Standards Track Work Product

JOASISOPEN

OData Extension for Data Aggregation Version 4.0
Committee Specification Draft 05
01 October 2025

This stage:

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.md
(Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05. pdf

Previous stage:

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03.md
(Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03. pdf

Latest stage:

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.md (Authoritative)
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf

Technical Committee:

OASIS Open Data Protocol (OData) TC

Chairs:

Ralf Handl (ralf.handl@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft

Editors:

Ralf Handl (ralf.handl@sap.com), SAP SE

Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM
Gerald Krause (gerald.krause@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft
Heiko Theifl3en (heiko.theissen@sap.com), SAP SE
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE

Additional artifacts:
This document is one component of a Work Product that also includes:

+ ABNF components: OData Aggregation ABNF Construction Rules Version 4.0 and OData Aggregation ABNF Test

» OData Aggregation Vocabulary:

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 1 of 69

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs03/odata-data-aggregation-ext-v4.0-cs03.pdf
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.md
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.pdf
https://www.oasis-open.org/committees/odata/
mailto:ralf.handl@sap.com
https://www.sap.com/
mailto:mikep@microsoft.com
https://www.microsoft.com/
mailto:ralf.handl@sap.com
https://www.sap.com/
mailto:hubert.heijkers@nl.ibm.com
https://www.ibm.com/
mailto:gerald.krause@sap.com
https://www.sap.com/
mailto:mikep@microsoft.com
https://www.microsoft.com/
mailto:heiko.theissen@sap.com
https://www.sap.com/
mailto:martin.zurmuehl@sap.com
https://www.sap.com/
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/abnf/

Standards Track Work Product

o https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.json

o https://docs.oasis-open.org/odata/odata-data-aggregation-
ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.xml

Related work:
This specification is related to:

e OData Version 4.01. Edited by Michael Pizzo, Ralf Handl, and Martin Zurmuehl. A multi-part Work Product which
includes:
o OData Version 4.01 Part 1: Protocol. Latest stage: https://docs.oasis-open.org/odata/odata/v4.01/odata-
v4.01-partl-protocol.html
o OData Version 4.01 Part 2: URL Conventions. Latest stage: https://docs.oasis-
open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
o ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases.
https://docs.oasis-open.org/odata/odata/v4.01/0s/abnf/
o OData Vocabularies Version 4.0. Edited by Michael Pizzo, Ralf Handl, and Ram Jeyaraman. Latest stage:
https://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
e OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01. Edited by Michael
Pizzo, Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-open.org/odata/odata-csdl-
json/v4.01/odata-csdl-json-v4.01.html
¢ OData Common Schema Definition Language (CSDL) XML Representation Version 4.01. Edited by Michael Pizzo,
Ralf Handl, and Martin Zurmuehl. Latest stage: https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-
xml-v4.01.html
e OData JSON Format Version 4.01. Edited by Ralf Handl, Mike Pizzo, and Mark Biamonte. Latest stage:
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html

Abstract:

This specification adds basic grouping and aggregation functionality (e.g. sum, min, and max) to the Open Data Protocol
(OData) without changing any of the base principles of OData.

Status:

This document was last revised or approved by the OASIS Open Data Protocol (OData) TC on the above date. The
level of approval is also listed above. Check the “Latest stage” location noted above for possible later revisions of this
document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed
at https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=e7cac2a9-2d18-4640-b94d-
018dc7d3f0e2#technical.

TC members should send comments on this specification to the TC’s email list. Any individual may submit comments to
the TC by sending email to Technical-Committee-Comments@oasis-open.org. Please use a Subject line like “Comment
on OData Data Aggregation”.

This specification is provided under the RE on RAND Terms Mode of the OASIS IPR Policy, the mode chosen when the
Technical Committee was established. For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual
Property Rights section of the TC’s web page (https://www.oasis-open.org/committees/odatalipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is
provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in
the Work Product’s prose narrative document(s), the content in the separate plain text file prevails.

Key words:

The key words “MUST”, “MUST NOT”, “REQUIRED”", “SHALL”, “SHALL NOT", “SHOULD", “SHOULD NOT",
“RECOMMENDED”, “NOT RECOMMENDED?”, “MAY”, and “OPTIONAL" in this document are to be interpreted as

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 2 of 69

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.json
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.json
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.xml
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.V1.xml
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.01/os/abnf/
https://docs.oasis-open.org/odata/odata-vocabularies/v4.0/odata-vocabularies-v4.0.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-json/v4.01/odata-csdl-json-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html
https://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=e7cac2a9-2d18-4640-b94d-018dc7d3f0e2#technical
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=e7cac2a9-2d18-4640-b94d-018dc7d3f0e2#technical
mailto:Technical-Committee-Comments@oasis-open.org
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-RAND-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/odata/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang

Standards Track Work Product

described in BCP 14 [REC2119] and [REC8174] when, and only when, they appear in all capitals, as shown here.
Citation format:

When referencing this specification the following citation format should be used:

[OData-Data-Agg-v4.0]

OData Extension for Data Aggregation Version 4.0. Edited by Ralf Handl, Hubert Heijkers, Gerald Krause, Michael
Pizzo, Heiko TheiRen, and Martin Zurmuehl. 01 October 2025. OASIS Committee Specification Draft 05.
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.html.
Latest stage: https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html.

Notices
Copyright © OASIS Open 2025. All Rights Reserved.
Distributed under the terms of the OASIS |IPR Policy.

The name “OASIS” is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs.

For complete copyright information please see the full Notices section in an Appendix below.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 3 of 69

https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/csd05/odata-data-aggregation-ext-v4.0-csd05.html
https://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/odata-data-aggregation-ext-v4.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

Standards Track Work Product

Table of Contents

1 Introduction
1.1 Changes from Earlier Versions
1.2 Glossary.
1.2.1 Definitions of Terms
1.2.2 Acronyms and Abbreviations
1.2.3 Document Conventions
2 Qverview
2.1 Example Data Model
2.2 Example Data
2.3 Example Use Cases

3.1 Fundamentals of Input and Output Sets
3.1.1 Type,_Structure and Context URL
3.1.2 Sameness and Order
3.1.3 Evaluation of Data Aggregation Paths

3.2 Basic Aggregation
3.2.1 Transformation aggregate

3.2.1.1 Aggregation Algorithm
3.2.1.2 Keyword as
3.2.1.3 Aggregation Methods
3.2.1.3.1 Standard Aggregation Method sum

3.2.1.3.2 Standard Aggregation Method min

3.2.1.3.3 Standard Aggregation Method max

3.2.1.3.4 Standard Aggregation Method average
3.2.1.3.5 Standard Aggregation Method countdistinct

3.2.1.3.6 Custom Aggregation Methods
3.2.1.4 Aggregate Expression $count

3.2.2 Transformation concat
3.2.3 Transformation groupby.
3.2.3.1 Simple Grouping
3.3 Transformations Producing_a Subset
3.3.1 Top/bottom transformations
3.3.1.1 Transformations bottomcount and topcount

3.3.1.2 Transformations bottompercent and toppercent
3.3.1.3 Transformations bottomsum and topsum

3.3.2 Transformation filter

3.3.3 Transformation orderby

3.3.4 Transformation search

3.3.5 Transformation skip

3.3.6 Transformation top

3.3.7 Stable Total Order Before $skip and $top

3.4 One-to-One Transformations
3.4.1 Transformation identity

3.4.2 Transformation compute
3.5 Transformations Changing_the Input Set Structure

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 4 of 69

Standards Track Work Product

3.5.1 Transformations join and outerjoin
3.6 Expressions Evaluable on a Collection

3.6.1 Function aggregate

3.6.2 Expression $count
3.7 Function isdefined

3.9 ABNF for Extended URL Conventions
4 Cross-Joins and Aggregation
5 Vocabulary for Data Aggregation
5.1 Aggregation Capabilities
5.2 Custom Aggregates
5.3 Context-Defining_Properties
5.4 Annotation Example
5.5 Hierarchies
5.5.1 Recursive Hierarchy
5.5.1.1 Hierarchy Functions
5.5.2 Hierarchy Examples
5.6 Functions on Aggregated Entities
6 Hierarchical Transformations
6.1 Common Parameters for Hierarchical Transformations
6.2 Hierarchical Transformations Producing_a Subset
6.2.1 Transformations ancestors and descendants
6.2.2 Transformation traverse
7 Examples
7.1 Requesting Distinct Values
7.2 Standard Aggregation Methods
7.3 Requesting_ Expanded Results
7.4 Requesting_Custom Aggregates
7.5 Aliasing
7.6 Combining_Transformations per Group
7.7 Model Functions as Set Transformations
7.8 Controlling Aggregation per Rollup Level
7.9 Aggregation in Recursive Hierarchies
7.10 Maintaining_Recursive Hierarchies
7.11 Transformation Sequences
8 Conformance
A References
A.1 Normative References
B Acknowledgments
B.1 Special Thanks
B.2 Patrticipants
C Revision History
D Notices

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 5 of 69

Standards Track Work Product

1 Introduction

This specification adds aggregation functionality to the Open Data Protocol (OData) without changing any of the base
principles of OData. It defines semantics and a representation for aggregation of data, especially:

¢ Semantics and operations for querying aggregated data,
» Results format for queries containing aggregated data,
» Vocabulary terms to annotate what can be aggregated, and how.

1.1 Changes from Earlier Versions

Compared to the previous stage [OData-Data-Agg-v4.0] OASIS Committee Specification 03, this version makes the
following restrictions.

Section Restriction

After section 3.2.1.4 | Keyword £rom removed

After section 3.2.3.1 | Grouping with rollup removed

After section 3.4.2 Transformation addnested removed

After section 3.5.1 Transformation nest removed

Before section 5.5.1 | Leveled Hierarchy removed

Section 6.1 Optional parameter S removed

Section 6.2.2 Restricted to single-valued ParentNavigationProperty

After section 6.2.2 Grouping with rolluprecursive removed

1.2 Glossary

1.2.1 Definitions of Terms
This specification defines the following terms:

o Aggregatable Expression — an expression not involving term casts and resulting in a value of a complex or entity or
an aggregatable primitive type

» Aggregate Expression — argument of the aggregate transformation or function defined in section 3.2.1.1

» Aggregatable Primitive Type — a primitive type other than Edm. Stream or subtypes of Edm.Geography or
Edm.Geometry

o Data Aggregation Path — a path that consists of one or more segments joined together by forward slashes (/).
Segments are names of declared or dynamic structural or navigation properties, or type-cast segments consisting
of the (optionally qualified) name of a structured type that is derived from the type identified by the preceding path
segment to reach properties declared by the derived type.

o Expression — derived from the commonExpr rule (see [OData-ABNF])

» Single-Valued Property Path — property path ending in a single-valued primitive, complex, or navigation property

1.2.2 Acronyms and Abbreviations

The following non-exhaustive list contains variable names that are used throughout this document:

e A, B,C - collections of instances

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 6 of 69

Standards Track Work Product

e H — hierarchical collection

o H'- subset of nodes from a hierarchical collection

e u,v,w — instances in a collection

e z —an instance in a hierarchical collection, called a node

* p,q,r — paths

o T — transformation sequence

e « — aggregate expression, defined in section 3.2.1.1

» I'(A4,p) — the collection that results from evaluating a data aggregation path p relative to a collection A, defined in
section 3.1.3

* v(u,p) — the collection that results from evaluating a data aggregation path p relative to an instance «, defined in
section 3.1.3

» IIg(s) — a transformation of a collection that injects grouping properties into every instance of the collection,
defined in section 3.2.3.1

» o(z) — instance containing a grouping property that represents a node z, defined in section 6.2.2

1.2.3 Document Conventions

Keywords defined by this specification use this monospaced font.
Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style

Non-normative examples use this paragraph style.

All examples in this document are non-normative and informative only. Examples labeled with A contain advanced
concepts or make use of keywords that are defined only later in the text, they can be skipped at first reading.

All other text is normative unless otherwise labeled.

Paragraphs labeled ## in this version of the specification contain restrictions that were not made in [OData-Data-Agg-
v4.0] OASIS Committee Specification 03. Also, some sections of [OData-Data-Agg-v4.0] OASIS Committee
Specification 03 are omitted from this version. In later OASIS standard versions these restrictions may be lifted again
and the omitted sections reintroduced.

The ABNF rules [OData-ABNF] have been simplified in this version to reflect these restrictions. Also, some members of
the OData Aggregation Vocabulary [OData-VocAggr] have been omitted from this version. These members are
referenced by [OData-Data-Agg-v4.0] OASIS Committee Specification 03 but not by this version.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 7 of 69

2 Overview

Standards Track Work Product

Open Data Protocol (OData) services expose a data model that describes the schema of the service in terms of the
Entity Data Model (EDM, see [OData-CSDL]) and then allows for querying data in terms of this model. The responses
returned by an OData service are based on that data model and retain the relationships between the entities in the

model.

Extending the OData query features with simple aggregation capabilities avoids cluttering OData services with an
exponential number of explicitly modeled “aggregation level entities” or else restricting the consumer to a small subset of

predefined aggregations.

Adding the notion of aggregation to OData without changing any of the base principles in OData has two aspects:

1. Means for the consumer to query aggregated data on top of any given data model (for sufficiently capable data

providers)

2. Means for the provider to annotate what data can be aggregated, and in which way, allowing consumers to avoid
asking questions that the provider cannot answer

Implementing any of these two aspects is valuable in itself independent of the other, and implementing both provides
additional value for consumers. The provided aggregation annotations help a consumer understand more of the data
structure looking at the service’s exposed data model. The query extensions allow the consumers to explicitly express
the desired aggregation behavior for a particular query. They also allow consumers to formulate queries that utilize the

aggregation annotations.

2.1 Example Data Model

Example 2: The following diagram depicts a simple model that is used throughout this document.

Customer

ID: Edm.String {id}
Name: Edm.String
Country: Edm.String

1
Customer

Time

Date: Edm.Date {id}
Month: Edm.String
Quarter: Edm.String
Year: Edm.Int16

odata-data-aggregation-ext-v4.0-csd05

*

Sales

Category

ID: Edm.String {id}
Name: Edm.String

1
1 Category
Time
*
Products
*
1 Product
Sale Product o
ID: Edm.String {id}
ID: Edm.String {id} * Name: Edm.String
Amount: Edm.Decimal Sales Color: Edm.String
TaxRate: Edm.Decimal
*
A
SalesOrganization FoodProduct
1 Rating: Edm.Byte
SalesOrganization
Name: Edm.String Superordinate
* RatingClass: Edm.String

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 8 of 69

be arranged in hierarchies, for example:

* Product hierarchy based on groupable properties of the Category and Product entity types

Standards Track Work Product

e Customer hierarchy based on Country and Customer
« Time hierarchy based on Year, Month, and Date
* SalesOrganization hierarchy based on the recursive association to itself

In the context of Online Analytical Processing (OLAP), this model might be described in terms of a Sales “cube” with an Amount “measure” and
three “dimensions”. This document will avoid such terms, as they are heavily overloaded.

Query extensions and descriptive annotations can be applied to normalized schemas as well as partly or fully

denormalized schemas.

Example 3: The following diagram depicts a denormalized schema for the simple model.

ID: Edm.String {id}

Sales -
Amount: Edm.Decimal
CategorylD: Edm.String
Category -
CategoryName: Edm.String
ProductID: Edm.String
ProductName: Edm.String
Product -
ProductColor: Edm.String
ProductTaxRate: Edm.Decimal
Food | FoodProductRating: Edm.Byte
Non-Food | NonFoodProductRatingClass: Edm.String

Sales Organization

SalesOrganizationID: Edm.String

SalesOrganizationName: Edm.String

SalesOrganizationSuperordinatelD: Edm.String

TimeDate: Edm.Date

TimeMonth: Edm.String

Time - -
TimeQuarter: Edm.String

TimeYear: Edm.Int16

CustomerID: Edm.String

Customer | CustomerName: Edm.String

CustomerCountry: Edm.String

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 9 of 69

Standards Track Work Product

2.2 Example Data

Example 4: The following entity sets and sample data will be used to further illustrate the capabilities introduced by this extension.

Products Food

ID Category Name Color TaxRate m RatingClass

Non-Food

P1 | PG1 Sugar | White 0.06 5 nla
P2 | PG1 Coffee | Brown 0.06 n/a
P3 | PG2 Paper | White 0.14 n/a average
P4 | PG2 Pencil | Black 0.14 n/a
Time \ Categories
Date Month Quarter Year m
2022-01-01 | 2022-01 | 2022-1 2022 PG1 | Food
2022-04-01 | 2022-04 | 2022-2 2022 PG2 | Non-Food
2022-04-10 | 2022-04 | 2022-2 2022
Sales Organizations \
Customers ID Superordinate = Name
Sales Corporate Sales
ID Name Country us Sales us
C1 | Joe USA US West us US West
C2 | Sue USA US East us US East
C3 | Sue Netherlands EMEA Sales EMEA
C4 | Luc France EMEA Central | EMEA EMEA Central
Sales i
Legend
ID Customer Time Product Sales Organization Amount
1 C1 2022-01-03 | P3 US West 1 Property
2 C1 2022-04-10 | P1 US West 2 Key
3 C1 2022-08-07 | P2 US West 4 Navigation Property
4 c2 2022-01-03 | P2 US East 8
5 Cc2 2022-11-09 | P3 US East 4
6 c3 2022-04-01 | P1 EMEA Central 2
7 C3 2022-08-06 | P3 EMEA Central 1
8 c3 2022-11-22 | P3 EMEA Central 2

2.3 Example Use Cases

Example 5: In the example model, one prominent use case is the relation of customers to products. The first question that is likely to be asked

is: “Which customers bought which products?”
This leads to the second more quantitative question: “Who bought how much of what?”

The answer to the second question typically is visualized as a cross-table:

Non-Food

Netherlands

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 10 of 69

Standards Track Work Product

The data in this cross-table can be written down in a shape that more closely resembles the structure of the data model, leaving cells empty that
have been aggregated away:

Customer/Country Customer/Name Product/Category/Name Product/Name Amount

USA Joe Non-Food Paper 1
USA Joe Food Sugar 2
USA Joe Food Coffee 4
USA Sue Food Coffee 8
USA Sue Non-Food Paper 4
Netherlands Sue Food Sugar 2
Netherlands Sue Non-Food Paper 3
USA Food Sugar 2
USA Food Coffee 12
USA Non-Food Paper 5
Netherlands Food Sugar 2
Netherlands Non-Food Paper 3
USA Joe Food 6
USA Joe Non-Food 1
USA Sue Food 8
USA Sue Non-Food 4
Netherlands Sue Food 2
Netherlands Sue Non-Food 3
USA Food 14
USA Non-Food 5
Netherlands Food 2
Netherlands Non-Food 3

Note that this result contains seven fully qualified aggregate values, followed by fifteen rollup rows with subtotal values.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 11 of 69

Standards Track Work Product

3 System Query Option $apply.

A set transformation (transformation for short) is an operation on an input set that produces an output set. A
transformation sequence is a sequence of set transformations, separated by forward slashes to express that they are
consecutively applied. A transformation sequence may be invoked using the system query option $apply. The input set
of the first set transformation is the collection addressed by the resource path. The output set of each set transformation
is the input set for the next set transformation. The output set of the last set transformation in the transformation
sequence invoked by the system query option $apply is the result of $apply. This is consistent with the use of
service-defined bound and composable functions in path segments. Set transformations may also appear as a
parameter of certain other set transformations defined below.

The system query option $apply MUST NOT be used if the resource path addresses a single instance.

The system query option $apply is evaluated first, then the other system query options are evaluated, if applicable, on
the result of $apply, see [OData-Protocol, section 11.2.1]. Stability across requests for system query options $top
and $skip [OData-Protocol, section 11.2.6.3] is defined in section 3.3.7.

Each set transformation:

« carries over the input type to the output set such that it fits into the data model of the service.

» can mark certain navigation properties and stream properties for expansion by default, that is, they are expanded
in the result of $apply in the absence of an $expand query option.

¢ may produce an output set with a different number of instances than the input set.
+ does not necessarily guarantee that all properties of the instances in the output set have a well-defined value.

Instances of an output set can contain structural and navigation properties, which can be declared or dynamic, as well
as instance annotations.

The allowed set transformations are defined in this section as well as in the section on Hierarchical Transformations.

Service-defined bound functions that take a collection of instances of a structured type as their binding parameter and
return a collection of instances of a structured type MAY be used as set transformations within $apply. Further
transformations can follow the bound function. The parameter syntax for bound function segments is identical to the
parameter syntax for bound functions in resource path segments or $£ilter expressions. See section 7.7 for an
example.

Parameter aliases [OData-URL, section 5.3] can be used inside the value of $apply wherever the ABNF rule
applyTrafo [OData-ABNF] is reduced to a commonExpr [OData-URL, section 5.1.1] or a collectionExpr
(section 3.6).

If a data service that supports $apply does not support it on the collection identified by the request resource path, it
MUST fail with 501 Not Implemented and a meaningful human-readable error message.

On resource paths ending in /$count the system query option $apply is evaluated on the set identified by the
resource path without the /$count segment, the result is the plain-text number of items in the result of $apply. This is
similar to the combination of /$count and $filter.

During serialization of the result of $apply declared properties and dynamic properties are represented as defined by
the response format. Other properties have been aggregated away and are not represented in the response. The
entities returned in the request examples in the following sections that involve aggregation are therefore transient.

3.1 Fundamentals of Input and Output Sets

The definitions of italicized terms made in this section are used throughout this text, always with a hyperlink to this
section.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 12 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptions
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptions
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptions
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#ParameterAliases
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#ParameterAliases
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#ParameterAliases
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax

Standards Track Work Product

3.1.1 Type, Structure and Context URL

All input sets and output sets in one transformation sequence are collections of the input type, that is the entity type or
complex type of the first input set, or in other words, of the resource to which the transformation sequence is applied.
The input type is determined by the entity model element identified within the metadata document by the context URL of
that resource [OData-Protocol, section 10]. Individual instances in an input or output set can have a subtype of the
input type. (See example 65.) The transformation sequence given as the $apply system query option is applied to the
resource addressed by the resource path. The transformations defined below can have nested transformation
sequences as parameters, these are then applied to resources that can differ from the current input set.

The structure of an instance that occurs in an input or output set is defined by the names of the structural and navigation
properties that the instance contains. Instances of an input type can have different structures, subject to the following
rules:

o Declared properties of the input type or a nested or related type thereof or of a subtype of one of these MUST
have their declared type and meaning when they occur in an input or output set.

¢ Single- or collection-valued primitive properties addressed by a property path starting at a non-transient entity
MUST keep their values from the addressed resource path collection throughout the transformation sequence.
Likewise, single- or collection-valued navigation property paths starting at a non-transient entity MUST keep
addressing the same non-transient entities as in the addressed resource path collection.

» Instances in an output set need not have all declared or dynamic properties that occurred in the input set.

¢ Instances in an output set can have dynamic properties that did not occur in the input set. The name for such a
dynamic property is called an alias, it is a simple identifier (see [OData-CSDL, section 15.2]). Aliases MUST differ
from names of declared properties in the input type, from names of properties in the first input set, and from names
of properties in the current input set. Aliases in one collection MUST also differ from each other.

¢ Instances in an output set that have all key properties of an entity also have the metadata associated with that
entity, such as entity-id, read and edit URL (defined in [OData-Protocol, section 4]) and ETag (defined in [OData-
Protocol, section 11.4.1.2]) as well as relations to other entities [OData-Protocol, section 11.2.7].

Here is an overview of the structural changes made by different transformations:

« During aggregation, many instances are replaced by one instance, properties that represent the aggregation level
are retained, and others are replaced by dynamic properties holding the aggregate value of the many instances or
a transformed copy of them.

» During compute, dynamic properties are added to each instance.

» During join, one instance with a collection of related instances is replaced by many copies, each of which is related
via a dynamic property to one of the related instances.

« During concatenation, the same instances are transformed multiple times and the output sets with their potentially
different structures are concatenated.

An output set thus consists of instances with different structures. This is the same situation as with a collection of an
open type ([OData-CSDL, section 6.3] and [OData-CSDL, section 9.3]) and it is handled in the same way.

If the first input set is a collection of entities from a given entity set, then so are all input sets and output sets in the
transformation sequence. The {select-1list} in the context URL [OData-Protocol, section 10] MUST describe only
properties that are present or annotated as absent (for example, if Core. Permissions is None [OData-Protocol,
section 11.2.2]) in all instances of the collection, after applying any $select and $expand system query options. The
{select-1list} SHOULD describe as many such properties as possible, even if the request involves a concatenation
that leads to a non-homogeneous structure. If the server cannot determine any such properties, the {select-1list}
MUST consist of just the instance annotation AnyStructure defined in the Core vocabulary. (See example 66.)

3.1.2 Sameness and Order

Input sets and output sets are not sets of instances in the mathematical sense but collections, because the same
instance can occur multiple times in them. In other words: A collection contains values (which can be instances of
structured types or primitive values), possibly with repetitions. The occurrences of the values in the collection form a set

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 13 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#SimpleIdentifier
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#SimpleIdentifier
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#SimpleIdentifier
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ServiceModel
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ServiceModel
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ServiceModel
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UseofETagsforAvoidingUpdateConflicts
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UseofETagsforAvoidingUpdateConflicts
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UseofETagsforAvoidingUpdateConflicts
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UseofETagsforAvoidingUpdateConflicts
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingRelatedEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingRelatedEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingRelatedEntities
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenComplexType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenComplexType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenComplexType
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ContextURL
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingIndividualEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingIndividualEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingIndividualEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#RequestingIndividualEntities
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Core.V1.md#AnyStructure

Standards Track Work Product

in the mathematical sense. The cardinality of a collection is the total number of occurrences in it. When this text
describes a transformation algorithmically and stipulates that certain steps are carried out for each occurrence in a
collection, this means that the steps are carried out multiple times for the same value if it occurs multiple times in the
collection.

A collection addressed by the resource path is returned by the service either as an ordered collection [OData-Protocol,
section 11.4.9] or as an unordered collection. The same applies to collections that are nested in or related to the
addressed resource as well as to collections that are the result of evaluating an expression starting with $root, which
occur, for example, as the first parameter of a hierarchical transformation.

But when such a collection is transformed by the $apply system query option, additional cases can arise that are
neither ordered nor totally unordered. For example, the groupby transformation retains any order within a group but not
between groups.

A Example 6: Request the top 10 sales per customer. The processing of the request can be parallelized per customer and the responses per
customer can be interleaved in the overall response. This means that for any given customer, their top 10 sales appear in the desired order,
though not consecutively.

GET /service/Sales?$apply=groupby ((Customer),orderby (Amount desc)/top (10))

For every transformation defined in the following sections, it will be specified how it orders its output set, based on the
order of its input set. The order of the last output set can be further influenced by a $orderby system query option
before it is observed in the response payload.

An order of a collection is more precisely defined as follows: Given two different occurrences u; and us in a collection,
which may be of the same value or of different values, u; precedes wuz or us precedes u;, but not both. It can be neither,
in which case the relative order of u; and u, does not matter. If u; precedes u, and u, precedes ugz, then u; also
precedes usz, and u; never precedes u;. (This is a partial order in the mathematical sense defined on the set of
occurrences.)

When transformations are defined in the following sections, the algorithmic description sometimes contains an order-
preserving loop over a collection. Such a loop processes the occurrences in an order chosen by the service in such a
way that u; is processed before u, whenever u; precedes u,. Likewise, in an order-preserving sequence uy, .. . ,u, We
have i < j whenever u; precedes u;.

A collection can be stable-sorted by a list of expressions. In the stable-sorted collection an occurrence u; precedes wus if
and only if either

» u; precedes u, according to the rules of [OData-Protocol, section 11.2.6.2] or

» these rules do not determine a precedence in either direction between w; and us but u; preceded us in the
collection before the sort.

Stable-sorting of an ordered collection produces another ordered collection. A stable-sort does not necessarily produce
a total order, the sorted collection may still contain two occurrences whose relative order does not matter. The
transformation orderby performs a stable-sort.

The output set of a basic aggregation transformation can contain instances of an entity type without entity-id. After a
concat transformation, different occurrences of the same entity can differ in individual non-declared properties. To
account for such cases, the definition of sameness given in [OData-URL, section 5.1.1.1.1] is refined here. Instances of
structured types are the same if

+ both are instances of complex types and both are null or both have the same structure and same values with null
considered different from absent or

 both are instances of entity types without entity-id (see [OData-Protocol, section 4.3]) and both are null or both
have the same structure and same values with null considered different from absent (informally speaking, they are
compared like complex instances) or

* (1) both are instances of the same entity type with the same entity-id (non-transient entities, see [OData-Protocol,
section 4.1]) and (2) the structural and navigation properties contained in both have the same values (for non-

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 14 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ManagingMembersofanOrderedCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ManagingMembersofanOrderedCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ManagingMembersofanOrderedCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#ManagingMembersofanOrderedCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptionorderby
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptionorderby
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptionorderby
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#TransientEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#TransientEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#TransientEntities
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#EntityIdsandEntityReferences
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#EntityIdsandEntityReferences
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#EntityIdsandEntityReferences
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#EntityIdsandEntityReferences

Standards Track Work Product

primitive properties the sameness of values is decided by a recursive invocation of this definition).

o If this is fulfilled, the instances are called complementary representations of the same non-transient entity. If
this case is encountered at some recursion level while the sameness of non-transient entities u; and u, is
established, a merged representation of the entity u; = ug exists that contains all properties of u; and us. But
if the instances both occur in the last output set, services MUST represent each with its own structure in the
response payload.

o If the first condition is fulfilled but not the second, the instances are not the same and are called contradictory
representations of the same non-transient entity. (Example 84 describes a use case for this.)

Collections are the same if there is a one-to-one correspondence f between them such that

» corresponding occurrences are of the same value and

e an occurrence u; precedes another occurrence wus if and only if the occurrence f(u1) precedes the occurrence
f(u2), where the occurrences u; and uz may be of the same value or of different values. (A one-to-one
correspondence with this second property is called order-preserving.)

3.1.3 Evaluation of Data Aggregation Paths

This document specifies how a data aggregation path that occurs in a request is evaluated by the service. If such an
evaluation fails, the service MUST reject the request.

For a data aggregation path to be a common expression according to [OData-URL, section 5.1.1], its segments must
be single-valued with the possible exception of the last segment, and it can then be evaluated relative to an instance of
a structured type. For the transformations defined in this document, a data aggregation path can also be evaluated
relative to a collection A, even if it has arbitrary collection-valued segments itself.

To this end, the following notation is used in the subsequent sections: If A is a collection and p a data aggregation path,
optionally followed by a type-cast segment, the result of such a path evaluation is denoted by I'(4, p) and defined as the
unordered concatenation, possibly containing repetitions, of the collections ~(u, p) for each u in A that is not null. The
function ~(u, p) takes a non-null value and a path as arguments and returns a collection of instances of structured types
or primitive values, depending on the type of the final segment of p. It is recursively defined as follows:

1. If pis an empty path, let B be a collection with « as its single member and continue with step 9.

2. Let p; be the first segment of p and p, the remainder, if any, such that p equals the concatenated path p;/p,.

3. If p; is a type-cast segment and w is of its type or a subtype thereof, let v = w and continue with step 8.

4. If p, is a type-cast segment and u is not of its type or a subtype thereof, let B be an empty collection and continue

with step 9. (This rule follows [OData-URL, section 4.11] rather than [OData-CSDL, section 14.4.1.1].)

5. Otherwise, p; is a non-type-cast segment. If w does not contain a structural or navigation property pi, let B be an
empty collection and continue with step 9.

6. If p; is single-valued, let v be the value of the structural or navigation property p; in . If v is null, let B be an empty
collection and continue with step 9; otherwise continue with step 8.

7. Otherwise, p; is collection-valued. Let C be the collection addressed by the structural or navigation property p; in u,
and let B =T'(C, p2). Then continue with step 9.

8. Let B = (v, p2).
9. Return B.

This notation is extended to the case of an empty path e by setting I'(4, e¢) = A with null values removed. Note the
collections returned by I" and + never contain the null value. Also, every instance u in I'(A, p) occurs also in A or nested
into A, therefore an algorithmic step like “Add a dynamic property to each w in I'(A, p)” effectively changes A.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 15 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingDerivedTypes
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingDerivedTypes
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingDerivedTypes
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#PathSyntax
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#PathSyntax
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#PathSyntax

Standards Track Work Product

3.2 Basic Aggregation

3.2.1 Transformation aggregate

3.2.1.1 Aggregation Algorithm

The aggregate transformation takes a comma-separated list of one or more aggregate expressions as parameters and

returns an output set with a single instance of the input type without entity-id containing one property per aggregate
expression, representing the aggregated value of the input set.

An aggregate expression MUST have one of the types listed below. To compute the value of the property for a given
aggregate expression, the aggregate transformation first determines a collection A of instances of structured types or
primitive values, based on the input set of the aggregate transformation, and a path p that occurs in the aggregate
expression. Let p; denote a data aggregation path with single- or collection-valued segments and p; a type-cast
segment. Depending on its type, the aggregate expression contains a path p = p; or p = p; or p = p1/p2. Each type of
aggregate expression defines a function f(A) which the aggregate transformation evaluates to obtain the property
value.

The property is a dynamic property, except for a special case in type 4. In types 1 and 2, the aggregate expression
MUST end with the keyword with and an aggregation method g. The aggregation method also determines the type of
the dynamic property. In types 1, 2, and 3 the aggregate expression MUST, and in type 4 it MAY, be followed by the
keyword as and an alias, which is then the name of the dynamic property.

Types of aggregate expressions:

whose values can be aggregated using the specified aggregation method g, or p = p, if the input set can be
aggregated using the custom aggregation method g.
Let £(4) = g(A).

2. An aggregatable expression whose values can be aggregated using the specified aggregation method g.
Let f(A) = g(B) where B is the collection consisting of the values of the aggregatable expression evaluated
relative to each occurrence in A with null values removed from B. In this type, p is absent.

3. A path p/$count (see section 3.2.1.4) with optional prefix p/ where p = p; or p = py Or p = py/ps.
Let f(A) be the cardinality of A.

4. A path p/c consisting of an optional prefix p/ with p = p; or p = p;/p, where the last segment of p; has a structured
type or p = p,, and a custom aggregate ¢ defined on the collection addressed by p.
Let f(A) = ¢(A). If computation of the custom aggregate fails, the service MUST reject the request. In the absence
of an alias:

o The name of the property is the name of the custom aggregate.

o The property is a dynamic property whose type is determined by the custom aggregate, unless there is a
declared property with that name. The latter case is allowed by the CustomAggregate annotation.

Determination of A:
Let I be the input set. If p is absent, let A = I with null values removed.

Otherwise, let ¢ be the portion of p up to and including the last navigation property, if any, and any type-cast segment
that immediately follows, and let » be the remainder, if any, of p that contains no navigation properties, such that p equals
the concatenated path ¢ / r. The aggregate transformation considers each entity reached via the path ¢ exactly once. To
this end, using the T"_notation:

« If gis non-empty, let E = T'(I, q) and remove duplicates from that entity collection: If multiple representations of the
same non-transient entity are reached, the service MUST merge them into one occurrence in F if they are
complementary and MUST reject the request if they are contradictory. If multiple occurrences of the same transient
entity are reached, the service MUST keep only one occurrence in E.

o If gisempty, let E = 1.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 16 of 69

Standards Track Work Product

Then, if r is empty, let A = E, otherwise let A = T'(E, r), this consists of instances of structured types or primitive values,
possibly with repetitions.

3.2.1.2 Keyword as

Aggregate expressions can be followed by the as keyword followed by an alias.
Example 7:

GET /service/Sales?$apply=aggregate (Amount with sum as Total,
Amount with max as MxA)

results in
{
"@Qcontext": "Smetadata#Sales (Total, MxA)",
"value": [
{ "Total@type": "Decimal", "Total": 24,
"MxA@type": "Decimal", "MxA": 8 }
]
}
Example 8:

GET /service/Sales?$apply=aggregate (Amount mul Product/TaxRate
with sum as Tax)

results in
{
"@Qcontext": "Smetadata#Sales (Tax)",
"value": [
{ "Tax@type": "Decimal", "Tax": 2.08 }

An alias affects the structure of the output set: each alias corresponds to a dynamic property in a $select option.

3.2.1.3 Aggregation Methods

with custom aggregation methods defined by the service. Only types 1 and 2 of the aggregation algorithm involve
aggregation methods, and the algorithm ensures that no null values occur among the values to be aggregated.

3.2.1.3.1 Standard Aggregation Method sum

The standard aggregation method sum can be applied to numeric values to return the sum of the values, or null if there

are no values to be aggregated. The provider MUST choose a single type for the property across all instances of that
type in the result that is capable of representing the aggregated values. This may require a larger integer type,
Edm.Decimal with sufficient Precision and Scale, or Edm.Double.

Example 9:
GET /service/Sales?$apply=aggregate (Amount with sum as Total)

results in

"Qcontext": "Smetadata#Sales (Total)",
"value": [
{ "Total@type": "Decimal", "Total": 24 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 17 of 69

Standards Track Work Product

}

3.2.1.3.2 Standard Aggregation Method min

The standard aggregation method min can be applied to values with a totally ordered domain to return the smallest of
the values, or null if there are no values to be aggregated.

The result property will have the same type as the input property.
Example 10:

GET /service/Sales?$apply=aggregate (Amount with min as MinAmount)

results in
{
"@Qcontext": "Smetadata#Sales (MinAmount)",
"value": [
{ "MinAmount@type": "Decimal", "MinAmount": 1 }

3.2.1.3.3 Standard Aggregation Method max

The standard aggregation method max can be applied to values with a totally ordered domain to return the largest of the
values, or null if there are no values to be aggregated.

The result property will have the same type as the input property.

Example 11:

GET /service/Sales?$apply=aggregate (Amount with max as MaxAmount)

results in
{
"@context": "Smetadata#Sales (MaxAmount)",
"value": [
{ "MaxAmount@type": "Decimal", "MaxAmount": 8 }

3.2.1.3.4 Standard Aggregation Method average

The standard aggregation method average can be applied to numeric values to return the sum of the values divided by
the count of the values, or null if there are no values to be aggregated.

The provider MUST choose a single type for the property across all instances of that type in the result that is capable of
representing the aggregated values; either Edm.Double Or Edm.Decimal with sufficient Precision and Scale.

Example 12:

GET /service/Sales?S$apply=aggregate (Amount with average as AverageAmount)

results in
{
"Qcontext": "Smetadata#Sales (AverageAmount)",
"value": [
{ "AverageAmount@type": "Decimal", "AverageAmount": 3.0 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 18 of 69

Standards Track Work Product

}

3.2.1.3.5 Standard Aggregation Method countdistinct

The aggregation method countdistinct can be applied to arbitrary collections to count the distinct values. Instance
comparison uses the definition of equality in [OData-URL, section 5.1.1.1.1].

The result property MUST have type Edm.Decimal with Scale 0 and sufficient Precision.
Example 13:

GET /service/Sales?$apply=aggregate (Product with countdistinct
as DistinctProducts)

results in

"Qcontext": "Smetadata#Sales (DistinctProducts)",
"value": [
{ "DistinctProducts@type": "Decimal", "DistinctProducts": 3 }

The number of instances in the input set can be counted with the aggregate expression $count.
3.2.1.3.6 Custom Aggregation Methods

Services can define custom aggregation methods if the functionality offered by the standard aggregation methods is not
sufficient for the intended consumers.

Custom aggregation methods MUST use a namespace-qualified name (see [OData-ABNF]), i.e. contain at least one
dot. Dot-less names are reserved for future versions of this specification.

A Example 14: custom aggregation method that concatenates distinct string values separated by commas

GET /service/Sales?$apply=groupby ((Customer/Country),
aggregate (Amount with sum as Total,
Product/Name with Custom.concat as ProductNames))

results in

"Qcontext": "Smetadata#Sales (Customer (Country),Total, ProductNames)",
"value": [
{ "Customer": { "Country": "Netherlands" },
"Total@type": "Decimal", "Total": 5,
"ProductNames": "Paper, Sugar" 1},
{ "Customer": { "Country": "USA" },
"Total@type": "Decimal", "Total": 19,
"ProductNames": "Coffee, Paper, Sugar" }

3.2.1.4 Aggregate Expression $count

The aggregate expression $count is defined as type 3 in the aggregation algorithm. It MUST always specify an alias
and MUST NOT specify an aggregation method.

The result property MUST have type Edm.Decimal with Scale 0 and sufficient Precision.

Example 15:

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 19 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#Equals

Standards Track Work Product

GET /service/Sales?$apply=aggregate (Scount as SalesCount)
results in

{

"Qcontext": "Smetadata#Sales (SalesCount)",
"value": [
{ "SalesCount@type": "Decimal", "SalesCount": 8 }

]
}

3.2.2 Transformation concat

The concat transformation takes two or more parameters, each of which is a sequence of set transformations.

It applies each transformation sequence to the input set and concatenates the intermediate output sets in the order of
the parameters into the output set, preserving the ordering of the individual output sets as well as the structure of each
instance in these sets, potentially leading to a non-homogeneously structured output set. If different intermediate output
sets contain dynamic properties with the same alias, clients SHOULD ensure they have the same type and meaning in
each intermediate output set.

A Example 16:

GET /service/Sales?$apply=concat (topcount (2, Amount),
aggregate (Amount))

results in

{
"Qcontext": "Smetadata#Sales (Amount)",
"value": [
{ "ID": 4, "Amount": 8 },
{ "ID": 3, "Amount": 4 },
{ "Amount": 24 }

}

Note that two Sales entities with the second highest amount 4 exist in the input set; the entity with ID 3 is included in the result, because the
service chose to use the 1D property for imposing a stable ordering.

3.2.3 Transformation groupby

The groupby transformation takes one or two parameters where the second is a list of set transformations, separated

by forward slashes to express that they are consecutively applied. If the second parameter is not specified, it defaults to
a single transformation whose output set consists of a single instance of the input type without properties and without
entity-id.

The groupby transformation partitions the input set by the values of certain “grouping properties” and applies the given
set transformations to each partition, this is called “simple grouping”.

3.2.3.1 Simple Grouping

The first parameter of groupby specifies the grouping properties, a comma-separated parenthesized list G of one or
more data aggregation paths with single-valued segments. The same path SHOULD NOT appear more than once;
redundant property paths MAY be considered valid, but MUST NOT alter the meaning of the request. Navigation
properties and stream properties specified in grouping properties are expanded by default (see example 63).

The algorithmic description of this transformation makes use of the following definitions: Let u[g] denote the value of a
structural or navigation property ¢ in an instance u. A path p; is called a prefix of a path p if there is a non-empty path p»
such that p equals the concatenated path p;/p.. Let e denote the empty path.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 20 of 69

Standards Track Work Product
The output set of the groupby transformation is constructed in five steps.

1. For each occurrence u in the input set, a projection is computed that contains only the grouping properties. This
projection is sg(u, €) and the function sg(u, p) takes an instance and a path relative to the input set as arguments
and is computed recursively as follows:

o Letwv be an instance of the type of u without properties and without entity-id.
o For each structural or navigation property g of u:
» If u has a subtype of the type addressed by p and ¢ is only declared on that subtype, let p’ = p/p"/q
where p” is a type-cast to the subtype, otherwise let p’ = p/q.
» If p’ occurs in G, let v[q] = u[q].
= Otherwise, if p' is a prefix of a path in G and u[g] has a structured type, let v[q] = sg(ulg],?’)-
o Return v.

2. The input set is split into subsets where two instances are in the same subset if their projections are the same. If
representations of the same non-transient entity are encountered during the comparison of two projections, the
service MUST assign them to one subset with the merged representation if they are complementary and MUST
reject the request if they are contradictory.

3. The set transformations from the second parameter are applied to each subset, resulting in a new set of potentially
different structure and cardinality. Associated with each resulting set is the common projection of the instances in
the subset from which the resulting set was computed.

4. Each set resulting from the previous step is transformed to contain the associated common projection s. This
transformation is denoted by Il;(s) and is defined below.

5. The output set is the concatenation of the transformed sets from the previous step. The order of occurrences from
the same transformed set remains the same, and no order is defined between occurrences from different
transformed sets.

Definition of T1g(s):

Prerequisites: G is a list of data aggregation paths and s is an instance of the input type.

The output set of the transformation II;(s) is in one-to-one correspondence with its input set via the order-preserving
mapping u — ag(u, s, e). The function ag(u, s, p) takes two instances and a path relative to the input set as arguments
and is computed recursively as follows:

1. If necessary, cast u to a subtype so that its type contains all structural and navigation properties of s.
2. For each structural or navigation property g of s:
o If s has a subtype of the type addressed by p and ¢ is only declared on that subtype, let p’ = p/p”/q where p”
is a type-cast to the subtype, otherwise let p’ = p/q.

o If g is a single-valued primitive structural property or p’ occurs in G, let u[g] = s[q]. (In the case where p’
occurs in G we also call g a final segment from G.)
o Otherwise, if g is single-valued, let u[q] = ag(ulq], s[q], P').
o Otherwise, the behavior is undefined. (Such cases never occur when Il;(s) is used in this document.)
3. Return w.

Example 17:

GET /service/Sales?S$apply=groupby ((Customer/Country, Product/Name),
aggregate (Amount with sum as Total))

results in

{

"Qcontext": "Smetadata#Sales (Customer (Country),Product (Name), Total)",
"value": [
{ "Customer": { "Country": "Netherlands" },
"Product": { "Name": "Paper" },
"Total@type": "Decimal", "Total": 3},

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 21 of 69

Standards Track Work Product

{ "Customer": { "Country": "Netherlands" },
"Product": { "Name": "Sugar" },
"Total@type": "Decimal", "Total": 2 },

{ "Customer": { "Country": "USA" },
"Product": { "Name": "Coffee" },
"Total@type": "Decimal", "Total": 12 },

{ "Customer": { "Country": "USA" },
"Product": { "Name": "Paper" },
"Total@type": "Decimal", "Total": 5 1},

{ "Customer": { "Country": "USA" },
"Product": { "Name": "Sugar" 1},
"Total@type": "Decimal", "Total": 2 }

If the second parameter is omitted, steps 2 and 3 above produce one instance containing only the grouping properties
per distinct value combination.

A Example 18:
GET /service/Sales?$apply=groupby ((Product/Name, Amount))

results in

"@Qcontext": "Smetadata#Sales (Product (Name) , Amount)",

"value": [
{ "Product": { "Name": "Coffee" }, "Amount": 4 },
{ "Product": { "Name": "Coffee" }, "Amount": 8 1},
{ "Product": { "Name": "Paper" }, "Amount": 1 },
{ "Product": { "Name": "Paper" }, "Amount": 2 1},
{ "Product": { "Name": "Paper" }, "Amount": 4 },
{ "Product": { "Name": "Sugar" }, "Amount": 2 }

Note that the result has the same structure, but not the same content as

GET /service/Sales?$expand=Product ($select=Name) &§$select=Amount

A groupby transformation affects the structure of the output set similar to $select where each grouping property
corresponds to an item in a $select clause.

3.3 Transformations Producing a Subset

These transformations produce an output set that is a subset of their input set, possibly in a different order. Some of the
algorithmic descriptions below make use of the following definition: A total order of a collection is called stable across
requests if it is the same for all requests that construct the collection by executing the same resource path and
transformations, possibly nested, on the same underlying data.

A Example 19: A stable total order is required for the input set of a skip transformation. The following request constructs that input set by
executing the groupby transformation on the Sales entity collection, computing the total sales per customer. Because of the subsequent skip
transformation, the service must endow this with a stable total order. Then the request divides the total sales per customer into pages of N
customers and returns page number i in a reproducible manner (as long as the underlying data do not change).

GET /service/Sales?$apply=
groupby ((Customer) ,aggregate (Amount with sum as Total))
/skip (M) /top (N)

where the number in skip is M = (i — 1) - N. Other values of M can be used to skip, for example, half a page.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 22 of 69

Standards Track Work Product

3.3.1 Top/bottom transformations

These transformations take two parameters. The first parameter MUST be an expression that is evaluable on the input
set as a collection, without reference to an individual instance (and which therefore cannot be a property path). The

second parameter MUST be an expression that is evaluated on each instance of the input set in turn.

The output set is constructed as follows:

1.

6.
7.

Let A be a copy of the input set with a total order that is chosen by the service (it need not preserve any existing
order). The total order MUST be stable across requests. (This is the order of the eventual output set of this
transformation.)

. Let B be a copy of A that is stable-sorted in ascending (for transformations starting with bottom) or descending

(for transformations starting with top) order of the value specified in the second parameter. (This is the order in
which contributions to the output set are considered.)

. Start with an empty output set.
. Loop over B in its total order.
. Exit the loop if a condition is met. This condition depends on the transformation being executed and is given in the

subsections below.
Insert the current item of the loop into the output set in the order of A.
Continue the loop.

For example, if the input set consists of non-transient entities and the datastore contains an index ordered by the
second parameter and then the entity-id, a service may implement this algorithm with A = B ordered like this index.

The order of the output set can be influenced with a subsequent orderby transformation.

3.3.1.1 Transformations bottomcount and topcount

The first parameter MUST evaluate to a positive integer c. The second parameter MUST evaluate to a primitive type
whose values are totally ordered. In step 5, exit the loop if the cardinality of the output set equals c.

Example 20:

GET /service/Sales?$apply=bottomcount (2, Amount)

results in
{
"Qcontext": "Smetadata#Sales",
"value": [
{ "ID": 1, "Amount": 1 },
{ "ID": 7, "Amount": 1 }
]
}
Example 21:

GET /service/Sales?$apply=topcount (2,Amount)

results in

{
"@Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 3, "Amount":

4},
{ "ID": 4, "Amount": 8 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 23 of 69

Standards Track Work Product

Note that two Sales entities with the second highest amount 4 exist in the input set; the entity with ID 3 is included in the result, because the
service chose to use the 1D property for imposing a stable ordering in step 1. Such a logic needs to be in place even with a preceding orderby
since it cannot be ensured that it creates a stable order of the instances on the expressions of the second parameter.

3.3.1.2 Transformations bottompercent and toppercent

The first parameter MUST evaluate to a positive number p less than or equal to 100. The second parameter MUST
evaluate to a number. In step 5, exit the loop if the ratio of the sum of the numbers addressed by the second parameter
in the output set to their sum in the input set equals or exceeds p percent.

Example 22:

GET /service/Sales?$apply=bottompercent (50, Amount)

results in
{
"Qcontext": "Smetadata#Sales",
"value": [
{ "ID": 1, "Amount": 1 },
{ "ID": 2, "Amount": 2 },
{ "ID": 5, "Amount": 4 },
{ "ID": 6, "Amount": 2 },
{ "ID": 7, "Amount": 1 },
{ "ID": 8, "Amount": 2 }
]
}
Example 23:

GET /service/Sales?$apply=toppercent (50, Amount)

results in
"@context": "Smetadata#Sales",
"value": [

{ "ID": 3, "Amount": 4 },
{ "ID": 4, "Amount": 8 }

3.3.1.3 Transformations bottomsum and topsum

The first parameter MUST evaluate to a number s. The second parameter MUST be an aggregatable expression that
evaluates to a number. In step 5, exit the loop if the sum of the numbers addressed by the second parameter in the
output set is greater than or equal to s.

Example 24:
GET /service/Sales?$apply=bottomsum(7,Amount)

results in

"Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 1, "Amount": 1 1},

{ "ID": 2, "Amount": 2 },

{ "ID": 6, "Amount": 2 },

{ "ID": 7, "Amount": 1 },

{ "ID": 8 "Amount": 2 }

~

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 24 of 69

Standards Track Work Product

Example 25:
GET /service/Sales?$apply=topsum(1l5,Amount)
results in
"@Qcontext": "Smetadata#Sales",
"value": [
{ "ID": 3, "Amount": 4 1},
{ "ID": 4, "Amount": 8 1},
{ "ID": 5, "Amount":

}

3.3.2 Transformation filter

The £ilter transformation takes a Boolean expression that could also be passed as a $£ilter system query option.
Its output set is the subset of the input set containing all instances (possibly with repetitions) for which this expression,
evaluated relative to the instance, yields true. No order is defined on the output set.

Example 26:
GET /service/Sales?$apply=filter (Amount gt 3)
results in
"Q@Qcontext": "Smetadata#Sales",
"value": [
{ "ID": 3, "Amount": 4 1},

{ "ID": 4, "Amount": 8 1},
{ "ID": 5, "Amount":

3.3.3 Transformation orderby

The orderby transformation takes a list of expressions that could also be passed as a $orderby system query option.
Its output set consists of the instances of the input set in the same order $orderby would produce for the given
expressions, but keeping the relative order from the input set if the given expressions do not distinguish between two
instances. The orderby transformation thereby performs a stable-sort. A service supporting this transformation MUST at
least offer sorting by values addressed by property paths, including dynamic properties, with both suffixes asec and
desc.

Example 27:

GET /service/Sales?$apply=groupby ((Product/Name),
aggregate (Amount with sum as Total))
/orderby (Total desc)

results in

"@context": "Smetadata#Sales (Product (Name), Total)",
"value": [
{ "Product": { "Name": "Coffee" },
"Total@type": "Decimal", "Total": 12 },
{ "Product": { "Name": "Paper" 1},

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 25 of 69

Standards Track Work Product

"Total@type": "Decimal", "Total": 8 },
{ "Product": { "Name": "Sugar" },
"Total@type": "Decimal"™, "Total": 4 }

}

3.3.4 Transformation search

The search transformation takes a search expression that could also be passed as a $search system query option.
Its output set is the subset of the input set containing all instances (possibly with repetitions) that match this search
expression. Closing parentheses in search expressions must be within single or double quotes in order to avoid syntax
errors like search ()). No order is defined on the output set.

Example 28: assuming that free-text search on Sales takes the related product name into account,
GET /service/Sales?$apply=search (coffee)
results in
"Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 3, "Amount": 4 },
{ "ID": 4, "Amount": 8 }

3.3.5 Transformation skip

The skip transformation takes a non-negative integer ¢ as argument. Let A be a copy of the input set with a total order

that extends any existing order of the input set but is otherwise chosen by the service. The total order MUST be stable
across requests.

The transformation excludes from the output set the first ¢ occurrences in A. It keeps all remaining instances in the
same order as they occur in A.

Example 29:
GET /service/Sales?$apply=orderby (Customer/Name desc) /skip (2)/top(2)

results in
"Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 6, "Amount": 2 },
{ "ID": 7, "Amount": 1 }

3.3.6 Transformation top

The top transformation takes a non-negative integer ¢ as argument. Let A be a copy of the input set with a total order

that extends any existing order of the input set but is otherwise chosen by the service. The total order MUST be stable
across requests.

If A contains more than c instances, the output set consists of the first ¢ occurrences in A. Otherwise, the output set
equals A. The instances in the output set are in the same order as they occur in A.

Note the transformation top (0) produces an empty output set.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 26 of 69

Standards Track Work Product
Example 30:
GET /service/Sales?$apply=orderby (Customer/Name desc) /top(2)

results in

"@Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 4, "Amount": 8 },

{ "ID": 5, "Amount": 4 }

}

3.3.7 Stable Total Order Before $skip and $top

When the system query options $top and $skip [OData-Protocol, section 11.2.6.3] are executed after the system
guery option $apply and after $filter and $orderby, if applicable, they operate on a collection with a total order
that extends any existing order but is otherwise chosen by the service. The total order MUST be stable across requests.

3.4 One-to-One Transformations

These transformations produce an output set in one-to-one correspondence with their input set. The output set is initially
a clone of the input set, then dynamic properties are added to the output set. The values of properties copied from the
input set are not changed, nor is the order of instances changed.

3.4.1 Transformation identity

The output set of the identity transformation is its input set in unchanged order.
Example 31: Add a grand total row to the Sales result set

GET /service/Sales?$apply=concat (identity, aggregate (Amount with sum as Total))

3.4.2 Transformation compute
The compute transformation takes a comma-separated list of one or more compute expressions as parameters.
A compute expression is a common expression followed by the as keyword, followed by an alias.

The output set is constructed by copying the instances of the input set and adding one dynamic property per compute
expression to each occurrence in the output set. The name of each added dynamic property is the alias of the
corresponding compute expression. The value of each added dynamic property is computed relative to the
corresponding instance. Services MAY support expressions that address dynamic properties added by other
expressions within the same compute transformation, provided that the service can determine an evaluation sequence.
The type of the property is determined by the rules for evaluating common expressions and numeric promotion defined
in [OData-URL, section 5.1.1].

Example 32:

GET /service/Sales?$apply=compute (Amount mul Product/TaxRate as Tax)

results in
{
"Q@context": "Smetadata#Sales (*,Tax)",
"value": [
{ "ID": 1, "Amount": 1, "Tax@type": "Decimal", "Tax": 0.14 1},
{ "ID": 2, "Amount": 2, "Tax@type": "Decimal", "Tax": 0.12 },
{ "ID": 3, "Amount": 4, "Tax@type": "Decimal", "Tax": 0.24 },
{ "ID": 4, "Amount": 8, "Tax@type": "Decimal", "Tax": 0.48 },

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 27 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#SystemQueryOptiontop
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#CommonExpressionSyntax

Standards Track Work Product

{ "ID": 5, "Amount": 4, "Tax@type": "Decimal", "Tax": 0.56 },
{ "ID": 6, "Amount": 2, "Tax@type": "Decimal", "Tax": 0.12 1},
{ "ID": 7, "Amount": 1, "Tax@type": "Decimal", "Tax": 0.14 1},
{ "ID": 8, "Amount": 2, "Tax@type": "Decimal", "Tax": 0.28 }

3.5 Transformations Changing_the Input Set Structure

The output set of the join transformations differs from their input set in the number of instances as well as in their
structure, but reflects the order of the input set.

3.5.1 Transformations join and outerjoin

The join and outerjoin transformations take as their first parameter p a collection-valued complex or navigation
property, optionally followed by a type-cast segment to address only instances of that derived type or one of its sub-
types, followed by the as keyword, followed by an alias. The optional second parameter specifies a transformation
sequence T

For each occurrence « in an order-preserving_loop over the input set

1. the instance collection A addressed by p is identified.
2. If T is provided, A is replaced with the result of applying T to A.
3. In case of an outerjoin, if A is empty, a null instance is added to it.

4. For each occurrence v in an order-preserving_loop over A an instance w is appended to the output set of the
transformation:

o The instance w is a clone of v with an additional dynamic property whose name is the given alias and whose
value is v.

o The dynamic property is a havigation property if p is a collection-valued navigation property, otherwise it is a
complex property.
o The dynamic property carries as control information the context URL of v.

Example 33: all links between products and sales instances

GET /service/Products?$apply=join(Sales as Sale)&S$select=ID&$Sexpand=Sale

results in

"@context": "Smetadata#Products (ID,Sale())",
"value": [
{ "ID": "P1",
"Sale": {
"Qcontext": "#Sales/Sentity",
"ID": 2, "Amount": 2 } },
{ "Ip": "P1",
"Sale": {
"Qcontext": "#Sales/Sentity",
"ID": 6, "Amount": 2 } },
{ "ID": "P2",
"Sale": {
"Qcontext": "#Sales/Sentity",
"ID": 3, "Amount": 4 } },
{ "ID": "P2",
"Sale": {
"Qcontext": "#Sales/Sentity",
"ID": 4, "Amount": 8 } 1},
{ "ID": "P3",
"Sale": {
"Qcontext": "#Sales/Sentity",

"ID": 1, "Amount": 1 } 1},

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 28 of 69

Standards Track Work Product

{ "ID": "P3",
"Sale": {
"@context": "#Sales/Sentity",
"ID": 5, "Amount": 4 } },
{ "ID": "P3",
"Sale": {
"@Qcontext": "#Sales/S$entity",
"ID": 7, "Amount": 1 } 1},
{ "ID": "P3",
"Sale": {
"Qcontext": "#Sales/Sentity",

"ID": 8, "Amount": 2 } }

In this example, $expand=Sale is used to include the target entities in the result. There are no subsequent transformations like groupby that
would cause it to be expanded by default. If the first parameter Sales was a collection-valued complex property of type
SalesModel.SalesComplexType, the complex property Sale would be in the result regardless, and its context would be "Qcontext" :
"#SalesModel.SalesComplexType".

Applying outerjoin instead would return an additional instance for product with "ID" : "P4" and Sale having a null value.

3.6 Expressions Evaluable on a Collection

The following two subsections introduce two new types of expression that are evaluated relative to a collection, called
the input collection.

These expressions are

« either prepended with a collection-valued path p followed by a forward slash, like a lambda operator [OData-URL,
section 5.1.1.13]. The collection identified by that path is then the input collection for the expression.
« or prepended with the keyword $these followed by a forward slash, the input collection is then the current
collection defined as follows:
o In a system query option other than $apply, possibly nested within $expand or $select, the current
collection is the collection that is the subject of the system query option.

o In a path segment that addresses a subset of a collection [OData-URL, section 4.12], the current collection
is the collection that is the subject of the path segment.

o In an $apply transformation, the current collection is the input set of the transformation.

3.6.1 Function aggregate

The aggregate function allows the use of aggregated values in expressions. It takes a single parameter accepting an
aggregate expression and returns the aggregated value of type Edm. PrimitiveType as the result from applying the
aggregate expression on its input collection.

More precisely, if « is an aggregate expression, the function p/aggregate(a) or $these/aggregate(a) evaluates to the
value of the property D in the single instance of the output set that is produced when the transformation
aggregate(a as D) is applied with the input collection as input set.

Example 34: Sales making up at least a third of the total sales amount.
GET /service/Sales?$filter=Amount mul 3 ge S$these/aggregate (Amount with sum)
results in

{

"@context": "Smetadata#Sales",
"value": [
{ "ID": "4", "Amount": 8 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 29 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#LambdaOperators
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#LambdaOperators
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#LambdaOperators
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#LambdaOperators
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingaSubsetofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingaSubsetofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingaSubsetofaCollection

Standards Track Work Product

Example 35: Products with more than 1.00 sales tax. The aggregate expression of type 2 combines paths with and without $it prefix (compare
this with example 8).

GET /service/Products?$filter=Sales/aggregate (Amount mul $it/TaxRate with sum)
gt 1

A Example 36: products with a single sale of at least twice the average sales amount

GET /service/Products?$filter=Sales/any(s:s/Amount ge
Sales/aggregate (Amount with average) mul 2)

Both examples result in

{

"Qcontext": "$metadata#Products",
"value": [
{ "ID": "P3", "Name": "Paper", "Color": "White", "TaxRate": 0.14 }

3.6.2 Expression $count

The expression $count evaluates to the cardinality of the input collection.
Example 37: The input collection for $count consists of all sales entities, the top third of sales entities by amount form the result.
GET /service/Sales?$apply=topcount ($these/S$count div 3,Amount)

results in 2 (a third of 8, rounded down) entities. (This differs from toppercent (33.3,Amount), which returns only the sales entity with ID 4,
because that already makes up a third of the total amount.)

"Qcontext": "Smetadata#Sales",
"value": [

{ "ID": 3, "Amount": 4 },

{ "ID": 4, "Amount": 8 }

A definition that is equivalent to a $count expression after a collection-valued path was made in [OData-URL, _section
4.8].

3.7 Function isdefined

Properties that are not explicitly mentioned in aggregate or groupby are considered to have been aggregated away.
Since they are treated as having the null value in $£ilter expressions [OData-URL, section 5.1.1.15], the $filter
expression Product eq null cannot distinguish between an instance containing the value for the null product and the
instance containing the aggregated value across all products (where the Product has been aggregated away).

The function isdefined can be used to determine whether a property is present or absent in an instance. It takes a

single-valued property path as its only parameter and returns true if the property is present in the instance for which the
expression containing the isdefined function call is evaluated. A present property can still have the null value; it can
represent a grouping of null values, or an aggregation that results in a null value.

Example 38: Product has been aggregated away, causing an empty result

GET /service/Sales?$apply=aggregate (Amount with sum as Total)
&Sfilter=isdefined (Product)

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 30 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCountofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCountofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCountofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCountofaCollection
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#PathExpressions
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#PathExpressions
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#PathExpressions

results in

Standards Track Work Product

"@Qcontext": "Smetadata#Sales (Total)",

"value": []

3.8 Evaluating $apply as an Expand and Select Option

The new system query option $apply can be used as an expand or select option to inline the result of aggregating

of entities or the selected collection of instances, meaning this context defines the input set of the first transformation.
Furthermore, $apply is evaluated first, and other expand or select options on the same (navigation) property are
evaluated on the result of $apply.

Example 39: products with aggregated sales

GET /service/Products
?$expand=Sales ($Sapply=aggregate (Amount with sum as Total))

results in

"@Qcontext": "Smetadata#Products (Sales (Total))",
"value": [
{ "ID": "P2", "Name": "Coffee", "Color": "Brown", "TaxRate":
"Sales": [{ "Total@type": "Decimal", "Total": 12}y 1 3,
{ "ID": "P3", "Name": "Paper", "Color": "White", "TaxRate":
"Sales": [{ "Total@type": "Decimal", "Total": 8 1 1 1},
{ "ID": "P4", "Name": "Pencil", "Color": "Black", "TaxRate":
"Sales": [{ "Total": null }] },
{ "ID": "P1l", "Name": "Sugar", "Color": "White", "TaxRate":
"Sales": [{ "Total@type": "Decimal", "Total": 4 } 1}

3.9 ABNF for Extended URL Conventions

0.

0.

0.

0.

06,

14,

14,

06,

The normative ABNF construction rules for this specification are defined in [OData-Agg-ABNF]. They incrementally
extend the rules defined in [OData-ABNF].

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 31 of 69

Standards Track Work Product

4 Cross-Joins and Aggregation

OData supports querying related entities through defining navigation properties in the data model. These navigation
paths help guide simple consumers in understanding and navigating relationships.

In some cases, however, requests need to span entity sets with no predefined associations. Such requests can be sent
to the special resource $crossjoin instead of an individual entity set. The cross join of a list of entity sets is the
Cartesian product of the listed entity sets, represented as a collection of complex type instances that have a navigation
property with cardinality to-one for each participating entity set, and queries across entity sets can be formulated using
these navigation properties. See [OData-URL, section 4.15] for details.

Where useful navigations exist it is beneficial to expose those as explicit navigation properties in the model, but the
ability to pose queries that span entity sets not related by an association provides a mechanism for advanced
consumers to use more flexible join conditions.

Example 40: if sale had a string property ProductID instead of the navigation property Product, a ‘join” between Sales and Products
could be accessed via the $crossjoin resource

GET /service/$crossjoin (Products, Sales)
?$expand=Products ($select=Name), Sales ($select=Amount)
&$filter=Products/ID eq Sales/ProductID

results in

"@context": "Smetadata#Collection (Edm.ComplexType)",

"value": [
{ "Products": { "Name": "Paper" }, "Sales": { "Amount": 1 } },
{ "Products": { "Name": "Sugar" }, "Sales": { "Amount": 2 } 1},

Example 41: using the $crossjoin resource for aggregate queries

GET /service/$crossjoin (Products, Sales)
?Sapply=filter (Products/ID eq Sales/ProductID)
/groupby ((Products/Name) ,
aggregate (Sales/Amount with sum as Total))

results in

"Qcontext": "Smetadata#Collection (Edm.ComplexType)",
"value": [
{ "Products": { "Name": "Coffee" },
"Total@type": "Decimal", "Total": 12 },
{ "Products": { "Name": "Paper" by
"Total@type": "Decimal", "Total": 8 },
{ "Products": { "Name": "Sugar" b
"Total@type": "Decimal", "Total": 4 }

The entity container may be annotated in the same way as entity sets to express which aggregate queries are
supported, see section 5.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 32 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCrossJoinofEntitySets
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCrossJoinofEntitySets
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part2-url-conventions.html#AddressingtheCrossJoinofEntitySets

Standards Track Work Product

5 Vocabulary for Data Aggregation

The following terms are defined in the vocabulary for data aggregation [OData-VocAggr].

5.1 Aggregation Capabilities

The term ApplySupported can be applied to an entity set, an entity type, or a collection if the target expression of the
annotation starts with an entity container (see example 43). It describes the aggregation capabilities of the annotated
target. If present, it implies that instances of the annotated target can contain dynamic properties as an effect of $apply
even if they do not specify the OpenType attribute, see [OData-CSDL, section 6.3]. The term has a complex type with
the following properties:

e The Transformations collection lists all supported set transformations. Allowed values are the names of the
standard transformations introduced in sections 3 and 6, and hamespace-qualified names identifying a service-
defined bindable function. If Transformations is omitted the server supports all transformations defined by this
specification.

e The CustomAggregationMethods collection lists supported custom aggregation methods. Allowed values are

namespace-qualified names identifying service-specific aggregation methods. If omitted, no custom aggregation
methods are supported.

e 74 Rollup is reserved for later versions of this specifications. The functional scope of this version of the
specification is expressed by giving Rol1lup the value None.

* Anon-empty GroupableProperties indicates that only the listed properties of the annotated target can be used
in groupby.

e Anon-empty AggregatableProperties indicates that only the listed properties of the annotated target can be
used in aggregate, optionally restricted to the specified aggregation methods.

All properties of ApplySupported are optional, so it can be used as a tagging annotation to signal unlimited support of
aggregation.

The term ApplySupportedDefaults can be applied to an entity container. It allows to specify default support for
aggregation capabilities Transformations, CustomAggregationMethods and Rollup that propagate to all

collection-valued resources in the container. Annotating a specific collection-valued resource with the term
ApplySupported overrides the default support with the specified properties using PATCH semantics:

« Primitive or collection-valued properties specified in ApplySupported replace the corresponding properties
specified in ApplySupportedDefaults.

« Complex-valued properties specified in ApplySupported override the corresponding properties specified in
ApplySupportedDefaults using PATCH semantics recursively.

» Properties specified neither in ApplySupported nor in ApplySupportedDefault have their default value.
Example 42: an entity container with default support for everything defined in this specification

<EntityContainer Name="SalesData">
<Annotation Term="Aggregation.ApplySupportedDefaults" />

</EntityContainer>

Example 43: Define aggregation support only for the products of a given category

<Annotations Target="SalesModel.SalesData/Categories/Products">
<Annotation Term="Aggregation.ApplySupported">

</Annotation>
</Annotations>

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 33 of 69

https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#OpenEntityType

Standards Track Work Product

5.2 Custom Aggregates

The term CustomAggregate allows defining dynamic properties that can be used in aggregate. No assumptions can

be made on how the values of these custom aggregates are calculated, whether they are null, and which input values
are used.

When applied to an entity set, an entity type, or a collection if the target expression of the annotation starts with an entity
container, the annotation specifies custom aggregates that are available for its instances and for aggregated instances
resulting from these instances. When applied to an entity container, the annotation specifies custom aggregates whose
input set may span multiple entity sets within the container.

A custom aggregate is identified by the value of the Qualifier attribute when applying the term. The value of the
Qualifier attribute is the name of the dynamic property. The name MUST NOT collide with the names of other custom
aggregates of the same model element.

The value of the annotation is a string with the qualified name of a primitive type or type definition in scope that specifies
the type returned by the custom aggregate.

If the custom aggregate is associated with an entity set, entity type, or collection, the value of the Qualifier attribute
MAY be identical to the name of a declared property of the instances in this set or collection. In these cases, the value of
the annotation MUST have the same value as the Type attribute of the declared property. This is typically done when

the custom aggregate is used as a default aggregate for that property. In this case the name refers to the custom
aggregate within an aggregate expression without a with clause, and to the property in all other cases.

If the custom aggregate is associated with an entity container, the value of the Qualifier attribute MUST NOT collide
with the names of any entity container children.

Example 44: Sales forecasts are modeled as a custom aggregate of the Sale entity type because it belongs there. For the budget, there is no
appropriate structured type, so it is modeled as a custom aggregate of the SalesData entity container.

<Annotations Target="SalesModel.SalesData/Sales">
<Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"
String="Edm.Decimal" />
</Annotations>
<Annotations Target="SalesModel.SalesData">
<Annotation Term="Aggregation.CustomAggregate" Qualifier="Budget"
String="Edm.Decimal" />
</Annotations>

These custom aggregates can be used in the aggregate transformation:
GET /service/Sales?$apply=groupby ((Time/Month),aggregate (Forecast))
and:

GET /service/$crossjoin (Time) ?$Sapply=groupby ((Time/Year) ,b aggregate (Budget))

5.3 Context-Defining Properties

Sometimes the value of a property or custom aggregate is only well-defined within the context given by values of other
properties, e.g. a postal code together with its country, or a monetary amount together with its currency unit. These
context-defining properties can be listed with the term ContextDefiningProperties whose type is a collection of

property paths.

If present, the context-defining properties SHOULD be used as grouping properties when aggregating the annotated
property or custom aggregate, or alternatively be restricted to a single value by a pre-filter operation. Services MAY
respond with 400 Bad Request if the context-defining properties are not sufficiently specified for calculating a
meaningful aggregate value.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 34 of 69

Standards Track Work Product

5.4 Annotation Example

Example 45: This simplified Sales entity set has a single aggregatable property Amount whose context is defined by the Code property of the
related Currency, and a custom aggregate Forecast with the same context. The Code property of Currencies is groupable. All other
properties are neither groupable nor aggregatable.

<EntityType Name="Currency">
<Key>
<PropertyRef Name="Code" />
</Key>
<Property Name="Code" Type="Edm.String" />
<Property Name="Name" Type="Edm.String">
<Annotation Term="Core.IsLanguageDependent" />
</Property>
</EntityType>

<EntityType Name="Sale'">
<Key>
<PropertyRef Name="ID" />
</Key>
<Property Name="ID" Type="Edm.String" Nullable="false" />
<Property Name="Amount" Type="Edm.Decimal" Scale="variable">
<Annotation Term="Aggregation.ContextDefiningProperties">
<Collection>
<PropertyPath>Currency/Code</PropertyPath>
</Collection>
</Annotation>
</Property>
<NavigationProperty Name="Currency" Type="SalesModel.Currency"
Nullable="false" />
</EntityType>

<EntityContainer Name="SalesData">
<EntitySet Name="Sales" EntityType="SalesModel.Sale">
<Annotation Term="Aggregation.ApplySupported">
<Record>
<PropertyValue Property="AggregatableProperties">
<Collection>
<Record>
<PropertyValue Property="Property" PropertyPath="Amount" />
</Record>
</Collection>
</PropertyValue>
<PropertyValue Property="GroupableProperties">
<Collection>
<PropertyPath>Currency</PropertyPath>
</Collection>
</PropertyValue>
</Record>
</Annotation>

<Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"
String="Edm.Decimal">
<Annotation Term="Aggregation.ContextDefiningProperties">
<Collection>
<PropertyPath>Currency/Code</PropertyPath>
</Collection>
</Annotation>
</Annotation>
</EntitySet>

<EntitySet Name="Currencies" EntityType="SalesModel.Currency">
<Annotation Term="Aggregation.ApplySupported">
<Record>
<PropertyValue Property="GroupableProperties">

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 35 of 69

Standards Track Work Product

<Collection>
<PropertyPath>Code</PropertyPath>
</Collection>
</PropertyValue>
</Record>
</Annotation>
</EntitySet>
</EntityContainer>

5.5 Hierarchies

A hierarchy is an arrangement of entities whose values are represented as being “above”, “below”, or “at the same level
as” one another.

7 Recursive hierarchies are defined in the following subsection. Any list of properties can be viewed as a leveled
hierarchy with a fixed number of levels, for example, year, quarter and month, but this is not made explicit in the OData
service.

5.5.1 Recursive Hierarchy

A recursive hierarchy is defined on a collection of entities by

+ determining which entities are part of the hierarchy and giving every such entity a single primitive non-null value
that uniquely identifies it within the hierarchy. These entities are called nodes, and the primitive value is called the
node identifier, and

¢ associating with every node zero or more nodes from the same collection, called its parent nodes.

The recursive hierarchy is described in the model by an annotation of the entity type with the complex term
RecursiveHierarchy with these properties:

* The NodeProperty MUST be a path with single-valued segments ending in a primitive property. This property
holds the node identifier of an entity that is a node in the hierarchy.
e The ParentNavigationProperty MUST be a collection-valued or nullable single-valued navigation property

path that addresses the entity type annotated with this term. It navigates from an entity that is a node in the
hierarchy to its parent nodes.

The term RecursiveHierarchy can only be applied to entity types, and MUST be applied with a qualifier, which is
used to reference the hierarchy in transformations operating on recursive hierarchies and in hierarchy functions. The
same entity can serve as nodes in different recursive hierarchies, given different qualifiers.

A root node is a node without parent nodes. A recursive hierarchy can have one or more root nodes. A node is a child
node of its parent nodes, a node without child nodes is a leaf node. Two nodes with a common parent node are sibling
nodes and so are two root nodes.

The descendants with maximum distance d > 1 of a node are its child nodes and, if d > 1, the descendants of these
child nodes with maximum distance d — 1. The descendants are the descendants with maximum distance d = co. A node
together with its descendants forms a sub-hierarchy of the hierarchy.

The ancestors with maximum distance d > 1 of a node are its parent nodes and, if d > 1, the ancestors of these parent
nodes with maximum distance d — 1. The ancestors are the ancestors with maximum distance d = oo. The
ParentNavigationProperty MUST be such that no node is an ancestor of itself, in other words: cycles are

forbidden.
5.5.1.1 Hierarchy Functions

For testing the position of a given entity in a recursive hierarchy, the Aggregation vocabulary [OData-VocAggr]
defines unbound functions. These have

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 36 of 69

Standards Track Work Product

a parameter pair HierarchyNodes, HierarchyQualifier where HierarchyNodes is a collection and

HierarchyQualifier is the qualifier of a RecursiveHierarchy annotation on its common entity type. The

node identifiers in this collection define the recursive hierarchy.

e a parameter Node that contains the node identifier of the entity to be tested. Note that the test result depends only
on this node identifier, not on any other property of the given entity

» additional parameters, depending on the type of test (see below)

a Boolean return value for the outcome of the test.

The following functions are defined:

» isnode tests if the given entity is a node of the hierarchy.

* isroot tests if the given entity is a root node of the hierarchy.

e isdescendant tests if the given entity is a descendant with maximum distance MaxDistance of an ancestor
node (whose node identifier is given in a parameter Ancestor), or equals the ancestor if IncludeSelf is true.

e isancestor tests if the given entity is an ancestor with maximum distance MaxDistance of a descendant node
(whose node identifier is given in a parameter Descendant), or equals the descendant if IncludeSelf is true.

e issibling tests if the given entity and another entity (whose node identifier is given in a parameter Other) are
sibling nodes.

e isleaf tests if the given entity is a leaf node.

5.5.2 Hierarchy Examples

The hierarchy terms can be applied to the Example Data Model.

A Example 46: leveled hierarchies for products and time, and a recursive hierarchy for the sales organizations:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"
Version="4.0">
<edmx:Reference Uri="https://docs.oasis-open.org/odata/odata-data-
aggregation-ext/v4.0/csd05/vocabularies/Org.OData.Aggregation.Vl.xml">
<edmx:Include Alias="Aggregation"
Namespace="0Org.OData.Aggregation.vV1l" />
</edmx:Reference>
<edmx:DataServices>
<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"
Alias="SalesModel" Namespace="org.example.odata.salesservice">
<Annotations Target="SalesModel.SalesOrganization">
<Annotation Term="Aggregation.RecursiveHierarchy"
Qualifier="SalesOrgHierarchy">
<Record>
<PropertyValue Property="NodeProperty"
PropertyPath="ID" />
<PropertyValue Property="ParentNavigationProperty"
PropertyPath="Superordinate" />
</Record>
</Annotation>
</Annotations>
</Schema>
</edmx:DataServices>
</edmx : Edmx>

The recursive hierarchy SalesOrgHierarchy can be used in functions with the $£ilter system query option.
Example 47: requesting all organizations below EMEA

GET /service/SalesOrganizations?$filter=Aggregation.isdescendant (
HierarchyNodes=$root/SalesOrganizations,
HierarchyQualifier='SalesOrgHierarchy',

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 37 of 69

https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#isnode
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#isroot
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#isdescendant
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#isancestor
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#issibling
https://github.com/oasis-tcs/odata-vocabularies/blob/main/vocabularies/Org.OData.Aggregation.V1.md#isleaf

Standards Track Work Product

Node=1ID,
Ancestor="'EMEA')

results in

"@context": "$metadata#SalesOrganizations",
"value": [
{ "ID": "EMEA Central", "Name": "EMEA Central" 1},
{ "ID": "Sales Netherlands", "Name": "Sales Netherlands" },
{ "ID": "Sales Germany", "Name": "Sales Germany" 1},
{ "ID": "EMEA South", "Name": "EMEA South" 1},
{ "ID": "EMEA North", "Name": "EMEA North" },

Example 48: requesting just those organizations directly below EMEA

GET /service/SalesOrganizations?$filter=Aggregation.isdescendant (
HierarchyNodes=$root/SalesOrganizations,
HierarchyQualifier='SalesOrgHierarchy',

Node=1ID,
Ancestor="EMEA',
MaxDistance=1)

results in

"Qcontext": "S$metadata#SalesOrganizations",
"value": [
{ "ID": "EMEA Central", "Name": "EMEA Central" },
{ "ID": "EMEA South", "Name": "EMEA South" 1},
{ "ID": "EMEA North", "Name": "EMEA North" 1},

Example 49: just the lowest-level organizations

GET /service/SalesOrganizations?$filter=Aggregation.isleaf (
HierarchyNodes=S$root/SalesOrganizations,
HierarchyQualifier="'SalesOrgHierarchy',

Node=1ID)
results in
{
"Qcontext": "Smetadata#SalesOrganizations",
"value": [
{ "ID": "Sales Office London", "Name": "Sales Office London" 1},
{ "ID": "Sales Office New York", "Name": "Sales Office New York" },

Example 50: the lowest-level organizations including their superordinate’s ID

GET /service/SalesOrganizations?$filter=Aggregation.isleaf (
HierarchyNodes=$root/SalesOrganizations,
HierarchyQualifier='SalesOrgHierarchy',

Node=1ID)
&S$expand=Superordinate ($select=ID)

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 38 of 69

Standards Track Work Product

results in

"Qcontext": "Smetadata#SalesOrganizations (*, Superordinate (ID))",
"value": [
{ "ID": "Sales Office London", "Name": "Sales Office London",
"Superordinate": { "ID": "EMEA United Kingdom" } 1},
{ "ID": "Sales Office New York", "Name": "Sales Office New York",
"Superordinate": { "ID": "US East" } 1},

Example 51: the sales IDs involving sales organizations from EMEA

GET /service/Sales?$select=ID&Sfilter=Aggregation.isdescendant (
HierarchyNodes=$root/SalesOrganizations,
HierarchyQualifier='SalesOrgHierarchy',
Node=SalesOrganization/ID,

Ancestor="'EMEA')

results in

"@Qcontext": "$Smetadata#Sales (ID)",
"value": [

{ "ID": 6 },

{ "ID": 7 },

{ "D

Further examples for recursive hierarchies using transformations operating on the hierarchy structure are provided in
section 7.9.

5.6 Functions on Aggregated Entities

Service-defined bound functions that serve as set transformations MAY be annotated with the term
AvailableOnAggregates to indicate that they are applicable to aggregated entities under specific conditions:

» The RequiredProperties collection lists all properties that must be available in the aggregated entities;
otherwise, the annotated function will be inapplicable.

Example 52: assume the product is an implicit input for a function bound to a collection of Sales, then aggregating away the product makes this
function inapplicable.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 39 of 69

Standards Track Work Product

6 Hierarchical Transformations

The transformations defined in this section are called hierarchical, because they make use of a recursive hierarchy and
are defined in terms of hierarchy functions introduced in the previous section.

The transformations ancestors and descendants do not define an order on the output set. An order can be imposed
by a subsequent orderby or traverse transformation or a $orderby. The output set of traverse is in preorder or
postorder.

The algorithmic descriptions of the transformations make use of a union of collections, this is defined as an unordered
collection containing the items from all these collections and from which duplicates have been removed.

The notation u[t] is used to denote the value of a property ¢, possibly preceded by a type-cast segment, in an instance u.
It is also used to denote the value of a single-valued data aggregation path ¢, evaluated relative to u. The value of a
collection-valued data aggregation path is denoted in the T notation by ~(u,t).

The notations introduced here are used throughout the following subsections.

6.1 Common Parameters for Hierarchical Transformations

The parameter lists defined in the following subsections have three mandatory parameters in common.

The recursive hierarchy is defined by a parameter pair (H, Q), where H and Q MUST be specified as the first and
second parameter. Here, H MUST be an expression of type Collection (Edm.EntityType) starting with $root that
has no multiple occurrences of the same entity. H identifies the collection of node entities forming a recursive hierarchy
based on an annotation of their common entity type with term RecursiveHierarchy with a Qualifier attribute
whose value MUST be provided in Q. The property paths referenced by NodeProperty and
ParentNavigationProperty in the RecursiveHierarchy annotation must be evaluable for the nodes in the
recursive hierarchy, otherwise the service MUST reject the request. The NodeProperty is denoted by ¢ in this section.

The third parameter MUST be a data aggregation path p with single- or collection-valued segments whose last segment
MUST be a primitive property. The node identifier(s) of an instance u in the input set are the primitive values in v(u, p),
they are reached via p starting from w. Let p = p1/ ... /px/r With k > 0 be the concatenation where each sub-path

p1,- - ., P CONSists of a collection-valued segment that is preceded by zero or more single-valued segments, and either r
consists of one or more single-valued segments or k£ > 1 and /r is absent. Each segment can be prefixed with a type
cast.

6.2 Hierarchical Transformations Producing a Subset

These transformations produce an output set that consists of certain instances from their input set, possibly with
repetitions or in a different order.

6.2.1 Transformations ancestors and descendants

In the simple case, the ancestors transformation takes an input set consisting of instances that belong to a recursive
hierarchy (H, Q). It determines a subset A of the input set and then determines the set of ancestors of A that were
already contained in the input set. Its output set is the ancestors set, optionally including A.

In the more complex case, the instances in the input set are instead related to nodes in a recursive hierarchy. Then the
ancestors transformation determines a subset A of the input set consisting of instances that are related to certain
nodes in the hierarchy, called start nodes. The ancestors of these start nodes are then determined, and the output set
consists of instances of the input set that are related to the ancestors, or optionally to the start nodes.

The descendants transformation works analogously, but with descendants.

H, @ and p are the first three parameters defined above.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 40 of 69

Standards Track Work Product

The fourth parameter is a transformation sequence T' composed of transformations listed section 3.3 or section 6.2.1
and of service-defined bound functions whose output set is a subset of their input set. A is the output set of this
sequence applied to the input set.

The fifth parameter d is optional and takes an integer greater than or equal to 1 that specifies the maximum distance
between start nodes and ancestors or descendants to be considered. An optional final keep start parameter drives

the optional inclusion of the subset or start nodes.

The output set of the transformation ancestors(H, Q, p, T, d,keep start) or descendants(H, Q,p,T,d, keep start) is
defined as the union of the output sets of transformations F(u) applied to the input set for all w in A. For a given instance
u, the transformation F(u) determines all instances of the input set whose node identifier is an ancestor or descendant
of the node identifier of u:

If p contains only single-valued segments, then, for ancestors,

F(u) = filter(Aggregation.isancestor(
HierarchyNodes = H, HierarchyQualifier = 'Q"',
Node = p, Descendant = u[p|, MaxDistance = d, IncludeSelf = true))

or, for descendants,

F(u) = filter(Aggregation.isdescendant(
HierarchyNodes = H, HierarchyQualifier = 'Q"',
Node = p, Ancestor = u[p|, MaxDistance = d, IncludeSelf = true)).

Otherwise p = p;/ ... /px/r With k£ > 1, in this case the output set of the transformation F(u) is defined as the union of
the output sets of transformations G(n) applied to the input set for all n in y(u, p). The output set of G(n) consists of the
instances of the input set whose node identifier is an ancestor or descendant of the node identifier n:

For ancestors,

G(n) = filter(
p1/any(y: :
Y1/pa/any(ys :

Yr-1/Pr/any (Y :
Aggregation.isancestor(
HierarchyNodes = H, HierarchyQualifier = 'Q"',

Node = yk/r, Descendant = n, MaxDistance = d, IncludeSelf = true

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 41 of 69

Standards Track Work Product

or, for descendants,

G(n) = filter(
p1/any(y1 :
Yy1/p2/any(y2 :

Yk-1/Pr/any (yk :
Aggregation.isdescendant(
HierarchyNodes = H, HierarchyQualifier = 'Q"',
Node = y;/r, Ancestor = n, MaxDistance = d, IncludeSelf = true

)

where y, ...,y denote lambdaVariableExprs as defined in [OData-ABNF] and /r may be absent.

If parameter d is absent, the parameter MaxDistance = d is omitted. If keep start is absent, the parameter
IncludeSelf = true is omitted.

Since the output set of ancestors is constructed as a union, no instance from the input set will occur more than once
in it, even if, for example, a sale is related to both a sales organization and one of its ancestor organizations. For
descendants, analogously.

Example 53: Request based on the SalesOrgHierarchy defined in Hierarchy Examples, with Superordinate/$ref expanded to illustrate
the hierarchy relation

GET /service/SalesOrganizations?$apply=
ancestors ($root/SalesOrganizations, SalesOrgHierarchy, ID,
filter (contains (Name, 'East') or contains (Name, 'Central')))
&$expand=Superordinate/S$ref

results in

"Qcontext": "Smetadata#SalesOrganizations",
"value": [
{ "ID": "EMEA", "Name": "EMEA",
"Superordinate": { "@id": "SalesOrganizations('Sales')" } 1},
{ "ED7s TEST, "Name": "US",
"Superordinate": { "@id": "SalesOrganizations('Sales')" } },
{ "ID": "Sales", "Name": "Sales",

"Superordinate": null }

Example 54: Request based on the SalesOrgHierarchy defined in Hierarchy Examples, with Superordinate/$ref expanded to illustrate
the hierarchy relation

GET /service/SalesOrganizations?$apply=
descendants (Sroot/SalesOrganizations, SalesOrgHierarchy, ID,
filter (Name eq 'US'), keep start)
&§Sexpand=Superordinate/S$ref

results in

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 42 of 69

Standards Track Work Product

"Qcontext": "Smetadata#SalesOrganizations",
"value": [
{ "ID": "US West", "Name": "US West",
"Superordinate": { "@id": "SalesOrganizations('US")" } 1},
{ "ID": "us", "Name": "US",
"Superordinate": { "@id": "SalesOrganizations('Sales')" } },
{ "ID": "US East", "Name": "US East",
"Superordinate": { "@id": "SalesOrganizations ('US")" } }

A Example 55: Input set and recursive hierarchy from two different entity sets

GET /service/Sales?S$apply=
ancestors ($root/SalesOrganizations,
SalesOrgHierarchy,
SalesOrganization/ID,
filter (contains (SalesOrganization/Name, 'East')

or contains (SalesOrganization/Name, 'Central')),
keep start)
results in
{
"@Qcontext": "Smetadata#Sales",
"value": [
{ "ID": "4", "Amount": 8,
"SalesOrganization": { "ID": "US East", "Name": "US East" } 1},
{ "ID": "5", "Amount": 4,
"SalesOrganization": { "ID": "US East", "Name": "US East" } 1},
{ "ID": "6", "Amount": 2,
"SalesOrganization": { "ID": "EMEA Central", "Name": "EMEA Central" } 1},
{ "ID": "7", "Amount": 1,
"SalesOrganization": { "ID": "EMEA Central", "Name": "EMEA Central" } },
{ "ID": "8", "Amount": 2,
"SalesOrganization": { "ID": "EMEA Central", "Name": "EMEA Central" } }

6.2.2 Transformation traverse

The traverse transformation returns instances of the input set that are or are related to nodes of a given recursive
hierarchy in a specified tree order.

#% This version of the specification defines the behavior of the traverse transformation only in recursive hierarchies
where RecursiveHierarchy/ParentNavigationProperty is single-valued.

H, @ and p are the first three parameters defined above.

The fourth parameter h of the traverse transformation is either preorder or postorder. Let H' be the collection of
root nodes in the recursive hierarchy (H, Q). Nodes in H' are called start nodes in this subsection (see example 91).

Let o be the list of all following parameters that are expressions which could also be passed as a $orderby system
query option, if there are any. If o is present, the transformation stable-sorts H' by o.

#% Future versions of this specification MAY allow an optional fifth parameter that comes before the parameter list o and
could not be passed as a $orderby system query option.

The instances in the input set are related to one node (if p is single-valued) or multiple nodes (if p is collection-valued) in
the recursive hierarchy. Given a node z, denote by F(z) the collection of all instances in the input set that are related to

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 43 of 69

Standards Track Work Product

x; these collections can overlap. For each u in F(gc), the output set contains one instance that comprises the properties
of u and additional properties that identify the node z. These additional properties are independent of « and are bundled
into an instance called o(z). For example, if a sale u is related to two sales organizations and hence contained in both
F(z1) and F(z), the output set will contain two instances (u, o(x1)) and (u, o(z2)) and o(z;) contributes a navigation
property SalesOrganization.

A transformation F(z) is defined below such that F(z) is the output set of F(x) applied to the input set of the traverse
transformation.

Given a node z, the formulas below contain the transformation Ilz(o(z)) in order to inject the properties of o(z) into the
instances in F(gc); this uses the function Il that is defined in the simple grouping section. Further, G is a list of data
aggregation paths that shall be present in the output set, and ¢ is a function that maps each hierarchy node z to an
instance of the input type containing the paths from G. As a consequence of the following definitions, only single-valued
properties and “final segments from G” are nested into o(z), therefore the behavior of Il (o (z)) is well-defined.

The definition of o(z) makes use of a function a(e, ¢, z), which returns a sparsely populated instance u in which only the
path ¢ has a value, namely u[t] = z.

Three cases are distinguished:

1. Case where the recursive hierarchy is defined on the input set
This case applies if the paths p and ¢ are equal. Let o(z) = = and let G be a list containing all structural and
navigation properties of the entity type of H.

In this case IIg(o(z)) injects all properties of z into the instances of the output set. (See example 57.)

2. Case where the recursive hierarchy is defined on the related entity type addressed by a navigation property path
This case applies if p' is a non-empty navigation property path and p” an optional type-cast segment such that p
equals the concatenated path p'/p"/q. Let o(z) = a(e,p'/p",) and let G = (p).

In this case IIg(o(z)) injects the whole related entity z into the instances of the output set. The navigation property
path p’ is expanded by default. (See example 58.)

3. Case where the recursive hierarchy is related to the input set only through equality of node identifiers, not through
navigation
If neither case 1 nor case 2 applies, let o(z) = a(e, p, z[q]) and let G = (p).

In this case IIg(o(z)) injects only the node identifier of z into the instances of the output set.

Here paths are considered equal if their non-type-cast segments refer to the same model elements when evaluated
relative to the input set (see example 59).

The function a(u, t, z) takes an instance, a path and another instance as arguments and is defined recursively as
follows:

1. If u equals the special symbol ¢, set u to a new instance of the input type without properties and without entity-id.
2. If t contains only one segment other than a type cast, let ¢, = ¢, and let ' = «, then go to step 6.

3. Otherwise, let t; be the first property segment in ¢, possibly together with a preceding type-cast segment, let ¢» be
any type-cast segment that immediately follows, and let ¢3 be the remainder such that ¢t equals the concatenated
path ¢;/t2/ts where /t2 may be absent.

. Let u/ be an instance of the type of ¢;/t2 without properties and without entity-id.
.Letz' = a(u/, t3, x).

. If t1 is single-valued, let u[t;] = .

. If t1 is collection-valued, let u[ti] be a collection consisting of one item z'.

. Return u.

o NOoO O b

(See example 88.)

Since start nodes are root nodes, o(z) is computed exactly once for every node z, as part of the recursive formula for
R(z) given below.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 44 of 69

Standards Track Work Product

Let ry,...,r, be a sequence of the start nodes in H' preserving_the order of H' stable-sorted by o. Then the

transformation traverse(H, Q, p, h, 0) is defined as equivalent to

concat(R(ry),...,R(r,)).

R(z) is a transformation producing the specified tree order for a sub-hierarchy of H with root node z. Let ¢y, .. ., ¢, with
m > 0 be an order-preserving sequence of the children of z in (H, Q). The recursive formula for R(z) is as follows:

If h = preorder, then

R(z) = concat(F(z)/Ig(o(z)), R(c1), - - -, R(cm))-
If h = postorder, then

R(z) = concat(R(cy),. .., R(cy), F(z)/g(o(x))).

The absence of cycles guarantees that the recursion terminates.

F(x) is a transformation that determines for the specified node z the instances of the input set having the same node

identifier as x.

If p contains only single-valued segments, then
F(z) = filter(p eq z[q]).

Otherwise p = p1/ ... /px/r with £k > 1 and

F(z) = filter(
p1/any(y; :
Yy1/p2/any(y2 :

Yr—1/Pr/any(yx :
Yi/T eq z[q]

)

where y, ...,y denote lambdavVariableExprs and /r may be absent.

Example 56: Based on the SalesOrgHierarchy defined in Hierarchy Examples

GET /service/SalesOrganizations?$apply=
descendants ($Sroot/SalesOrganizations, SalesOrgHierarchy, ID,
Name eq 'US', keep start)
/ancestors ($Sroot/SalesOrganizations, SalesOrgHierarchy, ID,
contains (Name, 'East'), keep start)
/traverse ($root/SalesOrganizations, SalesOrgHierarchy, ID, preorder)
&Sexpand=Superordinate/Sref

results in

"Qcontext": "Smetadata#SalesOrganizations",
"value": [
{ "ID": "us", "Name": "US",
"Superordinate": { "@id": "SalesOrganizations('Sales')" } },
{ "ID": "US East", "Name": "US East",
"Superordinate”: { "@id": "SalesOrganizations ('US')" } }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 45 of 69

Standards Track Work Product

Example 57: Postorder traversal of organizations in the hierarchy defined in Hierarchy Examples with p = q = ID (case 1 of the definition of o(z)
). In this case I1g(o(z)) writes back the entire node into the output set of T.

GET /service/SalesOrganizations?$apply=

traverse ($Sroot/SalesOrganizations, SalesOrgHierarchy, ID, postorder)

&$select=ID, Name
&S$Sexpand=Superordinate ($select=1ID)

results in

"Qcontext":
"Smetadata#SalesOrganizations (ID,Name, Superordinate (ID))",
"value": [
{ "ID": "US West", "Name": "US West",
"Superordinate": { "ID": "US" } },
{ "ID": "US East", "Name": "US East",
"Superordinate": { "ID": "US" } 1},
{ "ID": "Us", "Name": "US",
"Superordinate": { "ID": "Sales" } },
{ "ID": "EMEA Central", "Name": "EMEA Central",
"Superordinate”™: { "ID": "EMEA" } 1},
{ "ID": "EMEA", "Name": "EMEA",
"Superordinate": { "ID": "Sales" } 1},
{ "ID": "Sales", "Name": "Sales",

A Example 58: Postorder traversal of sales per organization in the hierarchy defined in Hierarchy Examples with
p =p'/q = SalesOrganization/ID and p' = SalesOrganization (case 2 of the definition of o(x)).

"Superordinate": null }

GET /service/Sales?S$apply=traverse (
Sroot/SalesOrganizations,
SalesOrgHierarchy,
SalesOrganization/ID,
postorder)

&$select=ID
&S$expand=SalesOrganization ($select=1ID)

The result contains each sale once for every organization to which it belongs, directly or indirectly.

"Qcontext":

"value":

{

{
{
{
{
{
{
{
{
{

"ID":
"ID":
"ID":
"ID":
"ID":
"ID":
"ID":
"ID":
"ID":
"ID":

[

"Smetadata#Sales (ID, SalesOrganization (ID))",

"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":
"SalesOrganization":

{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":
{ "ID":

"Us
"Us
"Us
"Us
"Us
nygn
nygm
nygn
nygn
nygn

West"
West"
West"
East"
East"
b
}I
}r
b
}r

— o e o e

— e o o

}y
}y
by
s
}I

A Example 59: Although p = ID and q = ID, they are not equal in the sense of case 1, because they are evaluated relative to different entity
sets. Hence, this is an example of case 3 of the definition of o(z), where no Sales/ID matches a SalesOrganizations/ID, thatis, all F(z)
have empty output sets.

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 46 of 69

Standards Track Work Product

GET /service/Sales?$apply=traverse (
Sroot/SalesOrganizations,
SalesOrgHierarchy,

ID,
postorder)

results in

"@context": "Smetadata#Sales (ID,SalesOrganization (ID))",

"value": []

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 47 of 69

Standards Track Work Product

7 Examples

The following examples show some common aggregation-related questions that can be answered by combining the

transformations defined in sections 3 and 6.

7.1 Requesting Distinct Values

Grouping without specifying a set transformation returns the distinct combination of the grouping properties.

Example 60:
GET /service/Customers?S$apply=groupby ((Name))

results in

"Qcontext": "S$metadata#Customers (Name)",
"value": [

{ "Name": "Luc" },

{ "Name": "Joe" },

{ "Name": "Sue" }

Note that “Sue” appears only once although the customer base contains two different Sues.

Aggregation is also possible across related entities.

Example 61: customers that bought something

GET /service/Sales?$apply=groupby ((Customer/Name))

results in

"@context": "Smetadata#Sales (Customer (Name))",
"value": [

{ "Customer": { "Name": "Joe" } 1},

{ "Customer": { "Name": "Sue" } }

Since groupby expands navigation properties in grouping properties by default, this is the same result as if the request would include a

$expand=Customer ($select=Name). The groupby removes all other properties.

Note that “Luc” does not appear in the aggregated result as he hasn’t bought anything and therefore there are no sales entities that

refer/navigate to Luc.

However, even though both Sues bought products, only one “Sue” appears in the aggregate result. Including properties that guarantee the right

level of uniqueness in the grouping can repair that.

Example 62:

GET /service/Sales?$apply=groupby ((Customer/Name,Customer/ID))

results in

"@Qcontext": "Smetadata#Sales (Customer (Name, ID))",
"value": [
{ "Customer": { "Name": "Joe", "ID": "C1" } 1},
{ "Customer": { "Name": "Sue", "ID": "C2" } 1},
{ "Customer": { "Name": "Sue", "ID": "C3" } }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 48 of 69

Standards Track Work Product

This could also have been formulated as

GET /service/Sales?$apply=groupby ((Customer))
&$expand=Customer ($select=Name, ID)

Example 63: Grouping by navigation property Customer

GET /service/Sales?$apply=groupby ((Customer))

results in

"@Qcontext": "Smetadata#Sales (Customer())",
"value": [
{ "Customer": { "ID": "Cl", "Name": "Joe", "Country": "USA"™ } 1},
{ "Customer": { "ID": "C2", "Name": "Sue", "Country": "USA" } },
{ "Customer": { "ID": "C3", "Name": "Sue", "Country": "Netherlands" } }

Example 64: the first question in the motivating example in section 2.3, which customers bought which products, can now be expressed as

GET /service/Sales?S$apply=groupby ((Customer/Name,Customer/ID, Product/Name))

and results in

"@context": "Smetadata#Sales (Customer (Name, ID), Product (Name))",
"value": [
{ "Customer": { "Name": "Joe", "ID": "C1" 1},
"Product": { "Name": "Coffee"} 1},
{ "Customer": { "Name": "Joe", "ID": "C1" 1},
"Product": { "Name": "Paper" } 1},
{ "Customer": { "Name": "Joe", "ID": "C1" 1},
"Product": { "Name": "Sugar" } 1},
{ "Customer": { "Name": "Sue", "ID": "C2" 1},
"Product": { "Name": "Coffee"} 1},
{ "Customer": { "Name": "Sue", "ID": "C2" },
"Product": { "Name": "Paper" } 1},
{ "Customer": { "Name": "Sue", "ID": "C3" },
"Product": { "Name": "Paper" } 1},
{ "Customer": { "Name": "Sue", "ID": "C3" 1},
"Product": { "Name": "Sugar" } }

A Example 65: grouping by properties of subtypes

GET /service/Products?$apply=groupby ((SalesModel.FoodProduct/Rating,
SalesModel .NonFoodProduct/RatingClass))

results in

"Qcontext": "Smetadata#Products (SalesModel.FoodProduct/Rating,
SalesModel .NonFoodProduct/RatingClass) ",
"value": [
{ "@type": "#SalesModel.FoodProduct", "Rating": 5 },
{ "Qtype": "#SalesModel.FoodProduct", "Rating": null },
{ "Qtype": "#SalesModel.NonFoodProduct", "RatingClass": "average" },

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 49 of 69

Standards Track Work Product

{ "Q@type": "#SalesModel.NonFoodProduct", "RatingClass": null }

A Example 66: grouping by a property of a subtype
GET /service/Products?$apply=groupby ((SalesModel.FoodProduct/Rating))

results in a third group representing entities with no SalesModel . FoodProduct/Rating, including the SalesModel .NonFoodProducts:

"@context": "Smetadata#Products (@Core.AnyStructure)",
"value": [

{ "@type": "#SalesModel.FoodProduct", "Rating": 5 },

{ "@type": "#SalesModel.FoodProduct", "Rating": null },

{1}

7.2 Standard Aggregation Methods

The client may specify one of the predefined aggregation methods min, max, sum, average, and countdistinct, or
a custom aggregation method, to aggregate an aggregatable expression. Expressions defining an aggregate method
specify an alias. The aggregated values are returned in a dynamic property whose name is determined by the alias.

Example 67:

GET /service/Products?$apply=groupby ((Name) ,
aggregate (Sales/Amount with sum as Total))

results in

"@context": "Smetadata#Products (Name, Total)",

"value": [
{ "Name": "Coffee", "Total@type": "Decimal", "Total": 12 1},
{ "Name": "Paper", "Total@type": "Decimal", "Total": 8 1,
{ "Name": "Pencil", "Total": null },
{ "Name": "Sugar", "Total@type": "Decimal", "Total": 4 }

Note that the base set of the request is Products, so there is a result item for product Pencil even though there are no sales items. The input
set for the aggregation in the third row is I consisting of the pencil, p = q/r = Sales/Amount, E = I'(1, q) is empty and A = T'(E,r) is also empty.
The sum over the empty collection is null.

Example 68: Compute the aggregate as a property using the aggregate function in $compute:
GET /service/Products?$compute=Sales/aggregate (Amount with sum) as Total

results in

"@context": "Smetadata#Products (*,Total)",
"value": [
{ "ID": "P2", "Name": "Coffee", "Color": "Brown", "TaxRate": 0.06,
"Total@type": "Decimal", "Total": 12 },
{ "ID": "P3", "Name": "Paper", "Color": "White", "TaxRate": 0.14,
"Total@type": "Decimal", "Total": 8 },
{ "ID": "P4", "Name": "Pencil", "Color": "Black", "TaxRate": 0.14,
"Total": null },
{ "ID": "P1l", "Name": "Sugar", "Color": "White", "TaxRate": 0.06,
"Total@type": "Decimal", "Total": 4 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 50 of 69

Standards Track Work Product

Example 69: Alternatively, join could be applied to yield a flat structure:

GET /service/Products?$apply=
join(Sales as TotalSales,aggregate (Amount with sum as Total))
/groupby ((Name, TotalSales/Total))

results in

"@Qcontext": "Smetadata#Products (Name, TotalSales())",
"value": [
{ "Name": "Coffee",
"TotalSales@context™: "#Sales (Total)/Sentity",
"TotalSales": { "Total@type": "Decimal", "Total": 12 } },
{ "Name": "Paper",
"TotalSales@context": "#Sales (Total)/Sentity",
"TotalSales": { "Total@type": "Decimal", "Total": 8 1 },
{ "Name": "Sugar",
"TotalSales@context™: "#Sales (Total)/Sentity",
"TotalSales": { "Total@type": "Decimal", "Total": 4 1}

Applying outerjoin instead would return an additional entity for product with ID “Pencil” and TotalSales having a null value.

Example 70:

GET /service/Sales?S$apply=groupby ((Customer/Country),
aggregate (Amount with average as AverageAmount))

results in

"Qcontext": "Smetadata#Sales (Customer (Country) ,AverageAmount)",
"value": [
{ "Customer": { "Country": "Netherlands" },
"AverageAmount": 1.6666666666666667 1},
{ "Customer": { "Country": "USA" },
"AverageAmount": 3.8 }

Here the AverageAmount /s of type Edm.Double.

Example 71: $count after navigation property

GET /service/Products?$apply=groupby ((Name) ,
aggregate (Sales/$count as SalesCount))

results in

"@Qcontext": "$Smetadata#Products (Name, SalesCount)",

"value": [
{ "Name": "Coffee", "SalesCount@type": "Decimal", "SalesCount": 2 },
{ "Name": "Paper", "SalesCount@type": "Decimal", "SalesCount": 4 },
{ "Name": "Pencil", "SalesCount@type": "Decimal", "SalesCount": 0 },
{ "Name": "Sugar", "SalesCount@type": "Decimal", "SalesCount": 2 }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 51 of 69

Standards Track Work Product

The aggregate function can not only be used in $compute but also in $£filter and $orderby:

Example 72: Products with an aggregated sales volume of ten or more

GET /service/Products?$filter=Sales/aggregate (Amount with sum) ge 10
results in
{
"@context": "Smetadata#Products",
"value": [
{ "ID": "P2", "Name": "Coffee", "Color": "Brown", "TaxRate": 0.06
{ "ID": "P3", "Name": "Paper", "Color": "White", "TaxRate": 0.14

Example 73: Customers in descending order of their aggregated sales volume
GET /service/Customers?$orderby=Sales/aggregate (Amount with sum) desc

results in

"Qcontext": "Smetadata#Customers",
"value": [
{ IYID": "C2", "Name": "Sue", llCOuntry": "USAH },
{ "ID": "C1l", "Name": "Joe", "Country": "USA" 1},
{ "ID": "C3", "Name": "Sue", "Country": "Netherlands" 1},
{ "ID": "C4", "Name": "Luc", "Country": "France" }

Example 74: Contribution of each sales to grand total sales amount

GET /service/Sales?$compute=Amount divby S$these/aggregate (Amount with
as Contribution

results in

"@context": "Smetadata#Sales (*,Contribution)",
"value": [
{ "ID": 1, "Amount": 1, "Contribution@type": "Decimal",
"Contribution": 0.0416666666666667 },
{ "ID": 2, "Amount": 2, "Contribution@type": "Decimal",
"Contribution": 0.0833333333333333 },
{ "ID": 3, "Amount": 4, "Contribution@type": "Decimal",
"Contribution": 0.1666666666666667 1},
{ "ID": 4, "Amount": 8, "Contribution@type": "Decimal",
"Contribution": 0.3333333333333333 1},
{ "ID": 5, "Amount": 4, "Contribution@type": "Decimal",
"Contribution": 0.1666666666666667 },
{ "ID": 6, "Amount": 2, "Contribution@type": "Decimal",
"Contribution": 0.0833333333333333 },
{ "ID": 7, "Amount": 1, "Contribution@type": "Decimal",
"Contribution": 0.0416666666666667 1},
{ "ID": 8, "Amount": 2, "Contribution@type": "Decimal",
"Contribution": 0.0833333333333333 }

sum)

Example 75: Product categories with at least one product having an aggregated sales amount greater than 10

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 52 of 69

Standards Track Work Product

GET /service/Categories?$filter=Products/any (
p:p/Sales/aggregate (Amount with sum) gt 10)

results in

"@context": "Smetadata#Categories",
"value": [
{ "ID": "PGL", "Name": "Food" }

The aggregate function can also be applied inside $apply:
Example 76: Sales volume per customer in relation to total volume

GET /service/Sales?$apply=
groupby ((Customer) , aggregate (Amount with sum as CustomerAmount))
/compute (CustomerAmount divby $these/aggregate (CustomerAmount with sum)
as Contribution)
&Sexpand=Customer/Sref

results in

"Qcontext": "$Smetadata#Sales (Customer (), CustomerAmount,Contribution)",
"value": [
{ "Customer": { "@id": "Customers('Cl")" 1},
"Contribution@type": "Decimal", "Contribution": 0.2916667 },
{ "Customer": { "@id": "Customers('C2")" 1},
"Contribution@type": "Decimal", "Contribution": 0.5 },
{ "Customer": { "@id": "Customers('C3")" 1},
"Contribution@type": "Decimal", "Contribution": 0.2083333 }

7.3 Requesting Expanded Results

Example 77: use outerjoin to split up collection-valued navigation properties for grouping

GET /service/Customers?$apply=outerjoin(Sales as ProductSales)
/groupby ((Country, ProductSales/Product/Name))

returns the different combinations of products sold per country:

"@context": "Smetadata#Customers (Country, ProductSales())",
"value": [
{ "Country": "Netherlands",
"ProductSales@context": "#Sales (Product (Name)) /Sentity",
"ProductSales": { "Product": { "Name": "Paper" P 3 By
{ "Country": "Netherlands",
"ProductSales@context": "#Sales (Product (Name))/Sentity",
"ProductSales": { "Product": { "Name": "Sugar" Py o},
{ "Country": "USA",
"ProductSales@context": "#Sales (Product (Name))/$Sentity",
"ProductSales": { "Product": { "Name": "Coffee" } } 1},
{ "Country": "USA",
"ProductSales@context": "#Sales (Product (Name)) /Sentity",
"ProductSales": { "Product": { "Name": "Paper" AT,
{ "Country": "USA",
"ProductSales@context": "#Sales (Product (Name)) /Sentity",
"ProductSales": { "Product": { "Name": "Sugar" } o} o},
{ "Country": "France", "ProductSales": null }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 53 of 69

Standards Track Work Product

7.4 Requesting_ Custom Aggregates

Custom aggregates are defined through the CustomAggregate annotation. They can be associated with an entity set,
a collection or an entity container.

A custom aggregate can be used by specifying the name of the custom aggregate in the aggregate clause.
Example 78:

GET /service/Sales?$apply=groupby ((Customer/Country),
aggregate (Amount with sum as Actual,Forecast))

results in

"Qcontext": "Smetadata#Sales (Customer (Country),Actual, Forecast)",
"value": [
{ "Customer": { "Country": "Netherlands" },
"Actual@type": "Decimal", "Actual": 5,
"Forecast@type": "Decimal", "Forecast": 4 },
{ "Customer": { "Country": "USA" },
"Actual@type": "Decimal", "Actual": 19,
"Forecast@type": "Decimal", "Forecast": 21 }

When associated with an entity set a custom aggregate MAY have the same name as a property of the underlying entity
type with the same type as the type returned by the custom aggregate. This is typically done when the aggregate is
used as a default aggregate for that property.

Example 79: A custom aggregate can be defined with the same name as a property of the same type in order to define a default aggregate for
that property.

GET /service/Sales?$apply=groupby ((Customer/Country),aggregate (Amount))

results in
{
"Qcontext": "Smetadata#Sales (Customer (Country),Amount)",
"value": [
{ "Customer": { "Country": "Netherlands" }, "Amount": 5 1},
{ "Customer": { "Country": "USA" }, "Amount": 19 }
]
}
7.5 Aliasing

A property can be aggregated in multiple ways, each with a different alias.
Example 80:

GET /service/Sales?$apply=groupby ((Customer/Country),
aggregate (Amount with sum as Total,
Amount with average as AvgAmt))

results in

"@context": "Smetadata#Sales (Customer (Country),Total,AvgAmt)",

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 54 of 69

Standards Track Work Product

"value": [

{ "Customer": { "Country": "Netherlands" },
"Total@type": "Decimal", "Total": 5,
"AvgAmt@type": "Decimal", "AvgAmt": 1.6666667 },

{ "Customer": { "Country": "USA" },

"Total@type": "Decimal", "Total": 19,
"AvgAmt@type": "Decimal", "AvgAmt": 3.8 }

There is no hard distinction between groupable and aggregatable properties: the same property can be aggregated and
used to group the aggregated results.

Example 81:
GET /service/Sales?$apply=groupby ((Amount) ,aggregate (Amount with sum as Total))

will return all distinct amounts appearing in sales orders and how much money was made with deals of this amount

"@context": "Smetadata#Sales (Amount, Total)",

"value": [
{ "Amount": 1, "Total@type": "Decimal", "Total": 2 1},
{ "Amount": 2, "Total@type": "Decimal", "Total": 6 },
{ "Amount": 4, "Total@type": "Decimal", "Total": 8 },
{ "Amount": 8, "Total@type": "Decimal", "Total": 8 }

7.6 Combining Transformations per Group

Dynamic property names may be reused in different transformation sequences passed to concat.

Example 82: to get the best-selling product per country with sub-totals for every country, the partial results of a transformation sequence and a
groupby transformation are concatenated:

GET /service/Sales?$apply=concat (
groupby ((Customer/Country, Product/Name) ,
aggregate (Amount with sum as Total))
/groupby ((Customer/Country) , topcount (1, Total)),
groupby ((Customer/Country),
aggregate (Amount with sum as Total)))

results in

"@context": "Smetadata#Sales (Customer (Country),Total)",
"value": [
{ "Customer": { "Country": "USA" }, "Product": { "Name": "Coffee" 1},
"Total@type": "Decimal", "Total": 12
}I
"Customer": { "Country": "Netherlands"™ }, "Product": { "Name": "Paper" 1},
"Total@type": "Decimal", "Total": 3
b
{ "Customer": { "Country": "USA" },
"Total@type": "Decimal", "Total": 19
b
{ "Customer": { "Country": "Netherlands" },
"Total@type": "Decimal", "Total": 5

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 55 of 69

Standards Track Work Product

Example 83: transformation sequences are also useful inside groupby: Aggregate the amount by only considering the top two sales amounts

per product and country:

GET /service/Sales?S$apply=groupby ((Customer/Country, Product/Name),

results in

"Qcontext":
"value": [
{ "Customer": {
"Total@type":
}I
{ "Customer": ({
"Total@type":
}l
{ "Customer": {
"Total@type":
by
{ "Customer": {
"Total@type":
}l
{ "Customer": {
"Total@type":

topcount (2, Amount) /aggregate (Amount with sum as Total))

"Country":

"Decimal", "Total": 3

"Country": "Netherlands" 1},
"Decimal", "Total": 2
"Country": "USA" 1},
"Decimal", "Total": 2
"Country": "USA" 1},
"Decimal", "Total": 12
"Country": "USA" },
"Decimal"™, "Total": 5

"Netherlands" 1},

"Product":

"Product":

"Product":

"Product":

"Product":

"Smetadata#Sales (Customer (Country) , Product (Name) , Total)",

"Name" :

"Name" :

"Name":

"Name" :

"Name" :

by

}l

by

by

}l

Example 84: concatenation of two different groupings “biggest sale per customer” and “biggest sale per product”, made distinguishable by a

dynamic property:

GET /service/Sales?$apply=concat (

groupby ((Customer) , topcount (1, Amount)) /compute ('Customer'

groupby ((Product) , topcount (1, Amount)) /compute ('Product'
&Sexpand=Customer ($Sselect=ID), Product ($select=ID)

as per),
as per))

In the result, Sales entities 4 and 6 occur twice each with contradictory values of the dynamic property per. If a Ul consuming the response

presents the two groupings in separate columns based on the per property, no contradiction effectively arises.

npon

npon

npm

npl"

npomn

n"p3n

"@context": "Smetadata#Sales (*,per,Customer (ID), Product (ID))"
"value": [
{ "Customer": { "ID": "C1"™ }, "Product": { "ID":
"ID": "3", "Amount": 4, "per": "Customer" },
{ "Customer": { "ID": "C2" }, "Product": { "ID":
"ID": "4", "Amount": 8, "per": "Customer" },
{ "Customer": { "ID": "C3" }, "Product": { "ID":
"ID": "6", "Amount": 2, "per": "Customer" },
{ "Customer": { "ID": "C3" }, "Product": { "ID":
"ID": "6", "Amount": 2, "per": "Product" },
{ "Customer": { "ID": "C2" }, "Product": { "ID":
"ID": "4", "Amount": 8, "per": "Product" },
{ "Customer": { "ID": "C2" }, "Product": { "ID":
"ID": "5", "Amount": 4, "per": "Product" }

7.7 Model Functions as Set Transformations

Example 85: As a variation of example 82, a query for returning the best-selling product per country and the total amount of the remaining
products can be formulated with the help of a model function.

For this purpose, the model includes a definition of a TopCountAndRemainder function that accepts a count and a numeric property for the top

entities:

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 56 of 69

Standards Track Work Product

<edm:Function Name="TopCountAndRemainder"
IsBound="true">
<edm:Parameter Name="EntityCollection"
Type="Collection (Edm.EntityType)" />
<edm:Parameter Name="Count" Type="Edm.Intle6" />
<edm:Parameter Name="Property" Type="Edm.String" />
<edm:ReturnType Type="Collection (Edm.EntityType)" />
</edm:Function>

The function retains those entities that topcount also would retain, and replaces the remaining entities by a single aggregated entity, where
only the numeric property has a value, which is the sum over those remaining entities:

GET /service/Sales?S$apply=
groupby ((Customer/Country, Product/Name) ,
aggregate (Amount with sum as Total))
/groupby ((Customer/Country),
Self.TopCountAndRemainder (Count=1, Property='Total'))

results in

"@context": "Smetadata#Sales (Customer (Country),Total)",
"value": [

{ "Customer": { "Country": "Netherlands" },
"Product": { "Name": "Paper" },
"Total@type": "Decimal", "Total": 3 },

{ "Customer": { "Country": "Netherlands" },
"Total@type": "Decimal", "Total": 2 },

{ "Customer": { "Country": "USA" },
"Product": { "Name": "Coffee" },
"Total@type": "Decimal", "Total": 12 1},

{ "Customer": { "Country": "USA" 1},
"Total@type": "Decimal", "Total": 7 }

Note that these two entities get their values for the Country property from the groupby transformation, which ensures that they contain all
grouping properties with the correct values.

7.8 Controlling Aggregation per Rollup Level

For a leveled hierarchy, consumers may specify a different aggregation method per level as a hierarchy level below the
root level.

Example 86: get the average of the overall amount by month per product.

Using a transformation sequence:

GET /service/Sales?$apply=groupby ((Product/ID, Product/Name, Time/Month),
aggregate (Amount with sum) as Total))
/groupby ((Product/ID, Product/Name) ,
aggregate (Total with average as MonthlyAverage))

7.9 Aggregation in Recursive Hierarchies

A Example 87: The input set Sales is filtered along a hierarchy on a related entity (navigation property SalesOrganization) before an
aggregation

GET /service/Sales?$apply=
descendants ($root/SalesOrganizations,
SalesOrgHierarchy,
SalesOrganization/ID,
filter (SalesOrganization/Name eq 'US'),

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 57 of 69

Standards Track Work Product

keep start)
/aggregate (Amount with sum as TotalAmount)

The same aggregate value is computed if the input set is the hierarchical entity SalesOrganizations and an assumed partner navigation
property Sales of SalesOrganization appears in the aggregate transformation

GET /service/SalesOrganizations?$apply=
descendants ($Sroot/SalesOrganizations,
SalesOrgHierarchy,
1D,
filter (Name eq 'US'),
keep start)
/aggregate (Sales/Amount with sum as TotalAmount)

Example 88: Preorder traversal of a hierarchy with 1:N relationship with collection-valued segment p; = Sales and r = SalesOrganization/ID.

GET /service/Products?$apply=traverse (
Sroot/SalesOrganizations,
SalesOrgHierarchy,
Sales/SalesOrganization/ID,
preorder,

Name asc)
&$select=ID

The result contains multiple instances of the same Product that differ in their Sales navigation property even though they agree in their ID key
property. The node z with z/ID = "US" has o(z) = {"Sales": [{"SalesOrganization": {"ID": "US"}}]}.

"Qcontext":
"Smetadata#Products (ID,Sales (SalesOrganization(ID)))",
"value": [
{ "ID": "P1l", "Sales": [{ "SalesOrganization": { "ID": "Sales" } } 1 },
{ "ID": "pP2", "Sales": [{ "SalesOrganization": { "ID": "Sales" } } 1 },
{ "ID": "P3", "Sales": [{ "SalesOrganization": { "ID": "Sales" } } 1 },
{ "ID": "P1l", "Sales": [{ "SalesOrganization": { "ID": "EMEA" } } 1 },
{ "ID": "P3", "Sales": [{ "SalesOrganization": { "ID": "EMEA" } }] },
{ "IDp": "P1",
"Sales": [{ "SalesOrganization": { "ID": "EMEA Central" } } 1 },
{ "ID": "P3",
"Sales": [{ "SalesOrganization": { "ID": "EMEA Central" } } 1 },
{ "ID": "P1l", "Sales": [{ "SalesOrganization": { "ID": "US" } } 1 },
{ "ID": "P2", "Sales": [{ "SalesOrganization": { "ID": "US" } } 1 },
{ "ID": "P3", "Sales": [{ "SalesOrganization": { "ID": "US" } } 1 },
{ "ID": "P2", "Sales": [{ "SalesOrganization": { "ID": "US East" } } 1 },
{ "ID": "P3", "Sales": [{ "SalesOrganization": { "ID": "US East™ } } 1 },
{ "ID": "P1l", "Sales": [{ "SalesOrganization": { "ID": "US West"™ } } 1 },
{ "ID": "P2", "Sales": [{ "SalesOrganization": { "ID": "US West"™ } } 1 },
{ "ID": "P3", "Sales": [{ "SalesOrganization": { "ID": "US West" } } 1 }

7.10 Maintaining Recursive Hierarchies

Besides changes to the structural properties of the entities in a hierarchical collection, hierarchy maintenance involves
changes to the parent-child relationships.

Example 89: Move a sales organization Switzerland under the parent EMEA Central by binding the parent navigation property to EMEA Central
[OData-JSON, section 8.5]:

PATCH /service/SalesOrganizations ('Switzerland')
Content-Type: application/json

{ "Superordinate": { "@id": "SalesOrganizations ('EMEA Central')" } }

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 58 of 69

https://docs.oasis-open.org/odata/odata-json-format/v4.02/odata-json-format-v4.02.html#BindOperation
https://docs.oasis-open.org/odata/odata-json-format/v4.02/odata-json-format-v4.02.html#BindOperation
https://docs.oasis-open.org/odata/odata-json-format/v4.02/odata-json-format-v4.02.html#BindOperation

Standards Track Work Product

results in 204 No Content.

Deleting the parent from the sales organization Switzerland (making it a root) can be achieved either with:

PATCH /service/SalesOrganizations ('Switzerland')
Content-Type: application/json

{ "Superordinate": { "@id": null } }
or with:

DELETE /service/SalesOrganizations ('Switzerland')/Superordinate/S$ref

Example 90: If the parent navigation property contained a referential constraint for the key of the target [OData-CSDL, section 8.5],

<EntityType Name="SalesOrganization">
<Key>
<PropertyRef Name="ID" />
</Key>
<Property Name="ID" Type="Edm.String" Nullable="false" />
<Property Name="Name" Type="Edm.String" />
<Property Name="SuperordinateID" Type="Edm.String" />
<NavigationProperty Name="Superordinate"
Type="SalesModel.SalesOrganization">
<ReferentialConstraint Property="SuperordinateID"
ReferencedProperty="ID" />
</NavigationProperty>
</EntityType>

then alternatively the property taking part in the referential constraint [OData-Protocol, section 11.4.8.1] could be changed to EMEA Central:

PATCH /service/SalesOrganizations ('Switzerland')
Content-Type: application/json

{ "SuperordinateID": "EMEA Central" }

If the parent-child relationship between sales organizations is maintained in a separate entity set, a node can have
multiple parents, with additional information on each parent-child relationship.

A Example 91: Assume the relation from a node to its parent nodes contains a weight:

<EntityType Name="SalesOrganizationRelation">
<Key>
<PropertyRef Name="Superordinate/ID" Alias="SuperordinateID" />
</Key>
<Property Name="Weight" Type="Edm.Decimal"
Nullable="false" DefaultValue="1" />
<NavigationProperty Name="Superordinate"
Type="SalesModel.SalesOrganization" Nullable="false" />

</EntityType>
<EntityType Name="SalesOrganization">
<Key>
<PropertyRef Name="ID" />
</Key>

<Property Name="ID" Type="Edm.String" Nullable="false" />

<Property Name="Name" Type="Edm.String" />

<NavigationProperty Name="Relations"
Type="Collection (SalesModel.SalesOrganizationRelation)
Nullable="false" ContainsTarget="true" />

<Annotation Term="Aggregation.RecursiveHierarchy"

Qualifier="MultiParentHierarchy">
<Record>
<PropertyValue Property="NodeProperty"
PropertyPath="ID" />

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 59 of 69

https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#ReferentialConstraint
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#ReferentialConstraint
https://docs.oasis-open.org/odata/odata-csdl-json/v4.02/odata-csdl-json-v4.02.html#ReferentialConstraint
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UpdateaPrimitiveProperty
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UpdateaPrimitiveProperty
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#UpdateaPrimitiveProperty

Standards Track Work Product

<PropertyValue Property="ParentNavigationProperty"
NavigationPropertyPath="Relations/Superordinate" />
</Record>
</Annotation>
</EntityType>

Further assume the following relationships between sales organizations:

Relations/SuperordinatelD Relations/Weight

us Sales 1
EMEA Sales 1
EMEA Central | EMEA 1
Atlantis us 0.6
Atlantis EMEA 0.4
Phobos Mars 1

Then Atlantis is a node with two parents. The standard hierarchical transformations ancestors and descendants disregard the weight
property and consider both parents equally valid. Transformation traverse has no defined behavior.

Since this example contains no referential constraint, there is no analogy to example 90. The alias SuperordinateID cannot be used in the
payload, the following request is invalid:

POST /service/SalesOrganizations ('Mars')/Relations
Content-Type: application/json

{ "SuperordinateID": "Sales" }
The alias SuperordinatelD /s used in the request to delete the added relationship again:

DELETE /service/SalesOrganizations('Mars')/Relations('Sales"')

7.11 Transformation Sequences

Applying aggregation first covers the most prominent use cases. The slightly more sophisticated question “how much
money is earned with small sales” requires filtering the base set before applying the aggregation. To enable this type of
guestion several transformations can be specified in $apply in the order they are to be applied, separated by a forward

slash.
Example 92:

GET /service/Sales?S$Sapply=filter (Amount le 1)
/aggregate (Amount with sum as Total)

means “filter first, then aggregate”, and results in

"@context": "Smetadata#Sales (Total)",
"value": [
{ "Total@type": "Decimal", "Total": 2 }

Using £ilter within $apply does not preclude using it as a normal system query option.
Example 93:

GET /service/Sales?$apply=filter (Amount le 2)/groupby ((Product/Name),
aggregate (Amount with sum as Total))
&$filter=Total ge 4

results in

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 60 of 69

Standards Track Work Product

"@Qcontext": "$Smetadata#Sales (Product (Name), Total)",
"value": [
{ "Product": { "Name": "Paper" 1},
"Total@type": "Decimal", "Total": 4 },
{ "Product": { "Name": "Sugar" 1},
"Total@type": "Decimal", "Total": 4 }

For further examples, consider another data model containing entity sets for cities, countries and continents and the

obvious associations between them.
Example 94: getting the population per country with

GET /service/Cities?$apply=groupby ((Continent/Name, Country/Name),
aggregate (Population with sum as TotalPopulation))

results in

"@context": "Smetadata#Cities (Continent (Name) ,Country (Name),
TotalPopulation)",
"value": [
{ "Continent": { "Name": "Asia" }, "Country": { "Name": "China" 1},
"TotalPopulation@type": "Int32", "TotalPopulation": 1412000000 1},
{ "Continent": { "Name": "Asia" }, "Country": { "Name": "India" },
"TotalPopulation@type": "Int32", "TotalPopulation": 1408000000 },

Example 95: all countries with megacities and their continents

GET /service/Cities?$apply=filter (Population ge 10000000)
/groupby ((Continent/Name, Country/Name),
aggregate (Population with sum as TotalPopulation))

Example 96: all countries with tens of millions of city dwellers and the continents only for these countries

GET /service/Cities?$apply=groupby ((Continent/Name,Country/Name),
aggregate (Population with sum as CountryPopulation))
/filter (CountryPopulation ge 10000000)
/concat (identity,
groupby ((Continent/Name) ,
aggregate (CountryPopulation with sum
as TotalPopulation)))

or

GET /service/Cities?$apply=groupby ((Continent/Name,Country/Name),
aggregate (Population with sum as CountryPopulation))
/filter (CountryPopulation ge 10000000)

/concat (groupby ((Continent/Name, Country/Name) ,
aggregate (CountryPopulation with sum

as TotalPopulation)),

groupby ((Continent/Name) ,

aggregate (CountryPopulation with sum

as TotalPopulation)))

Example 97: all countries with tens of millions of city dwellers and all continents with cities independent of their size

GET /service/Cities?$apply=groupby ((Continent/Name, Country/Name),
aggregate (Population with sum as CountryPopulation))

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 61 of 69

Standards Track Work Product

/concat (filter (CountryPopulation ge 10000000),
groupby ((Continent/Name) ,
aggregate (CountryPopulation with sum
as TotalPopulation)))

Example 98: assuming that Amount is a custom aggregate in addition to the property, determine the total for countries with an Amount greater
than 1000

GET /service/SalesOrders?S$apply=
groupby ((Customer/Country) ,aggregate (Amount))
/filter (Amount gt 1000)
/aggregate (Amount)

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 62 of 69

Standards Track Work Product

8 Conformance

Conforming services MUST follow all rules of this specification for the set transformations and aggregation methods they
support. They MUST implement all set transformations and aggregation methods they advertise via the annotation

Conforming clients MUST be prepared to consume a model that uses any or all of the constructs defined in this
specification, including custom aggregation methods defined by the service, and MUST ignore any constructs not
defined in this version of the specification.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 63 of 69

Standards Track Work Product

Appendix A. References

This appendix contains the normative references that are used in this document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-
term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of their content constitutes requirements of this
document.

[OData-ABNF]

ABNF components: OData ABNF Construction Rules Version 4.01 and OData ABNF Test Cases.
See link in “Related work” section on cover page.

[OData-Agg-ABNF]

OData Aggregation ABNF Construction Rules Version 4.0.
See link in “Additional artifacts” section on cover page.

[OData-CSDL]

OData Common Schema Definition Language (CSDL) JSON Representation Version 4.01.
See link in “Related work” section on cover page.

OData Common Schema Definition Language (CSDL) XML Representation Version 4.01.
See link in “Related work” section on cover page.

[OData-JSON]

OData JSON Format Version 4.01.
See link in “Related work” section on cover page.

[OData-Protocol]

OData Version 4.01. Part 1: Protocol.
See link in “Related work” section on cover page.

[OData-URL]

OData Version 4.01. Part 2: URL Conventions.
See link in “Related work” section on cover page.

[OData-VocAggr]

OData Aggregation Vocabulary.
See link in “Additional artifacts” section on cover page.

[OData-VocCore]

OData Core Vocabulary.
See link in “Related work” section on cover page.

[RFC2119]

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997
https://www.rfc-editor.org/info/rfc2119.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 64 of 69

https://www.rfc-editor.org/info/rfc2119

Standards Track Work Product

[RFC8174]

Leiba, B., “Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words”, BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017
https://www.rfc-editor.org/info/rfc8174.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 65 of 69

https://www.rfc-editor.org/info/rfc8174

Standards Track Work Product

Appendix B. Acknowledgments
B.1 Special Thanks

The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol, section C.2],

are gratefully acknowledged.

B.2 Participants

OData TC Members:

First N\ame Last Name Company

George Ericson Dell
Hubert Heijkers IBM

Ling Jin IBM
Stefan Hagen Individual
Michael Pizzo Microsoft
Christof Sprenger Microsoft
Ralf Handl SAP SE
Gerald Krause SAP SE
Heiko Theil3en SAP SE
Martin Zurmuehl SAP SE

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 66 of 69

https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#Participants
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#Participants
https://docs.oasis-open.org/odata/odata/v4.02/odata-v4.02-part1-protocol.html#Participants

Appendix C. Revision History

Standards Track Work Product

Revision Date Editor Changes Made
Working Draft 01 2012- Ralf Handl Translated contribution into OASIS format
11-12
Committee 2013- Ralf Handl Switched to pipe-and-filter-style query language based on
Specification Draft 07-25 Hubert composable set transformations
01 Heijkers Fleshed out examples and addressed numerous editorial and
Gerald technical issues processed through the TC
Krause Added Conformance section
Michael
Pizzo
Martin
Zurmuehl
Committee 2014- Ralf Handl Dynamic properties used all aggregated values either via aliases or
Specification Draft 01-09 Hubert via custom aggregates
02 Heijkers Refactored annotations
Gerald
Krause
Michael
Pizzo
Martin
Zurmuehl
Committee 2015- Ralf Handl Added compute transformation
Specification Draft 07-16 Hubert Minor clean-up
03 Heijkers
Gerald
Krause
Michael
Pizzo
Martin
Zurmuehl
Committee 2023- Ralf Handl Added section about fundamentals of input and output sets
Specification Draft 07-05 Hubert Algorithmic descriptions of transformations
04 Heijkers Added join and outerjoin transformations, replaced expand by
Gerald addnested
Krause Added transformations orderby, skip, top, nest
Michael Added transformations for recursive hierarchies, updated related
Pizzo filter functions
Heiko Added functions evaluable on a collection, introduced keyword
TheiRen $these

Merged section 4 “Representation of Aggregated Instances” into
section 3

Remove actions and functions (except set transformations) on
aggregated entities, adapted section “Actions and Functions on
Aggregated Entities”

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 67 of 69

Standards Track Work Product

Revision Date Editor Changes Made
Committee 2023- Ralf Handl Non-material changes from public review feedback
Specification 03 09-19 Gerald

Krause

Heiko

Theil3en
Committee 2025- Gerald Remove sections not intended for OASIS Standard
Specification Draft 10-01 Krause
05 Heiko

Theil3en

odata-data-aggregation-ext-v4.0-csd05

Copyright © OASIS Open 2025. All Rights Reserved.

01 October 2025 - Page 68 of 69

Standards Track Work Product

Appendix D. Notices
Copyright © OASIS Open 2025. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights
Policy (the “OASIS IPR Policy”). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this section are included on all such
copies and derivative works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final
Deliverable documents (Committee Specification, Candidate OASIS Standard, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be
infringed by implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide
an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode
of the OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent
claims that would necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this OASIS Standards Final Deliverable. OASIS may include such claims on
its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed
to pertain to the implementation or use of the technology described in this OASIS Standards Final Deliverable or the
extent to which any license under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on OASIS’ procedures with respect to rights in any document or
deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS
Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS makes no representation that
any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in
fact, Essential Claims.]

The name “OASIS” is a trademark of OASIS, the owner and developer of this specification, and should be used only to
refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,
specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-
open.org/policies-guidelines/trademark/ for above guidance.

odata-data-aggregation-ext-v4.0-csd05 Copyright © OASIS Open 2025. All Rights Reserved. 01 October 2025 - Page 69 of 69

https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/
https://www.oasis-open.org/policies-guidelines/trademark/

	OData Extension for Data Aggregation Version 4.0
	Committee Specification Draft 05
	01 October 2025
	This stage:
	Previous stage:
	Latest stage:
	Technical Committee:
	Chairs:
	Editors:
	Additional artifacts:
	Related work:
	Abstract:
	Status:
	Key words:
	Citation format:
	Notices

	Table of Contents
	1 Introduction
	1.1 Changes from Earlier Versions
	1.2 Glossary
	1.2.1 Definitions of Terms
	1.2.2 Acronyms and Abbreviations
	1.2.3 Document Conventions

	2 Overview
	2.1 Example Data Model
	2.2 Example Data
	2.3 Example Use Cases

	3 System Query Option $apply
	3.1 Fundamentals of Input and Output Sets
	3.1.1 Type, Structure and Context URL
	3.1.2 Sameness and Order
	3.1.3 Evaluation of Data Aggregation Paths

	3.2 Basic Aggregation
	3.2.1 Transformation aggregate
	3.2.1.1 Aggregation Algorithm
	3.2.1.2 Keyword as
	3.2.1.3 Aggregation Methods
	3.2.1.3.1 Standard Aggregation Method sum
	3.2.1.3.2 Standard Aggregation Method min
	3.2.1.3.3 Standard Aggregation Method max
	3.2.1.3.4 Standard Aggregation Method average
	3.2.1.3.5 Standard Aggregation Method countdistinct
	3.2.1.3.6 Custom Aggregation Methods

	3.2.1.4 Aggregate Expression $count

	3.2.2 Transformation concat
	3.2.3 Transformation groupby
	3.2.3.1 Simple Grouping

	3.3 Transformations Producing a Subset
	3.3.1 Top/bottom transformations
	3.3.1.1 Transformations bottomcount and topcount
	3.3.1.2 Transformations bottompercent and toppercent
	3.3.1.3 Transformations bottomsum and topsum

	3.3.2 Transformation filter
	3.3.3 Transformation orderby
	3.3.4 Transformation search
	3.3.5 Transformation skip
	3.3.6 Transformation top
	3.3.7 Stable Total Order Before $skip and $top

	3.4 One-to-One Transformations
	3.4.1 Transformation identity
	3.4.2 Transformation compute

	3.5 Transformations Changing the Input Set Structure
	3.5.1 Transformations join and outerjoin

	3.6 Expressions Evaluable on a Collection
	3.6.1 Function aggregate
	3.6.2 Expression $count

	3.7 Function isdefined
	3.8 Evaluating $apply as an Expand and Select Option
	3.9 ABNF for Extended URL Conventions

	4 Cross-Joins and Aggregation
	5 Vocabulary for Data Aggregation
	5.1 Aggregation Capabilities
	5.2 Custom Aggregates
	5.3 Context-Defining Properties
	5.4 Annotation Example
	5.5 Hierarchies
	5.5.1 Recursive Hierarchy
	5.5.1.1 Hierarchy Functions

	5.5.2 Hierarchy Examples

	5.6 Functions on Aggregated Entities

	6 Hierarchical Transformations
	6.1 Common Parameters for Hierarchical Transformations
	6.2 Hierarchical Transformations Producing a Subset
	6.2.1 Transformations ancestors and descendants
	6.2.2 Transformation traverse

	7 Examples
	7.1 Requesting Distinct Values
	7.2 Standard Aggregation Methods
	7.3 Requesting Expanded Results
	7.4 Requesting Custom Aggregates
	7.5 Aliasing
	7.6 Combining Transformations per Group
	7.7 Model Functions as Set Transformations
	7.8 Controlling Aggregation per Rollup Level
	7.9 Aggregation in Recursive Hierarchies
	7.10 Maintaining Recursive Hierarchies
	7.11 Transformation Sequences

	8 Conformance
	Appendix A. References
	A.1 Normative References
	OData-ABNF
	OData-Agg-ABNF
	OData-CSDL
	OData-JSON
	OData-Protocol
	OData-URL
	OData-VocAggr
	OData-VocCore
	RFC2119
	RFC8174RFC8174

	Appendix B. Acknowledgments
	B.1 Special Thanks
	B.2 Participants

	Appendix C. Revision History
	Appendix D. Notices

