/service/Employees?$filter=minute(BirthDate) eq 40

5.1.1.8.8 month

The month function has the following signatures:

Edm.Int32 month(Edm.Date)

Edm.Int32 month(Edm.DateTimeOffset)

The month function returns the month component of the Date or DateTimeOffset parameter value,

evaluated in the time zone of the DateTimeOffset parameter value. The monthMethodCallExpr

syntax rule defines how the month function is invoked.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize

the values to some common time zone (i.e. UTC) MUST fail evaluation of the month function for literal

Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 89: all employees born in May

http://host/service/Employees?$filter=month(BirthDate) eq 5

5.1.1.8.9 now

The now function has the following signature:

Edm.DateTimeOffset now()

The now function returns the current point in time (date and time with time zone) as a DateTimeOffset

value.

Services are free to choose the time zone for the current point, e.g. UTC. Services that are unable to
preserve the offset of Edm.DateTimeOffset values and instead normalize the values to some common

time zone SHOULD return a value in the normalized time zone (i.e., UTC).

5.1.1.8.10 second

The second function has the following signatures:

Edm.Int32 second(Edm.DateTimeOffset)

Edm.Int32 second(Edm.TimeOfDay)

The second function returns the second component (0 to 59 for regular seconds, and 60 for leap

seconds, without the fractional part) of the DateTimeOffset or TimeOfDay parameter value. The

secondMethodCallExpr syntax rule defines how the second function is invoked.

Example 90: all employees born in second 40 of any minute of any hour on any day

http://host/service/Employees?$filter=second(BirthDate) eq 40

5.1.1.8.11 time

The time function has the following signature:

Edm.TimeOfDay time(Edm.DateTimeOffset)

The time function returns the time part of the DateTimeOffset parameter value, evaluated in the time

zone of the DateTimeOffset parameter value.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize

the values to some common time zone (i.e. UTC) MUST fail evaluation of the time function for literal

Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 37 of 55

5.1.1.8.12 totaloffsetminutes

The totaloffsetminutes function has the following signature:

Edm.Int32 totaloffsetminutes(Edm.DateTimeOffset)

The totaloffsetminutes function returns the signed number of minutes in the time zone offset part of

the DateTimeOffset parameter value, evaluated in the time zone of the DateTimeOffset parameter

value.

5.1.1.8.13 totalseconds

The totalseconds function has the following signature:

Edm.Decimal totalseconds(Edm.Duration)

The totalseconds function returns the duration of the value in total seconds, including fractional

seconds.

5.1.1.8.14 year

The year function has the following signatures:

Edm.Int32 year(Edm.Date)

Edm.Int32 year(Edm.DateTimeOffset)

The year function returns the year component of the Date or DateTimeOffset parameter value,

evaluated in the time zone of the DateTimeOffset parameter value. The yearMethodCallExpr

syntax rule defines how the year function is invoked.

Services that are unable to preserve the offset of Edm.DateTimeOffset values and instead normalize

the values to some common time zone (i.e. UTC) MUST fail evaluation of the year function for literal

Edm.DateTimeOffset values that are not stated in the time zone of the normalized values.

Example 91: all employees born in 1971

http://host/service/Employees?$filter=year(BirthDate) eq 1971

5.1.1.9 Arithmetic Functions

5.1.1.9.1 ceiling

The ceiling function has the following signatures

Edm.Double ceiling(Edm.Double)

Edm.Decimal ceiling(Edm.Decimal)

The ceiling function rounds the input numeric parameter up to the nearest numeric value with no

decimal component. The ceilingMethodCallExpr syntax rule defines how the ceiling function is

invoked.

Example 92: all orders with freight costs that round up to 32

http://host/service/Orders?$filter=ceiling(Freight) eq 32

5.1.1.9.2 floor

The floor function has the following signatures

Edm.Double floor(Edm.Double)

Edm.Decimal floor(Edm.Decimal)

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 38 of 55

The floor function rounds the input numeric parameter down to the nearest numeric value with no

decimal component. The floorMethodCallExpr syntax rule defines how the floor function is

invoked.

Example 93: all orders with freight costs that round down to 32

http://host/service/Orders?$filter=floor(Freight) eq 32

5.1.1.9.3 round

The round function has the following signatures

Edm.Double round(Edm.Double)

Edm.Decimal round(Edm.Decimal)

The round function rounds the input numeric parameter to the nearest numeric value with no decimal

component. The mid-point between two integers is rounded away from zero, i.e. 0.5 is rounded to 1
and -0.5 is rounded to -1. The roundMethodCallExpr syntax rule defines how the round function is

invoked.

Example 94: all orders with freight costs that round to 32

http://host/service/Orders?$filter=round(Freight) eq 32

5.1.1.10 Type Functions

5.1.1.10.1 cast

The cast function has the following signatures:

type cast(type)

type cast(expression,type)

The single parameter cast function returns the current instance cast to the type specified. The two-

parameter cast function returns the object referred to by the expression cast to the type specified.

The cast function follows these assignment rules:

1. The null value can be cast to any type.

2. Primitive types are cast to Edm.String or a type definition based on it by using the literal

representation used in payloads, and WKT (well-known text) format for Geo types, see rules

fullCollectionLiteral, fullLineStringLiteral, fullMultiPointLiteral,

fullMultiLineStringLiteral, fullMultiPolygonLiteral, fullPointLiteral, and

fullPolygonLiteral in [OData-ABNF]. The cast fails if the target type specifies an

insufficient MaxLength.

3. Edm.String, or a type definition based on Edm.String, can be cast to a primitive type if the

string contains a literal representation for the target type.

4. Numeric primitive types are cast to each other with appropriate rounding. The cast fails if the
integer part doesn't fit into the target type.

5. Edm.DateTimeOffset, Edm.Duration, and Edm.TimeOfDay values can be cast to the same

type with a different precision with appropriate rounding.

6. Non-Unicode string values can be cast to a Unicode string type definition. Unicode string values
can be cast to a non-Unicode string type definition if the Unicode string only contains ASCII
characters.

7. Structured types are assignable to their type or a direct or indirect base type.

8. Collections are cast item by item.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 39 of 55

9. Enumeration types are cast to integer types based on the numeric value of the enumeration
member. The cast fails if the numeric value is not in the value range of the target type.

10. Integer types are cast to enumeration types based on the numeric value of the enumeration
members of the target type. For non-flag enumeration types the cast fails if there is no
enumeration member with the same numeric value as the integer value. For flag enumeration
types the cast fails if the integer value is not in the value range of the underlying integer type of
the enumeration type.

11. String values containing a representation of a date-time value according to [XML-Schema-2],
section 3.3.7 dateTime, can be cast to Edm.DateTimeOffset. If the string value does not

contain a time-zone offset, it is treated as UTC.

The cast function is optional for primitive values (first five rules) and up-casts (seventh rule).

If the cast fails, the cast function returns null.

5.1.1.10.2 isof

The isof function has the following signatures

Edm.Boolean isof(type)

Edm.Boolean isof(expression,type)

The single parameter isof function returns true if the current instance is assignable to the type specified,

according to the assignment rules for the cast function, otherwise it returns false.

The two parameter isof function returns true if the object referred to by the expression is assignable to

the type specified, according to the same rules, otherwise it returns false.

The isofExpr syntax rule defines how the isof function is invoked.

Example 95: orders that are also BigOrders

http://host/service/Orders?$filter=isof(NorthwindModel.BigOrder)

http://host/service/Orders?$filter=isof($it,NorthwindModel.BigOrder)

Example 96: orders of a customer that is a VIPCustomer

http://host/service/Orders?$filter=isof(Customer,NorthwindModel.VIPCustomer)

5.1.1.11 Geo Functions

5.1.1.11.1 geo.distance

The geo.distance function has the following signatures:

Edm.Double geo.distance(Edm.GeographyPoint,Edm.GeographyPoint)

Edm.Double geo.distance(Edm.GeometryPoint,Edm.GeometryPoint)

The geo.distance function returns the shortest distance between the two points in the coordinate

reference system signified by the two points’ SRIDs.

5.1.1.11.2 geo.intersects

The geo.intersects function has the following signatures:

Edm.Boolean geo.intersects(Edm.GeographyPoint,Edm.GeographyPolygon)

Edm.Boolean geo.intersects(Edm.GeometryPoint,Edm.GeometryPolygon)

The geo.intersects function returns true if the specified point lies within the interior or on the

boundary of the specified polygon, otherwise it returns false.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 40 of 55

5.1.1.11.3 geo.length

The geo.length function has the following signatures:

Edm.Double geo.length(Edm.GeographyLineString)

Edm.Double geo.length(Edm.GeometryLineString)

The geo.length function returns the total length of its line string parameter in the coordinate reference

system signified by its SRID.

5.1.1.12 Conditional Functions

5.1.1.12.1 case

The case function has the following signature:

expression case(Edm.Boolean:expression, ..., Edm.Boolean:expression)

Each parameter is a pair of expressions separated by a colon (:), where the first expression – the

condition – MUST be a Boolean expression, and the second expression – the result – may evaluate to
any type.

The case function evaluates the condition in each pair, starting with the leftmost pair, and stops as soon
as a condition evaluates to true. It then returns the value of the result of this pair. It returns null if none

of the conditions in any pair evaluates to true. Clients can specify a last pair whose condition is true to

get a non-null “default/else/otherwise” result.

Clients SHOULD ensure that the results in all pairs are compatible. If all results are of the same type, the
type of the case expression is of that type. If all results are of numeric type, then the type of the case

expression is a numeric type capable of representing any of these expressions according to standard
type promotion rules.

Services MAY support case expressions containing parameters of incompatible types, in which case the

case expression is treated as Edm.Untyped and its value has the type of the parameter expression

selected by the case statement.

Example 97: compute signum(X)

$compute=case(X gt 0:1,X lt 0:-1,true:0) as SignumX

5.1.1.13 Lambda Operators

OData defines two operators that evaluate a Boolean expression on a collection. Both must be
prepended with a navigation path that identifies a collection.

4.01 Services MUST support case-insensitive lambda operator names. Clients that want to work with 4.0
services MUST use lower case lambda operator names.

The argument of a lambda operator is a case-sensitive lambda variable name followed by a colon (:) and

a Boolean expression that uses the lambda variable name to refer to properties of members of the
collection identified by the navigation path.

If the name chosen for the lambda variable matches a property name of the current resource referenced
by the resource path, the lambda variable takes precedence. Clients can prefix properties of the current
resource referenced by the resource path with $it.

Other path expressions in the Boolean expression neither prefixed with the lambda variable nor $it are

evaluated in the scope of the collection instances at the origin of the navigation path prepended to the
lambda operator.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 41 of 55

5.1.1.13.1 any

The any operator applies a Boolean expression to each member of a collection and returns true if and

only if the expression is true for any member of the collection, otherwise it returns false. This implies that
the any operator always returns false for an empty collection.

The any operator can be used without an argument expression. This short form returns false if and only if

the collection is empty.

Example 98: all Orders that have any Items with a Quantity greater than 100

http://host/service/Orders?$filter=Items/any(d:d/Quantity gt 100)

Example 99: all customers having an order with a deviating shipping address. The Address in the argument

expression is evaluated in the scope of the Customers collection.

http://host/service/Customers?$filter=Orders/any(o:o/ShippingAddress ne

Address)

Example 100: all categories along with their products used in some order with a deviating unit price. The unprefixed
UnitPrice in the argument expression is evaluated in the scope of the expanded Products.

http://host/service/Categories?$expand=Products($filter=OrderItems/any(oi:oi/U

nitPrice ne UnitPrice)

5.1.1.13.2 all

The all operator applies a Boolean expression to each member of a collection and returns true if the

expression is true for all members of the collection, otherwise it returns false. This implies that the all

operator always returns true for an empty collection.

The all operator cannot be used without an argument expression.

Example 101: all Orders that have only Items with a Quantity greater than 100

http://host/service/Orders?$filter=Items/all(d:d/Quantity gt 100)

5.1.1.14 Literals

5.1.1.14.1 Primitive Literals

Primitive literals can appear in the resource path as key property values, and in the query part, for
example, as operands in $filter expressions. They are represented according to the

primitiveLiteral rule in [OData-ABNF].

Example 102: expressions using primitive literals

NullValue eq null

TrueValue eq true

FalseValue eq false

Custom.Base64UrlDecode(binary'T0RhdGE') eq 'OData'

IntegerValue lt -128

DoubleValue ge 0.31415926535897931e1

SingleValue eq INF

DecimalValue eq 34.95

StringValue eq 'Say Hello,then go'

DateValue eq 2012-12-03

DateTimeOffsetValue eq 2012-12-03T07:16:23Z

DurationValue eq duration'P12DT23H59M59.999999999999S'

DurationValue eq 'P12DT23H59M59.999999999999S'

TimeOfDayValue eq 07:59:59.999

GuidValue eq 01234567-89ab-cdef-0123-456789abcdef

Int64Value eq 0

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 42 of 55

ColorEnumValue eq Sales.Pattern'Yellow',

ColorEnumValue eq 'Yellow',

geo.distance(Location,geography'SRID=0;Point(142.1 64.1)')

Duration literals in OData 4.0 required prefixing with “duration”. Enumeration literals in OData 4.0 required
prefixing with the qualified type name of the enumeration.

In OData 4.01, services MUST support duration and enumeration literals with or without the type prefix.
OData clients that want to operate across OData 4.0 and OData 4.01 services should always include the
prefix for duration and enumeration types.

5.1.1.14.2 Complex and Collection Literals

Complex literals and collection literals in URLs are represented as JSON objects and arrays according to
the arrayOrObject rule in [OData-ABNF]. Such literals MUST NOT appear in the path portion of the

URL but can be passed to bound functions and function imports in path segments by using parameter
aliases.

Object member values and array items can be expressions, including other objects and arrays, arithmetic
expressions, property names, and of course primitive values.

Note that the special characters {, }, [,], and " MUST be percent-encoded in URLs although some

browsers will accept and pass them on unencoded.

Example 103: collection of string literals

http://host/service/ProductsByColors(colors=@c)?@c=["red","green"]

Example 104: check whether a pair of properties has one of several possible pair values

$filter=[FirstName,LastName] in [["John","Doe"],["Jane","Smith"]]

5.1.1.14.3 null

The null literal can be used to compare a value to null, or to pass a null value to a function.

5.1.1.14.4 $it

The $it literal can be used in expressions to refer to the current instance of the resource identified by the

resource path. For a collection-valued resource the current instance is the instance currently being
evaluated by the system query option. For a single-valued resource it is the resource itself.

It allows comparing properties of related entities to properties of the current instance in expressions within
lambda operators or in $filter expressions nested within $expand or $select.

It also can be used in $filter and $orderby expressions on collections of primitive types to refer to

the current primitive instance, but using the $this literal is preferred as $this can also be used in

$filter and $orderby expressions nested within $select.

Note: property names and property paths in $filter expressions nested within $expand are evaluated

in the context of the declared type of the expanded navigation property, so property names and property
paths for the current instance of the collection identified by the resource path MUST be prefixed with
$it/.

The $it literal can also be used as a path prefix to invoke a bound function overload on the current

instance within an expression. Function names without a path prefix refer to an unbound function
overload.

Example 105: email addresses ending with .com assuming EmailAddresses is a collection of strings

http://host/service/Customers(1)/EmailAddresses?$filter=endswith($it,'.com')

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 43 of 55

Example 106: customers along with their orders that shipped to the same city as the customer's address. The nested
filter expression is evaluated in the context of Orders; $it allows referring to values in the outer context of

Customers.

http://host/service/Customers?$expand=Orders($filter=$it/Address/City eq

ShipTo/City)

Example 107: products with at least 10 positive reviews. Model.PositiveReviews is a function bound to

Model.Product returning a collection of reviews.

http://host/service/Products?$filter=$it/Model.PositiveReviews()/$count ge 10

5.1.1.14.5 $root

The $root literal can be used in expressions to refer to resources of the same service. It can be used as

a single-valued expression or within complex or collection literals.

Example 108: all employees with the same last name as employee A1235

http://host/service/Employees?$filter=LastName eq

$root/Employees('A1245')/LastName

Example 109: products ordered by a set of customers, where the set of customers is passed as a JSON array
containing the resource paths from $root to each customer.

http://host/service/ProductsOrderedBy(Customers=@c)?@c=[$root/Customers('ALFKI

'),$root/Customers('BLAUS')]

5.1.1.14.6 $this

The $this literal can be used in $filter and $orderby expressions nested within $expand and

$select for collection-valued properties and navigation properties. It refers to the current instance of the

collection.

Example 110: select only email addresses ending with .com

http://host/service/Customers?$select=EmailAddresses($filter=endswith($this,'.

com'))

5.1.1.15 Path Expressions

Properties and navigation properties of the entity type of the set of resources that are addressed by the
request URL can be used as operands or function parameters, as shown in the preceding examples.

Properties of complex properties can be used via the same syntax as in resource paths, i.e. by specifying
the name of a complex property, followed by a forward slash (/) and the name of a property of the

complex property, and so on,

Properties and navigation properties of entities related with a target cardinality 0..1 or 1 can be used by
specifying the navigation property, followed by a forward slash (/) and the name of a property of the

related entity, and so on.

If a complex property is null, or no entity is related (in case of target cardinality 0..1), its value, and the

values of its components, are treated as null.

Example 111: similar behavior whether HeadquarterAddress is a nullable complex type or a nullable navigation

property

Companies(1)/HeadquarterAddress/Street

To access properties of derived types, the property name MUST be prefixed with the qualified name of
the derived type on which the property is defined, followed by a forward slash (/), see addressing derived

types. If the current instance is not of the specified derived type, the path expression returns null.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 44 of 55

If the property or navigation property is not defined for the type of the resource and that type supports
dynamic properties or navigation properties, then the property or navigation property is treated as null for
all instances on which it has no value.

If the property or navigation property is not defined for the type of the resource and that type does not
support dynamic properties or navigation properties, then the request may be considered malformed.

5.1.1.16 Annotation Values in Expressions

Services MAY support the use of annotation values as operands or function parameters, and they MAY
advertise this by annotating the entity container with term
Capabilities.AnnotationValuesInQuerySupported, see [OData-VocCap].

Annotation values are referenced by the annotation name which consists of an at sign (@) followed by the

qualified term name, optionally followed by a percent-encoded hash (%23) and an annotation qualifier.

The annotation name can be prefixed with a path expression leading to the annotated resource or
property.

If an annotation is not applied to the resource or property, then its value, and the values of its
components, are treated as null.

Example 112: Return Products that have prices in Euro

http://host/service/Products?$filter=Price/@Measures.Currency eq 'EUR'

Example 113: Return Employees that have any error messages in the Core.Messages annotation

http://host/service/Employees?$filter=@Core.Messages/any(m:m/severity eq

'error')

Services MAY additionally support the use of the unqualified term name by defining one or more default
namespaces through the Core.DefaultNamespace annotation term defined in [OData-VocCore]. For

more information on default namespaces, see Default Namespaces in [OData-Protocol]. This short
notation however uses the same name pattern as parameter aliases. If a query option is specified as a
parameter alias, then any occurrence of the parameter alias name in an expression MUST evaluate to the
parameter alias value and MUST NOT evaluate to the annotation value of an identical unqualified term
name.

5.1.1.17 Operator Precedence

OData services MUST use the following operator precedence for supported operators when evaluating
$filter and $orderby expressions. Operators are listed by category in order of precedence from

highest to lowest. Operators in the same category have equal precedence:

Group Operator Description ABNF Expression

Grouping () Precedence grouping parenExpr

boolParenExpr

Primary / Navigation firstMemberExpr

memberExpr

 has Enumeration Flags hasExpr

 in Is a member of inExpr

 xxx() Method Call methodCallExpr

boolMethodCallExpr

functionExpr

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Capabilities.V1.md#AnnotationValuesInQuerySupported
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#Messages
https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#DefaultNamespace

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 45 of 55

Group Operator Description ABNF Expression

Unary - Negation negateExpr

 not Logical Negation notExpr

 cast() Type Casting castExpr

Multiplicative mul Multiplication mulExpr

 div Division divExpr

 divby Decimal Division divbyExpr

 mod Modulo modExpr

Additive add Addition addExpr

 sub Subtraction subExpr

Relational gt Greater Than gtExpr

 ge Greater than or Equal geExpr

 lt Less Than ltExpr

 le Less than or Equal leExpr

 isof Type Testing isofExpr

Equality eq Equal eqExpr

 ne Not Equal neExpr

Conditional AND and Logical And andExpr

Conditional OR or Logical Or orExpr

5.1.1.18 Numeric Promotion

Services SHOULD NOT require explicit cast operations between numeric types used in comparison
expressions. Wherever possible, such comparisons should be performed using underlying types of
sufficient size.

Services MAY support numeric promotion for arithmetic operations or when comparing two operands of
comparable types by applying the following rules, in order:

• If either operand is Edm.Double, the other operand is converted to type Edm.Double.

• Otherwise, if either operand is Edm.Single, the other operand is converted to type

Edm.Single.

• Otherwise, if either operand is of type Edm.Decimal, the other operand is converted to

Edm.Decimal.

• Otherwise, if either operand is Edm.Int64, the other operand is converted to type Edm.Int64.

• Otherwise, if either operand is Edm.Int32, the other operand is converted to type Edm.Int32.

• Otherwise, if either operand is Edm.Int16, the other operand is converted to type Edm.Int16.

Each of these promotions uses the same semantics as a castExpression to promote an operand to

the target type.

OData does not define an implicit conversion between string and numeric types.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 46 of 55

5.1.2 System Query Option $filter

The $filter system query option allows clients to filter a collection of resources that are addressed by a

request URL. The expression specified with $filter is evaluated for each resource in the collection,

and only items where the expression evaluates to true are included in the response. Resources for which
the expression evaluates to false or to null, or which reference properties that are unavailable due to
permissions, are omitted from the response.

The [OData-ABNF] filter syntax rule defines the formal grammar of the $filter query option.

5.1.3 System Query Option $expand

The $expand system query option specifies the related resources or media streams to be included in line

with retrieved resources.

The [OData-ABNF] expand syntax rule defines the formal grammar of the $expand query option.

The value of $expand is a comma-separated list of expand items. Each expand item is evaluated relative

to the retrieved resource being expanded. An expand item is either a path or one of the symbols * or

$value.

A path consists of segments separated by a forward slash (/). Segments are either names of single- or

collection-valued complex properties, instance annotations, or type-cast segments consisting of the
qualified name of a structured type that is derived from the type identified by the preceding path segment
to reach properties defined on the derived type.

A path can end with

• the name of a stream property to include that stream property,

• a star (*) to expand all navigation properties of the identified structured instance, optionally

followed by /$ref to expand only entity references, or

• a navigation property to expand the related entity or entities, optionally followed by a type-cast
segment to expand only related entities of that derived type or one of its sub-types, optionally
followed by /$ref to expand only entity references.

• an entity-valued instance annotation to expand the related entity or entities, optionally followed by
a type-cast segment to expand only related entities of that derived type or one of its sub-types.

If a structured type traversed by the path supports neither dynamic properties nor instance annotations,
then a corresponding property segment MUST specify a declared property of that structured type.
Otherwise, if a traversed type does support dynamic navigation properties or instance annotations and
the corresponding property segment does not specify a declared property, then the expanded property
appears only for those instances on which it has a value.

Example 114: expand a navigation property of an entity type

http://host/service/Products?$expand=Category

Example 115: expand a navigation property of a complex type

http://host/service/Customers?$expand=Addresses/Country

A property MUST NOT appear in more than one expand item.

Query options can be applied to an expanded navigation property by appending a semicolon-separated
list of query options, enclosed in parentheses, to the navigation property name. Allowed system query
options are $filter, $select, $orderby, $skip, $top, $count, $search, and $expand.

Example 116: all categories and for each category all related products with a discontinued date equal to null

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 47 of 55

http://host/service/Categories? $expand=Products($filter=DiscontinuedDate eq

null)

The $count segment can be appended to a navigation property name or type-cast segment following a

navigation property name to return just the count of the related entities. The $filter and $search

system query options can be used to limit the number of related entities included in the count.

Example 117: all categories and for each category the number of all related products

http://host/service/Categories?$expand=Products/$count

Example 118: all categories and for each category the number of all related blue products

http://host/service/Categories?$expand=Products/$count($search=blue)

To retrieve entity references instead of the related entities, append /$ref to the navigation property

name or type-cast segment following a navigation property name. The system query options $filter,

$search, $skip, $top, and $count can be used to limit the number of expanded entity references.

Example 119: all categories and for each category the references of all related products

http://host/service/Categories?$expand=Products/$ref

Example 120: all categories and for each category the references of all related products of the derived type
Sales.PremierProduct

http://host/service/Categories?$expand=Products/Sales.PremierProduct/$ref

Example 121: all categories and for each category the references of all related premier products with a current
promotion equal to null

http://host/service/Categories?$expand=Products/Sales.PremierProduct/$ref($filter=

CurrentPromotion eq null)

Cyclic navigation properties (whose target type is identical or can be cast to its source type) can be
recursively expanded using the special $levels option. The value of the $levels option is either a

positive integer to specify the number of levels to expand, or the literal string max to specify the maximum

expansion level supported by that service. A $levels option with a value of 1 specifies a single expand

with no recursion.

Example 122: all employees with their manager, manager's manager, and manager's manager's manager

http://host/service/Employees?$expand=ReportsTo($levels=3)

It is also possible to expand all declared and dynamic navigation properties using a star (*). To retrieve

references to all related entities use */$ref, and to expand all related entities with a certain distance use

the star operator with the $levels option. The star operator can be combined with explicitly named

navigation properties, which take precedence over the star operator.

The star operator does not implicitly include stream properties.

Example 123: expand Supplier and include references for all other related entities

http://host/service/Categories?$expand=*/$ref,Supplier

Example 124: expand all related entities and their related entities

http://host/service/Categories?$expand=*($levels=2)

Specifying a stream property includes the media stream inline according to the specified format.

Example 125: include Employee’s Photo stream property along with other properties of the customer

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 48 of 55

http://host/service/Employees?$expand=Photo

Specifying $value for a media entity includes the media entity’s stream value inline according to the

specified format.

Example 126: Include the Product’s media stream along with other properties of the product

http://host/service/Products?$expand=$value

5.1.4 System Query Option $select

The $select system query option allows clients to request a specific set of properties for each entity or

complex type.

The $select query option is often used in conjunction with the $expand system query option, to define

the extent of the resource graph to return ($expand) and then specify a subset of properties for each

resource in the graph ($select). Expanded navigation properties MUST be returned, even if they are not

specified in $select.

The [OData-ABNF] select syntax rule defines the formal grammar of the $select query option.

The value of $select is a comma-separated list of select items. Each select item is one of the following:

• a path, to include a property,

• a star (*), to include all declared or dynamic properties of the type, or

• a qualified schema name followed by a dot (.) followed by a star (*) to request all applicable

actions or functions from that schema

A path consists of segments separated by a forward slash (/). Segments are either names of single- or

collection-valued complex properties, instance annotations, or type-cast segments consisting of the
qualified name of a structured type that is derived from the type identified by the preceding path segment
to reach properties defined on the derived type.

A path can end with

• the name of a property or non-entity-valued instance annotation of the identified structured
instance,

• the qualified name of a bound action,

• the qualified name of a bound function to include all matching overloads, or

• the qualified name of a bound function followed by parentheses containing the comma-separated
lists of non-binding parameters identifying a single overload.

The $select system query option is interpreted relative to the entity type or complex type of the

resources identified by the resource path section of the URL. Each select item in the $select clause

indicates that the response MUST include the declared or dynamic properties, actions and functions
identified by that select item. The simplest form of a select item explicitly requests a property defined on
the entity type of the resources identified by the resource path section of the URL.

Example 127: rating and release date of all products

http://host/service/Products?$select=Rating,ReleaseDate

It is also possible to request all declared and dynamic structural properties using a star (*).

Example 128: all structural properties of all products

http://host/service/Products?$select=*

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 49 of 55

If the select item is not defined for the type of the resource, and that type supports dynamic properties or
instance annotations, then the property is treated as null for all instances on which it is not defined.

If the select item is not defined for the type of the resource, and that type does not support dynamic
properties or instance annotations, then the request is considered malformed.

If the select item is an instance annotation of type entity or collection of entities, then the request is
considered malformed. Entity-valued annotations can be included using $expand.

If the select item is a navigation property, then the corresponding navigation link is represented in the
response. If the navigation property also appears in an $expand query option, then it is additionally

represented as inline content. This inline content can itself be restricted with a nested $select query

option, see section 5.1.2.

Example 129: name and description of all products, plus name of expanded category

http://host/service/Products?$select=Name,Description&$expand=Category($select

=Name)

The select item MUST be prefixed with a qualified structured type name in order to select a property
defined on a type derived from the type of the resource segment.

A select item that is a complex type or collection of complex type can be followed by a forward slash, an
optional type-cast segment, and the name of a property of the complex type (and so on for nested
complex types).

Example 130: the AccountRepresentative property of any supplier that is of the derived type

Namespace.PreferredSupplier, together with the Street property of the complex property Address, and the

Location property of the derived complex type Namespace.AddressWithLocation

http://host/service/Suppliers?$select=Namespace.PreferredSupplier/AccountRepre

sentative,Address/Street,Address/Namespace.AddressWithLocation/Location

Query options can be applied to a select item that is a path to a single complex value or a collection of
primitive or complex values by appending a semicolon-separated list of query options, enclosed in
parentheses, to the select item. The allowed system query options depend on the type of the resource
identified by the select item, see section System Query Options, with the exception of $expand. The

same property MUST NOT have select options specified in more than one place in a request and MUST
NOT be specified in more than one expand.

Example 131: select up to five addresses whose City starts with an H, sorted, and with the Country expanded

http://host/service/Customers?$select=Addresses($filter=startswith(City,'H');$

top=5;$orderby=Country/Name,City,Street)&$expand=Addresses/Country

Any structural property, non-expanded navigation property, or operation not requested as a select item
(explicitly or via a star) SHOULD be omitted from the response.

Annotations requested in $select MUST be included in the response; $select overrules the

include-annotations preference (see [OData-Protocol]) for the explicitly requested annotations.

Additional annotations matching the preference can be included even if not requested via $select. The

Preference-Applied response header only reflects the set of annotations included due to the

include-annotations preference and not those only included due to $select.

If any select item (including a star) is specified, actions and functions SHOULD be omitted unless
explicitly requested.

If an action or function is requested as a select item, either explicitly by using its qualified name, or
implicitly by requesting all operations in a schema, then the service includes information about how to
invoke that operation for each entity identified by the last path segment in the request URL for which the
operation can be bound.

If an action or function is requested in a select item using its qualified name and that operation cannot be
bound to the entities requested, the service MUST ignore the select item.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 50 of 55

Example 132: the ID property, the ActionName action defined in Model and all actions and functions defined in the

Model2 for each product if those actions and functions can be bound to that product

http://host/service/Products?$select=ID,Model.ActionName,Model2.*

When multiple select item exist in a select clause, then the total set of properties, open properties,
navigation properties, actions and functions to be returned is equal to the union of the set of those
identified by each select item.

If a select item is a path expression requesting a component of a complex property and the complex
property is null on an instance, then the component is treated as null as well.

5.1.5 System Query Option $orderby

The $orderby system query option allows clients to request resources in a particular order.

The semantics of $orderby are covered in the [OData-Protocol] document.

The [OData-ABNF] orderby syntax rule defines the formal grammar of the $orderby query option.

5.1.6 System Query Options $top and $skip

The $top system query option requests the number of items in the queried collection to be included in

the result. The $skip query option requests the number of items in the queried collection that are to be

skipped and not included in the result. A client can request a particular page of items by combining $top

and $skip.

The semantics of $top and $skip are covered in the [OData-Protocol] document. The [OData-ABNF]

top and skip syntax rules define the formal grammar of the $top and $skip query options

respectively.

5.1.7 System Query Option $count

The $count system query option allows clients to request a count of the matching resources included

with the resources in the response. The $count query option has a Boolean value of true or false.

The semantics of $count is covered in the [OData-Protocol] document.

5.1.8 System Query Option $search

The $search system query option allows clients to request items within a collection matching a free-text

search expression.

The $search query option can be applied to a URL representing a collection of entity, complex, or

primitive typed instances, to return all matching items within the collection. Applying the $search query

option to the $all resource requests all matching entities in the service.

If both $search and $filter are applied to the same request, the results include only those items that

match both criteria.

The [OData-ABNF] search syntax rule defines the formal grammar of the $search query option.

Example 133: all products that are blue or green. It is up to the service to decide what makes a product blue or green.

http://host/service/Products?$search=blue OR green

5.1.8.1 Search Expressions

Search expressions are used within the $search system query option to request entities matching the

specified expression.

Terms can be any single word to be matched within the expression.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 51 of 55

Terms enclosed in double-quotes comprise a phrase.

Each individual term or phrase comprises a Boolean expression that returns true if the term or phrase is
matched, otherwise false. The semantics of what is considered a match is dependent upon the service.

Expressions enclosed in parenthesis comprise a group expression.

The search expression can contain any number of terms, phrases, or group expressions, along with the
case-sensitive keywords NOT, AND, and OR, evaluated in that order.

Expressions prefaced with NOT evaluate to true if the expression is not matched, otherwise false.

Two expressions not enclosed in quotes and separated by a space are equivalent to the same two
expressions separated by the AND keyword. Such expressions evaluate to true if both expressions

evaluate to true, otherwise false.

Expressions separated by an OR evaluate to true if either of the expressions evaluate to true, otherwise

false.

To support type-ahead use cases, incomplete search expressions can be sent as OData string literals
enclosed in single-quotes, and single-quotes within the search expression doubled.

The [OData-ABNF] searchExpr syntax rule defines the formal grammar of the search expression.

5.1.9 System Query Option $format

The $format system query option allows clients to request a response in a particular format and is

useful for clients without access to request headers for standard content-type negotiation. Where present
$format takes precedence over standard content-type negotiation.

The semantics of $format is covered in the [OData-Protocol] document.

The [OData-ABNF] format syntax rule defines the formal grammar of the $format query option.

5.1.10 System Query Option $compute

The $compute system query option allows clients to define computed properties that can be used in a

$select or within a $filter or $orderby expression.

The $compute system query option is interpreted relative to the entity type or complex type of the

resources identified by the resource path section of the URL.

The value of $compute is a comma-separated list of compute instructions, each consisting of a common

expression followed by the keyword as, followed by the name for the computed dynamic property. This

name MUST differ from the names of declared or dynamic properties of the identified resources.

The [OData-ABNF] compute syntax rule defines the formal grammar of the $compute query option.

Computed properties SHOULD be included as dynamic properties in the result and MUST be included if
$select is specified with the computed property name, or star (*).

Example 134: compute total price for order items

http://host/service/Orders(10)/Items?$select=Product/Description,Total&$filter

=Total gt 100&$orderby=Total&$compute=Product/Price mul Quantity as Total

5.1.11 System Query Option $index

The $index system query option allows clients to do a positional insert into a collection annotated with

using the Core.PositionalInsert term (see [OData-VocCore]). The value of the $index system

query option is the zero-based ordinal position where the item is to be inserted. The ordinal of items
within the collection greater than or equal to the inserted position are increased by one. A negative ordinal
indexes from the end of the collection, with -1 representing an insert at the end of the collection.

The [OData-ABNF] index syntax rule defines the formal grammar of the $index query option.

https://github.com/oasis-tcs/odata-vocabularies/blob/master/vocabularies/Org.OData.Core.V1.md#PositionalInsert

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 52 of 55

5.1.12 System Query Option $schemaversion

The $schemaversion system query option allows clients to specify the version of the schema against

which the request is made. The semantics of $schemaversion is covered in the [OData-Protocol]

document.

The [OData-ABNF] schemaversion syntax rule defines the formal grammar of the $schemaversion

query option

5.2 Custom Query Options

Custom query options provide an extensible mechanism for service-specific information to be placed in a
URL query string. A custom query option is any query option of the form shown by the rule
customQueryOption in [OData-ABNF].

Custom query options MUST NOT begin with a $ or @ character.

Example 135: service-specific custom query option debug-mode

http://host/service/Products?debug-mode=true

5.3 Parameter Aliases

Parameter aliases can be used in place of literal values in entity keys, function parameters, or within a
$filter or $orderby expression.

Parameter aliases MUST start with an @ character, see rule parameterAlias in [OData-ABNF].

The semantics of parameter aliases are covered in [OData-Protocol]. The [OData-ABNF] rule
aliasAndValue defines the formal grammar for passing parameter alias values as query options.

Example 136:

http://host/service/Movies?$filter=contains(@word,Title)&@word='Black'

Example 137:

http://host/service/Movies?$filter=Title eq @title&@title='Wizard of Oz'

Example 138: JSON array of strings as parameter alias value – note that [,], and " need to be percent-encoded in

real URLs, the clear-text representation used here is just for readability

http://host/service/Products/Model.WithIngredients(Ingredients=@i)?@i=["Carrot

s","Ginger","Oranges"]

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 53 of 55

6 Conformance
The conformance requirements for OData clients and services are described in [OData-Protocol].

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 54 of 55

Appendix A. Acknowledgments

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol],
are gratefully acknowledged.

odata-v4.01-cos01-part2-url-conventions 28 January 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 55 of 55

Appendix B. Revision History

Revision Date Editor Changes Made

Working Draft
01

2016-06-22 Michael Pizzo

Ralf Handl

Transferred content from OData 4.0 Part 2 –
URL Conventions Errata 3

Committee
Specification
Draft 01

2016-12-08 Michael Pizzo

Ralf Handl

Integrated 4.01 features

• Alternate keys

• Key-as-segment convention

• Operators in and divby

• $expand with stream properties

• $compute system query option

• $index system query option

Committee
Specification
Draft 02

2017-06-08 Michael Pizzo

Ralf Handl

More 4.01 features

• Set-based operations

• $expand, $select, $filter with POST

and PATCH

• Instance annotations in query options

• $schemaversion system query option

Committee
Specification
Draft 03

2017-09-28 Michael Pizzo

Ralf Handl

Incorporated review feedback

Added nested query options within $select

Added nested alias value assignments within
$expand and $select

Committee
Specification
Draft 04

2017-11-10 Michael Pizzo

Ralf Handl

Incorporated review feedback

Simplified unrelating entities

Committee
Specification
01

2017-01-17 Michael Pizzo

Ralf Handl

Non-Material Changes

Committee
Specification
Draft 05

2019-06-21 Michael Pizzo

Ralf Handl

Cast of LocalDateTime strings to
Edm.DateTimeOffset, and cast between

enumeration and integer types

Arrays and objects with expression values
/$filter path segment

/$query path segment

Instance annotations in $select and
$expand

New functions matchesPattern and case

Committee
Specification
Draft 06

2019-09-20 Michael Pizzo

Ralf Handl

Removed nested $expand within $select

Committee
Specification
02

2019-11-05 Michael Pizzo

Ralf Handl

Non-material changes

